

i

SCALABLE AND ROBUST CLUSTERING AND

VISUALIZATION FOR LARGE-SCALE

BIOINFORMATICS DATA

Yang Ruan

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science

Indiana University

August 2014

ii

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements of

the degress of Doctor of Philosophy.

Doctoral

Committee

Geoffrey C. Fox

(Principal Advisor)

David Leake

Judy Qiu

August 18, 2014

Haixu Tang

iii

Copyright © 2014

Yang Ruan

iv

There are no secrets to success.

It is the result of preparation, hard work, and learning from failure.

Colin L. Powell

v

Acknowledgements

First of all, I am sincerely grateful to my adviser Professor Geoffrey C. Fox, for his farsighted

guidance, insightful advice, and unlimited support during the past years. His guidance pointed out

to me the correct way of doing research as a scientist in this dissertation as well as in my other

research projects. On the basis of his patience and valuable advice, I significantly increased my

knowledge as I work toward the PhD degree.

It is my great pleasure to thank the members of my research committee: Professor Judy Qiu,

Professor Haixu Tang and Professor David Leake. I cannot overstate their invaluable comments

that helped me understand and solve the research issues. These suggestions given by them greatly

expanded my vision in the area of research.

It is been a pleasure working for various projects at SALSA HPC group in Community Grid Lab. I

enjoyed the weekly discussions with Professor Judy Qiu and my colleagues: Dr. Jaliya Ekanayake,

Dr. Thilina Gunarathne, Xiaoming Gao, Saliya Ekanayake, Bingjing Zhang, Tak-Lon Wu, Hui Li,

Fei Teng, Yuduo Zhou, Jerome Mitchell, Adam Hughes, and Scott Beason. The collaboration with

my friendly and brilliant colleagues greatly expanded my horizon. Especially, I want to thank Dr.

Zhenhua Guo, for his invaluable and electrifying discussions with me on various research topics.

I would like to thank the administrative support from School of Informatics and Computing,

FutureGrid, and University Information Technology Services. Because of their help, I am able to

finish many research projects in time.

Finally, I want to thank my father Shanqing Ruan and my mother Xiaobin Guo, for their generous

support during the past few years. I would not be able to finish the Doctor degree without their

endless love and support.

Again, I am deeply grateful for all your support!

Thank you, all!

vi

Abstract

During the past few decades, advances in the next generation of sequencing (NGS) techniques

have enabled rapid analysis of the whole genetic information within a microbial community,

bypassing the culturing of individual microbial species in the lab. These techniques have led to a

proliferation of raw genomic data, which enables an unprecedented opportunity for data mining.

To analyze a voluminous amount of bioinformatics data, a pipeline called DACIDR has been

proposed. DACIDR adopts a taxonomy-independent approach to grouping these sequences into

operational taxonomic units (OTUs), referred to as data clustering, and it enables visualization of

the clustering result leveraging the power of parallelization and multidimensional scaling (MDS)

techniques by utilizing large-scale computational resources. First, in order to observe the

proximity of the sequences in a lower dimension, sequence alignment techniques are applied on

each pair of sequences to generate similarity scores in a high dimension. These scores need to be

assigned with weights in order to achieve an accurate result in MDS. Therefore, a robust and

scalable MDS algorithm called WDA-SMACOF is proposed to address the issues of either

missing distances or a non-trivial weight function. Second, the dataset with millions of sequences

is usually divided into two parts: the first is processed with MDS, which has quadratic space and

time complexity while the second is interpolated with approximation, resulting in a linear time

complexity; this is also referred to as interpolation. In order to achieve real-time processing speed,

a novel hierarchical approach has been proposed to further reduce the time complexity of

interpolation to sub-linear. Thirdly, a phylogenetic tree is commonly used to demonstrate the

phylogeny and evolutionary path of various organisms. A traditional way of visualizing

phylogenetic tree preserves only the correlations between ancestors and their descendants. By

utilizing MDS and interpolation, an algorithm called interpolative joining has been proposed to

display the tree on the top of clustering, where their correlations can be intuitively observed in a

3D tree diagram called Spherical Phylogram. The optimizations in these three steps greatly reduce

the time complexity of visualizing sequence clustering while increase its accuracy.

vii

Contents

Chapter 1. Introduction .. 1

1.1 Sequence Clustering and Visualization ... 1

1.2 Multidimensional Scaling ... 3

1.3 Online MDS ... 4

1.4 Phylogenetic Tree Visualization .. 5

1.5 Research Challenges ... 7

1.6 Contribution .. 8

1.7 Overview .. 9

Chapter 2. A Data Clustering and Visualization Pipeline .. 11

2.1 Sequence Alignment ... 11

2.2 Hybrid MapReduce Workflow .. 15

2.3 Deterministic Annealing ... 17

2.4 Phylogenetic Analysis ... 19

2.5 A Clustering and Visualization Pipeline ... 20

Chapter 3. Robust and Scalable Multidimensional Scaling with Weighting 24

3.1 Overview .. 24

3.2 Related Work .. 25

3.3 Weighted Determnistic Annealing SMACOF .. 26

3.3.1 Algorithm Description ... 26

3.3.2 Parallel WDA-SMACOF ... 29

3.3.3 Fixed WDA-SMACOF ... 31

viii

3.3.4 Parallelization of Fixed-WDA-SMACOF .. 35

3.4 Performance Analysis ... 37

3.4.1 Accuracy Comparison of WDA-SMACOF .. 39

3.4.2 Time Cost Analysis of WDA-SMACOF ... 46

3.4.3 Scalability Analysis of Parallel WDA-SMACOF ... 57

3.4.4 Accuracy of Fixed-WDA-SMACOF ... 62

3.5 Conclusion ... 64

Chapter 4. Robust and Scalable Interpolative Multidimensional Scaling 65

4.1 Overview .. 65

4.2 Related Work .. 66

4.3 Weighted MI-MDS ... 67

4.3.1 Algorithm .. 68

4.3.2 Parallelization of W-MI-MDS ... 70

4.4 Hierarchical Interpolation ... 71

4.4.1 Sample Space Partition Approach .. 72

4.4.2 Hyperspace Approach ... 75

4.4.3 Heuristic Majorizing Interpolation .. 78

4.4.4 Parallelization of HE-MI ... 82

4.5 Performance Analysis ... 83

4.5.1 Accuracy Comparison of W-MI-MDS ... 83

4.5.2 Time Cost Analysis of W-MI-MDS ... 88

4.5.3 Performance of HE-MI .. 92

4.6 Conclusion ... 94

ix

Chapter 5. Determine Phylogenetic Tree with Visualized Clusters 95

5.1 Overview .. 95

5.2 Related Work .. 96

5.3 Phylogenetic Tree Visualized in 3D ... 98

5.3.1 Cuboid Cladogram Generation ... 98

5.3.2 Spherical Phylogram Generation ... 102

5.4 Performance Analysis ... 107

5.4.1 Distance Calculation .. 113

5.4.2 Dimension Reduction Methods Comparison ... 115

5.5 Conclusion ... 120

Chapter 6. Conclusion and Future Works .. 121

6.1 Summary of Work .. 121

6.2 Conclusions .. 122

6.2.1 WDA-SMACOF ... 122

6.2.2 W-MI-MDS and HE-MI .. 123

6.2.3 Cuboid Cladogram and Spherical Phylogram... 124

6.3 Future Works .. 125

6.3.1 Hybrid Tree Interpolation ... 125

6.3.2 Display Phylogenetic Tree with Million Sequence Clusters 126

6.4 Contributions .. 126

Bibliography ... 128

x

LIST OF TABLES

TABLE 1 SUMMARY OF THE ALGORITHMS PROPOSED IN THIS DISSERTATION 9

TABLE 2 THE DATASET USED IN THE EXPERIMENTS ACROSS THE DISSERTATION 38

TABLE 3 ALL 4 ALGORITHMS TESTED IN FOLLOWING EXPERIMENTS ... 38

TABLE 4 THE LIST OF DATA BEING USED IN FOLLOWING EXPERIMENTS 83

TABLE 5 THE LIST OF ALGORITHMS USED FOR COMPARISON IN THE PERFORMANCE ANALYSIS 84

xi

LIST OF FIGURES

FIGURE 1.1: ILLUSTRATIONS OF INTERPOLATE OUT-OF-SAMPLE POINTS INTO THE IN-SAMPLE

TARGET DIMENSION SPACE AS 2D. ... 5

FIGURE 2.1: ILLUSTRATION OF CALCULATING PID BETWEEN TWO ALIGNED SEQUENCES 12

FIGURE 2.2: VISUALIZATION OF 16S RRNA DATA WITH NW PAIRWISE SEQUENCE ALIGNMENT

RESULT.. 13

FIGURE 2.3: VISUALIZATION OF 16S RRNA WITH SWG PAIRWISE SEQUENCE ALIGNMENT

RESULT.. 13

FIGURE 2.4: PARALLELIZATION OF THE ASA PROBLEM. THE TOTAL NUMBER OF SEQUENCE IS

N, AND THE DARKER BLOCK IS THE BLOCK NEEDS TO BE PROCESSED, AND WHITE BLOCKS

ARE THEIR SYMMETRIC BLOCKS. ... 15

FIGURE 2.5: 2D TREE DIAGRAM EXAMPLE FOR 5 SEQUENCES, LEFT ONE IS THE RECTANGULAR

CLADOGRAM, AND RIGHT ONE IS THE RECTANGULAR PHYLOGRAM 20

FIGURE 2.6: THE FLOWCHART OF DACIDR OF PROCESSING OVER MILLIONS OF SEQUENCES

UNTIL THE PHYLOGENETIC TREE IS VISUALIZED BASED ON PREVIOUS EXPERIENCE. 22

FIGURE 3.1: THE FLOWCHART OF PARALLEL WDA-SMACOF USING AN ITERATIVE

MAPREDUCE FRAMEWORK ... 31

FIGURE 3.2: GRAPH REPRESENTATION OF DIVIDING X INTO X1 AND X2 33

FIGURE 3.3: GRAPH REPRESENTATION OF DIVIDING V INTO 4 PARTS ... 33

xii

FIGURE 3.4: GRAPH REPRESENTATION OF DIVIDING B(Z) INTO 4 PARTS 33

FIGURE 3.5: THE FLOWCHART OF PARALLEL FIXED-WDA-SMACOF USING AN ITERATIVE

MAPREDUCE FRAMEWORK ... 36

FIGURE 3.6: THE NORMALIZED STRESS VALUE COMPARISON BETWEEN 4 MDS ALGORITHMS

USING 2000 ARTIFICIAL RNA SEQUENCES. ALL 4 ALGORITHMS IN THIS EXPERIMENT ARE

SEQUENTIAL. .. 42

FIGURE 3.7: THE CLUSTERING AND VISUALIZATION RESULT OF ENTIRE ARTIFICIAL RNA

DATASET WITH 13 CLUSTERS LABELED. EACH POINTS BELONGS TO THE SAME COLOR IS A

CLUSTER FOUND BY USING DA-PWC PROGRAM. ... 42

FIGURE 3.8: THE NORMALIZED STRESS VALUE COMPARISON BETWEEN 4 MDS ALGORITHMS

USING 4872 COG CONSENSUS SEQUENCES. ALL 4 ALGORITHMS IN THIS EXPERIMENT ARE

SEQUENTIAL. .. 43

FIGURE 3.9: THE CLUSTERING AND VISUALIZATION RESULT OF ENTIRE COG DATASET WITH A

FEW CLUSTERS LABELED. THESE CLUSTERS WERE MANUALLY DEFINED BY USING THE

INFORMATION FROM NIH. ... 43

FIGURE 3.10: THE NORMALIZED STRESS VALUE COMPARISON BETWEEN 4 MDS ALGORITHMS

USING 10K HMP 16S RRNA SEQUENCES. ALL 4 ALGORITHMS IN THIS EXPERIMENT ARE

PARALLELIZED USING TWISTER ON 80 CORES. ... 44

FIGURE 3.11: THE CLUSTERING AND VISUALIZATION RESULT OF ENTIRE HMP16S RRNA

DATASET WITH 11 MEGA REGIONS LABELED. EACH POINTS BELONGS TO THE SAME COLOR

IS A MEGA REGION FOUND BY USING DA-PWC PROGRAM. .. 44

xiii

FIGURE 3.12: THE NORMALIZED STRESS VALUE COMPARISON BETWEEN 4 MDS ALGORITHMS

USING 100K AM FUNGAL SEQUENCES. ALL 4 ALGORITHMS IN THIS EXPERIMENT ARE

PARALLELIZED USING TWISTER ON 600 CORES. ... 45

FIGURE 3.13: THE CLUSTERING AND VISUALIZATION RESULT OF ENTIRE AM FUNGAL DATASET

WITH 10 MEGA REGIONS LABELED. EACH POINTS BELONGS TO THE SAME COLOR IS A

MEGA REGION FOUND BY USING DA-PWC PROGRAM. ... 45

FIGURE 3.14: THE TIME COST COMPARISON BETWEEN 4 MDS ALGORITHMS USING 2000

ARTIFICIAL RNA SEQUENCES. ALL 4 ALGORITHMS IN THIS EXPERIMENT ARE

SEQUENTIAL. .. 48

FIGURE 3.15: THE TIME COST COMPARISON BETWEEN 4 MDS ALGORITHMS USING 10K HMP 16S

RRNA SEQUENCES. ALL 4 ALGORITHMS IN THIS EXPERIMENT ARE PARALLELIZED USING

TWISTER ON 80 CORES. .. 49

FIGURE 3.16: THE TIME COST COMPARISON BETWEEN 4 MDS ALGORITHMS USING 4872 COG

CONSENSUS SEQUENCES. ALL 4 ALGORITHMS IN THIS EXPERIMENT ARE SEQUENTIAL. ... 49

FIGURE 3.17: THE NORMALIZED STRESS WITH INCREASING NUMBER OF ITERATIONS BETWEEN

A WEIGHTED MDS ALGORITHM WDA-SMACOF AND A NON-WEIGHTED MDS

ALGORITHM, NDA-SMACOF. THE NDA-SMACOF (T) IS THE ACTUAL NORMALIZED

STRESS VALUE THAT CALCULATED USING THE WEIGHT MATRIX, WHERE NDA-

SMACOF IS THE STRESS VALUE WITH WEIGHTS ALL EQUAL 1. 50

FIGURE 3.18: THE TIME COST OF WDA-SMACOF AND NDA-SMACOF PROCESSING 10K HMP

16S RRNA DATA USING 80 CORES BY FIXING THE ITERATION TO 400 AND INCREASES THE

PERCENTAGE OF MISSING DISTANCES RANDOMLY. ... 50

xiv

FIGURE 3.19: THE TIME COST OF CG VERSUS MATRIX INVERSE OVER 1K TO 8K HMP 16S RRNA

DATA. THE MATRIX INVERSION USES CHOLESKY DECOMPOSITION AND CG USES 20

ITERATIONS. BOTH ALGORITHMS WERE SEQUENTIAL. ... 53

FIGURE 3.20: THE NUMBER OF CG ITERATION NEEDED FOR 100K AM FUNGAL DATA

PROCESSED WITH PARALLEL WDA-SMACOF. THE PERCENTAGE OF MISSING DISTANCES

INCREASES FROM 0 TO 0.5 AND ALL MISSING DISTANCES ARE RANDOMLY CHOSEN. 54

FIGURE 3.21: THE NUMBER OF CG ITERATION NEEDED FOR AM FUNGAL DATA PROCESSED

WITH PARALLEL WDA-SMACOF. THE DATA SIZE VARIES FROM 20K TO 100K. THE

NUMBER OF ITERATIONS TOOK OVER THE AVERAGE OF NUMBER OF CG ITERATIONS

FROM THE SCENARIOS THAT PERCENTAGE OF MISSING DISTANCES INCREASES FROM 0 TO

0.5. .. 54

FIGURE 3.22: THE NUMBER OF CG ITERATION NEEDED FOR 2K ARTIFICIAL RNA DATA, 4872

CGO PROTEIN DATA AND 10K HMP16S RRNA DATA PROCESSED WITH PARALLEL WDA-

SMACOF WITH SAMMON'S MAPPING. ... 55

FIGURE 3.23: THE NUMBER OF CG ITERATION NEEDED FOR AM FUNGAL DATA PROCESSED

WITH PARALLEL WDA-SMACOF WITH SAMMON'S MAPPING. THE DATA SIZE INCREASES

FROM 20K TO 100K. .. 55

FIGURE 3.24: TIME COST OF WDA-SMACOF WITH EQUAL WEIGHTS COMPARED WITH WDA-

SMACOF WITH SAMMON'S MAPPING USING AM FUNGAL DATA. THE DATA SIZE

INCREASES FROM 20K TO 100K. EACH RUN TAKES 100 SMACOF ITERATIONS. 56

FIGURE 3.25: THE TIME COST OF PARALLEL WDA-SMACOF BY FIXING THE NUMBER OF

PROCESSORS AND INCREASE THE DATA SIZE WITH AM FUNGAL DATA. 56

xv

FIGURE 3.26: THE TIME COST PROPORTION EACH STEPS OF PARALLEL WDA-SMACOF. THE

DATA SIZE AND NUMBER OF PROCESSORS VARY.. 59

FIGURE 3.27: THE TIME COST PROPORTION IN ONE SMACOF ITERATION OF PARALLEL WDA-

SMACOF WITH 100K AM FUNGAL DATA BY INCREASING NUMBER OF PROCESSORS. 60

FIGURE 3.28: THE AVERAGE TIME COST OF THE SINGLE MAPREDUCE JOB FOR THREE CORE

STEPS IN PARALLEL WDA-SMACOF WITH INCREASING AM FUNGAL DATA SIZE. 60

FIGURE 3.29: THE TIME COST OF PARALLEL WDA-SMACOF PROCESSING 100K AM FUNGAL

DATA WITH NUMBER OF PROCESSORS INCREASED FROM 512 TO 4096. 61

FIGURE 3.30: THE PARALLEL EFFICIENCY OF PARALLEL WDA-SMACOF PROCESSING 100K

AM FUNGAL DATA WITH NUMBER OF PROCESSORS INCREASED FROM 512 TO 4096. 61

FIGURE 3.31: THE NORMALIZED STRESS VALUE COMPARISON OF WDA-SMACOF AND MI-

MDS. THE IN-SAMPLE DATA COORDINATES ARE FIXED, AND REST OUT-OF-SAMPLE DATA

COORDINATES CAN BE VARIED. .. 63

FIGURE 3.32: THE TIME COST COMPARISON OF WDA-SMACOF AND MI-MDS. THE IN-

SAMPLE DATA COORDINATES ARE FIXED, AND REST OUT-OF-SAMPLE DATA COORDINATES

CAN BE VARIED. .. 63

FIGURE 4.1: THE FLOWCHART OF PARALLEL W-MI-MDS USING AN MAPREDUCE FRAMEWORK

 .. 71

FIGURE 4.2: AN ILLUSTRATION OF SSP-TREE WITH 8 SEQUENCES. THE UPPER CHART IS THE

TREE RELATIONSHIPS, AND CHART BELOW IS THE ACTUAL REPRESENTATION OF SSP-

TREE IN 2D. .. 73

xvi

FIGURE 4.3: AN ILLUSTRATION OF CN-TREE WITH 8 SEQUENCES. THE UPPER CHART IS THE

TREE RELATIONSHIPS, AND CHART BELOW IS THE ACTUAL REPRESENTATION OF SSP-

TREE IN HYPERSPACE AND PROJECTED TO 2D. ... 77

FIGURE 4.4: THE TERMINAL NODES GENERATED FOR 100K AM FUNGAL DATA IN 3D FROM SSP-

TREE USING HE-MI ALGORITHM. THE DIFFERENT COLORS REPRESENTS DIFFERENT

MEGA REGIONS. .. 79

FIGURE 4.5: THE 2D EXAMPLE FOR INTERPOLATING AN OUT-OF-SAMPLE POINT INTO IN-

SAMPLE SPACE WITH SSP-TREE. THE WHITE POINTS ARE IN-SAMPLE POINTS AND THE

BLACK POINT IS THE OUT-OF-SAMPLE POINTS. THE BLACK CIRCLE MEANS THE POSSIBLE

POSITION OF THE OUT-OF-SAMPLE POINT AND THE DASHED CIRCLE IS THE POSSIBLE AREA

FOR THE NEAREST NEIGHBORS OF THAT OUT-OF-SAMPLE POINT. 80

FIGURE 4.6: THE 2D EXAMPLE FOR INTERPOLATING AN OUT-OF-SAMPLE POINT INTO IN-

SAMPLE SPACE WITH SSP-TREE. THE WHITE POINTS ARE IN-SAMPLE POINTS AND THE

BLACK POINT IS THE OUT-OF-SAMPLE POINTS. THE BLACK CIRCLE MEANS THE POSSIBLE

POSITION OF THE OUT-OF-SAMPLE POINT AND THE DASHED CIRCLE IS THE POSSIBLE AREA

FOR THE NEAREST NEIGHBORS OF THAT OUT-OF-SAMPLE POINT. 81

FIGURE 4.7: THE 2D EXAMPLE FOR INTERPOLATING AN OUT-OF-SAMPLE POINT INTO IN-

SAMPLE SPACE WITH SSP-TREE. THE WHITE POINTS ARE IN-SAMPLE POINTS AND THE

BLACK POINT IS THE OUT-OF-SAMPLE POINTS. THE BLACK CIRCLE MEANS THE POSSIBLE

POSITION OF THE OUT-OF-SAMPLE POINT AND THE DASHED CIRCLE IS THE POSSIBLE AREA

FOR THE NEAREST NEIGHBORS OF THAT OUT-OF-SAMPLE POINT. 81

FIGURE 4.8: THE NORMALIZED STRESS VALUE COMPARISON BETWEEN 4 MDS ALGORITHMS

USING 2000 ARTIFICIAL RNA SEQUENCES AS IN-SAMPLE DATA, AND 2640 ARTIFICIAL

xvii

RNA SEQUENCES AS OUT-OF-SAMPLE DATA. ALL 4 ALGORITHMS IN THIS EXPERIMENT

ARE SEQUENTIAL. ... 86

FIGURE 4.9: THE NORMALIZED STRESS VALUE COMPARISON BETWEEN 4 MDS ALGORITHMS

USING 10K HMP16SRRNA SEQUENCES AS IN-SAMPLE DATA, AND 40K HMP16SRRNA

SEQUENCES AS OUT-OF-SAMPLE DATA. ALL 4 ALGORITHMS IN THIS EXPERIMENT ARE

PARALLEL ALGORITHMS USING 80 CORES. .. 86

FIGURE 4.10: THE NORMALIZED STRESS VALUE COMPARISON BETWEEN 4 MDS ALGORITHMS

USING 4872 CONSENSUS SEQUENCES AS IN-SAMPLE DATA, AND 95672 COG SEQUENCES AS

OUT-OF-SAMPLE DATA. ALL 4 ALGORITHMS IN THIS EXPERIMENT ARE PARALLEL

ALGORITHMS USING 40 CORES. .. 87

FIGURE 4.11: THE TIME COST COMPARISON BETWEEN 4 MDS ALGORITHMS USING 2000

ARTIFICIAL RNA SEQUENCES AS IN-SAMPLE DATA, AND 2640 ARTIFICIAL RNA

SEQUENCES AS OUT-OF-SAMPLE DATA. ALL 4 ALGORITHMS IN THIS EXPERIMENT ARE

SEQUENTIAL. .. 90

FIGURE 4.12: THE TIME COST COMPARISON BETWEEN 4 MDS ALGORITHMS USING 10K

HMP16SRRNA SEQUENCES AS IN-SAMPLE DATA, AND 40K HMP16SRRNA SEQUENCES AS

OUT-OF-SAMPLE DATA. ALL 4 ALGORITHMS IN THIS EXPERIMENT ARE PARALLEL

ALGORITHMS USING 80 CORES. .. 90

FIGURE 4.13: THE NORMALIZED STRESS VALUE COMPARISON BETWEEN 4 MDS ALGORITHMS

USING 4872 CONSENSUS SEQUENCES AS IN-SAMPLE DATA, AND 95672 COG SEQUENCES AS

OUT-OF-SAMPLE DATA. ALL 4 ALGORITHMS IN THIS EXPERIMENT ARE PARALLEL

ALGORITHMS USING 40 CORES. .. 91

xviii

FIGURE 4.14: THE TIME COST OF W-MI-MDS AND MI-MDS PROCESSING 40K HMP 16S RRNA

DATA INTERPOLATING TO 10K HMP 16S RRNA USING 80 CORES BY FIXING THE ITERATION

TO 50 AND INCREASES THE PERCENTAGE OF MISSING DISTANCES RANDOMLY. 91

FIGURE 4.15: THE TIME COST COMPARISON OF 4 MDS INTERPOLATION METHODS USING 100K

HMP16SRRNA DATA, AND DIVIDED INTO IN-SAMPLE AND OUT-OF-SAMPLE DATASETS. THE

IN-SAMPLE DATASET INCREASES WHILE OUT-OF-SAMPLE DECREASES. 93

FIGURE 4.16: THE NORMALIZED STRESS VALUE COMPARISON OF 4 MDS INTERPOLATION

METHODS USING 100K HMP16SRRNA DATA, AND DIVIDED INTO IN-SAMPLE AND OUT-OF-

SAMPLE DATASETS. THE IN-SAMPLE DATASET INCREASES WHILE OUT-OF-SAMPLE

DECREASES. .. 93

FIGURE 5.1: THE LEFT HAND SIDE OF THE GRAPH REPRESENTATION IS A CUBIC CLADOGRAM

DISPLAYED WITH 8 SEQUENCES. THE RIGHT HAND SIDE OF THE GRAPH IS THE SAME 8

SEQUENCES VISUALIZED IN 2D AFTER DIMENSION REDUCTION. .. 99

FIGURE 5.2: THE EXAMPLE OF CHOOSING A RANDOM LINE TO PROJECT ALL THE SEQUENCES TO

AND DRAW THE GIVEN CUBIC CLADOGRAM ACCORDINGLY. .. 100

FIGURE 5.3: AN EXAMPLE OF A GOOD CHOICE OF PROJECTION LINE AS THE DOTTED LINE

WITHIN 8 SEQUENCES VISUALIZED IN 2D SPACE. .. 100

FIGURE 5.4: THE EXAMPLE OF CHOOSING A GOOD PROJECTION LINE DETERMINED BY PCA TO

PROJECT ALL THE SEQUENCES TO AND DRAW THE GIVEN CUBIC CLADOGRAM

ACCORDINGLY. ... 101

FIGURE 5.5: THE EXAMPLE OF DISTANCE CALCULATION IN A PHYLOGENETIC TREE WITH 3 LEAF

NODES AND 2 INTERNAL NODES. ... 103

xix

FIGURE 5.6: THE VISUALIZATION RESULT OF 599NTS DATA USING MSA AND WDA-SMACOF

 .. 108

FIGURE 5.7: THE SCREEN SHOT FROM THE SIDE OF THE CUBOID CLADOGRAM BY CHOOSING A

PLANE USING PCA ON 599NTS DATA USING MSA AND WDA-SMACOF 109

FIGURE 5.8: THE SCREEN SHOT FROM THE BOTTOM OF THE CUBOID CLADOGRAM BY CHOOSING

A PLANE USING PCA ON 599NTS DATA USING MSA AND WDA-SMACOF 109

FIGURE 5.9: THE SCREEN SHOT FROM THE TOP OF THE CUBOID CLADOGRAM BY CHOOSING A

PLANE USING PCA ON 599NTS DATA USING MSA AND WDA-SMACOF 110

FIGURE 5.10: MAXIMUM LIKELIHOOD PHYLOGENETIC TREE FROM 599NTS THAT IS COLLAPSED

INTO CLADES AT THE GENUS LEVEL AS DENOTED BY COLORED TRIANGLES AT THE END OF

THE BRANCHES. BRANCH LENGTHS DENOTE LEVELS OF SEQUENCE DIVERGENCE

BETWEEN GENERA AND NODES ARE LABELED WITH BOOTSTRAP CONFIDENCE VALUES.

454 SEQUENCES FROM SPORES THAT ARE NOT PART OF ANOTHER CLADE ARE DENOTED

WITH THE LABEL ‘454 SEQUENCE FROM SPORE’. DISTANCE CALCULATION COMPARISON

 .. 111

FIGURE 5.11: THE SCREENSHOTS OF SPHERICAL PHYLOGRAM FOR USING THE PHYLOGENETIC

TREE SHOWN IN FIGURE 5.10 SWG PAIRWISE SEQUENCE ALIGNMENT. THE COLORS OF

THE BRANCHES IN THESE FIGURES ARE AS SAME AS THE COLORS OF THE BRANCHES

SHOWN IN FIGURE 5.10. ... 112

FIGURE 5.12: THE SCREENSHOTS OF SPHERICAL PHYLOGRAM FOR USING THE PHYLOGENETIC

TREE SHOWN IN FIGURE 5.10 MULTIPLE SEQUENCE ALIGNMENT. THE COLORS OF THE

BRANCHES IN THESE FIGURES ARE AS SAME AS THE COLORS OF THE BRANCHES SHOWN IN

FIGURE 5.10. ... 112

xx

FIGURE 5.13: THE COMPARISON USING MANTEL BETWEEN DISTANCES GENERATED BY MSA

AND TWO PWA METHODS AND RAXML ... 114

FIGURE 5.14: MANTEL COMPARISON OF WDA-SMACOF, LMA AND EM-SMACOF USING

DISTANCE INPUT GENERATED FROM ONE MSA METHOD AND TWO PWA METHODS ON

599NTS DATASET .. 117

FIGURE 5.15: MANTEL COMPARISON OF WDA-SMACOF, LMA AND EM-SMACOF USING

DISTANCE INPUT GENERATED FROM ONE MSA METHOD AND TWO PWA METHODS ON

999NTS DATASET .. 117

FIGURE 5.16: SUM OF TREE BRANCHES IN 3D OF WDA-SMACOF, LMA AND EM-SMACOF

USING DISTANCE INPUT GENERATED FROM ONE MSA METHOD AND TWO PWA METHODS

ON 599NTS DATASET ... 118

FIGURE 5.17: SUM OF TREE BRANCHES IN 3D OF WDA-SMACOF, LMA AND EM-SMACOF

USING DISTANCE INPUT GENERATED FROM ONE MSA METHOD AND TWO PWA METHODS

ON 999NTS DATASET ... 118

FIGURE 5.18: THE PLOT OF 599NTS DATA USING LMA MDS METHOD ON MSA DISTANCES. THE

RED SPHERE POINTS ARE THE TWO HIGHLIGHTED POINTS THAT ARE NEAR EACH OTHER

FROM THE PHYLOGENETIC TREE. THE BLUE SQUARE POINTS ARE SIMILAR POINTS THAT

SHOULD BELONG TO A SAME FAMILY. ... 119

FIGURE 5.19: THE PLOT OF 599NTS DATA USING WDA-SMACOF METHOD ON MSA

DISTANCES. THE RED SPHERE POINTS ARE THE TWO HIGHLIGHTED POINTS THAT ARE

NEAR EACH OTHER FROM THE PHYLOGENETIC TREE. THE BLUE SQUARE POINTS ARE

SIMILAR POINTS THAT SHOULD BELONG TO A SAME FAMILY. AND THEY ARE ACTUALLY

NEAR EACH OTHER. .. 119

Introduction

1

Chapter 1. INTRODUCTION

1.1 Sequence Clustering and Visualization

Advances in modern bio-sequencing techniques have led to a proliferation of raw genomic data

that need to be analyzed with various technologies such as pyrosequencing [1, 2]. These

technology enables biologist generate mass gene sequence fragments within a short period of time.

However, many existing methods lack efficiency on massive sequence collections analysis where

the existing computational power on single machine can be overwhelmed. Consequently, new

techniques and parallel computation must be brought to this area.

Existing techniques to analyze such data are divided into two categories: taxonomy-based and

taxonomy-independent [3]. Taxonomy-based methods provide classification information about the

organisms in a sample. For example, BLAST [4] relies on reference database that contains

information about previous classified sequences, and compares new sequences against them, so

that the new sequences can be assigned to the same organism with the best-matched reference

sequence in the database. However, since most of the sequences are not formally classified yet,

these methods cannot identify the corresponding organisms from these sequences. In contrast,

taxonomy-independent methods use different sequence alignment techniques to generate pairwise

distances between sequences, and then cluster them into operational taxonomic units (OTUs) by

giving different threshold. Then by analyzing these sequences with some existing reference

sequences, the evolutionary path of certain species could emerge. Many taxonomy-independent

Introduction

2

methods were developed over past few years [5-7] . The key step among these methods is

clustering, which is to group input sequences into different OTUs. However, most of these

clustering methods require a quadratic space and time over the input sequence size. For example,

hierarchical clustering is one of the most popular choices that have been widely used in many

sequence analysis tools. It is a classic method, which is based on pairwise distance between input

sequence samples. However, the main drawback of it is the quadratic space requirement for input

distance matrix and a time complexity of O(N
2
). To overcome this shortage, several heuristic and

hierarchical methods are developed and sometimes they can only perform on low dimensional data

or lack accuracy [8, 9].

In order to visualize the clustering result from taxonomy-independent analysis in an intuitive way,

dimension reduction techniques are used commonly in this field. It has been proved to be useful in

data clustering and visualization field [5, 10]. This technique enables the investigation of unknown

structures from high dimensional space into visualization in 2D or 3D space. Multidimensional

Scaling [11] (MDS) is one set of techniques among many existing dimension reduction methods,

such as Principal Component Analysis [12] (PCA) , Generative Topographic Mapping [13]

(GTM), and Self-Organizing Maps [14] (SOM). Different from them, which focus on using the

feature vector information in original dimension to construct a configuration in low dimension

space, MDS focuses on using the proximity data, which is represented as pairwise dissimilarity

values generated from high dimensional space. As in bioinformatics data, one needs to deal with

sequences generated from sequencing technology, where the feature vectors are very difficult to be

retrieved because of various sequence lengths. It is not suitable to use technologies other than

MDS for their dimension reduction.

Another area of development is from the large scale computing, where the size of the clusters

increases rapidly over the past few years [15]. And many innovative parallel computing

frameworks has been proposed, to name a few, Hadoop [16], Spark [17], Pregel [18] and Twister

[19]. In order to achieve large scale sequence analysis, these types of parallel computing

framework must be used. So how to achieve maximum performance by leveraging the existing

technologies remains a challenge.

Introduction

3

This dissertation is mainly focused on optimizing MDS techniques and applies MDS technique

into various situations in order to help biologist visualize the clustering result better. New

algorithm has been proposed to improve the overall accuracy of MDS technique, and some

optimization techniques has been proposed in order to lower the time cost as well. Finally, this

dissertation also describes some detailed performance analyses and experiments related to the

proposed methodologies.

1.2 Multidimensional Scaling

Multidimensional Scaling (MDS) is a set of statistic techniques used in dimension reduction. It is

a general term for these techniques to apply on original high dimensional data and reduce their

dimensions to target dimension space while preserving the correlations, which is usually

Euclidean distance calculated from the original dimension space from the dataset, between each

pair of data points as much as possible. This is a non-linear optimization problem in terms of

reducing the difference between the mapping of original dimension space and target dimension

space. In bioinformatics data visualization, each sequence in the original dataset is considered as a

point in both original and target dimension space. The dissimilarity between each pair of

sequences is considered as Euclidean distance used in MDS.

Given a data set of points in original space, a pairwise distance matrix can be given from these

data points () where is the dissimilarity between point and point in original

dimension space which follows the rules: (1) Symmetric: . (2) Positivity: . (3)

Zero Diagnosal: . Given a target dimension , the mapping of points in target dimension

can be given by an matrix , where each point is denoted as from original space is

represented as th row in .

The object function represents the proximity data for MDS to construct lower dimension space is

called STRESS or SSTRESS, which are given in equation (1) and (2):

 () ∑ (())
  

 () ∑ (
 ()

)  

Introduction

4

where denotes the possible weight from each pair of points that ,

denotes the Euclidean distance between point and in target dimension.

It is easy to learn that the STRESS or SSTRESS [20] value actually represents the difference of

between the distance calculated from the original dimension and the distance calculated from the

mapping in the target dimension. The optimization process of MDS technique is used to minimize

this difference. When the difference is minimized, the mapping in the target dimension will

preserve most of the information among the data. As for the visualization from bioinformatics

sequences, the sequence clustering sometimes will emerge naturally in the dimensionality

reduction result (3D space), where one can easily observe the sequence clusters intuitively.

1.3 Online MDS

The traditional MDS problem are usually solved in O(N
2
) time and space. This is because of the

requirement from the input of MDS that usually requires distances between all pairs of sequences.

This makes MDS techniques hard to be applied on very large scale dataset. As the data size

explodes during the past few years because of the next generation sequencing [12] (NGS)

techniques, it is essential to find alternative method to address this problem. And the in-sample

and out-of-sample solution has been brought up in data clustering and visualization to solve the

large-scale data problem [21]. In this scenario, the whole dataset is divided into two parts: one part

is called in-sample dataset, and the other part is called out-of-sample dataset. MDS is used to solve

the in-sample problem, where a relatively smaller size of data is selected to construct a low

dimension configuration space. And remaining out-of-sample data can be interpolated to this space

without the usage of extra memory.

In formal definition, a dataset contains size of N sequences is divided into two parts: size of N1 in-

sample data, denoted as D1, and size of N2 out-of-sample points, denoted as D2. The in-sample

data are already mapped into an L-dimension space, and the out-of-sample data needs to be

interpolated to an L-dimension space. These points in L-dimension is defined as X={X1,X2},

where the in-sample points are {
} and the out-of-sample points are

{
}. Note that only one out-of-sample point at a time is interpolated to the

Introduction

5

in-sample space. So the problem can be simplified to interpolate a point ̂ to L-dimension with the

distance observed to in-sample points. The STRESS function for ̂ is given by

 () ∑ ̂ (̂() ̂)
  

where (̂) is the distance from ̂ to in-sample point in target dimension, and ̂ is the original

dissimilarity between ̂ and point . If all weights equals to 1, equation (3) is transformed to

 () ∑ (̂() ̂)

 

As equation (4) is very similar to equation (1), similar optimization techniques could be apply to it

and used to reduce the dimensionality of the sequences in the out-of-sample dataset. And out of

sample data could be interpolated into the target dimension space one by one, and each out-of-

sample data point is independent from each other as shown in Figure 1.1. Thus this method is also

called online MDS. Majorizing Interpolative MDS [22] (MI-MDS) is an algorithm proposed to

solve (4) where all weights equal 1.

Figure 1.1: Illustrations of interpolate out-of-sample points into the in-sample target dimension

space as 2D.

1.4 Phylogenetic Tree Visualization

Phylogenetic tree, or referred to as phylogeny is a general term for diagrams that illustrates the

evolutionary relationships among different biological species, organisms or genes from a common

ancestor [23]. These diagrams are usually shown in tree structure, where taxa joined together in

the tree are implied to have descended from a common ancestor. Thus the name phylogenetic tree

is called since the time of modern evolutionary theory. It is a very useful tool to consolidate

Introduction

6

information of biological diversity and to provide perception into events that happened during

evolution. Therefore, biologists tend to use phylogenies to visualize evolution, organize their

knowledge of biodiversity, and guide ongoing evolutionary research.

Currently, phylogenetic tree can be displayed in various ways, which is reflected in the diversity

of software tools available to biologists. Dendrogram [24], cladogram [25], phylogram and

chronogram [26] are popular ways of displaying the phylogenetic tree. A dendrogram is a tree

diagram originally used to illustrate the arrangement of the clusters produced by hierarchical

clustering, but it is also used in computational biology to illustrate the clustering of genes or

samples. A cladogram is formed using cladistics methods, which infer relations among organisms.

However, it does not show the exact amount of change from ancestors to their related descendants.

Therefore, this type of diagrams only represents a branching pattern. A phylogram is an

evolutionary tree that has branch spans proportional to the amount of character change. So it has

the same representations with a cladogram, except that the branch lengths vary from the ancestors

to their descendants according to the amount of changes (either in time or genetic differences)

between them. A chronogram is a phylogenetic tree that explicitly represents evolutionary time

through its branch spans. In its representation, the branch lengths represent time, so current taxa

are equidistant from the root. All of these display methods focused on displaying the relationships

between the different taxa and their parent and ancestor, and it can help the biologist find the

crucial evidence in an instructive way.

As increasing computing power enables researchers to construct ever-larger trees, displaying such

large trees efficiently becomes a challenge. Constructing the diagrams in a low dimension space,

2D or 3D usually requires the knowledge of pairwise distances between each pair of taxa.

Therefore, the online MDS technique could be used to reduce the dimensionality of the known

species of the sequences. And this could be a solution to resolve the time complexity issue brought

by large scale datasets.

Introduction

7

1.5 Research Challenges

The particular characteristic of sequence clustering and visualization has brought many challenges.

Firstly, the size of sequences generated every day is increasing rapidly, where utilizing the

computing power of multiple machines (cluster) is essential as well as improving the efficiency of

the algorithm. Secondly, the distances calculation between each pair of sequences does not

behavior the same as in Euclidean distances. So the visualization algorithm should be optimized in

order to use the distances in a correct way. Thirdly, visualizing a traditional phylogenetic tree and

clustering separately is very inefficient for the biologist to observe the correlations between the

results from separate algorithm. How to make the phylogenetic tree displaying method more

efficient is still a challenge, and how to construct large scale phylogenetic tree can be difficult by

using existing methods. So in order address these problems, this dissertation describes the solution

from following areas:

1) Optimizing MDS algorithm

Applying weighting to the MDS algorithm is a nature method for handling distances generated

from sequences, where unreliable distances can be set to a weight 0, and some significant

distances could have a higher weight than 1. Furthermore, the weighting function will allow part

of import sequences to be fixed with high weights, where rest sequences are varied according to

their locations. The robustness is also required in MDS with weighting so that local optima can be

avoided during the optimization process.

2) Reduce Time Cost for Online MDS

Although the online MDS has be brought to solve the time and space (memory) complexity issue

for MDS, the time complexity for a single interpolated out-of-sample point remains to be high. As

online algorithm requires the computation to be done within mille-seconds, the challenges remain

for reducing the time complexity of online MDS. Although parallel computation power has been

bought in, the algorithm itself still has room to improve.

3) Phylogenetic Tree Display with Clustering

Introduction

8

Traditional phylogenetic tree display only shows the differences between taxa and their direct

parent. The correlations between taxa are observed by using the path along branches. It is hard for

the biologist to verify the clustering result from a separately generated phylogenetic tree. It is also

a challenge to display large scale phylogenetic tree in an efficient way since organizing the

branches with the known species is an action with high cost. It is even harder to observe the

connections of the clustered sequences to the same sequences inside the phylogenetic tree if they

are displayed separately when the number of sequences increases.

1.6 Contribution

By improving and utilizing MDS and online MDS algorithms, several algorithms have been

proposed in this dissertation. The algorithms are listed in Table 1. The N is the total number of

sequences, N1 is the number of sequences in in-sample dataset, and N2 is the number of sequences

in out-of-sample dataset. The contribution of this dissertation is summarized as the following:

1) Robust and Scalable MDS with Weighting

By leveraging the power of conjugated gradient, the time complexity of MDS with weighting can

be reduced from cubic to quadratic, which makes it suitable for large scale dataset. And

Deterministic Annealing technique is applied to avoid the local optima from the original

algorithm.

2) Hierarchical Online MDS

Use hierarchical algorithm instead of linear speed algorithm. Thus the time complexity can be

reduced to logarithmic from linear. And weighting function is added to support the missing values

from in-sample points.

3) 3D Phylogenetic Tree Visualization

The 3D here means target dimension result after applying dimensionality reduction based on the

pairwise distances between each pair of sequences. This result could be in 3D or 2D as well as it

can be observed directly using naked eyes. The reason for 3D is that it is the highest dimension

that can be seen by human. By constructing phylogenetic tree directly from dimension reduction

result, the clustering result could be displayed directly with the tree since clusters are naturally

Introduction

9

appeared during the MDS process. The interpolation algorithm could be used to find the

coordinates for the internal nodes in the tree structure, so that cladogram or phylogram can be

constructed.

Table 1 Summary of the algorithms proposed in this dissertation

 Time Complexity
Space

Complexity
Description

Weighted DA-SMACOF

(WDA-SMACOF)
O(N

2
) O(N

2
)

Added weight function

to DA-SMACOF

Fixed WDA-SMACOF O(N
2
) O(N

2
)

Fix part of points and

varies other points

Weighted MI-MDS

(W-MI-MDS)
O(N2N1) O(N1)

Added weight function

to MI-MDS

Heurisitic MI-MDS

(HE-MI)
O(N2logN1) O(N1)

Reduced the time cost

of MI-MDS

Interpolative Joining

(IJ)
O(N2N1) O(N1)

Generate the Spherical

Phylogram

1.7 Overview

This dissertation is composed of several chapters, where each chapter covers a unique area of the

research.

Chapter 2 mainly talks about the background techniques related to this thesis. First sequence

alignment is discussed, followed by introduction of the hybrid parallel framework, MapReduce

and iterative MapReduce used in this dissertation. The deterministic annealing technique is then

described with an MDS algorithm called DA-SMACOF, followed by the introduction of

phylogenetic analysis. Finally, a data clustering and visualization pipeline called DACIDR is

described in detail, since all of the optimization techniques introduced in these dissertations were

based on this pipeline.

Chapter 3 describes the WDA-SMACOF algorithm which enables scalable MDS for various

situations with the distances. In this section, the equations and algorithm of WDA-SMACOF is

described in detail, followed by the parallelization of WDA-SMACOF. Then a special case of

WDA-SMACOF is discussed as Fixed-WDA-SMACOF algorithm. The experiments include the

Introduction

10

comparison of WDA-SMACOF to other existing MDS algorithms in terms of both accuracy and

time cost.

Chapter 4 introduces the W-MI-MDS algorithm and the hierarchical solution to reduce the time

cost. At first how the weighting function added to MI-MDS is introduced. Then the parallelization

of this algorithm is discussed, followed by the hierarchical method. In hierarchical method

description, two tree structures noted as SSP-Tree and CN-Tree are discussed along with a

heuristic method called HE-MI. The performance analysis of these methods includes the accuracy

and time cost comparison with other methods, as well as the detailed analysis on the proposed

algorithms.

Chapter 5 shows two new ways of displaying phylogenetic tree in 3D with clustering result. A

method called Cuboid Cladogram is introduced first with the principle component analysis

technique it was using for maximizing the variance of the visualized clusters. Then a more clearer

method called Spherical Phylogram is described in detailed. It uses a new algorithm call

Interpolative Joining that uses MDS and Interpolation techniques to construct the phylogenetic

tree from clustering result. The experiments carried out in this section prove the effectiveness of

these methods, as well as the importance of choosing a robust dimension reduction algorithm,

such as WDA-SMACOF.

Chapter 6 is the conclusion and future work. The analysis result from the dissertation is discussed,

then two methods involves future work is deliberated for possible improvement.

A Data Clustering and Visualization Pipeline

11

Chapter 2. A DATA CLUSTERING AND

VISUALIZATION PIPELINE

2.1 Sequence Alignment

Biological similarity between two sequences is the property driving the sequence clustering and

visualization. Thus, to form a measurable value of similarity we first align the two sequences and

compute a distance value for each alignment, which represents the inverse of similarity and is used

by algorithms down the line. A distance should be computed for each pair of sequences; hence the

procedure is referred to as all-pair sequence alignment (ASA) or pairwise distance calculation

(PDC).

The sequence alignment methods are divided into two categories according to their features:

pairwise sequence alignment [5] (PWA) and multiple sequence alignment [27] (MSA). MSA is

used for three or more sequences and it is usually more computationally complex than PWA. In

many cases, the input set of query sequences are assumed to share a lineage and are descended

from a common ancestor. So usually the sequences in MSA have an evolutionary relationship is

commonly used in phylogenetic analysis. PWA aims to find an overlapping region of the given

two sequences that has the highest similarity as computed by a score measure. The overlap may

either be defined over the entire length or over a portion of the two sequences. The former is

A Data Clustering and Visualization Pipeline

12

known as global alignment and latter as local alignment. Needleman-Wunsch [28] (NW) and

Smith-Waterman Gotoh [29, 30] (SWG) are two popular algorithms performing these alignments

respectively. SWG performs local sequence alignment to determine similar regions between two

nucleotide or protein sequence. It compares segments of all possible lengths and optimizes the

similarity measure. In contrast, NW performs global sequence alignment trying to align every

residue in every sequence.

Figure 2.1 shows a general sequence alignment with possible end gaps (note a local alignment will

not result end gaps). We consider the region excluding end gaps as the aligned region. Pairs of

boxes with the same color indicate a match and others indicate mismatches. Pairs with one box

and one dash indicate a character being aligned with a gap. Two parameters governing NW and

SWG are the scoring matrix and gap penalties, namely a gap open (GO) and a gap extension (GE)

penalty.

Figure 2.1: Illustration of calculating PID between two aligned sequences

Percentage identity is used to represent similarity among sequences, the distance between

sequence i and sequence j is considered as the dissimilarity between them, as calculated in

Equation (5):

  

where is the number of identical pairs between sequence i and sequence j and is the

aligned sequence length.

A Data Clustering and Visualization Pipeline

13

Figure 2.2: Visualization of 16S rRNA data with NW pairwise sequence alignment result

Figure 2.3: Visualization of 16S rRNA with SWG pairwise sequence alignment result

Generally speaking, if the sequences in the dataset are similar and of roughly equal size, NW is

more preferred than SWG. And for the sequences with various lengths, SWG can generate a more

accurate result than NW. Figure 2 shows an example of the visualization result of a same sequence

A Data Clustering and Visualization Pipeline

14

dataset using SWG and NW. The SWG obviously produces more reliable results than NW because

of the clearer clusters visualized. This is because the sequence lengths were not uniform in this

particular hmp16S rRNA dataset. And NW, being a global alignment algorithm, had done its best

by producing alignments with many gaps. In cases where a shorter sequence is aligned with a

longer one, the gaps were dearly added by NW simply to make the alignment from end to end.

Unfortunately, the distance measure used to compute over the alignments was susceptible to gaps

and produced artificially large distances for sequence pairs. The plots we generated with NW

based distances had long thin cylindrical point formations as shown in Figure 2.2, which later is

identified as a direct consequence of the number of gaps present in the alignment. Pictorially, this

effect is shown in Figure 2.3. From the DACIDR result, multiple points selected on the same

cylinder belong to a same cluster, but by using NW, instead of clustered, these points are aligned

in line. The selected points are based on their ID number in the given sample dataset, where their

lengths are 507 to 284.

PWA algorithm is time consuming, and for all-pair problem, the time and space complexity is

O(N
2
). Thus, it is not practical to run millions of sequence alignments using on a single machine.

However, ASA is an embarrassingly parallel problem and thus we have mapped it into

MapReduce paradigm by adopting coarse granularity task decomposition. The parallelized ASA

makes it possible to generate large dissimilarity matrices resulting from aligning millions of

sequences and has been proved to be highly efficient in our previous work. The way of

parallelizing it is shown in Figure 2.4. The target distance matrix is divided into blocks, so that

each processor will process only part of the matrix. The blocks in the darker color are the blocks

that need to be calculated, because of the symmetric property for a Euclidean distance matrix, i.e.

Block(i, j) = Block(j, i). And in practice, the sequence alignment from sequence A to sequence B

is very similar to sequence alignment from sequence B to sequence A. So these two alignments

will be considered as same. And the reason for dividing the workload this way is for load

balancing, so that each processor can process a set of blocks based on the block row id or column

id.

A Data Clustering and Visualization Pipeline

15

Figure 2.4: Parallelization of the ASA problem. The total number of sequence is n, and the darker

block is the block needs to be processed, and white blocks are their symmetric blocks.

2.2 Hybrid MapReduce Workflow

MapReduce is a parallel programming model proposed by Google to support large-scale data

processing [31]. Hadoop is an open source implementation of MapReduce with a distributed file

system (HDFS) [32]. Each MapReduce job takes a set of key/value pairs as input, and produces a

set of key/value pairs. The computation of MapReduce jobs is split into 2 phases: map and reduce.

In map phase, map function takes an input key/value pair, read the data accordingly from HDFS,

and produces a set of intermediate key/value pairs. Hadoop groups together all intermediate values

associated with the same intermediate key and passes them to the reduce function. In reduce phase,

each reduce operation accepts an intermediate key and all values associate with that key. It merges

these values to form a possibly smaller set of values, emits key/value pairs of the final output, and

writes the final output to HDFS.

Hadoop adopts master-slave architecture. The master node runs a namenode, a secondary

namenode and a job tracker. The namenode is mainly used for HDFS for hosting the file system

index; the secondary namenode can generate snapshots of the namenode's memory structures, thus

preventing file system corruption and reducing loss of data; the job tracker allocates work to the

task tracker nearest to the data with an available slot. The slave node runs a datanode and a task

tracker: datanode contains blocks of data inside HDFS where multiple datanodes can serve up

A Data Clustering and Visualization Pipeline

16

distributed data over network; task tracker will spawn java processes as workers to execute the

work received from job tracker. Hadoop supports fault tolerance in both MapReduce execution

and HDFS. HDFS supports fault tolerance by providing file replicas among the slave nodes. In

case one or several datanodes fail, the integrity of the distributed files won’t be harmed by using

the replicas from other running datanodes. During a MapReduce job execution, once a task tracker

fails, all the unfinished tasks on that task tracker will be scheduled to the empty slots of other task

tracker.

Many data analysis applications require iterative computations, such as deterministic annealing

pairwise clustering [33] and dimension reduction [34] algorithms. This type of applications can be

parallelized with MapReduce paradigm. However, they have a unique feature that is to keep

running map and reduce iteratively until the computation satisfies a condition to converge to a

final result.

Hadoop has been proved to be useful in large scale data parallel distributed computing job.

However, it does not directly support iterative data analysis applications. Instead, the iterations

must be orchestrated manually using a driver program where each iteration is piped as a separate

MapReduce job. There are several problems: Firstly, as the iteration number is manually set by the

user, it is impossible to make the program converge to meet a certain condition; Secondly, the

static data needs to be load from disk to memory in every iteration which can generate high

network I/O and disk I/O overhead; Thirdly, the job tracker needs to reschedule map and reduce

tasks for every iteration, which brings considerable scheduling overhead.

Therefore, the iterative applications are parallelized using Twister [19], an iterative MapReduce

framework. Twister uses pub/sub messaging for all the communication/data transfer where a

broker will be running on one of the compute nodes during the execution. All the other nodes are

classified as compute nodes where the Twister daemon runs on. Twister daemon can connect to

broker and spawn threads executing map and reduce tasks. The client driver of Twister is used to

support iterations of map and reduce tasks. The map and reduce tasks won’t exit after one iteration

unless the client driver sends the exit signal. So an iterative MapReduce job is not considered as

A Data Clustering and Visualization Pipeline

17

multiple MapReduce jobs as in Hadoop. Twister supports for long running mappers and reducers

with an in memory data model. This design eliminates the overhead of data reloading from disk to

memory across iteration boundaries. Twister schedules map and reduce tasks before the first

iteration so that they are processed by the same mappers and reducers during each iteration for

locality. This can eliminate the scheduling overhead of task rescheduling. In summary, Twister is

optimized for iterative parallel applications, where Hadoop doesn’t perform well. Even though

Twister runs fast for iterative parallel applications, current implementation of Twister lacks

several features for large-scale usage: distributed file system support, dynamic scheduling and

fault tolerance. So a hybrid MapReduce workflow management system is developed to support the

fast execution of iteration applications such as MDS, as well as the reliable execution for

applications such as ASA.

2.3 Deterministic Annealing

Deterministic annealing [35] (DA) is an annealing process that finds global optima of an

optimization process instead of local optima by adding a computational temperature to the target

object function. By lowering the temperature during the annealing process, the problem space

gradually reveals to the original object function. Different from Simulated Annealing [36], which

is based on Metropolis algorithm for atomic simulations, it neither rely on the random sampling

process nor random decisions based on current state. DA uses an effective energy function, which

is derived through expectation and is deterministically optimized at successively reduced

temperatures.

Scaling by Majorizing a Complicated Function [37] (SMACOF) is a STRESS majorization

algorithm solving the MDS problem. The object function is set as the STRESS function in

equation (1). And by setting an upper bound of this convex function, a majorization formula could

be derived. By iteratively setting the estimated dimension reduction result as the initial conditions

in that formula, the algorithm can find the mapping of the target dimension with a non-increasing

STRESS value iteratively. However, since this algorithm is an EM-like [38] algorithm, this

A Data Clustering and Visualization Pipeline

18

mapping result could be trapped under local optima. DA-SMACOF [39] is proposed to solve this

issue with DA optimization.

The goal of DA in SMACOF is to minimize () () with respect

to parameters is independent of () so the problem can be simplified to

minimize if we ignore the terms independent of . By differentiating (1), we can get

 ()
 ()

  

where is the th point in the target dimension , as same as th line in matrix .

Take (6) into (1), finally the became

 ∑ (√()
)

  

 ∑ (| | √)
  

As the original cost function and target dimension configuration gradually changes when the

computational temperature changes, we denote as the target dimensional configuration and

as the dissimilarities of each pair of sequences under temperature T. So the updated STRESS

function of DA-SMACOF becomes

 () ∑ (() ̃)
  

where ̃ is defined as

 ̃ {

 √ √

 

Note that if the distance between point and point is missing from , then . There is no

difference between ̃ and since both of the distances are considered missing values. This is not

proposed in the original DA-SMACOF where all weights for all distances in are set to 1.

And the final formula of the DA-SMAOCF can be derived as the following:

 ()   

A Data Clustering and Visualization Pipeline

19

 ()   

where is the pseudo-inverse of . T means the current temperature, and is the estimated X

from previous iteration. Equation (12) is also called Guttman transform [37].

The and () from equation (12) is defined as following:

 {

 ∑
  

 {

 ̃

 ()
 ()

 ∑

 

Note that in DA-SMACOF, all weights equal one, so in equation (14), the weights have no

differences being associate with each pair of distances.

2.4 Phylogenetic Analysis

Phylogenetic analysis is usually targeted to study the evolutionary relationships among the

different species or genes. As the modern sequencing technologies in molecular biology advances

rapidly these days, large amount of sequence data are collected from different organisms. In order

to study the relatedness among these sequences, evolutionary studies using phylogenetic analysis

is still of very high interest. These studies mainly focused on the morphology of the organism. By

doing analysis on the sequences, one can classify an organism by employing a system of record

keeping its characteristics as well as the diverse sets of comparative information. Naturally the tree

structure is commonly used to serve this purpose [40].

Phylogenetic trees are tree representation that constructed to record the classifications of

organisms. It is a very informative and intuitive way to describe the evolutionary path of certain

group of organisms. Since the evolution is a branching process, the tree representation is naturally

a best representation to describe the procedure. The children split from parent can be view as

populations diverged over time, or terminated by extinction. There are many popular tools or

methods for inferring phylogenies, to name a few, such as maximum likelihood [41], neighbor

joining [42], Monte Carlo approach [43] and Bayesian inference [44] techniques. Among them, a

A Data Clustering and Visualization Pipeline

20

software called RAxML [45] is the expectation maximization based software, whereby it has been

proved to have a very high reliability during the phylogenetic analysis. Usually one has to do

MSA before applying the RAxML on the target sequence set in order to generate a phylogenetic

tree with the capability of displaying phylogram.

Besides construction of the phylogenetic tree, the other key aspect of phylogenetic analysis is the

display of the tree. As mentioned previously, most of the displaying methods only contain the

information between the organisms and their ancestors, but not the correlations between the

organisms. Some most common displaying methods, such as rectangular cladogram and

phylogram are shown in.

Figure 2.5: 2D tree diagram example for 5 sequences, left one is the rectangular cladogram, and

right one is the rectangular phylogram

In these representation, note that the branches in the cladogram always have the same lengths, and

the branches in the phylogram will have different branch lengths which represents the amount of

changes from a parent to its child. Assuming that both graph were drawn based on a same

phylogenetic tree, where A and B are the internal node and C, D, E are the terminal node (leaf

node). C, D, E are usually representing OTUs, and A, B are the ancestors without empirical data,

so they are representing Hypothetical Taxonomic Units (HTUs). Both of these diagrams are rooted

tree examples, where they share a common ancestor as A.

2.5 A Clustering and Visualization Pipeline

We proposed a method pipeline called deterministic annealing clustering and interpolative

dimension reduction (DACIDR) [46] that can be collectively classified as taxonomy-independent

analysis, wherein different sequence alignment tools are applied in order to glean specific pieces

A Data Clustering and Visualization Pipeline

21

of information about the related genome. This pipeline combines the techniques from previous

sections.

We used deterministic annealing method for dimension reduction and pairwise clustering to group

the sequences into different clusters and visualize them in a lower dimension. In DACIDR, the

input dataset is divided into in-sample dataset and out-of-sample dataset. The in-sample set is

processed using ASA, PWC and MDS, while out-of-sample set is processed by Interpolation. In

detail, as shown in the top part of Figure 2.6, DACIDR includes all-pair sequence alignment

(ASA), pairwise clustering (PWC), multidimensional scaling (MDS), interpolation and

visualization. The ASA reads a FASTA file and generates a dissimilarity matrix; The PWC can

read the dissimilarity matrix and generate OTUs; MDS reads dissimilarity matrix and generates a

3D mapping; Interpolation (online MDS) read the OTUs and plots to generate mapping for further

sequences.

The DACIDR can manage to generate the clustering and visualization result only with the input of

sequences, and for very large dataset, i.e. millions of sequences, the clustering result is also

referred as mega regions, as inside each region, there are hundreds of thousands of sequences.

These mega regions still have internal structures which seem to be several sub-clusters. These sub

clusters on a plot with the whole dataset couldn’t be shown clearly because the distance between

regions are relatively larger than the distance between sub-clusters in each region. So the points in

each region are tend to be closer to each other, thus the differences are diminished. In order to get

a finer resolution of the clusters, DACIDR can then be applied on each of the region separately.

This recursive process is also referred as recursive clustering as shown in the middle part of Figure

2.6. This process can be done as many times as a target granularity of clusters is reached.

After the clusters are found with a satisfied resolution, the center of each cluster could be

calculated using the target dimension points corresponding to the input sequences. This is usually

done because of the need for phylogenetic analysis. As a phylogenetic tree with over millions of

sequences would hard to understand, each cluster is only represented by a sequence which is the

closed to the center of a cluster. So that the number of sequences displayed in a phylogenetic tree

A Data Clustering and Visualization Pipeline

22

could be dramatically reduced. By adding another reference sequence dataset from some well-

defined phylogenetic trees [47] or GenBank [48], a traditional phylogenetic tree could be construct

with some well-known methods such as RAxML. The same DACIDR pipeline could be apply on

this dataset again considering all the sequences as in-sample dataset to generate a visualization

result in 2D or 3D space (3D is usually chosen because it can retain more information during the

dimension reduction). Note that by just doing the proposed MDS algorithm, the clusters will

naturally appear in the 3D space. A proposed algorithm called Interpolative Joining can determine

this phylogenetic tree in 3D space by combining the result from DACIDR and RAxML, so that a

final spherical phylogram could be generated. This novel approach will allow the biologist to

observe the correlations between clustering result and phylogenetic together. The details will be

described in section 5.

Figure 2.6: The flowchart of DACIDR of processing over millions of sequences until the

phylogenetic tree is visualized based on previous experience.

A Data Clustering and Visualization Pipeline

23

Note that all of these techniques are parallelized to process large data on multiple compute nodes,

using MapReduce, iterative MapReduce and/or MPI [49] frameworks using the hybrid

MapReduce workflow management system [50] [51].

Robust and Scalable Multidimensional Scaling with Weighting

24

Chapter 3. ROBUST AND SCALABLE

MULTIDIMENSIONAL SCALING WITH

WEIGHTING

3.1 Overview

MDS is heavily used in DACIDR in order to generate the visualization result of input sequences.

As mentioned before, the sequence alignment, SWG sequence alignment performs better than NW

sequence alignment where sequence lengths vary. However, SWG sometimes could generate very

short sequence alignment, suggests that the sequence alignment has a lower quality compared to

other longer alignments. This could potentially leads to in-accurate target dimension mapping.

Furthermore, fixing reference sequence dataset and varying other sequences is an interesting topic.

This is because reference sequences are usually well defined and have very clear structure after

dimension reduction. One could compare unidentified sequences to the reference sequences in

order to classify those sequences. As reference sequences set usually has a relative small size

compared to the number of unidentified sequences, the structure of those sequences could be lost

if they are simply interpolated. One way of discovering the relationships between unidentified

sequences with reference sequences is to fix the position of reference sequences in the target

Robust and Scalable Multidimensional Scaling with Weighting

25

dimension space, and varies the unidentified sequences. This would also require a reliable MDS

algorithm. Last but not least, the parallelization of these types of algorithm remains a challenge.

As all MDS algorithms require O(N
2
) memory, so how to parallelize that efficiently in order to

process as large size of data as possible with limited resources is non-trivial. And in this section,

the solutions to the problems proposed here are presented. Section 3.2 mainly talk about related

work in this field, Section 3.3 describe the WDA-SMACOF algorithm, which is the algorithm

solves the time complexity issue associate with weighting function; the parallelization of WDA-

SMACOF is presented in Section 3.4, followed by performance analysis in Section 3.5. And

finally, the conclusion is given in Section 3.6.

3.2 Related Work

Many MDS algorithms have been proposed in the past few decades, and these techniques has been

divided into metric multidimensional scaling and non-metric multidimensional scaling. Metric

multidimensional scaling requires the distances to be Euclidean distances, where the symmetric

property and triangular inequality property must be met within the distances in the original high

dimensional space. Since the dissimilarities calculated during all-pair sequence alignment do not

necessarily fit all these requirements, non-metric multidimensional scaling is used to solve the

problem. In non-metric MDS, the Euclidean distances can be replaced with dissimilarities, where

these properties do not needs to be hold as long as the STRESS or SSTRESS value in equation (1)

and (2) is reduced during the optimization process. Newton's method [20] is used as a solution to

minimize the STRESS in (1) and SSTRESS in (2). It is a gradient descent type of algorithm where

the STRESS function is considered as the cost function. And in each iteration, the derivative of

matrix X is taken. This method used the Hessian to form a basic Newton iteration, and then

iterated through it until convergence. Although the time complexity of its conversion is quadratic,

both Hessian construction and inversion require cubic time complexity. Quasi-Newton [52]

method is proposed to solve this problem by using an approximation of inverse Hessian at each

iteration. This significantly reduced the time complexity of Newton method to sub-cubic.

Although the time complexity from this method is reduced compared to original Newton method,

Robust and Scalable Multidimensional Scaling with Weighting

26

it is still much higher than the conversion time. An Multi-Grid MDS (MG-MDS) [53] has been

proposed to solve the isometric embedding problems. As a parallel solution, it shows the dramatic

increase in performance compared to other existing methods. Scaling by Majorizing a

Complicated Object Function (SMACOF) [11] is an majorization algorithm which is widely used

for large-scale MDS problems. However, it involves full matrix inversion before the calculation

with weighting, which always has cubic time complexity. Additionally, as this method is an

Expectation Maximization (EM) like problem, it is suffered from local optima problem. So a DA

solution has been added to SMACOF, so called DA-SMACOF [39], where it increased mapping

quality and decreased the sensitivity with respect to initial configuration. Simulated Annealing

[36] and Genetic Algorithm [54] have also been used to avoid the local optima in MDS. However,

they suffered from long running time due to their Monte Carlo approach.

3.3 Weighted Determnistic Annealing SMACOF

3.3.1 Algorithm Description

As mentioned in Section 2.4, the DA-SMACOF used DA technique in order to avoid the local

optima found in SMACOF. The drawback of DA-SMACOF is that when it assumes that all

weights equal 1 for all distances, so the equation DA-SMACOF trying to solve is:

 () ∑ (())

 (15)

And the final formula in SMACOF is equivalent to:

 ()   

where N is the number of points (rows) in X and Z is the previously estimated X in last iteration.

It is intuitively to see that this equation requires quadratic time to solve since the matrix

multiplication of B(Z), which is a N×N matrix and Z, which is N×L matrix has a time complexity

of O(N×N×L). When L (usually 2 or 3) is much smaller than N, this algorithm has a time

complexity of O(N
2
). And DA-SMACOF is adding a temperature to it, so that delta varies under

different temperature, more iterations are added to the algorithm but the time complexity remains

the same.

Robust and Scalable Multidimensional Scaling with Weighting

27

The problem comes when different weights are needed for this algorithm, since it states in

equation (12) that a matrix inversion for an order N matrix V is needed, the time complexity of it

is cubic. When N is large enough, i.e. hundreds of thousands, the time complexity of this

algorithm becomes O(N
3
) despite the quadratic convergence speed for SMACOF. Although

could be calculated separately from SMACOF algorithm since V is static during the iterations, the

time complexity of full rank matrix inversion is always () [55, 56]. Compared to the time

complexity of SMACOF, which is () , this is bottleneck for large-scale computation of

weighted SMACOF.

Instead of using pseudo-inverse of V, WDA-SMACOF uses CG to solve the matrix inversion

problem [57]. First, we denote as ̇ and if N is large, , where is an identity

matrix, so by replacing V by ̇ in (12), we have the majorizing function of WDA-SMACOF as

 ̇ ()   

Theorem 1. ̇ is a symmetric positive definite (SPD) matrix.

Proof. Since , so , and ̇ ̇ . From (13), ̇ can be represented as

 ̇ {

 ∑
  

Because , so ̇ . And ̇ ∑ ∑ ̇ . So according to[58], Theorem 1 is

proved.

Since ̇ is an SPD matrix, we could solve (17) instead of (12) without doing the pseudo-inverse of

 . And since equation (17) is in the form of , a well-known iterative approximation method,

so called Conjugate Gradient [59] (CG) could be used here to address this issue. CG is a gradient

descent type of optimization technique as an addition to the steepest descent [60] method.

Traditionally, it is used to solve quadratic form while and are both vectors. Although

theoretically CG only converges when there is N iterations for an order N matrix, the iteration are

much less needed in practice.

In our case, () and are both matrices. So the original CG could be directly used when

 . Nevertheless, for situations, the CG method needs to be updated using following

Robust and Scalable Multidimensional Scaling with Weighting

28

equations. In th iteration of CG, the residual is denoted as , the search direction is denoted as ,

 and are scalars which represents the amount of directions needs to be updated with for Xi and

for di. So and are given as

 ̇ ̇   

where ̇ is the produce of () .

Let’s denote () ∑ ∑ where is and is matrix and is the

 th row, th column element in and is the th row, th column element in . In another word,

 () is calculating the sum of dot product over rows of and their corresponding columns in

 . So the complete equations for CG are updated to

 (

)

 (
 ̇)

  

   

 ̇   

 (

)

 (
)

  

   

Denote the iterations in the SMACOF algorithm as SMACOF iteration and iterations in CG

algorithm as CG iteration. Note that in each SMACOF iteration, only one matrix multiplication

B(Z)Z with time complexity of O(N2) is needed. And it is a recognized fact that original CG is

an iterative algorithm, that and the other parameters are updated in each iteration. And

the residual r is a non-increasing value until converge. So the time complexity of CG is ()

as the matrix multiplication in (20) and (22) are where . And for one

SMACOF iteration, multiple CG iterations are needed for the approximations of X. If

averagely there are nc iterations per SMACOF iteration, and ns iterations for the WDA-

SMACOF algorithm to converge, the time complexity of this algorithm would be

O(N*N*L*nc*ns). If nc is small enough, this algorithm has a time complexity of O(N2).

Robust and Scalable Multidimensional Scaling with Weighting

29

Algorithm 1 WDA-SMACOF algorithm

Input: ,W, , and

Output: X as target dimension mapping

1: Generate random initial mapping .

2: ;

3: while ≥ do

4: Compute and ̃ using (10).

5: ;

6: while () ()

7: Use CG defined from (20) to (24) to solve (17).

8: ;

9: end while

10: Cool down computational temperature ;

11:
12: end while

13: output of SMACOF based on

14: return

Finally, the WDA-SMACOF algorithm is given in algorithm 1. WDA-SMACOF algorithm is

illustrated in Algorithm 1. The initial temperature is critical in WDA-SMACOF that a flat initial

configuration (all distance in
equals to zero) needs to be avoided. So the is calculated based

on maximum value of weight times distance. The Tmin is a number close to zero that can gives

reasonable amount of temperature deduction. Overall, as mentioned before, the original SMACOF

uses an O(N
3
) matrix inversion first, then do an O(N

2
) matrix multiplication in each iteration.

WDA-SMACOF does the same O(N
2
) matrix multiplication, and one CG approximation in each

SMACOF iteration as well. Therefore, WDA-SMACOF has a much higher scalability than

original SMACOF proposed as Guttman transform.

3.3.2 Parallel WDA-SMACOF

The input data of WDA-SMACOF has three parts, the distance matrix Δ, the matrix ̇ and the

matrix W. Note that different from DA-SMACOF, the weight matrix , and ̇ are included during

the computation, so the memory usage of WDA-SMAOCF is higher compared to DA-SMAOCF.

However, since both and ̇ are matrices, WDA-SMACOF still has memory (space)

complexity of (). In order to solve the memory problem, only W is store in the static memory

during the iterations since each element of ̇ is simply the negative value of the corresponding

value in W except the diagnose elements. So only a one dimensional array with length N is needed

Robust and Scalable Multidimensional Scaling with Weighting

30

for ̇ to store the diagnose elements, and all other elements are read from W directly when ̇ is

needed.

The parallelized WDA-SMACOF uses three single MapReduce computations and one nested

iterative MapReduce computation for CG computation in one SMACOF iteration as outer loop.

The main driver handles the starting and ending of each MapReduce job and some calculations

that does not needs to be parallelized. As shown in equation (17), these three single MapReduce

job are for calculation of function B(Z), calculation of matrix multiplication of B(Z)Z and one

STRESS calculation in equation (1). The nested iterative MapReduce computation has one single

MapReduce computation in one CG iteration as inner loop. Note that in the CG calculation, ̇

can be reused in equation (20) and in equation (22). And since it has a relatively small size (N×L),

it can be stored inside the memory of the main driver. So only one matrix multiplication needs to

be parallelized in CG computation. In general, the computations in outer loop contain two matrix

multiplication and one STRESS calculation. The computation in inner loop performs

approximation in CG, as illustrated in Figure 3.1. Only the matrix X is needed to be synchronized

on each mapper in both SMACOF iteration and CG iteration, so that the largest parameter

broadcasted in each iteration is an matrix, where is often set to 2 or 3 for visualization

purpose. So the communication overhead is low compared to the computation on each mapper in

this design. And the memory has been reduced to half of the original design because of the

elimination of storing whole V matrix inside memory. Finally, when the main driver decides this

algorithm has converged with the condition () () , the whole computation will

stop and yields the final result.

Robust and Scalable Multidimensional Scaling with Weighting

31

Figure 3.1: The flowchart of parallel WDA-SMACOF using an iterative MapReduce framework

3.3.3 Fixed WDA-SMACOF

The introduction of this scalable solution for weighted MDS problem has brought another

possibility to solve a problem which is referred to as the unfolding problem in MDS. This problem

is that if we have observed a part of data in the lower dimensional space and has their distances in

the higher dimension, and the data points locations between each other wants to be fixed. One way

of solving this is to use interpolation, as mentioned in Section 2. Interpolation considered the fixed

data as in-sample data, and the varied data as out-of-sample data. Then by using the coordinates

from the in-sample data, the out-of-sample points will be interpolated into the in-sample space one

by one. This means the out-of-sample points are independent from each other, so no distances

between out-of-samples is needed in this case. This is a descent solution if a lower time cost if

more preferable and in-sample points already has all the structure included from out-of-sample

Robust and Scalable Multidimensional Scaling with Weighting

32

points in the low dimension space. But in some cases, when time is not essential and accuracy is

more important, this solution more give bias answer. In our particular case, when a set of well-

studied reference sequences are processed in order to generate coordinates in target dimension

space, and some new sequences, which has a much larger size needs to be mapped into the same

space, it is not practical to use interpolation. This is because these new sequences may has its own

structure and sometimes new clusters that not shown in the reference sequences set may be found

by clustering itself. And since interpolation does not keep the proximity in between the out-of-

sample data itself, this information may be lost. And since the correlations between the reference

sequence set and the new sequence set needs to be observed simultaneously, so the best way of

doing that is to fix the reference sequence set and varies the new sequence set, so called fixed

MDS. In order to generate robust result as well as keeping the scalability of fixed MDS, the

WDA-SMACOF has to be updated as the following.

By expanding the object equation (1) with the temperature T, the function now is:

 () ∑ ̃
 ∑

 () ∑ ̃ ()  

 ̃
 () ()    

where the ̃ is the distance in original dimension with termperature T and can be given in

equation (10), and XT is the N×L matrix where each row represents the coordinates under

temperature T. For simplification of the equations, the X is used to denote XT in following

notations within this section. Note that part of coordinates in X is fixed in this algorithm, so denote

the fixed part in X as X1, and varied part of points in X as X2, where their corresponding number is

N1 and N2. So the X can be divided as shown in Figure 3.2. Note that ̃
 is a constant, so only the

second and third term of equation (26) needs to be modified.

Robust and Scalable Multidimensional Scaling with Weighting

33

Figure 3.2: Graph

representation of

dividing X into X1 and

X2

Figure 3.3: Graph representation

of dividing V into 4 parts

Figure 3.4: Graph representation

of dividing B(Z) into 4 parts

Note that the second term means the square sum of distances between each pair of points in the

target dimension under temperature T, so these distances are composed of 3 parts, the distances

from points in X1 to X1, from points in X2 to X2, and from points in X1 to X2. And the second term

 () can be written as:

 ()   

Where V is given in equation (13) and tr means the trace of a matrix. Consider that X is composed

of X1 and X2, and V can be decomposed in the same way as in Figure 3.3, equation (27) can be

then decomposed into

  

The matrices V11, V22, V12 and V21 are decomposed from the matrix V and shown in Figure 3.3.

Note that all the diagonal values in V11 and V22 are as same as in V, so the first and second terms

of equation (28) does not equal to d(X1) and d(X2). It also includes the values from distances

between X1 and X2.

The third term of equation (26) is the sum of distances in between the mapping of X in the target

dimension space multiplied by the distances in the original dimension space under temperature T.

This term can be applied with Cauchy-Schwarz inequality [61], whereby an upper bound can be

found as the following:

Robust and Scalable Multidimensional Scaling with Weighting

34

 () () ()  

Where function B(X) and B(Z) can be calculated using equation (14). Note that Z is given as the

previously estimated X, and in this case, X1 remains fixed during iterations. So Z can be

decomposed as X1 and Z2, where Z2 means the previously estimated X2. So in this equation, the

part for X1 actually equals to each other on the left and right of the equation. Therefore, denote B

as for the matrix result from function B(Z), matrix B can be decomposed as same as in Figure 3.4.

And left hand side of equation (29) is now:

 ()   

Since the first term is fixed, only the rest of term in equation (30) needs to be updated with this

inequality, which is now:

 () () 

Therefore, by taking equation (28) and (31) into equation (26), the STRESS function can now be

written as:

 () ̃
 (

) 

And the upper bound it is given as

 () ̃
 (

) ()  

Since X2 is the only varied part of this equation, by taking the partial derivative of equation (33),

now it is:

 ()

 () ()  

Since both V and B are symmetric matrices, so equation (34) now becomes

 ()

    

By setting (35) to zero, the final majorization function is:

Robust and Scalable Multidimensional Scaling with Weighting

35

Algorithm 2 Fixed-WDA-SMACOF algorithm

Input: , W, 1, X2, and

Output: X as target dimension mapping

1: Generate random initial mapping X2.

2: Compute V21X1

3: ;

4: while ≥ do

5: Compute and ̃ using (12).

6: ;

7: while () ()

8: Use CG defined from (20) to (24) to solve (36).

9: ;

10: end while

11: Cool down computational temperature ;

12:

13: end while

14: output of SMACOF based on

15: return

  

Recall the Z2 is the estimated X2 in previous iteration, this is now the final formula for fixed

WDA-SMACOF. Note that V21X1 is fixed from the start of the algorithm, so it only needs to be

computed once and stored in static memory. Instead of having order N×N×L matrix multiplication

in each iteration, now the calculation in each SMACOF iteration becomes N2×N2×L and

N2×N1×L. The CG calculation now is in order N2 instead of N as well. Note that the V22 matrix is

naturally a SPD matrix, so no approximation needs to be done beforehand for this algorithm. The

detail of Fixed-WDA-SMACOF is given in algorithm 2.

3.3.4 Parallelization of Fixed-WDA-SMACOF

As the Fixed-WDA-SMACOF is an iterative application, so it is parallelized using iterative

MapReduce. The parallelization of it is very similar to WDA-SMACOF, which involves nested

iteration MapReduce job within one SMACOF iteration. The difference is that before the

SMACOF iterations begins, matrix multiplication of V21X1 needs to be done. And in each

SMACOF iteration, two matrix multiplications are done instead of just one before the CG

computation begins. The added matrix multiplication is for the calculation of B21X1. Note that if

N1 is relatively small, this calculation could be finished within the main driver using only one

compute node to avoid communication overhead. But for most cases, this computation is done in

Robust and Scalable Multidimensional Scaling with Weighting

36

parallel. The ̇

 represents the right hand side of equation (36). And all the other operations in

this computation can be finished within main driver since they are linear operations.

Figure 3.5: The flowchart of parallel Fixed-WDA-SMACOF using an iterative MapReduce

framework

Robust and Scalable Multidimensional Scaling with Weighting

37

3.4 Performance Analysis

The experiments were carried out on two cluster environment. One is the FutureGrid XRay

Cluster. It is a Cray XT5m super computer and can use cluster compatibility mode to simulate the

environment on multi-node computer cluster, where each node has 8 cores and 16GB memory. In

total, XRay has 168 AMD Opteron 2378 CPUs and 1324 cores. The network system of XRay uses

Cray seastar interconnect. The other cluster is the Indiana University BigRed II cluster. Big Red II

is Indiana University's main system for high-performance parallel computing and it is one of the

world's fastest research supercomputers. It is a Cray XE6/XK7 supercomputer with a hybrid

architecture providing a total of 1,020 compute nodes. All of these compute nodes are connected

through the Cray Gemini interconnect. One can also use cluster compatibility mode to reserve up

to 128 nodes. These CPU-only nodes each contain two AMD Opteron 16-core CPUs and 64 GB of

memory. There are also GPU nodes available on BigRed II but not used for the performance

analysis.

The dataset used here includes the artificial hmp16S rRNA (Artificial RNA), real hmp 16S rRNA,

Clusters of Orthologous Groups of proteins (COG Protein) and arbuscular mycorrhizal fungus

(AM Fungi DNA) data. The artificial RNA is used to test the clustering and visualization result

from DACIDR, and compared it with traditional clustering methods. So this dataset has a

relatively smaller size of sequences compared to other dataset, and the data points are well

clustered. Real hmp16S rRNA [46] dataset is the real large dataset that needs to be clustered and

visualized. The OTUs within the dataset are unknown and needs to be found. COG Protein [62]

dataset is used from the project lead by the National Center for Biotechnology. The dataset is well

classified by experts manually, and DACIDR was applied on it to verify the results. AM Fungi

[63] DNA data are sequences collected using two different 454 technology sequencing. The goal

is to cluster this sequences then find the representative sequences from each cluster. Finally to use

phylogenetic analysis to identify the relationships of these sequences with some well classified

fungal sequences. Each dataset includes different number of sequences listed in Table 2:

Robust and Scalable Multidimensional Scaling with Weighting

38

Table 2 The dataset used in the experiments across the dissertation

 Artificial RNA hmp16S rRNA COG Protein Fungi DNA

Total Number of

Sequences
100k 1.1 million 183k 957k

Number of Unique

Sequences
4640 684769 183k 446k

Note that each dataset has duplicates sequences in the original dataset. So we always clean the

dataset by removing the duplicates and only keeping the unique sequences inside the dataset.

When the size of the dataset is stated further in this dissertation, it will always be referred to the

number of unique sequences in that dataset.

In the experiments for this performance analysis, four different SMACOF algorithms were

compared as shown in Table 3. All of these dissimilarities used as input for the experiments were

generated using ASA and SWG alignment. The DA means the algorithm is optimized using DA

techniques, where W stands for weighted. So WDA-SMACOF is the algorithm proposed and

NDA-SMACOF means the non-weighted DA-SMACOF algorithm described in Section 2.3. The

WEM-SMACOF is the SMACOF with the matrix inversion and without DA optimization as

proposed in [11]. The NEM-SMACOF is the original SMACOF function which assumes all

weights equal 1 in all circumstances. Additionally, equation (10) shows that all the EM cases

could be considered as a special case of DA algorithms that initial temperatures were set to 0.

Table 3 All 4 algorithms tested in following experiments

 DA EM

Weight WDA-SMACOF WEM-SMACOF

Non-Weight NDA-SMACOF NEM-SMACOF

The performance analysis includes 4 sections: the first 3 sections were based on all varied WDA-

SMACOF and the last section is about fixed WDA-SMACOF. In detail, first section is about

accuracy comparison between WDA-SMACOF and other there popular MDS methods. The

second section is the time cost analysis on WDA-SMACOF, with comparison from other MDS

methods as well. The third section is the parallel efficiency analysis on WDA-SMACOF itself

Robust and Scalable Multidimensional Scaling with Weighting

39

with iterative MapReduce framework. The fourth section is the accuracy analysis of fixed WDA-

SMACOF compared with interpolation.

3.4.1 Accuracy Comparison of WDA-SMACOF

We tested the accuracy of the results based on normalized STRESS value, which can be calculated

by

 ̅() ∑

(())

   

where is given by PID distance calculated from pairwise sequence alignment. Equation (37) is

least squares sum of difference between the mapped distance after dimension reduction and

original distance and naturally lower normalized STRESS means better performance [11].

All of these tests were done with 20 runs for each algorithm. The threshold ε is set to 10
-6

. The

results were based on the average of these runs. The error bars in the figures were the maximum

and minimum value in the runs. In general, if the average of the normalized STRESS is lower, the

accuracy is higher. And if the error bars are nearer to the average of an algorithm, the robustness

of the algorithm is higher. The target dimension L is set to 3, so that the dimension reduction

result can be visualized.

The result from Metagenomcs dataset includes 2000 of unique sequences. As this dataset has a

small number of sequences, the sequential versions of these 4 algorithms were tested. This

sequences were aligned using local alignment algorithm to calculate the original dissimilarity. And

during that calculation, 10.775% of the original distances values were found as missing because of

the low alignment quality. From the result shown in Figure 3.6, we observed that both of the

weighted solutions outperforms the non-weighted solution. DA solutions showed much less

divergence compared to EM solutions. The average normalized STRESS value for Full MDS was

0.0439, which outperforms non-weighted cases by 23%. The visualization result from WDA-

SMACOF is shown in Figure 3.7, and it is clear that in this dataset, all clusters are clear separated.

Differently from DNA and RNA data mentioned above, the Protein data doesn't have nicely

clustered structure after dimension reduction as shown in Figure 3.9, and its distance calculation

Robust and Scalable Multidimensional Scaling with Weighting

40

was based on global alignment other than local alignment. Before the MDS algorithms started, a

distance transformation is done on the dissimilarities in order to generate result with more

clustering information. In our experiments, we used 4872 consensus sequences to run full MDS,

and interpolated rest 95672 sequences to these consensus sequences. Among these distances from

Full MDS and Interpolation, 10% of them were randomly chosen to be missing distances. The

runs for 4872 in-sample sequences were carried out on a single core, while the Interpolation for

95672 out-of-sample sequences used 40 cores. The results for COG Protein data were shown in

Figure 3.8. Non-weighted and weighted cases show insignificant difference that WDA performs

only 7.2% better than non-weighted cases.

The original hmp16SrRNA dataset has 680k unique sequences. In these experiments, we selected

10k of it for this experiment. Due to the larger size, it cannot be done on a single core, so we used

the parallel version of Full MDS and Interpolation to run the experiments on 80 cores. The

distance was calculated using local alignments and 9.98% of distances were randomly missing and

set to an arbitrary number. The normalized STRESS was shown in Figure 3.10. In this case, the

weighted solutions have a normalized STRESS value lower than non-weighted solutions by 40%.

The visualization result of WDA-SMACOF shows that the clusters of hmp16SrRNA are not as

clearly separated as in the Artificial RNA data, but the clusters are still able to be separated by

naked eyes.

These accuracy analysis were based on three different dataset varies from DNA, RNA to Protein.

And all of them show consistent result that WDA-SMACOF always has the lowest STRESS

value, i.e. highest accuracy compare to other existing methods. These three dataset size varies

from 2k to 10k, and a relatively large data test were carried out on 600 cores on FutureGrid xRay

to compare the normalized STRESS value for 100k data selected from AM Fungal data. As the

same in previous experiments, 10% of the distances from original distance matrix were missing.

This result also shows that the WDA-SMACOF has the lowest STRESS value. The average

STRESS value for WDA-SMACOF is 0.0153, which is lower than NDA-SMACOF by 0.022, and

notice the NDA-SMACOF is also robust without much variance on different runs. But is still has a

much higher STRESS compared to the weighted solutions. NEM-SMACOF has the worst

Robust and Scalable Multidimensional Scaling with Weighting

41

performance as always, and WEM-SMACOF is less robust than the WDA-SMACOF solution,

and has a STRESS value 7.9% higher than the result from WDA-SMACOF.

In these experiments, different dataset shows different features after dimension reduction. These 4

algorithms has been tested using 4 different dataset, and with different size. Although these three

dataset had diverted visualization results, WDA-SMACOF always shows lowest normalized

STRESS value and smallest divergence in all experiments. It is safe to say that WDA-SMACOF is

more accurate and robust than the previously proposed SMACOF and DA-SMACOF methods

with a non-trivial weight function support.

Robust and Scalable Multidimensional Scaling with Weighting

42

Figure 3.6: The normalized STRESS value comparison between 4 MDS algorithms using 2000

Artificial RNA sequences. All 4 algorithms in this experiment are sequential.

Figure 3.7: The clustering and visualization result of entire Artificial RNA dataset with 13 clusters

labeled. Each points belongs to the same color is a cluster found by using DA-PWC program.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2000 Artificial RNA

N
o

rm
a

li
ze

d
 S

T
R

E
S

S

Artificial RNA STRESS Comparison

WDA-SMACOF WEM-SMACOF

NDA-SMACOF NEM-SMACOF

Robust and Scalable Multidimensional Scaling with Weighting

43

Figure 3.8: The normalized STRESS value comparison between 4 MDS algorithms using 4872

COG consensus sequences. All 4 algorithms in this experiment are sequential.

Figure 3.9: The clustering and visualization result of entire COG dataset with a few clusters

labeled. These clusters were manually defined by using the information from NIH.

0

0.02

0.04

0.06

0.08

0.1

0.12

4872 COG Consensus

N
o

rm
a

li
ze

d
 S

T
R

E
S

S

COG Consensus STRESS Comparison

WDA-SMACOF WEM-SMACOF

NDA-SMACOF NEM-SMACOF

Robust and Scalable Multidimensional Scaling with Weighting

44

Figure 3.10: The normalized STRESS value comparison between 4 MDS algorithms using 10k

hmp 16S rRNA sequences. All 4 algorithms in this experiment are parallelized using Twister on

80 cores.

Figure 3.11: The clustering and visualization result of entire hmp16S rRNA dataset with 11 mega

regions labeled. Each points belongs to the same color is a mega region found by using DA-PWC

program.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

10k hmp16SrRNA

N
o

rm
a

li
ze

d
 S

T
R

E
S

S

hmp16SrRNA STRESS Comparison

WDA-SMACOF WEM-SMACOF

NDA-SMACOF NEM-SMACOF

Robust and Scalable Multidimensional Scaling with Weighting

45

Figure 3.12: The normalized STRESS value comparison between 4 MDS algorithms using 100k

AM Fungal sequences. All 4 algorithms in this experiment are parallelized using Twister on 600

cores.

Figure 3.13: The clustering and visualization result of entire AM fungal dataset with 10 mega

regions labeled. Each points belongs to the same color is a mega region found by using DA-PWC

program.

0

0.005

0.01

0.015

0.02

0.025

100k AM Fungi

N
o

rm
a

li
ze

d
 S

T
R

E
S

S

Large Scale AM Fungi Comparison

WDA-SMACOf WEM-SMACOf

NDA-SMACOF NEM-SMACOF

Robust and Scalable Multidimensional Scaling with Weighting

46

3.4.2 Time Cost Analysis of WDA-SMACOF

The time cost of WDA-SMACOF can be divided into two parts: first is the normal SMACOF

computation happens within one SMACOF iteration, the other part is the CG computation. Note

that all three other algorithms, NDA-, WEM- and NEM-SMACOF has the same computations as

in WDA-SMACOF, but without CG computation. And as there are multiple CG iterations per

SMACOF iteration in WDA-SMACOF, the computation time will be dominate by the number of

CG iterations per SMACOF iteration. So the time cost comparison are divided into two parts for

WDA-SMACOF: first is to compare the equivalent computations of all 4 algorithms within

SMACOF iteration; then do the analysis on the nested loop for CG computations for WDA-

SMACOF only.

SMACOF computation: The time cost of SMACOF involves the computation of function B(Z),

the matrix multiplication of B(Z)×Z and the STRESS calculation. The time cost of 2000 Artificial

RNA, 4872 COG consensus and 10k hmp16SrRNA are compared and analyzed here. For the

experiments result shown here, the ending condition were using threshold, so that the iteration

number could be various due to the configuration/feature space of different dataset.

2000 sequences selected from Artificial RNA dataset were used for experiments over a single

core. Figure 3.14 shows that WDA-SMACOF and WEM-SMACOF has a higher time cost

compare to WEM-SMACOF and NEM-SMACOF. This is because by using DA optimization, the

real number of iterations for these two algorithms is larger than those two latter algorithms. And

WDA-SMACOF is two times slower than WEM-SMACOF algorithm and 37% faster than the

NDA-SMACOF.

The parallelized result in 10k hmp16SrRNA data shows the similar result in Figure 3.15. All these

4 algorithms show similar behaviors with the sequential version. WDA-SMACOF is still the most

robust result. And it is 68% faster than the NDA-SMACOF version. Different from the result on

2000 Artificial RNA data, the WDA-SMACOF if faster than NEM-SMACOF on this 10k result.,

and it is also 2 times faster than WEM-SMACOF.

Robust and Scalable Multidimensional Scaling with Weighting

47

The test on the 4872 COG consensus sequences shows an interesting and different result trend

from all previous result as shown in Figure 3.16. Although WDA-SMACOF is still the most

robust result, where the time cost variance of it is very small, it is the slowest algorithm among all

4 algorithms. So to investigate more into the result, the normalized STRESS value for this run on

every 40 iteration is shown in Figure 3.17.

In this result, it shows that the normalized STRESS values in both WDA-SMACOF and NDA-

SMACOF are reduced fast during the first 200 iterations. The NDA-SMACOF (T), which is the

“True” normalized STRESS value seen by NDA-SMACOF during the iterations considering all

weights equal 1. Since the threshold is set as the same for both of the algorithms, so the NDA-

SMACOF may converge faster if all distances are considered, as in this case, the STRESS value

for NDA-SMACOF (T) is 0.120240360398106 at iteration 440 and 0.120242355, the difference

for them is 8.00509E-06, which is smaller than the threshold set as 10E-5, so it will converge at

iteration 480. However, for the WDA-SMACOF, the STRESS value at iteration 440 is

0.093093143 and at iteration 480 is 0.093048041, and their difference is 4.51021E-05 and it is

much larger than the threshold. So it won’t be able to converge for more iterations. However, the

STRESS value for NDA-SMACOF calculated with the correct weight matrix (where missing

distances has a weight 0), is going up and down around 0.095, and cannot converge with more

iterations from iteration 320. This is because the NDA-SMACOF derives from the STRESS

function with all weights equal 1, so it cannot converge with a weight matrix that has zeroes

inside. So although sometimes NDA-SMACOF (T) converges faster, their result is approximated

result but not as accurate as WDA-SMACOF. And the final STRESS value for them is not from

converged result but rather than approximation.

After studying the time cost for fixed threshold runs, the next question would be how about the

result if we fix the iteration numbers. The result from fixed iterations runs is shown in Figure 3.18.

This test is done using 10k hmp16SrRNA data on 80 cores from xRay at Futuregrid. The

percentage of missing distances increases during the runs. The WDA-SMACOF and NDA-

SMACOF use the same configuration during each run, and the since the iteration number are the

Robust and Scalable Multidimensional Scaling with Weighting

48

same, this is actually the head to head comparison for only the computation from STRESS

calculation, and the majorization function. The NDA-SMACOF always has the same time cost

around 206 seconds, and WDA-SMACOF has a stable time cost lowered when percentage of

missing distances increases. This is because according to equation (14), if a weight correspond to a

distance is set to zero, the computation of B(Z) and STRESS value on that function could be

saved. Also, if the most of the distances were zero, the matrix multiplication is similar to the

sparse multiply, which can reduce a majority of time cost. And for the case the 90% of the

distances are missing, the time cost is reduced by 42% at most. The rest time cost mainly came

from the computation in the main driver and the communication overhead.

Figure 3.14: The time cost comparison between 4 MDS algorithms using 2000 Artificial RNA

sequences. All 4 algorithms in this experiment are sequential.

0

50

100

150

200

250

300

2000 Artificial RNA

S
e

co
n

d
s

Artificial RNA Time Comparison

WDA-SMACOF WEM-SMACOF

NDA-SMACOF NEM-SMACOF

Robust and Scalable Multidimensional Scaling with Weighting

49

Figure 3.15: The time cost comparison between 4 MDS algorithms using 10k hmp 16S rRNA

sequences. All 4 algorithms in this experiment are parallelized using Twister on 80 cores.

Figure 3.16: The time cost comparison between 4 MDS algorithms using 4872 COG consensus

sequences. All 4 algorithms in this experiment are sequential.

0

50

100

150

200

250

300

350

400

450

10k hmp16SrRNA

S
e

co
n

d
s

hmp16SrRNA Time Comparison

WDA-SMACOF WEM-SMACOF

NDA-SMACOF NEM-SMACOF

0

200

400

600

800

1000

1200

1400

1600

1800

4872 COG Consensus

S
e

co
n

d
s

COG Consensus Time Comparison

WDA-SMACOF WEM-SMACOF

NDA-SMACOF NEM-SMACOF

Robust and Scalable Multidimensional Scaling with Weighting

50

Figure 3.17: The normalized STRESS with increasing number of iterations between a weighted

MDS algorithm WDA-SMACOF and a non-weighted MDS algorithm, NDA-SMACOF. The

NDA-SMACOF (T) is the actual normalized STRESS value that calculated using the weight

matrix, where NDA-SMACOF is the STRESS value with weights all equal 1.

Figure 3.18: The time cost of WDA-SMACOF and NDA-SMACOF processing 10k hmp 16S

rRNA data using 80 cores by fixing the iteration to 400 and increases the percentage of missing

distances randomly.

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

40 80 120 160 200 240 280 320 360 400 440 480

N
o

rm
a

li
ze

d
 S

T
R

E
S

S

Number of Iterations

Normalized STRESS Over Iterations

WDA-SMACOF NDA-SMACOF (T)

NDA-SMACOF

0

50

100

150

200

250

10% 20% 30% 40% 50% 60% 70% 80% 90%

S
e

co
n

d
s

Percentage of Missing Distances

Time Cost Over Missing Distances

WDA-SMACOF

NDA-SMACOF

Robust and Scalable Multidimensional Scaling with Weighting

51

CG Computation: The CG computation for WDA-SMACOF is essential as this is the main

contribution for this algorithm that enables quadratic time complexity. In this set of experiments,

the CG computation versus matrix inversion is tested, and the number of CG iterations needed per

SMACOF iteration is tested. The time cost detail of WDA-SMACOF is also studied.

As shown in Figure 3.19, the time cost of matrix inversion is lower than CG computation when the

data size is smaller than 4k. So it is obvious that the original SMACOF with matrix inversion has a

lower time cost than WDA-SMACOF. The CG requires averagely 20 iterations to solve the Ax=b

formula on the data selected here. An error is calculated with a threshold of 10
-6

 to the norm of the

residual calculated in each CG iteration as suggested by [64]. As the data size increases, the matrix

inverse performs much slower than CG, this is because matrix inversion has O(N
3
) time

complexity and CG only has O(N
2
) time complexity. So when the data size increases, if the

number of CG iterations does not increases as same as the matrix inversion, its time cost will be

much lower. As for 4k data, CG and matrix inversion has the same time cost, but when the data

size increases to 8k, CG perform 2.5 times faster than matrix inversion. And it could be expected

that when data size increases to even larger size, the differences in the time cost with these two

computations will become larger.

The number of CG iterations needed per SMACOF iteration in WDA-SMACOF is a key factor

that dominates the total computation time for WDA-SMACOF. If the weights all equals 1, by

increasing the data size alone, the CG iterations needed per SMACOF iteration is around 2 despite

of the increasing data size. If the data size is fixed, and randomly chosen part of the distances as

missing values, the number of CG iterations needed per SMACOF iteration is shown in Figure

3.20. It shows that if the weights are uniformly selected as missing, the CG iterations per

SMACOF iteration won’t increases that rapidly. Even when the percentage of missing distances

increases to 50%, the average CG iteration per SMACOF iteration is around 4, which is much less

than the total size of data as 100k tested here. Figure 3.21 shows that by taking the average of all

situations with percentage of missing distances increasing from 0.1 to 0.5, the number of CG

iterations only increases from 3.35 to 3.74 with the data size increases from 20k to 100k. This is

because the convergence rate of CG really depends on the eigenvalues found for the matrix on the

Robust and Scalable Multidimensional Scaling with Weighting

52

left hand side of the formula Ax=b. If A has an evenly distributed eigenvalue, which means the

direction found in the first CG iteration will make the cost function reaches a point where it is near

the final destination. However, if the eigenvalues for A has property that the largest eigenvalue is

much larger than the smallest eigenvalue, the number of iterations will be much larger. And during

the study of this dissertation, this condition is very unlikely to happen by testing several of

scenarios occurred with the dissimilarities generated using sequence alignment.

Sammon's Mapping is a popular non-linear MDS algorithm that solves equation (2) instead of

equation (1). WDA-SMACOF can also solve this type of problem by leveraging the power of

weight function. As shown in equation (2), SSTRESS can be converting to equation (1) with an

updated weight, and the weight can be given as
 . The weight matrix can then be

calculated beforehand, and the eigenvectors of the given matrix V will be a lot different from the

weight with only zeroes and ones. The time cost of WDA-SMACOF solving Sammon's STRESS

will be higher than solving a randomly generated weight matrix because of this. And the number

of CG iterations per SMACOF iteration is given by taking the average of total number of CG

iterations divided by total number of SMACOF iteration. The result shows that despite of various

dataset, the CG iterations needed per SMACOF iteration are around 200. Figure 3.22 illustrates

the average number of CG iterations per SMACOF iteration needed for Sammon's Mapping, and it

shows that for COG Consensus data the number of iterations needed are the smallest, which is

around 110. The number of iterations for hmp16SrRNA data is the most among all three dataset,

which is around 200. And for 2000 Artificial RNA data, the number of iterations is also around

170, which is only 11.3% less than processing the hmp16SrRNA data. But the data size of

Artificial RNA data is only 1/5 of the 10k hmp16SrRNA data. This is because the number of CG

iterations are mainly dominated by the eigenvectors of matrix V, rather than the data size. The

following runs were finished using 600 cores on Futuregrid xRay. Figure 3.23 shows the average

number of CG iterations per SMACOF iteration for WDA-SMACOF when using two different

weightings. When use the weights all equals 1, the number of CG iterations per SMACOF

iteration is always around 2 or 3. And for Sammon's Mapping, the number of CG iterations

increases to around 200. However, even by increasing the data size 5 times with a same dataset,

Robust and Scalable Multidimensional Scaling with Weighting

53

the number of CG iterations needed per SMACOF iteration only increases 1.4 times. One can

assume that by increasing the data size won't increase computation time much because of this even

with larger dataset as long as the dataset has a similar visualization data structure with Sammon's

Mapping. Figure 3.24 shows the time cost of WDA-SMACOF with two different weighting

processing the same dataset, and the number of SMACOF iterations were set to 100. And the time

of WDA-SMACOF increases because of the number of CG iterations. It shows that WDA-

SMACOF takes around 21 more time to finish Sammon's Mapping than dealing with the case

where all weights equal 1 on 20k data. And it takes around 27 times longer when data size

increases to 40k and 60k. Finally, in 80k and 100k cases, it takes 32 times longer to finish. So

when processing with Sammon's mapping, WDA-SMACOF takes around 20 to 30 times longer to

finish than dealing with trivial weights matrices.

Figure 3.19: The time cost of CG versus matrix inverse over 1k to 8k hmp 16S rRNA data. The

matrix inversion uses Cholesky Decomposition and CG uses 20 iterations. Both algorithms were

sequential.

0

10000

20000

30000

40000

50000

60000

1k 2k 3k 4k 5k 6k 7k 8k

S
e

co
n

d
s

Data Size

Time Cost Over Increasing Data

CG Inverse

Robust and Scalable Multidimensional Scaling with Weighting

54

Figure 3.20: The number of CG iteration needed for 100k AM Fungal Data processed with parallel

WDA-SMACOF. The percentage of missing distances increases from 0 to 0.5 and all missing

distances are randomly chosen.

Figure 3.21: The number of CG iteration needed for AM Fungal Data processed with parallel

WDA-SMACOF. The data size varies from 20k to 100k. The number of iterations took over the

average of number of CG iterations from the scenarios that percentage of missing distances

increases from 0 to 0.5.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5

N
u

m
b

e
r

o
f

It
e

ra
ti

o
n

s

Percentage of Missing Distances

Average Number of CG Iterations
per SMACOF Iteration

CG Iteration

0

0.5

1

1.5

2

2.5

3

3.5

4

20k 40k 60k 80k 100k

N
u

m
b

e
r

o
f

It
e

ra
ti

o
n

s

Data Size

The Average Number of CG Iterations for
Random Missing Distances

CG Iteration

Robust and Scalable Multidimensional Scaling with Weighting

55

Figure 3.22: The number of CG iteration needed for 2k Artificial RNA data, 4872 CGO Protein

data and 10k hmp16S rRNA data processed with parallel WDA-SMACOF with Sammon's

Mapping.

Figure 3.23: The number of CG iteration needed for AM Fungal data processed with parallel

WDA-SMACOF with Sammon's Mapping. The data size increases from 20k to 100k.

0

50

100

150

200

Sammon's Mapping

N
u

m
b

e
r

o
f

It
e

ra
ti

o
n

s

Average Number of CG Iterations for
Sammon's Mapping

2000 Metagenomics 10k hmp16SrRNA
4872 COG Consensus

1

10

100

1000

20k 40k 60k 80k 100k

N
u

m
b

e
r

o
f

It
e

ra
ti

o
n

s

Data Size

Average Number of CG Iterations for
Sammon's Mapping

Equal Weights Sammon's Mapping

Robust and Scalable Multidimensional Scaling with Weighting

56

Figure 3.24: Time Cost of WDA-SMACOF with equal weights compared with WDA-SMACOF

with Sammon's Mapping using AM Fungal data. The data size increases from 20k to 100k. Each

run takes 100 SMACOF iterations.

Figure 3.25: The time cost of parallel WDA-SMACOF by fixing the number of processors and

increase the data size with AM Fungal data.

1

10

100

1000

10000

100000

20k 40k 60k 80k 100k

S
e

co
n

d
s

Data Size

Time Cost Comparison between WDA-
SMACOF with Equal Weights and Sammon's

Mapping

Equal Weights Sammon's Mapping

0

500

1000

1500

2000

2500

3000

3500

4000

100k 200k 300k 400k

S
e

co
n

d
s

Data Size

Time Cost of WDA-SMACOF over Increasing
Data Size

512 1024 2048 4096

Robust and Scalable Multidimensional Scaling with Weighting

57

3.4.3 Scalability Analysis of Parallel WDA-SMACOF

The time cost of each step in WDA-SMACOF is studied within ranging from 100k to 400k fungi

sequence data, with from sequential code to 4096 processors (CPU cores) on BigRed II. The

parallel applications were carried out using parallel WDA-SMACOF implemented with Harp.

Figure 3.25 illustrates the result of increasing data size by fixing the number of processors, i.e.

strong scaling. Note that the computation here is done by using one processor per core. As there

are 32 cores per node, and one core can only get 2GB memory allocation, so the memory is not

sufficient to run larger than 100k data on 512 processors, 200k data on 1024 processors, and 300k

data on 2048 processors. By looking into detail of time cost for 4096 processors, when running for

400k data, the time cost is 3392 seconds, and it is 1.6 times larger than processing 300k data. This

is because the algorithm is quadratic, so the theoretical time cost (without any overhead) for 400k

data over 300k data should be (400k ^ 2) / (300k ^2) = 1.78, which is close to the actual 1.6. This

result stands true also from the ratio of 300k to 200k, where the actual time cost is 2.8 times higher

compared to the theoretical number as 2.3, and 200k to 100k that the actual time cost is 3.2 times

higher compared to the theoretical number as 4. This along with the single core time cost of CG

versus matrix inversion shown in Figure 3.25 proves that the WDA-SMACOF has a quadratic

time complexity on both sequential version and parallel version.

The time cost of parallel WDA-SMACOF can be divided into three large parts: initialization,

communication and computation. The initialization includes the time cost of loading the original

distance matrix and weight matrix into cache memory, which is mainly file I/O. It also includes

the time cost of scheduling from MapReduce. This time cost is fixed disregard the number of

iterations because it only needed to be done once per run. Communication is mainly the broadcast

time of matrix X as well as the collective communication used in Harp that reducer collects the

output from mapper. Computation is the main time cost, which includes the computation of the

main algorithm and formula. The detailed time cost of each step is given in Figure 3.26. This

experiment increases the data size from 100k to 400k, and increases the number of cores from 256

to 4096. Each run is using the minimum number of cores. It shows that with the increasing number

of processors, the computation cost proportion over the main computation is decreasing, but still

Robust and Scalable Multidimensional Scaling with Weighting

58

take up to 65% for 4096 cores on 128 nodes. When the data size is 100k, the computation takes up

to 90% of the total computation time. The communication overhead is increasing with the number

of nodes, increases from 8% on 8 nodes to 30% on 128 nodes. This means the design of parallel

WDA-SMACOF is scalable, and the performance of it while increasing the data size as well as the

number of processors remains reliable.

The computation of WDA-SMACOF includes three parts: first part is the calculation of B(Z)Z,

which is the right hand side of equation (17); second part is the calculation of CG; last part is the

STRESS calculation. In one SMACOF iteration, B(Z)Z computation is done once as well as the

STRESS calculation, but the CG calculation involves multiple iterations of matrix multiplication

operations. The detailed computation time of 100k data over increasing number of cores is given

in Figure 3.27. This figure shows that the proportion of detailed computation time does not vary

much with increasing number of processors since the parallelization of these three jobs are in same

fashion. Averagely, STRESS calculation always takes lowest, around 24.2% of the total

computation time, while CG takes around 32.4% of the total computation time. The most

dominant part of computation is B(Z)Z for this case, as it takes averagely 43.4% of the total

computation time. It proves that the parallel WDA-SMACOF computation won’t be affected be

the increasing number of cores. Note that the result in Figure 3.27 has a variety number, which is

the CG iterations per SMACOF iteration. This is mainly because CG only takes averagely 2.18

iterations per SMACOF iterations for this 100k data case. Averagely, one B(Z)Z operation is 3.1

times longer than one CG iteration, and is 1.8 times longer than one STRESS calculation operation

for 100k data over processors from 256 to 4096.

If CG takes a larger number of iterations, the proportion of time cost on CG computation would be

larger. By increasing the data size, the CG iteration per SMACOF iteration could be increased

slightly. But the time cost per SMACOF iteration and per CG iteration remains the same as shown

in Figure 3.28. It shows is the time cost for each individual MapReduce job using 4096 processors

while the data size increases from 100k to 400k. It shows that the time cost of B(Z)Z is increasing

quadratic with the data size, as same as CG and STRESS calculation per iteration. Note that all

time cost listed here are for single MapReduce job without iterations. And the CG still takes

Robust and Scalable Multidimensional Scaling with Weighting

59

averagely around 3 times longer than one CG computation and about 2 times longer than the

STRESS computation.

By fixing the data size to 100k, and increases the number of processors, i.e. weak scaling, the time

cost is shown in Figure 3.29. The WDA-SMACOF has been parallelized using two iterative

MapReduce frameworks: Twister and Harp. Twister uses a broker to handle the communication

within iterations while Harp uses collective communication techniques. These two

implementations are denoted as WDA-SMACOF (Harp) and WDA-SMACOF (Twister). It shows

that with the help of increasing number of processors, the time cost of Harp for 100k data has

reduced from 1043 seconds to 243 seconds. And the parallel efficiency is shown in Figure 3.30. It

almost near 1 on for 32 nodes (1024 processors), but decreases to 0.82 on 64 nodes (2048

processors). Finally when using 4096 cores, it decreases to 0.56. This is because by fixing the data

size, the communication overhead increases with the number of processors and the computation on

each processors decreases, so the parallel efficiency decreases.

Figure 3.26: The time cost proportion each steps of parallel WDA-SMACOF. The data size and

number of processors vary.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100k/256 200k/1024 300k/2048 400k/4096

P
e

rc
e

n
ta

g
e

Data Size/Number of Processors

Proportion of Time Cost with Various Test

Computation Communication Initialization

Robust and Scalable Multidimensional Scaling with Weighting

60

Figure 3.27: The time cost proportion in one SMACOF iteration of parallel WDA-SMACOF with

100k AM Fungal data by increasing number of processors.

Figure 3.28: The average time cost of the single MapReduce job for three core steps in parallel

WDA-SMACOF with increasing AM fungal data size.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

256 512 1024 2048 4096

P
e

rc
e

n
ta

g
e

Number of Processors

Proportion of Computation Time Cost with
100k Data

STRESS CG B(Z)Z

0

0.5

1

1.5

2

2.5

3

3.5

100k 200k 300k 400k

S
e

co
n

d
s

Data Size

Time Cost for Individual MapReduce job over
Increasing Data Size

B(Z)Z CG STRESS

Robust and Scalable Multidimensional Scaling with Weighting

61

Figure 3.29: The time cost of parallel WDA-SMACOF processing 100k AM Fungal data with

number of processors increased from 512 to 4096.

Figure 3.30: The parallel efficiency of parallel WDA-SMACOF processing 100k AM Fungal data

with number of processors increased from 512 to 4096.

0

200

400

600

800

1000

1200

512 1024 2048 4096

S
e

co
n

d
s

Number of Processors

Time Cost of WDA-SMACOF over Increasing
Number of Processors

WDA-SMACOF (Harp)

0

0.2

0.4

0.6

0.8

1

1.2

512 1024 2048 4096

P
a

ra
ll

e
l

E
ff

ic
ie

n
cy

Number of Processors

Parallel Efficiency of WDA-SMACOF over
Increasing Number of Processors

WDA-SMACOF (Harp)

Robust and Scalable Multidimensional Scaling with Weighting

62

3.4.4 Accuracy of Fixed-WDA-SMACOF

The Fixed-WDA-SMACOF is compared with a normal interpolation technique called MI-MDS in

order to check its time cost and accuracy. The time cost is calculated without the distance

computation for the interpolation technique, i.e. MI-MDS, since distance computation is not

included within the time cost of WDA-SMACOF. The accuracy is evaluated using normalized

STRESS value mentioned in equation (37) for all of the data including in-sample and out-of-

sample. The in-sample data were processed using WDA-SMACOF in order to get the most

accurate result, then the rest out-of-sample data were either interpolated to the target dimension or

being processed using fixed WDA-SMACOF. The number of nearest neighbor that used in MI-

MDS is always the in-sample data size.

This experiment is carried out on the 4640 Artificial RNA data, where in-sample data size

increased from 500 to 4000, and the out-of-sample data size decreases from 4140 to 640. The

normalized STRESS value is given in Figure 3.31 and time cost is given in Figure 3.32. As shown

in Figure 3.31, the normalized STRESS value of MI-MDS and WDA-SMACOF are both

decreasing when in-sample size increases. This is because with the increasing in-sample size, the

part of data that needs to be processed decreases. And the full WDA-SMACOF on the original

data obviously has a lower STRESS value compared to the fixed WDA-SMACOF or interpolation

techniques. On the other hand, the WDA-SMACOF is more accurate than MI-MDS because it

also considered about the distances within the out-of-sample data. The differences between the

their normalized STRESS decreases when the in-sample size increases as well. And when the in-

sample size reaches 4k, their differences is only 0.00002, which is different from the result from

in-sample size 500, where their differences is 0.0007. This means the fixed WDA-SMACOF has a

much larger advantage while processing data with a small in-sample size. Figure 3.32 illustrate the

time cost of both the methods, and WDA-SMACOF is much slower than the MI-MDS method.

This is because WDA-SMACOF has a quadratic time complexity while MI-MDS is linear. The

time cost of WDA-SMACOF decreases with the out-of-sample data size, and the time cost of MI-

MDS reaches maximum as in-sample size 2000. This is because the time cost of MI-MDS is

O(N1×N2) where N1 is the in-sample size and N2 is the out-of-sample size.

Robust and Scalable Multidimensional Scaling with Weighting

63

Figure 3.31: The normalized STRESS value comparison of WDA-SMACOF and MI-MDS. The

in-sample data coordinates are fixed, and rest out-of-sample data coordinates can be varied.

Figure 3.32: The time cost comparison of WDA-SMACOF and MI-MDS. The in-sample data

coordinates are fixed, and rest out-of-sample data coordinates can be varied.

0.076

0.0765

0.077

0.0775

0.078

0.0785

0.079

500/4140 1000/3640 2000/2640 3000/1640 4000/640

N
o

rm
a

li
ze

d
 S

tr
e

ss

In-Sample / out-of-sample Size

Normalized Stress Over Increasing
In-Sample Size

MI-MDS WDA-SMACOF

1

10

100

1000

500/4140 1000/3640 2000/2640 3000/1640 4000/640

S
e

co
n

d
s

In-Sample / out-of-sample Size

Time Cost Over Increasing In-Sample Size

MI-MDS WDA-SMACOF

Robust and Scalable Multidimensional Scaling with Weighting

64

3.5 Conclusion

In this section, WDA-SMACOF and Fixed-WDA-SMACOF are proposed. WDA-SMACOF is an

algorithm that can process input distance matrix with different weight associate with each

distance, so that the particular needs from dissimilarities generated from pairwise sequence

alignment can be met. During the performance analysis, WDA-SMACOF has been proved to have

the most robust and most accurate result comparing to other existing SMACOF algorithms when

applied to DNA, RNA and Protein datasets. And it has a lower time cost compare to the traditional

matrix inversion solution dealing with weight function so that it can be scale to process nearly half

of million data points on over 4000 processors by using iterative MapReduce framework. Fixed-

WDA-SMACOF is an extension to WDA-SMACOF, so that during the dimension reduction

process, the coordinates of a certain part of data points can remain fixed. This is usually for

solving problems associate with reference sequences and new sequences. The experiments showed

that Fixed-WDA-SMACOF has a higher accuracy than the interpolation solution by sacrificing

computation time. This solution can be utilized for future work once a precise dimension reduction

result needs to be obtained with fixed coordinates on a certain set of sequences in target

dimension.

Robust and Scalable Interpolative Multidimensional Scaling

65

Chapter 4. ROBUST AND SCALABLE

INTERPOLATIVE MULTIDIMENSIONAL

SCALING

4.1 Overview

Interpolation [22] is a solution for processing very large scale MDS problems, such as for millions

of sequences. This is because MDS requires quadratic space (memory) and time to process, and if

the data size increases to very large scale and computing resources is limited, one has to use

alternative solutions to address the dimension reduction problem, or known as out-of-sample

problem. One common alternative is to use interpolation, For interpolation, the input dataset is

split into two parts: in-sample dataset and out-of-sample dataset. The MDS algorithm is applied on

the in-sample dataset, so that a high accuracy result could be generated. Then the result of the data,

referred to as out-of-sample dataset, can be interpolated to the in-sample’s low dimension space by

using the high dimension distances generated from in-sample points to the out-of-sample points.

The distances generated in high dimension are the sequence alignment dissimilarities for

DACIDR. As the sequence dissimilarities are not as reliable as the Euclidean distances, so weights

Robust and Scalable Interpolative Multidimensional Scaling

66

may also need to be associated with different distances. This weighted solution for the

interpolation is called W-MI-MDS.

Additionally, the points are independent from each other, so the algorithm could be parallelized

pleasingly. It is also referred to as task-independent parallelization, and it is also referred to as

Online MDS. A tradition way of splitting them is to set the in-sample set as large as possible for

the MDS algorithm since it can generate a more accurate result, then interpolate the rest of the

points into the target dimension. So if the in-sample data size is large, by linearly interpolating the

points into the target dimension, the speed of it may not suffice the requirement as real-time

processing speed. In order to process the data points with a faster speed, some hierarchical

optimization has been discussed in this section in addition to the W-MI-MDS.

4.2 Related Work

To address the out-of-sample problem, many algorithms have been developed to extend the

capability of various dimension reduction algorithms by embedding new points with respect to

previously configured points. An out-of-sample [65] solution has been proposed to multiple

unsupervised learning algorithms, to name a few, MDS, spectral clustering, Isomap and LLE. The

solution was based on a spectral embedding of the data and it was a generalized solution that

shows the embedding between in-sample and out-of-sample points is comparable due to replacing

a few points in the training set. An extension for the algorithms [66] has been proposed based on

the latent variable model by deriving from semi-supervise learning to define out-of-sample

mappings for Laplacian eigenmaps. In MDS, the out-of-sample problem could also be considered

as unfolding problem [11] since only pairwise dissimilarities between in-sample sequences and

out-of-sample sequences are observed. A generalized out-of-sample solution [67] has been

provided that uses coordinate propagation for non-linear dimension reduction. An out-of-sample

extension [68] for the Classical Multidimensional Scaling (CMDS) has been proposed. It has

applied linear discriminant analysis to the labeled objects in the representation space. In contrast to

them, an EM-like optimization solution, called MI-MDS [22] is proposed to solve the problem

Robust and Scalable Interpolative Multidimensional Scaling

67

with STRESS criteria in equation (4), which found embedding of approximating to the distance

rather than the inner product as in CMDS.

As for hierarchical method, ESPRIT-Tree [69] has been proposed address the hierarchical

clustering computation time and space issue. It uses probability sequences and a tree-like structure

in hyperspace to reduce the time and memory usage for sequence analysis where its tree

construction relies on a subset of result from ESPRIT. Although by using ESPRIT-Tree, sequence

clustering has a time complexity of O(NlogN), but the tree construction itself takes O(N
2
) time,

which can only be applied on small dataset. Kd-tree [70] is a famous binary tree for fast data point

classification, and some optimized methods [71, 72] based on it has been proposed later for the

multiple dimensions on different tree level. However, this type of methods can only be applied on

the situation that out-of-sample points have a high dimension coordinates as well as the in-sample

points. Ball-Tree was based on the construction process of Kd-tree, and it does not need the out-

of-sample point to have a coordinates in the original dimension. Cover-tree was later proposed as

an optimized tree based on it. The creation of these types of tree would require the in-sample

points to use its original dimensionality, which is not available for sequence clustering. And one

can adapt to use the coordinates after dimension reduction to do that.

4.3 Weighted MI-MDS

MI-MDS is an iterative majorization algorithm that can minimize the STRESS value in equation

(4), where all weights are assumed to be 1. It will find k nearest neighbors from in-sample points

of a given out-of-sample point at first, and then reduce the STRESS from this out-of-sample point

to its k nearest neighbors by finding the optimized coordinates for it. Then by finding a majorizing

function, its minimum STRESS can be obtained analytically.

MI-MDS has been proved to be efficient when deal with large-scale data. However, it assumed

that all weights equal to one, where it couldn't deal with missing values and different weights. As

mentioned in last section, the dissimilarities generated with sequence alignment may be in need of

assigning weights to the corresponding distances. Therefore, we propose W-MI-MDS to solve

these issues. To solve the weighted out-of-sample problem, we need to find an optimization

Robust and Scalable Interpolative Multidimensional Scaling

68

function for weighted STRESS function for equation (3) instead of equation (4). Note that the

weight added here is the corresponding weights from the sequence alignment dissimilarity

between out-of-sample sequence ̂ and in-sample point i.

4.3.1 Algorithm

By expanding equation (3), the STRESS function can be written in

 () ∑ ̂ ̂

 ∑ ̂ ̂
 () ∑ ̂ ̂ ̂   

 () ()   

where
 is a constant irrelevant to . So similar to the majorizing process in SMACOF, only

 () and () need to be considered to obtain the majorization function. () can be deployed

to

 () ̂‖ ̂ ‖
 ̂‖ ̂ ‖  

 ∑ ̂ ‖ ̂‖ ∑ ̂‖ ‖

 ̂  

where (∑ ̂ ∑ ̂) and is the target dimension. The Cauchy-Schwarz

inequality can be applied on ̂ in () to establish the majorization function. Assume the

distances between two points i and j in a matrix X, which are the ith row and jth row in matrix X,

denoted as xi and xj, and in a different matrix Z, can be denoted as zi and zj. According to Cauchy-

Schwarz inequality, there is

∑ ()() (∑ ()

)

(∑ ()

)

 

Assume that point i is in-sample point, which remains the same, and xj the out-of-sample point as

 ̂, the equation is updated as

∑ (̂)() (∑ (̂)
)

 (∑ ()
)

  

∑ (̂)() ̂  

So the inequality is obtained as

Robust and Scalable Interpolative Multidimensional Scaling

69

 ̂
∑ (̂)()

  

And finally, it is given as

 ̂ ‖ ̂ ‖  

∑ (̂)()

 ̂
  

(̂) ()

  

where is a vector of length which contains (), and ‖ ‖. Do the summation

over all the in-sample point in P, then applying equation (48) to (), we will have

 () ∑
(̂) ()

 

 ̂ ∑

()  

where is a constant irrelevant from . After applying equation (41) and (50) to (39), we will have

 ()
 ∑ ̂ ‖ ̂‖ ∑ ̂‖ ‖

 ̂ ̂ ∑

 ̂ ̂

() (̂)

As both
 and are constants, equation (51) is a majorization function of the STRESS that is

quadratic in . The minimum of this function can be obtained by setting the derivatives of (̂)

to zero, that is

 ∑ ̂ ̂ ∑
 ̂ ̂

()  

 ̂
 ∑

 ̂ ̂

()

∑ ̂
  

where is the previous estimated ̂. This formula is treated as the final formula for W-MI-MDS,

which can guarantee to generate a series of non-increasing STRESS value for from original

distances with various weights. One can simply apply equation (10) to this formula to add DA

optimization to this algorithm, which is given as:

Robust and Scalable Interpolative Multidimensional Scaling

70

 ̂

 ∑
 ̂ ̃ ̂

()

∑ ̂
  

where ̃
 can be obtained using equation (10). But in practice, it is found that this algorithm is

hard to be trapped under local optima. So unless absolute robustness is needed for interpolation

algorithm, it is not necessary to run the D technique on W-MI-MDS.

4.3.2 Parallelization of W-MI-MDS

The parallelization of W-MI-MDS can be done on only MapReduce framework since it is a

pleasingly parallel application. Only map tasks are needed for the computation and there are no

iterations or communication between each independent map task. The flowchart is illustrated in

Figure 4.1. D1 and X1 are copied and loaded into memory on every mapper as the space cost is

linear, and D2 is partitioned and distributed across the mappers. Only one reducer is used here to

combining the final result, which will be in L-dimension so the time cost of doing that in a single

thread is low.

Algorithm 3 W-MI-MDS algorithm

Input: , , , and

Output: as target dimension mapping

1: For each ̂ in do

2: Initialize random mapping for ̂, called ̂

3: while (̂) (̂) do

4: Update ̂ using (53)

5:

6: end while

7: end for

8: return

Robust and Scalable Interpolative Multidimensional Scaling

71

Figure 4.1: The flowchart of parallel W-MI-MDS using an MapReduce framework

4.4 Hierarchical Interpolation

The hierarchical approach is needed for W-MI-MDS is because of the slow sequence alignment

speed. Since in MI-MDS, all distances needs to be calculated in order to find the k-nearest

neighbors for interpolation, the distance calculation of MI-MDS is N1 * N2 assuming there are N1

in-sample points and N2 out-of-sample points. Therefore, each sequence in in-sample set needs to

be aligned with each sequence in the out-of-sample dataset. In practice, this computation time is

dominated by the sequence alignment. In our test, an ASA with 100k 16s rRNA needed several

hours to finish on 800 cores, the total number of alignments in that computation is 100k * 100k /

2. If this 100k is considered as sample set and the rest one million sequences as out-of-sample set,

the total number of alignments will increase to 1m * 100k, which will take 18 times longer than

the ASA computation. Furthermore, for purely computation for the dimension reduction, less in-

sample point always means a faster speed according to equation (54). So in order to address this

Robust and Scalable Interpolative Multidimensional Scaling

72

issue, two novel tree structures has been proposed in here and further performance analysis are

illustrated in the following section.

4.4.1 Sample Space Partition Approach

One way to approach the hierarchical solution is to partition the target dimension space, referred to

as sample space here, in order to generate a tree structure. The concept from astrophysics

simulations (solving O(N
2
) particle dynamics) is used here to split the sample data in L=3-

dimension space into an octree with Barnes-Hut Tree (BH-Tree) [73] techniques. The BH-Tree is

used to reduce the time cost of computing nbody [74] simulation. It recursively divide the n bodies

into quad-tree in 2D space or oct-tree in 3D space, then each node can represents all the bodies

within the its region. Inspired by BH-Tree, the tree called Sample Sequence Partition Tree (SSP-

Tree) proposed in this section is similar to that. First, the sample dataset is divided up into cubic

cells via an octree (in an L=3-dimension space). where the tree node set is divided into two sets:

leaf node set and internal node set. Each leaf node contains one sequence, and each internal node

contains all the sequences belong to its decedents. Each internal node has a child nodes set which

contains the number of its children smaller or equals to 2
L
. Figure 4.2 is an example shown how

the SSP-Tree works in 2D with 8 sequences. If a node contains only one sequence, then it

becomes a leaf node; otherwise it is an internal node. Leaf node e0 to e7 contains the sequences

from A to H accordingly. The internal node i1 contains sequences A, B, C and D. i2 contains

sequences G and H, and i0 contains all the sequence as it is the biggest box.

A tree node i can be represented in only two points in dimension L, which are

(

) and
 (

) where

 denotes the

maximum and
 denotes minimum value of all the points' coordinates value in L dimensions

with . The reason for this representation is that this known SSP-Tree node is a cubic-type

of structure, that lines connecting each vertex at corner are absolutely straight. So there is no need

to store information other than these two points. Thereby, this representation is most efficient for

this particular SSP-Tree.

Robust and Scalable Interpolative Multidimensional Scaling

73

Figure 4.2: An illustration of SSP-Tree with 8 sequences. The upper chart is the tree relationships,

and chart below is the actual representation of SSP-Tree in 2D.

The construction of SSP-Tree follows the next steps: First, every sample points in the target

dimension is scanned, then the upper bound and lower bound of coordinates in the target

dimension is found, so that the root node can be constructed, and initialized as a leaf node.

Second, loop over the in-sample points, and insert the point into the SSP-Tree, following the three

conditions: If current tree node has not been assigned with a sequence (in-sample point), assign the

current point to it; Or if the current tree node is an internal node, insert the current node to its

corresponding children determined by its geometric center; Or if the current tree node is a leaf

node (already got a sequence assigned with it), then remove the sequence assigned and insert this

sequence along with the new in-sample point into this leaf node again. Note that the sequence

Robust and Scalable Interpolative Multidimensional Scaling

74

mentioned here means the original sequence associated with the in-sample point that represents it

in the target dimension space. And it is also worth mention that the only computation for it is to

calculate the center of each tree node. Inserting the sample points into the tree only needs

comparison and assignment. In practice, inserting a hundred thousand points into a SSP-Tree only

takes about a few seconds on a desktop.

In SSP-Tree, every tree node i has contains a set of points, which is denoted as Pi. After generate

the tree from the in-sample points, there are several ways to represent the tree node with a single

point inside. One way is to find the nearest point to its geometric center denoted as
 , which

can be given as

(

)

  

where
 and

 is the representation of tree node i.

But in practice, the cluster of points might be away from a tree node geometric center. And this

may cause the point at the edge of the cluster inside a tree node to represent the tree node instead

of the point near the cluster center. So to solve that, another way of using a single point to

represent the tree node is to find the point near the center of mass instead of geometric center. The

mass center pc of node i is given by the following equation:

 ∑

  

where is the number of sequences (in-sample points) in node i.

By using a single point to represent the tree node, a simple hierarchical majorizing interpolation

method can works as follows: a simple hierarchical majorizing interpolation method (HI-MI) as

follows: One compares an out-of-sample point ̂ ̂ to representative point of tree root first, and

then recursively assign ̂ to a nearest child node by comparing the distances from it to all the

representative points from its children if there is any, until the node containing nearest k neighbors

is reached. This hierarchical method can reduce the time cost of interpolation from O(N*M) to

O(M*logN). However, its accuracy is poor due to the following two reasons: 1) correctness of

Robust and Scalable Interpolative Multidimensional Scaling

75

center point representation: it is obvious that the nodes in leaf set are represented directly by the

points they contain since they only have one point per node, so the representation is 100%

accurate. But their parents may contain multiple points, where could be in a same cluster or

different clusters. There is a good chance that a single cluster being split to multiple internal nodes

until a very high level of tree node is reached. (sometimes to the tree root). Therefore, the lower

node level is, the more likely the points in that node belong to a same cluster. At upper level, the

representation precision becomes worse because the points might be in different clusters. Since

this method searches the tree from top to bottom, where it starts with worst representative point,

there is a high probability that ̂ could be assigned to a node rather than the node its k nearest

neighbors are in. 2) The SSP-Tree is generated using distances after dimension reduction, so the

distances must follows the property of Euclidean distances. However, as the out-of-sample point

interpolated here is does not have a coordinates in the target dimension, the only information here

is the distances from the out-of-sample points to the in-sample points. As mentioned in previous

section, the distances are the dissimilarities generated from sequence alignment, and it is not as

reliable as Euclidean distances. So by using the distance from high dimension to compare and find

the tree node it belongs to in target dimension space may cause some bias.

4.4.2 Hyperspace Approach

As mentioned before, the SSP-Tree may have a problem with using distances from high dimension

space from to interpolate the out-of-sample point but use the distances from target dimension

space to generate the tree. So to solve this issue, one could use the distances from high dimension

space to generate a tree. This idea is originally inspired by BIRCH [75] clustering, where this

algorithm generates a tree in hyperspace for all the data points in order to achieve quasilinear time

complexity. As this tree is in the hyperspace (there is not coordinates information for the in-

sample sequences), the tree is constructed based on the closed neighborhood information, as

referred to as Closest Neighbor Tree (CN-Tree).

The tree nodes of CN-Tree are divided into two sets, the leaf node set and the internal nodes set.

Each leaf node contains one or more sequence, and the internal node contains all the sequences

within its children. Unlike SSP-Tree, each internal node may have more than 2
L
 children, where its

Robust and Scalable Interpolative Multidimensional Scaling

76

child nodes number depends purely on the distribution of the points inside it. Note that a point can

only belong to one tree node at a time, and for CN-Tree, the tree node may overlap each other. If a

point lies within the radius of multiple tree node, it will always goes to the first tree node that it

sees. The illustration of a CN-Tree in 2D is shown in Figure 4.3. The sequences are contained in

the leaf node from e0 to e4 as this is the representation for 8 sequences. And internal node i0 is act

as the root, where i1 and i2 are the two large child node it contains. i1 has 3 child node and i2 has 2

child nodes respectively. And one point is within the radius in both i1 and i2, but it only

considered as in i1 to avoid confliction. And note that each tree node in CN-Tree has an in-sample

point lies on the center and each leaf node may contains multiple sequences. The leaf nodes e0, e3

and e4 all contains 2 sequences while e1 and e2 only contains 1 sequence. This makes i1 contains 4

sequences and i2 contains 4 sequences in total.

In formal definition, each tree node in a CN-Tree can be denoted as {pc, r} where pc is the center

of that tree node, and r is the radius of the tree node. The radius can be chosen arbitrarily or

depends on the overall points locations. Note that scanning over all the distances between each

pair of in-sample points is very in-efficient since it has N
2
 distances if there are N in-sample

points. A few random distances from out-of-sample points to in-sample points can be chosen to

determine the maximum radius for the root node. To generate a CN-Tree, the following steps need

to be taken: First, determine the radius for each level of tree node and the maximum level for the

tree; Second, for each in-sample point, compare it with the existing tree node center points within

same level with a same parent, and follows the 2 situations: if it is inside the radius in an existing

tree node, assign it to that tree node than insert it to the lower level if it is not the lowest level

allowed; if it doesn’t belongs to any tree node, create a new tree node and make it center, assign

the corresponding sequence to that tree node. The difference from the construction of tree process

shows the difference between CN-Tree and SSP-Tree vividly. The CN-Tree will stop when

maximum level of tree node is reached (or some other termination condition, such as the smallest

radius for a tree node). But SSP-Tree will only stop if every leaf node contains only one sequence,

so in CN-Tree, one leaf node may contain multiple sequences. But the leaf nodes in CN-Tree

usually have a very small radius in practice.

Robust and Scalable Interpolative Multidimensional Scaling

77

Figure 4.3: An illustration of CN-Tree with 8 sequences. The upper chart is the tree relationships,

and chart below is the actual representation of SSP-Tree in hyperspace and projected to 2D.

Naturally, the CN-Tree has a point representing its center, so the out-of-sample point can directly

compare to its center in order to decide the nearest tree node it finds, or being contained in. So a

naïve hierarchical approach works similar to the one mentioned in SSP-Tree, where an out-of-

sample point compares the distances from it to the center points of all the children from tree root,

and then recursively assign ̂ to a nearest child node by comparing the distances from it to all the

representative points from its children if there is any, until the node containing nearest k neighbors

Robust and Scalable Interpolative Multidimensional Scaling

78

is reached. This approach avoids the conflicts from using high dimension distances to interpolate

the point but use target dimension distances to generate the tree as CN-Tree is generated using the

distances from original sequence alignment dissimilarity. However, it still suffers from the center

point representation problem mentioned in SSP-Tree approach. Furthermore, as one point may

belongs to a radius from multiple nodes in the same level, two points from a same cluster may

belongs to two different child node because of this. And the dissimilarities from sequence

alignment are not as reliable as Euclidean distances, so the CN-Tree constructed is not as reliable

as SSP-Tree. Here is an example for some detailed explanation: sequence A and B are centers of

two CN-Tree nodes, denote as {A, r} and {B, r}. Sequence C and D belongs to {A, r}, and if a

sequence E is inserted into the tree, it may has a smaller distance with B but larger distances with

A while it is very close to C and D. So if will be inserted into tree node B instead of A to construct

a new child node, while it should stays with C and D and be put into a same node.

4.4.3 Heuristic Majorizing Interpolation

Both of the tree structures proposed here have their own advantages and disadvantages. To

overcome this issue while keeping the lower time cost, a heuristic majorizing interpolation method

is proposed to solve the issues mentioned above. This method puts a preprocessing of the tree

generated, and instead of interpolate the out-of-sample point from the top of the tree, it will

interpolate the point from a middle level of the tree, then searches for several levels until satisfied,

and the lowest level of nodes are called terminal nodes. In this way, the lowest quality of

representative point in both SSP-Tree and CN-Tree can be avoided. Furthermore, because of bias

brought by the space partition of the tree, this approach can void that by preprocessing to find the

high quality tree node first.

In formal definition, denote the terminal nodes set from both tree as T, given a terminal node t ∈

T, the number of points inside that node is denoted as Nt. The level of that tree node is given as Lt.

(Note that this Lt is not the number of target dimensionality). The radius of tree node t is denoted

as Rt, where for CN-Tree, Rt is fixed, and for SSP-Tree, Rt is given by the average over the

geometric center from that tree node its furthest edge and to its shortest edge. The volume of node

t is given as Vt, and the density Dt of node t is given as the following:

Robust and Scalable Interpolative Multidimensional Scaling

79

⁄   

And by giving all those information of a tree node, one can derive a function, which will

determine if a terminal node T is a high quality tree node or not. The general rule is to find a

terminal node which contains major points from one or more clusters. And try to avoid nodes that

contains some points from the edge of several clusters. Suppose all the information contains in a

terminal node t can be written as a vector χt = [Nt, Lt, Rt, Vt, Dt]. The function can be written as:

 ()   

where Ө is a vector of weights associate with each parameters in χt. The Ө can be obtained using

empirical learning or use supervised learning technique such as linear regression or logistic

regression. In this dissertation, the coefficient for f(t) is found using empirical experiences. A

threshold, namely can be set to determine if node t is a high quality node or not. An example of

the high quality terminal nodes found in a 3D SSP-Tree using 100k AM Fungal data is shown in

Figure 4.4.

Figure 4.4: The terminal nodes generated for 100k AM Fungal data in 3D from SSP-Tree using

HE-MI algorithm. The different colors represents different mega regions.

Robust and Scalable Interpolative Multidimensional Scaling

80

The algorithm of heuristic majorizing interpolation (HE-MI) is given in algorithm 4. In order to do

the search hierarchically and try to obtain as many nearest neighbors as possible, the algorithm

must consider the following situations as illustrated in Figure 4.5 to Figure 4.7. Note that these

figures are the example shown as an SSP-Tree in 2D, but for other dimensions and in CN-Tree,

these general rules mentioned as the following also apply. Denote the distance from an out-of-

sample point to center point of tree node t as δ, and the radius of that tree node as Rt

Figure 4.5 shows that if

, that means the ̂ must be inside this node, and the nearest point to

it must be inside this node, too. In Figure 4.6, the situation is

 , that means the ̂ must

be inside this node, and the nearest k points to it might be outside this node and in this node’s

neighbor, so one also needs to check on the neighbor of tree node t. Similar rules applied when

 as shown in Figure 4.7. Theoretically this would never happen if the distances are

Euclidean distances. However, since the distances in high dimension are sequence alignment

dissimilarities, this might happen and once it does, one can check the neighbors of tree node t as

well to see if any tree node that could contain the nearest neighbors of ̂ can be found.

The possible
location for
the out
sample point

Center Point

The possible
area for the
nearest k
points to the
out sample
point

Figure 4.5: The 2D example for interpolating an out-of-sample point into in-sample space with

SSP-Tree. The white points are in-sample points and the black point is the out-of-sample points.

The black circle means the possible position of the out-of-sample point and the dashed circle is the

possible area for the nearest neighbors of that out-of-sample point.

Robust and Scalable Interpolative Multidimensional Scaling

81

Center Point

The possible
location for
the out
sample point

The possible
area for the
nearest k points
to the out
sample point

Figure 4.6: The 2D example for interpolating an out-of-sample point into in-sample space with

SSP-Tree. The white points are in-sample points and the black point is the out-of-sample points.

The black circle means the possible position of the out-of-sample point and the dashed circle is the

possible area for the nearest neighbors of that out-of-sample point.

Center Point

The possible
location for
the out
sample point

Figure 4.7: The 2D example for interpolating an out-of-sample point into in-sample space with

SSP-Tree. The white points are in-sample points and the black point is the out-of-sample points.

The black circle means the possible position of the out-of-sample point and the dashed circle is the

possible area for the nearest neighbors of that out-of-sample point.

Robust and Scalable Interpolative Multidimensional Scaling

82

So instead of searching through top to bottom, we can directly use the high quality representative

points from high quality terminal nodes. Additionally, the number of terminal nodes is much

smaller than number of in-sample points. So the time cost of HE-MI is much lower than MI-MDS

which needs to compare all the sample sequences. HE-MI is described in Algorithm 4. By

applying HE-MI, the time complexity is O(M*NT). The time cost is greater than the naïve

hierarchical method, but the accuracy of interpolation is much higher in practice.

4.4.4 Parallelization of HE-MI

The parallelization of HE-MI is almost as same as shown in W-MI-MDS as shown in Figure 4.1.

It is also a pleasingly parallel application because every out-of-sample point is independent from

any other out-of-sample points. The tree constructed with in-sample points has a copy across every

mapper because the memory cost if very low. And the tree construction only took a few seconds

Algorithm 4 HE-MI algorithm

Input: P, ̂, threshold and N’

Output: Out-of-sample points in target dimension

1. Generate SSP-Tree or CN-Tree based on P.

2. Generate a set of terminal nodes T.

3. For each terminal node t ∈T

4. if f(t) <

5. discard t from T

6. End loop

7. For each out-of-sample point ̂ ̂

8. Function (̂, T):

9. Calculate the distance δ between ̂ with each
 representing t ∈T

10. find nearest terminal node denoted as t0

11. Create empty tree node set as ̂

12. If δ < Rt / 2

13. Add t0 to ̂

14. Else

15. For each neighbor node t of t0

16. Calculate the distance δ between ̂ with

17. If δ < Rt

18. Add t to ̂

19. End loop

20. If total number of points in ̂ < N’

21. Find k nearest points from ̂

22. Apply W-MI-MDS on that

23. Return dimension reduction result for ̂

24. Else

25. Return Function (̂, ̂)

26. End loop;

27. Return result of ̂

Robust and Scalable Interpolative Multidimensional Scaling

83

on a single thread so that no parallelization on this part is needed. Therefore tree construction is

done within each mapper independently.

4.5 Performance Analysis

In the performance analysis, the W-MI-MDS algorithm and HE-MI has been tested separately.

The computing resources includes the computing cluster of BigRed II, FutureGrid Xray and

Quarry. Each compute node on Quarry has 8 cores, and 16GB of memory. And BigRed II and

Futuregrid Xray has been described under section 3.4. The comparison is divided into two main

categories, one is to examine the accuracy and time cost of W-MI-MDS with data that has missing

values; another is to do comparison of the time cost and accuracy of HE-MI using two hierarchical

methods, SSP-Tree and CN-Tree with the original MI-MDS method. In Section 4.5.1 and 4.5.2,

W-MI-MDS is evaluated, and in Section 4.5.3, HE-MI method is evaluated.

4.5.1 Accuracy Comparison of W-MI-MDS

Table 4 The list of data being used in following experiments

 Artificial RNA Hmp16SrRNA COG Protein

Number of In-sample

Sequences
2000 10k 4872

Number of Out-of-sample

Sequences
4640 40k 98572

In this section, Artificial RNA, hmp16SrRNA and COG Protein dataset has been used in the

experiments. The size of in-sample and out-of-sample dataset of these three dataset is illustrated in

Table 4. All the in-sample dimension reduction results were generated using WDA-SMACOF, as

it has the lowest normalized STRESS value. Twister is acted as the MapReduce framework in

these tests. For accuracy test, 4 algorithms has been tested as listed in Table 5. Note that the 2

algorithms with weighting function are derived as in Section 4.3 and the other 2 algorithms

without weighting function are from MI-MDS. The DA technique has been added to both W-MI-

MDS and MI-MDS, and denoted as WDA-MI-MDS and NDA-MI-MDS. The ones without DA

optimization are denoted as WEM-MI-MDS and NEM-MI-MDS, which correspond to the original

name W-MI-MDS and MI-MDS.

Robust and Scalable Interpolative Multidimensional Scaling

84

Table 5 The list of algorithms used for comparison in the performance analysis

 DA EM

Weight WDA-MI-MDS WEM-MI-MDS

Non-Weight NDA-MI-MDS NEM-MI-MDS

As shown in Section 3.5, the three dataset has very different characteristics, so that the normalized

STRESS value may be very different. The normalized STRESS value is given in equation (37).

Each of the tests in this section includes 20 runs for each algorithm, and the error bars are the

maximum value and minimum value from the runs. In all experiment within the section, the

numbers of nearest neighbors were set to the maximum number of in-sample points in the same

dataset. The threshold of difference between two contiguous iterations is set to 10
-6

.

The 2640 out-of-sample Artificial RNA data were tested on a single core use sequential

implementation. The 2000 in-sample data set was generated using the sequential WDA-SMACOF.

10.8% distances from the in-sample data is missing and 10.4% distances from the out-of-sample

data to in-sample data is missing. The normalized STRESS comparison chart is shown in Figure

4.8. The average STRESS value for WDA-MI-MDS is 0.0423 and for NDA-MI-MDS is 0.0618.

Both of the WDA-MI-MDS and WEM-MI-MDS perform 31.5% better than NDA-MI-MDS. But

it shows that the DA-technique is only slight better than the original EM method. Generally

speaking, the weighting function support added here is much better if there are missing distances

presented.

The hmp16SrRNA out-of-sample data has a total number of 40k sequences. The in-sample dataset

is generated using 80 cores on Futuregrid Xray. The rest data were interpolated using the same

number of cores, where the distances were generated beforehand. were tested on a single core use

sequential implementation. 10% from both the in-sample dataset and out-of-sample dataset were

missing. The normalized STRESS comparison chart is shown in Figure 4.9. The performance of

this shows a similar trend as in Artificial RNA data test with on a single core. Both of the WDA-

MI-MDS and WEM-MI-MDS perform 33.8% better than NDA-MI-MDS. But it shows that the

DA-technique is only slight better than the original EM method. So it can be safely assumed that

Robust and Scalable Interpolative Multidimensional Scaling

85

the parallelized version of W-MI-MDS also performs better than original MI-MDS when there are

missing data presented.

The COG Protein data set is slightly different from previous two dataset. First, the in-sample data

is the consensus sequences, instead of randomly chosen from the same dataset. Second, the

visualization result from the dataset shows that no clear separated clusters could be observed. This

is the direct reason for the higher normalized STRESS value calculated using this dataset. 10% of

distances from in-sample sequences to out-of-sample sequences were missing, and 10% of

distances from in-sample dataset were missing as well. The normalized STRESS value is shown in

Figure 4.10. The result shows that the average normalized STRESS value is 0.1067 for WDA-MI-

MDS. The non-weighted version of MI-MDS gives a normalized STRESS value of 0.1132. The

WDA-MI-MDS performs 3% better than the WEM-MI-MDS, which is already a better

performance compare to the performance in other dataset. The WEM-MI-MDS only has a upper

boundary and lower boundary of 5*E06, which is 0.01% difference during all 20 runs in the

experiments.

In all the experiments carried out for MDS interpolation, there is not much difference in all the

runs in terms of final normalized STRESS value. Different from SMACOF algorithm, the

normalized STRESS value from MI-MDS (NEM-MI-MDS) and W-MI-MDS (WEM-MI-MDS)

won’t vary much among all experiments for these very different 3 dataset. By adding DA

optimization to these two algorithm, the normalized STRESS value dropped at max of 3%, with a

trade off of time increasing by at least 2 times. So generally speaking, the performance of W-MI-

MDS should suffice in most cases, unless very accurate result is needed.

Robust and Scalable Interpolative Multidimensional Scaling

86

Figure 4.8: The normalized STRESS value comparison between 4 MDS algorithms using 2000

Artificial RNA sequences as in-sample data, and 2640 Artificial RNA sequences as out-of-sample

data. All 4 algorithms in this experiment are sequential.

Figure 4.9: The normalized STRESS value comparison between 4 MDS algorithms using 10k

hmp16SrRNA sequences as in-sample data, and 40k hmp16SrRNA sequences as out-of-sample

data. All 4 algorithms in this experiment are parallel algorithms using 80 cores.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

2640 Artificial RNA

N
o

rm
a

li
ze

d
 S

T
R

E
S

S

Artificial RNA STRESS Comparison

WDA-MI-MDS WEM-MI-MDS

NDA-MI-MDS NEM-MI-MDS

0

0.01

0.02

0.03

0.04

0.05

0.06

40k hmp16SrRNA

N
o

rm
a

li
ze

d
 S

T
R

E
S

S

hmp16SrRNA STRESS Comparison

WDA-MI-MDS WEM-MI-MDS

NDA-MI-MDS NEM-MI-MDS

Robust and Scalable Interpolative Multidimensional Scaling

87

Figure 4.10: The normalized STRESS value comparison between 4 MDS algorithms using 4872

consensus sequences as in-sample data, and 95672 COG sequences as out-of-sample data. All 4

algorithms in this experiment are parallel algorithms using 40 cores.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

95672 COG Protein

N
o

rm
a

li
ze

d
 S

T
R

E
S

S

COG Protein STRESS Comparison

WDA-MI-MDS WEM-MI-MDS

NDA-MI-MDS NEM-MI-MDS

Robust and Scalable Interpolative Multidimensional Scaling

88

4.5.2 Time Cost Analysis of W-MI-MDS

The time cost analysis for these 4 algorithms were only depends on the algorithm processing

speed, since the distance calculation for each dataset is fixed and separate. In this section, the time

cost of the 4 algorithm mentioned in previous section is illustrated and discussed, followed by the

detailed analysis.

The time cost of interpolating 2640 out-of-sample sequences into 2000 in-sample sequences is

shown in Figure 4.11. The time variance (maximum time – minimum time) of WDA-MI-MDS is

averagely 11.4% of the average time cost, and for WEM-MI-MDS, it is 25.1%. So the DA

technique makes the time cost more stable, although the absolute difference from maximum time

cost to minimum time cost is higher. This is because the DA technique makes the WDA-MI-MDS

performs 9.1 times slower than WEM-MI-MDS and NDA-MI-MDS performs 9.7 times slower

than NEM-MI-MDS. Furthermore, both weighted solutions perform slight faster than non-

weighted solutions.

The experiments on parallel version of these 4 algorithms shows similar result using

hmp16SrRNA data as illustrated in Figure 4.12. The algorithms optimized by DA techniques are

averagely 5 times slower than the original algorithm. And the algorithms using W-MI-MDS are

averagely 6.3% faster than the non-weighted versions, with 10% of the distances missing in this

dataset.

Finally, with the COG protein dataset, that has over 95k sequences needs to be interpolated, the

result is slightly different from the previous two dataset as shown in Figure 4.13. This is due to the

same reason of convergence speed mentioned in experiments carried out in Section 3.5. For this

particular dataset, the non-weighted methods will not converge on the STRESS value with missing

distances, rather than converge on the all the distances. So when the non-weighted program

terminates, the weighted program will keep running until correct converge point is found. So the

weight solution are slower because of more iterations were carried out. Also, in this test, the DA

technique enabled methods only performs 1.26 times slower than the original methods. This

Robust and Scalable Interpolative Multidimensional Scaling

89

means for this particular dataset, where points are mostly evenly distributed over the space, the

EM methods likes to converge at the same speed even with the DA optimization.

To do the future analysis on the time cost with this bias result on different dataset, the experiments

were carried out with fixed number of iterations, so the time cost on each iteration can be studied.

The result is shown in Figure 4.14. The dataset is selected using the 40k out-of-sample

interpolated to 10k in-sample from hmp16SrRNA dataset. The iterations were fixed to 50, Note

that the difference on the time cost of normal interpolation algorithms and DA optimized

interpolation algorithms is the number of iterations. So to make the comparison consistent, only

original algorithms were tested, denoted as W-MI-MDS for weighted version and MI-MDS for

non-weighted version, which are equivalent to WDA-MI-MDS and NDA-MI-MDS with the initial

temperature set to zero. The result shows that the speedup over the percentage of missing distances

from W-MI-MDS to MI-MDS is almost linear. This is because the W-MI-MDS algorithm is

pleasingly parallel algorithm, so there are no communications overhead. And if a distance is

considered as missing, the algorithm can skip the whole computation about that in-sample point

out. Therefore, when the percentage of missing distances hit 90%, W-MI-MDS is 4.15 times faster

than MI-MDS.

In general, the time cost analysis shows that the W-MI-MDS can be faster than original MI-MDS

when the data size is fixed. The time cost of using DA technique is generally very high. With the

very little increases in accuracy and robustness, it is not suggested to apply DA technique on the

interpolation unless very accurate result is needed.

Robust and Scalable Interpolative Multidimensional Scaling

90

Figure 4.11: The time cost comparison between 4 MDS algorithms using 2000 Artificial RNA

sequences as in-sample data, and 2640 Artificial RNA sequences as out-of-sample data. All 4

algorithms in this experiment are sequential.

Figure 4.12: The time cost comparison between 4 MDS algorithms using 10k hmp16SrRNA

sequences as in-sample data, and 40k hmp16SrRNA sequences as out-of-sample data. All 4

algorithms in this experiment are parallel algorithms using 80 cores.

0

20

40

60

80

100

120

2640 Artificial RNA

S
e

co
n

d
s

Artificial RNA Time Cost Comparison

WDA-MI-MDS WEM-MI-MDS

NDA-MI-MDS NEM-MI-MDS

0

50

100

150

200

250

300

40k hmp16SrRNA

S
e

co
n

d
s

hmp16SrRNA Time Cost Comparison

WDA-MI-MDS WEM-MI-MDS

NDA-MI-MDS NEM-MI-MDS

Robust and Scalable Interpolative Multidimensional Scaling

91

Figure 4.13: The normalized STRESS value comparison between 4 MDS algorithms using 4872

consensus sequences as in-sample data, and 95672 COG sequences as out-of-sample data. All 4

algorithms in this experiment are parallel algorithms using 40 cores.

Figure 4.14: The time cost of W-MI-MDS and MI-MDS processing 40k hmp 16S rRNA data

interpolating to 10k hmp 16S rRNA using 80 cores by fixing the iteration to 50 and increases the

percentage of missing distances randomly.

0

20

40

60

80

100

120

140

160

95672 COG Protein

S
e

co
n

d
s

COG Protein Time Cost Comparison

WDA-MI-MDS WEM-MI-MDS
NDA-MI-MDS NEM-MI-MDS

0

50

100

150

200

250

10% 20% 30% 40% 50% 60% 70% 80% 90%

S
e

co
n

d
s

Percentage of Missing Distances

Time Cost Over Missing Distances

W-MI-MDS

MI-MDS

Robust and Scalable Interpolative Multidimensional Scaling

92

4.5.3 Performance of HE-MI

The HE-MI algorithm used in this experiment includes two version, one with SSP-Tree, denoted

as HE-MI (SSP) and the other is with CN-Tree, denoted as HE-MI (CN). The naïve hierarchical

method is implemented using SSP-Tree, denoted as HI-MI (SSP). The experiment were tested on

using 100k data selected from hmp16SrRNA data, where 10k to 50k of that data are selected as in-

sample data, where the rest data are out-of-sample data and needs to be interpolated to the in-

sample result. The in-sample data are processed using the DA-SMACOF algorithm (with all

weights equal 1) in order to get a most accurate result. The time cost is shown in Figure 4.15. It

shows that the time cost of HI-MI using SSP-Tree is much lesser than the other methods because it

uses hierarchical method to avoid most of the distance computation. The time complexity of it is

O(N*logN) where N is the in-sample size and N2 is the out-of-sample size. So when the in-sample

size increases, the time cost decreases because the size of out-of-sample data decreases. HE-MI

(SSP) and HE-MI (CN) took around 1000 seconds to finish with 10k in-sample data while HI-MI

(SSP) uses 600 seconds. When the in-sample data size increases to 50k, the time cost of HE-MI

(SSP) took 1979 seconds and HE-MI (CN) took 2046 seconds. The HI-MI time cost decreases to

270 seconds. In meanwhile, the time cost of MI-MDS increases from 27000 seconds to 79000

seconds. This shows that HE-MI greatly reduced the time cost of MI-MDS, but would have a

higher time cost than HI-MI method. However, the accuracy of HI-MI method is the worst among

all methods compared here. This can be observed from Figure 4.16. The HI-MI always has the

largest normalized STRESS value and its STRESS value remains the same from in-sample size

10k to 40k. All other methods has a decreasing STRESS value with increasing in-sample data size

because of the reason mentioned above. The HE-MI (SSP) has a very similar performance with

HE-MI (CN) method, and for 10k to 40k data, it has a lower STRESS value. When the in-sample

data size increases to 50k, HE-MI (CN) performs better than HE-MI (SSP). The MI-MDS always

has the lowest STRESS value, which is around 15% better than the other two HE-MI methods, but

its time cost is around 27 to 67 times larger than them.

Robust and Scalable Interpolative Multidimensional Scaling

93

Figure 4.15: The time cost comparison of 4 MDS interpolation methods using 100k hmp16SrRNA

data, and divided into in-sample and out-of-sample datasets. The in-sample dataset increases while

out-of-sample decreases.

Figure 4.16: The normalized STRESS value comparison of 4 MDS interpolation methods using

100k hmp16SrRNA data, and divided into in-sample and out-of-sample datasets. The in-sample

dataset increases while out-of-sample decreases.

1

10

100

1000

10000

100000

10k/90k 20k/80k 30k/70k 40k/60k 50k/50k

S
e

co
n

d
s

In-sample / out-of-sample Size

Time Cost Comparison over Increasing In-
sample Size

HE-MI (SSP) HE-MI (CN)

HI-MI (SSP) MI-MDS

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

10k/90k 20k/80k 30k/70k 40k/60k 50k/50k

N
o

rm
a

li
ze

d
 S

T
R

E
S

S

In-sample / out-of-sample Size

Normalized STRESS Comparison over
Increasing In-sample Size

HE-MI (SSP) HE-MI (CN)

HI-MI (SSP) MI-MDS

Robust and Scalable Interpolative Multidimensional Scaling

94

4.6 Conclusion

This section mainly proves two optimizations to the MDS interpolation problem (also referred to

as in-sample and out-of-sample problem). First optimization is adding weighting support for an

algorithm similar to the majorization process from SMACOF algorithm, so called W-MI-MDS

(weighted majorizing interpolative MDS). This algorithm successfully added support for distances

generated from in-sample to out-of-sample with various weights, including missing distance

values. From the performance analysis, it shows that if the data has different weights (instead of

all 1) associate with each pair of distances, the W-MI-MDS will always yield the result with

highest accuracy. Also, if there are portion of original distances generated from sequence

alignment considered as missing, W-MI-MDS will reduce the time cost as well. The second

optimization was focused on the hierarchical method that introduced with MDS interpolation. This

problem originates from the necessity of finding k-NN in-sample points while interpolating an

out-of-sample point. And for those whose distance computation takes a long time, such as

sequence alignment, the hierarchical method proposed here can significantly reduce the time cost

compare to the linear method by sacrificing the accuracy. Furthermore, a heuristic optimization

has been proposed using tree-structure to improve the accuracy. Finally, the algorithm proposed as

HE-MI has a sub-linear time cost with an approximate result with original method.

Determine Phylogenetic Tree with Visualized Clusters

95

Chapter 5. DETERMINE PHYLOGENETIC

TREE WITH VISUALIZED CLUSTERS

5.1 Overview

The traditional Phylogenetic Tree generation method uses multiple sequence alignment first, then

followed by some traditional method, such as with RAxML. The displaying method of

phylogenetic tree is limited to the several tree diagrams solely in 2D or 3D. Traditional tree

display software, such as MEGA6 [76], Seaview [77] and FigTree [78] only display trees

separately from the clustering result, so it is difficult to observe the relationships between the

phylogenetic tree and the clustering result. Note that a phylogenetic tree automatically constructed

on a single core is usually with dozens of sequences since the computation cost of the high

accuracy algorithms are high, such as a famous maximum likelihood method RAxML [45]. If the

number of sequence increases, the time cost of generating the tree as well as doing the multiple

sequence alignment will increases dramatically. One may need takes days to process thousands of

sequences automatically. Clustering, on the other hand, has a lower accuracy to classify the gene

families than the phylogenetic analysis, but it cost much less time with the pairwise sequence

alignment and traditional hierarchical clustering method. Once the clustering result is projected in

a 2D or 3D space, one can either determine or project the phylogenetic tree using the same

sequence data into the clustering mapping result.

Determine Phylogenetic Tree with Visualized Clusters

96

More specifically, by using DACIDR [46], each sequence is represented as a point in the target

dimension space, i.e. the 3D space. Also, by using RAxML, all the sequences are represented as

leaf nodes in the phylogenetic tree. Therefore each leaf node in the phylogenetic tree corresponds

to a point in the 3D dimension reduction result. Here we propose a combined method to address

those limitations. For clustering, DACIDR uses a multidimensional scaling (MDS) technique to

visualize sequence similarity among all sequences in a dataset as a way to infer clusters of similar

sequences directly, without the need to define a sequence similarity-threshold (we will refer to this

method as MDS cluster visualization). Because MDS cluster visualization allows the observation

of sequence similarity of datasets directly, it is a promising technique for determining sequence

clusters from high throughput sequencing. However, it is unclear how accurately groups of similar

sequences found with the visualization correspond with defined taxonomic groups. In order to

evaluate the taxonomic accuracy of groups identified with MDS cluster visualization, a

phylogenetic tree was created using maximum likelihood based methods on the same sequence

dataset. This tree is created by using multiple sequence alignment on the same dataset first, then

use RAxML software to generate the tree in a text format. By another method referred to as

Interpolative Joining, this tree can be determined in the MDS clustering in the target dimension.

So the clustering and tree’s evolutionary path can be viewed simultaneously. This novel approach

allows the clear observation of clustering and phylogeny so that hidden structures from a tree can

be exposed in the 3D space.

5.2 Related Work

As the process of determine phylogenetic tree with cluster visualization involves both clustering

and phylogenetic tree displaying method, so in this section, related work of both of these two areas

were discussed. Different from traditional hierarchical clustering methods, clustering methods that

use inferences about phylogenetic relationships between sequences also do not require defined

sequence similarity thresholds, although these methods are more computationally intensive

because they require multiple sequence alignment. The Generalized Mixed Yule Coalescent

(GMYC) method [79] is the most widely used of these clustering techniques. From the pattern of

Determine Phylogenetic Tree with Visualized Clusters

97

single gene evolution (the coalescent) derived from a given sequence dataset (like for the 28S

rRNA gene), GMYC uses a maximum likelihood approach to determine the transition point

sequence changes representing speciation (Yule) events to those representing coalescent events

(population divergence within the same species) [80]. A recently proposed alternative to the

GMYC method is the Poisson Tree Process (PTP), which is computationally faster than the

GMYC method while also achieving increased clustering accuracy [81]. The PTP estimates

species clusters using a maximum-likelihood phylogenetic tree produced from the sequences as a

guide (instead of the coalescent tree required for the GMYC method), and assumes that each

nucleotide substitution has a fixed probability of being the basis for a speciation event. The PTP is

able to give accurate species determinations regardless of the amount of sequence similarity

between the species being compared. However the PTP still requires either multiple sequence

alignment or a guide phylogenetic tree in order to cluster sequences, and therefore is

computationally more costly than a clustering algorithm that uses pairwise sequence alignment.

The methods used for phylogenetic tree creation have become more standardized compared to

clustering techniques. The most commonly accepted methods are probabilistic approaches

including maximum likelihood (RAxML) [45] and Bayesian [44] methods . Because both of these

methods incorporate uncertainty phylogenetic tree construction, they are thought to provide

phylogenies that are closely aligned with actual patterns of evolutionary history.

In terms of displaying methods for phylogenetic trees, there are many innovative displaying

methods proposed during the past few years [82]. Mega6 [76], Seaview [77] and FigTree [78] are

some popular software that enables visualizing and editing trees in 2D. These type of software

provides a full solution of manipulating phylogenetic trees so that it can be displayed in

cladogram, phylogram or even more tree diagrams. There are some existing software that enables

displaying phylogenetic tree in 3D as well. Paloverde [83] is a program designed to visualize the

phylogenetic structure in an interactive virtual 3D world. It implements radial 2D layouts and

spiral 3D layouts. It can display up to 2500 leaf nodes of a given phylogenetic tree. H3 [84] is

software that uses hyperbolic structure to visualize phylogenetic tree in 3D so that more nodes

could be displayed simultaneously. It successfully displayed over 20,000 nodes by using

Determine Phylogenetic Tree with Visualized Clusters

98

hyperbolic navigation to reduce visual clutter. Arena3D [85] introduces a new concept of

staggered layers in 3D space. It combined multiple clustering and tree construction algorithms in

order to handle large scale phylogenetic tree with multiple connections. Its novel approach can

successfully identify some hidden information within a phylogenetic tree that could not be found

within 2D structure. TreeTracker [86] proposed a general strategy to determine the congruence

between a hierarchical and a non-hierarchical classification. It finds the sequences clusters based

on a constructed phylogenetic tree in 2D, usually as a circular cladogram. It avoids

overrepresentation by considering the likelihood of the topology of phylogenetic tree.

5.3 Phylogenetic Tree Visualized in 3D

As mentioned previously, by using DACIDR, each sequence is represented as a point in the target

dimension space, i.e. the 3D space. Also, by using RAxML, all the sequences are represented as

leaf nodes in the phylogenetic tree. Therefore each leaf node in the phylogenetic tree corresponds

to a point in the 3D dimension reduction result. To display the clustering result with phylogenetic

trees, one way to do that is to display the clusters of sequences on one side, then the phylogenetic

tree on the other side. This can be generated using a cladogram, where each point from the tree

node is projected into a corresponding point in the clustering result. The other way is to display

these two result tightly coupled, so that each point in clustering result directly represents a

sequence from the tree. These two methods are discussed separately in the following section.

5.3.1 Cuboid Cladogram Generation

As the clustering result is generated in a 3D space, one intuitive way to view the clustering result

and the tree together is to display the clustering result on one side, while the tree is displayed on

the other side. This method is solely used to verify the result between the clustering and

phylogenetic analysis generated in a separate method using the same sequence set. The cladogram

from a purely tree diagram can be project to the clustering result so that each point in the target

dimension space correspond to a leaf node in the phylogenetic tree. The clustering result is also

referred to as the MDS dimension reduction result (MDS Clustering). Instead of building tree from

top down (like what most algorithm would do), the tree can be built from the MDS clustering

Determine Phylogenetic Tree with Visualized Clusters

99

result, i.e. from down to top. Once the phylogenetic tree is generated from a traditional method,

the tree can be projected onto the clustering result.

To find the suitable plane for the phylogenetic tree to be projected to, one can either randomly

select a plane or use the best possible plane. The random selection may has a problem that the tree

is projected to a plane that points are not clearly separated. Figure 5.1 shows an example of a

phylogenetic tree with 8 sequences and the same 8 sequences with clustering result. Assume that

this tree is constructed using a traditional method, and if one needs to display the tree

simultaneously with the clustering, one needs to choose which dimension it wants to be projected

to. In current example, as the both the clustering and the trees are in 2D, one needs to project the

tree into a one dimension plane (a line) within the 2D clustering where the points are lied on. A

random choice could end up choosing a tree shown in Figure 5.2. It shows that the tree is not well

projected, and the lines were overlapping with each other so that it hard to observe the connections

between the leaf points.

Figure 5.1: The left hand side of the graph representation is a cubic cladogram displayed with 8

sequences. The right hand side of the graph is the same 8 sequences visualized in 2D after

dimension reduction.

Determine Phylogenetic Tree with Visualized Clusters

100

Figure 5.2: The example of choosing a random line to project all the sequences to and draw the

given cubic cladogram accordingly.

And in practice, an obviously good choice of the line would be the same line as shown in Figure

5.3. This is because the points that projected on this line are spread out instead of crowded

together as shown in Figure 5.2. One way to select a best possible plane is to use the principal

component analysis (PCA) [87] on that. The PCA is a popular method that used for dimensionality

reduction based on the vectors in the original dimensionality, which is 2 in this example. It can

transform the data to a new coordinate system such that the greatest variance comes to a certain

coordinate (usually the first one). Suppose the target dimension for the clustering result is in L-

dimension and there are number of N points, the MDS clustering coordinates can be represented in

an N×L matrix, denoted as X. The general solution for PCA involves singular vector

decomposition on the original matrix X. In in the example given as in Figure 5.1, x is a 8×2

matrix. So there are 2 dimensions generated by PCA that gives the largest variance and the

smallest variance of the coordinates on that dimension. The Figure 5.4 actually shows the line

which gives the largest variances. Compared to the random choice shown in Figure 5.2, the

projected tree is much clearer, and the correlations between the clustering result and the

phylogenetic tree can be intuitively observed.

Figure 5.3: An example of a good choice of projection line as the dotted line within 8 sequences

visualized in 2D space.

Determine Phylogenetic Tree with Visualized Clusters

101

Figure 5.4: The example of choosing a good projection line determined by PCA to project all the

sequences to and draw the given cubic cladogram accordingly.

As shown in the 2D plot, the branches sometimes can overlap each other if a projection from

clustering to a certain line is made. This could cause in-efficient display if some dimension similar

to Figure 5.2 is chosen. Additionally, one cannot guarantee the clean coordinates system such as in

Figure 5.4 exists in every clustering result and phylogenetic tree result. In this particular example,

all the sequences has the same order as from clustering result to phylogenetic tree. If they have

different order, the branches from the projected tree may be overlapping with each other, e.g. if

sequence A and sequence E swap location. So to avoid that, one more dimension can be added to

this method. If the clustering result is shown in 3D and the tree is projected onto a 2D plane, the

overlapping of the branches won’t be an issue since the branches are in 1D. The example graph is

shown in Figure 5.7. This graph is referred to as cuboid cladogram. This is because the

phylogenetic tree displayed in the graph won’t show difference lengths between the leaf nodes and

their parents. The phylogenetic tree here could be a rooted tree and an outgroup can be added as

well. Once the plane with the largest variance is found for the 3D coordinates, the points are

projected onto that plane. Then each pair of points, which correspond to each pair of leaf nodes

shared the same parent are selected in the plane, their parent will be a new point which is the exact

middle point of the connection between these two points. The parent will be draw one level higher

Determine Phylogenetic Tree with Visualized Clusters

102

than its children. The process is recursively done until all points, including the root and the

outgroup points are drawn.

Figure 5.7, Figure 5.8, and Figure 5.9 illustrates the example of cuboid cladogram in 3d with the

MDS clustering result. This result is generated from 446k fungal data, where 126 representative

sequences from each cluster is selected, along with 74 sequence from GenBank shown in different

color. The screen shot are from two different angel, one is from the side of the tree and the other is

from the top of the tree. From the these figures, the correlations between the phylogenetic tree and

the clustering can be easily observed. And in this graph, it shows that the phylogenetic tree and the

MDS clustering have very high correlation.

To summarize, the cuboid cladogram took the following steps to generate: 1) generate the

phylogenetic tree using traditional method; 2) generate the MDS clustering result; 3) Use PCA to

find the plane with coordinates that has largest variance; 4) project the points from clustering onto

the plane; 5) generate the cladogram from the points on the plane. Finally, by viewing the tree

plot in 3D along with the clustering result, the clustering and phylogenetic analysis can be done

simultaneously.

5.3.2 Spherical Phylogram Generation

The Cuboid Cladogram is one way to display the clustering and the tree together by displaying the

clustering result on one side and project all tree leaf nodes to the clustering result by selecting the

plane with largest variance of all coordinates. But in some cases, the points may overlap with each

other once a projection is done on a selected plane. It will be confusing if clear observation is

needed between the phylogenetic analyses and clustering analysis. Moreover, the cladogram does

not preserve the branch lengths between each pair of internal nodes. Therefore, in this section, a

new plot called Spherical Phylogram [63] (SP) is proposed. The method displays an existing

phylogenetic tree by using the clustered sequences from the same dataset directly as leaf nodes of

the tree. This allows for direct visual comparison between the phylogenetic tree and the sequence

clusters. The generated tree can is shown in 3D, and the branch lengths correspond to the

dissimilarities between each pair of the internal nodes.

Determine Phylogenetic Tree with Visualized Clusters

103

Figure 5.5: The example of distance calculation in a phylogenetic tree with 3 leaf nodes and 2

internal nodes.

The internal nodes cannot be directly observed because they represent hypothetical ancestor

sequences, and therefore the distances from internal nodes to leaf nodes of the generated

phylogenetic tree are unknown. By using RAxML, it is possible to calculate distance from an

internal node to another node by using the summation over all the branches between them. For

example, in Figure 5.5, the distance between point C and E can be calculated by summing over

branch(C, B), branch(B, A) and branch(A, E). This distance calculation can generate a pairwise

distance matrix for all the nodes based on all the branch lengths. However, the sum of branch

lengths does not work to find the distance between pairs of leaf nodes since the pairwise distances

between leaf nodes are already known from the MDS cluster visualization results. For example,

the distance between leaf node C and D shown in Figure 5.5 is clearly not equal to branch(B, C) +

branch(B, D). Therefore if the summation over the branches is used for defining distances during

interpolation, the result will have a high bias because different distances were used for leaf nodes.

Therefore, we chose the distance calculation method used in neighbor joining [42] (NJ) algorithm

to calculate the distances between internal nodes based on the existing distances between leaf

nodes so that all distances used for visualization are consistent, which is also referred to as tree

distance.

The NJ algorithm starts with a completely unresolved tree, whose topology corresponds to that of

a star network, and ends once the tree is completely resolved and all branch lengths are known.

The core idea of this algorithm is to find a way of constructing a tree that follows the balanced

minimum evolution (BME) criterion, which generates the optimal tree topology and minimizes the

branch lengths of the tree. Therefore we use the same strategy to interpolate the phylogenetic tree

Determine Phylogenetic Tree with Visualized Clusters

104

into the MDS cluster visualization result to generate a SP that will have a minimum total branch

length. Nevertheless, if the SP matches the original phylogenetic tree better, the sum of all the

branches will be shorter.

The distance calculation used here is similar to the one used NJ, and it can be formulated

according to the following: suppose we have n existing points, denoted as .

And a point can be represented as a vector in L-dimensions. The distance

between two points and is denoted as () and can be calculated as Euclidean distance

using the following equation:

 () √∑ ()

   

Given any two points , there are two corresponding leaf nodes in the phylogenetic tree.

Their parent is denoted as a new point ̂ that can be interpolated into the target dimension space.

The distance from ̂ to and can be given in the following equations:

 (̂)

 ()

∑ (() ()

) 

Because all of the distances follow three basic rules for mentioned in Section 1.2, all distances

are symmetric, i.e. () (), and (̂) can be calculated as

 (̂) () (̂) 

The distances from to all other points, except and , can be obtained using the following

equation where where and :

 (̂)

(() () ()) 

Note that equation (59) is the Euclidean distance calculation and equation (60) to equation (62) are

the calculation of the minimum evolution path for any given two points in P, so that for any

internal node in the phylogenetic tree, its distance to all other points can be obtained using the

equations above.

Determine Phylogenetic Tree with Visualized Clusters

105

When the distances from the internal nodes to all other points are obtained, we can then interpolate

the internal node as a point into the target dimension space. In our case, the points in the 3D space

that correspond to the phylogenetic tree’s leaf nodes are the in-sample data, denoted as P, and the

points representing internal nodes are the out-of-sample data, denoted as ̅. By using equations

(59) to (62), the distance of an out-of-sample point ̂ to all other in-sample points is calculated as

the original distance for interpolation, which is denoted as ̂ . After ̂ is interpolated to L-

dimension, it can be represented as a vector ̂ with length L. Nevertheless, the in-sample points

and out-of-sample points in the L-dimension can be defined as , where

 and . The distance from ̂ to all other points can be obtained using

equation (1), which is the Euclidean distance in 3D space, denoted as d(X). So for each out-of-

sample point ̂, there is a difference between the Euclidean distance in the L-dimension and the

original distance, and the object function is given as in equation (3).

Equation (60) and equation (62) give the distance calculation formulas for the internal nodes,

which are also referred to as the out-of-sample points in previous section, and equation (3) gives

the STRESS value of using interpolation for the internal nodes. For each internal node, W-MI-

MDS can be applied to find its location in the target dimension space. However, not all internal

nodes from the phylogenetic tree were selected only based on the leaf nodes. Since in traditional

Algorithm 5 Interpolative Joining algorithm

Input: , ̅, , ̅

Output: P as the spherical phylogram

1. For each pair of siblings (,) in T

2. Find their parent ̂ in ̅

3. Find point and in P

4. For other point in P

5. Compute (), () using (4)

6. End for

7. Compute (̂)and (̂) using (5) and (6)

8. For other point in P

9. Compute (̂) using (7)

10. End for

11. Use (8) as object function and W-MI-MDS to compute ̂

12. Remove and from T

13. Add ̂ into T and remove ̂ from ̅

14. Add ̂into P and remove ̂ from ̅,

15. End for

16. Return P

Determine Phylogenetic Tree with Visualized Clusters

106

out-of-sample problems, the in-sample dataset remains the same during interpolation, it is not

applicable to use those kinds of algorithms for internal node interpolation. The most right diagram

in Figure 5.5 gives an example of how the internal nodes are interpolated during neighbor joining.

Node A is interpolated based on node E and node B, which is also an internal node for the entire

phylogenetic tree shown in the most left diagram.

To solve that problem, we proposed an algorithm called Interpolative Joining (IJ). In IJ, the in-

sample dataset needs to be modified during the interpolation process. Because the out-of-sample

points are interpolated one by one, each out-of-sample point that is already interpolated is added

into the in-sample dataset and will be considered as an in-sample point for subsequent out-of-

sample points. To do this, the IJ algorithm searches the tree from the bottom up. Every time two

leaf nodes are found that share the same parent, those two leaf nodes are used to calculate the

coordinates for the internal node. The two leaf nodes will then be removed from the tree, and the

newly interpolated internal node will be considered a new leaf node. This is demonstrated in

Figure 5.5, point C and D are discarded from the leaf node set once node B is interpolated.

However, these two in-sample points, which correspond to the two leaf nodes, will remain in the

in-sample dataset. Therefore, the total number of nodes for the input phylogenetic tree will be

decreasing and the size of the in-sample dataset will be increasing during the interpolation process.

In formal definition, and ̅ are used in terms of in-sample and out-of-sample points in L-

dimension; is the set of leaf nodes and ̅ is the set of internal nodes from the phylogenetic tree.

Therefore is the representation of in the target dimension space. For each pair of leaf nodes

and that have the same parent ̂, there is a pair of in-sample points which are denoted as point

and in P that represents them. Immediately after ̂ is found, the ̂ that represents it is initialized

as a random point and added into ̅. After ̂ is interpolated into the L-dimension space, ̂ is

removed from ̅ and added into P. The and will be removed from T, and ̂ is added into T and

removed from ̅. Nevertheless, ̅ will always contain only one out-of-sample point during each

iteration, where the iteration number equals the number of internal nodes in ̅ at the beginning.

The detailed process of IJ is illustrated in Algorithm 5. As the calculation of Euclidean distance

Determine Phylogenetic Tree with Visualized Clusters

107

and WDA-MI-MDS is very fast, generating the SP with a predefined phylogenetic tree and MDS

cluster visualization result only takes a few seconds on a single core.

5.4 Performance Analysis

The experiments were carried out on BigRed II, which is a hybrid cluster with a total of 344 CPU

nodes with 32 cores per node, and Quarry with a total of 2644 cores with 8 cores per node at

Indiana University to process the data with the help of Twister and Hadoop. The clustering and

visualization of the sequence datasets were completed using DACIDR. We created a maximum

likelihood unrooted phylogenetic tree from the multiple sequence alignment (MSA) with RAxML

using 100 iterations with the general time reversible (GTR) nucleotide substitution model and with

gamma rate heterogeneity (GTRGAMMA). We then used the tree to guide the generation a

pairwise distance matrix between all sequences in each of the two MSA datasets using RAxML.

These pairwise distance matrices were then used as the reference when testing for the effect of

alignment technique and sequence length on consistency between the clustering and the

phylogeny. The tree is in New Hampshire format (newick) [88]. Finally, the IJ was run on a local

machine to generate a spherical phylogram (SP), which can be displayed using a data visualization

software called PlotViz3 [89].

We first downloaded the sequence alignment of AM fungal sequences from a recent large-scale

phylogeny of AM fungi [47] and only retained sequences that contained at least a portion of the

28S rRNA gene. We then collected two sets of additional AM fungal sequences: (1) sequences

from GenBank [48] that had confident species attribution in order to supplement the species

coverage within the sequence dataset; (2) representative sequences for known AM fungal species

obtained from spores using 454 sequencing of the variable and phylogenetically informative D2

domain of the 28S rRNA gene. We applied DACDIR on this dataset to find 126 clusters and then

picked a representative sequence for each cluster as part of the dataset. The additional sequences

from GenBank were added to the original sequence alignment from [47] using MAFFT [90]. In

order to evaluate how different sequence lengths affected the correspondence between

phylogenetic trees and clustering, we then created two datasets with sequences that shared the

Determine Phylogenetic Tree with Visualized Clusters

108

same starting location on the 28S rRNA gene: one dataset contained longer sequences referred as

999nts, and the other contained shorter sequences, referred as 599nts. The 999nts contains 801

sequences from [47] and 505 sequences from GenBank for a total of 1306 sequences, and 599nts

contains 514 sequences from [47], 380 sequences from GenBank, and 126 representative 454

sequences for a total of 1020 sequences. The detail of how these sequences were aligned and

chosen can be found in [63]. The RAxML took about 4 hours to finish on the first dataset and 7

hours to finish on the second dataset using 8 cores. And the MDS only took a few minutes to

finish on the same dataset using same amount of cores. The tree generated from MSA and

RAxML is illustrated in Figure 5.10 using FigTree [78]. The MDS cluster visualization is shown

in Figure 5.6. The gene family listed shown that this tree is generated with high precision, and

none of the sequences are miss-classified. The cuboid cladogram generated using the same dataset

is given in Figure 5.7, Figure 5.8, and Figure 5.9 from 3 different angles as an example. Figure

5.11 and Figure 5.12 are two examples of the screenshots over a spherical phylogram generated

using the same dataset and MDS method using PWA and MSA.

Figure 5.6: The visualization result of 599nts data using MSA and WDA-SMACOF

Determine Phylogenetic Tree with Visualized Clusters

109

Figure 5.7: The screen shot from the side of the cuboid cladogram by choosing a plane using PCA

on 599nts data using MSA and WDA-SMACOF

Figure 5.8: The screen shot from the bottom of the cuboid cladogram by choosing a plane using

PCA on 599nts data using MSA and WDA-SMACOF

Determine Phylogenetic Tree with Visualized Clusters

110

Figure 5.9: The screen shot from the top of the cuboid cladogram by choosing a plane using PCA

on 599nts data using MSA and WDA-SMACOF

Determine Phylogenetic Tree with Visualized Clusters

111

Figure 5.10: Maximum likelihood phylogenetic tree from 599nts that is collapsed into clades at the

genus level as denoted by colored triangles at the end of the branches. Branch lengths denote

levels of sequence divergence between genera and nodes are labeled with bootstrap confidence

values. 454 sequences from spores that are not part of another clade are denoted with the label

‘454 sequence from spore’. Distance Calculation Comparison

Determine Phylogenetic Tree with Visualized Clusters

112

Figure 5.11: The screenshots of spherical phylogram for using the phylogenetic tree shown in

Figure 5.10 SWG pairwise sequence alignment. The colors of the branches in these figures are as

same as the colors of the branches shown in Figure 5.10.

Figure 5.12: The screenshots of spherical phylogram for using the phylogenetic tree shown in

Figure 5.10 multiple sequence alignment. The colors of the branches in these figures are as same

as the colors of the branches shown in Figure 5.10.

Determine Phylogenetic Tree with Visualized Clusters

113

5.4.1 Distance Calculation

The distance calculation from different sequence alignment usually yields different result for

dimensionality reduction. A general impression from the phylogenetic community is that MSA

performs better than PWA when doing the phylogenetic analysis. And PWA alignment is usually

used for sequence clustering while data size is relatively large. Two popular choice were

compared, Needleman Wunsch (NW) and Smith-waterman Goth (SWG). The comparison result is

listed in Figure 5.13. The performance evaluation used Mantel test to determine whether pairs of

experimental treatments retained the same structure of sequence differences between them. Mantel

tests determine whether a correlation between the entries contained in two different pairwise

distance matrices is statistically significant by permuting the distance matrices to obtain an

empirical p-value for the correlation. The treatments consisted of different alignment techniques

applied to each of the two different length datasets; comparisons were then made to the RAxML

distance matrix from the same dataset. The Mantel tests were performed using the vegan package

in R (version 3.0.2, R Core Team 2013), and none of the tests had p-values greater than 0.001,

suggesting all of the measured correlations were likely significant despite the increased type I

error (false-positive) rate that can occur with Mantel tests [91].

Figure 5.13 illustrates the result of the Mantel test applied on MSA and PWA which includes both

the SWG and NW. Using longer sequences (999nts) consistently resulted in higher correlations

between the reference distance matrix and either of the pairwise alignment techniques. However,

both the SWG and the NW pairwise alignment methods gave comparable correlation values for

599nts and for shorter sequences (599nts). The very high correlations between the RAxML

reference matrix and the MSA distance matrix used for MDS cluster visualization regardless of

sequence length are expected because the input alignment is identical for both matrices and only

the distance calculation method is different. Using pairwise alignments for the same datasets

resulted in lower correlations with the RAxML reference matrix, although they still provided a

reasonably good fit.

The relationships between genera of AM fungi from the phylogenetic tree created with 599nts in

Figure 5.10 was consistent with the current understanding of AM fungal phylogenetic

Determine Phylogenetic Tree with Visualized Clusters

114

relationships, with the exception of Racocetra, Scutellospora, and Gigaspora all being assigned to

the same evolutionary group. By comparing the phylogenetic tree in Figure 5.10 and the SPs in

Figure 5.11and Figure 5.12, it is possible to visualize the how the branches of the tree correlate

with the sequences after MDS. If long branches are required in the interpolated tree in order to

connect points that are the same color in the MDS visualization, then the tree does not match well

with the MDS result. This is because the sequences on the same branch of the phylogenetic tree

are more similar to each other than to other sequences in the dataset, and therefore they should be

located close to each other in the MDS visualization as well. The SPs show that the points with

the same color (as color-coded from the genera in the phylogenetic tree), generally group together.

There are a few points in the SPs using pairwise alignments (SWG) that have longer branches than

the points from the SP using the MSA. This is consistent with the fact that the SP generated from

the MSA has a better correlation with the phylogenetic tree than the SPs generated from the

pairwise alignments. However, the SPs also verify that using pairwise alignments for the MDS

generally gives a good fit with the interpolated phylogenetic tree.

Figure 5.13: The comparison using Mantel between distances generated by MSA and two PWA

methods and RAxML

0

0.2

0.4

0.6

0.8

1

1.2

599nts 454 optimized 999nts

C
o

rr
e

la
ti

o
n

Distance Comparison over Different Sequence
Alignment

 MSA SWG NW

Determine Phylogenetic Tree with Visualized Clusters

115

5.4.2 Dimension Reduction Methods Comparison

The different methods of MDS affected how well the phylogenetic tree projected using IJ matched

the sequences in 3D. WDA-SMACOF is a robust MDS method that can reliably find the global

optima, whereas EM-SMACOF can be easily trapped under local optima. The LMA usually had a

result that was very similar to EM-SMACOF as shown in Figure 5.14 and Figure 5.15. The

normalized STRESS value for each different input using the different methods was from 0.021 to

0.023, which suggests the distances after dimension reduction have a high similarity to the original

distances, and therefore sequence differences were preserved well during MDS; WDA-SMACOF

always had the lowest STRESS value compared to the other two methods.

Figure 5.14 and Figure 5.15 illustrates the result from Mantel Test on 599nts data and 999nts data.

From this figure, it shows that the difference over these three methods does not vary much. But

WDA-SMACOF always shows a better correlation on all dataset using all different alignment

methods. Averagely, WDA-SMACOF shows a 1.4% better result than LMA and 1.7% better than

EM-SMACOF on 599nts data. For 999nts data, WDA-SMACOF has a higher correlation with

RAxML than the other two methods by 5.4%.

In order to show the result with larger divergence, the summation over all the branch lengths of the

phylogenetic tree in the SP is used here to evaluate the differences between these three dimension

reduction methods. This is a much more sensitive method than the Mantel Test as shown in Figure

5.16 and Figure 5.17. As mentioned before, the points of the dimensional reduction that connect to

the same branches of the SP should be shorter if they match the tree better, which will result in a

lower sum of branch lengths. WDA-SMACOF had a much lower sum of branch lengths compared

to both LMA and EM-SMACOF. This is because the clusters naturally appeared when the

STRESS value became lower, but LMA and EM-SMACOF were trapped under the local optima,

so there are some points from very small branches of the tree could still be far away from each

other in the 3D space and not clustered. In contrast, WDA-SMACOF can reliably find the global

optima so that these points from very small branches are always converged into clusters. This is

why there were not any excessively long branches for the SP plots generated by using WDA-

SMACOF as shown in Figure 5.11 and Figure 5.12. WDA-SMACOF has a result better than LMA

Determine Phylogenetic Tree with Visualized Clusters

116

on an average basis of 15.6% and is 8% better than EM-SMACOF on 599nts data. For 999nts

data, this difference is even larger, where the WDA-SMACOF is 30% better than the other two

methods.

From above experiment results, it is safe to conclude that the sum over branch lengths is a more

sensitive measurement than the Mantel test while evaluating the SPs. However, it also has a higher

variance than the Mantel test because it was calculated after IJ. On the other hand, the Mantel test

is more robust and shows very little differences while comparing the dimension reduction

methods. Therefore, we use both the sum of branch lengths and pairwise correlations from the

Mantel test to demonstrate that the interpolated phylogenetic trees closely fit the MDS using

WDA-SMACOF, even with pairwise alignments.

More detailed analysis on how the sum of branches is being affected by the quality of the MDS

mapping result is shown as below. The sequence alignment is selected as MSA, two sequences,

with the ID number of FR750020_Arc_Sch_K and FR750022_Arc_Sch_K. these are two

sequences from a same family, which should be close to each other. And in a perfect dimension

reduction result, these two sequences should form a small cluster, and away of other sequences.

The distances from these two sequence to all other sequences in the same dataset confirms that.

This is a dataset includes 831 sequences from 599nts data, excluding th esequences from 454

optimized representative sequences. This figure shows a tree generated based on the same RAxML

result as shown in Figure 5.18, and use the LMA dimension reduction method. Although sequence

FR750020_Arc_sch_K and FR750022_Arc_Sch_K belongs to a same family, they are still far

away from each other because the cluster conntains only 2 sequences. And for a dimension

reduction method that trapps under local optima, it will converge when the large clusters are

projected corretly, without projecting these small clusters into correct locations. But for WDA-

SMACOF, this will be avoid since WDA-SMACOF always find the global optima. Figure 5.19

shows the same tree of the same dataset generated using WDA-SMACOF. And the highlighted

sequences are now near each other in the MDS clustering result. Since the branch will be very

long if these type of sequences (some sequences in blue square also suffers the same problem) are

Determine Phylogenetic Tree with Visualized Clusters

117

far away from each other in the 3D mapping, so a better mapping has lower sum of branch lengths,

as shown in Figure 5.18.

Figure 5.14: Mantel comparison of WDA-SMACOF, LMA and EM-SMACOF using distance

input generated from one MSA method and two PWA methods on 599nts dataset

Figure 5.15: Mantel comparison of WDA-SMACOF, LMA and EM-SMACOF using distance

input generated from one MSA method and two PWA methods on 999nts dataset

0

0.2

0.4

0.6

0.8

1

1.2

MSA SWG NW

C
o

rr
e

la
ti

o
n

Mantel Test on 599nts Data

WDA-SMACOF LMA EM-SMACOF

0

0.2

0.4

0.6

0.8

1

1.2

MSA SWG NW

C
o

rr
e

la
ti

o
n

Mantel Test on 999nts Data

WDA-SMACOF LMA EM-SMACOF

Determine Phylogenetic Tree with Visualized Clusters

118

Figure 5.16: Sum of tree branches in 3D of WDA-SMACOF, LMA and EM-SMACOF using

distance input generated from one MSA method and two PWA methods on 599nts dataset

Figure 5.17: Sum of tree branches in 3D of WDA-SMACOF, LMA and EM-SMACOF using

distance input generated from one MSA method and two PWA methods on 999nts dataset

0

5

10

15

20

25

30

MSA SWG NW

S
u

m
 o

f
B

ra
n

ch
e

s

Sum of Branches on 599nts Data

WDA-SMACOF LMA EM-SMACOF

0

5

10

15

20

25

MSA SWG NW

S
u

m
 o

f
B

ra
n

ch
e

s

Sum of Branches on 999nts Data

WDA-SMACOF LMA EM-SMACOF

Determine Phylogenetic Tree with Visualized Clusters

119

Figure 5.18: The plot of 599nts data using LMA MDS method on MSA distances. The red sphere

points are the two highlighted points that are near each other from the phylogenetic tree. The blue

square points are similar points that should belong to a same family.

Figure 5.19: The plot of 599nts data using WDA-SMACOF method on MSA distances. The red

sphere points are the two highlighted points that are near each other from the phylogenetic tree.

The blue square points are similar points that should belong to a same family. And they are

actually near each other.

Determine Phylogenetic Tree with Visualized Clusters

120

5.5 Conclusion

In this section, two methods, referred to as Cuboid Cladogram and Spherical Phylogram, which

enable display of clustering and phylogenetic tree simultaneously has been proposed. Cuboid

Cladogram displays the clustering result on one side, and project the phylogenetic tree onto the

locations of clustered points in 3D in order to achieve this. Spherical Phylogram directly uses the

clustered points as the leaf nodes in the phylogenetic tree in order to construct the tree. Both

methods are evaluated using intuitive observation in 3D space and statistic method during

experiments. As input for MDS cluster visualization and phylogenetic analysis, we used sequences

from the variable D2 domain of the 28S rRNA gene, which is commonly used for taxonomic

identification of fungi . All sequences were from species of arbuscular mycorrhizal (AM) fungi

because they exhibit a large amount of sequence variation both between species as well as within

species, which can make them challenging to analyze. The sequence datasets were derived from a

combination of: (1) a large-scale AM fungal phylogenetic study; (2) additional sequences obtained

from GenBank to increase the taxonomic coverage of the dataset; (3) representative 454

pyrosequences from spores of known AM fungal species that were selected using DACIDR.

DACIDR uses pairwise clustering and MDS for robust and scalable sequence clustering and

visualization for more than one million sequences. The representative sequences are then selected

from each cluster.

To compare the consistency between the clustering analysis and the phylogenetic tree, we

implemented an algorithm we refer to as interpolative joining (IJ) in order to merge the traditional

phylogenetic tree with the MDS cluster visualization into a spherical phylogram (SP). To evaluate

how well the SP corresponded to the clustering result from the same dataset, we used a

combination of the sum of branch lengths and Mantel tests in our experiments. The different

experimental approaches generated similar results that show good agreement between the

taxonomic delineations provided by the clustering and those provided by the phylogenetic

analysis. This suggests that our proposed clustering technique based on pairwise alignment is a

highly suitable alternative to phylogenetic analysis to study microbial communities.

Conclusion and Future Works

121

Chapter 6. CONCLUSION AND FUTURE

WORKS

6.1 Summary of Work

This dissertation mainly discussed about the optimization over MDS problem and extended the

usage of that to phylogenetic analysis. The main purpose of the work is to make sequence data

clustering and visualization a more scalable, reliable and widely application. The section 2 mainly

discusses the background techniques mentioned in the dissertation. And a data clustering and

visualization pipeline so called DACIDR is described since the optimization in this dissertation

were based on the component in this pipeline. In section 3, an algorithm called WDA-SMAOF has

been proposed in order to solve problem associate with sequence dissimilarity calculation. This is

because the dissimilarities generated by using sequence alignment may have low quality issue so

that it needs to be considered as missing. Furthermore, for special cases in sequence clustering,

some sequences are more significant than other sequences, so the distances generated then should

be given a more significant value. This algorithm has added a weight function support to a robust

MDS algorithm called DA-SMACOF. Additionally, it uses conjugated gradient to avoid the

additional time cost brought by this weighting function to this algorithm. The performance

analysis shows that this WDA-SMACOF algorithm can scale well to large scale of processors and

gives a more robust and accurate result than the existing methods. Then in Section 4, two

Conclusion and Future Works

122

optimizations were done on the interpolation algorithm for the case with massive amount of

sequence clustering and visualization by reducing the space and time cost. One optimization is to

add weight function support to the data due to the same reason mentioned previously. This

optimization so called W-MI-MDS can updated the original formula in order to achieve a higher

accuracy result for sequence data with missing values. The other optimization, so called HE-MI, is

to make the interpolation a hierarchical method, which greatly reduces the time cost of calculating

the similarities between in-sample sequences and out-of-sample sequences. Finally in section 5,

two new tree diagram, referred to as Cuboid Cladogram and Spherical Phylogram were proposed

in order to determine the phylogenetic tree in a 3D space, and display the sequence clustering

result along with phylogenetic trees, PCA is used to ensure the best result for Cuboid Cladogram

and in order to achieve better result for Spherical Phylogram, the W-MI-MDS and WDA-

SMACOF algorithms were used construct the tree diagram directly from the dimension reduction

result.

6.2 Conclusions

Next generation sequencing (NGS) technique has high throughput of sequence generation.

Massive amount of sequences can be generated within a short time from the gene samples with its

help. Therefore, challenges have emerged about the method to do analysis on these sequences. To

visualize the clustering result with large scale of sequences, it is essential to do customized

optimizations for bioinformatics data on the multidimensional scaling (MDS) techniques.

DACIDR is a pipeline uses pairwise clustering and MDS to do large scale sequence clustering and

visualization. The optimization techniques proposed in this dissertation greatly improves the

performances of DACIDR and extends its capabilities of processing millions of sequences along

with phylogenetic analysis.

6.2.1 WDA-SMACOF

The WDA-SMACOF proposed in this dissertation has proposed a general solution for MDS

problem with weighting data, as well as with the situation that part of data points needs to be

fixed. The problem emerges because of the sequence alignment with bioinformatics data is not as

Conclusion and Future Works

123

reliable as Euclidean distance calculation. And for special cases, various weights needs to be

associated with each pair of sequence dissimilarities generated in sequence alignment. Traditional

method on this type of problem requires cubic time complexity, but WDA-SMACOF proposed

here avoided the high time cost of weighting function by using Conjugated Gradient (CG) instead

of matrix inversion in traditional methods. In section 3, the detailed description of WDA-

SMACOF is given, and how to apply CG on it is given in detail. The parallel version of WDA-

SMACOF is written using iterative MapReduce framework, so the flowchart of it givens the detail

about the work on main driver as well as the work for each mapper and reducer. Later in this

section, the special version of WDA-SMACOF, called Fixed-WDA-SMACOF is given. The steps

of how the final equation is listed as well as the algorithm description. Note that the parallelization

of Fixed-WDA-SMACOF also uses the iterative MapReduce framework, and its parallelization

involves a nested loop of 6 MapReduce jobs. The space and communication has been minimized

on both of these parallel applications in order to run very large scale data visualization. In the

experiments part, WDA-SMACOF gives a higher accuracy compared to all other algorithms with

four different dataset, where the size of data varies from 4k to 400k. Not only the single thread

version is tested, but also the parallel version has been tested on over 4000 cores. The parallel

efficiency has been improved by adapting an iterative MapReduce framework called Harp over

Twister. Furthermore, Fixed-WDA-SMACOF has been compared against an existing MDS

interpolation method called MI-MDS. The result shows that it gives a more precise answer with

the specific need of fixing part of the points. In short, WDA-SMACOF proposed in here gives a

robust and scalable solution for dimension reduction on large scale of sequences by utilizing the

power of iterative MapReduce and computer clusters.

6.2.2 W-MI-MDS and HE-MI

W-MI-MDS and HE-MI are two optimizations to the existing MDS interpolation algorithm

proposed in section 4. W-MI-MDS is an algorithm that added weighting support for the out-of-

sample problem, so that different weights can be associate with the distances from in-sample

points to the out-of-sample points. HE-MI is a hierarchical method that proposed to reduce the

time cost of MDS interpolation. This is needed because of the excessive time cost of sequence

Conclusion and Future Works

124

alignment between the in-sample dataset and out-of-sample dataset. The detailed description of

two tree structures, referred to as SSP-Tree and CN-Tree, used by this method is given in this

section. The parallel versions of these two algorithms were similar. The out-of-sample problem is

a task-independent problem, which means the applications solving it can be pleasingly paralleled.

The flowchart of parallelization of these two algorithm using MapReduce framework is given. As

iterative MapReduce framework also supports normal MapReduce application, so the parallel

version of W-MI-MDS and HE-MI are implemented using Twister. In the experiments part of this

section, both applications were tested and compared to other existing methods. W-MI-MDS gives

a higher accuracy as well as a lower time cost with all dataset tested compared to the non-

weighted MI-MDS. DA technique has also been analyzed in these experiments but did not show a

significant different in terms of accuracy. HE-MI by using both SSP-Tree and CN-Tree has shown

a much lower time cost compare to the MI-MDS data without missing distances. Overall, these

optimization techniques has reduced the time cost for general MDS interpolation problem without

missing distances or various weights requirement, and W-MI-MDS has provided a better solution

than the MI-MDS by adding weighting function support to the data that has missing distances.

6.2.3 Cuboid Cladogram and Spherical Phylogram

Traditional phylogenetic tree analysis were solely based on the tree diagram generated using

multiple sequence alignment and maximum likelihood method or other equivalent methods. Other

the other hand, sequence clustering is usually done by using pairwise sequence alignment and

hierarchical clustering or other equivalent methods. These two separate analysis on a same dataset

could yield separate result with some variation. Thus sequence clustering could be complementary

to phylogenetic analysis. Cuboid Cladogram and Spherical Phylogram are proposed in Section 5

to display sequence clustering result along with a phylogenetic tree, which enables the direct

analysis on the same dataset with both tree diagram as well as the visualized clusters. In this

section, Cuboid Cladogram is described in detail with the usage of principle component analysis

(PCA). Since the sequence clusters are visualized in 3D by using MDS technique, a plane which

all points are projected to needs to be selected. In order to keep the maximum variance of

coordinates after the projection, PCA is used to select the plane. Then the points from the

Conclusion and Future Works

125

clustering result are projected into the plane to be used as leaf nodes in the phylogenetic tree,

which is determined by using independent phylogenetic analysis technique. Finally, the 3D

constructed can be used for the final analysis and called Cuboid Cladogram. Spherical Phylogram

is introduced later in Section 5. It uses interpolation to generate the tree. The points in the clusters

are used directly for the phylogenetic tree instead of doing projection first, so the internal nodes

from the phylogenetic tree needs to be interpolated into the 3D space. An algorithm called

Interpolative Joining is proposed here. This algorithm can determine the coordinates for the

internal nodes from given phylogenetic tree in the target dimension space (3D space), so the tree is

generated as a spherical plot and the branch lengths are from the pairwise distances from the leaf

nodes, thus the name Spherical Phylogram. The experiments in Section 5 illustrate the affection on

the choice of sequence alignment to sequence clustering and phylogenetic tree construction. It

shows a very high correlation between PWA and MSA in terms of generating the dimension

reduction plot. Then the comparison among the choices of dimension reduction method is shown.

It shows that WDA-SMACOF proposed in Section 3 has a best result of constructing spherical

phylogram because it can avoid local optima during the optimization process. Generally speaking,

Cuboid Cladogram and Spherical Phylogram can determine the phylogenetic tree in a 3D space

with MDS clustering result, and enables the analysis on both results simultaneously.

6.3 Future Works

In this section, several possible improvements and research opportunities are discussed for

interpolative MDS techniques. These improvements could benefit the data clustering and

visualization pipeline (DACIDR) mentioned in Section 2.5.

6.3.1 Reduce Time Cost of WDA-SMACOF

Although the time complexity of WDA-SMACOF is O(N
2
), it is around 30 times longer

processing non-trivial weights (Sammon's Mapping) than processing trivial weights (0s and 1s).

Future study of the convergence threshold for CG could significantly impact the total time cost of

WDA-SMACOF. One may use the target dimension mapping from previous SMACOF iteration to

Conclusion and Future Works

126

set as starting position for CG in the next SMACOF iteration. This could potentially reduce the

number of CG iterations needed per SMACOF iteration.

6.3.2 Hybrid Tree Interpolation

The methods for interpolation were using either CN-Tree or SSP-Tree separately. But these two

trees could potentially be used together in order to achieve higher accuracy. SSP-Tree can clearly

separate the in-sample points in the target dimension, but the distances from out-of-sample point

to in-sample points used for interpolation are in high dimension, which causes bias for during the

interpolation. CN-Tree were constructed in hyperspace to avoid this problem, but the points may

be contained in multiple nodes range and being arbitrarily assigned to different tree node. A hybrid

tree could construct the tree within hyperspace but clearly separates the points. Therefore, the

accuracy of hierarchical interpolation result could be better.

6.3.3 Display Phylogenetic Tree with Million Sequence Clusters

As the phylogenetic tree were generated using reference sequences generated from half of million

sequences, it will be interesting to display the phylogenetic tree within the original sequences

clusters instead of just reference sequences. This way of displaying sequences could potentially

find interesting clusters whose information cannot be fully represented within the representative

sequence.

6.4 Contributions

As mentioned in Section 1.5, the contribution of this dissertation has been divided into 3 parts as

the following:

1) Robust and Scalable MDS with Weighting: By leveraging the power of conjugated

gradient, the time complexity of MDS with weighting can be reduced from cubic to quadratic,

which makes it suitable for large scale dataset. And Deterministic Annealing technique is applied

to avoid the local optima from the original algorithm. The experiments illustrated in Section 3

shows that the WDA-SMACOF is a reliable and scalable MDS algorithm that can outperform

other existing dimension reduction methods. It successfully enables the visualization of nearly half

of million sequences, and scale up to 4000 cores to process the dimension reduction.

Conclusion and Future Works

127

2) Hierarchical MDS Interpolation with Weighting: The interpolation of MDS has been

updated using a hierarchical algorithm called HE-MI instead of linear speed algorithm called MI-

MDS. The time complexity is reduced to logarithmic from linear. The weighting function is added

to support the missing values from in-sample points for a new algorithm W-MI-MDS. The

experiments result shows that W-MI-MDS can always get a more accurate result with distances

that has missing values, and reduces the time cost as well. HE-MI algorithm greatly reduces the

time cost of MI-MDS by achieving approximate result for the out-of-sample problem.

3) 3D Phylogenetic Tree Displayed with Clusters: This approach with Cuboid Cladogram

and Spherical Phylogram can display the clusters in 3D with phylogenetic tree simultaneously.

Therefore both analyses could be in viewed in 3D as well as it can be observed directly using

naked eyes. By constructing phylogenetic tree directly from dimension reduction result, the

clustering result could be displayed directly with the tree since clusters are naturally appeared

during the MDS process. The MDS interpolation is used here for a new algorithm called

Interpolative Joining to find the coordinates for the internal nodes in the tree structure of spherical

phylogram. The experiments shows that by using WDA-SMACOF and pairwise sequence

alignment, this method successfully identify the correlation of different AM fungal sequences

families and proves its effectiveness.

128

BIBLIOGRAPHY

1. Petrosino JF, et al., Metagenomic Pyrosequencing and Microbial Identification. Clin Chem,

2009. 55(5): p. 856-866.

2. Andersson AF, et al., Comparative Analysis of Human Gut Microbiota by Barcoded

Pyrosequencing. PLoS ONE, 2008. 3(7): p. e2836.

3. Cole JR, et al., The Ribosomal Database Project (RDP-II): sequences and tools for high-

throughput rRNA analysis. Nucl Acids Res, 2005. 33(suppl_1): p. D294-296.

4. Altschul, S.F., et al., Basic Local Alignment Search Tool. Journal of Molecular Biology,

1990. 215: p. 403-410.

5. Hughes, A., et al., Interpolative multidimensional scaling techniques for the identification

of clusters in very large sequence sets. BMC Bioinformatics, 2012. 13(Suppl 2): p. S9.

6. Schloss, P.D., et al., Introducing mothur: opensource, platform-independent, community-

supported software for describing and comparing microbial communities. Appl. Environ.

Microbiol., 2009. 75: p. 7537–7541.

7. Sun, Y., et al., ESPRIT: estimating species richness using large collections of 16S rRNA

pyrosequences. Nucleic Acids Res., 2009. 37(76).

8. Edgar, R.C., Search and clustering orders of magnitude faster than BLAST.

Bioinformatics., 2010. 26: p. 2460–2461.

9. Li, W. and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of

protein or nucleotide sequences. Bioinformatics, 2006. 22: p. 1658–1659.

Bibliography

129

10. Geoffrey Fox, et al., Case Studies in Data Intensive Computing: Large Scale DNA

Sequence Analysis as the Million Sequence Challenge and Biomedical Computing, in

Technical Report 92009.

11. Borg, I. and P.J. Groenen, Modern Multidimensional Scaling: Theory and Applications.

2005: Springer.

12. Jolliffe, I., Principal component analysis. 2005: Wiley Online Library.

13. Bishop, C.M., M. Svensén, and C.K.I. Williams, GTM: The generative topographic

mapping. Neural computation, 1998. 10: p. 215--234.

14. Kohonen, T., The self-organizing map. Proceedings of the IEEE, 1990. 78(9): p. 1464-

1480.

15. Gannon, D., et al., On Building Parallel & Grid Applications: Component Technology and

Distributed Services. Cluster Computing, 2005. 8(4): p. 271-277.

16. Sector and Sphere Data Intensive Cloud Computing Platform. Available from:

http://sector.sourceforge.net/doc.html.

17. Matei Zaharia, et al., Spark: Cluster Computing with Working Sets, in 2nd USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud '10)2010: Boston.

18. Grzegorz Malewicz, et al., Pregel: A System for Large-Scale Graph Processing, in

International conference on Management of data2010: Indianapolis, Indiana, USA. p. 135-

146.

19. J.Ekanayake, et al., Twister: A Runtime for iterative MapReduce, in Proceedings of the

First International Workshop on MapReduce and its Applications of ACM HPDC 2010

conference June 20-25, 20102010, ACM: Chicago, Illinois.

20. Kearsley, A.J., R.A. Tapia, and M.W. Trosset, The Solution of the Metric STRESS and

SSTRESS Problems in Multidimensional Scaling Using Newton’s Method, 1995, Rice

University: Houston, Tx.

21. Seung-Hee Bae, J.Y.C., Judy Qiu, Geoffrey C. Fox, Dimension Reduction and

Visualization of Large High-dimensional Data via Interpolation, in HPDC'10 2010:

Chicago, Illinois USA.

http://sector.sourceforge.net/doc.html

Bibliography

130

22. Seung-Hee Bae, et al., Dimension reduction and visualization of large high-dimensional

data via interpolation, in Proceedings of the 19th ACM International Symposium on High

Performance Distributed Computing2010, ACM: Chicago, Illinois. p. 203-214.

23. Cavalli-Sforza, L.L. and A.W. Edwards, Phylogenetic analysis. Models and estimation

procedures. American journal of human genetics, 1967. 19(3 Pt 1): p. 233.

24. Phipps, J., Dendrogram topology. Systematic Biology, 1971. 20(3): p. 306-308.

25. Templeton, A.R., K.A. Crandall, and C.F. Sing, A cladistic analysis of phenotypic

associations with haplotypes inferred from restriction endonuclease mapping and DNA

sequence data. III. Cladogram estimation. Genetics, 1992. 132(2): p. 619-633.

26. Page, R.D., TreeView. Glasgow University, Glasgow, UK, 2001.

27. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high

throughput. Nucleic Acids Res., 2004. 32: p. 1792-1797.

28. Needleman SB, W.C., A general method applicable to the search of similarities in the

amino acid sequence of two proteins. J Mol Biol, 1970. 48: p. 443-453.

29. Gotoh, O., An improved algorithm for matching biological sequences. Journal of Molecular

Biology, 1982. 162(3): p. 705-708.

30. Smith, T.F. and M.S. Waterman, Identification of common molecular subsequences.

Journal of Molecular Biology, 1981. 147(1): p. 195-197.

31. Jeff Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large

Clusters. 2004 [cited 2010 November 6]; Presentation at OSDI-2004 Conference].

Available from: http://labs.google.com/papers/mapreduce-osdi04-slides/index.html.

32. LINQ Language-Integrated Query. 2009 [cited 2009 December]; Available from:

http://msdn.microsoft.com/en-us/netframework/aa904594.aspx.

33. Hofmann, T. and J.M. Buhmann, Pairwise data clustering by deterministic annealing.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1997. 19: p. 1--14.

34. Judy Qiu, et al., Data Intensive Computing for Bioinformatics. Technical Report, 2009.

35. Rose, K., E. Gurewitz, and G. Fox, A deterministic annealing approach to clustering.

Pattern Recogn. Lett., 1990. 11: p. 589--594.

http://labs.google.com/papers/mapreduce-osdi04-slides/index.html
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx

Bibliography

131

36. Brusco, M.J., A simulated annealing heuristic for unidimensional and multidimensional

(city-block) scaling of symmetric proximity matrices. Journal of Classification, 2001. 18(1):

p. 3-33.

37. Jan de Leeuw, Applications of convex analysis to multidimensional scaling. Recent

Developments in Statistics, 1977: p. 133-145.

38. Moon, T.K., The expectation-maximization algorithm. Signal processing magazine, IEEE,

1996. 13(6): p. 47-60.

39. Bae, S.-H., J. Qiu, and G.C. Fox. Multidimensional Scaling by Deterministic Annealing

with Iterative Majorization algorithm. in 6th IEEE e-Science Conference. 2010. Brisbane,

Australia.

40. Gould, S.J., Ontogeny and phylogeny. 1977: Harvard University Press.

41. Schmidt, H.A., et al., TREE-PUZZLE: maximum likelihood phylogenetic analysis using

quartets and parallel computing. Bioinformatics, 2002. 18(3): p. 502-504.

42. Saitou, N. and M. Nei, The neighbor-joining method: a new method for reconstructing

phylogenetic trees. Molecular biology and evolution, 1987. 4(4): p. 406-425.

43. Ram, R. and M. Chetty, MCMC Based Bayesian Inference for Modeling Gene Networks, in

Pattern Recognition in Bioinformatics. 2009, Springer. p. 293-306.

44. Ronquist, F. and J.P. Huelsenbeck, MrBayes 3: Bayesian phylogenetic inference under

mixed models. Bioinformatics, 2003. 19(12): p. 1572-1574.

45. Stamatakis, A., RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with

thousands of taxa and mixed models. Bioinformatics, 2006. 22(21): p. 2688-2690.

46. Ruan, Y., et al. DACIDR: deterministic annealed clustering with interpolative dimension

reduction using a large collection of 16S rRNA sequences. in Proceedings of the ACM

Conference on Bioinformatics, Computational Biology and Biomedicine. 2012. ACM.

47. Krüger, M., et al., Phylogenetic reference data for systematics and phylotaxonomy of

arbuscular mycorrhizal fungi from phylum to species level. New Phytologist, 2012. 193(4):

p. 970-984.

48. Benson, D.A., et al., GenBank. Nucleic Acids Research, 2012: p. gks1195.

Bibliography

132

49. Snir, M., et al., MPI: The Complete Reference. 1995, MA, USA.: MIT Press Cambridge.

50. Ruan, Y., et al. Hymr: a hybrid mapreduce workflow system. in Proceedings of the 3rd

international workshop on Emerging computational methods for the life sciences. 2012.

ACM.

51. Geoffrey Fox, MPI and MapReduce, in Clusters, Clouds, and Grids for Scientific

Computing CCGSC2010: Flat Rock NC.

52. Kelley, C.T., Iterative methods for optimization. Vol. 18. 1999: Siam.

53. Bronstein, M.M., et al., Multigrid multidimensional scaling, in Numerical Linear Algebra

with Applications2006, Wiley.

54. Mathar, R. and A. Žilinskas, On global optimization in two-dimensional scaling. Acta

Applicandae Mathematica, 1993. 33(1): p. 109-118.

55. Robinson, P.D. and A.J. Wathen, Variational bounds on the entries of the inverse of a

matrix. IMA journal of numerical analysis, 1992. 12(4): p. 463-486.

56. Dubois, P., A. Greenbaum, and G.H. Rodrigue, Approximating the inverse of a matrix for

use in iterative algorithms on vector processors. Computing, 1979. 22(3): p. 257-268.

57. Ruan, Y. and G. Fox. A Robust and Scalable Solution for Interpolative Multidimensional

Scaling with Weighting. in eScience (eScience), 2013 IEEE 9th International Conference

on. 2013. IEEE.

58. Bulirsch, R. and J. Stoer, Introduction to numerical analysis. 2002: Springer Heidelberg.

59. Van der Vorst, H.A., An iterative solution method for solving f(A)x=b, using Krylov

subspace information obtained for the symmetric positive definite matrix A. Journal of

Computational and Applied Mathematics, 1987. 18(2): p. 249-263.

60. Battiti, R., First-and second-order methods for learning: between steepest descent and

Newton's method. Neural computation, 1992. 4(2): p. 141-166.

61. Steele, J.M., The Cauchy-Schwarz master class: an introduction to the art of mathematical

inequalities. 2004: Cambridge University Press.

62. Stanberry, L., et al., Visualizing the protein sequence universe. Concurrency and

Computation: Practice and Experience, 2014. 26(6): p. 1313-1325.

Bibliography

133

63. Ruan, Y., et al., Integration of Clustering and Multidimensional Scaling to Determine

Phylogenetic Trees as Spherical Phylograms Visualized in 3 Dimensions. Proceedings of

C4Bio, 2014: p. 26-29.

64. Shewchuk, J.R., An introduction to the conjugate gradient method without the agonizing

pain, 1994, Carnegie Mellon University, Pittsburgh, PA.

65. Bengio, Y., et al., Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral

clustering. Advances in neural information processing systems, 2004. 16: p. 177-184.

66. Lu, Z., C. Sminchisescu, and M.Á. Carreira-Perpiñán. People tracking with the laplacian

eigenmaps latent variable model. in Advances in neural information processing systems.

2008.

67. S. Xiang, F.N., Y. Song, C. Zhang and C. Zhang, Embedding new data points for manifold

learning via coordinate propagation. Knowledge and Information Systems, 2009. 19(2): p.

159-184.

68. Priebe, M.W.T.a.C.E., The Out-of-Sample Problem for Classical Multidimensional Scaling,

2006, Indiana University: Bloomington, IN.

69. Cai, Y. and Y. Sun, ESPRIT-Tree: hierarchical clustering analysis of millions of 16S rRNA

pyrosequences in quasilinear computational time. Nucleic Acids Res., 2011. 39(95).

70. Bentley, J.L., Multidimensional binary search trees used for associative searching.

Communications of the ACM, 1975. 18(9): p. 509-517.

71. Shevtsov, M., A. Soupikov, and A. Kapustin. Highly Parallel Fast KD‐tree Construction

for Interactive Ray Tracing of Dynamic Scenes. in Computer Graphics Forum. 2007. Wiley

Online Library.

72. Friedman, J.H., J.L. Bentley, and R.A. Finkel, An algorithm for finding best matches in

logarithmic expected time. ACM Transactions on Mathematical Software (TOMS), 1977.

3(3): p. 209-226.

73. Barnes, J. and P. Hut, A hierarchical O (N log N) force-calculation algorithm. 1986.

74. Berg, I. Simulation of N-body problems with the Barnes-Hut algorithm. 2009.

75. Zhang, T., R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method for

very large databases. in ACM SIGMOD Record. 1996. ACM.

Bibliography

134

76. Tamura, K., et al., MEGA6: molecular evolutionary genetics analysis version 6.0.

Molecular biology and evolution, 2013. 30(12): p. 2725-2729.

77. Gouy, M., S. Guindon, and O. Gascuel, SeaView version 4: a multiplatform graphical user

interface for sequence alignment and phylogenetic tree building. Molecular biology and

evolution, 2010. 27(2): p. 221-224.

78. Rambaut, A., FigTree v1. 3.1: Tree figure drawing tool. FigTree website, 2009.

79. Pons, J., et al., Sequence-Based Species Delimitation for the DNA Taxonomy of

Undescribed Insects. Systematic Biology, 2006. 55(4): p. 595-609.

80. Powell, J.R., et al., Evolutionary criteria outperform operational approaches in producing

ecologically relevant fungal species inventories. Molecular Ecology, 2011. 20(3): p. 655-

666.

81. Fujisawa, T. and T.G. Barraclough, Delimiting species using single-locus data and the

generalized mixed yule coalescent (GMYC) approach: a revised method and evaluation on

simulated datasets. Systematic Biology, 2013: p. syt033.

82. Pavlopoulos, G.A., et al., A reference guide for tree analysis and visualization. BioData

mining, 2010. 3(1): p. 1.

83. Sanderson, M.J., Paloverde: an OpenGL 3D phylogeny browser. Bioinformatics, 2006.

22(8): p. 1004-1006.

84. Munzner, T., H3: laying out large directed graphs in 3D hyperbolic space, in Proceedings

of the 1997 IEEE Symposium on Information Visualization (InfoVis '97)1997, IEEE

Computer Society. p. 2.

85. Pavlopoulos, G.A., et al., Arena3D: visualization of biological networks in 3D. BMC

systems biology, 2008. 2(1): p. 104.

86. Marco, A. and I. Marín, A general strategy to determine the congruence between a

hierarchical and a non-hierarchical classification. BMC Bioinformatics, 2007. 8(1): p.

442.

87. Abdi, H. and L.J. Williams, Principal component analysis. Wiley Interdisciplinary

Reviews: Computational Statistics, 2010. 2(4): p. 433-459.

Bibliography

135

88. Cardona, G., F. Rossello, and G. Valiente, Extended Newick: it is time for a standard

representation of phylogenetic networks. BMC Bioinformatics, 2008. 9(1): p. 532.

89. Choi, J.Y., et al., PlotViz3: A cross-platform tool for visualizing large and high-

dimensional data, 2010.

90. Katoh, K. and M.C. Frith, Adding unaligned sequences into an existing alignment using

MAFFT and LAST. Bioinformatics, 2012. 28(23): p. 3144-3146.

91. Guillot, G. and F. Rousset, Dismantling the Mantel tests. Methods in Ecology and

Evolution, 2013. 4(4): p. 336-344.

