Deploying a Hadoop Cluster on India/OpenStack

Introduction:
This tutorial assumes you already have used OpenStack and know how to create multiple virtual machine images. To build a distributed Hadoop cluster, you will need at least two VMs for nodes, though more than two are welcome.

Using Cloudmesh for Deployment and Configuration:
Much of the functionality described here is available or will be available via Cloudmesh, which provides a simpler and less error-prone installation. This document explains how to perform the deployment at the command line in a more manual fashion, which can provide some insight to help you better understand the requirements and process of building a cluster.

Cluster Preparation:
Prior to deploying Hadoop, your nodes must be able to communicate. This will require changes to the /etc/hosts configuration file, and creation and sharing of SSH keys among the nodes of the cluster.
Add lines to the end of your /etc/hosts file, one line for each node in the cluster, listing the IP address, fully qualified host name, and an alias for the host to be used by Hadoop. Here is an example of an /etc/host file with six nodes added. Of course you will use the proper IP addresses and host names for your VMs. You can use the same hosts file for every node in your cluster.
127.0.0.1 localhost
The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts

lines added for Hadoop cluster
10.39.1.46 smccaula-101.novalocal hadoop1
10.39.1.47 smccaula-102.novalocal hadoop2
10.39.1.55 smccaula-103.novalocal hadoop3
10.39.1.56 smccaula-104.novalocal hadoop4
10.39.1.57 smccaula-105.novalocal hadoop5
10.39.1.45 smccaula-106.novalocal hadoop6

Your nodes will also SSH authentication to communicate. For each node, you will need to create a pair of SSH keys (as root). The following command will create a key pair in /root/.ssh
ssh-keygen -t rsa -P ""

You will need to append the public key created (default will be id_rsa.pub) to the authorized_keys file of each node. You can do this by downloading the keys from one host and uploading them to another, or by copying and pasting them from an editor program in your terminal. If copying and pasting, be sure all characters are copied. Given you have moved a public key to another host, you can append it to authorized_key as follows (again, this is as root and the files are in /root/.ssh)
cat hadoop2.pub >> /root/.ssh/authorized_keys

Test this by verifying that you can SSH from node to node in either direction.
From this point, implementing a multi-node cluster is very similar to building a single node pseudo-cluster. The main difference is that we will establish some division of labor among the nodes. There are three functions we need to fill:
NameNode for the HDFS file system
· Keeps track of all files and on which nodes they are stored
ResourceManager for the YARN resource negotiator
· Manages cluster resources and applications
DataNode(s) for the HDFS file system
· Stores data files and makes them available to client applications

Deploying Hadoop:
We will have to decide on the architecture of our cluster before proceeding. In practice, clusters can be tens of thousands of nodes, but our cluster will be a handful of nodes. For our example, we will combine all the management functions on one node, and configure the rest as datanodes.
We will use Chef to install the Hadoop software, and configure our nodes, calling different recipes for the manager and worker nodes. In addition to Hadoop, we will install Oracle Java, as that is Hadoop’s preferred version of Java. The Apt and Yum cookbooks are also downloaded as they are required by the Hadoop recipe.
First we need to install Chef and download the required cookbooks from the Chef repository. As root, and in the /home/ubuntu directory, these commands will do that.
curl -L https://www.opscode.com/chef/install.sh | bash
wget http://github.com/opscode/chef-repo/tarball/master
tar -zxf master
mv opscode-chef-repo* chef-repo
rm master
cd chef-repo/
mkdir .chef
echo "cookbook_path ['/home/ubuntu/chef-repo/cookbooks']" > .chef/knife.rb
cd cookbooks
knife cookbook site download java
knife cookbook site download apt
knife cookbook site download yum
knife cookbook site download hadoop
tar -zxf java*
tar -zxf apt*
tar -zxf yum*
tar -zxf hadoop*
rm *.tar.gz

There are four files we will need to create to store our preferences. These will need slight customization based on your host names and your desired configuration.
In /home/ubuntu/chef-repo/roles create java.rb for our Java preferences. We request Oracle Java version 6, and ask to have the $JAVA_HOME environment variable set automatically.
name "java"
description "Install Oracle Java"
default_attributes(
 "java" => {
 "install_flavor" => "oracle",
 "jdk_version" => "6",
 "set_etc_environment" => true,
 "oracle" => {
 "accept_oracle_download_terms" => true
 }
 }
)
run_list(
 "recipe[java]"
)

In /home/ubuntu/chef-repo/roles create hadoop.rb for our Hadoop preferences. These preferences will actually be the same whether we are installing a namenode or a datanode, we will just call a different recipe. Here we will pass the names of our HDFS and YARN manager nodes. In this example the manager node has an alias of hadoop1. If you named yours differently, change it here to match.
name "hadoop"
description "set Hadoop attributes"
default_attributes(
 "hadoop" => {
 "distribution" => "bigtop",
 "core_site" => {
 "fs.defaultFS" => "hdfs://hadoop1"
 },
 "yarn_site" => {
 "yarn.resourcemanager.hostname" => "hadoop1"
 }
 }
)
run_list(
 "recipe[hadoop]"
)

In /home/ubuntu/chef-repo create solo.rb to store locations and instructions for Chef to use.
file_cache_path "/home/ubuntu/chef-solo"
cookbook_path "/home/ubuntu/chef-repo/cookbooks"
role_path "/home/ubuntu/chef-repo/roles"
verify_api_cert true

Finally, in /home/ubuntu/chef-repo create solo.json for the specific instructions to Chef on what to install. This is the only file that will change between a manager and worker node installation. Both versions are shown below. Remember that you could configure differently, the HDFS namenode and YARN resoursemanager could be on different nodes, and the namenode and resoursemanager nodes could also be datanodes if desired. You may want to install and initialize your manager node prior to creating your worker node.
For the manager node:
{
 "run_list": ["role[java]", "recipe[java]", "role[hadoop]", "recipe[hadoop::hadoop_hdfs_namenode]",
 "recipe[hadoop::hadoop_yarn_nodemanager]", "recipe[hadoop::hadoop_yarn_resourcemanager]"]
}

For the worker node:
{
 "run_list": ["role[java]", "recipe[java]", "role[hadoop]", "recipe[hadoop::hadoop_hdfs_datanode]"]
}

When files are created, the installation can be initiated with the command:
chef-solo -j solo.json -c solo.rb
[bookmark: _GoBack]
Repeat the worker installation for as many nodes as are available. At this point your cluster is deployed and awaiting initialization.

Initializing and Testing:
On the namenode only, we will have to initialize the file system. First check the status of all services and stop any that are running. Don’t worry about services not installed on this node.
service hadoop-hdfs-namenode status
service hadoop-hdfs-datanode status
service hadoop-yarn-resourcemanager status
service hadoop-yarn-nodemanager status

To initialize the namenode, run:
/etc/init.d/hadoop-hdfs-namenode init

Restart any services installed on the node. There is one more initialization step required on the namenode, to create a default directory structure:
/usr/lib/hadoop/libexec/init-hdfs.sh

When these initialization steps are complete, and all the appropriate services are running on each node, the Hadoop cluster will be operational and ready to run jobs.

Other Software:
Using this same process, we can install other related software packages, just by changing the recipes included in the solo.rb run-list. The following is a list of recipes that can be included. As in the solo.rb example above, these will be in quotes and separated by commas. Consult with the course instructors for guidance on installing additional packages.
"recipe[hbase]",
"recipe[hive]",
"recipe[oozie]",
"recipe[pig]",
"recipe[zookeeper]"
