
BUILDING SOFTWARE-DEFINED SYSTEMS WITH REPRODUCIBLE

ENVIRONMENTS

Hyungro Lee

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science,

Indiana University

May 2019

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Doctoral Committee

Geoffrey Charles Fox, PhD

Martin Swany, PhD

Haixu Tang, PhD

Lei Jiang, PhD

May , 2019

ii

Acknowledgments

First of all, I would like to thank Dr. Geoffrey Fox for his supervision and generous support in

exploring my research idea over the course of my academic career. I would like to thank Dr. Martin

Swany, Dr. Haixu Tang, and Dr. Lei Jiang for serving on my committee and for their academic

advice to complete my PhD journey. I would also like to thank Dr. Dennis Gannon for offering

me the research opportunity at Microsoft. I would like to thank Dr. Gregor von Laszewski for his

guidance and technical advice during several projects throughout my graduate program at Indiana

University.

iii

To my family.

iv

Hyungro Lee
BUILDING SOFTWARE-DEFINED SYSTEMS WITH REPRODUCIBLE ENVIRONMENTS

Modern distributed server applications are often built with a rich set of libraries and packages

that present dependency problems for setting up environments across different places. The issues

are not only complicated set of libraries but also the particular configuration of infrastructure to

fulfill performance requirements. With multi-tenant systems, one can ensure building manageable

systems for their applications. The typical interface that we are using to build software

environment is a platform dependent which is difficult to extend and migrate to new systems.

Building environment has to be thoroughly planned and tested otherwise, requirements are not

going to be fulfilled in which users, developers, administrators, and providers have individual

specifications on software versions, operating systems and hardware support. In addition,

dynamic resource provisioning is a common issue for improving resource utilization, especially for

data-intensive applications with continuously growing storage space needs. The main area of this

dissertation is to improve the management of software environments with performance-aware

resource provisioning by automated techniques, resulting in efficiently built, but the minimal

operational effort of application deployment. The contribution of this dissertation presents

techniques to enable a software-defined sub systems using recent technologies such as DevOps and

containers. In detail, the contributions include 1) scripting application deployment on

multi-clouds platforms, 2) sharing common core components for efficient software defined systems,

and 3) performance evaluation of deployed environments. Developments of this work are publicly

available and verified with experiments on existing systems including production computing

environments.

Geoffrey Charles Fox, PhD

v

Martin Swany, PhD

Haixu Tang, PhD

Lei Jiang, PhD

vi

Contents

Acknowledgments iii

Dedication iv

Abstract v

1 Introduction 1

2 Background 4

2.1 Dependency Control . 6

2.1.1 Scripting Deployment for Repeatability . 7

2.1.2 Programmable Template Code for Automation 8

2.1.3 Container Technologies for Reproducibility 11

2.2 Infrastructure Control using Template Orchestration 13

2.2.1 Template deployment for Big Data Applications 14

2.2.2 Infrastructure Provisioning on Clouds . 17

2.2.3 Semantics . 18

2.3 Environment Control using Container Technology . 21

2.3.1 Package Manager for Common Libraries . 23

2.3.2 Evaluation . 23

2.4 Performance Analysis . 26

2.5 Related Work . 27

2.5.1 DevOps Scripting Tools . 27

2.5.2 Template Deployment . 27

vii

2.5.3 Container Technology . 28

2.5.4 Topology and Orchestration Specification for Cloud Applications (TOSCA) . 29

2.6 Contribution . 32

3 Software Defined Provisioning for Big Data Software Environment 33

3.1 Introduction . 33

3.2 Use Cases . 38

3.2.1 Fingerprint Recognition . 38

3.2.2 Human and Face Detection with OpenCV . 38

3.2.3 Twitter Live Analysis . 39

3.2.4 Big Data Analytics for Healthcare Data and Health Informatics 39

3.2.5 Spatial Big Data, Spatial Statistics and Geographic Information Systems . . 40

3.2.6 Data Warehousing and Data Mining . 40

3.3 Ecosystem Analysis . 41

3.3.1 Analysis on Big Data Projects from Community 41

3.3.2 Analysis on Big Data Projects from Academia 44

3.4 Discussion . 45

3.5 Conclusion . 46

4 Efficient Software Defined Systems using Containers 48

4.1 Introduction . 48

4.2 Background . 50

4.2.1 Software Deployment for dynamic computing environments 50

4.2.2 Scripts . 51

4.2.3 Containers with Dockerfile . 52

viii

4.2.4 Environment Setup . 53

4.2.5 Package Dependencies . 55

4.2.6 Application Domains . 56

4.2.7 Docker Images on Union Mounting . 59

4.3 Results . 59

4.3.1 Common Core Components . 61

4.3.2 Approach I: Common Core Components by Submodules 62

4.3.3 Approach II: Common Core Components by Merge 63

4.4 Discussion . 65

4.5 Related Work . 70

4.5.1 Template-Based Software Deployment . 70

4.5.2 Linux Containers on HPC . 71

4.6 Conclusion . 71

5 Performance Evaluation of Event-driven Computing 72

5.1 Introduction . 72

5.2 Evaluation . 74

5.2.1 Concurrent Function Throughput . 75

5.2.2 Concurrency for CPU Intensive Workload . 76

5.2.3 Concurrency for Disk Intensive Workload . 77

5.2.4 Concurrency for Network Intensive Workload 80

5.2.5 Elasticity . 81

5.2.6 Continuous Deployment and Integration . 84

5.2.7 Event-driven Model versus Virtual Machine 86

5.3 Use Cases . 88

ix

5.4 Discussion . 89

5.5 Related Work . 89

5.6 Conclusion . 90

6 Efficient Software Defined Storage Systems on Bare Metal Cloud 92

6.1 Introduction . 92

6.2 Hardware Specification and Application Layout . 98

6.2.1 Experimental Setup . 98

6.2.2 I/O Test . 100

6.2.3 Scalability . 101

6.3 Experimental Results . 103

6.3.1 Compute Performance . 103

6.3.2 Storage Performance . 103

6.3.3 Production Comparison . 104

6.3.4 Workloads . 107

6.3.5 Cost Efficiency . 108

6.4 Related Work . 114

6.5 Conclusion . 114

7 Conclusion 116

Bibliography 118

x

Chapter 1

Introduction

From Infrastructure-as-a-Service to Functions-as-a-Service, many efforts have been made to provide

computing resources in virtualized environments but with less complication of building infrastruc-

ture and preparing environments. Lightweight Linux containers are widely adopted in supporting

interdisciplinary field of research and collaboration because of its kernel level of an isolated environ-

ment. IaaS is a still best approach to operate fine-grained resource provisioning regarding to CPU,

memory, storage and network. This dissertation will explore the rapid evolution of virtualization

technologies from IaaS to serverless computing with container technologies to find optimized con-

figuration of systems with a general software deployment. The next generation system must utilize

DevOps tools for deploying software stacks on a cluster of virtual machines and infrastructure

provisioning for supporting various applications. In recent years, building big data clusters have

become an inevitable task for performing analysis with the increased computational requirements

for large dataset and the anticipated systems will be perfect for these situations to every dimension

of infrastructure provisioning and software deployment.

This dissertation presents techniques and improvements of building dynamic computing envi-

ronments as a sub-system of software-defined systems that are designed to process computations on

resource optimized software environment while dedicated software stacks are deployed. The sub-

system deploys user applications with configurations and input data sources to prepare equivalent

software environment at once. The virtual clusters are provisioned with desired compute resources

and aim to ensure scalability as data size and computation requirement change over time.

Thesis statement: A system with automated scripting and programmable infrastructure pro-

visioning proposes an effective way of enabling software defined systems on virtual clusters with

1

latest technologies.

Challenges in Integrating Applications and Compute Resources

Supporting big data analytic, for example, becomes difficult for a few reasons: (1) big data appli-

cations run with large amounts of data and a collection of software, (2) building and managing big

data deployments on clusters require expertise of infrastructure and (3) Apache Hadoop based big

data software stacks are not suitable for HPC. In an effort to resolve the first two issues, public

dataset and data warehouse on the cloud have offered to ensure instant data access with SQL

support and enterprise big data solutions have hosted by cloud providers e.g. Amazon, Google,

and Microsoft to save time on deploying multiple software stacks without facing installation errors.

These services, however, are only available to their customers and make hard to switch to another

when applications and pipelines are built on top of the services. Pre-developed infrastructure for

big data stacks are only suitable for particular use cases and are unable to customize or re-define by

users. There are efforts to simplify a deployment with a specification such as automated deployment

engines using TOSCA [90], but they do not integrate multiple clouds with a cluster deployment or a

workload execution. The bigdata deployment on clusters require more than single software to install

and configure with different roles i.e. masters and workers. If it is built on virtualized resources,

scaling up or down is necessary to maximize resource utilization but with optimal performance.

These issues can be resolved using a template deployments for infrastructure and software which

uses YAML or JSON documents to describe installing tools and allocating resources. For example,

Amazon OpsWorks uses Chef to deploy software stacks and Cloudformation uses YAML document

to deploy Amazon resources. Similarly, Microsoft Resource Manager Templates uses JSON doc-

ument to deploy Azure resources and Google Cloud deployment Manager uses python or Jinja2

templating language to deploy Google Cloud platform resources. OpenStack heat is originated

2

from AWS Cloudformation to deploy resources but extended with the integration among open-

stack services e.g. Telemetry for auto-scaling. These templates have been used for infrastructure

deployment and software installation with input parameters which enables repeatable provision-

ing on virtual environments. We extend the use of a template with workload execution to align

resource requirement of a workflow and ensure performance while identical results are generated

on virtual clusters. This will be beneficial to share complicated and long-running pipelines which

are often failed to replicate. Our approach in the dissertation is to integrate software stacks and

infrastructure provisioning by proposing a software-defined system in terms of deploying software

environment on flexible virtual clusters. This allow one can replicate the workflow on different

platforms but guarantee an equivalent computing environment at any time.

This dissertation consists of the following sections. First, background in Chapter 2 introduces

a template deployment with big data software stacks, template use cases for public clouds infras-

tructure provisioning and reproducible software environment using containers. A literature review

of the related work is also addressed in the chapter. Next, the chapter 3 provides a implementation

of a template deployment with NIST big data use cases running on virtual clusters. The software

defined systems using containers is presented in the chapter 4 with the evaluation of Docker storage

drivers for building big data software stacks. Chapter 5,6 provide evaluation of software defined

systems using experiments on event-driven computing and bare metal clouds. Last, the chapter 7

outlines this dissertation with future research topics.

3

Chapter 2

Background

We explore provisioning infrastructure and deploying software environments using automated tools

compared to manual administration. Software defined system is designed for data analytic on vir-

tual clusters with access to local disks and is optimized for data-parallel tasks. We examine the

system on event-driven computing and bare metal clouds in which we performed scaling experi-

ments on up to 10,000 tasks, identifying bottlenecks, and offering optimization for best performance

in this dissertation. This chapter provides a background on an existing technology good for depen-

dency control and software environment management such as containers along with the necessity

of performance analysis towards building a software defined sub system. Related work containing

the literature review is followed by the contribution as well.

Data analytic frameworks have been widely used to provide insights of massive amounts of data

generated by simulations and equipment from industries and academic communities. Large data

sets i.e. terabyte or petabyte scale, are generated by molecular dynamics (MD) simulations [78],

and genomic data sets have been stored in multiple institutions for analysis conducted by bioin-

formaticists and biologists [54] but the limited number of frameworks have been implemented to

ensure high-throughput analysis on cloud computing and HPC systems.

Infrastructure support for the large data analysis has made substantial improvements in terms

of data movement and dynamic resource provisioning.Hadoop and spark for these analysis as those

are proven industry applications of scalable computing interfaces. Leverage of these tools would be

beneficial but the common libraries are not generally available across different platforms due to the

nature of open source software development. Therefore, automated software deployment at scale

becomes important for processing large data sets on various platforms.

4

Deploying a software environment on the virtual clusters is an effort to offer automated manage-

ment for distributed applications that impose flexible systems ensuring reproducibility and avail-

ability of software environments. Big data ecosystems, for example, expect to manage hundreds of

software packages on heterogeneous compute resources in an automated fashion repeating software

stack deployment with frequent changes. Software installation and configuration can be cumber-

some in a typical system which requires higher privileges for managing system libraries and packages

and dealing with compatibility issues. It, thus, creates additional barriers for moving unique soft-

ware stacks to a new platform with different system configurations e.g. operating system and

runtime system version. Building reproducible software stacks on various compute platforms is non

trivial but it may reduce technical difficulties of deploying application environments for collabora-

tive activities and improve efficiency of the management as further updates and changes are often

necessary.

The number of application libraries and the user software have been increased rapidly as many

people need new functionality for complex data processing. According to the National Institute of

Standards and Technology (NIST) report, 51 use cases across 26 fields are described in which the

extensive developments of software stacks are addressed including Hadoop, Spark, Hive, Mahout,

Storm, Cassandra and so on in 2018. The fast growth of data size is another challenge as parallel

software need to extract value from huge amounts of data across distributed nodes. Various use

cases from broad areas like health care, earth, environmental and polar science have built custom

software environments to solve particular problems with a rich set of data analysis tools, and the

following section describes existing issues on managing shared packages and libraries.

5

2.1 Dependency Control

Open source software is made by many packages and libraries which support various functional-

ity and establish reliability of requirements e.g. secured connections and consistent performance

instead of developing every components from the ground up. While there are several advantages

of importing packages or libraries for software development, dependency issue has aroused with

incompatibility across different versions of imported tools. Running software on different operating

systems or platforms makes more difficult to manage software environments as package managers

e.g. apt, yum have individual set of repositories. New technologies have been introduced to miti-

gate these problems by user defined, independent and portable software environments, for example,

Docker provides reproducible and shareable container images, and Conda creates self-contained en-

vironments using hard links to system libraries, and python’s Pipenv, virtualenv, Node.js’ npm or

Ruby’s bundler simplifies dependency management for each programming language.

Managing reproducible scientific experiments is another challenge to maintain with manual

configurations and special settings. End-users are willing to combine multi-language tools and

compile software manually with extra skills of Linux systems as long as they are allowed to build

executable environments for jobs, e.g. simulations and data analysis, while meta-data of installed

software and dependencies are difficult to share equivalent environment on different platforms and

systems and to preserve for further development. Installation and configuration using shell scripts

is traditional means of software distribution and maintenance which prevents prolonged software

stack management as they do not store dependencies and meta data like system package manager

does.

The system space managed by administrators prohibits users to have control over the libraries

required for software environments in which external tools and packages are relied on them. In share

computing systems, the separated privileges between administrators and users reduce problems

6

on conflicts and incompatibilities but applying rapidly growing packages e.g. community driven

packages, would be impractical. Ideal software environment has to be independent to an operating

system, programming language, and transparent to manage dependencies. Considering millions

of software and complicated dependency relations, schematic and simplistic software environment

is preferred to understand and replicate with minimum efforts by users. Only concern of having

individual software environment is using outdated insecure software tools, in which administrators

are not able to force them to update, and expose vulnerabilities.

2.1.1 Scripting Deployment for Repeatability

Software development has evolved with rich libraries and building a new computing environment

(or execution environment) requires set of packages to be successfully installed with minimal efforts.

The environment preparation on different infrastructure and platforms is a challenging task because

each preparation have individual instructions which build a similar environment, not identical

environment. Traditional method of software deployment is using shell scripts to define installation

steps with a system package manager command such as apt, yum, dpkg, dnf and make but it is

not suitable to deal with large number of packages actively updated and added to community in

a universal way. Python Package Index (PyPI) has almost 95,490 packages (as of 12/26/2016)

with 40+ daily new packages and github.com where most software packages, libraries and tools

are stored has 5,776,767 repositories available with about 20,000 daily added repositories. DevOps

tools i.e. Configuration management software supports automated installation with repeatable

executions and better error handling compared to bash scripts but there is no industry standards

for script formats and executions. Puppet, Ansible, Chef, CFEngine and Salt provide community

contributed repositories to automate software installation, for example, Ansible Galaxy has 9329

roles available, Chef Supermarket has 3,135 cookbooks available although there are many duplicates.

7

We call this is (automated) software deployment and building dynamic computing environments

on virtual clusters is the main objective of this dissertation. Software defined systems (or virtual

clusters) has discussed [39] to connect distributed big data and computing resources of Cloud and

HPC, which will result in developing a suite of software deployment tools at scale. Note that this

effort is mainly inspired by the previous research activities [40–43,46,76].

2.1.2 Programmable Template Code for Automation

A template has been used to describe a deployment of software packages and infrastructure on

virtual environments across multiple cloud providers because of its simple instructions as well as

content shareability. YAML (superset of JSON) is a popular language to serialize data delivery

especially as for configuration files and object persistence along with the template deployment. As

an example of infrastructure deployments, Amazon Cloudformation, a template deployment service,

uses YAML or JSON specification to describe a collection of Amazon virtual resources, Google

Compute Cloud uses YAML with Jinja2 or Python languages to define a set of google compute

resources whereas Microsoft Azure Resource Manager uses JSON to deploy Azure resources and

Topology and Orchestration Specification for Cloud Applications (TOSCA) uses XML [89] to define

a topology and a relationship. Saltstack and Ansible, a software deployment tool written in Python,

use YAML to manage configuration and software installation from instructions defined in YAML

text files.

Listing 2.1: AWS CloudFormation Example

Resources :

EC2Instance :

Type: AWS::EC2:: I n s t a n c e

Proper t i e s :

8

InstanceType :

Ref: I n s t a n c e T y p e

SecurityGroups :

- Ref: I n s t a n c e S e c u r i t y G r o u p

KeyName:

Ref: KeyName

The code example in Listing 2.1 is a plain text to deploy a Amazon EC2 instance written in a

YAML format which includes a nested data structure by indentations and key value pairs for lists

(starts with dash) and dictionaries.

Listing 2.2: Ansible Example

− hos t s : o p e n c v

t a sk s :

- name: c o m p i l e r p a c k a g e

apt : name=b u i l d − e s s e n t i a l s t a t e = p r e s e n t u p d a t e c a c h e =y e s

. . .

Ansible, automation tool, uses YAML syntax with Jinja2 template to describe instructions of

software installation and the code example in Listing 2.2 shows a code snippet of Ubuntu’s APT

(advanced packaging tool) installing build-essential Debian package during the OpenCV software

installation.

There are several reasons to use a template for a deployment. First, installing software and

building infrastructure typically demand lots of commands to run and additional configurations to

9

setup and a template is suitable for these tasks with its data structures using key-value pairs, lists

and dictionaries to contain all instructions to reproduce a same environment and to replicate an

identical software installation on different locations at another time. In addition, with the advent of

devops, a template deployment enables cooperation between a template developer and a template

operator because a complicated set of resources and services is simplified by a single template file

and delivered to an operator as an automated means of provisioning a same environment. Moreover,

YAML or JSON is a simple text format for storing data which is easy to share and modify with

anyone who interested in a template. There are still plenty of benefits that we can find when a

template deployment is used.

Big Data applications typically require efforts on deploying all of the software prerequisites and

preparing necessary compute resources. A template deployment reduced these efforts by offering

an automated management on both tasks; software deployment and infrastructure provisioning,

therefore we can focus on big data applications to develop.

The concept of serverless computing also applies to deploy applications with templates e.g.

Listing 2.1. For instance, Amazon serverless compute, AWS Lambda, invokes serverless application

code (also called function) based on the description of the template but uses a specific model e.g.

Listing 2.3 for components of serverless applications. In detail, there is a main function (Handler),

runtime environment (Runtime), and an actual code in a compressed format (CordUri).

Listing 2.3: AWS Serverless Application Model (SAM) Example

AWSTemplateFormatVersion: ’ 2010 -09 -09 ’

Transform : ’ AWS :: Serverless -2016 -10 -31 ’

Resources :

MyFunction:

Type: ’ AWS :: Serverless :: Function ’

10

Proper t i e s :

Handler : h e l l o p y t h o n . h a n d l e r

Runtime: p y t h o n 2 . 7

CodeUri: ’ s3 :// my - bucket / function . zip ’

2.1.3 Container Technologies for Reproducibility

Container technology has brought a lightweight virtualization with a Linux kernel support to enable

a portable and reproducible environment across laptops and HPC systems. Container runtime

toolkit such as Docker [71], rkt [3] and LXD [4] has been offered since 2014 which uses an image file

to initiate a container including necessary software packages and libraries without an hypervisor

which creates an isolated environment using a virtual instance but with an isolated namespace

on a same host operating system using the Linux kernel features such as namespaces, cgroups,

seccomp, chroot and apparmor. Recent research [33] shows that containers outperform traditional

virtual machine deployments yet running containers on HPC systems is still an undeveloped area.

Shifter [57] and Singularity [64] have introduced to support containers on HPC with a portability

and MPI support along with docker images. These efforts will be beneficial to scientific applications

to conduct CPU or GPU intensive computations with easy access of container images. For example,

a neuroimaging pipelines, BIDS Apps [53], is applied to HPCs using Singularity with existing 20

BIDS application images and Apache Spark on HPC Cray systems [21] is demonstrated by National

Energy Research Scientific Computing Center (NERSC) using shifter with a performance data of

big data benchmark. Both researches indicate that scientific and big data workloads are supported

by container technologies on HPC systems for reproducibility and portability.

Listing 2.4: Dockerfile Example

11

FROM ubuntu : 1 4 . 0 4

MAINTAINER Hyungro Lee <l ee212@indiana . edu>

RUN apt−get update && apt−get i n s t a l l −y bui ld−e s s e n t i a l

. . .

Dockerfile uses a custom template to describe installation steps of building docker images in a bash

like simple format. There are certain directives to indicate particular objective of the commands,

for example, FROM indicates a base image to use and RUN indicates actual commands to run.

12

2.2 Infrastructure Control using Template Orchestration

Template deployment is a means of installing software and building infrastructure by reading a file

written in a templating language such as YAML, JSON, Jinja2 or Python. The goal of a template

deployment is to offer easy installation, repeatable configuration, shareability of instructions for

software and infrastructure on various platforms and operating systems. A template engine or an

invoke tool is to read a template and run actions defined in a template towards target machines.

Actions such as installing software package and setting configurations are described in a template

file using its own syntax. For example, YAML uses spaces as indentation to describe a depth

of a dataset along with a dash as a list and a key-value pair with a colon as a dictionary and

JSON uses a curly bracket to enclose various data types such as number, string, boolean, list,

dictionary and null. In a DevOps environment, the separation between a template writing and

an execution helps Continuous Integration (CI) because a software developer writes deployment

instructions in a template file while a system operations professional executes the template as a

cooperative effort. Ansible, SaltStack, Chef or Puppet is one of popular tools to install software

using its own templating language. Common features for those tools are installing and configuring

software based on definitions but with different strategies and frameworks. One observation is that

the choice of implementation languages for those tools influences the use of a template language.

The tools written by Python such as Ansible and SaltStack use YAML and Jinja which are friendly

to a Python language with its library support whereas the tools written by Ruby such as Chef and

Puppet use Embedded Ruby (ERB) templating language. In scientific community, a template has

been used to describe data and processes of pipelines and workflow because a template contains

detailed information of them in writing and assists sharing and connecting between different layers

and tools. Parallel execution on distributed environments is also supported in many tools yet

enabling computations in a scalable manner needs expertise to prepare and build the environments.

13

We propose a template orchestration to encourage scientists in using distributed compute resources

from HPC and cloud computing systems in which provisioning infrastructure is documented in

a template and complicated pipelines and workflows are packaged by container technologies for

reproducibility.

2.2.1 Template deployment for Big Data Applications

Software installations and configurations for particular domains have become hard to maintain

because of an increased number of software packages and complexity of configurations between

them to connect. Template deployment for installing and provisioning systems across from a single

machine to large number of compute nodes is proposed to achieve consistent and reliable software

deployment and system provisioning.

First, we plan to implement a deployment tool with default components for big data software

such as Apache Hadoop, Spark, Storm, Zookeeper, etc. therefore a software deployment can be

achieved by loading existing templates instead of starting from scratch. The software deployment

intends to support various linux distribution with different versions, therefore the software stacks

are operational state in many environments without a failure.

Listing 2.5: Template Deployment for Big Data

s t a ck s :

- so f tware A

- so f tware B

- . . .

Each item i.e. software indicates a single template file to look up deployment instructions.

Dependencies indicates that related items to complete a deployment and the environment variables

are shared while dependencies are deployed. If container image is available on the web, container

14

image deployment is expected using the URI location to save compile time.

Listing 2.6: Sample of software template

i n s t r u c t i o n :

- i n s t a l l package A

- download data B

l o c a t i o n :

<URI>

dependency :

- so f tware A

- l i b r a r y B

env i ronment var i ab l e s :

- HOME DIR=/opt / so f tware a

Infrastructure deployment is provisioning of cloud computing which includes virtual machine

images, server types, network groups, etc. in preparation of virtual resources for the software stacks.

Infrastructure deployment for multiple cloud platforms includes Microsoft Azure Resource Manager

Templates, Amazon CloudFormation Templates, and Google Compute Instance Templates. Each

cloud provider owns individual models for their services therefore a template of the deployment

is solely executable in each provider although similar infrastructure is necessary for the software

stacks.

Listing 2.7: Support for cloud providers

i n f r a s t r u c t u r e :

- d e f a u l t : aws

- opt ions :

15

- aws

- gce

- azure

- openstack

aws:

s e r v i c e s :

image :

- image A

- image B

- image B ver s i on 2

se rve r :

- s e rve r type A

network :

- network i n t e r f a c e a

- network ip address a

We plan to integrate container based deployments with popular tools such as Docker therefore

image based software deployment is also supported to enhance reproducibility and mobility on

different environments.

Listing 2.8: Template Deployment with Containers

format :

- d e f a u l t : d o c k e r

- opt ions :

- docker

16

- a n s i b l e

- s h e l l

- rkt

Template has been used to document instructions for particular tasks such as software instal-

lation and configuration or infrastructure provisioning on cloud computing, however, shareability

of templates is not improved which requires for better productivity and reusability. We plan to

design a template hub to collect, share, search and reuse well written templates with a common

language e.g. yaml or json, therefore building software stacks and provisioning infrastructure both

are repeatable in any place at any time.

In addition, provenance data and process state will be reserved.

2.2.2 Infrastructure Provisioning on Clouds

Infrastructure provisioning has supported with templates in many cloud platforms i.e. Amazon

Cloudformation, Microsoft Azure Resource Manager, OpenStack Heat and Google Compute In-

stance Templates. Infrastructure described in a template will be created for simple tasks running

in a standalone machine or multiple tasks in clusters.

Simple Azure - Python Library for Template Deployment on Windows Azure

Implementation of infrastructure provisioning is provided with Azure use case. Simple Azure is

a Python library for deploying Microsoft Azure Services using a Template. Your application is

deployed on Microsoft Azure infrastructure by Azure Resource Manager (ARM) Templates which

provides a way of building environments for your software stacks on Microsoft Azure cloud plat-

form. Simple Azure includes 407 community templates from Azure QuickStart Templates to deploy

software and infrastructure ranging from a simple linux VM deployment (i.e. 101-vm-simple-linux)

17

to Azure Container Service cluster with a DC/OS orchestrator (i.e. 101-acs-dcos). It supports to

import, export, search, modify, review and deploy these templates using the Simple Azure library

and retrieve information about deployed services in resource groups. Initial scripts or automation

tools can be triggered after a completion of deployements therefore your software stacks and appli-

cations are installed and configured to run your jobs or start your services. Starting a single Linux

VM with SSH key from Azure QuickStart Template is described in listing 2.9:

Listing 2.9: Simple Azure

>>> from s impleazure import SimpleAzure

>>> saz = SimpleAzure ()

a q s t i s f o r Azure QuickStar t Templates

>>> vm sshkey template = saz . aqst . ge t t emplate (’ 101−vm−sshkey ’)

arm i s f o r Azure Resource Manager

>>> saz . arm . s e t t emp la t e (vm sshkey template)

>>> saz . arm . se t parameter (”sshKeyData” , ” ssh−r sa AAAB. . . h r l e e@qu i ck s ta r t ”)

>>> saz . arm . deploy ()

2.2.3 Semantics

Advances in big data ecosystem will require to connect scattered data sources, applications and

software in meaningful semantics. It is necessary to develop structured semantics as an effort of

support in discovering big data tools, datasets and applications all connected because semantics is

more understandable to both human and machine with a standard syntax for expressing contents

in RDF (Resource Description Framework) model or JSON-LD (Linked Data using JSON) [15,

18

65, 79]. It also provides a guideline to construct big data software stacks to community in which

preparing development environments is complicated with newly introduced software and datasets.

This is particularly useful given the increasing number of tools, libraries and packages for further

development of big data software stacks. One example in the listing 2.10 shows two applications,

C++ Parser for MNIST Dataset and a Python package to convert IDX file format provided by

Yann LeCun’s dataset, are available for MNIST database of handwritten digits on github. There

are couple of tasks to implement semantics for template deployment:

1. collect big data software, applications, and datasets

2. produce JSON-LD documents

3. derive Rest API to search, list and register

4. implement a library to explore documents about big data ecosystem

Listing 2.10: Sample of linked data between dataset and software

1 {

2 "@context": "http:// schema.org/",

3 "@type": "Dataset",

4 "distribution": "http://yann.lecun.com/exdb/mnist /",

5 "workExample": [

6 {

7 "@type": "SoftwareSourceCode",

8 "codeRepository": "https:// github.com/ht4n/CPPMNISTParser",

9 "description": "C++ Parser for MNIST Dataset",

10 "dateModified": "Sep 1, 2014",

11 "programmingLanguage": "C++"

12 },

19

13 {

14 "@type": "SoftwareSourceCode",

15 "codeRepository": "https:// github.com/ivanyu/idx2numpy",

16 "description": "A Python package which provides tools to

convert files to and from IDX format",

17 "dateModified": "Sep 16, 2016",

18 "programmingLanguage": "Python"

19 }

20]

21 }

20

2.3 Environment Control using Container Technology

With the increased attention of Docker container software and reproducibility, the use of virtual-

ization has been moved from the hypervisor to a linux container technology which shares kernel

features but in a separated name space on a host machine with a near native performance [33].

The recent researches [10] indicate that the HPC community takes account of container technolo-

gies to engage scientists in solving domain problems with less complication of deploying workflows

or pipelines on multiple nodes as new implementations have been introduced [57, 64, 74]. Con-

tainer technology with HPC, however, is focused on supporting compute-intensive applications i.e.

Message Passing Interface (MPI) although many scientific problems are evaluated with big data

software and applications. Investigation on container technology with big data ecosystem is neces-

sary to nurture the data-intensive software development on HPC with a rich set of data analysis

applications.

Modern container software run with container images to create isolated user space based on pre-

configured environments. Authoring container image definition is a first step to prepare custom

environments via containers and to share with others. Dockerfile is a text file to create a docker

container image with instructions for package installation, command executions, and environment

variable settings. Definition File of Singularity also contains similar instructions to build container

images. Application Container Image (ACI) of CoreOS rkt is generated by a shell script and acbuild

command line tool but building container images is similar to docker. The main objective of using

these container image definitions (formats?) is to reveal user commands and settings explicitly

therefore the development environment can be shared easily and conversion between other plat-

forms is doable. The initial goal of using container technology in this dissertation is building a

container-based big data ecosystem by offering a template-based deployment for container images.

It would also enable a concise and descriptive way to launch complex and sophisticated scientific

21

pipelines using existing container images or deployment scripts. Performance tests are followed to

demonstrate efficiency of the deployments with big data applications on modern container tech-

nologies. We desire to measure overhead introduced by container software i.e. shifter, singularity

on HPC environments with comparison of CPU, memory, filesystem, and network usages.

Template based deployment is adopted in container technologies, for example, Singularity uses

a custom syntax, SpecFile to describe the creation of a container image with directives which are

similar to Dockerfile. Listing 2.11 shows an example of Caffe Deep Learning Framework Singularity

image creation.

Listing 2.11: Singularity Example

DistType ” debian ”

MirrorURL ” http :// us . a r ch ive . ubuntu . com/ubuntu/”

OSVersion ” t ru s ty ”

Setup

Bootstrap

. . . (suppressed) . . .

RunCmd g i t c l one −b master −−depth 1 https : // github . com/BVLC/ c a f f e . g i t

RunCmd sh −c ”cd c a f f e && mkdir bu i ld && cd bu i ld && cmake −DCPU ONLY=1 . . ”

RunCmd sh −c ”cd c a f f e / bu i ld && make −j 1 ”

RunCmd ln −s / c a f f e / opt/ c a f f e

RunScript python

22

2.3.1 Package Manager for Common Libraries

One of the benefits of using containers is that required software packages are included in the build

instruction, therefore common package names are revealed for particular collections. Table 2.1 is

an example of debian packages described in Dockerfiles related to NIST collection and dpkg, debian

package command, has been used to collect package information.

2.3.2 Evaluation

Performance evaluation of container technologies has completed with big data applications from

NIST Collection. There are six applications in the collection: Fingerprint Matching, Human and

Face Detection, Twitter Live Analysis, Data Warehousing, Healthcare Information, and Geospatial

information. Performance data on CPU, memory, storage and network will be measured on HPC

and cloud computing with container software i.e. docker, rkt, singularity and shifter.

Preloading common packages shows possible optimization for the template deployment accord-

ing to the figure 2.1. With a considerable reduce on network traffic for downloading packages, 10x

speedup is approximately observed over multiple access to Debian software package mirror sites.

Statistics for the cache reuse (Table 2.2) indicates that the most benefit of the speedup is gained

from the cached packages. In addition, standard deviation for download speed is higher in using

remote mirrors than cached proxy server in which network consistency and reliability are ensured

with low standard deviation for download speed.

23

Name Description Dependencies Size (Kb) Priority

python-dev header files and a static li-

brary for Python (default)

python, python2.7-

dev, libpython-dev

45 (1024) optional

python interactive high-level

object-oriented language

(default version)

libpython-stdlib,

python2.7

680 (384) standard

zlib1g-dev compression library - de-

velopment

libc6-dev, zlib1g 416 (12516) optional

apt-utils package management re-

lated utility programs

libgcc1, libapt-

inst1.7, libstdc++6,

apt, libdb5.3, libc6,

libapt-pkg4.16

688 (21070) important

python-

numpy

Numerical Python adds a

fast array facility to the

Python language

python,

python2.7:any,

libblas3, liblapack3,

libc6

8667 (17873) optional

nodejs evented I/O for V8

javascript

libssl1.0.0, libc6,

libstdc++6, zlib1g,

libv8-3.14.5, libc-

ares2

3043 (20625) extra

python-

imaging

Python Imaging Library

compatibility layer

python-pil,

python:any

45 (1248) optional

Table 2.1: Top Debian-based Packages used in Dockerfiles for the NIST collection on Github (size

with parenthesis indicates total size including dependency packages)

Type Hits Misses Total

Requests 104993 (95.26%) 5220 (4.74%) 110213

Data 12627.32 MiB (99.78%) 27.95 MiB(0.22%) 12655.27 MiB

Table 2.2: Cache Efficiency for Software Package Installation measured by apt-cacher-ng

24

Figure 2.1: Accelerated Common Package Installation using Software Package Proxy

25

2.4 Performance Analysis

The performance analysis of a user application is often overlooked when we make resource reserva-

tion in a shared environment and submit provisioning request on a virtualized infrastructure. We

discuss performance analysis in this section to explain the benefit of using performance data and

find out possible opportunities for better resource provisioning as a process of building software

defined systems.

People in industry and academia involved in distributed and parallel systems had little concerns

of resource provisioning and utilization while many of them suffer from batch job queue waiting

time on HPC systems and from extra charges on commercial cloud computing. There are multiple

factors contributing this problem such as inaccuracy of resource estimation, imprecision of resource

reservation or just human error predicting task runtime but the impact of the problems and solutions

was not discussed intensively. The understanding of the problems has to be improved since every

user application becomes resource intensive while computing resources are limited in a shared

environment, no matter how big and powerful systems are available. Administrators and researchers

had worked on resource utilization manually to save allocation and collected profiling for code

optimization as they gain technical skills to identify bottlenecks and apply improvement. In order

to find out proper resource amounts to allocate, however, automated profiling is necessary to provide

an estimate of required resources in advance. This applies not only large scale distributed systems

but also cloud computing which users have various options for building infrastructure in terms

of cost efficiency. Certainly, there is an awareness of the inaccuracy problems with the estimator

which can create over or under provisioning due to imprecise calculation. Interactive adjustment

would be considered to mitigate the problem on the fly when it is useful.

26

2.5 Related Work

2.5.1 DevOps Scripting Tools

In the DevOps phase, configuration management tools automates software deployment to provide

fast delivery process between development and operations [31]. Instructions to manage systems

and deploy software are written in scripts although different formats i.e. YAML, JSON, and Ruby

DSL and various terminologies i.e. recipes, manifests, and playbooks are used. There are notable

tools available to achieve automated software deployment. Puppet and Chef are identified config-

uration management tools written in Ruby and these tools manage software on target machines

regarding to installation, execution in a different state e.g. running, stopping or restarting, and

configuration through the client/server mode (also called master/agent). Ansible is also recognized

as a configuration management tool but more focusing on software deployment using SSH and no

necessity of agents on target machines. With the experience from class projects and NIST use

cases, a few challenging tasks are identified in DevOps tools, a) offering standard specification of

scripts to ease script development with different tools, and b) integrating container technologies

towards microservices.

2.5.2 Template Deployment

Several infrastructure provisioning tools have emerged to offer transparent and simple management

of cloud computing resources over the last few years. Templates which are structured documents in

a YAML or JSON format define infrastructure with required resources to build and ensure identical

systems to create over time. A collection of Amazon cloud services are provisioned through Cloud-

formation [1] templates which is an Amazon infrastructure deployment service. OpenStack Heat [2]

was started with similar template models to Amazon but has extended with other OpenStack ser-

vices e.g. Telemetry, monitoring and autoscaling service to build multiple resources aa a single

27

unit. The Topology and Orchestration Specification for Cloud Applications (TOSCA) [12,89] pro-

poses standardization over different cloud platforms with XML-based language and several studies

have been made with TOSCA [20, 62, 75]. These tools have been addressed with issues in a few

studies [46, 91] and one of identified issues is that individual specification of supported resources,

functions, type names, and parameters prevents building and sharing infrastructure blueprints

across cloud platforms.

2.5.3 Container Technology

While existing container software, e.g. docker, rkt, lxd, offers various features with outstanding

performance there are number of new tools recently developed with the support on HPC. Shifter

from NERSC on Cray XC30 with GPU [10] has introduced and singularity from LBNL [64] as well.

These new implementations are typically for heavy workloads which requires checkpoint/restart for

long running applications and easy deployment of required software stacks in a user space.

28

2.5.4 Topology and Orchestration Specification for Cloud Applications (TOSCA)

TOSCA is a standardized management of cloud services with applications using workflow technolo-

gies and the specification [72] to ensure reproducibility.

One of goals that TOSCA aims is to provide portability of cloud service management along with

their environments [13], There are a few terminologies in this context. A service template contains

all information about operation and management including a topology of cloud services at a top level

of abstraction. Plans, Nodes and Relations are included in the service template. A service topology

is a description of service components (nodes) and its relations to others therefore the structure

of systems to build is represented. Plans have instructions about operations and managements

through workflow technology. Orchestration of service operation and management is described

in plans with WSDL, REST or scripts. In addition verification (inspection) of the topology and

retrieval or modification of service instance information are supported by plans. With BPMN and

BPEL workflow languages, TOSCA plans are portable in differement management envrionments

to adopt.

OpenTOSCA is a runtime supporting imperative processing of TOSCA-based cloud applica-

tions [11]. The core components of OpenTOSCA are implementation artifact engine, plan engine,

container API and plan portability API where build plan conducts management operations and

deployment of applications with OASIS TOSCA packaging format CSAR.

Eclipse Winery is a graph based modeling tool for TOSCA-based cloud applications using

HTML and Eclipse environment [62]. The frontend components with GUI of Winery are divided

by the DevOps paradigm to ease collaboration between developers and operators. Topology Mod-

eler provides visual topology modeling to operators with seven elements; relationship template,

relationship constraint, node template, deployment artifact, requirement, capability and policy.

Element Manager provides controls of technical details to system experts such as types, implemen-

29

tations, policy templates and configurations. BPMN4TOSCA Modeler is added later to support in

creating BPMN elements and structures used in TOSCA plans through web-based graphical user

interface. Winery uses databases (called repository) to store TOSCAL models in CSAR format

which is a TOSCA Cloud Service ARchive application package.

Visual notation for TOSCA (named Vino4TOSCA) [19] has introduced with explicit design

principles and requirements. Nine requirements for desigining effective visual notations are defined

as: R1 Semiotic Clarity, R2 Perceptual Discriminability, R3 Semantic Transparency, R4 Complex-

ity Management, R5 Cognitive Integration, R6 Visual Expressiveness, R7 Dual Coding, R8 Graphic

Economy, and R9 Cognitive Fit. The requirements for constructing TOSCA-specific notations are:

R10 Completeness, R11 Semantic Correctness, R12 Extensibility, and R13 Compact Representa-

tion. The requirements for usability and use experience are: R14 Suitability for the Task, R15

Self-descriptiveness, R16 Simplicity, and R17 User Satisfaction.

Automated provisioning of cloud infrastructure is described with the TOSCA topology template

and the plan where the structure of cloud applications is defined in the template and an executable

provisioning workflow (called plan) is generated based on the template [17]. In practical terms,

Winery, topology modeling GUI tool, creates a service template with nodes and relationships to

depict a system structure in CSAR format and OpenTOSCA, a TOSCA runtime environment, exe-

cutes the plans after the process of generating provisioning order graph, provisioning plan skeleton

and executable provisioning plan in workflow languages i.e. BPEL and BPMN.

There are additional tools supporting the TOSCA ecosystem. Vinothek [18] is a web inter-

face of application manager on the TOSCA runtimes using Java Server Pages and HTML5. It

accepts user inputs for launching applications on the web such as input parameters and runtime-

specific information. TOSCAMART (TOSCA-based Method for Adapting and Reusing application

Topologies) [80] offers a method to build desired environments on any cloud provider by assembling

30

Title Description Function Language Repository Extensibility

OpenTOSCA TOSCA Runtime

Environment

Runtime system Java github.com

/OpenTOSCA/container

BPMN, BPEL

Winery Web-based en-

vironment for

modeling TOSCA

topologies

Front-end GUI Java github.com

/eclipse/winery

BPMN

BPMN4TOSCA Extension for

TOSCA manage-

ment plans

Extensions Javascript github.com

/winery/BPMN4TOSCAModeler

BPMN

Vinothek Cloud application

management

Front-end GUI Java github.com

/OpenTOSCA/vinothek

CSAR

TOSCA-MART Methods for

adapting and

reusing TOSCA

cloud applications

Extensions Java github.com

/jacopogiallo/TOSCA-

MART

CSAR

Table 2.3: Components of TOSCA Ecosystem

• BPMN - Business Process Model and Notation

• BPEL - Business Process Execution Language

• CSAR - TOSCA Cloud Service ARchive

fragments of existing TOSCA topologies. This approach includes finding reusable fragments of the

topology from repositories, choosing candidates by rates and filters and adapting final candidate

fragments through ratings as a process of building desired environments.

31

2.6 Contribution

The main contributions of this dissertation are listed below:

• Scripting Deployment of NIST Use Cases presents a big data ecosystem analysis based

on the survey from classes and online communities i.e. github.com and gitlab.com; a public

version control repository along with the six use cases of big data applications using Ansible

scripts (called Roles).

• Efficient Software Defined Systems using Common Core Components describes

stacked image layer optimizations on union file systems using common core components i.e.

shared libraries and system tools. HPC-ABDS layers are examined to generate an application-

specific collection of common core components in building big data software stacks.

• Implementing Software Defined Sub Systems with DevOps Tools and Template-

based Provisioning will connect infrastructure provisioning and application deployment to

provide optimal performance with minimal underutilization of dynamic computing resources.

• Performance Evaluation on Event-driven Computing provides metrics of invoking

concurrent tasks using dynamic software environments on commercial clouds Our goal is

to measure system performance and limitation in exploring new opportunities for big data

analytics and scientific HPC applications.

• Evaluation of Bare Metal Clouds for Big Data contains benchmark results of launching

big data workloads across a computing environment on HPC equivalent to other platforms

using containers. All dependencies and configurations needed to run applications are included

in container images, and HPC container tools such as Singularity from Lawrence Berkeley

National Lab and Shifter from National Energy Research Scientific Computing Center will

support this idea.

32

Chapter 3

Software Defined Provisioning for Big Data Software Environment

3.1 Introduction

Building compute environments needs to ensure reproducibility and constant deployment over

time [50, 52]. Most applications these days run with dependencies and setting up compute en-

vironments for these applications require to install exact version of software and configure systems

with same options. Ansible is a DevOps tool and one of the main features is software deployment

using a structured format, YAML syntax. Writing Ansible code is to describe action items in achiev-

ing desired end state, typically through an independent single unit. Ansible offers self-contained

abstractions, named Roles, by assembling necessary variables, files and tasks in a single directory

and an individual assignment (e.g., installing software A, configuring system B) is described as a

role. Compute environments are usually supplied with several software packages and libraries and

selectively combined roles conduct a software deployment where new systems require environments

with needed software packages and libraries installed and configured. Although the comprehen-

sive roles have instructions stacked with tasks to successfully finish a software deployment with

dependencies, the execution of applications still need to be verified. In consequence, to preserve

identical results from the re-execution of applications, it is necessary to determine whether envi-

ronments are fit for the original applications. In certain situations, Ansible fails in building same

environments due to following reasons. First, a variety of operating systems and diverse

source of packages are not able to construct equivalent environments across different

platforms. According to the Gnu/linux distribution timeline 12.10 [67], 480 linux distributions

exist and each distribution has more than ten thousands packages e.g. Ubuntu Xenial 16.04 has

33

69154 and Debian Jessie 8 has 57062. Many Unix-like variant systems offer universal package man-

ager e.g. apt on Debian, yum on CentOS, dnf on Fedora and pkg on FreeBSD to ease software

installation, upgrading or removal through a central repository package.Ansible Conditionals can

handle these multiple package managers with different package names e.g. Apache 2 is listed in

RedHat as ’httpd’ and in Debian as ’apache2’ (see example Listing 3.1) but version differences are

not considered. For example, Linux distribution has different version of default packages e.g. glibc,

therefore ansible roles may not install same version of packages when it is executed on various Linux

distributions. Besides, rapidly developing software are typically available from third-party reposi-

tories while stable software packages are provided in official repositories in which compatibility is

verified. Software defined system with scripting aims to address this problem using a snapshot of

required libraries and tools and therefore ensure reproducible environments. Second is conflicts

(also known as software rot) among packages including existing software and libraries.

When Ansible runs towards target machines, software installation may fail due to conflicts between

packages or with already installed software and libraries. For example, 25 CUDA packages for deep

neural networks have dependencies and reverse dependencies (Figure 3.1). This may abort further

installation or upgrade because of incompatibility issues and missing built-in rollback in Ansible

makes failure handling more difficult. Compile time is also inevitable which takes a consid-

erable amount of time to complete, especially when source code files are many and complex to

compile. There are several techniques to minimize the compilation build time but the optimization

is limited and CPU and memories are consumed by compilers.

Listing 3.1: Example of Apache Installation using Ansible Conditionals

− name: Apache I n s t a l l a t i o n

yum: name=h t t p d s t a t e = i n s t a l l e d

when: a n s i b l e o s f a m i l y == RedHat

34

− name: Apache I n s t a l l a t i o n

apt : name=a p a c h e 2 s t a t e = i n s t a l l e d

when: a n s i b l e o s f a m i l y == D e b i a n

Configuration drift, which creates divergent in server configuration makes building

consistent and identical environments difficult as time goes on. In practice, software

version and repository location may vary at install time although deployments are made from a

same template. For instance, software provides a downloadable link to the latest release without a

specific version in the link therefore an unique link is used to download. However, if a link to the

latest release is defined in scripts to download software package, an actual version of the release

may not be same when software downloading occurred at a different time, especially where frequent

releases are applied to software development. This will increase the likelihood of building another

environments or getting failure of deployment.

In addition, provisioning proper computing resources for an application is not fea-

sible because virtual server provisioning by Ansible is not bound by the application deployment.

Decoupled infrastructure and applications may cause an execution failure of the applications or

poor performance due to insufficient compute resources. Applications deployed on virtual environ-

ments need to run with particular computing resources such as GPU support, InfiniteBand options,

and Solid State Drive (SSD) with TRIM support to satisfy performance requirements and ensure

same results. Figure 3.2 shows that a linear performance increment from small to xlarge instance

type for Hadoop and the garbage collection overhead is observed in the small instance type. Ansible

Roles are tailored to application deployment but it is not for allocating proper hardware resources.

Manual provisioning plans are necessary to meet the application requirements. Vendor lock-in

problem in deploying Ansible roles prevents building a same environment across multi-

35

Figure 3.1: Example of Package Dependencies for CUDA Libraries (1-level depth)

36

Figure 3.2: Hadoop Comparison by Server Sizes

(where small has 1vCPU and 2GiB memories, medium has 2vCPUs and 4GiB, large has 4vCPUs

and 8GiB and xlarge has 8vCPUs and 16GiB. GC stands for a garbage collection.)

ple cloud providers although Ansible provides multi-cloud functions (called modules in Ansible)

to favor portability and agility. For example, Amazon CloudFormation, Google Compute Instance

Templates, Microsoft Azure Templates and OpenStack Heat have an individual specification that

defines properties and resources of the infrastructure. Inter-cloud standard specification needs to

be defined, thereby building a similar environment with vendor free templates. Software deploy-

ment using Ansible may not work in the HPC clusters due to the restriction of root or

superuser privileges which Ansible invokes package managers e.g. apt-get, yum, dnf or

pkg with sudo command. As a workaround, many HPC systems provide a user environment by

modules, the software environment management, or virtualenv, the isolated directory for Python or

RVM for Ruby but system software packages still need admin privileges to setup required libraries

and software globally.

NIST Big Data Public Working Group (NBD-PWG) [40, 84] reported 51 use cases across nine

application domains including Government Operation, commercial, Defense, Healthcare and Life

Sciences, Deep Learning and Social Media, The Ecosystem for Research, Astronomy and Physics,

Earth, Environmental and Polar Science and Energy to understand Big Data requirements and

advance the development of big data framework. We ought to keep up the same effort to support

scientific community in regard to analyzing data with modern technologies and the part of this

37

dissertation is gathering more use cases and requirements by reviewing publicly available big data

applications.

3.2 Use Cases

3.2.1 Fingerprint Recognition

Fingerprint matching software [35, 36] has been developed by National Institute of Standards and

Technology (NIST) with special databases to identify patterns of fingerprint. NIST Biometric

Image Software (NBIS) includes MINDTCT, a fingerprint minutiae detector and BOZORTH3, a

minutiae based fingerprint matching program to process biometric analysis. MINDTCT program

extracts the features of fingerprint such as ridge ending, bifurcation, and short ridge from the FBI’s

Wavelet Scalar Quantization (WSQ) images and BOZORTH3 runs fingerprint matching algorithm

with the images generated by MINDTCT as part of fingerprint identification processing [88]. In this

use case, Apache Spark runs fingerprint matching on the Hadoop cluster with NIST Fingerprint

Special Database 4 [87] and stores results in HBase with the support of NoSQL database, Apache

Drill. Additional dataset from FVC2004 can be used as well with 1440 fingerprint impressions [69].

Individual software represents a stack or a role in the context in which a set of commands is listed to

complete a software deployment. Suggested software stacks for Fingerprint matching are currently

including: Apache Hadoop, Spark, HBase, Drill, and Scala.

3.2.2 Human and Face Detection with OpenCV

Human and face detection have been studied during the last several years and models for them

have improved along with Histograms of Oriented Gradients (HOG) for Human Detection [28].

OpenCV is a Computer Vision library including the SVM classifier and the HOG object detector

for pedestrian detection and INRIA Person Dataset [29] is one of popular samples for both training

38

and testing purposes. In this use case, Apache Spark on Mesos clusters are deployed to train and

apply detection models from OpenCV using Python API. Individual software represents a stack or a

role in this context in which a set of tasks to complete a software deployment is included. Suggested

software stacks (Roles) for human and face detection with OpenCV are currently including: Apache

Mesos, Spark, Zookeeper, OpenCV for HOG and Haar Cascades, and INRIA Person image files.

3.2.3 Twitter Live Analysis

Social messages generated by Twitter have been used with various applications such as opinion

mining, sentiment analysis [73], stock market prediction [16], and public opinion polling [25] with

the support of natural language toolkits e.g. nltk [14], coreNLP [70] and deep learning systems [61].

Services for streaming data processing are important in this category. Apache Storm is widely used

with the example of twitter sentiment analysis, and Twitter Heron, Google Millwheel, LinkedIn

Samza, and Facebook Puma, Swift, and Stylus are available as well [22]. Suggested software stacks

(roles) for Twitter Live Analysis are currently including: Apache Hadoop, Storm, Flume, Twitter

Heron, and Natural Language Toolkit (NLTK).

3.2.4 Big Data Analytics for Healthcare Data and Health Informatics

Several attempts have been made to apply Big Data framework and analytics in health care with

various use cases. Medical image processing, signal analytics and genome wide analysis are ad-

dressed to provide efficient diagnostic tools and reduce healthcare costs [9] with big data software

such as Hadoop, GPUs, and MongoDB. Open source big data ecosystem in healthcare is intro-

duced [77] with examples and challenges to satisfy big data characteristics; volume, velocity, and

variety [93]. Cloud computing framework in healthcare for security is also discussed with concerns

about privacy [83]. Suggested software stacks (roles) for Big Data Analytics for Healthcare Data

39

and Health Informatics are currently including: Apache Hadoop, Spark, Mahout, Lucene/Solr and

MLlib.

3.2.5 Spatial Big Data, Spatial Statistics and Geographic Information Systems

The broad use of geographic information system (GIS) has been increased over commercial and

scientific communities with the support of computing resources and data storages. For exam-

ple, Hadoop-GIS [6], a high performance spatial data warehousing system with Apache Hive and

Hadoop, offers spatial query processing in parallel with MapReduce, and HadoopViz [32], a MapRe-

duce framework for visualizing big spatial data, supports various visualization types of data from

satellite data to countries borders. Suggested software stacks (roles) for Spatial Big Data, Spatial

Statistics and Geographic Information Systems are currently including: Apache Hadoop, Spark,

Mahout, MLlib and GIS-tools.

3.2.6 Data Warehousing and Data Mining

Researches in data warehousing, data mining and OLAP have investigated current challenges and

future directions over big data software and applications [27] due to the rapid increase of data

size and complexity of data models. Apache Hive, a warehousing solution over a hadoop [85], has

introduced to deal with large volume of data processing with the other research studies [23,56] and

NoSQL platforms [24] have discussed with data warehouse ETL pipeline [51]. Suggested software

stacks (roles) for Data Warehousing and Data Mining are currently including: Apache Hadoop,

Spark, Mahout, Lucene/Solr, MLlib, MongoDB, Hive, and Pig.

40

3.3 Ecosystem Analysis

We believe that big data ecosystem consists of various software, applications and datasets on dif-

ferent platforms. To understand current activities on big data projects and provide recommended

software components (roles) in big data, we conduct analysis on big data projects 1) from com-

munity (i.e. github), 2) and academia (i.e. Indiana University) regarding to the following entities:

development language preference, library/package/tool dependencies, and sectors of public dataset

source.

This effort will result in building recommended software components (roles) which supports

most of functionality in a given big data applications.

3.3.1 Analysis on Big Data Projects from Community

Github.com has been used to provide version control and manage source code development along

with diverse collaborators across countries. The popularity of github as a collaboration tool has

been significantly increased and about 4 million repositories exist in 2016 with thousands of daily

added repositories. To understand trends on big data software development from community, we

conducted a survey of github repositories regarding to big data applications and tools. Every

github repository has a description of a project and we searched them using topic keywords. For

example, we collected github repositories for Face Detection with search keywords; face detection,

face recognition, human detection, and person detection to conduct a survey on a series of questions

regarding to 1) A development language distribution, 2) dependency of libraries and packages,

and 3) sectors of public dataset. Actual source code of public github repositories are evaluated

with the survey query data available on https://github.com/lee212/bd_stats_from_github.

There are six topics of NIST Collection used in this analysis where N1: Fingerprint Matching,

N2: Face Detection, N3: Twitter Analysis, N4: Data Warehousing, N5: Geographic Information

41

Topic C++ Python Java Matlab JS C# C R Ruby Scala Count*

Fingerprint (3.2.1) 15% 11% 13% 20% 3% 16% 8% 0% 1% 5% 43

Face (3.2.2) 26% 21% 12% 9% 7% 5% 2% 2% 1% .02% 538

Twitter (3.2.3) 2% 35% 15% .6% 9% 2% 1% 10% 3% 1% 1429

Warehousing (3.2.6) 3% 27% 18% 2% 10% 3% 1% 10% 4% 1% 3435

Geographic (3.2.5) 5% 15% 27% 4% 15% 3% 5% 7% 3% 16% 6487

Healthcare (3.2.4) 2% 13% 19% 2% 14% 5% 1% 10% 6% 2% 132

Table 3.1: Language Distribution of Topics related to those in the NIST collection on Github

* Count: average number of github.com repositories.

Systems, and N6: Healthcare Data. In addition, a list of recommended components (roles) is

created based on the survey results. Python and Java are most common languages among the

six NIST projects (Table 3.1), although matlab is popular in the fingerprint project. We also

noticed that scientific python packages are commonly used to enable numerical computation, data

analysis and visualization for these big data applications (Figure 3.3). There are extra packages

for each project (Table 3.2) that are not required in a default set of big data ecosystem but it

is useful to indicate the dependency with a particular application. Tweepy, twitter API, is used

in the twitter live analysis cases with NLTK, the natural language processing toolkit to complete

sentiment analysis with tweets. Similarly, GIS projects use particular libraries for spatial analysis

such as geopy and shapely. Each github project has different language preferences with various

libraries and packages which shows recent activities, for example, deep learning software such as

Keras, Theano, mxnet and Caffe is adopted among multiple projects.

42

Python Package Description F
in

ge
rp

ri
n
t

F
ac

e

T
w

it
te

r

W
a
re

h
ou

si
n

g

G
eo

g
ra

p
h

ic

H
ea

lt
h

ca
re

cv2 OpenCV 3 3

skimage Image Processing 3

PIL Python Imaging Library 3

caffe Deep Learning 3

nltk Natural Language Toolkit 3

tweepy Twitter for Python 3

BeautifulSoup Screen-scraping library 3 3

gensim Topic Modelling 3 3

geopy Geocoding library 3

shapely Geometric Analysis 3

django Web framework 3 3

Table 3.2: Additional Python packages found in NIST Collection

43

Figure 3.3: Scientific Python Packages used in NIST Projects (collected from Github)

3.3.2 Analysis on Big Data Projects from Academia

At Indiana University, two big data courses have been offered, Big Data Analytics and Applications

and Big Data Open Source Software Projects. The class had been asked to develop a project with

open source software, tools and datasets. Several implementations have been made and the survey

of the programming languages, tools, and dataset are completed. Table 3.3 shows the language

distribution for the big data Classes.

Table 3.3: Language Distribution for Big Data Classes from Indiana University

Class Java Python R C# Projects Count

Fall ’15 6 29 10 1 49

Spring ’16 11 16 1 0 37

Fall ’16 1 73 3 0 77

44

Package Dependencies

We had 37 final projects from Big Data Open Source Project Spring 2016 and Table 3.4 shows

that tools used in the projects. Apache Hadoop is mostly used in conducting data analysis with

a database support from HBase, Hive and HDFS. Python was the most preferred language in the

course projects which resulted in high use of Spark in data processing with the python library,

pyspark. One another observation is that Ansible, software deployment tool, had offered as a

method of project deployment to ensure reproduceability.

Datasets

There were 49 class project in Big Data Analytics and applications Fall 2015, and use of 27 dataset

are observed. Public dataset from industry was mainly used (44%) due to the interest on analytics

from kaggle and twitter and availability e.g. amazon reviews and yelp reviews.

3.4 Discussion

Based on the analysis from community and academia, we observed that there are crucial software,

dataset and analytics in big data ecosystem. We, therefore, offered deployable first-class roles

which enable major functionality on big data processing and analysis. The software deployment

is accommodated with Cloudmesh, Ansible, Chef, Puppet, Salt, OpenStack Heat, Microsoft Azure

Template, and Amazon Cloudformation.

Finding relevant datasets for particular applications is another challenge for the big data ecosys-

tem because of its difficulty of collecting data from different sources [60], complexity and diver-

sity [55]. Community contributed lists of public datasets [26] provide structured information with a

specific location to access data and a category to describe itself. We intend to generate linked json

data for datasets and applications in big data ecosystem based on these lists because it connects

45

scattered data and software in an organized way. The whole categories of the surveyed data are

available online: https://github.com/lee212/bd_datasets for the further discussion.

3.5 Conclusion

With the complexity of Big Data ecosystem, we demonstrated scripting software deployment using

NIST Big Data use cases and implemented software stacks to deploy, configure, and run big data

applications. We also describe resource provisioning by allocating and managing virtual clusters.

A survey of big data ecosystem from open source projects available at GitHub and academic class

projects via Indiana University provides an insight of building software stacks with latest tools. Our

implementation of deploying Big Data software stacks proves that automated scripting deployment

is capable of building Hadoop-based virtual clusters on clouds e.g. Microsoft Azure and Amazon

EC2. DevOps tools e.g. Ansible show that it is flexible and easy to control software dependency

along with infrastructure provisioning as an effort of implementing a software-defined system in

terms of an environment management sub system.

46

Table 3.4: List of Common Packages used in Big Data Class Spring 2016

Package Type Use Language Count*

Hadoop framework parallel processing Java 31

Ansible tool deployment Python 26

Spark framework in-memory processing Scala 14

HBase database NoSQL Java 12

Pig language data abstraction Java 11

Hive database SQL Java 7

MongoDB database NoSQL C++ 7

Mahout library machine learning, data mining Java 4

MLLib library machine learning Java 4

OpenCV library computer vision C++ 3

Zookeeper framework directory service Java 3

Tableau tool visualization C++ 3

D3.js tool visualization Javascript 2

MySQL database SQL C++ 2

HDFS database distributed filesystem Java 2

* Count: a number of class projects in a given tool/library/package

47

Chapter 4

Efficient Software Defined Systems using Containers

4.1 Introduction

Deployment for modern applications requires frequent changes for new features and security updates

with a different set of libraries on various platforms. DevOps tools and containers are used to

complete application deployments with scripts but there are problems to reuse and share scripts

when a large number of software packages are required. For example, Ansible Galaxy - a public

repository provides over ten thousand scripts (called roles) and Docker Hub has at least fourteen

thousand container images but most of them are individualized and common libraries and tools

are barely shared. This might be acceptable if a system runs only one or two applications without

multi tenants but most systems in production need to consider how to run applications efficiently.

Container technology i.e. Docker permits a repeatable build of an application environment using

container image layers but redundant images with unnecessary layers are observed because of

a stacked file system. In this chapter, we introduce two approaches about building Common

Core Components (3C) in containers therefore building application environments is optimized and

contents are visible in detail for further developments.

Common Core Components is a collection of libraries and tools which aims to share dependencies

at one place thereby minimizing storage usage for container images. Docker stores container images

efficiently and gains speedup in launching a new container instance because images on union mounts

reuse same contents i.e. identical image layers over multiple containers without creating copies.

The copy-on-write technique adds a new layer to store changes and keeps the original unchanged.

In practice, however, many duplicates of package dependencies are observed between old and new

48

container images with version updates as well as containers in similar application groups. Docker

images represent contents of image layers using a directed tree, and duplicates in child image layers

can occur when a parent image layer is different although contents in child layers are same. This

is normal in version control systems and the goal of 3C is to resolve these issues using dependency

analysis and revision control functions. We notice that the build of Docker images is transparent

through Dockerfile, a script for building a Docker image and Docker history metadata, therefore

3C is able to be established based on these information. The process of building 3C is following.

First, installed packages are collected and then dependencies are analyzed. The two functions that

we have chosen from version control systems; submodules and merge typically support unifying two

separate repositories and branches. If there are containers that change software versions frequently

but use same dependencies, the 3C with submodules provides an individual image layer to share

dependencies but no changes in existing images. If there are containers that have similar interests

but created by different users, the 3C with merge provides a new parent image layer to suggest

common dependencies. The effectiveness and implementation of 3C are described in detail at the

section 6.3.

We demonstrate that 3C optimizes both consuming disk space and detecting security vulnerabil-

ity by determining shared components of containers and analyzing dependencies. 3C also suggests

a collection of the most commonly required dependencies from High Performance Computing En-

hanced Apache Big Data Stack (HPC-ABDS) [46] and survey data, where sampling is done from

public Dockerfiles and project repositories. Performance comparison is presented to show efficiency

regarding to disk space usage against existing container images. 3C achieves improvements in stor-

ing Nginx container images by 37.3% and detects 109 duplicate dependencies out of 429 from survey

data of the HPC-ABDS streams layer with 50% of overlaps. We illustrate security vulnerabilities

for Ubuntu 16.04 according to system packages and libraries.

49

4.2 Background

Reproducibility is ensured with container images which are stored in a stackable union filesystem,

and ”off the shelf” software deployment is offered through scripts e.g. Dockerfile to build an

equivalent software environment across various platforms. Each command line of scripts creates

a directory (called an image layer) to store results of commands separately. Container runs an

application on a root filesystem merged by these image layers while a writable layer is added on

top and other layers beneath it are kept as readable only, known as copy-on-write. The problem

is that system-wide shared libraries and tools are placed on an isolated directory and it prevents

building environments efficiently over multiple versions of software and among various applications

that may use the same libraries and tools. We use collections of HPC-ABDS (Apache Big Data

Stack) [46] and Github API to present surveyed data in different fields about automated software

deployments. In this case, we collected public Dockerfiles and container images from Docker Hub

and github.com and analyzed tool dependencies using Debian package information.

4.2.1 Software Deployment for dynamic computing environments

Software development has evolved with rich libraries and building a new computing environment

(or execution environment) requires a set of dependencies to be successfully installed with minimal

efforts. The environment preparation on different infrastructures and platforms is a challenging

task because each preparation has individual instructions to build a similar environment, not an

identical environment. The traditional method of software deployment is using shell scripts. A

system package manager such as apt, yum, dpkg, dnf and make help to automate installing, com-

piling, updating and removing tools but shell scripts can be easily difficult to understand once it

handles more systems and various configurations. A large number of packages are actively updated

and added to communities and proper managing in a universal way is necessary to deal with them

50

sustainably. Python Package Index (PyPI) has 107,430 packages in 2017 with 40+ new packages

on a daily basis. Public version control repository, Github.com has 5,649,489 repositories with

about 20,000 daily added repositories. Most software packages, libraries and tools can be found

on their website and using their API. DevOps tools i.e. Configuration management software sup-

ports automated installation with repeatable executions and better error handling compared to

bash scripts but there is no industry standards for script formats and executions. Puppet, Ansi-

ble, Chef, CFEngine and Salt provide community contributed repositories to automate software

installation, for example, Ansible Galaxy has 11,353 roles available, and Chef Supermarket has

3,261 cookbooks available although there are duplicated and inoperative scripts for software in-

stallation and configuration. Building dynamic computing environments on virtual environments

is driven by these DevOps tools and container technologies during the last few years for its sim-

plicity, openness, and shareability. Note that this effort is mainly inspired by the previous research

activities [40–43,46,76].

4.2.2 Scripts

Building compute environments needs to ensure reproducibility and constant deployment consis-

tently [50, 52]. Most applications these days run with dependencies and setting up compute envi-

ronments for these applications requires an exact version of software and configure systems with

same options. Ansible is a DevOps tool and one of the main features is software deployment using

a structured format, YAML syntax. Writing Ansible code is to describe action items in achieving

desired end state, typically through an independent single unit. Ansible offers self-contained ab-

stractions, named Roles, by assembling necessary variables, files and tasks in a single directory. For

example, installing software A or configuring system B can be described as a single role. Compute

environments are supplied with several software packages and libraries and selectively combined

51

roles build compute environments where new systems require software packages and libraries in-

stalled and configured. Although the comprehensive roles have instructions stacked with tasks to

complete a software deployment with dependencies, the execution of applications still need to be

verified. In consequence, to preserve an identical results from the re-execution of applications, it is

necessary to determine whether environments are fit for the original applications.

4.2.3 Containers with Dockerfile

Container technology has brought a lightweight virtualization with a Linux kernel support to en-

able a portable and reproducible environment across laptops and HPC systems. Container runtime

toolkit such as Docker [71], rkt [3] and LXD [4] uses an image file to initiate a virtualized environ-

ment including necessary software packages and libraries without a hypervisor. These tools create

an isolated environment on a same host operating system using the Linux kernel features such as

namespaces, cgroups, seccomp, chroot and apparmor. Recent research [33] shows that containers

outperform the traditional virtual machine deployments but running containers on HPC systems is

still an undeveloped area. Shifter [57] and Singularity [64] have introduced to support containers on

HPC with a portability and MPI support along with Docker images. These efforts will be beneficial

to scientific applications to conduct CPU or GPU intensive computations with easy access of con-

tainer images. For example, a neuroimaging pipelines, BIDS Apps [53], is applied to HPCs using

Singularity with existing 20 BIDS application images and Apache Spark on HPC Cray systems [21]

is demonstrated by National Energy Research Scientific Computing Center (NERSC) using shifter

with a performance data of big data benchmark. Both researches indicate that workloads for sci-

entific applications and big data are manageable by container technologies on HPC systems with a

reproducibility and portability.

Listing 4.1: Dockerfile Example

52

FROM ubuntu : 1 4 . 0 4

MAINTAINER Hyungro Lee <l ee212@indiana . edu>

RUN apt−get update && apt−get i n s t a l l −y \\

bui ld−e s s e n t i a l wget g i t

. . .

Dockerfile (See Listing 4.1) uses a custom template to describe installation steps of building Docker

images in a bash-like simple format. There are certain directives to indicate particular objectives

of the commands, for example, FROM indicates a base image to use and RUN indicates actual

commands to run. When an image is being generated, each directive of Dockerfile creates a single

directory to store execution results of commands. Meta-data of these directories is recorded in a

final image to provide a unified logical view by merging them. The tag for an image is a reference

for stacked image layers. For example in Listing 4.1, ubuntu:14.04 is a tag to import stacked image

layers of Ubuntu 14.04 distribution and the following directives i.e. MAINTAINER and RUN, will

be added. This allows users to import other image layers and start building own images.

4.2.4 Environment Setup

Preparing environment is installing all necessary software, changing settings and configuring vari-

ables to make your application executable on target machines. Container technology simplifies

these tasks using a container image which provides a repeatable and pre-configured environment

to your application therefore you can spend more time on an application development rather than

software installation and configuration. One of the challenges we found from container technologies

in preparing environment is managing dependencies for applications. Container users who want to

53

Name PCT1 PCT2 PCT3 PCT4 Description Section CT1 CT2 Dependencies Size Important

software-

properties-

common

0.01 0.06 0.02 0.03 manage the

repositories

that you install

software from

(common)

admin 8 4 python3-dbus, python-apt-common,

python3-software-properties,

gir1.2-glib-2.0, ca-certificates,

python3:any, python3-gi, python3

9418

(630404)

optional

groovy - - 0.01 - Agile dynamic

language for the

Java Virtual

Machine

universe/devel 14 10 libbsf-java, libservlet2.5-java, antlr,

libxstream-java, libcommons-

logging-java, libjline-java, libasm3-

java, libjansi-java, libregexp-java,

libmockobjects-java, junit4, default-

jre-headless, ivy, libcommons-cli-

java

9729202

(3257906)

optional

libatlas-

base-dev

- 0.06 - - Automatically

Tuned Linear

Algebra Software,

generic static

universe/devel 2 8 libatlas-dev, libatlas3-base 3337570

(2690424)

optional

liblapack-

dev

- 0.03 - - Library of linear

algebra routines 3

- static version

devel 2 22 liblapack3, libblas-dev 1874498

(2000176)

optional

ruby - 0.01 0.01 0.01 Interpreter of

object-oriented

scripting lan-

guage Ruby

(default version)

interpreters 1 987 ruby2.1 6026

(73880)

optional

libffi-dev - 0.03 - 0.01 Foreign Function

Interface library

(development

files)

libdevel 2 11 libffi6, dpkg 162456

(2101914)

extra

libssl-dev 0.12 0.07 0.01 0.03 Secure Sockets

Layer toolkit -

development files

libdevel 2 70 libssl1.0.0, zlib1g-dev 1347070

(1258956)

optional

net-tools 0.01 0.02 0.03 0.05 NET-3 network-

ing toolkit

net 1 51 libc6 174894

(4788234)

important

nodejs 0.01 0.04 - 0.02 evented I/O for

V8 javascript

universe/web 6 287 libssl1.0.0, libc6, libstdc++6,

zlib1g, libv8-3.14.5, libc-ares2

683742

(7551922)

extra

Table 4.1: Common Debian Packages from Survey Data

(PCT1: Percentage by General Software, PCT2: Percentage by Analytics Layer, PCT3:

Percentage by Data processing Layer, PCT4: Nosql Layer, CT1: Count of Dependencies, CT2:

Count of Reverse Dependencies)

54

run applications with particular libraries have to find relevant container images otherwise they have

to create a new image from scratch thereby brining all required tools and libraries. One possible

solution for this problem is to offer a common core component (3C) when environment is being

built. We noticed that there is a common list of libraries for particular type of applications based

on the survey from Docker images and Dockerfile scripts. The idea is to offer curated collection of

libraries for domain-specific applications and use the list of libraries surveyed from communities.

For example, libraries for linear algebra calculation i.e. liblapack-dev and libopenblas-dev are com-

monly used for applications in the analytics layer of HPC-ABDS according to the survey (shown

in Table 4.1). Additional package installation might be required if a suggested list of dependencies

does not satisfy all requirements of an application.

4.2.5 Package Dependencies

Software packages have many dependencies especially if the packages are large and complex. Pack-

age management software e.g. apt on Debian, yum on CentOS, dnf on Fedora and pkg on FreeBSD

automates dependency installation, upgrading or removal through a central repository package and

a package database. The information of package dependencies along with version numbers con-

trols a whole process of software installation and avoids version conflicts and breaks. In addition,

reverse dependencies show which packages will be affected if the current package is removed or

changed. nodejs and ruby in Table 4.1 have a few dependencies but a large number of reverse

dependencies exist . Software incompatibility can easily occur to other packages if these packages

are broken or missing. Figure 4.1 shows relations between dependencies (depends), reverse depen-

dencies (rdepends), package size (size) and package size including dependencies (total size) among

six different sections. Interestingly the size of package itself does not increase when the number of

dependencies are incremented but it shows positive correlation between the number of dependencies

55

and the total package size including dependencies. It explains that shared libraries are common

for most packages to manage required files efficiently on a system. This is based on the survey of

Docker scripts i.e. Dockerfile from public software repositories on github.com. Note that there are

several package managers available on Linux distributions, such as dpkg, apt, yum and dnf.

4.2.6 Application Domains

Debian packages are categorized in 57 sections ranging from administration utilities (abbreviation

is admin) to X window system software (abbreviation is x11) and it helps us to better understand

the purpose of a package. An application typically requires several packages installed and a certain

choice of packages is found in common according to interests of applications. SciPy [?] is a collection

of python packages for scientific computing, for example, and the dependencies include a math

library i.e. libquadmath0 - GCC Quad-Precision Math Library and basic linear algebra packages

i.e. libblas3 - shared library of BLAS (Basic Linear Algebra Subroutines) and liblapack3 - Library

of linear algebra routines 3. The classification of Big Data and HPC applications is well established

in the HPC and Apache Big Data Stack (HPC-ABDS) layers [46]. Figure 4.2 shows six dependency

sections for selected HPC-ABDS layers such as Layer 6) Application and Analytics - (Analytics

with green dot), Layer 11B) NoSQL - (Nosql with purple dot) and Layer 14B) Streams - (Stream

with beige dot). Library dependencies (4.2a) including development tools, utilities and compilers

are observed in most layers as well as reverse dependencies (4.2b), especially in the analytics layer

and the machine learning layer. Note that, the machine learning layer is not a part of HPC-ABDS

but is manually added to demonstrate other interesting collections as an example. Sub groups

of the library section will be necessary to identify a common collection of dependencies for the

particular application domains in detail.

56

Figure 4.1: Debian Package Relations between Dependencies, Reverse Dependencies and Package

Sizes (itself and including dependencies) for Popular Docker Images

57

(a) Dependencies

(b) Reverse Dependencies

Figure 4.2: Debian Package Dependencies for HPC-ABDS Layers

58

4.2.7 Docker Images on Union Mounting

Union mount implementations e.g. aufs and overlayfs enable Docker containers to have stackable

image layers thereby ensuring storage efficiency for images where a base image layer includes com-

mon contents. Additional image layers only carry changes made to the base image while multiple

containers share a same base image. This enables containers to reduce storage and booting up

time when a new container starts. From a practical point of view, a base image is a set of image

layers built from scratch, for a linux distribution with a version e.g. ubuntu:latest, xenial, or 16.04

or centos:latest or 7 which is a starting point of most images. Common tools or special pack-

ages can be added and declared as an another base image for a particular purpose, for example,

NVIDIA’s CUDA and cuDNN packages are defined as a base image for GPU-enabled computation

including deep neural network on top of an Ubuntu or CentOS image. This approach is widely

adopted because of the following reasons. First, ”off the shelf” container images provide applica-

tion environments to normal users and a standard collection of required software packages is built

for communities of interest. It is also more convenient to update a single base image rather than

multiple images, if there are changes to apply. Note that using a same base image reduces storage

in its database and avoids duplicates. We see a flattened view of Docker images from Figure 4.3.

Base images start from scratch as a first image layer and most applications are diverged out from

base images.

4.3 Results

While there are advantages of using layered file systems for containers, we noticed that redundancy

in storing Docker container images exists. The duplication of image contents occurs when an identi-

cal software installation completes with different parents of an image layer. As shown in Figure 4.4,

tree structure is preserved to represent container images, for example, two images (#1 and #2)

59

Figure 4.3: Dockerfile Workflow

60

Figure 4.4: Union File System Tree

are identified as a distinct image although the change applied to them is indistinguishable. In this

section, we demonstrate two approaches of reducing these duplicates using package dependencies.

4.3.1 Common Core Components

The general software deployment retrieves and installs dependencies to complete installation and en-

sure proper execution of software on a target machine. As shown in Figure 4.5, Nginx, a lightweight

Figure 4.5: Nginx Debian Package Dependencies

61

HTTP server, requires 40 more libraries and tools installed, although Nginx itself is only about

3MB of an installed size. We identify these package dependencies and define them as common Core

Components (3C).

4.3.2 Approach I: Common Core Components by Submodules

In version control systems, submodules keep repository commits separate but allow cloning other

repositories in a sub directory. With submodules, common core components (3C) can be dispatched

but in a separated image layer (See Figure 4.6). This approach lets you include an image layer

without concerning a parent image layer and reduces duplicates without creating a new base im-

age. 3C is supposed to contain dependencies for application and we can find out the dependency

information after reviewing current Docker images with Dockerfiles and searching package manager

databases. Dockerfile is a text file and a blueprint of building an image and installation commands

are recorded to replicate an image anytime. Dockerfile has RUN directives to execute commands

and package manager commands i.e. apt-get and yum are executed with RUN to install libraries

and tools. Dependencies of these libraries and tools are described in a package manager cache file

(Packages) and stored in its internal database. 3C is built by looking up dependency information

from the database with package keywords obtained from Dockerfile. Docker history can be used

to examine image construction or composition if Dockerfile is not available. In Figure 4.7, we

created Nginx-3C (about 59.1MB) and re-generated Nginx Docker images including the new 3C.

The current Nginx Docker has 9 individual images (in total 1191.5MB) among various versions of

Nginx ranging from 1.9 to 1.13. The base image also varies from Debian 9 (in a slim package)

to Debian Jessie 8.4 and 8.5. Whereas the size of new images including Nginx-3C increase about

2.9MB per each version change. The accumulated size of new images is 747.1MB in total to pro-

vide 9 individual Nginx images from version 1.9 to 1.13. 37.3% improvements regarding to storing

62

Figure 4.6: Common Core Components by submodules

Docker images is observed compared to the current Nginx Docker images. We notice that 3C by

submodules reduce duplicates of contents, especially if software changes its versions but uses equiv-

alent libraries. Nginx 1.9.0 and 1.13.0 have similar constraints of dependencies including version

numbers. According to the Debian package information, the similar constraints are following: C

library greater than or equal to 2.14 (libc6), Perl 5 Compatible Regular Expression Library greater

than or equal to 1:8.35 (libpcre3), Secure Sockets Layer toolkit greater than or equal to 1.0.1 and

zlib compression library greater than or equal 1:1.2.0 (zlib1g). Backward compatibility of libraries

is ensured for general packages therefore 3C with the latest version of dependencies may cover most

cases.

4.3.3 Approach II: Common Core Components by Merge

The goal of this approach is preparing compute environments on the premises with domain specific

common core components merged into a base image. New base images are offered with the common

63

Figure 4.7: Comparison of Container Images for Nginx Version Changes

(Current: Built by Official Dockerfiles, New: Built by Common Core Components)

64

core components of applications. Similar application images (such as Image #1 and #2) in Fig-

ure 4.8 branched out from a same parent image layer. The storage might not be saved if not many

images refer a same master image. One of the benefits of this approach is updating base images.

Newly discovered components or vulnerable packages are updated and included through updates.

Once a number of images sharing a same base image incremented, an additional survey can be

conducted to follow trends of development tools and applications. In addition to that, outdated

packages can be removed from the 3C. Docker offers ’bring-your-own-environment’ (BYOE) using

Dockerfile to create images and users can have individual images by writing Dockerfile. We observe

that developers and researchers store Dockerfile on a source code version control repository i.e.

github.com along with their applications. Luckily, GitHub API offers an advanced keyword search

for various use and Dockerfile in particular domains is collected using API tools. Besides, we did

a survey of package dependencies for application domains using the collection of HPC-ABDS and

built 3C according to the survey data. To construct suitable environments with minimal use of

storage, finding an optimal set of dependencies per each domain is critical. As shown in Figure 4.9,

we found that relations between the size of components and the number of components as well as

the percentage of common components among images. The first subplot for the streams layer shows

that the size of most common components (between 40% and 100%) is increased slowly compared

to the least common components. Based on the sample data, 109 out of 429 packages are appeared

50% of Docker images in the streams layer. Other layers of HPC-ABDS are also examined.

4.4 Discussion

We achieved application deployments using Ansible in our previous work [5]. In the DevOps phase,

configuration management tool i.e. Ansible automates software deployment to provide fast delivery

process between development and operations [31] but preserving environments for applications is

65

Figure 4.8: Common Core Components by merge

Figure 4.9: Common Core Components for HPC-ABDS

66

Figure 4.10: Example of Security Vulnerabilities for Ubuntu 16.04 based on Libraries

67

Table 4.2: NIST Big Data Projects

ID Title

N1 Fingerprint Matching

N2 Human and Face Detection

N3 Twitter Analysis

N4 Analytics for Healtcare Data / Health Informatics

N5 Spatial Big Data/Spatial Statistics/Geographic Information Systems

N6 Data Warehousing and Data Mining

not ensured unless all required repositories are preserved. Linux containers resolve this problem

but their scripts are not organized like DevOps tools. Instructions of DevOps tools are written in

structured document formats i.e. YAML, JSON, and Ruby DSL, and there are benefits of using

DevOps scripts like Ansible Roles that we wrote in our previous work. Various terminologies i.e.

recipes, manifests, and playbooks are used to manage systems and deploy software but all of them

have similar concepts and abstract levels. We also notice that these scripts can be converted to build

container images, and vice versa if any of DevOps scripts need to be called in building compute

environments. For example, Table 4.3 shows that 27 Ansible roles are created to deploy software

components among six NIST use cases in Table 4.2. Some of the roles such as Apache Hadoop and

Spark are shared frequently and we intend to provide more roles in building Big Data applications.

With the experience from NIST projects [5], a few challenging tasks are identified in DevOps

tools, a) offering standard Ansible Roles to ease application development with different tools,

and b) integrating container technologies towards application-centric deployments. Infrastructure

provisioning need to be integrated to avoid resource underutilization. We defer these considerations

to future work.

68

Table 4.3: Technology used in a subset of NIST Use Cases. A 3 indicates that the technology is

used in the given project. See Table 4.2 for details on a specific project. The final row aggregates

3 across projects.

ID H
ad

o
op

M
es

os
S
p
ar

k

S
to

rm
P

ig

H
iv

e
D

ri
ll

H
B

as
e

M
y
sq

l

M
on

go
D

B

M
ah

ou
t

D
3

an
d

T
ab

le
au

n
lt

k
M

L
li
b

L
u
ce

n
e/

S
ol

r

O
p

en
C

V

P
y
th

on

J
av

a
G

an
gl

ia

N
ag

io
s

zo
ok

ee
p

er

A
lc

h
em

y
A

P
I

R

N1 3 3 3 3 3 3 3 3 3 3

N2 3 3 3 3 3

N3 3 3 3 3 3 3 3 3 3 3

N4 3 3 3 3 3 3 3 3 3

N5 3 3 3 3 3 3

N6 3 3 3 3 3 3 3 3 3 3 3 3

count 4 1 5 1 1 2 1 4 1 2 3 4 1 3 2 1 2 5 1 1 5 1 1

69

4.5 Related Work

4.5.1 Template-Based Software Deployment

Template deployment is a means of installing software and building infrastructure by reading in-

structions written in a templating language such as YAML, JSON, Jinja2 or Python. The goal

of a template deployment is to offer easy installation, repeatable configuration, shareability of in-

structions for software and infrastructure on various platforms and operating systems. A template

engine or an invoke tool is to read a template and run actions defined in a template towards target

machines. Actions such as installing software package and setting configurations are described in

a template with its own syntax. For example, YAML uses spaces as indentation to describe a

depth of a dataset along with a dash as a list and a key-value pair with a colon as a dictionary

and JSON uses a curly bracket to enclose various data types such as number, string, boolean, list,

dictionary and null. In a DevOps environment, the separation between a template writing and

an execution helps Continuous Integration (CI) because a software developer writes deployment

instructions in a template file while a system operations professional executes the template as a

cooperative effort. Ansible, SaltStack, Chef or Puppet is one of popular tools to install software

using its own templating language. Common features of those tools are installing and configuring

software based on definitions but with different strategies and frameworks. One observation is that

the choice of implementation languages for those tools influences the use of a template language.

The tools written by Python such as Ansible and SaltStack use YAML and Jinja which are friendly

with a Python language with its library support whereas the tools written by Ruby such as Chef

and Puppet use Embedded Ruby (ERB) templating language.

70

4.5.2 Linux Containers on HPC

The researches [30, 47, 49] indicate the difficulty of software deployments on High Performance

Computing (HPC). Linux containers is adopted on HPC with the benefits of a union file system, i.e.

Copy-on-write (COW) and a namespace isolation and is used to build an application environment

by importing an existing container image [57, 64, 74]. The container runtime tools on HPC e.g.

Singularity, Shifter and chroot import Docker container images and wish to provide an identical

environment on HPC as one on other platforms.

4.6 Conclusion

We presented two approaches to minimize image duplicates using package dependencies, named

Common Core Components (3C). The current stacked Docker images create redundancies of storing

contents in several directories when software packages are installed with different parent image

layers and we build dependency packages that mostly shared with other images and provide where

it needs. First approach is building 3C based on the analysis of current Docker images and scripts

i.e. Dockerfile and combines with a master image using submodules. This is useful where software

is updated frequently with new versions but equivalent dependencies are shared. In our experiment,

Nginx with 3C shows 37.3% improvements in saving image layers compared to the current Docker

images. The other approach is building 3C based on the surveyed data for application domains and

provides a certain set of dependencies to provide a common collection for various applications.

71

Chapter 5

Performance Evaluation of Event-driven Computing

5.1 Introduction

Cloud Computing offers event-driven computing for stateless functions executable on a container

with small resource allocation. Containers are lightweight which means that it starts in a second

and destroys quickly whereas a software environment for applications is preserved in a container

image and distributed over multiple container instances. This elastic provisioning is one of the

benefits that cloud computing takes along with its ease of use while traditional virtual machines

on Infrastructure as a Service (IaaS) need some time to scale with system settings, i.e., an instance

type, a base image, a network configuration and a storage option.

Most services in the cloud computing era, pay-as-you-go is a primary billing method in which

charges are made for allocated resources rather than actual usage. Ephemeral computing may

provide a dynamic computing environment because it is tuned for the execution time of containers

without preparing procured resources that never used. Amazon, for example, recently applied Big

Data and Machine Learning platforms to EC2 services as Google Compute and Microsoft Azure

have started similar cloud services with dynamic and lightweight software environment.

Temporal cloud computing emphasizes no infrastructure configuration along with the prepara-

tion of computing environments. Fox et al [44] defines event-driven computing among other existing

solutions, such as Function-as-a-Service (FaaS) and we see computing environments offer various

options using microservice in which event is an occurrence generated by other systems and resource

and microservice are described as a formal syntax written in a programming function. New record

on a database, deletion of object storage, or a notification from the Internet of Things devices is an

72

example of various events and the event typically contains messages to be processed by single or

multiple event handlers. Sometimes an event is generated at a particular interval of time which is

predictable, but in many cases, significant numbers of event messages need to be processed at scale

instantly. Horizontal scaling for processing concurrent requests is one of the properties of cloud-

native applications [48] which have practical approaches and designs to build elastic and scalable

systems. Data processing software (ExCamera [38], PyWren [58]) for video rendering and Python

program recently show that large loads on the event handlers can be ingested on the computing by

using concurrent invocations. We also understand that namespaces and control groups (cgroups)

offered by containers power up event-driven computing with resource isolation to process dynamic

applications individually, but provisioning a thousand of instances within a few seconds.

A new event message is processed on a function instance isolated by others, and multiple in-

stances are necessary when several event messages are generated at the same time. Event messages

generated by mobile applications, for example, are lightweight to process but the quantity of incom-

ing traffic is typically unpredictable so that such applications need to be deployed on a particular

platform built with dynamic provisioning and efficient resource management in which event-driven

computing aims for [8]. We may observe performance degradation if a single instance has to deal

with multiple event messages with a heavy workload in parallel. Unlike IaaS, the cost of instan-

tiating a new instance is relatively small, and an instance for function execution is short-lived on

event-driven computing thus it would have demanded to process concurrent function invocations

using multiple instances like one instance per request. Some applications that can be partitioned

into several small tasks, such as embarrassingly parallel, may take advantage of the concurrent in-

vocations on event-driven computing in which horizontal scaling is applied to achieve the minimal

function execution time required to process the distributed tasks.

In this chapter, we evaluate event-driven computing environments invoking functions in parallel

73

to demonstrate the performance of event-driven computing for distributed data processing on a

given software environment. We measure the performance of deployed applications using functions

for CPU, Memory and I/O bound tasks in which helps describing bottlenecks and behaviors of the

computing model. Continuous deployment and continuous integration (CD/CI) are often referred

to address rapid software development issues with dependencies, and our experiment was conducted

in the same manner to ensure proper integration between software environment and compute re-

sources. The remaining sections provide a summary of the event-driven model over IaaS by big

data experiments and new features are explained.

Event-driven computing environments with concurrent invocations may support distributed

data processing with its throughput, latency and compute performance at scale [66]. There are

certain restrictions that we must be aware of before implementing a event-driven function, for

example, event handler types are a few; HTTP, object storage, and database in common, memory

allocation is small; 512MB to 3GB memory allowance per a container, function execution time is

allowed only in between 5 minutes and 10 minutes and a 500MB size of a temporary directory is

given. In the following sections, we show our results towards Amazon Lambda, Google Functions,

Microsoft Functions, and IBM OpenWhisk Functions with its elasticity, concurrency, cost efficiency

and, functionality to depict current event-driven environments in production. Big Data Benchmark

from AmpLab and TensorFlow ImageNet examples are included as a comparison of costs and

computation time between event-driven computing and virtual machines as well.

5.2 Evaluation

We evaluate event-driven computing environments on the throughput of concurrent invocation,

CPUs, the response time for dynamic workload, runtime overhead, and I/O performance. We

also compare cost-effectiveness, event trigger throughput, and features using a set of functions

74

written by supported runtimes such as nodeJS, Python, Java, and C#. Each provider has different

features, platforms, and limitations, so we tried to address the differences and find similarities

among them. Some of the values may not be available because of two reasons, an early stage of the

event-driven environments and limited configuration settings. For example, Microsoft Azure runs

Python 2.7 on Windows NT as an experimental runtime language thus some libraries and packages

for data analysis are not imported, e.g., TensorFlow library with Python 3.5 or higher, and Google

Functions is in a beta version which only supports NodeJS, a javascript runtime although Python

is internally included in a function instance. 512MB memory limit on IBM OpenWhisk prevents

running TensorFlow ImageNet example which requires at least a 600MB size of memory to perform

image recognition using trained models. New recent changes are also applied in our tests such as

3008MB memory limits on Amazon Lambda, and Java runtime on Microsoft Azure Functions. All

of the evaluations were performed using 1.5GB memory allocation except IBM with 512MB and 5

minutes execution timeout. We use the Boto3 library on Amazon Lambda to specify the size of

a concurrent function invocation, and HTTP API for Microsoft Azure and IBM OpenWhisk. We

use object storage to invoke Google Functions as well. We completed benchmarks using the set of

functions written by NodeJS 6.10, Java, C#, and Python 3 and 2.7.

5.2.1 Concurrent Function Throughput

Function throughput is an indicator of concurrent processing because it tells how many function

instances are supplied to deal with extensive requests. Asynchronous, non-blocking invocations

are supported by various methods over the providers. Amazon SDK (Boto3) allows to invoke a

function up to an account’s concurrent limit, and S3 object storage or DynamoDB database is an

alternative resource to invoke a function in parallel. Google Functions only allows for concurrent

execution by a storage bucket and a rate of processing event messages varies on the length of the

75

Figure 5.1: Function Throughput on Concurrent Invocations

message and its size. Microsoft Azure Functions also scales out automatically by its heuristic scale

controller. IBM OpenWhisk does not seem to provide scalability unless functions are manually

invoked as a workaround. We had to create a thousand of functions with an identical logic but a

different name and treat them like invoking a single function in parallel. Figure 5.1 is a throughput

result per second over the four event-driven providers from 500 to 10000 concurrent invocations.

Amazon Lambda generates about 400 throughputs per second in average, and AWS quickly reaches

its maximum throughput from a small number of concurrent invocation (1000). IBM OpenWhisk

and Microsoft Azure Functions show similar behavior in reaching the best throughput at 2000

invocations and decreasing slowly over increased invocations. Google Functions shows a slow rising

but steady progress of throughput over increased invocations. Throughput at ten thousands of

invocations on Google Functions is about 168 per second which is better than IBM and Azure.

5.2.2 Concurrency for CPU Intensive Workload

Multiplying two-dimensional array requires mostly compute operations without consuming other

resources thus we created the matrix multiplication function written in a JavaScript to stress CPU

resources on a function instance with concurrent invocations. Figure 5.2 shows an execution time

of the function between 1 and 100 concurrent invocations. The results with 1 concurrent invocation

76

which is non-parallel invocation are consistent whereas the results with 100 invocations show the

overhead of between 28% and 4606% over the total execution time. The results imply that more

than one invocation was assigned to a single instance which may have to share allocated compute

resources, i.e., two CPU-intensive function invocations may take twice longer by sharing CPU time

in half. For instance, the median of the function execution time on Amazon Lambda (3.72 seconds)

is about twice the non-concurrent invocation (1.76 seconds).

19.63 gigaflops are detected on AWS Lambda with the 1.5GB size of memory configuration

(whereas 40 gigaflops are measured with 3GB memory), but it can reach more than a teraflop

when a fleet of containers are provisioned for concurrent invocations. event-driven platform allo-

cates computing resources based on the number of requests which shows to a peak double-precision

floating point performance of 66.3 TFLOPs when an Amazon Lambda function is invoked concur-

rently. Table 5.1 is the result of invoking three thousands of functions on event-driven functions

which indicates proportional between the number of functions and the aggregated flops. 66.3 ter-

aflops are relatively good performance. For example, Intel six-core i7-8700K generates 32 gigaflops,

and the latest NVIDIA TESLA V100 GPU delivers 7.8 teraflops for a double precision floating

point. In the comparison of the total of TFLOPS, AWS Lambda generates 5-7 times faster com-

puting speed than others. Azure Functions, IBM OpenWhisk, and Google Functions are in either

a beta service or an early stage of development; therefore, we expect that these results will need to

be revisited in the future.

5.2.3 Concurrency for Disk Intensive Workload

A function in event-driven computing has a writable temporary directory with a small size like

500MB, but it can be used for various purposes, such as storing extra libraries, tools, and inter-

mediate data files while a function is running. We created the function which writes and reads

77

Figure 5.2: Concurrency Overhead with CPU Intensive Function

Table 5.1: CPU Performance

Provider GFLOPS per function TFLOPS in total of 3000

AWS 19.63 66.30

Azure 2.15 7.94

Google 4.35 13.04

IBM 3.19 12.30

78

Figure 5.3: Concurrency Overhead with File I/O Intensive Function

files in the temp directory to stress a file I/O. 100MB size of a file is written by a random size of

blocks with fsync to ensure all buffered file objects are transferred to the disk. Reading the file

is done by random offset blocks with 512 bytes read. We do not have information of the actual

device hardware type of the temporary directory we tested. Google claims that the temporary

directory exists on memory which consumes allocated memory size of a function but we do not find

information from other providers whether they mount it with a persistent storage device like HDD

or SSD. The measured I/O performance toward a temporary directory is shown in Figure 5.3 with

concurrent invocations. The results with 100 invocations show that Amazon generates an execution

time overhead of 91%, Google generates the overhead of 145% and IBM generates the overhead of

338% whereas Microsoft Functions fail to complete function invocations within the execution time

limit, 5 minutes. The median speed of the file read and write is available in the Table 5.2. Reading

speed on Azure Functions is the most competitive among others although it is not measured on 100

concurrent invocations due to the storage space issue. Writing a file between 1 and 100 concurrent

invocations is slightly worse compared to reading, the overhead of 110% on Amazon Lambda, 164%

on Google Functions and 1472% on IBM OpenWhisk exist whereas the writing speed on Amazon

Lambda is 11 to 78 times faster than Google and IBM when 100 concurrent invocations are made.

79

Table 5.2: Median Write/Read Speed (MB/s)

Provider 100 Concurrent 1 Concurrent

Write Read Write Read

AWS 39.49 92.95 82.98 152.98

Azure - - 44.14 423.92

Google 3.57 54.14 9.44 55.88

IBM 0.50 33.89 7.86 68.23

5.2.4 Concurrency for Network Intensive Workload

Processing dataset from dynamic applications such as big data and machine learning often incur

significant performance degradation in congested networks due to large transactions of file uploading

and downloading. If such activities are distributed at multiple locations, network delays can be

easily mitigated. Containers for event-driven functions tend to be deployed at different nodes to

ensure resource isolation and efficient resource utilization and this model may help resolve this

issue especially when functions are invoked in parallel. We created a function which requests data

size of 100 megabytes from object storage on each service provider thus a hundred concurrent

invocations create network traffic in a total of 10 gigabytes. Figure 5.4 shows delays in the function

execution time between 1 and 100 concurrent invocations. We find that Google Functions has a

minimal overhead between 1 and the 100 concurrency level whereas Amazon Lambda is four times

faster in loading data from Amazon object storage (S3) than Google object storage. Microsoft

Azure Functions fails to get access of data from its blob storage at 100 concurrency level, and we

suspect it is caused by the experimental runtime, i.e. Python 2.7 or a single instance for multiple

invocations. Default runtime such as C# and F# may support scalability better than the other

runtime under development on Microsoft Azure Functions.

80

Figure 5.4: Concurrency Overhead with Downloading Objects Function

5.2.5 Elasticity

A dynamic application performing latency-sensitive workloads needs elastic provisioning of function

instances otherwise overhead and failure would be observed during the processing of workloads. We

assume that event-driven computing scales out dynamically to provide additional compute resources

when the number of concurrent invocations is increased rapidly. We created the simple function

that takes less than 100 milliseconds, and the function was invoked with different concurrent sizes

ranging from 10 to 90 over time resulting in about 10 thousands of the total invocations within a

minute. With this setup, we expected to observe two values; delays of instantiating new instances

(which also called cold start) and a total number of instances created during this test. We believe

that it explains whether elasticity mechanisms on event-driven computing is efficient or not with

regarding provisioning and resource utilization. Delays in processing time would be observed when

existing function instances are overloaded and new instances are slowly added which may cause

performance degradation in the entire invoked functions. Figure 5.5 shows different results among

the event-driven providers with the same dynamic workloads over time. The line with a gray

color indicates the number of concurrent invocations per 200ms time window which completes ten

thousand function executions within a minute and the changes of ±3 to± 30 concurrent sizes was

81

made in each invocation to measure horizontal scaling in/out. We observed that new function

instances were added when a workload jumps to higher than the point that existing instances can

handle and the increased number of function instances stay for a while to process future requests.

We find that Amazon and Google support elasticity well in which the 99th percentile of the function

execution time is below 100 and 200 milliseconds whereas both IBM and Azure show significant

overhead at least two times bigger than others if we compare the 99th percentile of the execution

time. The number of instances created for this workload was 54, 10, 101 and 100 in the order

of Amazon, Azure, Google, and IBM. If there is a new request coming in while a function is in

processing current input data, Amazon provides an additional instance for the new request whereas

others decide to increase the number of instances based on other factors, such as CPU load, a queue

length, an age of a queued message, which may take some time to determine. The function we

tested uses the NodeJS runtime and scalable trigger types, but we would consider other runtimes

such as C# and Java and other triggers like databases to see if it performs better in dealing with

the dynamic workload. Each event-driven provider uses different operating systems and platforms

and it seems certain runtimes and triggers have better support in handling elasticity than others.

For example, Azure Queues has the 32 maximum batch size to process in parallel and Azure Event

Hubs doubles the limit. Table 5.3 contains actual numbers we measured during this test and the

function execution time which is represented by blue dots in the figure would expect to take less

than 0.1 second in a single invocation, but there are overhead when the workload is increased

in which the standard deviations and 99th percentile indicate in the table. It explains that the

increased number of instances should be available instantly with additional amounts of computing

resources to provide enough capacity for the future demands.

82

Figure 5.5: Response Time for Dynamic Workload

Table 5.3: Execution Time (milli-sec) on Elasticity

Provider MED SD 1st PCTL 90th PCTL 99th PCTL

AWS 61.08 14.94 35.08 78.99 89.41

Azure 574.0 747.33 118.0 1808.30 3202.0

Google 101.0 38.75 57.0 162.0 198.0

IBM 112.0 142.23 31.0 177.0 378.79

MED = Median, SD = Standard Deviation, PCTL = Percentile

83

5.2.6 Continuous Deployment and Integration

Development and Operations (DevOps) paradigm is applicable to event-driven functions in enabling

continuous delivery and integration while functions are in action. Functions ought to be often

changed for bug fixes and updates, and a new deployment of functions should not affect existing

workloads. In this section, we measure failures and delays of function executions when code blocks

are updated and function configurations are changed where the transition to the next version of

a function is explained in the context of concurrent invocations. We started with 10 concurrent

invocations with a simple NodeJS function which takes a few seconds to complete and made a

total of 500 function executions within 10 seconds. Two events were made during this experiment.

First, a change of source code was made before the first 200 invocations completed and the second

event with new function configurations such as updates on timeout value and the size of memory

allocation was made in the next 200 invocations. We also prepared the function with a warmed-up

instance by executing the function multiple times before this experiment to ensure that function

instances are initialized and ready to process a certain load. Figure 5.6 shows different behaviors

in dealing with those events. A gray dot indicates an existing function instance and green plus

marker indicates a new function instance whereas a red ’x’ marker indicates a failure of a function

invocation which we avoid in any level of processing production workloads. It seems that Amazon

re-deploys a function instance whenever there is a change in a code or a configuration but it keeps

an existing deployment in a certain period to handle incoming requests during the transition. If the

function is invoked right after those events, it is likely that the previous version of the function will

be processing the new invocation. We also do not find a same number of instances are prepared.

For example, we saw that 10 instances were waiting for new invocations, but new deployment

started with a single instance along with purging previous instances. If a new function instance

requires initializing processes such as downloading necessary files to a temp directory, it creates

84

Figure 5.6: Function Behavior over CD/CI

(gray dot: existing instances, green +: new instances, red x: failed instances)

delays in processing new invocations. In the subplot of Microsoft Azure, we observe about a small

number of new instances launched during the entire invocations where it either applies any changes

through existing deployments or has only a few deployments to swap. It is not visible in the figure

due to a small number of instances, and we may need additional tests to determine the behavior of

functions towards those events. In the subplot of Google, we observed failures and delays of function

executions for those events. We need to revisit Google when the beta release of the event-driven

platform is ended. Unlike AWS Lambda, IBM re-deploys a new version of source code and starts

to manage incoming messages on new instances that may cause excessive delays on a client-side

program if new deployment takes some time to initialize.

We suggest that new deployment of a function need to be prepared with the equivalent size

of function instances compared to the current loads which will prevent delaying response time in

the context of concurrent invocations. event-driven framework with DevOps may enhance software

development and continuous delivery through an agile function deployment and configuration as

we will use multiple functions together with frequent changes.

85

5.2.7 Event-driven Model versus Virtual Machine

Event-driven computing does not offer either high-end computing performance or an inexpen-

sive pricing model compared to virtual machines like Amazon EC2. Virtual machines on cloud

computing have offered multiple options to scale compute resources with machine types, network

bandwidth and storage performance to meet the expectation of performance requirements of a

given workload which requires optimal capacity planning and system management. event-driven

computing, however, aims to provide dynamic compute resources for lightweight functions without

these administrations and offer cost-efficient solutions in which users pay for the execution time of

functions rather than paying for the leased time of machines. Amazon, for example, has an EC2

machine choice optimized for intensive tasks with up to 128 vCPUs and a 3.8TiB size of memory

with a limited number of allocations per account. AWS Lambda allows invoking a function at

least a thousand of concurrency per region with a small memory allocation up to 2.8GiB (3008MB)

which result in a total size of 2.8TiB. We ran an experiment in this section to demonstrate possible

use cases of event-driven with the understanding of the differences between these two comput-

ing resources. event-driven computing is powered by container technologies which have near zero

start-up delay and deleting latency during a function life-cycle. For example, we ran a test of a

NodeJS function using Apache OpenWhisk with Kubernetes, and a small Docker container (as a

Kubernetes Pod) is deployed and terminated within a few milliseconds for the function invocation.

The container instance was running (warm state) for a specified period to receive a future event

message which merely consumes resources and was changed to a pause state which indicates a

terminated process but reserving function data like source code and a temp directory in storage.

The paused instance saves time to re-instantiate a function for the future requests without wasting

compute resources. Some delays might be observed at first which is called cold start but a con-

figuration can be changed to extend the idle time of the running container, or a regular wake-up

86

invocation can be implemented as a workaround if necessary. On the contrary, virtual machines

take at least a few seconds to be ready, and a high-end server type with multiple virtual CPUs

and large size of memory and storage with a custom machine image may take 10 to 20 minutes to

initialize. Another issue of using virtual machines is that a resource utilization needs to be handled

by users to maximize values of leasing machines. If a VM is idle, the utilization rate is decreased,

and if more VMs are necessary to support a tremendous amount of traffic immediately, existing

VMs are overloaded which may cause performance degradation. Regarding the charge interval of

leased VMs, many cloud providers have applied a per-second basis like event-driven computing

with some exceptions. Therefore, the particular workload would be deployed on VMs if it requires

high performance compute resources for a short amount of time.

We made a cost comparison between event-driven computing and traditional virtual machines

because we think it would explain cost-effectiveness for specific workload deployed on these two

platforms. The charging unit is different, event-driven computing is based on 100 milliseconds

per invocation, and a virtual machine uses either an hour or a second basis charge per instance.

When we break down the cost in a second, event-driven is almost ten times expensive compared

to a virtual machine regarding the allocated compute resources. We ran two scripts written by a

python and a JavaScript building binary trees. Table 5.4 shows the execution time of the creating

binary trees and the total cost with the rank ordered by cost-effectiveness. The result indicates that

a sequential function on event-driven computing would not be a good choice regarding cost-savings

although it is still a simple way of deploying a function as a service. However, dynamic concurrent

invocations on event-driven computing will save cost against overloaded virtual machines when

many event messages are requested.

87

Table 5.4: Building Binary Tree with Cost-Awareness

Platform RAM Cost/Sec Elapsed Second Total Cost (Rank)

AWS Lambda 3008MB $4.897e-5 20.3 $9.9409e-4 (6)

AWS EC2 (t2.micro) 1GiB $3.2e-6 29.5 $9.439e-05 (3)

Azure Functions 192MB $3e-6 71.5 $2.145e-4 (4)

Azure VM 1GiB $3.05e-6 88.9 $2.71145e-4 (5)

Google Functions 2GB $2.9e-5 34.5 $0.001 (7)

Google Compute (f1-micro) 600MB $2.1e-6 19.2 $4.0319e-05 (1)

IBM OpenWhisk 128MB $2.2125e-6 34.2 $7.5667e-05 (2)

5.3 Use Cases

There are several areas where event-driven can play an important role in research applications as

well as in a commercial cloud. Big Data map-reduce application can be executed similarly but a

cost-effective way of deployment as we discuss implementations of the big data applications in a

series of event-driven functions with cloud object storage and databases [45, 59]. We ran some

Big Data Benchmark tests by scanning 100 text files with different queries and aggregating 1000

text files with a group by and sum queries which show that certain applications are executable

on event-driven framework relatively easily and fast compared to running on server-based systems.

Image processing for CDN is applicable by the event-driven framework to process thumbnails of the

images concurrently. Internet Of Things (IoT) is also one of the use cases for event-driven framework

because IoT devices typically have a small computing power to process all the information and need

to use remote resources by sending event messages which are a good fit for event-driven computing.

IoT devices may invoke a function using a policy. For example, in case of a data-center, a cooling

facility is essential for proper functioning of servers. When cooling is not working properly, a

thermostat invokes a function to calculate live migration of allocated workloads to other data

centers and determine shutdown of servers on particular areas. We hope to see several use cases of

88

event-driven computing as the main type of cloud-native application development soon.

5.4 Discussion

event-driven computing would not be an option for those need high-end computing power with

intensive I/O performance and memory bandwidth because of its resource limitation, for example,

AWS Lambda only provides 3GB of memory and 2 virtual cores generating 40 flops with 5 minutes

execution timeouts. These limitations will be adjusted once event-driven environments are mature

and there are more users but bulk synchronous parallel (BSP) and communication-free workloads

can be applied to event-driven computing with its concurrent invocations. Additional containers for

concurrent function invocations reduce a total execution time with a linear speed up, for example, a

function invocation divided into two containers decreases an execution time in half. There are also

overlaps and similarities between event-driven and the other existing services, for example, Azure

Batch is a job scheduling service with an automated deployment for a computing environment.

AWS Beanstalk [7] is deploying a web service with automated resource provisioning.

5.5 Related Work

We have noticed that there were several efforts to utilize existing event-driven computing for par-

allel data processing using concurrent invocations. PyWren [58] is introduced in achieving about

40 TFLOPs using 2800 Amazon Lambda invocations. The programming language runtime on

event-driven computing has been discussed in the recent work [68]. Deploying scientific computing

applications has been conducted with experiments to argue the possible use cases of event-driven

computing for adopting existing workload [82] with its tool [81]. McGrath et al [?] shows event-

driven comparison results for function latency among production event-driven computing environ-

ments including Microsoft Azure Functions but it was not a comprehensive review, such as testing

89

CPU, network and a file I/O, and several improvements have been made later such as an increment

of memory allocation such as 3GB on Amazon Lambda and additional runtime support such as Java

on Azure Functions and Golang on Amazon. OpenLambda [?] discusses running a web application

on event-driven computing and OpenWhisk is introduced for mobile applications [8]. Since then

several offerings on the event-driven framework with new features have been made. Kubeless [63]

is a Kubernetes-powered open-source event-driven framework, like Fission [34]. Zappa [92] is a

python based event-driven powered on Amazon Lambda with additional features like keeping the

warm state of a function by poking at a regular interval. OpenFaaS is event-driven for Docker

and Kubernetes with language support for Node.js, Golang, C#, and binaries like ImageMagicK.

Oracle also started to support open source event-driven platform, Fn project [37]. In this work,

we have investigated four event-driven computing environments in production regarding the CPU

performance, network bandwidth, and a file I/O throughput and we believe it is the first evaluation

across Amazon Lambda, Azure Functions, Google Functions and IBM OpenWhisk.

5.6 Conclusion

Functions on event-driven computing can process distributed data applications by quickly provision-

ing additional compute resources on multiple containers. In this chapter, we evaluated concurrent

invocations on event-driven computing including Amazon Lambda, Microsoft Azure Functions,

Google Cloud Functions and IBM Cloud Functions (Apache OpenWhisk). Our results show that

the elasticity of Amazon Lambda exceeds others regarding CPU performance, network bandwidth,

and a file I/O throughput when concurrent function invocations are made for dynamic workloads.

Overall, event-driven computing scales relatively well to perform distributed data processing if a

divided task is small enough to execute on a function instance with 1.5GB to 3GB memory limit

and 5 to 10 minute execution time limit. It also indicates that event-driven computing would be

90

more cost-effective than processing on traditional virtual machines because of the almost zero delay

on boot up new instances for additional function invocations and a charging model only for the exe-

cution time of functions instead of paying for an idle time of machines. We recommend researchers

who have such applications but running on traditional virtual machines to consider migrating on

functions because event-driven computing offers ease of deployment and configuration with elastic

provisioning on concurrent function invocations. event-driven computing currently utilizes contain-

ers with small computing resources for ephemeral workloads, but we believe that more options on

computing resources will be available in the future with fewer restrictions on configurations to deal

with complex workloads.

91

Chapter 6

Efficient Software Defined Storage Systems on Bare Metal Cloud

6.1 Introduction

In the Big Data ecosystem, the bare metal server has become a high performance alternative

to hypervisor-based virtual machines since it offers advantages of direct access to hardware and

isolation from other tenants’ workloads. However, benchmark results or comprehensive data of

infrastructure options are not generally available. This chapter reports on the results of a big data

benchmark of commercial cloud services that have provided bare metal equivalent server types.

This work aims to address data processing performance using Hadoop-based workloads including

Terasort, and the results would be useful in designing and building infrastructure along with the cost

analysis and performance requirements depending on use cases. We perform big data benchmark

on production bare metal environments to demonstrate compute performance with local NVMe

and block storage are tested as an alternative storage option.

We started using bare metal servers with Hadoop workloads because the previous work indicated

the needs of the exascale-like infrastructure for data-intensive applications [?], and we wanted to see

how these new servers perform differently with additional computing power and large volumes of

storage. Oracle Cloud Infrastructure has bare metal server types which offer 104 virtual cores with

hyper-threading, 768GB memory and 51.2TB size of local storage per instance which can be better

solutions to any existing big data problems in which massive intermediate data are generated

rapidly for subsequent analysis with many CPU and memory intensive sub-tasks. Other cloud

providers have a different configuration of those resources resulting in a broad range of choices

in bare metal environments, for example, Amazon r5.24xlarge instance offers similar resources

92

compared to Oracle in compute, memory and network except the local NVMe storage or z1d.metal

for high CPU clock speeds. Google and Microsoft do not explicitly have bare metal servers but

equivalent options are available to compare such as n1-highmem-96 with local scratch volumes on

GCE and L64s v2 on Azure. Furthermore, persistent block storage can mitigate extra storage needs

for those who have data-intensive workloads with large volumes. This is particularly helpful when

terabyte-scale volume is not enough or data separation from compute is necessary. There is also a

lack of evaluation data indicating actual performance optimization and designing efficient clusters

with scalability.

Hardware performance data is subject to the actual execution time of applications, high IOPS

and low latency storage devices contribute to the performance of I/O intensive jobs and FLOPS

is a measure of provisioned computing resources, as well as high network bandwidth for fast com-

munication. In practice, however, the complex workloads have multiple characteristics to detect

tuning factors and inspect bottlenecks if exists and therefore performance evaluation with various

scenarios is necessary for understanding the environment deployed.

Bare metal servers are widely available with various options to add extra CPU cores, memory,

and local NVMe as well as high network bandwidth. Big data users with data intensive application

may utilize these configurations when vertically scaled clusters generate better performance than

constructing many numbers of commodity servers. In addition, improved performance results in

increasing cost efficiency as more resources are quickly returned for further use.

The previous work claimed that Hadoop jobs often run better on scale-up servers than hori-

zontally scaled servers [?] so that one can take advantage of an increased number of virtual cores,

memory sizes and network bandwidth provided by typical bare metal servers. Fig 6.1 shows dis-

tributed I/O benchmark, TestDFSIO, as an example between two different environments, one with

8 worker nodes, 48 virtual cores each and the other with half number of the worker nodes, four, but

93

Figure 6.1: TestDFSIO between VM and Bare Metal

increased core count, 104 virtual cores each. For writing task of TestDFSIO between 2TB to 8TB

data sizes, about 4 to 6 times reduced execution time and throughput was observed on vertically

scaled bare metal servers, i.e. BM.DenseIO2.52. For reading task of TestDFSIO, the throughput is

slightly improved as data size increased from 2TB to 8TB for bare metal servers. Note that these

two environments have same hardware specifications on local NVMe storage and CPU and memory

although the bare metal setup has a few more core counts and memory sizes due to the different

CPU/MEM ratio per server type.

With the advent of high performance storage options and reduced hardware costs, public data

centers and academic platforms are now equipped with either solid state devices (SSDs) with Serial

ATA (SATA) or NVMe SSD with PCI Express bus for better I/O performance than magnetic

storage, i.e. hard disk drives (HDDs) and bare metal servers are typically offered with SSDs to

support increased performance needs. Production cloud services have two storage types, one is

temporal local terabyte-scale NVMe dedicated to a server instance and the other one is persistent

remote petabyte-scale block storage. We tend to explore these options for I/O intensive workloads

so that one can understand the difference between these two storage options for running big data

workloads.

We know that bare metal servers are available on most production cloud environments but it

94

is difficult to find the analysis of big data workloads across these environments. This chapter is

the first evaluation of commercial bare metal environments focusing on various storage options for

running big data applications. Amazon EC2, Google Cloud, Oracle Cloud, and Microsoft Azure

are considered to run our experiments.

Fast and powerful hardware accelerates large data processing, and we have observed that real

world workloads are a mixture of compute intensive, i/o intensive, and memory intensive, in which

bare metal clouds can be a solution for these. We use built-in Hadoop benchmark tools which are

useful to measure the performance of Hadoop systems by varying workload volumes and configura-

tions. The workloads tested here include WordCount, PageRank, K-Means, TeraSort, and DFSIO

and the performance data would be widely applicable to various applications running on similar

compute environments.

The block storage is a network storage device which provides an individual mount point to

access, and therefore multiple devices with various volume sizes can be attached and detached in a

few steps. Block storage also ensures scalability as more attached volumes with increased sizes de-

liver additional capacity and performance. The service limit per server instance, however, prevents

to scale vertically and requires to use additional instances for achieving increased performance.

For example, Amazon Elastic Block Store (AWS EBS) generates 64,000 IOPS and 1,000 MB/s

throughput per volume but extra I/O operations will be throttled if two or more volumes attached

to the same instance. It is caused by the service limit, 80,000 IOPS and 1.7 GiB throughput per

server and non-optimized server types for block storage may reduce these caps additionally.

We have tested Hadoop cluster using the block storage to demonstrate these problems. Ta-

ble 6.1 is an IOPS comparison between block storage and local NVMe per server instance and

the performance difference is ranging from 11 times (GCE) to 41 times (AWS). It is trivial that

choosing local NVMe against block storage is good for high IOPS required workloads as long as the

95

limitations do not apply. First, petabyte scale data would not fit into local NVMe as it is currently

offered between 3TB to 51.2TB per instance. Amazon’s Block storage EBS offers up to 496TiB

by attaching 31 volumes and Oracle allows up to 1PB by aggregating 32 attachments with 32TiB

volume size each. Handling intermediate and temporal data would work better on local NVMe

otherwise there is a cost moving data from/to other permanent storage. Processing data generated

during analysis and simulation is a good use case in this context.

Block storage is convenient to use and applicable to Hadoop data nodes but there are several

limitations. IOPS in the table cannot be achievable at a small volume size, and each provider has

a different ratio such as IOPS per provisioned volume size. For example, Amazon provides 64k

IOPS for the volume of 1280GiB or greater with 50:1 ratio. Google cloud provides 60k IOPS for

the volume of 2048 GiB or greater with 30:1 ratio, Oracle cloud provides 25k IOPS for the volume

of 417 GB or greater with 60:1 ratio. Note that the numbers in the table only indicate reading

performance at a 4096 byte block size. It does not include IOPS for write with different block sizes

which will be lower than those.

Local NVMe storage has tremendous performance but there are also limitations. Fixed number

of volumes are offered with server types and the volume size is not changeable. For example, GCE

provides a local NVMe disk in one size, 375GB, and Oracle has two options, 28.8TB and 51.2TB

in bare metal server types. To utilize the maximum IOPS, data has to be evenly distributed on

attached volumes, i.e. 8 volumes per instance. Server types are limited to the use of local NVMe

storage. i3.metal server type on AWS, L64s v2 on Azure, any server with 32+ vCPUs on GCE

and BM.DenseIO2.52 on OCI is available for the IOPS on the table. We believe that new products

with improved hardware will replace these performance data and eliminate the limitations anytime

soon. For example, Azure Ultra SSD in preview provides 160k IOPS for the block storage which 8

times greater than the current performance, 20k per volume.

96

Table 6.1: IOPS

Provider Block Storage IOPS Local NVMe IOPS

AWS 80,000 (64,000 per volume) 3,300,000

Azure 80,000 (20,000 per volume) 2,700,000

GCE 60,000 (60,000 per volume) 680,000

OCI 400,000 (25,000 per volume) 5,500,000

In this chapter, we emphasize on the performance analysis by evaluating Hadoop benchmark

workloads and comparing the results with system metrics e.g. IOPS and FLOPS across the envi-

ronments. Our results indicate that there is performance benefit of leveraging bare metal servers

due to the increased compute resources per node in the Hadoop cluster but system upper limit

may prevent fully utilizing provisioned resources when applications become I/O intensive. We also

provide cost analysis for those workloads to show the economic benefits of provisioned resources

so that one can choose the best option of running their applications with the consideration of the

economic value and performance requirements.

The contributions of this work are:

• Comparing the performance of Hadoop workloads on different bare metal platforms

• Understanding the difference between block storage and local NVMe for I/O intensive work-

loads

• Providing the analysis of cost efficiency potentially reducing storage costs

The rest of the chapter is prepared as follows. In Section 6.2, we describe our experimental

configuration and explain the results in the next section 6.3. The section 6.4, we described related

work briefly.

97

6.2 Hardware Specification and Application Layout

6.2.1 Experimental Setup

We built a Hadoop cluster with a various number of workers ranging from 3 to 8 and two master

nodes and one gateway node. The deployment was completed by Cloudera 5.16.1.

Amazon EC2 has a memory optimized server type (r5.24xlarge) with Intel Xeon 8175M proces-

sors running at 2.5 GHz, with a total of 48 hyper-threaded cores, 96 logical processors and recently

added bare metal server type i.e. r5d.metal is excluded in this experiment [?] which offers 3.6 TB

size of local NVMe divided by four mount points. Microsoft Azure also has an E64s v3 server

type which provides 64 virtual cores by Xeon E5-2673 processor and 432 GB size of memory. We

noticed that the number of vCPUs offered by Azure is increased in powers of two and 96 and 104

vCPUs are not available in the ESv3 series. M128 server types are excluded because of the pric-

ing ($13.338/hour for 2TiB of memory, and $26.688/hour for 4TiB). n1-highmem-96 server from

Google Compute Engine offers 96 virtual cores on Intel Xeon Skylake and 624 GB of memory. Local

scratch storage allows us to choose between NVMe and SCSI interface with a maximum volume

size of 3TB. BM.Standard2.52 is a standard server type from Oracle with Intel Xeon Platinum

8167M resulting in a total of 104 logical processors. BM.DenseIO2.52 is a server type with eight

of local NVMe in a total size of 51.2 TB from Oracle [?]. Table 6.2 provides the details of the

server types with a hardware specification and we believe that these server choices are comparable

although the numbers are not completely the same across different environments. We are aware

that the performance gaps of provisioned resources among each other may reduce the consistency

of our experiments and we address this limitation when we represent our results in the following

sections.

98

Table 6.2: Cluster Configuration

Item AWS Azure GCE OCI

Server name r5.24xlarge E64s v3 n1-highmem-96 bm.standard2.52

CPU type Intel Xeon Plat-

inum 8175M

Intel Xeon E5-2673

v4 (Broadwell)

Intel Xeon Scalable

Processor (Skylake)

Intel Xeon Plat-

inum 8167M

Clock Speed 2.5 GHz 2.3 GHz 2.0 GHz 2.0 GHz

Turbo Boost 3.1 GHz 3.5 GHz - 2.4 GHz

Core Count 96 64 96 104

Memory Size 768 GB 432 GB 624 GB 768 GB

Network Band-

width

25 Gbps 30Gbps - 2x25 Gbps

OS CentOS 6 CentOS 6 CentOS 6 CentOS 7

Kernel Version 2.6.32 2.6.32 2.6.32 3.10.0

Storage type at-

tached

General purpose

SSD (gp2)

Premium SSD

(P30)

Regional SSD Block Storage SSD

(iSCSI)

HDFS Volumes 2048GB x 7 1024GB x 7 834GB x 8 700GB x 6

Max IOPS per vol-

ume

6000 5000 25000 25000

Max IOPS per

worker

42000 35000 60000 (r) 30000 (w) 150000

Max throughput

per volume

250MiB/s 200MB/s 400MB/s 320MB/s

Max throughput

per worker

1750MB/s 1400MB/s 1200MB/s (r)

400MB/s (w)

1920MB/s

Package Version hadoop-2.6.0+cdh5.16

Number of Workers 3

99

6.2.2 I/O Test

We ran flexible I/O tester (fio) on this storage to measure performance data before running our

experiments. Our Hadoop clusters mount data nodes by either local NVMe or block storage and

storage performance make a big difference for running our HDFS-based jobs. Table 6.3 shows our

test results in detail. Note that these are aggregated IOPS by fio’s group reporting and randread

means random read, randwrite means random write, and rw50 means random read and write in

50/50 distribution. Generally speaking, high IOPS at small block size is good for database systems

which have usage patterns of frequent access for handling transaction data, and high IOPS at

large block size is good for data intensive jobs including Hadoop which requires high throughput

for sequential reading and writing. Also, most high-end SSD devices generate steady performance

across different block sizes although we find interesting results from the test. Amazon shows the

best storage performance at a small block size, 2 million IOPS at 4k, but Oracle has significant

performance at a large block size, 21.6 GB throughput per second. This will affect data intensive

workloads of our experiments such as DFSIO, Wordcount, and Terasort. The results also revealed

that Google does not offer comparable storage performance per instance in terms of IOPS and

volume size and therefore scaling out approach would be appropriate to build a system for data

intensive workloads. It is worth to mention that high IOPS for writing is important as frequent

writing and deleting are expected. The local NVMe is created as an empty space when a server

instance is launched and any data to analyze or permanent data to keep has to be copied from/to

other space e.g. block storage. Changing the status of an instance may purge contents in the

storage handling like temporal scratch space. With these IOPS, OCI produced the maximum 18

GB/s throughput whereas AWS produced 6.1 GB/s throughput for random write.

100

Table 6.3: Flexible I/O Tester (fio) Results

(IOPS x 1000)

Block Size,

I/O Pattern

AWS

i3.metal

8 x 1.9T

Azure

L64s 2

8 x 1.9T

GCE

highmem96

8 x 375G

OCI

BM.DenseIO2.52

8 x 6.4T

4K, randread 2048.9 886.3 275.9 1334

4K, randwrite 1457.5 760.5 269.7 1098

4K, rw50 1528.5 840.9 345.2 1180

16K, randread 891 750.9 161.6 1088

16K, randwrite 378.1 534.4 90.7 713

16K, rw50 427.3 529.9 115.8 850

256K, randread 60.1 58.2 11.1 75.4

256K, randwrite 24.6 38.5 6.2 68.7

256K, rw50 27.6 33.8 7.9 82.6

6.2.3 Scalability

We wanted to evaluate the scalability of our workloads by using the scaling context of HPC systems.

Figure 6.2 shows Hadoop benchmark results to describe how our cluster handles terabyte scale data

with additional worker nodes. The upper plot in the figure shows reduced execution time when

the number of workers is increased. Each benchmark ran with the same data size over 3, 6,

and 8 worker nodes which indicate good scaling with more resources. This is not always valid

for certain workloads due to shuffling costs. Typical workloads go through data reduction from

map to reduce phase which decreases the amount of data exchanged between nodes but in some

applications e.g. PageRank may not or increase the amount of data transferred over additional

worker nodes. I/O intensive workloads which can be partitioned by the number of mappers generally

guarantee performance improvements over an increased number of nodes. Wordcount and DFSIO

are identified in this context.

The bottom plot of the Figure 6.2 depicts flat lines for processing an increased amount of data

101

Figure 6.2: Scaling Results

Figure 6.3: CPU Performance (GFLOPS)

by adding more workers which are good for weak scaling. K-Means, Wordcount, and DFSIO are

relevant to this interpretation. PageRank and Terasort were slightly worsened as more worker

nodes were added and this concludes the same results that we discussed in the strong scaling

results, shuffling costs over multiple worker nodes. The tested data size are varied between 1.6TB

and 3.2TB for Wordcount, 50 million and 100 million pages for PageRank, 1.2 billion and 2.4 billion

samples for K-Means, 600GB and 1.2TB for Terasort and 2TB and 4TB for DFSIO. The worker

node consists of 104 hyper-threaded CPU cores, 768 GB memory and a dual port 25GB Ethernet

adapter.

102

6.3 Experimental Results

6.3.1 Compute Performance

Processing power from various server types and platforms are very different from each other which

prevents us from building equivalent compute environments. Floating point operations per second

(FLOPS) is, however, a reasonable methods to compare CPU performance on target server types.

Figure 6.3 shows our results on the four server types in which measured gigaFLOPS in double

precision calculations are 917.78 for AWS r5.24xlarge (96 vCores), 825.51 for OCI BM.Standard2.52

(104 vCores), 806.07 for GCE n1-highmem-96 (96 vCores), and 704.13 for Azure e64s v3 (64 vCores)

in a rank order. We believe that these are the closest match we can find for our experiments with

negligible gaps of provisioned resources. We were searching for one of the largest server types

offering a large number of vCPUs, high amount of memory and increased network bandwidth but

around 100 vCores, less than 1TB of memory (10GB of memory per vCPU) and up to 50 gigabit

networks by spending under $10 per an hour. The different types of hardware configuration may

reduce the consistency of our experiment, therefore, we use the performance data as a reference,

not a direct measure of the evaluation.

6.3.2 Storage Performance

We discussed the storage performance in the section 6.1 and evaluated by running TestDFSIO with

data nodes on block volumes and local NVMe volumes respectively. With the understanding of

the performance gaps, i.e. 652K IOPS vs 1334K IOPS, it is expected to see better results with

local NVMe volumes but we still find block storage is useful. Figure 6.4 shows the comparison

results between these two storage options by TestDFSIO write (upper subplots) and read (bottom

subplots). First, the performance difference is significant as data size increased on both write and

read tests. For the writing results, We find that 1.3 times reduced execution time on NVMe for

103

Figure 6.4: TestDFSIO between Block Storage and local NVMe

360GB data and 2.4 times reduced execution time for 8TB data size. The write throughput results

(subplot on the top right) explains why the gaps were enlarged. The write throughput on block

storage was decreased but one on local NVMe was improved over increased data sizes. For the

reading results, it showed similar results, 2 times reduced execution time for 8TB data read. The

first two bars, 360GB and 2TB show comparable results because the worker nodes uses memory

rather than writing into disks.

Table 6.4 shows performance data between these two storage options and we find higher gaps in

this direct performance data than TestDFSIO results. It implies that we may not observe the same

performance difference when benchmark is completed with actual applications and other storage

options e.g. block storage should not be ignored due to raw performance data as they might offer

other benefits e.g. a persistent store and data movement.

6.3.3 Production Comparison

We chose to evaluate production bare-metal environments by HDFS based Hadoop workloads be-

cause these benchmark tools are popular and widely used to verify provisioned resources including

compute, storage, and network. Figure 6.5 provides a single view for the six different workloads,

tested with block storage attachments. As we discussed earlier, block storage generates different

104

Figure 6.5: Hadoop Workloads on AWS, Azure, GCE and OCI

105

Table 6.4: Oracle I/O Performance (Per Instance)

Item
12 x 700 GB

Block Storage

8 x 6.4 TB

Local NVMe
Difference

4K randwrite IOPS 303,000 1,098,000 3.62x ↑

4K randread IOPS 292,000 1,334,000 4.56x ↑

256K randwrite Throughput 3.0 GB/s 18.0 GB/s 6x ↑

256K randread Throughput 3.0 GB/s 19.8 GB/s 6.6x ↑

4k randwrite Latency 7,908µsec 1,455µsec 5.4x ↓

4k randread Latency 8,205µsec 1,198µsec 6.8x ↓

IOPS by varying volume sizes and we configured the storage to meet certain performance level,

i.e. 25,000 IOPS and 200MB throughput per volume. Wordcount ran with about 2TB size of text

files which is to stress HDFS filesystem with simple computations. OCI completed Wordcount in

about 42 minutes whereas Azure took twice, 87 minutes. GCE failed to complete this workload in

two hours and we had to cancel it leaving an empty bar in the plot. PageRank updates score with

some amount of data exchange between worker nodes and iterative tasks for counting and assigning

values to unique records of pages. Our result shows that processing 50 million pages needs less than

10 minutes among all environments. K-Means clustering implementation ran with 10 iterations for

processing 1 billion samples. AWS completed the task in 45 minutes while Azure took 64 minutes.

However, it does not mean Amazon outperforms Azure as the CPU FLOPS is 1.3 times better on

r5.24xlarge. Terasort stresses both CPU and storage and high IOPS are required. We find a similar

result compared to PageRank. Both AWS and OCI completed the task in 10 minutes as GCE and

Azure took about 24 minutes to finish. It explains that Azure needs more core count and GCE

needs additional volumes to show similar results. We have additional experiments for Terasort, see

Section 6.3.4. TestDFSIO has two tasks, writing and reading. We reduced the number of a replica

to 1 which removes a data exchange task for better results but this will result in increased reading

time. OCI completed writing in 15 minutes but GCE took 1 hour and 23 minutes. The cap of

106

IOPS for write on GCE is 30,000 per instance and we suspect that this is a major contribution to

the long execution time.

6.3.4 Workloads

We dedicate this subsection to describe Hadoop workloads. K-Means and Terasort implementation

were explained with our experiments.

K-Means

The KMeans clustering method is a well known iterative algorithm and is a common example to

examine MapReduce functions. The distance computation between data points with centroids runs

in parallel at a Map function step by reading the dataset from HDFS, and representing a new

centroid to the subsequent iterations completes a cycle. The intermediate data is stored on HDFS,

therefore I/O performance is critical as well as computing requirements for this workload.

Terasort

Terasort is characterized by high I/O bandwidth between each compute and data node of a Hadoop

cluster along with CPU intensive work for sorting 10 bytes key of each 100 bytes message. Running

Terasort is a common measure of system performance and Figure 6.6 shows our results for handling

10TB size over a different number of workers. As we learned that Hadoop may skip data exchange

between nodes if there are enough memory spaces, we increased the data size enough to overfill

the available amount of memory in the cluster. Scaling efficiency was decreased after 6 worker

nodes but we see linear scaling performance in our results. In addition, we also find that measured

system performance data is useful to understand the behavior with the workload, especially if it

requires a mixture of CPU and I/O resources. Figure 6.7 is added to show the system behavior for

processing 600GB of Terasort data. The plot (a) Write I/O shows that many IOPS were generated

107

Figure 6.6: Terasort 10TB

during the reducer phase with the maximum of 22,528 IOPS. ’w/s’ legend indicates a number write

operations per second in the plot. The second plot shows network activity and most traffic was

generated during the mapper phase. The last plot in Figure 8 describes CPU utilization and we

find that the system was idling slightly during the transition phase between mapper and reducer.

The system monitoring can be applied to other workloads identifying bottlenecks occurred by lack

of provisioned resources i.e. high iowait with low IOPS storage and poor network speeds with a

saturated network adapter so that system performance is ensured without under provisioning.

6.3.5 Cost Efficiency

The evaluation of the cost efficiency needs two sub metrics, one for evaluating the total CPU cost

required for workloads and another one for evaluating the total storage cost.

Total Execution Cost (TEC) calculates the expense of the entire virtual cores provisioned by

aggregating the individual wall time for completed workloads which is:

TEC =
T∑

n=1

cpun + storagen (6.1)

where cpun is the total cost of provisioned CPU cores per second, storagen is the total cost of

provisioned storage volumes and T is the execution second of workloads.

108

Figure 6.7: System Metrics for Terasort

CPU

The server pricing consists of CPU cost, memory cost and storage cost and core count is the main

factor to yield a final value. Cost analysis for running big data workloads on these infrastructures

need to verify actual performance on CPU and storage. We already measured FLOPS in the

section 6.3.1 and we just need to convert them with pricing so that one can understand how much

they actually pay. We are aware that FLOPS is not perfectly accurate as a performance metric,

and we seek other methods to compare among different VM server types. We created Figure 6.8

by applying FLOPS to pricing. BM.Standard2.52 is 45% cheaper than AWS r5.24xlarge according

to the pricing in the Table 6.5 while the measured FLOPS are similar, 684 and 687 GFLOPS for

AWS and OCI respectively.

109

Table 6.5: Instance Pricing

Provider Pricing Type VCPUs Memory

AWS $6.048 per Hour r5.24xlarge 96 768GB

Azure $3.629 per Hour E64s v3 64 432GB

GCE $5.6832 per Hour n1-highmem-96 96 624GB

OCI $3.3176 per Hour bm.standard2.52 104 768GB

Figure 6.8: Cost for 1TFLOPS

110

Storage

Storage performance is a good indicator to find reduced execution time of workloads especially if

they are I/O intensive. Multiple options are available to reduce costs of provisioning high perfor-

mance storage and several limitations exist based on the type of storage and the type of instance

attached. Table 6.6 indicates maximum IOPS and throughput for SSD based block storage and

Google persistent SSD disk and Azure Blob is included as well to show similar storage choices

among others. This will help plan a scalable system with performance and to avoid exceeding

performance limits where throttling will occur to reject additional requests.

Maximum IOPS and throughput per instance is also an important metric because multiple vol-

umes per instance can easily reach these limits. This also affects cost on provisioning block storage

as they may require additional instances to have volumes with high IOPS or high throughput. In

other words, a 64k IOPS EBS volume attached to an instance does not have additional space to

ensure a maximum IOPS per volume as throttling occurs by instance IOPS limit. OCI produces

great performance in this context, 400,000 aggregated IOPS per instance when multiple volumes

attached with the maximum IOPS per volume, 25k. This will affect the cost effectiveness of block

storage resulting in more instances, i.e. extra cost for the needs of high IOPS volumes.

With the high performance storage options, storage cost can be expensive with the extra charge

on IOPS and throughput. The base pricing, however, is simple, OCI has the most inexpensive

price tag compared to others. For example, OCI block storage is $0.0425 per GB in a month which

is 57.5% cheaper than AWS general purpose SSD (gp2), $0.1. In addition, IOPS and throughput

may require additional charges to pay. AWS io1, Azure Ultra SSD and Google SSD persistent disk

have an extra cost for provisioned IOPS and throughput. We added instance cap data in the table

but these are not applicable to all server types. Many CPU server types are usually applicable with

these maximum numbers but the numbers in our table were referenced from the following instance

111

types: AWS r5.24xlarge, Azure Standard M128m, OCI bm.standard2.52. IOPS can vary by block

sizes and I/O pattern e.g. sequential read or random write, but the numbers in our table were

prepared by 16384 bytes block size for reading in AWS, 8096 bytes block size for reading in GCE,

and 4096 bytes block size for reading in OCI. Maximum throughput is for 128kilobytes or greater

block size as IOPS affects this rate.

Block storage is offered by network storage solutions e.g. NAS or SAN and we find that

throughput is more controlled than IOPS based on Table6.6. For example, we see the maximum

IOPS per instance is ranging from 60K to 400K but throughput is between 1.2GB/s and 3GB/s. It

is mainly by the dedicated network bandwidth. However, we expect to have increased throughput

in the near future as big data applications have to process rapidly growing data needs. Oracle,

again shows good throughput performance, 3GB/s compared to other providers, although Oracle

block storage shares network bandwidth with other traffic and iSCSI block storage. Luckily, Oracle

has a dual port 25GB Ethernet adapter for bare metal servers, therefore additional bandwidth can

be achieved by adding a new network interface card (NIC). Better throughput will improve the

cost effectiveness of block storage, especially for data intensive applications.

High IOPS to volume size ratio is recommended to effectively provide storage devices if applica-

tions are sensitive to IOPS. A low ratio may have to provision unnecessary volume sizes to achieve

high IOPS, especially in distributed data placements e.g. HDFS data nodes. For example, 3:1

ratio from AWS general purpose SSD (gp2) requires 5334GB volume size to achieve 16000 IOPS

whereas 60:1 ratio from OCI ensures the same IOPS from 267GB or greater volume sizes. Table 6.6

indicates that the minimum volume size to provision for maximum IOPS.

112

Table 6.6: SSD Based Block Storage

Provider Cost

(per GB-

month)

Max

Through-

put per

Volume

(MiB/s)

Max

Through-

put per

Instance

(MiB/s)

Max IOPS

per Volume

Max IOPS

per In-

stance

IOPS Ratio

to Volume

Size (IOP-

S/GB)

Max Vol-

ume Size

(TiB)

AWS General Purpose

SSD(gp2)
$0.1 250 1750 16000 80000 3:1 16

AWS Provisioned IOPS

SSD (io1)
$0.125

+ $0.065/IOPS

1000 1750 64000 80000 50:1 16

Azure Premium SSD

(p80)
$0.1 900 1600 20000 80000 - 32

Azure Ultra SSD

(preview)
$0.05986 +

$0.02482/IOPS

+ $0.5MB/s

2000 2000 160000 160000 - 64

GCE SSD persistent disk $0.17 +

$0.0057/IOPS

write: 400,

read: 1200

write: 400,

read: 1200

write:

30000 read:

60000

write:

30000 read:

60000

30:1 60

OCI $0.0425 320 3000 25000 400000 60:1 32

113

6.4 Related Work

We use this section to describe the previous work related to the evaluation of bare metal servers,

performance analysis of storage and address big data benchmark tools.

While there was a significant overhead created by virtualization with a hypervisor, research has

been conducted [?,?, 86] to evaluate cloud environments for seeking performance improvement. In

a recent study, Rad et al [?] showed promising results on scaling HPC and scientific applications by

OpenStack Ironic software and Omote et al [?] introduced non-virtualized development for bare-

metal servers with a quick startup. These activities are not directly related to our work but their

experiments indicated the performance benefits of bare metal servers.

There are several Hadoop benchmark suites available including HiBench and BigDataBench [?,?]

supported by Intel and Institute of Computing Technology, Chinese Academy of Sciences. These

tools contain various big data workloads to evaluate the workload performance with low-level system

information.

Performance analysis with NVMe disks has been growing with hardware improvements. Several

studies [?,?,?,?] have focused on the evaluation of storage systems with I/O intensive applications.

Their experiments were made to examine the scalability of storage with software developments.

6.5 Conclusion

With the advance of bare metal servers for big data workloads, a significant amount of research have

been accomplished with the latest techniques and hardware accelerations. The rapid increasing

challenges in big data, however, extend the discussion to the exclusive and consistent compute

resource, bare metal clouds which can be embraced by the big data community.

Our experiment results indicate that Hadoop systems provisioned by bare metal servers with

powerful storage options can be better options to build a high performance virtual clusters for

114

processing various workloads with a cost consideration. The result of our experiments delivers

a thorough analysis of production environments with extensive research on storage options, i.e.

block storage and local NVMe. Our results for Hadoop workloads on Amazon, Google Oracle, and

Microsoft expose underlying hardware requirements e.g. IOPS, along with service limitations e.g.

throughput allowance per instance.

High storage performance made a significant impact on HDFS based jobs with a large number

of virtual cores. JBOD-style (’just a bunch of disks’) non-RAID storage attachment shows 6 times

better results with additional volume counts and CPUs per server than large numbers of low-end

servers according to our result in Fig 6.1. Data intensive workloads, for that reason, may gain

better scalability and efficiency on high capacity servers and bare metal servers are suitable for

seeking performance improvements and cost savings.

In the future, we plan to extend our work to HPC server types evaluating communication

intensive applications, and practical experience will be gained to improve actual performance with

high-end network adapters.

115

Chapter 7

Conclusion

This dissertation described a software-defined system in terms of managing software environment as

a sub-system, which is automated and reproducible for big data software stacks. We deployed and

provisioned virtual clusters for NIST big data use cases using DevOps scripts and infrastructure

provisioning templates. We observed the Hadoop-based software stack deployable on multi-clouds

i.e. Amazon EC2, and OpenStack which improves software environment management along with

the resource provisioning while recipes complete package installation and system configuration on-

the-fly. We also used this approach to study the efficiency of our system using containers, showing

that the reproducibility of software environment is improved through container images created by

DevOps scripts and that our recipes to virtual clusters can provision scalable compute nodes.

Additionally, we evaluated the software defined system with event-driven computing and bare

metal clouds. With the software defined system, one can invoke a user defined function con-

currently on a pre-defined compute environment, including Amazon Lambda, Microsoft Azure

Functions, IBM OpenWhisk and Google functions. Software defined system makes intermediate

adjustments while determining proper resources constantly during the execution which aims to

present manageable, dynamic and flexible computing resources. The serverless paradigm is to en-

sure data processing given environments but meet the performance requirement of computation

through instant infrastructure provisioning. The evaluation is extended with bare metal clouds uti-

lizing local NVME storage with high IOPS for HDFS transactions and dedicated and low latency

network interface for data exchange in a cluster setup. Our results show that the bare metal cloud

provides scale-up capability of data analytic which result in efficient resource utilization and good

performance in practice.

116

In conclusion, we believe that a software defined system with regarding to managing software

environments removes a barrier of utilizing compute resources with various software stacks, in-

creasing the shareability and elasticity of user applications. The integration of DevOps scripting

and infrastructure provisioning is well suited for the software defined system using virtual clusters,

offering good performance and simple programmable sub-system on clouds.

117

Bibliography

[1] Amazon CloudFormation. https://aws.amazon.com/cloudformation/, 2010. [Online; ac-

cessed 17-February-2017].

[2] OpenStack Heat. https://wiki.openstack.org/wiki/Heat, 2012. [Online; accessed 17-

February-2017].

[3] Coreos/rkt: a container engine for linux designed to be composable, secure, and built on

standard. https://github.com/coreos/rkt, 2016. [Online; accessed 09-November-2016].

[4] Ubuntu lxd: a pure-container hypervisor. https://github.com/lxc/lxd, 2016. [Online;

accessed 09-November-2016].

[5] B. Abdul-Wahid, H. Lee, G. von Laszewski, and G. Fox. Scripting deployment of nist use

cases, 2017.

[6] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz. Hadoop gis: a high perfor-

mance spatial data warehousing system over mapreduce. Proceedings of the VLDB Endowment,

6(11):1009–1020, 2013.

[7] A. Amazon. Elastic beanstalk, 2013.

[8] I. Baldini, P. Castro, P. Cheng, S. Fink, V. Ishakian, N. Mitchell, V. Muthusamy, R. Rabbah,

and P. Suter. Cloud-native, event-based programming for mobile applications. In Proceedings

of the International Conference on Mobile Software Engineering and Systems, pages 287–288.

ACM, 2016.

[9] A. Belle, R. Thiagarajan, S. Soroushmehr, F. Navidi, D. A. Beard, and K. Najarian. Big data

analytics in healthcare. BioMed research international, 2015, 2015.

118

[10] L. Benedicic, M. Gila, S. Alam, and T. C. Schulthess. Opportunities for container environments

on cray xc30 with gpu devices. 2016.

[11] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, and S. Wagner.

Opentosca–a runtime for tosca-based cloud applications. In International Conference on

Service-Oriented Computing, pages 692–695. Springer, 2013.

[12] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann. Tosca: portable automated deployment

and management of cloud applications. In Advanced Web Services, pages 527–549. Springer,

2014.

[13] T. Binz, G. Breiter, F. Leyman, and T. Spatzier. Portable cloud services using tosca. IEEE

Internet Computing, 16(3):80–85, 2012.

[14] S. Bird. Nltk: the natural language toolkit. In Proceedings of the COLING/ACL on Interactive

presentation sessions, pages 69–72. Association for Computational Linguistics, 2006.

[15] C. Bizer, P. Boncz, M. L. Brodie, and O. Erling. The meaningful use of big data: four

perspectives–four challenges. ACM SIGMOD Record, 40(4):56–60, 2012.

[16] J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock market. Journal of Compu-

tational Science, 2(1):1–8, 2011.

[17] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann, and J. Wettinger. Combining

declarative and imperative cloud application provisioning based on tosca. In Cloud Engineering

(IC2E), 2014 IEEE International Conference on, pages 87–96. IEEE, 2014.

[18] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann. Vinothek-a self-service portal for tosca.

Citeseer, 2014.

119

[19] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and D. Schumm. Vino4tosca: A visual

notation for application topologies based on tosca. In OTM Confederated International Con-

ferences” On the Move to Meaningful Internet Systems”, pages 416–424. Springer, 2012.

[20] G. Breiter, M. Behrendt, M. Gupta, S. D. Moser, R. Schulze, I. Sippli, and T. Spatzier.

Software defined environments based on tosca in ibm cloud implementations. IBM Journal of

Research and Development, 58(2/3):9–1, 2014.

[21] N. Chaimov, A. Malony, S. Canon, C. Iancu, K. Z. Ibrahim, and J. Srinivasan. Scaling spark on

hpc systems. In Proceedings of the 25th ACM International Symposium on High-Performance

Parallel and Distributed Computing, pages 97–110. ACM, 2016.

[22] G. J. Chen, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei, N. Simha, W. Wang, K. Wilfong,

T. Williamson, and S. Yilmaz. Realtime data processing at facebook. In Proceedings of the

2016 International Conference on Management of Data, pages 1087–1098. ACM, 2016.

[23] S. Chen. Cheetah: a high performance, custom data warehouse on top of mapreduce. Pro-

ceedings of the VLDB Endowment, 3(1-2):1459–1468, 2010.

[24] M. Chevalier, M. El Malki, A. Kopliku, O. Teste, and R. Tournier. Implementing multidimen-

sional data warehouses into nosql. In 17th International Conference on Enterprise Information

Systems (ICEIS15), Spain, 2015.

[25] E. M. Cody, A. J. Reagan, P. S. Dodds, and C. M. Danforth. Public opinion polling with

twitter. arXiv preprint arXiv:1608.02024, 2016.

[26] J. P. Cohen and H. Z. Lo. Academic torrents: A community-maintained distributed repository.

In Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery

Environment, page 2. ACM, 2014.

120

[27] A. Cuzzocrea, L. Bellatreche, and I.-Y. Song. Data warehousing and olap over big data:

current challenges and future research directions. In Proceedings of the sixteenth international

workshop on Data warehousing and OLAP, pages 67–70. ACM, 2013.

[28] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In 2005

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),

volume 1, pages 886–893. IEEE, 2005.

[29] N. Dalal and B. Triggs. Inria person dataset, 2005.

[30] A. Devresse, F. Delalondre, and F. Schürmann. Nix based fully automated workflows and

ecosystem to guarantee scientific result reproducibility across software environments and sys-

tems. In Proceedings of the 3rd International Workshop on Software Engineering for High

Performance Computing in Computational Science and Engineering, pages 25–31. ACM, 2015.

[31] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano. Devops. IEEE Software, 33(3):94–100,

2016.

[32] A. Eldawy, M. Mokbel, and C. Jonathan. Hadoopviz: A mapreduce framework for extensible

visualization of big spatial data. In IEEE Intl. Conf. on Data Engineering (ICDE), 2016.

[33] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance comparison

of virtual machines and linux containers. In Performance Analysis of Systems and Software

(ISPASS), 2015 IEEE International Symposium On, pages 171–172. IEEE, 2015.

[34] Fission-Platform9. Serverless with kubernetes, 2017.

[35] P. Flanagan. Nist biometric image software (nbis). 2010.

[36] P. Flanagan. Fingerprint minutiae viewer (fpmv). 2014.

121

[37] Fn-Project. a container native apache 2.0 licensed serverless platform, 2017.

[38] S. Fouladi, R. S. Wahby, B. Shacklett, K. Balasubramaniam, W. Zeng, R. Bhalerao, A. Sivara-

man, G. Porter, and K. Winstein. Encoding, fast and slow: Low-latency video processing

using thousands of tiny threads. In NSDI, pages 363–376, 2017.

[39] G. Fox. Distributed data and software defined systems. 2013.

[40] G. Fox and W. Chang. Big data use cases and requirements. In 1st Big Data Interoperability

Framework Workshop: Building Robust Big Data Ecosystem ISO/IEC JTC 1 Study Group on

Big Data, pages 18–21. Citeseer, 2014.

[41] G. Fox, J. Qiu, and S. Jha. High performance high functionality big data software stack. 2014.

[42] G. Fox, J. Qiu, S. Jha, S. Ekanayake, and S. Kamburugamuve. Big data, simulations and hpc

convergence. In Workshop on Big Data Benchmarks, pages 3–17. Springer, 2015.

[43] G. Fox, J. Qiu, S. Jha, S. Ekanayake, and S. Kamburugamuve. White paper: Big data,

simulations and hpc convergence. In BDEC Frankfurt workshop. June, volume 16, 2016.

[44] G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski. Status of serverless computing and

function-as-a-service (faas) in industry and research. arXiv preprint arXiv:1708.08028, 2017.

[45] G. C. Fox and S. Jha. A tale of two convergences: Applications and computing platforms.

[46] G. C. Fox, J. Qiu, S. Kamburugamuve, S. Jha, and A. Luckow. Hpc-abds high performance

computing enhanced apache big data stack. In Cluster, Cloud and Grid Computing (CCGrid),

2015 15th IEEE/ACM International Symposium on, pages 1057–1066. IEEE, 2015.

[47] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. de Supinski, and

S. Futral. The spack package manager: Bringing order to hpc software chaos. In Proceedings

122

of the International Conference for High Performance Computing, Networking, Storage and

Analysis, page 40. ACM, 2015.

[48] D. Gannon, R. Barga, and N. Sundaresan. Cloud-native applications. IEEE Cloud Computing,

4(5):16–21, 2017.

[49] M. Geimer, K. Hoste, and R. McLay. Modern scientific software management using easybuild

and lmod. In Proceedings of the First International Workshop on HPC User Support Tools,

pages 41–51. IEEE Press, 2014.

[50] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble, M. Livny,

L. Moreau, and J. Myers. Examining the challenges of scientific workflows. Computer, 40(12),

2007.

[51] K. Goodhope, J. Koshy, J. Kreps, N. Narkhede, R. Park, J. Rao, and V. Y. Ye. Building

linkedin’s real-time activity data pipeline. IEEE Data Eng. Bull., 35(2):33–45, 2012.

[52] A. Goodman, A. Pepe, A. W. Blocker, C. L. Borgman, K. Cranmer, M. Crosas, R. Di Stefano,

Y. Gil, P. Groth, M. Hedstrom, et al. Ten simple rules for the care and feeding of scientific

data. PLoS computational biology, 10(4):e1003542, 2014.

[53] K. J. Gorgolewski, F. Alfaro-Almagro, T. Auer, P. Bellec, M. Capota, M. M. Chakravarty,

N. W. Churchill, R. C. Craddock, G. A. Devenyi, A. Eklund, et al. Bids apps: Improving ease

of use, accessibility and reproducibility of neuroimaging data analysis methods. bioRxiv, page

079145, 2016.

[54] C. S. Greene, J. Tan, M. Ung, J. H. Moore, and C. Cheng. Big data bioinformatics. Journal

of cellular physiology, 229(12):1896–1900, 2014.

123

[55] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan. The rise of big

data on cloud computing: Review and open research issues. Information Systems, 47:98–115,

2015.

[56] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu. Rcfile: A fast and space-

efficient data placement structure in mapreduce-based warehouse systems. In 2011 IEEE 27th

International Conference on Data Engineering, pages 1199–1208. IEEE, 2011.

[57] D. M. Jacobsen and R. S. Canon. Contain this, unleashing docker for hpc. Proceedings of the

Cray User Group, 2015.

[58] E. Jonas, S. Venkataraman, I. Stoica, and B. Recht. Occupy the cloud: Distributed computing

for the 99%. arXiv preprint arXiv:1702.04024, 2017.

[59] S. Kamburugamuve and G. Fox. Designing twister2: Efficient programming environment

toolkit for big data.

[60] G.-H. Kim, S. Trimi, and J.-H. Chung. Big-data applications in the government sector. Com-

munications of the ACM, 57(3):78–85, 2014.

[61] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint

arXiv:1408.5882, 2014.

[62] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann. Winery–a modeling tool for tosca-

based cloud applications. In International Conference on Service-Oriented Computing, pages

700–704. Springer, 2013.

[63] Kubeless. A kubernetes native serverless framework, 2017.

[64] G. M. Kurtzer. Singularity 2.1.2 - Linux application and environment containers for science,

Aug. 2016.

124

[65] A. Labrinidis and H. V. Jagadish. Challenges and opportunities with big data. Proceedings of

the VLDB Endowment, 5(12):2032–2033, 2012.

[66] H. Lee. Building software defined systems on hpc and clouds. 2017.

[67] A. Lundqvist and D. Rodic. Gnu/linux distribution timeline, 2013.

[68] M. Maas, K. Asanović, and J. Kubiatowicz. Return of the runtimes: Rethinking the language

runtime system for the cloud 3.0 era. In Proceedings of the 16th Workshop on Hot Topics in

Operating Systems, pages 138–143. ACM, 2017.

[69] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain. Fvc2004: third fingerprint

verification competition. In Biometric Authentication, pages 1–7. Springer, 2004.

[70] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky. The

stanford corenlp natural language processing toolkit. In ACL (System Demonstrations), pages

55–60, 2014.

[71] D. Merkel. Docker: lightweight linux containers for consistent development and deployment.

Linux Journal, 2014(239):2, 2014.

[72] T. OASIS. Orchestration specification for cloud applications version 1.0. Organization for the

Advancement of Structured Information Standards, 2013.

[73] A. Pak and P. Paroubek. Twitter as a corpus for sentiment analysis and opinion mining. In

LREc, volume 10, pages 1320–1326, 2010.

[74] R. Priedhorsky and T. Randles. Charliecloud: Unprivileged containers for user-defined software

stacks in hpc. Technical report, Los Alamos National Laboratory (LANL), 2016.

125

[75] R. Qasha, J. Cala, and P. Watson. Towards automated workflow deployment in the cloud

using tosca. In Cloud Computing (CLOUD), 2015 IEEE 8th International Conference on,

pages 1037–1040. IEEE, 2015.

[76] J. Qiu, S. Jha, A. Luckow, and G. C. Fox. Towards hpc-abds: an initial high-performance big

data stack. Building Robust Big Data Ecosystem ISO/IEC JTC 1 Study Group on Big Data,

pages 18–21, 2014.

[77] W. Raghupathi and V. Raghupathi. Big data analytics in healthcare: promise and potential.

Health Information Science and Systems, 2(1):1, 2014.

[78] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P. Nolan. Computational solutions

to large-scale data management and analysis. Nature reviews genetics, 11(9):647, 2010.

[79] Y. Simmhan, S. Aman, A. Kumbhare, R. Liu, S. Stevens, Q. Zhou, and V. Prasanna. Cloud-

based software platform for big data analytics in smart grids. Computing in Science & Engi-

neering, 15(4):38–47, 2013.

[80] J. Soldani, T. Binz, U. Breitenbücher, F. Leymann, and A. Brogi. Toscamart: a method for

adapting and reusing cloud applications. Journal of Systems and Software, 113:395–406, 2016.

[81] J. Spillner. Snafu: Function-as-a-service (faas) runtime design and implementation. arXiv

preprint arXiv:1703.07562, 2017.

[82] J. Spillner, C. Mateos, and D. A. Monge. Faaster, better, cheaper: The prospect of serverless

scientific computing and hpc. In Latin American High Performance Computing Conference,

pages 154–168. Springer, 2017.

[83] V. Stantchev, R. Colomo-Palacios, and M. Niedermayer. Cloud computing based systems for

healthcare. The Scientific World Journal, 2014, 2014.

126

[84] N. I. o. S. Technology., , I. T. Laboratory., N. B. D. P. W. G. (NBD-PWG), N. I. o. S. (U.S.),

and Technology. Nist big data interoperability framework : volume 3, use cases and general

requirements, 2015.

[85] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and

R. Murthy. Hive: a warehousing solution over a map-reduce framework. Proceedings of the

VLDB Endowment, 2(2):1626–1629, 2009.

[86] G. von Laszewski, H. Lee, J. Diaz, F. Wang, K. Tanaka, S. Karavinkoppa, G. C. Fox, and

T. Furlani. Design of an accounting and metric-basedcloud-shifting and cloud-seeding frame-

work for federatedclouds and bare-metal environments. In Proceedings of the 2012 workshop

on Cloud services, federation, and the 8th open cirrus summit, pages 25–32. ACM, 2012.

[87] C. Watson and C. Wilson. Nist special database 4. Fingerprint Database, National Institute

of Standards and Technology, 17, 1992.

[88] J. H. Wegstein. An automated fingerprint identification system. US Department of Commerce,

National Bureau of Standards, 1982.

[89] J. Wettinger, U. Breitenbücher, and F. Leymann. Standards-based devops automation and

integration using tosca. In Proceedings of the 2014 IEEE/ACM 7th International Conference

on Utility and Cloud Computing, pages 59–68. IEEE Computer Society, 2014.

[90] J. Wettinger, U. Breitenbücher, and F. Leymann. Dyn tail-dynamically tailored deployment

engines for cloud applications. In 2015 IEEE 8th International Conference on Cloud Comput-

ing, pages 421–428. IEEE, 2015.

127

[91] Y. Yamato, M. Muroi, K. Tanaka, and M. Uchimura. Development of template management

technology for easy deployment of virtual resources on openstack. Journal of Cloud Computing,

3(1):1, 2014.

[92] Zappa. Serverless python web services, 2017.

[93] P. Zikopoulos, C. Eaton, et al. Understanding big data: Analytics for enterprise class hadoop

and streaming data. McGraw-Hill Osborne Media, 2011.

128

