
 1

HIGH PERFORMANCE RECORDING AND

MANIPULATION OF DISTRIBUTED

STREAMS

Hasan Bulut

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the Department of Computer Science
Indiana University

May 2007

 2

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

Doctoral Committee

Geoffrey C. Fox, Ph.D. (Principal Advisor)

Randall Bramley, Ph.D.

Dennis Gannon, Ph.D.

Donald McMullen, Ph.D.

Beth Plale, Ph.D.

April 24, 2007

 3

© 2007
Hasan Bulut

ALL RIGHTS RESERVED

 4

I would like to dedicate this dissertation to

my father, Ibrahim

my mother, Sariye

my brothers, Naif and Omer

my son, Omer Naif

my daughter, Hatice Zulal

and

my wife, Vahide

 5

Acknowledgements

Through out this dissertation, I have worked on interesting topics in various

projects at Indiana University Community Grids Lab. I have received experiences not just

while working in my profession but also while collaborating with people. Also without

the support of my family, I could never have overcome the challenges of Ph.D. life. It is a

pleasure to acknowledge the debts that I have accumulated over these years.

I would like to express my appreciation to my advisor, Professor Geoffrey C. Fox

for supporting and steering this research in the right way. Community Grids Lab has been

an excellent research environment.

I would like to thank my research committee members, Prof. Geoffrey C. Fox,

Prof. Beth Plale, Prof. Dennis Gannon, Prof. Randall Bramley and Prof. Donald

McMullen for their suggestions and feedback on this dissertation.

I want to express my thanks to research associates of Community Grids Lab, Dr.

Shideep Pallickara and Dr. Wenjun Wu for their advising and help throughout my

research. I would also like to thank Dr. Marlon Pierce for helping me with the issues I

encountered during tests.

I would like to thank Choonhan Yoon from San Diego Super Computer Center,

technical staff of Welsh e-Science Centre at Cardiff University UK and Computer

Science Department at Florida State University for providing their machines to conduct

my tests.

I would like to thank my friends in Community Grids Lab. I owe a special thanks

to my friends Galip Aydin, Mehmet Aktas and Beytullah Yildiz for their insightful

 6

discussions in the final stages of my research. I am also grateful to Mehmet Akif Nacar

and other members of the lab for their company and for providing a friendly atmosphere.

I would like to express my profound gratitude to my father Ibrahim, who recently

passed away, and my mother Sariye and my brothers Naif and Omer for all the sacrifices

they have made and for their unconditional support. I also give thanks to my mother-in-

law Hatice and father-in-law Huseyin for taking care of my family during the last year of

my Ph.D. My friends Ali Mermer, H. Ali Mantar and Yusuf Erdemli also deserve my

special thanks.

Finally, and most importantly I want to thank my wife Vahide for her love. She has

been very patient and supportive through these stressful years. Her love and support made

it possible for me to complete my Ph.D. We had to be apart from each other in the last 18

months of my research and she took care of my son Omer Naif and daughter Hatice Zulal

during that time. She has been an excellent mother and a most loving friend. I cherish my

son Omer Naif and daughter Hatice Zulal, with whom I have lived the most joyful years

of my life.

 7

Abstract

Collaboration and videoconferencing systems have become important

applications over the Internet. They have been used in many areas such as distance

education, telemedicine and business sectors. For videoconferencing systems, highly

sophisticated audio and video codec have been designed to transfer audio and video

content efficiently, standards have also been developed to initiate and manage real-time

videoconferencing sessions. Another emerging application area for video streams is

annotation systems, where video streams are annotated.

In this dissertation we present a scalable, fault tolerant and services-based

streaming architecture based on messaging systems that integrates videoconferencing,

streaming and annotation systems into an interoperable collaboration environment. Our

architecture is a generic streaming framework which is independent of media type and

format. So it provides a generic delivery mechanism which can be used not just for

multimedia content but also for any type of streaming content. One of the strengths of

this architecture is to allow instant replay of real-time, live streams. We have developed

services within a publish/subscribe messaging scheme to support synchronization of

streams, reduction of jitter caused by the underlying network and to increase fault

tolerance and scalability of streams.

 i

Table of Contents

Chapter 1 Introduction... 1

1.1 Motivation .. 4

1.2 Research Issues... 6

1.2.1 Session Management.. 7

1.2.2 Metadata Description and Management... 8

1.2.3 Multiple Stream Support .. 8

1.2.4 Application Scenarios .. 10

1.3 Organization of the Thesis and Summary of the Chapters ... 11

Chapter 2 Background ... 15

2.1 Videoconferencing ... 15

2.1.1 H.323.. 16

2.1.2 SIP.. 18

2.1.3 The Access Grid... 19

2.1.4 The Virtual Rooms Videoconferencing System... 20

2.2 Streaming.. 21

2.2.1 Real Time Streaming Protocol ... 22

2.2.2 Handling Streaming Formats ... 24

2.3 Annotation Systems.. 26

2.4 Time Services and Event Ordering... 27

2.4.1 Computer Clocks.. 27

 ii

2.4.2 Event Synchronization in Distributed System ... 29

2.4.3 Network Time Protocol (NTP)... 30

2.5 Replica Services ... 31

2.6 NaradaBrokering .. 33

Chapter 3 GlobalMMCS Overview and XGSP Session Server.................................. 36

3.1 GlobalMMCS Design... 37

3.2 XGSP Session Management... 39

3.2.1 NaradaBrokering Communication Topics ... 39

3.2.2 XGSP Sessions... 40

3.2.3 Activate and Deactivate XGSP A/V Sessions.. 42

3.2.4 Managing Media Processing Units .. 43

3.2.4.1 Managing Audio Processing Units...44

3.2.4.2 Managing Video Processing Units...44

3.2.4.3 Snapshot Servers ..46

3.2.5 Join and Leave XGSP A/V Sessions.. 46

3.2.6 Video Selection .. 48

3.2.7 Managing Video Mixers .. 49

3.2.8 Stream List ... 51

3.3 Support for Gateways ... 52

3.3.1 Support for H.323 Gateway ... 53

3.3.1.1 H.323 Call Setup and Termination...54

3.3.1.2 H.323 Terminal Video Selection..57

3.3.2 Support for SIP Gateway ... 57

3.4 Summary... 59

 iii

Chapter 4 XGSP Streaming Gateway... 60

4.1 Streaming Gateway within XGSP and GlobalMMCS.. 61

4.2 XGSP Streaming Gateway ... 62

4.2.1 XGSP Streaming Gateway Components and Design... 64

4.2.1.1 Stream Conversion Handler ...64

4.2.1.2 Stream Engine..65

4.2.1.3 SMIL File Generator..66

4.2.2 Helix Streaming Server .. 66

4.3 Streaming Gateway Message Exchange Types .. 67

4.4 Interfaces Added to XGSP Session Server to Enable Communication........................ 69

4.5 Signaling Between XGSP Session Server and XGSP Streaming Gateway.................. 70

4.6 XGSP Streaming Gateway User Interface.. 72

4.6.1 Administrator Interface .. 72

4.6.2 Client Interface... 73

4.7 Adapting Mobile Clients .. 75

4.7.1 GlobalMMCS Mobile Gateway ... 76

4.7.2 Streaming to Cellular Phones... 77

4.7.3 Streaming from Cellular Phones .. 78

4.8 Performance Tests and Evaluation of Test Results .. 80

4.9 Summary... 81

Chapter 5 Time Services within NaradaBrokering ... 83

5.1 Using Network Time Protocol (NTP) .. 84

5.2 Time Service... 85

5.2.1 Initialization ... 86

5.2.2 NTP Implementation.. 87

 iv

5.2.3 Updating Offset.. 89

5.3 Benchmark Results... 90

5.3.1 Benchmark Results on Linux Machines... 91

5.3.2 Linux Machine Test Evaluation ... 94

5.3.3 Benchmark Results on Solaris Machines ... 96

5.3.4 Solaris Machine Benchmark Results.. 99

5.4 Inter Client Discrepancy... 100

5.5 High Resolution Timing Services... 102

5.6 Summary... 103

Chapter 6 Jitter Reduction Service within NaradaBrokering.................................. 105

6.1 Jitter Reduction Service in Messaging Systems ... 106

6.2 Time Buffering Service .. 107

6.3 Time Differential Service ... 110

6.4 Benchmark Results and Evaluation.. 112

6.5 Summary... 117

Chapter 7 Replicated and Fault Tolerant Repository ... 119

7.1 Overview of NaradaBrokering Reliable Delivery Service ... 120

7.1.1 Control-Events ... 121

7.1.2 Publishing Messages .. 122

7.1.3 Repository Processing of Published Message.. 122

7.1.4 Processing Repository Acknowledgements ... 123

7.1.5 Message Storage and Persistence Notifications ... 123

7.1.6 Processing Persistent Events at the Subscriber .. 124

7.1.7 Processing Subscriber Acknowledgements.. 125

 v

7.1.8 Processing Errors and Syncs Advances ... 126

7.1.9 Subscriber and Publisher Recovery.. 127

7.2 Improvements to NaradaBrokering Reliable Delivery Service 127

7.3 Repository Redundancy and Fault-tolerance.. 129

7.3.1 Steering Repository.. 130

7.3.2 Ordered Storage of Published Messages.. 131

7.3.3 Generation of Persistence Notification .. 132

7.3.4 Acknowledgements, Errors and Syncs... 133

7.3.5 Gossips between Repositories.. 133

7.3.6 Processing Stored Messages .. 133

7.3.7 Processing Subscriber Acknowledgements.. 134

7.3.8 Dealing with Repository Failures... 135

7.3.9 Recovery of a Repository... 136

7.3.10 Addition of a Repository.. 137

7.3.11 Graceful Removal of a Repository .. 137

7.4 Experimental Results.. 138

7.5 Summary... 146

Chapter 8 Archived Streaming Service .. 147

8.1 Archived Streaming Service Design... 148

8.1.1 Recording Sessions .. 152

8.1.2 Replay Sessions.. 153

8.2 Metadata Management ... 154

8.2.1 GlobalMMCS Metadata Management ... 155

8.2.1.1 GlobalMMCS Sessions Management ..157

8.2.1.2 GlobalMMCS Intra-Session Management ...158

 vi

8.2.2 Archive Metadata Management ... 161

8.2.2.1 Archive Sessions Metadata Management ..163

8.2.2.2 Archive Intra-Session Metadata Management ...163

8.2.3 Replay Metadata Management... 164

8.2.3.1 Replay Sessions Metadata Management ..166

8.2.3.2 Replay Intra-Session Metadata Management...166

8.3 GlobalMMCS Archive Manager .. 167

8.4 Summary... 169

Chapter 9 Generic Archiving and Replay .. 171

9.1 Generic Archiving and Replay Framework.. 172

9.1.1 Uniform Event Type for Generic Framework.. 172

9.1.2 Repository Changes ... 173

9.2 Session Archiving... 174

9.3 Session Replay.. 177

9.3.1 Running Jitter Reduction Services at the Repository... 180

9.3.2 Running Jitter Reduction Services at the Client... 181

9.4 Active Replay of Real-time Streams .. 183

9.5 Session Synchronization... 184

9.6 GlobalMMCS Videoconferencing Sessions Archiving and Replay........................... 186

9.6.1 Archiving GlobalMMCS Sessions... 186

9.6.2 GlobalMMCS Stream Replay .. 188

9.7 Anabas Session Archiving and Replay... 189

9.7.1 Anabas Session Archiving ... 189

9.7.2 Anabas Session Replay .. 191

9.8 Summary... 192

 vii

Chapter 10 eSports Collaborative Multimedia Streaming and Annotation System

... 193

10.1 eSports System Design ... 194

10.1.1 Capabilities Provided By Archive Service and Generic Streaming Framework196

10.1.2 An Example eSports Session Scenario .. 198

10.2 eSports Collaboration System Interface ... 199

10.3 eSports Collaboration Tools ... 204

10.3.1 eSports Player .. 204

10.3.2 Whiteboard .. 205

10.3.3 Instant Messenger .. 207

10.4 Stream Annotation.. 208

10.5 Performance Tests .. 209

10.5.1 Test Setup .. 210

10.5.1.1 Local Area Network Test ...212

10.5.1.2 Wide Area Network Test (FSU) ..213

10.5.1.3 Wide Area Network Test (UCSD) ...215

10.5.2 Evaluation of Test Results ... 216

10.6 Summary... 218

Chapter 11 Conclusion, Contribution and Future Research Directions 219

11.1 Conclusion.. 219

11.2 Summary of Answers for Research Questions ... 221

11.3 Contribution.. 230

11.4 Future Research Directions .. 231

Appendix A XGSP Audio/Video Schema .. 233

 viii

Appendix B WsRtsp Schema .. 238

Appendix C WsRtsp WSDL Interface ... 247

Bibliography .. 251

Vitae ... 257

 ix

List of Figures

Figure 2-1: Typical H.323 architecture... 17

Figure 2-2: Typical SIP based system architecture... 18

Figure 2-3: RTSP states .. 22

Figure 2-4: A typical RTSP session.. 24

Figure 2-5: Relation between local computer clock time and real time. Adapted from ref.

[77].. 28

Figure 3-1: GlobalMMCS overall architecture... 38

Figure 3-2: XGSP Session Server components. ... 39

Figure 3-3: Representation of XGSP Session XML description 41

Figure 3-4: Representation of MediaDescription XML message used for both audio and

video sessions media descriptions and client media descriptions..................................... 41

Figure 3-5: Representation ActiveSession XML message. .. 42

Figure 3-6: Representation of JoinSession XML message ... 46

Figure 3-7: Representation of LeaveSession XML message.. 47

Figure 3-8: Representation of SessionSignalResponse XML message 48

Figure 3-9: Representation of VideoSourceSelection XML message 49

Figure 3-10: Representation of VideoMixer XML message .. 49

Figure 3-11: Representation of VideoMixerReply XML message................................... 50

Figure 3-12: Representation of StreamEvent XML message ... 51

Figure 3-13: Representation of RequestAllStreams XML message 52

Figure 3-14: Representation of RequestAllStreamsReply XML message 52

 x

Figure 3-15: H.323 Call setup and termination with XGSP Session Server 56

Figure 3-16: Representation of VideoSwitch XML message ... 57

Figure 3-17: SIP client joining and leaving XGSP session .. 58

Figure 4-1: XGSP prototype systems ... 62

Figure 4-2: XGSP Streaming Gateway components .. 63

Figure 4-3: StreamingInput message fields .. 67

Figure 4-4: JoinStream message fields ... 68

Figure 4-5: LeaveStream message fields .. 68

Figure 4-6: A sample signaling case among Session Server, Streaming Gateway and

Streaming Client/Administrator.. 71

Figure 4-7: A screenshot of Streaming Admin interface .. 73

Figure 4-8: A screenshot of Streaming Client interface ... 74

Figure 4-9: A screenshot of a RealStream played in RealPlayer window........................ 74

Figure 4-10: XGSP Mobile Gateway and interactions with other components in the

system ... 76

Figure 4-11: A GlobalMMCS session video converted into General Mobile Streaming

format and viewed from Nokia 3650. ... 78

Figure 4-12: VIC panel that shows streams in GlobalMMCS Access Grid session......... 79

Figure 4-13: Stream received from Mobile Gateway ... 80

Figure 5-1: Steps taken in computing offset using NTP algorithms................................. 89

Figure 5-2: Change of offset with time for darya.ucs.indiana.edu 91

Figure 5-3: Change offset with time for kamet.ucs.indiana.edu....................................... 92

Figure 5-4: Change offset with time for murray.ucs.indiana.edu 93

 xi

Figure 5-5: Change offset with time for elkhart.ucs.indiana.edu 94

Figure 5-6: Change offset with time for community.ucs.indiana.edu 96

Figure 5-7: Change offset with time for grids.ucs.indiana.edu... 97

Figure 5-8: Change offset with time for ripvanwinkle.ucs.indiana.edu 98

Figure 5-9: Change offset with time for complexity.ucs.indiana.edu............................... 99

Figure 5-10: (a)Computers that run NTP server and NTP clients (b) Initiation and end of

a time request between machine A and B. .. 101

Figure 5-11: Discrepancy between machine A (murray.ucs.indiana.edu) and machine B

(kamet.ucs.indiana.edu) .. 101

Figure 6-1: Jitter Reduction Service ... 107

Figure 6-2: Flowchart for releasing the events in the Buffering Service queue 110

Figure 6-3: Ideal Time Differential Service thread invocation....................................... 111

Figure 6-4: Experimental setup for TDS measurements... 112

Figure 6-5: Jitter values comparing Buffering Service Input and TDS Output (Trans-

Atlantic) .. 114

Figure 6-6: Jitter values from the TDS Output (Trans-Atlantic) 115

Figure 6-7: Jitter values comparing Buffering Service Input and TDS Output (Cluster

setting)... 116

Figure 6-8: Jitter values from the TDS Output (Cluster setting) 117

Figure 7-1: Summary of interactions between entities ... 121

Figure 7-2: Widget with table maintained at repository Rx ... 134

Figure 7-3: Topology A; 1 broker (B), 1 publisher (P1) and 1 measuring subscriber (S1)

... 139

 xii

Figure 7-4: Topology B; 1 broker (B), 1 publisher (P1), 1 measuring subscriber (S1) and

1 repository ... 139

Figure 7-5: Mean delivery costs for topologies A and B.. 140

Figure 7-6: Standard deviation of reliable delivery costs for topologies A and B. 140

Figure 7-7: Topology C; 3 brokers (B1, B2, B3), 1 publisher (P1) and 1 measuring

subscriber (S1) .. 141

Figure 7-8: Topology D; 3 brokers (B1, B2, B3), 1 publisher (P1), 1 measuring subscriber

(S1) and 1 repository... 141

Figure 7-9: Topology E; 3 brokers (B1, B2, B3), 1 publisher (P1), 1 measuring subscriber

(S1) and 2 repositories .. 141

Figure 7-10: Topology F; 3 brokers (B1, B2, B3), 1 publisher (P1), 1 measuring

subscriber (S1) and 3 repositories... 142

Figure 7-11: Mean delivery costs for topologies C, D, E and F. 143

Figure 7-12: Standard deviation of latency measurements shown in Figure 7-11. 143

Figure 7-13: Mean delivery costs for topologies A, B, C, D, E and F............................ 144

Figure 7-14: Standard deviation of latency measurements shown in Figure 7-13. 145

Figure 8-1: Archived Streaming Service and interaction with other components in the

system ... 149

Figure 8-2: Archived Streaming Service operations... 150

Figure 8-3: WsRtspResponseType a) graphical representation and b) XML fragment . 151

Figure 8-4: WsRtspStream definition as AtomicStreams and ReplayStreams............... 152

Figure 8-5: Retrieving GlobalMMCS metadata and storing them to WS-Context Service

... 156

 xiii

Figure 8-6: Session representation.. 157

Figure 8-7: XgspSessions representation.. 158

Figure 8-8: A GlobalMCS session (XgspSession) representation.................................. 159

Figure 8-9: StreamInfo representation to describe any type of stream within messaging

middleware.. 160

Figure 8-10: AtomicStream representation for archive sessions. 162

Figure 8-11: NBInfo representation, which is used to describe transport and template

information regarding a stream... 162

Figure 8-12: ArchiveSessions representation. .. 163

Figure 8-13: ArchiveSession representation... 164

Figure 8-14: ReplayStream representation ... 165

Figure 8-15: ReplaySessions representation... 166

Figure 8-16: ReplaySession representation. ... 167

Figure 8-17: GlobalMMCS Archive Manager and interactions with other components in

the system.. 168

Figure 9-1: Fields used in NaradaBrokering native event .. 173

Figure 9-2: Event timestamp table.. 174

Figure 9-3: Table entries for stream original template information 174

Figure 9-4: Session record request.. 175

Figure 9-5: Topic recorder and NB event generation ... 176

Figure 9-6: Session recorder ... 177

Figure 9-7: Session replay request .. 178

 xiv

Figure 9-8: (a) Timestamp service request (b) Timestamp range reply (c) Timestamp list

reply .. 179

Figure 9-9: Session player with Jitter Reduction Service at the repository.................... 180

Figure 9-10: Session player with Jitter Reduction Service at the client 182

Figure 9-11: Synchronizing streams in a session using Jitter Reduction Service........... 185

Figure 9-12: RTPEvent topic recorder.. 186

Figure 9-13: Archiving GlobalMMCS sessions .. 187

Figure 9-14: RTPEvent topic player ... 188

Figure 9-15: Session player for GlobalMMCS replay session 189

Figure 9-16: JMS event topic recorder ... 190

Figure 9-17: Archiving Anabas sessions .. 190

Figure 9-18: JMS event topic player... 191

Figure 9-19: Session player for Anabas replay session .. 192

Figure 10-1: Overall system including eSports system .. 195

Figure 10-2: eSports Collaboration System Interface (eSports Recording) 200

Figure 10-3: Snapshot taken from a live eSports session (eSports Recording) 201

Figure 10-4: Snapshot taken from eSports replay session (eSports Replay) 203

Figure 10-5: eSports Video Player Unit.. 204

Figure 10-6: Relationship between eSports video player unit and whiteboard application

... 205

Figure 10-7: Shared whiteboard content... 206

Figure 10-8: Instant message streaming ... 207

Figure 10-9: Data flow between two video streams and whiteboard application........... 208

 xv

Figure 10-10: Test setup for measuring the delay and jitter ... 211

Figure 10-11: Storage input jitter for LAN setup ... 212

Figure 10-12: Storage output jitter for LAN setup ... 213

Figure 10-13: Storage input jitter for WAN-FSU setup ... 214

Figure 10-14: Storage output jitter for WAN-FSU setup ... 214

Figure 10-15: Storage input jitter for WAN-UCSD ... 215

Figure 10-16: Storage output jitter for WAN-UCSD ... 216

 xvi

List of Tables

Table 3-1: NaradaBrokering communications topics used by XGSP Session Server 40

Table 4-1: Streaming Gateway machine specifications.. 80

Table 4-2: Approximate CPU and memory usage with respect to number of streams..... 80

Table 5-1: Machine specification and numeric values for darya.ucs.indiana.edu 91

Table 5-2: Machine specification and numeric values for kamet.ucs.indiana.edu 92

Table 5-3: Machine specification and numeric values for murray.ucs.indiana.edu 93

Table 5-4: Machine specification and numeric values for elkhart.ucs.indiana.edu.......... 94

Table 5-5: Machine specification and numeric values for community.ucs.indiana.edu... 96

Table 5-6: Machine specification and numeric values for grids.ucs.indiana.edu............. 97

Table 5-7: Machine specification and numeric values for ripvanwinkle.ucs.indiana.edu 98

Table 5-8: Machine specification and numeric values for complexity.ucs.indiana.edu... 99

Table 5-9: Numeric values for discrepancy between machine A and machine B 101

Table 6-1: Broker and client machine specifications.. 113

Table 6-2: Mean and standard deviation of input and output jitter values for Trans-

Atlantic benchmark... 115

Table 6-3: Mean and standard deviation of input and output jitter values for Trans-

Atlantic benchmark... 117

Table 7-1: Reliable delivery costs within the framework. Values reported for a message

size of 8KB. .. 146

Table 8-1: XML Node Name and WS-Context User Key mapping for XgspSessions

representation.. 158

 xvii

Table 8-2: XML Node Name and WS-Context User Key mapping for XgspSession

representation.. 160

Table 8-3: XML Node Name and WS-Context User Key mapping for ArchiveSessions

representation.. 163

Table 8-4: XML Node Name and WS-Context User Key mapping for ArchiveSession

representation.. 164

Table 8-5: XML Node Name and WS-Context User Key mapping for ReplaySessions

representation.. 166

Table 8-6: XML Node Name and WS-Context User Key mapping for ReplaySession

representation.. 167

Table 10-1: Machine configurations for LAN and WAN test setup............................... 211

Table 10-2: Measured values for LAN setup.. 213

Table 10-3: Measured values for WAN-FSU setup.. 215

Table 10-4: Measured values for WAN-UCSD setup .. 216

 1

Chapter 1

Introduction

Collaboration and videoconferencing systems have become important

applications over the Internet. They have been used in many areas such as distance

education, telemedicine and also in various business sectors [1]. For videoconferencing

systems, highly sophisticated audio and video codec have been designed to transfer audio

and video content efficiently and standards have been developed to initiate and manage

real-time videoconferencing sessions.

The well known standards are H.323 [2] and IP-Multicast [3]. However, these

standards emerged from different multimedia communities and serve different purposes.

Videoconferencing systems provide a framework to send/receive audio and video

streams. These systems consist of three parts: clients, session servers and communication

channels. For example, in an H.323 based system, a client refers to the H.323 endpoint

that is capable of sending/receiving audio and video. H.323 client can only send/receive

one audio and video stream at a time. A session server refers to the Multipoint Controller

 2

that can generate multipoint sessions. A multipoint communication channel provider is

the Multipoint Processor that can mix audio and video streams from different clients.

H.323 based systems such as Polycom [4] and Radvision [5] are used in business sectors

to enable companies to hold online meetings with other companies and with their own

clients to reach business agreements and/or discuss business projects. These H.323

systems can also be used in distance education. Session Initiation Protocol (SIP) [6] is a

text based protocol and is usually used in IP Telephony [7]. Another example is the

Access Grid [8] system where a client is based on the Multicast Bone (MBONE) [9]

audio/video tools such as Robust Audio Tool (RAT) [10] for audio and

Videoconferencing Tool (VIC) [11] for video. Furthermore there is a venues server in the

Access Grid, which is responsible for scheduling meetings. Multicast Real-time

Transport Protocol (RTP) channels are the communication infrastructure for the Access

Grid. The Access Grid clients VIC and RAT can receive and play multiple audio/video

(A/V) streams in the session so that they can interact with each other. The Access Grid

makes long distance collaboration between researchers possible only if their clients are

MBONE clients.

Systems based on the H.323, SIP, IP-Multicast and other such standards cannot

communicate with each other since the collaboration environment in these systems is

homogenous where all clients would have to use the same protocol to communicate with

each other. Among videoconferencing systems the Virtual Rooms Videoconferencing

System (VRVS) [12, 13] is the only one that integrates different collaboration

environments with each other.

 3

There are also some client types which do not need to send streams to interact

with the others but only need to receive streams. Such clients can receive streams with

some delay. These clients do not want flickering in the video or noise in the audio if their

bandwidth is fluctuating often. Streaming provides a framework to deliver media stream

across large distances over the Internet while trying to minimize aforementioned

problems that clients might have.

A streaming client connects to a streaming server, primarily using Real Time

Streaming Protocol (RTSP) [14], to establish a session and receive the stream. Streaming

is primarily used for receiving media that resides on a streaming server (Media-On-

Demand) whenever a client wants to play a stream. It is also possible to make live

streaming broadcasts. RTSP is a client-server multimedia presentation control protocol. It

provides Video Cassette Recording (VCR)-like control, so that clients can pause, fast

forward, reverse, absolute position and can perform other such functions. RTSP also

maintains the state between client and server. Streaming media aims to improve the

quality-of-service of the stream, by using various streaming codec to improve stream

quality and a buffering mechanism to reduce the jitter [15]. The buffering mechanism

causes the stream to be delayed for some time. Hence, streaming media does not provide

a good interactive environment compared to the interactivity in a videoconferencing

system, despite the fact that the stream quality is improved.

Developments in cellular networks and cell phone technology provide new

application areas for streaming on cellular phones. Currently cellular phones are capable

of playing video streams. While some of them are capable of playing only local video

files others are also capable of receiving streams from streaming servers.

 4

1.1 Motivation

The collaboration systems discussed above do not provide an architecture or

framework against network failures. For instance, in these kinds of systems, clients who

join late miss some of the session, and broken clients suffer from poor and broken

connections.

In order to support late joining and broken clients, the system should have an

archive and replay service so that missed parts of the stream can be played by the late

joining or broken clients. IG Recorder [16], developed by inSORS Integrated

Communications [17] or its open source equivalent Voyager [18], developed by Argonne

National Laboratory [19] is used in the Access Grid sessions and records streams as they

are. Those recorded streams are available only after the session is over. Late or broken

clients cannot receive the past streams while the session is on. Multiple instances of

Voyager/IG Recorder can run to record the same session independently. But there is no

mechanism for recovery from failures while a session is recorded. There is a need for a

distributed and replicated archiving system to improve the fault tolerance of the system.

H.323 based systems such as ref. [20] and ref. [21] do not specify an archiving and replay

capability within the standard and VRVS does not provide such service either.

In a collaboration system, support for different types of clients is an issue. The

Access Grid needs MBONE tools and does not provide streams in other streaming

formats. Although H.323 terminal (client) is capable of playing the stream format in the

Access Grid sessions, since the Access Grid uses multicast network, H.323 terminal

cannot receive the Access Grid streams. VRVS provides streams for QuickTime [22] and

PocketPC clients. But there are no stream format conversions for QuickTime. It only

 5

receives the original stream available. Clients with low bandwidth will not be able to

receive this stream. PocketPC also uses wireless networks. Cellular phones cannot

receive those streams since they do not integrate web casting systems and

videoconferencing systems to enable streaming clients such as RealMedia [23] clients to

receive streams.

In a large collaboration environment stream quality is also another major issue. A

high value of jitter may be introduced in packets. Packets lose their order en route to the

client and this may result in ignoring those packets if they arrive too late [24]. Hence,

there is a need for improving stream quality by reducing jitter and providing services and

mechanisms to improve packet ordering. None of the above collaboration systems

provide such mechanisms.

Another emerging application area for video streams is annotation systems.

Examples for these systems are IBM’s VideoAnnEx Annotation Tool [25], Microsoft

Research Annotation System [26], Classroom 2000 [27], Intelligent Video Annotation

System [28] and Synchronous Multimedia and Annotation Tool [29]. Annotation systems

may annotate video streams. However current annotation systems use previously

archived video files and they cannot get streams from videoconferencing sessions such as

the Access Grid sessions or H.323 terminals.

Each of these systems target a specific community providing a capability that may

not exist in the other system. These systems also do not benefit from the developments in

publish/subscribe systems.

Publish/subscribe systems provide loosely coupled messaging middleware to

facilitate group communications. Today there are many publish/subscribe systems from

 6

research to the industrial community. Some of the well known systems are

NaradaBrokering, Gryphon [30], SIENA [31], SonicMQ [32], Java Message Service

(JMS) [33], Sun Java System Application Server [34], IBM WebSphere Application

Server [35], and BEA WebLogic Server [36].

Communication in publish/subscribe systems is asynchronous. Event producers

which publish messages on topics on the broker network and event consumers which

receive those messages by subscribing to those topics through the broker network are

completely decoupled. There may be many subscribers subscribed to the same topic so

when the publisher publishes a message, the broker network delivers it to the subscriber.

The benefits of publish/subscribe systems are as follows:

� They can transport any type of message, including messages from

collaborative applications. This reduces overall system complexity.

� They provide software multicast. So when a publisher publishes a message

that message is received by many subscribers without affecting the publisher.

1.2 Research Issues

In this dissertation we investigate the issue of developing a fault tolerant and

service oriented streaming architecture based on messaging systems that integrates

videoconferencing, streaming and annotation systems into an interoperable collaboration

environment. The research issues in this thesis can be divided into four categories:

session management, metadata management, multiple stream support and investigation of

application scenarios devised to demonstrate the framework explained in this dissertation.

Session and metadata level issues are related to signaling among components,

 7

management of sessions and streams. Multiple stream level issues are related to data level

support for fault tolerant streaming with quality-of-service.

1.2.1 Session Management

Videoconferencing systems have their own conference control framework which

makes them accept only clients that use their protocols. In such a system the environment

is homogenous, that is only one type of client exists in the videoconferencing session.

Even when the systems define some gateways for other client types, such as SIP-H.323

gateway [37, 38] to enable SIP clients talk to H.323 terminals, the architecture makes it

difficult to extend it to other types of clients and also these gateways are limited to only a

handful of client types. This is because the protocol that they define either does not allow

them to extend the architecture to cover heterogeneous client types or makes it too

difficult to integrate with other systems. So we propose XML Based General Session

Protocol (XGSP) for audio and video sessions to overcome these difficulties in achieving

an integrated videoconferencing system. XGSP allows the system to be extended easily

to different client types. We investigated how this is achieved to handle H.323 terminals,

SIP clients and as well as MBONE clients.

We then propose a streaming gateway to investigate how flexible this protocol is

in integrating videoconferencing systems and streaming systems which are two different

technologies in multimedia streaming and collaboration. We demonstrate this for

RealMedia [39-41] streams and also investigate other client types such as cellular phone

clients that can be included in the system.

 8

We also extend the XGSP framework to include RTSP functionality to support

archiving and replay of streams. We propose Archived Streaming Service which provides

metadata support and messaging middleware topic management for archiving streams

and replaying archived streams.

1.2.2 Metadata Description and Management

We divide metadata into two categories; static metadata and dynamic metadata.

Static metadata is the metadata that does not change during the lifetime of the session

while dynamic metadata changes. We investigate session and stream metadata from these

two categories.

We describe all metadata in XML format and store them in WS-Context Service

[42] which provides a distributed fault tolerant metadata repository that can be shared

among services and clients in the system. We investigate the impact of this on the design

and architecture of the streaming service.

1.2.3 Multiple Stream Support

Since we will use messaging middleware, particularly NaradaBrokering

publish/subscribe system, we propose developing new services and extending some

existing ones in order to provide archive and replay streaming functionality within

NaradaBrokering system.

We transport data whether it is audio/video or text or any binary data (i.e. image

data) with the NaradaBrokering native event called “NB Event”. The data is encapsulated

inside the event and published to a topic. At this stage, the only parameter needed to

 9

provide streaming functionality for the events published to a topic is the timestamp

information so that we can preserve the ordering and timespacing between the events.

This lets us provide functionalities such as seeking within a stream, playing a stream at its

original rate etc. The services that we propose are as follows:

� Time Service: Unsynchronized clocks in a distributed environment will result in

inconsistency in timestamping events generated from different sources. In order to

avoid this inconsistency in archiving and replay services, we propose using the

time service within messaging environment which is provided to entities in the

messaging system so that entities can timestamp the events. We will investigate

the behavior of local clocks on Linux and Solaris machines.

� Jitter Reduction Services: Jitter is considered to be one of the most important

quality of service measurements within audio/video collaborative systems. As a

part of these services we propose a Buffering Service and Time Differential

Service. These two services require the use of the Time Service mentioned above.

We will demonstrate how Jitter Reduction Service using the following services is

effective in reducing jitter in an intercontinental environment which we set up

between Cardiff, UK and Bloomington, IN, USA. We investigate the delay

introduced by this service to the stream.

1. Buffering Service: The goal of this service is to order events that clients

receive. Unordered events mean that the original order has changed.

Especially if the publisher and the subscriber are located at a large

distance from each other it is possible that some of the later events reach

the subscriber earlier than the former.

 10

2. Time Differential Service: The ordering of events is not sufficient to

reduce jitter. If the timespacing of events is not preserved this will also

increase jitter. We propose Time Differential Service that timespaces

events before releasing them to the subscriber. This service is another

means to preserve the rate at which the stream is published.

We also propose Generic Streaming Framework which can archive and replay any

event type within the messaging environment. This framework also provides guidelines

on how to archive and replay raw RTP packets as well as major RTSP functionalities

(play, pause, rewind and forward).

We also investigate how we can synchronize streams using the services proposed

in this research.

We also propose a replication service by introducing a replication scheme for

messaging systems that can store events in redundant repositories to improve the fault

tolerance of the system in the presence of repository failures.

1.2.4 Application Scenarios

We investigate application scenarios from different collaboration systems. From

videoconferencing systems, we will archive and replay GlobalMMCS [43-49] sessions.

GlobalMMCS sessions contain audio and video streams. We will also archive and replay

sessions from Anabas eLearning and Collaboration [50] system. Anabas is a web based

collaboration system which provides many different tools such of shared display, text

messaging and audio conferencing. These two collaboration systems demonstrate

different characteristics, since in GlobalMMCS sessions the number of streams (hence

 11

topics) changes as clients join or leave sessions, in Anabas there is a fixed number of

topics.

Another important application area is annotation systems. We initiate an

annotation system named “eSports Collaborative Multimedia Streaming and Annotation

System” based on the streaming architecture proposed in this dissertation. In eSports, we

will replay real-time live A/V streams and annotate them. We shall also replay annotated

streams with the annotations.

1.3 Organization of the Thesis and Summary of the

Chapters

In the next chapter we provide background information on topics such as

videoconferencing standards and systems, streaming technologies and protocols used. We

will also give the overview of NaradaBrokering messaging middleware which we use to

implement our streaming architecture.

In chapter three, we will give the overview of GlobalMMCS collaboration system

and explain XGSP Session Server. GlobalMMCS is the prototype system that is built

around XML Based General Session Protocol (XGSP) framework. XGSP Session Server

is the session management unit within GlobalMMCS that implements XGSP

management and conference control framework. XGSP Sessions Server provides an

administrative interface for session activation and deactivation, controls XGSP sessions

over media servers and helps application endpoints to join and leave sessions. We will

explain the control framework, messages exchanged with clients, gateways and

administrator components and how XGSP Session Server manages media servers.

 12

Chapter four presents the XGSP Streaming Gateway. XGSP Streaming Gateway

extends XGSP framework by defining and designing a novel Streaming Gateway in order

to deliver audiovisual streams in a XGSP session to streaming media clients. Streaming

format chosen to implement the idea presented in this chapter is RealMedia format which

is a proprietary format of RealNetworks [23]. But the idea can be implemented for other

streaming formats as well.

In chapter five, we will explain the Time Service which we incorporated within

NaradaBrokering messaging middleware to achieve synchronization of streams from

different sources. This Time Service utilizes Network Time Protocol (NTP). Entities

running on different machines in NaradaBrokering environment can timestamp events

with NTP timestamps which provides more consistent timestamps than local clocks. We

also provide test results that we run on different Linux and Solaris machines to show

different clock behaviors.

In chapter six, we will present the Jitter Reduction Service we developed for

NaradaBrokering messaging system. Jitter is usually introduced to events due to the

underlying network delay or processing node latencies when the events are traversing to

the client. Jitter is a quality-of-service criterion in streams. Jitter Reduction Service

reduces jitter to a minimum. Jitter Reduction Service is composed of Buffering Service

which time orders events and Time Differential Service which preserves the timespacing

between events while releasing them to client. The timestamps used in events are NTP

timestamps that are provided by Time Service explained in chapter five. We provide test

results in Local Area Network (LAN) environment and in Wide Area Network (WAN)

environment.

 13

NaradaBrokering provides reliable delivery of messages for entities within the

system. However, it does not ensure reliable delivery if there is repository failure. In

chapter seven, we present our strategy to make this scheme even more failure resilient, by

incorporating support for repository redundancy. Each repository functions autonomously

and makes decisions independently. If there are N available repositories, reliable delivery

guarantees will be met even if N-1 repositories fail. We present test results for different

topologies explained in the chapter.

In chapter eight, we present one of the components of the archive and replay

streaming architecture, Archive and Replay Service which manages archive and replay

streaming sessions by providing session metadata and topic information during session

initiation. An important aspect of this architecture is that it utilizes a fault tolerant

distributed metadata repository, WS-Context Service, to maintain session and stream

metadata. In this chapter we also explain how we obtain GlobalMMCS real-time

videoconferencing session metadata and GlobalMMCS archive manager which initiates

recording of GlobalMMCS sessions.

Another component of the streaming architecture is explained in chapter nine,

Generic Streaming Framework. In chapter nine, we explain initiating media delivery for

streaming sessions; delivery and control of the archive and replay stream. This Generic

Streaming Framework is independent of media type and format, so it provides a generic

delivery mechanism which can be used not just for multimedia content but also for any

type of streaming content. It utilizes messaging middleware to achieve this generic

framework. It supports both archiving and replay of streams with replay of real-time live

streams.

 14

Chapter ten provides an application scenario where we use all of the services and

components described in this thesis. We present “eSports Collaborative Multimedia

Streaming and Annotation System” which is built on top of the archiving and replay

streaming architecture we explained in this thesis. eSports system is an annotation system

that can be used in distance education especially for distance sports training or education.

eSports system can provide new features, which are not found in other annotation

systems, with this streaming architecture. In eSports system clients can collaboratively

and synchronously play and archive real-time live video, take snapshots, and annotate

those snapshots using whiteboard application. Annotated stream can be replayed

synchronously with the original video stream.

Finally in chapter eleven, we provide concluding remarks, the contribution of this

thesis and future directions.

 15

Chapter 2

Background

2.1 Videoconferencing

The well-known solutions for multimedia collaboration framework are H.323, SIP

and the Internet Engineering Task Force (IETF) Multi-Party Multimedia (MMUSIC)

[51]. IETF MMUSIC’s proposed solution, Simple Conference Control Protocol (SCCP)

[52], targeted lightweight conference management for multicast. In the year 2000,

Multiparty Multimedia Session Control (MMUSIC) Working Group (WG) gave up and

removed conference control from WG charter, since multicast was not deployed widely

in the Internet. The Access Grid project started for videoconferencing over multicast

internet using MBONE tools, VIC and RAT, but they try to define and use their own

conference control framework rather than using SCCP.

These standards, hence collaboration and conferencing systems based on them,

cannot communicate with each other. So the collaboration environment is a homogenous

 16

environment where all clients use and understand one common protocol to communicate

with each other. It is difficult to extend the system to other types of client from other

systems. Moreover it is difficult to extend the videoconferencing session to include

sessions from other videoconferencing systems. Among collaboration systems VRVS

provides an environment that different clients can join in a videoconferencing session. In

this section we will examine videoconferencing standards and some major systems used

in research and group collaboration.

2.1.1 H.323

H.323 is an International Telecommunications Union (ITU) standard aiming

multimedia communication over Local Area Networks (LAN). H.323 [2] is defined as an

umbrella standard which specifies the components to be used within an H.323-based

environment. It provides conference management functionality for audio/video

conferences using the call signaling functionality of H.225 [53], H.245 [54]. H.225 and

H.245 provide call set-up and call transfer of real-time connections to support small-scale

multipoint conferences. The H.243 [55] protocol defines some commands between the

H.323 Multipoint Control Unit (MCU) and H.323 terminals to implement audio mixing,

video switch and cascading MCU. Codecs used within H.323 system are G.711 [56] for

audio, H.261 [57] and H.263 [58] for video and T.120 [59] for data. T.120

recommendation contains a series of communication and application protocols. It also

includes services to support real-time, multi-point data applications in collaborations

sessions.

 17

H.323 system is designed for packet switched networks. The components of

H.323 are:

� Terminals are endpoints that provide audio/video/data to another endpoint.

� Gatekeepers (GK) provide admission and call control services to endpoint. They

also provide services such as address translation, RAS control, call redirection

and zone management to H.323 participants.

� Multipoint controller (MC) establishes a H.245 control channel with H.323

participant to negotiate media capabilities.

� Multipoint processor (MP) provides media switching and mixing functionalities.

� Multipoint control unit (MCU) is an endpoint that enables three or more endpoints

to participate in a conference.

� Gateway (GW) provides real-time, two-way communication between H.323

endpoints and non-H.323 endpoints.

GatekeeperMC MP
MCU

H.323 Terminal 1 H.323 Terminal 2 H.323 Terminal N
....

Packet Switch Network

Figure 2-1: Typical H.323 architecture

 18

H.323 protocol defines how these components communicate with each other.

H.323 control communication is in binary format. Figure 2-1 shows the architecture of a

typical H.323 system.

2.1.2 SIP

The Session Initiation Protocol (SIP) is a text based and HTTP-like style (request-

response) application layer protocol for establishing, modifying and terminating sessions.

SIP was designed to solve problems for IP telephony. It provides functions such as user

location resolution, capability negotiation, and call management. SIP capabilities are

basically equivalent to the services H.225 and H.245 in H.323 protocol. Although SIP

does not define the conference control procedure like H.243, there is some research for

SIP based conference control protocol [60, 61].

Figure 2-2: Typical SIP based system architecture

A typical SIP system is shown in Figure 2-2. Main components of a SIP system

are: SIP clients, a SIP Proxy Server, a Registrar Server, a Location Server, a Redirect

Server and a SIP MCU. The SIP Proxy Server primarily plays the role of routing and

 19

enforcing policy of call admission. It provides an instant messaging service, forwarding

SIP Presence Event messages and SIP text messages to SIP clients. The SIP registrar

accepts REGISTER requests and saves the received information in location server.

2.1.3 The Access Grid

Multicast systems are suitable for high bandwidth users. So they can concurrently

receive many media streams. Such systems do not need a media distribution server.

Participants send their audio and video streams to a multicast address and every client

receives those streams through multicast enabled routers. However this does not work for

low bandwidth clients, because they cannot receive many multicast streams at once. As a

consequence there needs to be a unicast bridge to stream those multicast streams to the

client.

The Access Grid uses MBONE tools and can support a large scale

audio/videoconference based on a multicast network. The Access Grid provides group-to-

group collaborations among more than 100 nodes connected to world wide Internet.

Most of these nodes are educational and research institutions.

The Access Grid uses separate multicast IP address and port pair for video and

audio streams. Access Grid uses MBONE Videoconferencing Tool (VIC) for video and

Robust Audio Tool (RAT) for audio. These tools can connect to these multicast IP

address/port number pair and receive streams. A permanent virtual meeting room in

Access Grid is called a “virtual venue”. Virtual venues are used for collaboration services

management. Users are allowed to establish their own venue server which hosts the

information about the user registration and venue addressing and offers rendezvous

 20

service to all the users. Users have to log onto the venues server and start the multimedia

clients in their nodes for communication through multicast and unicast bridges.

The Access Grid 2.0 provides a security mechanism through Globus Toolkit’s

[62] authentication and user identification mechanisms [63]. Although they can encrypt

RTP streams with a shared key and authorize users, one can send malicious traffic to the

multicast session and overwhelm the bandwidth of participants.

The Access Grid provides a chat application for node operators, a distributed

power point and whiteboard application.

2.1.4 The Virtual Rooms Videoconferencing System

The Virtual Rooms Videoconferencing System (VRVS) is a web-oriented system

for videoconferencing and collaborative work over IP networks. Using VRVS, users from

disparate geographic locations can meet and participate in MBONE, H.323, SIP or

MPEG2 multipoint videoconferences. It also supports QuickTime player. Participants can

make use of different collaborative tools (sharing their desktops, broadcast any local

application, participate in a chat, etc.). VRVS also integrates MBONE and H.323 tools

with the Access Grid Virtual Venues. H.323 Clients are connected to the Virtual Rooms

by the H.323–VRVS Gateway.

VRVS builds its collaboration service on top of pure software reflector

infrastructure which is a kind of software multicast. Reflectors play an important role in

VRVS design. A reflector is a host that connects each client to a Virtual Room by a

permanent IP tunnel. The reflectors for a virtual room have many IP tunnels among

themselves and clients multiplex these tunnels. The reflectors and their links form an

 21

overlay network through which audio, video or data flows. The use of the reflector

technology assures the quality needed for videoconference transmissions. Reflectors are

responsible for transmitting the streams. VRVS is not an open project and has few

documents detailing its architecture and conference control framework.

2.2 Streaming

Videoconferencing systems provide a framework to send/receive audio and video

streams. On the other hand there are also some clients who do not need to send streams to

interact with another client but only receive a stream. These clients can receive streams

with some delay since there is no need to interact with other clients. Also these clients do

not want flickering in the video or noise in the audio if the bandwidth to the client is

variable. Streaming provides a framework to deliver media across large distances over

the Internet while minimizing the problems that clients may have.

Streaming media aims to improve the quality of service of the stream, by using

various streaming codecs and a buffering mechanism to reduce the jitter. The buffering

mechanism causes the stream to be delayed for some time. Hence, streaming media does

not provide a good interactive environment compared to the interactivity in a

videoconferencing system, but the stream quality is improved.

Another feature of streaming that distinguishes it from conferencing is that

streaming uses compression algorithms that cause streams to be compressed more so that

less bandwidth is required in order to transmit a stream across the network. The side

effect of this is that compression/decompression requires high CPU utilization because it

involves much computation. Also the buffer delay in streaming is much longer than the

 22

buffer delay in conferencing. While in conferencing it is recommended that mouth-to-ear

delay of audio be less than 300 msec [64], the delay in streaming buffer in today’s

streaming players is around 2 – 15 sec.

2.2.1 Real Time Streaming Protocol

A streaming client connects to a streaming server primarily using Real Time

Streaming Protocol (RTSP) [14], to establish a session and receive the stream. Streaming

is primarily used for Media-On-Demand that is receiving media that resides on a

streaming server whenever a client wants to play. RTSP is a client-server multimedia

presentation control protocol and is stateful. It provides VCR-like control, so that clients

can pause, fast forward, reverse, and absolute position etc.

Figure 2-3: RTSP states

RTSP is a protocol specified in the Internet Engineering Task Force’s RFC 2326

for control over the delivery of live or stored data with real-time properties. RTSP is

similar in syntax and operation to HTTP/1.1 [65], which allows RTSP to be extended by

HTTP, but as opposed to HTTP, RTSP maintains state by default. States involved in

 23

RTSP are init, ready, playing/recording. Basic RTSP control functionalities are play,

pause, seeking (absolute positioning to a specific point in the stream) etc. While some

methods cause state change, some do not. RTSP states are shown in Figure 2-3.

RTSP uses Session Description Protocol (SDP) [66] to describe the multimedia

session. It is also used for session announcements and session invitation. SDP is a text

based protocol. Some of the metadata included in the SDP description are multimedia

session owner information, stream information such as media type and media format,

human readable session description, session begin time and end time, URLs for session

resources.

RTSP does not mandate any data packet format for sending media to client but

usually standard Real-Time Transport Protocol (RTP) [15] is used. Some vendors like

RealNetworks may have their own data packet formats, RealNetworks’ Real Data

Transport (RDT) [67]. This information is exchanged during RTSP session setup.

There are other streaming protocols such as Windows Media Services HTTP 1.1

(WMS HTTP 1.1) [68] which is also an extension of HTTP 1.1 with similar functionality

to RTSP.

Figure 2-4 displays RTSP signaling between client and server. State of the

connection describes which methods the client can request. Depending on the state, client

may be limited to some of the methods provided to it.

Any type of media format can be used for data. RTSP Server is responsible for

sending data to client. In this case it has to be capable of understanding the media format

of the stream, that is, it has to support the format otherwise it cannot process the request.

 24

In case of a heavy load on the server, the server can redirect the client to another

RTSP server. The client needs to be provided with the address of the new RTSP server in

order to make requests to the new server. RTSP does not describe any load balancing

mechanism among servers; the client needs to find one that can accept its request through

trial and error.

���������	�
��

��

���������	�
����

������	�
��

��

������	�
����

�����	�
��

��

�����	�
����

���������	�
��

��

���������	�
����

�������������
�

������
�� �

�
��!�"
#���$$
��"�$

�
� %�&$���$$
��"�$

Figure 2-4: A typical RTSP session

2.2.2 Handling Streaming Formats

Streaming servers may support different media formats and encodings such as

RealNetworks’ RealMedia [39-41], Apple’s QuickTime [22], Microsoft’s

WindowsMedia [69] or Moving Picture Experts Group (MPEG) audio and video formats

[70] and AVI format [71]. Vendor specific encodings are usually supported by a vendor’s

 25

streaming servers while other encodings may be supported by any streaming server. But

streaming servers are not required to support all of the formats and encodings. For this

reason, vendors have their own specific clients to play their specific formats and

encodings.

A streaming server may use files or multimedia storages to archive and replay

streams. Multimedia storages are special type of storage designed specifically to achieve

high performance during retrieval of multimedia files. Audio and video data consists of

frames that must be retrieved in sequence in order to play continuously. So media frames

need to be grouped into storage blocks in a continuous manner to improve storage

performance. There are two approaches to store multimedia data described below.

In the first approach the media server needs to know the details of the encoding and

the format in order to map media frames to storage blocks. For example, an MPEG-

encoded video contains I, B, and P frames. While I frames can be decoded independently,

P frames depend on the previous I frame and B frames depend on the preceding and the

following I or P frame. Consequently the multimedia server needs to know the details of

the standard.

In the second approach a multimedia file is considered as a stream of bytes and is

partitioned into fixed size storage blocks. In this case during replay the average

compression ratio of the multimedia file, which also depends on the media format and

encoding, is taken into account while reading the storage blocks during the delivery of

the media to the client.

 26

2.3 Annotation Systems

There is several annotation systems developed for digital video. Some of them are

used in a stand-alone environment in which the annotations can be saved and shared

asynchronously and some others allow collaborative annotation.

IBM’s VideoAnnEx Annotation Tool [25] is based on MPEG video and MPEG-7

[72-75] metadata framework. It takes an MPEG video file and segments it into smaller

units called shots. It allows each shot to be annotated with static scene descriptions, key

object descriptions and event descriptions. It stores those annotations as MPEG-7

descriptions in an XML file and associates them with the original MPEG video. MPEG-7

file is replayed along with the corresponding MPEG file to show the annotations on the

original MPEG video.

Microsoft Research Annotation System (MRAS) [26] is an asynchronous

annotation system which lets its users download a lecture along with the comments added

by other users such as lecturers and students. After adding the annotation to the lecture it

is saved onto the annotation server.

Classroom 2000 [27] captures interactions with cameras, microphones and pen-

based computers to annotate slides during a typical lecture. All activities are captured and

recorded with timestamps. After recording is done, students can replay the recorded

lecture.

Intelligent Video Annotation System (iVas) [28] system is a stand alone system

that can associate archived digital video clips with various text annotations using the

client server architecture, The system analyzes the video content to acquire cut/shot

 27

information and color histograms. Then it automatically generates a Web document that

allows the users to edit annotations.

Synchronous Multimedia and Annotation Tool (SMAT) [29] is a collaborative

annotation system which allows users to collaboratively add annotations to multimedia

contents such as archived video clips using text and whiteboard.

2.4 Time Services and Event Ordering

Time ordering of events generated by entities existing within a distributed

infrastructure is far more difficult than time ordering of events generated by a group of

entities having access to the same underlying clock. Because of the unsynchronized

clocks, the messages (events) generated at different computers cannot be time-ordered at

a given destination if local time is used for timestamping.

2.4.1 Computer Clocks

On a computer, there are two types of clocks, hardware clock and software clock.

Computer timers keep time by using a quartz crystal and a counter. Each time the counter

is down to zero, it generates an interrupt, which is also called one clock tick. A software

clock updates its timer each time this interrupt is generated. Computer clocks may run at

different rates. Since crystals usually do not run at exactly the same frequency, two

software clocks gradually get out of sync and give different values. The accuracy of

computer clocks can vary due to manufacturing defects, changes in temperature, electric

and magnetic interference, the age of the oscillator, or computer load [76]. Another issue

is that an ill-behaved software program can use the timer’s counter and change the

 28

interrupt rate. This could cause the clock to rapidly gain or lose time. A software clock

loses state when the machine is turned off and it synchronizes itself with the hardware

clock at reboot. Furthermore, hardware clock itself may not be synchronized with the real

time and may be seconds, minutes or even days off. Finally, a software clock’s accuracy

would be bounded by the accuracy of the hardware clock at the reboot.

Because of hardware or software reasons, computer clocks may run slower or faster

than they should. An ideal clock is a clock whose derivative with respect to real time is

equal to 1. If this derivative is smaller than 1 it is considered a slow clock, and if this

derivative is greater than 1 it is considered a fast clock.

Let the clock value on a machine m at real time t be Cm(t). If the clock is a slow

clock then dCm(t)/dt < 1. If the clock is fast clock then dCm(t)/dt > 1. If the clock is ideal

clock then dCm(t)/dt = 1. This relationship is depicted at Figure 2-5.

Figure 2-5: Relation between local computer clock time and real time. Adapted from ref. [77].

It is thus necessary to synchronize clocks in a distributed system, if the time-based

order of events matter. One cannot rely on the underlying hardware or software clocks to

provide synchronization. Hence, time ordering of events generated by entities existing

within a distributed infrastructure is far more difficult than time ordering of events

generated by a group of entities having access to the same underlying clock.

 29

2.4.2 Event Synchronization in Distributed System

Different approaches exist to synchronize events in a distributed system. One of

them is to use logical clocks, which was first presented by Lamport [78], and the other

one is to synchronize system clocks so that clocks running on different machines are

synchronized with each other.

Using logical clocks guarantee the order of events among themselves. They do

not need to run at a constant rate, but they must increase monotonically. Using Lamport

timestamps, Lamport synchronizes logical clocks by defining a relation called “happens-

before”. Vector clocks [79, 80] have also been introduced because Lamport timestamps

cannot capture causality. But a major drawback is that vector clocks add a vector

timestamp, whose size is linear with the number of processes, onto each message in order

to capture causality. Vector clocks thus do not scale well in large settings.

Various algorithms have been devised to synchronize physical clocks in a

distributed environment. In Cristian’s algorithm [81], all of the machines in the system

synchronize their clocks with a time server. Each machine asks the current time from the

time server by sending a message to it. The time server responds to that message

including its current time as fast as it can. Time server in Cristian’s algorithm is passive.

In Berkeley algorithm [82], time server is active. It polls every machine periodically, and

then computes the average time based on the times received from them and tells them to

adjust their times to the recent computed time. Another type of synchronization algorithm

is the averaging algorithm, which are also known as decentralized algorithms. An

example to a decentralized algorithm might be to average the time received from other

machines. Each machine broadcasts its time and when the resynchronization interval is

 30

up for a machine it computes the average time from the samples received in that time

interval. In averaging those times one might just take the average of them or can discard

the m highest and m lowest samples and then average the rest.

Hardware approaches [83-86], are also available. But hardware approaches might

require some custom made hardware components such as Network Time Interface (NTI)

M-Module. NTI M-Module [86] is a custom very-large-scale integration (VLSI) chip that

has interfaces to Global Positioning System (GPS) receivers. It uses the time received by

GPS receivers to achieve synchronization. Obviously hardware solutions are expensive

and might require changes to the underlying platform.

 Network Time Protocol (NTP) [87, 88] can also be used to synchronize clocks in

a distributed system.

2.4.3 Network Time Protocol (NTP)

There are also other solutions available, but one that we are most interested in is

the Network Time Protocol (NTP). NTP is one of the most widely used algorithms in the

Internet. NTP uses filtering, selection and clustering, and combining algorithms to adjust

the local time. NTP receives time from several time servers. A filtering algorithm selects

the best from a window of samples obtained from a time server. Selection and clustering

algorithms pick best truechimers and discard the falsetickers. Combining algorithm

computes a weighted average of the time offset of the best truechimers. An adaptation of

NTP, Simple Network Time Protocol (SNTP) [89] can also be used to synchronize

computer clocks in the Internet. The major difference between SNTP and NTP is that

 31

SNTP does not implement the algorithms mentioned above. It just uses the time obtained

from a time server.

NTP daemons are implemented for Linux, Solaris and Windows machines and are

also available online [90]. These NTP daemons sometimes adjust the system clock every

1 sec. This synchronization interval might be too frequent, and can place strains on

bandwidth and CPU utilization. The decision of the synchronization interval is also

another issue. Setting this to a high value might cause the clocks to get out of sync too

much while setting this to a low value might cause performance degradation. If two

clocks need to be synchronized with 't time apart, then the synchronization interval, (t,

should be chosen as 't/()1+)2) where)1 is the drift rate1 of clock1 and)2 is the drift rate

of clock2 [77].

2.5 Replica Services

The virtual synchrony model, adopted in Isis [91], works well for problems such

as propagating updates to replicated sites. This approach does not work well in situations

where the client’s connectivity is intermittent, and where the clients can roam around the

network. Systems such as Horus [92] and Transis [93] manage minority partitions and

can handle concurrent views in different partitions. The overheads to guarantee

consistency are however too strong for our case. Spinglass [94] employs gossip-style

algorithms, where recipients periodically compare the message digest of the received

message with one of the group members. Deviations in the digest result in solicitation

1 The maximum drift rate of a hardware clock is provided by the manufacturer and
indicates how many microseconds a hardware clock drifts apart from real-time per
second.

 32

requests (or unsolicited responses) for missing messages between these recipients. This

approach is however unsuitable when memberships are very fluid and hence a recipient is

unaware of other recipients that should have received the same message sequences.

Distributed Asynchronous Computing Environment (DACE) [95] introduces a

failure model that tolerates crash failures and partitioning, while not relying on consistent

views being shared by the members through a self-stabilizing exchange of views. DACE

achieves its goal through a self-stabilizing exchange of views through the Topic

Membership protocol. This however may prove to be very expensive if the number and

rate at which the members change their membership is high. The Gryphon [30] system

uses knowledge and curiosity streams to determine gaps in intended delivery sequences.

This scheme requires persistent storage at every publishing site and meets the delivery

guarantees as long as the intended recipient stays connected in the presence of failures. It

is not clear how this scheme will perform when most entities within the system are both

publisher and subscribers, thus entailing stable storage at every node in the broker

network. Furthermore it is conceivable that the entity itself may fail and the approach

does not clearly outline how it handles these cases.

Since message queuing products (MQSeries) [35] are statically pre-configured to

forward messages from one queue to another they generally do not handle network

changes (node/link failures) very well. Furthermore, these systems incur high latency

since they use the store-and-forward approach, where a message is stored at every stage

before being propagated to the next one. Queues need to also recover within a finite

amount of time to resume operations. The WS-ReliableMessaging [96] specification

provides a scheme to ensure reliable delivery of messages between the source and the

 33

sink for a given message. The specification provides an acknowledgement based scheme

to ensure that data is transferred reliably between the communicating entities. The

specification, though it is for point-to-point communications, supports composition and

interoperates with specifications pertaining to policies, transactions, coordination and

metadata exchanges. Also of interest is WS-TransmissionControl, which provides a set of

constructs controlling message exchanges between services to improve reliability.

The Data Replication Service (DRS) [97], within the Globus Toolkit, leverages

the Replica Location Service which is a distributed registry that keeps track of replicas on

storage systems, and facilitates queries to locate replicated files. The Storage Resource

Broker (SRB) [98] is a middleware that provides applications a uniform interface to

access heterogeneous distributed storage systems. It utilizes a metadata catalog called

MCAT which manages descriptive and system metadata associated with data collections

and system resources. Both DRS and SRB transfer and replicate files and rely on a

separate service to locate replicated files. In our system, we replicate messages. Messages

are stored at repositories where the underlying stable storage could be based on databases

or flat-files with no need to maintain a separate registry or metadata service to manage

the replications.

2.6 NaradaBrokering

NaradaBrokering [99-105] is a distributed messaging infrastructure based on the

publish/subscribe paradigm. It provides two capabilities. First, it provides a message

oriented middleware (MoM). Second, it provides a notification framework by efficiently

routing messages from the originators to only the registered consumers of the message.

 34

Communication within NaradaBrokering is asynchronous and the system can be

used to support different interactions by encapsulating them in specialized messages

(events). These events can encapsulate information pertaining to transactions, data

interchange and system conditions.

The NaradaBrokering substrate provides several advantages over traditional

multicast. NaradaBrokering relies on a software multicast for communications. This

prevents the need for MBONE which is required for multicast communications. The

NaradaBrokering substrate provides support for transport protocols such as the

Transmission Control Protocol (TCP), Parallel TCP, the User Datagram Protocol (UDP),

Multicast, HTTP and the Secure Sockets Layer (SSL). It also supports communications

across network address translation (NAT) and firewall/proxy boundaries.

A drawback of multicast is the need to negotiate a unique multicast group for

every collaborative session. For example for N entities within a system there could

conceivably be 2N multicast groups. In publish/subscribe systems multiple collaborative

groups are typically managed through the use of different topics for publishing and

subscribing to messages.

NaradaBrokering allows clients to register their subscriptions using a variety of

formats. The subscriptions can be in the form of String, Integer, Long and <tag, value>

based topics, or in the form of XPath, SQL and Regular expression queries. Support for

this variety of subscription formats also implies richer collaborative interactions since

actions may be triggered only under very precise conditions. The complexity of

managing these subscriptions and routing relevant messages is delegated to the

middleware substrate. Since the individual entities do not need to cope with the

 35

complexity of constraints, this in turn facilitates easier development of collaborative

applications which enables these complex interactions.

 36

Chapter 3

GlobalMMCS Overview and XGSP

Session Server

XML Based General Session Protocol (XGSP) conference control framework is a

generic and easy to extend framework that defines signaling protocol for H.225, H.245

(H.323 signaling protocols) and SIP as well as the Access Grid. It also provides services

to A/V and data application endpoints and communities, controlling multipoint A/V RTP

and data channels.

Global Multimedia Collaboration System (GlobalMMCS) is the prototype system

that is built around XGSP framework. XGSP Session Server is the session management

unit within GlobalMMCS that implements XGSP management and conference control

framework. It also provides a development environment to extend XGSP framework for

videoconferencing systems.

 37

XGSP Session Server provides an administrative interface for session activation

and deactivation, controls XGSP sessions over media servers and helps application

endpoints to join and leave sessions. Also it supports gateways to let H.323 and SIP

clients join and leave sessions. XGSP Session Server also manages media server

elements.

In this chapter we will present an overview of GlobalMMCS and will explain

XGSP Session Server. XGSP Streaming Gateway support which provides RealMedia

streams to RealPlayer clients will be explained in chapter 4.

3.1 GlobalMMCS Design

In GlobalMMCS, session management unit and media processing units are

separated from each other. In H.323, these two functionalities are handled by H.323

MCU which includes both multipoint controller and multipoint processor.

GlobalMMCS uses NaradaBrokering messaging middleware to transport data

between components in the system including clients in the sessions. As we will explain

managing media processing unit in section 3.2.4 NaradaBrokering provides

GlobalMMCS components to transport their audio/video data with special events called

RTPEvents.

Figure 3-1 shows the components of GlobalMMCS. The GlobalMMCS media

processing unit shown in the figure is explained in ref. thesis [106]. The XGSP Web

Server provides an easy-to-use web interface for users to join multimedia sessions and for

administrators to perform administrative tasks. In addition, users can start some audio and

video clients through these web pages such as VIC, RAT and Real Player. XGSP Session

 38

Server which is the session management unit of GlobalMMCS and implements XGSP

control framework for videoconferencing sessions is explained throughout this chapter.

Gateways which bridges GlobalMMCS sessions to legacy RTP clients such as H.323, SIP

or Access Grid clients are explained in section 3.3.

Figure 3-1: GlobalMMCS overall architecture

XGSP defines XML messages for control signaling among components in

GlobalMMCS videoconferencing sessions. A request to XGSP Session Server requires an

action in the session by the XGSP Session Server. When we explain XGSP Session

Server, we will also explain the messages and the actions taken by the server. Figure 3-2

below shows XGSP Session Server components. XGSP Session server has a control unit

for each XGSP session. These session control units also use media server management

instances such as VideoSession and AudioSession instances to manage audio and video

servers.

 39

Figure 3-2: XGSP Session Server components.

3.2 XGSP Session Management

XGSP sessions are managed by XGSP Session Server together with the XGSP

Conference Manager, which is also referred as XGSP Web Server. XGSP Conference

Manager maintains a calendar system to schedule and advertise meetings and also

provides administration web pages.

3.2.1 NaradaBrokering Communication Topics

XGSP Session Server uses NaradaBrokering topics for message exchange with

other components in the GlobalMMCS. The topics used are listed in Table 3-1.

Throughout this chapter we will use topic name column to point the topics used.

 40

Topic Name Topic Components Using
TOPIC_SS_WS "/xgsp/av/ss-ws" XGSP Session Server and

Web Server
TOPIC_SS_CL "/xgsp/av/”+sessionID+”/ss-client" XGSP Session Server and

clients in the session with
sessionID

TOPIC_CL_SS "/xgsp/av/client-ss" Client and XGSP Session
Server

TOPIC_SS_RG "/xgsp/av/streaming/ss-rg" XGSP Session Server and
Streaming Gateway

TOPIC_RG_SS "/xgsp/av/streaming/rg-ss" Streaming Gateway and
XGSP Session Server

TOPIC_SS_RC "/xgsp/av/streaming/ss-rc" XGSP Session Server and
Streaming clients

TOPIC_SS_HG "/xgsp/av/streaming/ss-helix" XGSP Session Server and
Helix Gateway

 Table 3-1: NaradaBrokering communications topics used by XGSP Session Server

3.2.2 XGSP Sessions

XGSP Session Server manages audiovisual sessions in GlobalMMCS. XGSP

Session Server maintains session descriptions defined by the administrator. A session is

described as an XML description as shown in Figure 3-3. Session media description

includes audio and video session media descriptions together. Media is described by the

media type, media format and transport information as shown in Figure 3-4. Each session

has audio and video streams. XGSP Session Server handles these streams separately but a

client may have both audio and video streams and can join audio and video sessions of a

XGSP session at the same time. How XGSP Session Server handles these clients will be

explained while we explain join and leave operations in section 3.2.5.

 41

Figure 3-3: Representation of XGSP Session XML description

Figure 3-4: Representation of MediaDescription XML message used for both audio and video

sessions media descriptions and client media descriptions

Media description provides address of a multicast session. If this field is not

provided, the XGSP session is considered a unicast session. Usually the multicast session

is an Access Grid room.

The Access Grid rooms have separate multicast addresses for audio and video

streams. For this reason a session description has fields for both types of streams. XGSP

Session Server passes these multicast addresses to media servers so they can receive

audio and video streams in that Access Grid room. Section 3.2.4 will explain this further.

 42

3.2.3 Activate and Deactivate XGSP A/V Sessions

Based on the session schedules specified by the administrator, the XGSP

Conference Manager will ask XGSP Session Server to activate/deactivate XGSP

sessions. The topic TOPIC_SS_WS shown in Table 3-1 is used for message exchange

between XGSP Session Server and Conference Manager. Once the session is activated,

XGSP Session Server reserves necessary resources such as AudioSession and

VideoSession instances to process requests issued. XGSP Session Server only processes

further administrator and user requests for activated sessions.

XGSP Session Server expects an ActiveSession message with fields shown in

Figure 3-5. The Conference Manager sends an activation command to the XGSP Session

Server to activate an audiovisual session. The XGSP Session Server generates the

associated AudioSession and VideoSession instances to manage audio and video servers.

We will explain managing media servers in section 3.2.4.

Figure 3-5: Representation ActiveSession XML message.

Once a session is activated by XGSP Session Server, Conference Manager needs

to send a deactivate-session message to XGSP Session Server to close the session and

release resources reserved by XGSP Session Server. Deactivate-session message is

usually sent by Conference Manager when the time for the session is over. Administrator

 43

can also send it before the session time is over. Deactivate-session message is the same

message shown in Figure 3-5 with “Active” field set to false value.

3.2.4 Managing Media Processing Units

XGSP audiovisual session supports multiple kinds of clients which use RTP

packets for data transportation. Among these clients are H.323, SIP and Access Grid

clients. Since we use NaradaBrokering messaging middleware to transport these RTP

packets to legacy RTP clients, a special NaradaBrokering event named RTPEvent is used

to transport within NaradaBrokering messaging middleware. RTP packets are

encapsulated into RTPEvents. RTPEvents can be routed within NaradaBrokering. When

RTPEvents leave NaradaBrokering for their subscriber, they are transformed back into

RTP packets. In order to achieve that NaradaBrokering sets up RTPLinks for every

legacy A/V endpoint.

NaradaBrokering provides long type topics for RTPEvents to achieve a better data

transport performance instead of using other topic types such as String or XML type

topics. Since a legacy RTP client has both RTP and RTCP data, there are two topics

associated to one stream.

Media servers are audio servers, video servers and snapshot (image grabber)

servers. Details of the media servers, RTPEvents, RTPLinks and how media servers

manage those links can be found in ref. thesis [106]. In this section after the overview

above, we explain how XGSP Session Server interacts with media servers to manage

audio and video processing units.

 44

3.2.4.1 Managing Audio Processing Units

XGSP Session Server maintains an AudioSession instance for each XGSP

session. Through AudioSession, it accesses audio servers and manages audio clients. An

audio session can be either a multicast audio or a unicast audio session. If it is a multicast

audio session, XGSP Session Server provides the multicast address to the AudioSession

instance which requests initializations in audio server for that multicast session. Multicast

audio clients are treated differently from other unicast audio clients. Audio server

receives audio streams in the multicast audio session and adds them as a participant to the

XGSP audio session.

Audio servers are audio mixers that mix all of the audio streams in that session

into one audio stream, which is called a speaker. So clients in the audio session are added

to the speaker to receive that mixed audio stream. New joining clients are added to the

audio session. When a client leaves the XGSP session, the client is removed from the

audio session.

Participant information is returned to AudioSession instance by audio servers.

During initialization, AudioSession instance registers itself to audio server in order to

receive the participant information. XGSP Session Server updates the inner metadata

tables with these streams information.

When the XGSP session is deactivated, corresponding audio session is also

ceased through AudioSession interface and resources on the audio server are terminated.

3.2.4.2 Managing Video Processing Units

Managing video servers is similar to managing audio servers in some way. XGSP

Session Server maintains a VideoSession instance for each XGSP session and through

 45

this, it accesses video servers and manages video clients. A video session can also be a

multicast session. As in a multicast audio session, multicast video session also contains

multicast video clients. If XGSP session contains a multicast session address,

VideoSession instance is initialized with that multicast address and video server receives

those multicast streams and adds them as a participant to the video session.

A video client can usually send and receive one video stream. So the client needs

to choose the video stream it wants to display. XGSP Session Server assigns a topic

number (or IP/port number pair, if it is a legacy RTP client) for the stream and video

server publishes the video stream selected by the client for the topic (or IP/port number

pair) provided by XGSP Session Server.

XGSP Session Server can also add video mixers to video servers. Up to four

streams can be added to a video mixer. Because video mixing is a CPU intensive process,

the number of video mixers is limited on a video server. XGSP Session Server manages

those video mixers as well. It can add any stream to and remove any stream from the

video mixer. Video mixer output is a single video stream which is considered as a video

publishing client by XGSP Session Server.

Video stream information is returned to VideoSession instance by video servers.

During initialization, VideoSession instance registers itself to video server topics and

receives participant information. XGSP Session Server updates its metadata with these

streams information.

When the XGSP session is deactivated, the corresponding video sessions are

terminated on the video server using VideoSession interface.

 46

3.2.4.3 Snapshot Servers

Snapshot servers take snapshots from video streams. When XGSP Session Server

generates a video session as described in section 3.2.4.2, a session is also generated on

snapshot server for the activated XGSP session. When video stream information is

received through VideoSession instance, URLs that point to those snapshots (JPEG

images) are also received as part of the stream information. These URLs are sent to

clients by XGSP Session Server to help them choose which streams they want to receive.

3.2.5 Join and Leave XGSP A/V Sessions

After the session is activated, users can join the session by sending JoinSession

messages as shown in Figure 3-6 to the XGSP Session Server. The XGSP Session Server

processes JoinSession request for both audio and video sessions. In JoinSession message,

the MediaDescription field contains media information of the requesting client.

Figure 3-6: Representation of JoinSession XML message

When a speaker joins an audio session, a topic number (or IP address/port number

pair for legacy RTP clients) is assigned for this user to publish its audio stream. For

legacy RTP clients, XGSP Session Server passes the IP address/port number pair to audio

server through AudioSession instance to receive the audio stream from the client. If the

client is capable of receiving RTPEvents, it only subscribes to the mixed audio topic

 47

since there is only one mixed audio topic for each session. The interaction between the

AudioSession and AudioMixerSession components is transparent to the user. If the

joining user is a listener then it is only given the mixed stream topic number to receive

the audio of all speakers in the session, for RTPEvent capable clients. Legacy RTP clients

receive audio stream from the IP address/port number pair they provided to XGSP

Session Server. Since they will not publish any audio, they are neither assigned a topic

number, nor added to the mixer.

When a client joins a video session, it is assigned a topic number to publish its

video stream. A legacy RTP client publishes its video stream to IP address/port number

which is the IP address of the video server and available port number on that server. At

the same time, an image grabber is started to construct the snapshots of the video stream.

This user is given a list of available video streams in the session. The client can subscribe

to these streams by sending VideoSourceSelection message to the XGSP Session Server.

Video selection is explained in section 3.2.6.

When client wants to leave the session, it simply sends a LeaveSession message

as shown in Figure 3-7 to the XGSP Session Server and the server removes it from the

XGSP session and hence, from the corresponding media session by calling interfaces on

AudioSession and/or VideoSession instances.

Figure 3-7: Representation of LeaveSession XML message

 48

Both JoinSession and LeaveSession messages are sent to the XGSP Session

Server from topic TOPIC_CL_SS by the client. Response message for these messages are

SessionSignalResponse shown in Figure 3-8. The response is sent to the client from topic

TOPIC_SS_CL. When it is a response to a JoinSession message, MediaDescription field

in the response provides the session media description for the client so that it can publish

the stream to the given topic or IP address / port number in the specified format.

Figure 3-8: Representation of SessionSignalResponse XML message

3.2.6 Video Selection

In audio streaming, clients receive a mixed audio stream of all audio streams in

the XGSP session. This cannot be expected for video streams. Usually the number of

video streams that can be displayed by clients are limited to a few. Because of this XGSP

sessions provide video selection functionality for clients in the XGSP session. When a

client wants to select or deselect a video stream, it needs to send a VideoSourceSelection

message (Figure 3-9) to XGSP Session Server. If the Active field is set to true, it means

that the client wants to subscribe to the video stream. If it is set to false, it means that the

client wants to unsubscribe from the video stream. If it is a subscription request, using

VideoSession instance, XGSP Session Server tells the video server to subscribe the client

 49

to that video stream. If it is an unsubscription request, XGSP Session Server similarly

tells the video servers to unsubscribe the client from the video stream. Client sends its

requests from TOPIC_CL_SS topic to XGSP Session Server and receives the reply from

TOPIC_SS_CL topic.

Figure 3-9: Representation of VideoSourceSelection XML message

3.2.7 Managing Video Mixers

In GlobalMMCS, there are VideoMixer servers which are part of the video server

group. The video mixers combine up to four video streams into one video stream. The

result is a new video stream. These video mixers are managed through XGSP Session

Server by the administrator.

Figure 3-10: Representation of VideoMixer XML message

When the administrator wants to generate a mixed video, he first sends a

VideoMixer message which is shown in Figure 3-10. He sets the Active field to true to

indicate that the VideoMixer is either an existing mixer or a new mixer. XGSP Session

 50

Server maintains video mixers metadata for each XGSP session. XGSP Session Server

sends a VideoMixerReply message as shown in Figure 3-11 to the administrator upon

receipt of the request.

Figure 3-11: Representation of VideoMixerReply XML message

Each video mixer has a unique mixerID which works like clientID. XGSP Session

Server accesses video mixers using mixerIDs. XGSP Session Server uses VideoSession

instance to manage mixers on video servers. When a VideoMixer is generated, XGSP

Session Server keeps the metadata of the mixed video, for example streams included in

that video mixer. So when the administrator wants to modify video mixer streams, he just

sends another VideoMixer message with the updated stream list. XGSP Session Server

checks the list with the current video mixer stream list. If there are streams that no longer

exist in the new list, it removes them from video mixer. Then it adds the new streams to

the video mixer.

The message exchange between the XGSP Session Server and the administrator is

done through TOPIC_SS_WS topic. Since the sender does not receive the message it

publishes to the topic, the same topic can be used between two components.

 51

3.2.8 Stream List

Administrator and clients need to know the streams in the session so that

functionalities within the session can be provided to them. For example, clients need to

know the metadata of the stream in order make a request. When a client gets this

information it can see other clients in the session and can make successful video

selections as explained in section 3.2.6. The administrator also needs to generate and

modify video mixers in the session as explained in section 3.2.7. In order to do that, he

also needs to know stream metadata.

Figure 3-12: Representation of StreamEvent XML message

StreamEvent provides metadata of a stream is shown in Figure 3-12. In order to

receive the stream list from XGSP Session Server, the administrator or the client sends a

RequestAllStreams message as shown in Figure 3-13 to XGSP Session Server. XGSP

Session Server waits for a fixed amount of time before it replies to the client or to the

administrator. Since, there may be other requests from other clients who are just joining

the session. When the time is up, XGSP Session Server sends RequestAllStreamsReply

message shown in Figure 3-14 to a common topic in the session including audio and

 52

video stream list of the session. So clients making the stream list request receive the same

message that contains the list of all streams in the session.

Figure 3-13: Representation of RequestAllStreams XML message

Figure 3-14: Representation of RequestAllStreamsReply XML message

3.3 Support for Gateways

GlobalMMCS has H.323, SIP and RealStreaming Gateways for adapting H.323

and SIP terminals and RealPlayer clients. These gateways play an important role for

legacy H.323, SIP and RealPlayer clients. The XGSP Session Server needs to collaborate

with these gateways to manage and control a session in this heterogeneous collaboration

system.

To support H.323 and SIP audiovisual endpoints in XGSP A/V sessions, some

transformations are necessary for both control and data transport. As we explained in

section 3.2.4 there are RTPLinks to transport RTP packets within NaradaBrokering.

 53

H.323 and SIP gateways enable H.323 and SIP terminals in order to let H.323 and

SIP clients interact with other clients in the GlobalMMCS. They also provide H.323 / SIP

clients H.323 / SIP conference control services within GlobalMMCS. The H.323 and SIP

gateways transform H323 and SIP messages into XGSP signaling messages.

In this section we will explain the XGSP Session Server communication with

H.323 and SIP gateways. Please refer to ref. [46] and ref. [47] for details of SIP Gateway

and H.323 Gateway. XGSP Streaming Gateway is explained in chapter 4.

3.3.1 Support for H.323 Gateway

H.323 Gateway is used to translate H.323 messages into XGSP XML messages

and it also hides the complexities of H.323 protocol from XGSP Session Server. XGSP

Session Server does not need to understand the H.323 protocol. H.323 terminal also does

not need to understand XGSP messages, since H.323 Gateway translates XGSP XML

messages into H.323 binary messages and sends H.323 terminals necessary information

based on the received responses from XGSP Session Server.

When a session is activated H.323 Gatekeeper keeps the alias name of the session,

which is the sessionID of the active session. In addition to that, H.323 Gatekeeper also

keeps H.323 terminal registrations. So when a H.323 terminal wants to join a XGSP

session it needs to use the sessionID of the active session when calling H.323 MCU.

H.323 Gatekeeper translates this sessionID into H.323 MCU address and routes the call

to the registered H.323 MCU.

 54

3.3.1.1 H.323 Call Setup and Termination

In order to establish a call between two endpoints, information needed is signaling

destination address, media capabilities and media transport addresses at which both

endpoints can receive RTP packets. When H.323 call is received by H.323 MCU, it

parses the information received from client and exchanges XGSP XML messages with

XGSP Session Server. Figure 3-15 illustrates a H.323 call setup with XGSP Session

Server. This procedure has three important steps: H.225 call setup, H.245 capability

exchange and audiovisual logical channel creation.

The first step in H.323 call is the call setup. At this step when H.323 Gateway

receives a call setup from a H.323 terminal, it sends a JoinSession (Figure 3-6) message

with the sessionID of the active session to tell XGSP Session Server that a H.323

terminal wants to join the XGSP session. If XGSP Session Server permits the client, it

sends a SessionSignalResponse (Figure 3-8) as a reply while setting the Result field to

OK and setting the media description of the session to let the client know what media

formats are supported by the XGSP session. This step is repeated for each media type,

audio and video as seen in Figure 3-15. At the end of this step H.323, Gateway maintains

session media description for audio and video and H.323 terminal is considered as made

a successful connection.

In the second step, H.323 Gateway and H.323 terminal exchanges the media

capability. Client chooses one of the media formats supported by XGSP session. Usually

XGSP Session Server provides only one media format which is supported by all clients in

videoconferencing sessions, for instance for audio ULAW and for video H.261 formats.

 55

In the next step, H.323 terminal makes a request to establish channel for one of

the media types, i.e., audio. H.323 Gateway also sends H.323 terminal an open channel

request for incoming stream. H.323 Gateway sends another JoinSession message to

XGSP Session Server with media type and format provided by H.323 terminal. The same

procedure is repeated for other media types, i.e. video. During the JoinSession procedure,

XGSP Session Server maintains the state of the call. So it expects that the second

JoinSession request will include the media capability of the H.323 terminal. It also waits

for a fixed amount of time between audio and video channel establishments. If within that

amount of time, H.323 Gateway does not send JoinSession message for the other media

type, it concludes that the H.323 terminal will only receive and/or send one type of

media.

When H.323 terminal wants to leave the session, the signaling between H.323

terminal and H.323 Gateway takes place according to H.323 protocol. H.323 Gateway

sends LeaveSession (Figure 3-7) message to XGSP Session Server for the channels

opened and XGSP Session Server unsubscribes H.323 terminal from media servers.

 56

���������	
�� �����
������

����������

�������

���

��	
����	�
�����	��

����	�
�	�
�� ����
��

����	
�������!	�	������

��"

#��
$��	����%�

��������	���

��"

��"

#��
$��	����%�

��������	���

	
�������&'(�����)�(���*

�+�����!	�	��������	��	�
�,���

���	������	�
�����������

�����

���-������!	�	���

./�%�
��

��	
����	�
��0	����

����	�
�	�
�� ����
�� 	
�������&'(�����)�(���*

�+�����!	�	��������	��	�
�,���

1	��������	�

����	
�������!	�	������

��"

#��
$��	����%�

�����0	�����

��"

��"

#��
$��	����%�

�����0	�����

��	
����	�
�����	��
	
�������&'(�����)�(���*

����	�
�	�
�� ����
���#"

��	
����	�
��0	���� 	
�������&'(�����)�(���*

����	�
�	�
�� ����
���#"

2
�(�����	�
����1��

#��
�0	����

$��	�����%�

���

�����$��	����%�

��������	���

��"

�����$��	����%�

�����0	�����

��"

 �(�������	
���	�%����	�����1������3��������

$��1�����	�
�����	��

����	�
�	�
�� ����
���#"

$��1�����	�
��0	����

����	�
�	�
�� ����
���#"

4��	�����1���

���������	��

$��	�����%�

���

������0	����

$��	�����%�

���

#��
����	��

$��	�����%�

���

Figure 3-15: H.323 Call setup and termination with XGSP Session Server

 57

3.3.1.2 H.323 Terminal Video Selection

XGSP Session Server provides audio and video stream lists in the session. Stream

lists can be obtained as explained in section 3.2.8. Also a H.323 console can be launched

from GlobalMMCS web interface. This console is a basic audio/video control client for

H.323 terminal. Using this console, video stream displayed on H.323 terminal can be

switched.

The video selection for XGSP clients is explained in section 3.2.6. For H.323

terminals, H.323 console can make the video selection requests. When a video stream is

selected, H.323 console sends a VideoSourceSelection (Figure 3-9) message to XGSP

Session Server. When a new video stream is selected and the request is processed by

XGSP Session Server, H.323 terminal needs to be notified for this selection so that it can

refresh its incoming video stream. For this reason, XGSP Session Server sends a

VideoSwitch message as shown in Figure 3-16 to H.323 Gateway to notify H.323

terminal. Then H.323 Gateway notifies H.323 terminal to start video switching.

Figure 3-16: Representation of VideoSwitch XML message

3.3.2 Support for SIP Gateway

SIP Gateway is similar to H.323 Gateway. SIP does not support video streams, so

SIP clients are only capable of receiving and sending audio streams. Because of this

reason, SIP clients can only join XGSP audio sessions.

 58

Figure 3-17: SIP client joining and leaving XGSP session

Since SIP is a simple text based protocol SIP Gateway can easily translate SIP

messages into XGSP messages in a straightforward way. When SIP Gateway receives an

INVITE request from SIP client, it sends a JoinSession message to XGSP Session Server

as in the case when H.323 Gateway sends the first JoinSession message to XGSP Session

Server, XGSP Session Server sends SessionSignalResponse to SIP Gateway specifying

session media description. SIP Gateway receives the media description of the SIP client

by parsing the SDP body in the INVITE message. If XGSP Session Server’s response is

OK, SIP Gateway sends another JoinSession message including an audio description of

the client. When an SIP client leaves the session by sending a BYE message to SIP

Gateway, SIP Gateway sends a LeaveSession message for the SIP client to the XGSP

 59

Session Server. Then the XGSP Session Server unsubscribes the client from the audio

server’s AudioSession instance. This is illustrated in Figure 3-17.

3.4 Summary

In this chapter, we gave an overview of GlobalMMCS and explained its session

management unit, XGSP Session Server. XGSP Session Server implements XGSP

session management and conference control framework. It also manages media

processing units for joining and leaving clients. This chapter also explained the

interactions of XGSP Session Server with H.323 Gateway and SIP Gateway to describe

how H.323 terminals and SIP clients join and leave XGSP sessions.

 60

Chapter 4

XGSP Streaming Gateway

In the previous chapter, we explained XGSP framework for videoconferencing

sessions. Videoconferencing systems provide a framework for send/receive audio and

video streams. Clients can receive and play audio and video streams in the session with

very little latency so that they can interact with each other. These clients usually require

high bandwidth so that they can send and receive streams at the same time.

In this chapter, we explain XGSP Streaming Gateway which extends the XGSP

framework with a novel XGSP Streaming Gateway to deliver A/V streams in a session to

streaming media clients. We have developed Helix Streaming Engines to convert raw

data into RealNetworks Streaming formats. Helix Streaming Server [107] is used by

RealPlayers to receive those streams.

 61

4.1 Streaming Gateway within XGSP and GlobalMMCS

Within the XML Based General Session Protocol (XGSP) conference control

framework, XGSP Streaming Gateway has been introduced and XGSP has been extended

with additional signaling protocols for Media-On-Demands systems to deliver the media

in real-time videoconferencing systems.

Streaming Gateway is implemented as part of GlobalMMCS to verify and refine

the extension we made to XGSP framework. The GlobalMMCS prototype system is

shown in Figure 4-1 with XGSP Streaming Gateway added to the system. Other gateways

and A/V processing components, such as the video mixer, audio mixer and image grabber

servers are also shown in Figure 4-1.

XGSP Streaming Gateway displays characteristics similar to H.323 / SIP

Gateways and A/V endpoints due to the streaming requirements. On one side, it extends

the control framework similar to H.323 / SIP Gateways because input signal of XGSP

Streaming Gateway is in XGSP format while output signals are in RTSP to negotiate with

Helix Server, but on the other side it is like A/V processing endpoint because it needs to

convert the received streams into RealStream format. Section 4.2 describes XGSP

Streaming Gateway more in detail.

 62

Figure 4-1: XGSP prototype systems

4.2 XGSP Streaming Gateway

The implementation of XGSP Streaming Gateway is different from other

gateways, i.e. H.323 and SIP, because the requirements of RealStreaming clients are

different than the requirements of other clients in the system. H.323 and SIP gateways

transform communication signals from one format to XGSP messages or from XGSP

messages to another format. Also they hide some communication details from XGSP

Session Server. For example, H.323 is a complicated binary protocol because of the way

it’s implemented. The H.323 gateway transforms some H.323 binary messages into

XGSP messages and from XGSP messages to H.323 binary messages and also hides the

complexities from XGSP Session Server. XGSP Session Server only receives

information that it requires from an H.323 client and sends information that will be

 63

needed by the client to join the session. Other signaling details are hidden from Session

Server. SIP uses text messages but it requires different format than XML. Both protocols

are signaling protocols and enable their clients to establish session and exchange streams.

The Access Grid uses multicast, so AG clients just send/receive streams to/from a

multicast address.

In RealStreaming case, clients require different stream format and use RTSP to

receive streams. So, one of the jobs of XGSP Streaming Gateway is to convert the stream

from formats like H.261 to RealStream format. This conversion process requires two

transcoding stages: first step is to decode the received stream and the second stage is to

transcode the output of the first stage into RealStreaming format. This conversion process

causes delays in the generated stream. Other delays may be introduced from the system

that XGSP Streaming Gateway is running and from the underlying network to transmit

those streams to Helix Streaming Server. Due to these delays in the system and the

network the generated A/V streams and other collaboration events should be

synchronized. Streaming Gateway is also responsible for this synchronization.

Figure 4-2: XGSP Streaming Gateway components

 64

RealStreaming clients use RTSP to receive streams from RealStreaming Servers.

We used Helix Streaming Server, which is available under RealNetworks public and

community source licenses. XGSP Streaming Gateway does not only provide a signaling

mechanism but also provides conversion mechanisms. This aspect of XGSP Streaming

Gateway makes it different from other gateways. A RealStreaming client communicates

with the server in order to establish a channel or channels to receive stream and to

send/receive control information. Components of XGSP Streaming Gateway are shown

in Figure 4-2�

4.2.1 XGSP Streaming Gateway Components and Design

Streaming Gateway is composed of several logical components: stream

conversion handler, stream engine and Synchronized Multimedia Integration Language

(SMIL) [108] file generator.

4.2.1.1 Stream Conversion Handler

Stream Conversion Handler handles the communication between XGSP Session

Server and XGSP Streaming Gateway. It keeps an internal database for the streams being

converted. This database is updated when the streaming jobs are started or deleted. In

order to start a streaming job, it initiates a Stream Engine for the requested stream and

passes required parameters such as conversion format, helix server address, stream name

to the Stream Engine.

 65

4.2.1.2 Stream Engine

The stream engine can be considered the most fundamental component of the

XGSP Streaming Gateway because it is responsible for converting the received audio or

video streams into a specified RealStreaming format and pushes the converted stream to

Helix Streaming Server. Streaming Engine is composed of two parts, Java Media

Framework (JMF) [109] RTP Handler and HXTA Wrapper. HXTA is a conversion

engine provided by Helix Community [110] and converts raw audio and video data into

RealStreaming formats.

JMF RTP Handler receives audio and video packets from a local port provided by

Stream Conversion Handler. The purpose of this unit is to transform the received packets

into a format that HXTA can understand and be able to make the conversion to

RealStreaming format. Raw audio and video data can be passed to HXTA Wrapper.

There are several color spaces for video representation. But two of the most common are

RGB (red/green/blue) and YCrCb (luminance/red chrominance/blue chrominance).

HXTA accepts different formats of RGB and YCrCb. As the first conversion step, JMF

RTP Handler decodes the received video frames into YCrCb format. YCrCb format has

been chosen, since RGB requires more memory to represent video images compared to

YCrCb. JMF RTP Handler passes these decoded frames to HXTA Wrapper over a buffer.

Audio packets are decoded into raw audio format, for our case WAV format, before

passing it to HXTA Wrapper. Another responsibility of JMF RTP Handler is to make

sure that packets are processed in an order. If a packet arrives later than a packet that

carries bigger timestamp, it is dropped.

 66

JMF RTP Handler gets the media type of the stream from the input provided by

Stream Conversion Handler. Based on that information it decodes received packets into

raw video or audio format. Each stream, whether it is audio or video, is transcoded into

streaming format independently from each other.

4.2.1.3 SMIL File Generator

Streaming Engine receives only one stream, whether it is audio or video, and

produces only one stream. In order to enable streaming clients to receive audio and video

together, there is a need for SMIL file, which resides on the Helix Streaming Server.

Because of this, Stream Conversion Handler provides RTSP links of audio and video

streams to SMIL file generator and SMIL file generator produces a SMIL file that

includes those RTSP links. SMIL File Generator and Helix Streaming Server share a

common directory for generated SMIL files. In our current implementation we have only

one audio stream per session, which is a mixture of all available audio streams in that

session. So when a video stream is converted into streaming format, the RTSP link for

the mixed audio stream is included to the generated SMIL file.

4.2.2 Helix Streaming Server

In our architecture, we have chosen to use Helix Streaming Server as a RTSP

server. The main reason behind that is that the Stream Engine which converts streams

into RealMedia format which is a proprietary format of RealNetworks and Helix

Streaming Server is the one available that supports that format. Also in order to play

RealMedia we need RealPlayer. RealPlayer can receive RealMedia stream from Helix

Streaming Server and replay that stream in RealMedia format.

 67

4.3 Streaming Gateway Message Exchange Types

This section explains XML message formats added to XGSP in order to enable

the communication between XGSP Streaming Gateway and GlobalMMCS. In order to

define the required parameters for a streaming job, an XML structure named

StreamingInput is defined. StreamingInput fields are depicted in Figure 4-3. It provides

the necessary information, such as broadcast address, stream name, stream server IP

address and port number, media type, required to start a stream conversion job.

���	�
��

�������5���

���%��

�	���

4��	������

6����������������

6���������(����5��!��

���	/����1���(����5��!��

������	
��
��������������

4��	�� ���	1���(����5��!��

��	�
������

Figure 4-3: StreamingInput message fields

XML message formats added to XGSP are as follows:

InitializeRealGateway: This message causes Streaming Gateway to delete all

current jobs in the session specified.

JoinStream: When XGSP Streaming Gateway receives this message, it starts a job

for the stream specified. Besides StreamingInput information, the message also includes

 68

session ID and other stream specific information, such as username, SSRC. JoinStream

message is depicted in Figure 4-4.

������	
�'
���

��	�
�'7

����	�
'7

 ���������'7

������'7

Figure 4-4: JoinStream message fields

JoinStreamReply: This is the reply message for JoinStream. If somehow the job

cannot be started, it returns FAIL, otherwise it returns OK to indicate the job is

successfully started.

LeaveStream: XGSP Streaming Gateway stops the stream specified when this

message (Figure 4-5) is received.

Figure 4-5: LeaveStream message fields

LeaveStreamReply: This is the reply message for LeaveStream. If somehow the

stream is stopped successfully, it returns OK, otherwise it returns FAIL to indicate that an

error occurred during the stop operation.

RealStreamEvent: It has two modes, NewRealStream and ByeRealStream. This

event is generated by Session Server. Streaming lists are updated when this message is

received. The stream is added to the list if the mode is NewRealStream, it is removed if

the mode is ByeRealStream.

 69

RealStreams: When a client/administrator joins to the session it requests the list of

the RealStreams available in the session from Session Server by sending a RealStreams

message.

RealStreamsReply: This is a reply message for RealStreams message.

RealStreams are expressed in RealStreamEvent format and the list is included to

RealStreamsReply message.

4.4 Interfaces Added to XGSP Session Server to Enable

Communication

In order to support XGSP Streaming Gateway, XGSP Session Server provides

some interfaces. These interfaces are RealStream_Join_Service,

RealStream_Leave_Service, RealStream_List_Service and

RealStream_Gateway_Service. XGSP Session Server also keeps a database for the

streams being converted. The description of these services is as follows:

RealStream_Join_Service: This service handles JoinStream messages. XGSP

Session Server includes additional information to JoinStream message and sends it to

XGSP Streaming Gateway. If Session Server receives OK reply from XGSP Streaming

Gateway, it sends RealStreamEvent message with NewRealStream mode to administrator

and clients in that session.

RealStream_Leave_Service: This service handles LeaveStream messages. XGSP

Session Server forwards the message to XGSP Streaming Gateway. XGSP Streaming

Gateway sends LeaveStreamReply message to XGSP Session Server after processing the

 70

request. Then XGSP Session Server generates a RealStreamEvent with ByeRealStream

mode.

RealStream_List_Service: When the streaming client/administrator first joins a

session, it sends a RealStreams message to request a list of the available RealStreams on

the XGSP Streaming Gateway. XGSP Session Server replies back with

RealStreamsReply listing all the available RealStreams in the session.

RealStream_Gateway_Service: Streaming Admin can send InitializeRealGateway

message to initialize the session for XGSP Streaming Gateway. XGSP Session Server

forwards the message to XGSP Streaming Gateway and generates a RealStreamEvent

with ByeRealStream mode for each RealStream in that session.

4.5 Signaling Between XGSP Session Server and XGSP

Streaming Gateway

Figure 4-6 shows a signaling scenario among a streaming administrator, a

streaming client, a XGSP Session Server and a XGSP Streaming Gateway. When the

streaming administrator first connects to the XGSP Session Server, it requests a list of the

available streams and RealStream streams in the session. Streaming administrator sends

RequestStreamList, to request all of the available audio/video streams and RealStreams,

consecutively. In the reply, the Session Server replies with RequestAllStreamsReply and

RealStreamsReply. The streaming client only sends RealStreams message to receive

available RealStream streams list. Next the administrator sends JoinStream for the chosen

stream. XGSP Session Server adds some other fields to the same message and forwards it

to XGSP Streaming Gateway. XGSP Streaming Gateway replies with JoinStreamReply

 71

and as a result, XGSP Session Server generates RealStreamEvent messages with

NewRealStream mode and sends them to streaming administrator and streaming clients.

LeaveStream has a similar scenario. Only instead of sending RealStreamEvent with

NewRealStream mode, XGSP Session Server sends RealStreamEvent with

ByeRealStream mode. In InitializeRealGateway case, XGSP Session Server forwards the

message to XGSP Streaming Gateway and also sends RealStreamEvent with

ByeRealStream mode for each of the streams removed.

Figure 4-6: A sample signaling case among Session Server, Streaming Gateway and Streaming

Client/Administrator

 72

4.6 XGSP Streaming Gateway User Interface

Two types of interfaces are developed for XGSP Streaming Gateway. Streaming

Admin and Streaming Client interfaces. As can be deduced from their names, Streaming

Admin is implemented for administrative purposes and Streaming Client is implemented

for accessing streams from an interface. Some part of the Streaming Admin interface is

adapted from Streaming Client interface to enable the administrator with client

capabilities.

4.6.1 Administrator Interface

Streaming Admin is designed and implemented to enable only the administrator

to choose stream to be converted to RealStream. This conversion, especially for video

streams, takes noticeable CPU percentage. Because of this and other administrative

purposes, regular clients cannot be allowed to start and stop streaming jobs. The

administrator can see the available streams in XGSP sessions. This enables the

administrator to select streams to be converted.

As shown in Figure 4-7, the streams are listed by their unique identifiers (IDs). ID

for each stream is constructed by appending the SSRC number to their usernames. The

administrator can visualize the information for that stream by selecting it. Available

image and other information; username, SSRC (a RTP field) and description, regarding a

stream selected are also provided. After selecting the video source, the administrator can

start the streaming job by clicking Convert Video Source. The south of the panel is

adapted from the Streaming Client interface. In addition to playing streams, the

administrator can stop a RealStream by selecting it and clicking Delete button.

 73

Figure 4-7: A screenshot of Streaming Admin interface

4.6.2 Client Interface

Streaming Client allows users to see the stream information and to play a stream

from RealPlayer window. This interface does not allow clients to stop any stream

conversion. A screenshot of the Streaming Client Interface is shown in Figure 4-8. The

west of the panel shows the available streams, the east of the panel shows the image and

 74

information regarding to the stream chosen. When user selects a stream and clicks Play

button, a RealPlayer windows pops up and plays the stream.

Figure 4-8: A screenshot of Streaming Client interface

Figure 4-9: A screenshot of a RealStream played in RealPlayer window.

 75

The stream lists on interfaces are dynamically updated when a stream leaves/joins

the session. Figure 4-9 shows a stream played in a RealPlayer window.

4.7 Adapting Mobile Clients

Mobile devices have limited capabilities such as limited bandwidth, processing,

memory capability and screen size. Due to this reason we cannot expect them to function

like an Audio/Video (A/V) client on a desktop PC. Also the applications developed for

mobile devices have limited features compared to their desktop PC correspondences.

Although 3G [111] wireless network fully supporting multimedia application hasn’t been

widely used, limited multimedia services for cellular users are already available such as

Real Mobile Streaming and the Microsoft Media Server (MMS).

In this section, we provide an architecture to enable cellular phone devices to

receive streams from and send streams to videoconferencing sessions. Mobile devices

show different characteristics when receiving streams from and sending streams to

videoconferencing sessions due to the limitations we mentioned above. In receiving a

stream, cellular phone device is an end-point where it only decodes the stream and

displays it, while in sending the stream it is the source of the stream where it should be

equipped with appropriate hardware and software to capture the images. Also note that

encoding a stream is more CPU intensive compared to decoding a stream.

In order to enable cellular phone devices join a XGSP A/V session, we introduced

a gateway (GobalMMCS Mobile Gateway) specific to mobile devices. We used Nokia

3650 to receive stream from Helix Streaming Server and send images to the

GobalMMCS Mobile Gateway. Nokia 3650 has RealPlayer and MIDP 1.0 installed on it.

 76

4.7.1 GlobalMMCS Mobile Gateway

GlobalMMCS Mobile Gateway provides two functionalities to enable mobile

devices receive and send streams. In order to let mobile devices receive a stream it

contains a web server to let mobile devices access XHTML pages where links to .ram

files are stored. These .ram files reside in a directory shared with Helix Server.

GlobalMMCS Mobile Gateway provides interfaces to XGSP Streaming Gateway to

receive information regarding streams being encoded to mobile streaming format so that

it can generate .ram files.

In order to enable mobile devices to send streams to GlobalMMCS sessions,

GlobalMMCS Mobile Gateway also performs a similar functionality to XGSP Streaming

Gateway in the sense that it transcodes the still images sent by a mobile device into video

stream with H.261 format. We call this “Imgae-To-Stream Engine”. GlobalMMCS

Mobile Gateway is shown in Figure 4-10. We would like to explain receiving stream in

(section 4.7.2) and sending image from (section 4.7.3) cellular phones next.

Figure 4-10: XGSP Mobile Gateway and interactions with other components in the system

 77

4.7.2 Streaming to Cellular Phones

RealNetworks provides RealMedia formats for cellular phones as well. This

RealMedia format is called as General Mobile Streaming which is 20 Kbps with 5 fps.

The image size is also 160x120 pixels. RealPlayer on Nokia 3650 is capable of playing

this streaming format.

The administration user interface of the Streaming Gateway can initiate streaming

jobs for cellular phone clients as well. AdminUI specifies General Mobile Streaming

format when he/she selects the video to be converted. Streaming Gateway receives the

selected video stream and the session audio. Both audio and video are converted and

combined into one RealMedia stream with General Mobile Streaming format. The

generated streams have too long RTSP Uniform Resource Locator (URL). In order to let

cellular phone clients access those streams from an interface, GlobalMMCS Mobile

Gateway generates .ram files specific for RealPlayer and provides links to those files in a

XHTML page. Cellular phone users can visit this page through browser and launch

RealPlayers by clicking one of the links. Cellular phone clients can also access the whole

session tree from the interface provided by GlobalMMCS Mobile Gateway. If the

administrator stops mobile streaming jobs, the corresponding stream URLs are removed

from the page. Figure 4-11 shows the stream played on Nokia 3650.

 78

Figure 4-11: A GlobalMMCS session video converted into General Mobile Streaming format and

viewed from Nokia 3650.

4.7.3 Streaming from Cellular Phones

A camera application developed with MIDP 1.0 for Nokia 3650 is used to achieve

streaming from cellular phones to GlobalMMCS video session. This application is

capable of capturing images and sending them to a web server. The images produced by

that application are 160x120 pixels. In order to send them to a XGSP A/V session, we

need to convert these still images into video streams. The transcoding module, which is

Image-To-Stream engine, in the mobile gateway receives these images and produce a

video stream constructed from them. Image-To-Stream module also resizes these images

by a factor of 2 to produce a video stream with 320x240 pixels in size. The images are

transported to this gateway over an HTTP connection with a interval of 7 ~8 seconds,

 79

encoded into a H.263 stream with 2 fps and then pushed to the XGSP A/V session.

During the procedure, the conversion module reuses the same image until the next image

is received. When the images received from cellular phone stops, Mobile Gateway simply

sends an end-of-stream packet to the session and terminates.

Figure 4-12 and Figure 4-13 show the stream produced from the images captured

by the camera application on the cellular phone. Figure 4-12 shows it in VIC panel which

shows all of the streams in that Access Grid session. Figure 4-13 shows only the stream

produced from the images received from the camera application in a VIC frame.

Figure 4-12: VIC panel that shows streams in GlobalMMCS Access Grid session

 80

Figure 4-13: Stream received from Mobile Gateway

4.8 Performance Tests and Evaluation of Test Results

Stream conversion is a CPU intensive application. In order to see the CPU and

memory usage of this conversion the effect of the number of streams converted on CPU

and memory usage is observed. Streaming Gateway is running on the machine specified

in Table 4-1��

OS Windows XP
CPU Intel® Pentium® 4 CPU

2.26 GHz
Memory 512 MB
JVM version 1.4.2_02

Table 4-1: Streaming Gateway machine specifications

Number
of
Streams

Frame rates of streams

involved

CPU Usage
Range

Memory
Usage
Range

1 23 fps %10 - %25 29 MB
2 23 fps, 25 fps %22- %40 34 MB
3 23 fps, 25 fps, 26 fps %50 - %75 43 MB
4 23 fps, 25 fps, 26 fps, 16 fps %65- %95 53 MB

Table 4-2: Approximate CPU and memory usage with respect to number of streams

 81

Table 4-2 provides approximate CPU and memory usage of the streams. As the

number of streams converted increases the CPU usage, the memory usage also increases.

In this specific machine, 4 streams can successfully be converted without causing quality

of service decrease. If the number of streams is increased, other streams are also affected

and some time later the conversion performance reduces significantly. In this test the

frame rate is kept high for most of the streams which is normal in an Access Grid session.

4.9 Summary

This chapter described the XGSP Streaming Gateway for integration of real-time

videoconferencing and streaming media. XGSP Streaming Gateway has been developed

as part of the GlobalMMCS prototype system to verify and refine this streaming

framework. The XGSP Streaming Gateway integrates RealStream into videoconferencing

systems within XGSP framework and, hence its prototype GlobalMMCS enables

multiple communities to collaborate with each other. XGSP Streaming Gateway can

easily be extended to other streaming formats rather than just RealStream. In order to do

this, Stream Engine which is part of the XGSP Streaming Gateway needs to transcode the

input stream into the streaming format desired.

Stream conversion requires much CPU and memory utilization. This limits the

number of streams converted on one machine. In order to increase the number of streams

converted, this research suggests a streaming job scheduler which will schedule and

coordinate streaming jobs in a distributed environment.

Due to their capabilities and environment, mobile devices introduce different

issues to be researched. Some of their limitations are low bandwidth, CPU and memory

 82

and limited power. Low bandwidth effects the bytes sent across the network. Low CPU

limits the processing power which is crucial when encoding streams into different

formats.

 83

Chapter 5

Time Services within NaradaBrokering

In previous chapters, we stated that we use messaging environments to transport

multimedia content. A collaborative system that uses events (messages) to transport its

data needs to synchronize those events in order to synchronize streams generated at

different clients who are residing at different machines. Those clients may also be

distributed over a large geographical area which will introduce different network delay

for different clients.

Time ordering of events generated by entities existing within a distributed

infrastructure is far more difficult than time ordering of events generated by a group of

entities having access to the same underlying clock. Because of the unsynchronized

clocks, the events (messages) generated at different computers cannot be time-ordered at

a given destination if local time is used for timestamping.

It is thus necessary to synchronize the clocks in a distributed system, because the

time-based order of events matter. Lamport addressed this problem [78] by logical

 84

clocks. We have discussed other approaches [79-82] for time ordering events in section

2.4.2. But with global time servers fairly common now, time ordering can be had at lower

overhead and more accurate results. One cannot rely on the underlying hardware or

software clocks to provide synchronization. Hence, time ordering of events generated by

entities existing within a distributed infrastructure is far more difficult than time ordering

of events generated by a group of entities having access to the same underlying clock.

In this chapter, we will explain the Time Service we incorporated within

NaradaBrokering messaging middleware to achieve synchronization of streams from

different sources. This Time Service utilizes Network Time Protocol (NTP). Entities in

NaradaBrokering environment can timestamp events with NTP timestamps which will

provide more consistent timestamps than local clocks.

5.1 Using Network Time Protocol (NTP)

NTP can achieve to 1-30 milliseconds accuracy, where accuracy implies that by

using NTP the underlying clock is within 30 milliseconds of time server clock (usually an

atomic clock). There are atomic time servers provided by various organizations, i.e.

National Institute of Standards and Technology (NIST) and U.S. Naval Observatory

(USNO). NIST and USNO Internet Time Services use multiple stratum-12 time servers,

which are open to public access. Using a NTP client, anyone can synchronize his clock

with the atomic time server’s time within the 1-30 milliseconds range. However, this

accuracy also depends on the roundtrip delay between the machine and the time server

2 Stratum number is an integer indicating the distance from the reference clock. Stratum-0 is the reference
clock.

 85

supplying the time service. The difference between the delay from the machine to the

time server and the delay from the time server to machine also contributes to the accuracy

of the offset computed. NTP achieves this accuracy by using filtering, selection and

clustering, and combining algorithms to adjust the local time.

Real-time constraints for A/V conferencing applications can vary anytime

between 30-100 milliseconds, depending on the jitter in inter-packet arrivals in these

streams. Packets in these streams generated at different locations can be buffered (either

during replay or real-time), and time-ordered to provide an efficient collaboration

session. If time-ordering among these streams is lost, it would be very unpleasant during

the replay/real-time-play of these streams. The range that NTP provides is sufficient for

such a collaboration environment. To achieve time-ordering of events at the destination,

NTP timestamps can be used instead of local time.

5.2 Time Service

The time service we provide as part of NaradaBrokering (0.95) currently

implements NTP version 3. A configuration file, which contains time server addresses

and other required NTP parameters, is provided to the time service. We impose no limit

on the number of time servers that can be specified in the configuration file. In addition

to these parameters, the interval that the time service should run is also specified in the

configuration file. The value of this parameter affects the synchronization range of the

computer clock. If it is too high, computer clock may be way of out of sync, and if it is

too low it may utilize too much system and bandwidth resources.

 86

It should be noted that time service does not change the system time. That is,

unlike NTP daemons, it does not set system time to a new value. There are two reasons

for this. First, in order to change the underlying system clock, one needs administrative

privileges. This is not possible for clients without administrator privilege. The second

reason is that the objective of this time service is to provide a mechanism to be able to

time-order the events generated within NaradaBrokering without affecting the system and

other applications running on the same machine. A call to the Time Service returns the

adjusted time. It achieves this by keeping the offset in a separate variable. The

getTimestamp() method returns the time obtained from the local system time

adjusted with this offset in milliseconds. When time service starts, it computes the first

value of the offset. After this initialization, time service updates the offset at regular

intervals based on the parameter specified in the configuration file.

All events generated anywhere, by any entity, within the system utilize their Time

Service to timestamp events.

5.2.1 Initialization

The initialization step is an important step in achieving synchronization. Because

of this, the time service attempts to achieve a synchronization range within several

seconds after being started. This initialization step is a blocking operation during the

bootstrapping of NaradaBrokering services and should complete within a few seconds.

The initialization step also uses NTP, but instead of using the interval specified in the

configuration file, it waits 500 milliseconds between its attempts. The total attempt time

is also limited for 5 seconds. 500 milliseconds is the upper limit to wait for replies from

 87

time servers which can be sufficient time to receive a packet in Wide Area Network

(WAN). However, replies can be received in a shorter duration and the initial offset value

can be computed from those replies.

5.2.2 NTP Implementation

We use NTP version 3 as the basis for our NTP implementation. We have chosen

NTP instead of SNTP, because NTP implements advanced algorithms to filter the NTP

message obtained from the time server and implements selection algorithms to those

received NTP messages. A NTP message can be received from any number of NTP time

servers. Our NTP implementation is as follows:

The first step involves getting samples from the NTP time servers. A NTP client

sends NTP messages to the servers specified in the configuration file one by one. That is,

it sends a NTP message and waits for the response. The message is a datagram packet,

and it may be lost in the network. Because of this, the NTP client sets a timeout to the

UDP socket. The timeout chosen for our implementation is 500 milliseconds. This step

requires that NTP replies be received from at least half of the servers. Offset and

roundtrip delays are calculated at this step. Upon receiving a NTP packet, a NtpInfo

object is generated which contains NTP parameter values, i.e. offset, roundtrip delay,

dispersion, timestamps, etc.

After collecting NTP samples from the servers, the second step is to use the NTP

filtering algorithm. The filtering algorithm checks timestamps to validate the received

NTP message. It keeps a register dedicated for each time server and records the NTP

samples received from that server. This register only keeps a specified amount of

 88

samples, and uses a First-In-First-Out (FIFO) scheme to accommodate new samples if the

register is full. The window size of this register is specified in the configuration file and

has an effect on the computed offset.

After the previous steps are successfully completed, the new offset is computed

using selection and combine algorithms as explained in the NTP specification. A

clustering algorithm explained in NTP specification is then used to find a candidate list

from which the new offset would be computed. Clustering algorithm uses stratum value

obtained from NTP message and synchronization distance computed from the NTP

parameters of the related server to construct this candidate list. The result of the

clustering algorithm provides a candidate list, which contains the synchronization

distance and the offset obtained from each time server. The combining algorithm then

computes the weighted average of this candidate list according to the synchronization

distance. So a server with a small synchronization distance has more impact on the new

offset.

The steps explained in this section can be depicted as in Figure 5-1. There are two

offset values indicated in Figure 5-1, offset1 and offset2. offset1 is the offset value

computed with NTP. Since we do not change the system clock, we need to keep a

variable named as BaseTime, which stores the offset computed with NTP in an earlier

computation. offset2 is the difference between the BaseTime and the offset computed by

NTP. It can also be viewed as the change of the offset.

 89

Figure 5-1: Steps taken in computing offset using NTP algorithms

5.2.3 Updating Offset

Unfortunately, calculating offset as in previous steps is not sufficient to achieve

synchronization. A newly computed offset may not be used as is. The order of the

messages generated at the local computer should also be preserved. Let’s say message

m1, the latest message before the new offset is calculated, has the timestamp of t, and

message m2, the first message to use the new adjusted time, has a timestamp of t2. Then t2

cannot be less than t1. Because in that case, the ordering algorithms may conclude that m2

was generated before m1 which is not correct. So the offset is not updated because the

new value would cause an inconsistency in the ordering of the messages. In this case, we

do not update the timestamp so long as the discrepancy persists.

The pseudo code can be written as below;

long getTimestamp() {
 timestamp = LocalTime + BaseTime;
 if (timestamp >lastTimestamp)
 lastTimestamp = timestamp;

sample1

sample2

samplen

Phase 1:
collecting
samples

Phase 2:
filtering & adding to
the queue

1 2 m

offset1

1

WA

Phase 3:
establishing candidate list &
computing offset

1 2 m

1 2 m

k

LocalTime BaseTime

BaseTime

adjusted time

N
et

w
or

k

offset2

offset1: Offset computed with regard to local computer time
offset2: Offset computed with regard to adjusted time

 90

 return lastTimestamp;
}

5.3 Benchmark Results

We have done tests on several linux and solaris machines. The interval for

updating offset is about 30 seconds. There are 8 time servers specified in the

configuration file and all of them are stratum-1 NIST time servers. In the test results, we

also show the first offset value, standard deviation, the average offset change and the

minimum and maximum values.

The tests mentioned in this section are done on computers at Community Grids

Lab available to Indiana University researchers. Computer clocks are not modified or

preset before the tests. Test cases are given below. In section 5.3.1 we give benchmark

results and in section 5.3.2 we evaluate the results.

Initialization offset value indicates the first offset change needed when the Time

Service runs. It also indicates how much the clock is out of sync. Other values are related

to the change applied to the initialization offset value. So min and max values indicate the

minimum and maximum values applied to the initialization offset values. Average value

indicates the average of the change applied to the initialization offset value. Standard

deviation is the deviation of the value of average offset change. Hence, the average offset

value which is added to the system clock value can be formulated as below;

Average clock offset value = Initialization offset value + average offset change

 91

5.3.1 Benchmark Results on Linux Machines

Test cases for Linux machines are shown in cases i – iv.

i) darya.ucs.indiana.edu

Name darya.ucs.indiana.edu
OS Red Hat Linux release 7.3

(Valhalla)
CPU AMD Athlon(tm)MP

1800+, 1533.42 MHz
Memory 512 MB
JVM version 1.4.1_03

initialization offset value 0 msec
standard deviation 0.11
average offset change -0.00018 msec
min offset change -2 msec
max offset change 3 msec
total offset change -1 msec
number of data 5690
total test duration 172800 sec

Table 5-1: Machine specification and numeric values for darya.ucs.indiana.edu

Figure 5-2: Change of offset with time for darya.ucs.indiana.edu

 92

ii) kamet.ucs.indiana.edu

Name kamet.ucs.indiana.edu
OS Red Hat Linux release 9

(Shrike)
CPU Intel(R) XEON(TM) CPU

1.80GHz
Memory 1 GB
JVM version 1.4.1_02

initialization offset value 1185869 msec
standard deviation 3.32
average offset change 5.21 msec
min offset change -1 msec
max offset change 12 msec
total offset change 29666 msec
number of data 5690
total test duration 172800 sec

Table 5-2: Machine specification and numeric values for kamet.ucs.indiana.edu

Figure 5-3: Change offset with time for kamet.ucs.indiana.edu

 93

iii) murray.ucs.indiana.edu

Name murray.ucs.indiana.edu
OS Red Hat Linux release 7.2

(Enigma)
CPU Intel Intel(R) Pentium(R)

III CPU family 1266MHz
Memory 1 GB
JVM version 1.4.1-rc

initialization offset value -139895 msec
standard deviation 0.71
average offset change -0.19 msec
min offset change -3 msec
max offset change 2 msec
total offset change -1060 msec
number of data 5690
total test duration 172800 sec

Table 5-3: Machine specification and numeric values for murray.ucs.indiana.edu

Figure 5-4: Change offset with time for murray.ucs.indiana.edu

 94

iv) elkhart.ucs.indiana.edu

Name elkhart.ucs.indiana.edu
OS Red Hat Linux release 8.0

(Psyche)
CPU Intel Intel(R) XEON(TM)

CPU 2.20 GHz
Memory 1 GB
JVM version 1.4.1_02

initialization offset value -4030278 msec
standard deviation 4.248092
average offset change -6.35167
min offset change -18 msec
max offset change 6 msec
total offset change -36141 msec
number of data 5690
total test duration 172800 sec

Table 5-4: Machine specification and numeric values for elkhart.ucs.indiana.edu

Figure 5-5: Change offset with time for elkhart.ucs.indiana.edu

5.3.2 Linux Machine Test Evaluation

Over a period of 48 hours, a total of 5690 offsets are computed and their changes

are shown in Figure 5-2, Figure 5-3, Figure 5-4 and Figure 5-5. First offset values,

standard deviations, averages, minimum values , maximum values and total changes in

 95

the offsets for test cases iiv- iv are shown in Table 5-1, Table 5-2, Table 5-3 and Table

5-4 to give us some numerical ideas.

In test case i, ntpd daemon is running. Among 5690 computed offset values only

24 of them are different than zero, which means that ntpd daemon running on the

machine and our time service are very consistent with each other. The first value of the

offset is also zero, because ntpd daemon is able to keep the machine synchronized. This

ntpd daemon synchronizes its time with “time.nist.gov” time server.

In test case ii, ntpd daemon is also running. But time server is set to

“clock.redhat.com” for this server, which was not reachable at that time. ntpd daemon

cannot update locale time if it cannot connect to the time server. The change offset is

between (-1) – (12) ms. The first offset value is 1185869 ms, which means that the clock

is behind the real time by that many milliseconds.

In test case iii and iv, no ntpd daemon is running. The change of offsets in case iii

is between (-3) - (2) ms while in test case iv it is between (-18) – (6) ms. The first offset

value for case iii is -139895 ms and for case iv it is -4030278 ms, which shows how

much the clocks in those machines are ahead of the real time.

If we pay attention to the average value of these offset changes, as indicated in

Table 5-1, Table 5-2, Table 5-3 and Table 5-4, the machine in test case ii has a positive

value and the machine in test case iii and iv have negative values. Also the total offset

change for test case ii is positive and for test case iii is negative. From this, we can

conclude that the clock running on machine for test case ii is a slow clock because

positive adjustment is done to the underlying system clock and the clocks running on

machine for test case iii and iv are fast clocks because negative adjustment is done to the

 96

underlying system clock. Note that the adjustments needed for cases ii - iv are different.

This also shows that the clock rates on the machines are different. Since a ntpd daemon is

running on the machine for test case i we avoid making such a conclusion regarding that

clock. Clock on machine iv seems faster than the clock on machine iii.

5.3.3 Benchmark Results on Solaris Machines

Test cases for Solaris machines are shown in cases v – viii.

v) community.ucs.indiana.edu

Model Sun Ultra60
Workstations

OS Solaris 8
CPU Dual 450Mhz UltraSparc

CPU's
Memory 1 GB
JVM version 1.4.2-beta

Initialization offset value 404646 msec
standard deviation 0.8
average 0.4
min value -2 msec
max value 3 msec
total change 2026 msec
number of data 5674
total test duration 172744846 msec

Table 5-5: Machine specification and numeric values for community.ucs.indiana.edu

Figure 5-6: Change offset with time for community.ucs.indiana.edu

 97

vi) grids.ucs.indiana.edu

Model Sun Ultra60
Workstations

OS Solaris 8
CPU Dual 450Mhz UltraSparc

CPU's
Memory 1 GB
JVM version 1.4.2_05

Initialization offset value 128395 msec
standard deviation 59.2
average 0.7
min value -1994 msec
max value 9 msec
total change 3721 msec
number of data 5676
total test duration 172744846 msec

Table 5-6: Machine specification and numeric values for grids.ucs.indiana.edu

Figure 5-7: Change offset with time for grids.ucs.indiana.edu

 98

vii) ripvanwinkle.ucs.indiana.edu

Model Sun Fire V880
OS Solaris 9
CPU 8 1.2 GHz UltraSPARC

III processors
Memory 16 GB
JVM version 1.4.2-beta

Initialization offset value -672765 msec
standard deviation 37.5
average -1.0
min value -9 msec
max value 1995 msec
total change -5487 msec
number of data 5676
total test duration 172744846 msec

Table 5-7: Machine specification and numeric values for ripvanwinkle.ucs.indiana.edu

Figure 5-8: Change offset with time for ripvanwinkle.ucs.indiana.edu

 99

viii) complexity.ucs.indiana.edu

Model Sun Fire V880
OS Solaris 9
CPU 8 1.2 GHz UltraSPARC

III processors
Memory 16 GB
JVM version 1.4.2-beta

Initialization offset value -690120 msec
standard deviation 26.5
average -1.0
min value -9 msec
max value 1994 msec
total change 5668 msec
number of data 5678
total test duration 172750467 msec

Table 5-8: Machine specification and numeric values for complexity.ucs.indiana.edu

Figure 5-9: Change offset with time for complexity.ucs.indiana.edu

5.3.4 Solaris Machine Benchmark Results

Solaris machines’ test results demonstrate a strange behavior of the underlying

system clock. Three of the machines in test cases v - viii have jumps with some different

intervals. These jumps are around +/-1990 ms and can have positive and negative signs.

 100

Jump interval for test case vi is around 494 minutes and jump values are -1992 ms, -1995

ms, -1994 ms, -1992 ms and -1992 ms as shown in Figure 5-7. The jump interval in test

case vii is around 1293 minutes and the jump values are 1992 ms and 1995 ms as shown

in Figure 5-8. Figure 5-9 shows only one jump with a value 1994 ms. In order to see the

jump interval, another test is done for a continuous 168 hours (1 week). We observed that

the jump interval is around 1580 minutes.

Test case v has no jumps and the offset change is kept between -2 ms and 3 ms.

The total changes and the sign of the average value show us that it is a slow clock.

ntpd daemons for machines in test cases vii and viii bare not running. Also ntpd

daemons on machines in test cases v and vii have no effect on the system clock, because

they have been misconfigured by the administrator.

The first offset value for case v is 404646 ms, for case vi it is 128395 ms, for case

vii it is -672765 ms and for case viii it is -690120 ms. The differences in the first values

show how much these computer clock values are apart from each other.

5.4 Inter Client Discrepancy

We have also tested the discrepancy between two of the machines that are running

the NB Time Service. The test environment is established as shown in Figure 5-10. In

order to receive requests from a remote client, we also implemented a NTP server. We

also implemented a client that uses the NB Time Service time and is capable of sending

NTP requests to the server.

 101

Figure 5-10: (a)Computers that run NTP server and NTP clients (b) Initiation and end of a time

request between machine A and B.

standard deviation 2.94
absolute average discrepancy 5.6 msec
absolute minimum discrepancy 0 msec
absolute maximum discrepancy 17 msec

Table 5-9: Numeric values for discrepancy between machine A and machine B

Figure 5-11: Discrepancy between machine A (murray.ucs.indiana.edu) and machine B

(kamet.ucs.indiana.edu)

machine A machine B
request

reply (Client) (Server)
machine A: murray.ucs.indiana.edu
machine B: kamet.ucs.indiana.edu
 (a) (b)

T1

T2 T3

T4
machine A

machine B

tAB tBA

 102

As shown in Figure 5-10.b, a request originates from the client and is received by

the server. The server timestamps the request after receiving it and before sending it back

to the client. The client then timestamps the reply. The delay involved in this process is

the transmission time (tAB and tBA) and the process time on the server (T3-T2).

The discrepancy ((T) between these two machine clocks can be approximated as

(T=0.5*(T2+T3-T1-T4), if tAB and tBA are ignored. Figure 5-11 shows this discrepancy

computed. This approximated discrepancy is also found to be same with the offset

computed by NTP. The discrepancy is measured every 30 seconds and test duration is

about 25 hours.

5.5 High Resolution Timing Services

To ensure that messages are time-stamped as accurately as possible we have also

incorporated a high resolution timer service into the substrate. This high resolution timer

works on the Windows, Linux and Solaris operating systems; here we have leveraged

native libraries available on these systems along with the Java Native Interface to enable

high resolution timers. On Solaris and Linux the gettimeofday() function is used to

retrieve the current time in microseconds. It returns time since 1/1/1970; the resolution is

hardware dependent and is usually around 1 microsecond. The

QueryPerformanceCounter on Windows is used to get number of ticks; the

number of ticks in one second is 3759545, which is around one per 279 nanoseconds. It

returns ticks from the start of the machine, but does not have limitations as in the

getTickCount() function, which rolls-over every 49 days. Note that this gives us better

results than relying only on the Java call. The resolution of the

 103

System.currentTimeMillis() on Windows is around 15 milliseconds and 1 millisecond on

Linux. The accuracy of this high resolution timer is around 3~4 microsecond.

High Resolution Clock (HRClock) has the following API;

 long getTimeMilliseconds()
long getTimeMicroseconds()
void sleep(int sleepVal) // millisecond sleep
void hrSleep(int sleepVal) // microsecond sleep

Clients only need to call HRClock.getClock() function to get a reference to the

clock. HRClock returns the appropriate clock implementation for the underlying

operating system. Since we make calls from java to native side, also JNI call overhead

can be introduced into these resolutions.

The above functions are wrapped in a java class called HRClock. Based on the

platform that the program runs on, HRClock calls the corresponding methods

implemented for that underlying platform.

5.6 Summary

While archiving and replaying collaborative sessions, in order to synchronize

streams in the session, events in streams should contain accurate timestamp information

with respect to the time they are generated and published. Since in a collaborative

environment, we cannot expect clients to use the same underlying clock to timestamp

their events, we need to synchronize their clocks as much accurate as possible.

Each machine has a different underlying clock which may run at different rates.

Test results that we provided in this chapter demonstrate this issue. Since a

 104

synchronization range in order of 10s ms is sufficient for streams in a collaborative

environment, NTP would be sufficient to achieve this range.

NTP allows us to synchronize the machine’s clocks with atomic time servers

available all over the world. Servers distributed over a wide geographical area would be

synchronized with each other in a limited range. To achieve this, of course, time servers

should use the closest time servers available to them. Since we know that atomic time

servers are tightly synchronized with each other, we would also be able to synchronize

computer clocks.

 105

Chapter 6

Jitter Reduction Service within

NaradaBrokering

Jitter is considered to be one of the most important quality of service

measurements within collaborative systems such as audio/video systems. Multimedia

applications used within audio/video systems handle real-time streams as well as

archived streams. This multimedia data contains continuous audio and video content.

Jitter values within these streams define the quality of the stream presented to the end

user.

Multimedia applications mandate timely delivery of content and generally sustain

loss of media packets very well. This makes UDP a very good choice for transporting

media, since unlike TCP it does not incorporate an error detection/correction mechanism

which adds delays associated with individual packets. Since UDP is point to point, it is

best to use RTP over UDP when sending streams from one client to another directly. It is

 106

generally difficult to guarantee that all data traversing a packet-switched network will

experience exactly the same delay. Packets encounter queues in switches or routers and

the lengths of these queues vary with time, meaning that the delays tend to vary with

time, and as a consequence, are potentially different for each packet in the A/V stream.

In the case of audio streams, high jitter values can cause voice breaks while in the

case of video streams high jitters may cause degenerations in the image quality. In order

to overcome the negative effects of high jitter, real-time audio/video clients typically

have a buffer which buffers events up to 200 milliseconds and then proceeds to release

them preserving the time spacing between packets. These buffering and time spacing

services enhance jitter reduction.

The way to deal with this at the receiver end is to buffer up some amount of data

in reserve, thereby always providing a store of packets waiting to be played back at the

right time.

In this chapter, we will define the Jitter Reduction Service we developed for

messaging systems. Jitter Reduction Service components are Buffering Service and Time

Differential Service.

6.1 Jitter Reduction Service in Messaging Systems

As explained in previous chapters, messaging systems can be used to deliver

multimedia content, while these brokers are distributed over a wide range of geographical

area with different internet connections. Same high jitter reasons we defined above exist

for messaging system too.

 107

Messaging systems lack such a mechanism when they are used to deliver

multimedia content for collaboration systems, such as transporting multimedia content

within event to the client. This requires that a Jitter Reduction Service is necessary in

messaging systems, especially if collaboration sessions contain replay of archived

streams. This Jitter Reduction Service requires that events are timestamped using NTP

timestamps explained in the previous chapter. Because only in that case events from

different streams generated from different machines would be ordered correctly and

timespacing between events preserved.

In order to achieve low jitter, we incorporated two services within Jitter

Reduction Service, one is Buffering Service which orders events and the other is Time

Differential Service, which preserve the timespacing between events when releasing

them. Figure 6-1 shows this relationship between Buffering Service and Time

Differential Service.

Figure 6-1: Jitter Reduction Service

6.2 Time Buffering Service

When an entity receives messages, it may need a different buffer size based on the

data type and application. For example, in real-time videoconferencing systems the buffer

 108

size is too low, and as a result packets are delayed for up to 200msec while in streaming

applications which are not considered real-time can have delays around 10-15 seconds or

more.

Buffer size also affects the jitter. Small buffer size may cause high jitter while

larger buffer size can helps to reduce the jitter. Buffering service described in this section

provides a customizable buffer size based on the entity’s needs.

If a packet is delayed a long time, it goes into the buffer until its playback time

arrives. If it gets delayed a long time, then it will not be stored for very long in the

receiver’s buffer before being played back. Thus, we have effectively added a constant

offset to the playback time of all the packets as a form of insurance. The only time we run

into trouble is when packets get delayed in the network for such a long time that they

arrive after their playback time, causing the playback buffer to be drained.

The function of buffering service is to buffer some amount of events and release

them in an orderly fashion to Time Differential Service (TDS). This will ensure that the

events received within the buffer duration are ordered and events are delayed for buffer

duration.

The design of the buffering service has incorporated four configurable parameters

pertaining to the release of time-stamped messages:

i. The first criterion is the number of messages in the buffer maintained by the

buffering service. If the number of messages reaches the maximum number of

entries, it starts to release the time-ordered messages.

 109

ii. The second criterion is the total size of the messages in the buffer. This along with

the first criterion enables us to circumvent buffer overflows.

iii. The third criterion corresponds to the time spent by messages within the buffer. In

some cases, the rate of messages arriving at an entity may be too slow and this

may cause longer and unwanted delays within the buffer. The time-duration factor

makes sure that the messages are released after a maximum specified duration if

the first two criteria are not met.

iv. The final criterion is the release factor of the buffer. This typically has a value

between 0.5 and 1.0. When any of the release criteria mentioned above is met, it

releases at least release_factor X total_buffer_length messages.

So that time-ordering for late coming events are achieved to some extend.

Figure 6-2 shows how these four criterions are utilized within Buffering Service.

 110

Figure 6-2: Flowchart for releasing the events in the Buffering Service queue

6.3 Time Differential Service

In collaborative systems simply receiving messages in time-order may not be

enough. An entity may also place constraints on the maximum jitter that it is willing to

tolerate. The Time Differential Service (TDS) provides two very important functions.

First, it reduces the jitter in messages caused by the network. Second, it releases

messages while preserving the time spacing between consecutive messages. Preserving

time spacing between messages is not an easy task primarily because most operating

systems do not provide strict real-time capabilities. Depending on the operating system,

 111

the scheduling of processes and threads does not necessarily guarantee the CPU for that

process or thread after a specified interval. For example, using Java on the Windows

operating system, user-level threads can obtain the CPU back only after 10 milliseconds.

Based on the scheduling configuration of Linux operating system this duration can vary

from 1 millisecond to 10 milliseconds or more.

One of the main reasons that TDS uses threads rather than traditional polling to

release events in the queue is to avoid high CPU utilizations. In the case of polling, in

order to release events in the queue, their timestamps should be checked very frequently.

This can lead to very high CPU utilizations. Furthermore, since the rate at which events

are generated is not constant: the time spacing between consecutive events vary. Using

threads ensures that the CPU utilizations are significantly lower. The reason that we have

multiple threads instead of one to release the events in the queue is due to issues related

to the underlying programming language (Java) and the operating system. For example,

on Linux (Fedora 2), in order to check the timestamps every millisecond, we need to use

at least three inter-leaving threads since each thread wakes up after a minimum of 3

milliseconds. On Windows, this value is 10 milliseconds; this high value may not be able

to address jitter reduction adequately.

Figure 6-3: Ideal Time Differential Service thread invocation

TDS spawns five threads to process messages released by the buffering service, as

shown in Figure 6-3. Threads are configured so that one thread runs for (t time duration

and wakes up after 4(t time duration. Since threads are not strict real time (Java threads)

 112

we can only approximate the run time and sleep time duration values. Note that TDS

itself maintains another buffer for processing. Each thread is initiated one after another

with a specified time difference between consecutive initiations. Each thread sleeps for a

specified time-slice. By interleaving the durations at which these threads wake-up, TDS

can operate on the buffer at finer intervals while ensuring that CPU utilizations are low.

The time-slice interval for individual threads impacts CPU utilization. We have observed

that if the time interval between threads is 1 millisecond the CPU utilization stays around

5~6%, when this interval is decreased to 10 microseconds, it can reach about 20~25% on

a Linux machine (1.5 GHz CPU 512 MB RAM). When a thread wakes up, it checks to

see if any messages need to be released, and it does so if needed. It is done by comparing

the message’s timestamp, the local clock obtained from the high resolution timer and the

time at which the last message was released. By preserving the time-spacing between

messages, TDS reduces the jitter significantly.

6.4 Benchmark Results and Evaluation

6��3��

��!���	!��(�!�	�%��
Figure 6-4: Experimental setup for TDS measurements

 113

Experiment 1 Experiment 2

Broker at Cardiff
OS Red Hat Linux 7.1 2.96-79
CPU Pentiun III 1 GHz
Memory 1 GB
JVM version 1.4.1

Clients at Indiana
OS Red Hat Linux 3.4.2-6.fc3
CPU Intel (R) Pentium (R) 4

CPU 1.5 GHz
Memory 1 GB
JVM version 1.4.2_07

Broker at Indiana
OS Red Hat Linux 3.2.3-6
CPU Intel (R) Xeon(TM)

CPU 2.40 GHz
Memory 2 GB
JVM version 1.4.2_03

Clients at Indiana
OS Red Hat Linux 3.4.2-

6.fc3
CPU Intel (R) Pentium (R) 4

CPU 1.5 GHz
Memory 1 GB
JVM version 1.4.2_07

Table 6-1: Broker and client machine specifications

Figure 6-4 and Table 6-1 depict the experimental setup for our Time Differential

Service (TDS) related measurements. The transmitter (publisher) captures the input-video

stream from a camera and publishes it using NaradaBrokering messages which are

appropriately time-stamped. In the reported results, we ignored the first few messages

that resulted in spikes due to media-player initializations.

For experiment setup (1) NaradaBroker is located at bouscat.cs.cf.ac.uk. We run

transmitter and receiver clients on bozdag.ucs.indiana.edu. Using JMF libraries,

transmitter client captures input video streams from camera and publishes them to a topic

with native NB events. These events are timestamped before being published. Receiver

client runs on the same machine as the transmitter client. The purpose of this is to

eliminate the clock errors that are introduced by clock synchronization. In this case, both

the receiver and the transmitter use the same underlying clock. So we do not have any

clock synchronization problem. Events are published using NIOTCP connection in

NaradaBrokering.

 114

Published events reach the broker and from the broker they are streamed to the

receiver client. Received events are first buffered in Buffering Service. Buffering Service

time-orders events and releases them to Time Differential Service. Time Differential

Service then releases them by preserving the time-spacing between consecutive events.

For experiment setup (2), NaradaBroker is located at gf3.ucs.indiana.edu. We run

transmitter and receiver clients on bozdag.ucs.indiana.edu as in bouscat case. Gf3 and

bozdag are on the same local area network (LAN). Events are also published using

NIOTCP connection in NaradaBrokering.

Figure 6-5: Jitter values comparing Buffering Service Input and TDS Output (Trans-Atlantic)

Figure 6-5 contrasts the jitters resulting from the experimental setup (1) involving

machines at Cardiff and Indiana; the graph compares the jitters in the input to the

buffering service and the output of the TDS. Please note that in the absence of the

 115

buffering service and TDS at a client, the jitters experienced at that node would be similar

to that corresponding to the input of the buffering service.

Figure 6-6: Jitter values from the TDS Output (Trans-Atlantic)

Figure 6-6 depicts only the jitters as a result of TDS for this experimental setup.

The results demonstrate the significant reduction in jitter as a result of deploying the

TDS. Table 6-2 summarizes mean value and the standard deviation of input and output

jitter values for Trans-Atlantic benchmark.

Measured Parameter Mean Value (milliseconds) Standard Deviation

Input Jitter 23.71 5.00

Output Jitter 1.46 0.33
Table 6-2: Mean and standard deviation of input and output jitter values for Trans-Atlantic

benchmark

 116

We have also performed measurements within a Local Area Network (LAN) to

profile the performance of TDS, the results reported here correspond to the experimental

setup (2) depicted in Figure 6-4. Figure 6-7 contrasts the jitters in the input to the

buffering service and the output of TDS. Once again, the results demonstrate jitter

reduction even in cluster settings. Figure 6-8 shows only the output jitter for the LAN

setting. We can achieve very low values of jitter. Table 6-3 summarizes mean value and

the standard deviation of input and output jitter values for cluster benchmark.

Figure 6-7: Jitter values comparing Buffering Service Input and TDS Output (Cluster setting)

 117

Figure 6-8: Jitter values from the TDS Output (Cluster setting)

Measured Parameter Mean Value (milliseconds) Standard Deviation

Input Jitter 1.22 0.47

Output Jitter 0.08 0.03
Table 6-3: Mean and standard deviation of input and output jitter values for Trans-Atlantic

benchmark

6.5 Summary

In a distributed system, events are generated from multiple sources, and due to the

underlying network, these events may reach the destination unordered. Receiving events

time-ordered is also not enough for collaborative systems. The jitter reduction is

important to reach a certain quality of service.

 118

Buffering and Time Differential Services, together, provide a mechanism to

improve the ordering of events and to reduce the jitter caused by the underlying network.

By supplying a buffer, Buffering Service will ensure that the events received within the

buffer duration are ordered, and that the events are delayed for buffer duration. Time

Differential Service (TDS) reduces the jitter caused by the network by releasing the

events and preserving the time spacing between consecutive events.

Using TDS in conjunction with buffering service will guarantee low jitter.

Because benchmark results show that TDS can reduce the jitter values in a few

milliseconds in a Trans-Atlantic setting and less than one millisecond in a cluster setting.

 119

Chapter 7

Replicated and Fault Tolerant Repository

Reliable delivery of messages is an important problem that needs to be addressed

in distributed systems. Topics over which authorized publishers and subscribers can have

reliable communications are referred to as reliable-topics. The reliable delivery scheme in

NaradaBrokering system enables reliable delivery of messages in the presence of link and

node failures. The communication links within the system can also be unpredictable, with

messages being lost, duplicated or re-ordered in transit over them, en route to the final

destinations. This is facilitated by a specialized repository node. In this chapter, after we

give an overview of the reliable delivery scheme in NaradaBrokering system, we present

our strategy to make this scheme even more failure resilient, by incorporating support for

repository redundancy. Each repository functions autonomously and makes decisions

independently. The scheme enables updates to the redundancy scheme depending on the

failure resiliency requirements. If there are N available repositories, reliable delivery

guarantees will be met even if N-1 repositories fail.

 120

7.1 Overview of NaradaBrokering Reliable Delivery Service

The scheme for reliable delivery of messages, issued over a reliable-topic, needs

to facilitate error corrections, retransmissions and recovery from failures. In this system,

a specialized repository node which manages this reliable-topic plays a crucial role in

facilitating this. The repository facilitates reliable delivery from multiple publishers to

multiple subscribers over its set of managed reliable-topics. The only requirement for the

basic reliable delivery scheme is that if a repository fails, it should recover within a finite

amount of time.

This reliable delivery guarantee holds true in the presence of four distinct

conditions.

1. Broker and Link Failures: A broker network may have individual or multiple

broker and link failures. Once the broker network recovers, the delivery

guarantees should be met.

2. Prolonged Entity disconnects: If an entity is disconnected and misses events, the

delivery guarantee will be met, with the entity receiving all the events missed in

the interim once the entity reconnects.

3. Stable Storage Failures: It is possible that stable storages present in the system

may fail. The delivery guarantees must be satisfied once the storage recovers.

4. Unpredictable Links: The events can be lost, duplicated or re-ordered in transit

over individual links, en route to the final destinations.

To enable the management of reliable-topics, the repository facilitates the

registration and de-registration of authorized clients (publishers & subscribers) for

reliable communications over the reliable-topic. Publishers and subscribers that are not

 121

explicitly authorized (and registered) by the reliable-topic owner cannot avail reliable

communications over that topic. To support error-corrections, retransmissions, and

recovery from failures (including those of the repository itself) a repository also needs

provision stable storage so that messages and other information pertinent to the reliable

delivery algorithm can be stored.

Figure 7-1 summarizes the interactions between entities over a reliable topic.

These interactions are explained in the following sub-sections.

Figure 7-1: Summary of interactions between entities

7.1.1 Control-Events

The reliable delivery algorithm involves communications between various entities

through the exchange of control- events (summarized in Figure 7-1). The control-events

(simply events, for brevity, hereafter) relate to intermediate steps to facilitate reliable

delivery, acknowledgements, error-corrections, retransmissions and recovery related

operations. Our notation for events identifies the source, the destination(s) and the type of

 122

control-event: ���������	
��

�������
�������. For purposes of brevity, we use

only the starting alphabets of the entities involved in the exchange. Thus, an

acknowledgement issued by the repository to the publisher is represented as �������.

The destination part is in ��������	 if there are multiple destinations.

7.1.2 Publishing Messages

The messages issued by publishers to a topic will also be received at the

repository. To ensure that the repository can know about and retrieve missed messages

for every published message, the publisher also issues a P2R-Order event to the reliable-

topic repository.

A publisher stores every message that it publishes, over a reliable-topic, in its

local buffer (maintained in memory), which serves as a temporary storage. The catenation

numbers contained within the P2R-Order event allows the reliable-topic repository to

determine the order in which these messages were generated and to determine if

messages were lost in transit.

7.1.3 Repository Processing of Published Message

Upon receipt of a message (issued over one of its managed reliable-topics), the

repository queues the message in a temporary buffer, this message is not acted upon until

the corresponding P2R-Order event is received. The repository also checks with the

identifier contained in the event to see if this event has been previously received at the

repository. If a message correlated with this duplicate event is in the repository’s

temporary buffer, that message is also discarded as a duplicate.

 123

If the published message has been received, an acknowledgement – R2P-ACK

event – is issued back to the publisher. If the published message corresponding to the

P2R-Order event is missing, the repository issues a negative acknowledgement – R2P-

NAK event –- to the publisher to retrieve the missing message. The repository also

checks to see if there are any gaps in the P2R-Order events received from the publisher.

When the repository stores the message it assigns a monotonically increasing sequence

number.

7.1.4 Processing Repository Acknowledgements

A positive acknowledgement R2P-ACK event signifies successful receipt of the

message and the corresponding P2R-Order event at the repository. The local buffer entry

corresponding to this message can then be removed. Upon receipt of the negative

acknowledgement R2P-NAK event the message(s) corresponding to the specified

catenation number(s) are retrieved and prepared for retransmission. The retransmission

occurs in the P2R-Retransmit event which contains both the original published message

along with the catenation number for the message.

7.1.5 Message Storage and Persistence Notifications

Upon successful receipt of a published message at the repository, in addition to

the operations outlined in section 7.1.3 the repository performs three additional functions.

First, depending on the topic type contained in the original published message, the

repository loads the appropriate matching engine to compute destinations for the

published message based on the registered subscriptions.

 124

Second, the repository adds an entry to the dissemination table that it maintains.

For a given sequence number, the dissemination table enables a repository to keep track

of destinations that have not explicitly acknowledged the receipt of the corresponding

published message.

Finally, the repository issues an event signifying the persistence of the published

message. If S is the set of registered subscribers to a given reliable-topic, and if S* is the

subset of subscribers whose subscription constraints are satisfied by the published

message, then the R2S*-���	�	
��
 event signifies that it would be received only by

that subset of subscribers.

The R2S*-���	�	
��
 event contains the sequence number assigned to the

published message and also the identifier associated with the published message. A

subscriber can then correlate a published message and its persistent event.

7.1.6 Processing Persistent Events at the Subscriber

A subscriber to a reliable-topic receives published messages from the publishers,

and events from the repository. Upon receipt of a message from a publisher, a subscriber

stores this message in its temporary local buffer. A subscriber releases a message only if

both the message and the corresponding R2S*-���	�	
��
 event have been received.

If the subscriber has received both the message and the corresponding R2S*-

���	�	
��
 event, it proceeds to issue an acknowledgement to the repository.

If the subscriber encounters a R2S*-���	�	
��
 event without the corresponding

published message it concludes that the message was lost in transit. It issues a S2R-NAK

 125

event with the missing sequence number(s) for a given reliable-topic to retrieve the

corresponding messages.

7.1.7 Processing Subscriber Acknowledgements

Upon receipt of an acknowledgement from the subscriber, the repository checks

the dissemination table to see if there are any un-acknowledged messages within the

range of sequence numbers contained in the S2R-ACK event.

On receipt of the S2R-ACK event from a subscriber, the repository updates the

dissemination table entries corresponding to the sequence(s) contained in the event to

reflect the fact that the subscriber received messages corresponding to those persistent

event sequences.

The repository maintains a sync for every subscriber to the reliable-topics that it

manages. The subscriber sync corresponds to the sequence number up until which the

repository is sure that this subscriber has received all preceding messages. A subscriber

maintains a local copy of this sync.

If the subscriber has received all the messages that it was supposed to receive, and

if there were no missed messages between the subscriber’s current sync and the highest

sequence number contained in the S2R-ACK event, the repository advances the sync

point associated with this subscriber and issues a R2S-Sync event which notifies the

subscriber about this sync advancement. Only upon receipt of this event is the subscriber

allowed to advance its sync.

It is possible that the repository, based on the S2R-ACK event, detects that there

are some persistent event sequences which were not explicitly acknowledged by the

 126

subscriber. The repository assumes that these un-acknowledged messages were lost in

transit to the subscriber.

After the detection of missed sequences, the repository issues an R2S-Rectify

event, which contains information pertaining to the client’s sync advancement (if it is

possible) and also the sequencing information and message-identifiers of the missed

messages.

7.1.8 Processing Errors and Syncs Advances

Upon receipt of the R2S-Rectify event a subscriber performs three steps. First, the

subscriber checks to see if any of the messages that it maintains in its temporary buffer

has the identifier(s) corresponding to those listed in the R2S-Rectify; this accounts for the

case where the R2S*-���	�	
��
 event was lost in transit to the subscriber, but the

original published message was not. If the message exists in the temporary buffer, the

message is delivered.

Second, the subscriber then proceeds to issue a S2R-NAK negative-

acknowledgement event to the repository while excluding messages that were reliably

delivered in the previous step. The S2R-NAK issued by the subscriber corresponds to the

case where messages corresponding to the listed sequence numbers were lost in transit.

Finally, the subscriber advances its sync based on the advancement contained in

the R2S-Rectify event. Note that this is also done in response to the �������� event.

 127

7.1.9 Subscriber and Publisher Recovery

When a subscriber reconnects to the broker network after failures or a prolonged

disconnect, it needs to retrieve the missed messages published over a reliable-topic. The

recovering entity issues a recovery request S2R-Recovery for every reliable-topic that it

had previously subscribed to.

Upon receipt of the recovery request, the repository scans the dissemination table

starting at the sync associated with the client. The repository then generates an R2S-

Rectify event, which is processed by the subscriber to advance its local sync and also to

initiate retransmissions as described earlier in section 7.1.8.

In the case of publisher recovery, the repository’s recovery response includes the

last known catenation number for a given reliable-topic to which the publisher published.

7.2 Improvements to NaradaBrokering Reliable Delivery

Service

We have extended the NaradaBrokering Reliable Delivery Service with a

repository replication algorithm. This also impacts the reliable delivery protocol and can

be summarized as follows:

i. A Publisher uses a monotonically increasing catenation number each topic it is

publishing to. This is necessary for the repository to detect lost messages. Detecting

gaps from a monotonically increasing sequence of catenation numbers is faster than

detecting gaps from a sequence of <previous catenation number, catenation

number> pair.

 128

ii. To reduce the number of events exchanged between repository-publisher and

repository-subscriber, we propose a lazy acknowledgment scheme. For this, the

repository issues a R2P-NAK event to the publisher every few (configurable)

seconds and the subscriber issues an S2R-ACK event to the repository every few

(configurable) seconds. This allows us to include a list of lost message catenations

into a single R2P-NAK event and a list of catenation numbers into a single S2R-

ACK event, hence reducing the number of R2P-NAK and S2R-ACK events. This

scheme can be viewed as lazy negative acknowledgement because repository issues

NAK to the publisher including a list of catenation numbers of missed events and

lazy positive acknowledgement because the subscriber issues ACK to the repository

including a list of catenation numbers of received events.

iii. Upon the receipt of a P2R-Order event, the repository stores the corresponding

message without waiting for missed messages. For lost messages, an entry is added

to a storage table with a status flag to indicate that the message is being recovered

and needs to be stored. A sequence number is also assigned for those missed events.

This procedure avoids accumulation of messages. For example, suppose message i

and all previous messages are stored successfully without any gaps between them.

The messages from i+2 to i+20 arrive with the corresponding P2R-Order events

which carry the catenation numbers of the corresponding messages. The repository

assigns sequence numbers to missed events i+1 and messages from i+2 to i+20. An

entry for message i+1 is added to the storage table with a flag indicating that it has

not been received yet. Then repository stores messages from i+2 to i+20

successfully and publishes ������� event for them. For missed message i+1, the

 129

entry is overwritten as a message arrives. In the previous case, messages from i+2

to i+20 were not stored until message i+1 was received successfully. Waiting for

message i+1 to store all messages afterwards also would cause burst in storing

messages and publishing ������� events.

7.3 Repository Redundancy and Fault-tolerance

In the previous sections, we outlined our strategy to ensure a reliable delivery. In

this scheme if there is a failure at the repository, the clients interested in reliable

communication, over any of the managed reliable-topic, need to wait for this repository

to recover prior to the reliable delivery guarantees being met. We now extend this scheme

to ensure that the reliable delivery guarantees are satisfied in the presence of repository

failures. To achieve this, we include support for multiple repositories –- constituting a

repository-bundle –-for a given reliable-topic; it is not necessary that the topics managed

by these repositories be identical. A repository may thus be a part of multiple repository-

bundles at the same time.

We support a flexible redundancy scheme with easy addition and removal of

repositories that manage a given reliable-topic. There are no limits on the number of

repositories for a given reliable-topic. This scheme can sustain the loss of multiple

repositories: in a system with N repositories for a given reliable-topic N-1 of these

repositories can fail, and reliable delivery guarantees are met so long as at least one

repository is available.

The repositories that constitute the repository-bundle for a given reliable-topic

function autonomously. At any given time, for a given reliable-topic, a client

 130

communicates with exactly one repository within the corresponding repository-bundle.

This entity is also allowed to replace this repository with any other repository within the

bundle at anytime.

Besides additional redundancy, and the accompanying fault-tolerance, a highly-

available, distributed repository scheme enables clients to exploit geographical and

network proximities. Using repositories that are “closer” ensures reduced latencies in the

receipt of events from the repository. Packet loss-rates typically increase with the number

of intermediate hops (for UDP and Multicast).

Besides the selection of the repository from a repository-bundle, as part of the

bootstrap, operations at the clients are identical to those in place for a single repository.

7.3.1 Steering Repository

A publisher or a subscriber to a reliable-topic can interact with exactly one

repository within the repository-bundle for that reliable-topic; this repository is referred

to as the steering repository for that publisher/subscriber. At any time, a client is allowed

to replace its steering repository with any other repository from the repository bundle.

Every repository within the bundle keeps track of a client’s delivery sequences

passively and actively. For a given entity, at any given time, there will be one steering

repository operating in the active mode by initiating error-corrections and

retransmissions. Other repositories operating in the passive mode do not initiate these

actions.

At every repository, within the repository-bundle for a given reliable-topic, the

list of registered clients is divided into two sets –- those that the repository steers and

 131

those that it does not. The repository operates in the active mode for the steered clients

and in the passive mode for the clients that it does not steer. In the active mode, a

repository performs all functions outlined in section 7.1. In the passive mode, a repository

listens to all events initiated by the publishers and subscriber; however, the repository

will not issue events – related to reliable communications – to the clients that it does not

steer. Operating in the passive mode, allows a repository to take over as the steering

repository for clients that it does not presently steer.

When a client is ready to initiate reliable communications, it has to designate a

steering repository from the set of repositories within the repository-bundle associated

with the reliable-topic. Selection of the steering repository is done based on network

proximity using probes to compute network round-trip delays to the repositories. The

client then issues an event over the repository’s communications-topic designating it as

the steering repository. Upon receipt of this event, the repository adds that client to its list

of steered clients.

7.3.2 Ordered Storage of Published Messages

For every published message, the publisher issues a ��
������ event (where

is the repository-bundle), which is received by all repositories within the repository-

bundle. This allows all repositories within the repository-bundle to keep track of the

published messages. However, only the steering repository (operating in active mode)

for this publisher is allowed to issue the ������� and ������� events to

acknowledge the receipt of messages and to initiate retransmissions respectively.

 132

Retransmissions issued in response to the ������� event are sent to all

repositories using the ��
���
�
�	��
 event. The rationale for this is that if a message

was lost in transit to the publisher’s steering-repository, there is a good chance that the

message (or the corresponding ��
������) event was also lost in transit to the other

repositories.

7.3.3 Generation of Persistence Notification

Once a published message is ready for storage at the repository, the message is

assigned a sequence number and is stored onto stable storage along with the published

message. In this scheme each repository is autonomous, and thus maintains its own

sequencing information. This implies that a message published by a publisher, may have

different sequence numbers at different repositories. It follows naturally that the sync

associated with a given subscriber can be different at different repositories. However, the

catenation number associated with a publisher is identical at every repository within the

repository-bundle.

A repository computes destinations associated with every published message.

These destinations are computed based on the subscriptions registered by subscribers to

this reliable-topic irrespective of whether subscribers they are steered by the repository or

not. The repository then proceeds to issue a persistence notification. The topic associated

with the ��������	�	
��
 event is such that it is routed only to the subset �� of its

steered subscribers with subscriptions that are satisfied by the topic contained in the

original message.

 133

7.3.4 Acknowledgements, Errors and Syncs

Upon receipt of ��������	�	
��
 events from its steering repository, a

subscriber proceeds to issue acknowledgements. This acknowledgement, the ��
����

is issued over the repository-bundle communications topic. Since, the message is

received by the repository-bundle, all repositories are aware of delivery sequences at

different subscribers. The ��
���� event contains sequence numbers corresponding to

its steering repository and also includes the identifier associated with the steering

repository.

Error correction, and sync advancements, for a given subscriber is initiated by its

steering repository through the �������
��� event. Retransmission requests by a

subscriber are targeted by its steering repository in the ������� event.

7.3.5 Gossips between Repositories

Repositories within a repository-bundle gossip with each other. Repositories

within a repository-bundle need to exchange messages about the registration/de-

registration of clients to a managed reliable-topic as well addition and removal of

subscriptions by clients to a reliable-topic. A given repository stores each of these actions

and assigns each action the next available sequence number.

7.3.6 Processing Stored Messages

A repository assigns monotonically increasing sequence numbers to each message

that it stores. At regular intervals or after the storage of a certain number of messages, the

 134

repository issues a ��		������ event, which contains an array of entries corresponding

to its storage of published messages. Each entry contains the publisher identifier, the

catenation number assigned by the publisher, the message identifier and the sequence

number assigned by the repository. This gossip message plays a big role in allowing

repositories to be aware of the sequence numbers associated with a specific message at

different repositories.

Every repository also maintains a repository-table for each of the other

repositories as shown in Figure 7-2. In these tables for every publisher-catenation number

pair, the repository maintains a sequence number assigned by every repository (including

itself) within the bundle. Upon receipt of the ��		������ event from a repository, an

entry is added to the corresponding table to reflect the sequence numbers assigned at

different repositories.

Figure 7-2: Widget with table maintained at repository Rx

The repository table thus allows a repository to correlate sequence numbers

assigned to a given message at every other repository. The table also track messages not

received by other repositories. This allows a repository to recover from any other

repository after a failure. These repository tables also play an important role in processing

acknowledgements from subscribers that it does not steer.

7.3.7 Processing Subscriber Acknowledgements

When a repository receives a ��
���� event from a subscriber, it checks to see

if it steers the subscriber. If it does, the repository simply proceeds to update its

 135

dissemination table to reflect receipt of the message at the repository. If the repository

does not steer the subscriber that issued the acknowledgement, the repository retrieves

the sequence number corresponding to the original message from the repository-table. It

then proceeds to update the dissemination-table for that sequence number to confirm the

receipt from the subscriber in question. This scheme allows all repositories to be aware of

delivery sequences at various subscribers irrespective of whether they are steered or not.

Furthermore, based on the ��
���� acknowledgements from a subscriber, every

repository computes its sync for that subscriber. Additionally, at regular intervals, a

repository gossips about sync advancements for its steered subscribers.

Since all repositories process acknowledgements from all the subscribers any one

of these repositories can take over as the steering repository for a given subscriber.

Furthermore, since all messages issued by all publishers are stored at all repositories, and

since the catenation numbers are identical on all repositories, a repository can take over

as the steering repository for a given publisher at any time.

7.3.8 Dealing with Repository Failures

A publisher detects a failure in its steering repository, if it does not receive ����

��� events for published messages within a certain time duration. A subscriber detects a

steering-repository failure if it receives published messages to reliable-topics, but no

corresponding persistence notifications from its steering repository. These clients then

proceed to discover a new steering repository. The publisher then exchanges information

about its catenation number with the replacement steering repository. If there is a

 136

mismatch wherein the steering repository’s catenation is lower than that at the publisher,

the repository proceeds to retrieve this message from a repository within the bundle.

7.3.9 Recovery of a Repository

Upon recovery from a failure, it needs to discover an assisting-repository: this is a

repository within the repository bundle that is willing to assist the repository in the

recovery process. The recovering replica first checks to see if the list of registered clients

and subscriptions have changed, and proceeds to retrieve updates to this list.

Next, the repository proceeds to retrieve the list of catenation numbers associated

with the publishers. Based on these catenation numbers, the repository computes the

number of missed messages and proceeds to set aside the corresponding number of

sequences. For messages (missed and real-time) that it stores, a recovering-repository

issues Gossip-ACK acknowledgements at regular intervals.

The recovering-repository proceeds to do two things in parallel. First, it proceeds

to retrieve missed messages from the assisting repository. For every missed message the

recovering-repository also retrieves a dissemination list associated with it. This allows a

repository to keep track of the subscribers that have not acknowledged these messages.

Additionally, the repository-table entries corresponding to each message are also

retrieved. A repository cannot be the steering repository for any entity till all the missed

messages have been retrieved.

Second, it subscribes to various communications topics so that it can start

receiving messages published in real-time. The first time a repository receives a message

from a publisher, it checks to see if the catenation number associated with that message

 137

indicates missed messages. This could happen because the missed message(s) would have

been in transit to the assisting repository. Thus, during recovery if the assisting repository

reported a catenation number of 2000, and if the catenation number associated with the

first real-time message received from the publisher is 2010 it implies that there are 9

additional messages from this publisher that are missed. The repository sets aside 9

sequence numbers, and issues a request to retrieve these messages. The repository also

proceeds to store the published message based on the newly advanced sequence number.

7.3.10 Addition of a Repository

When a repository is added to the repository-bundle associated with a reliable-

topic, the newly added repository takes the following steps. First, it needs to discover an

assisting-repository: this is a repository which is present in the repository bundle and one

which is willing to assist the repository in the addition process.

Second, the repository retrieves the list of registered clients, and the subscriptions

registered by the registered subscribers. As described in section 7.3.9 the repository then

proceeds to retrieve missed messages along with the corresponding dissemination lists

and repository-table entries in addition to processing real-time messages.

7.3.11 Graceful Removal of a Repository

When a repository is ready to leave a repository bundle, it proceeds to issue an

event to its active steered clients, requesting them to migrate to another repository. The

departing-repository then operates in silent mode as far as the clients are concerned. The

departing-repository also gossips with other repositories within the repository-bundle to

 138

check if the catenation numbers associated with previously steered publishers is greater

than or equal to its last known value at the departing-repository.

Once a repository has confirmed that all messages published by its previously

steered publisher have been received at one of the repositories within the bundle, it is

ready to leave the repository-bundle. The departing repository then simply issues a

��		������ � event. Repository table entries corresponding to this repository will no

longer be maintained at other repositories.

7.4 Experimental Results

We have measured several aspects of the reliable delivery framework to have an

idea of the costs involved in reliable communications. All processes executed within

JVM 1.6.0 with Linux as the OS were hosted on a 100 Mbps LAN. Machines involved in

the benchmark have the following profile: Repositories run on machines with CPU

(Xeon, 2.4 GHz processor) and 2GB RAM, while other components run on machines

with CPU (2 Xeon - 4 core each, 2.3 GHz processor) and 8GB RAM

The repositories, brokers and sets of clients are all hosted on different machines.

In all test cases, to obviate the need for clock synchronizations, the publisher and the

measuring subscriber (which reports the results) were hosted on the same machine. We

have benchmarked end-to-end delivery latency in order to understand the cost that the

replication scheme causes.

In our first benchmarks, we used the topologies depicted in Figure 7-3 and Figure

7-4 for benchmarking in order to understand the cost of reliable delivery scheme. These

 139

two topologies are basic cases with one broker, one repository, one publisher and one

subscriber.

Figure 7-3: Topology A; 1 broker (B), 1 publisher (P1) and 1 measuring subscriber (S1)

Figure 7-4: Topology B; 1 broker (B), 1 publisher (P1), 1 measuring subscriber (S1) and 1 repository

The results of delivery latency benchmarks for different payload sizes for

topologies A and B are shown in Figure 7-5 and Figure 7-6. The cost of reliable delivery

is acceptable because the cost increase from topology A to topology B is almost constant,

particularly for message sizes less than 10 KB. The cost increase is due to control

signaling taking place between the publisher and the repository and between the

subscriber and the repository. Signaling between the publisher and the repository makes

sure that the message published is stored at the repository. Signaling between the

subscriber and the repository makes sure that the subscriber receives the message.

Because of this signaling and because of the storage overhead there is an increase in

reliable delivery scheme.

 140

Figure 7-5: Mean delivery costs for topologies A and B.

Figure 7-6: Standard deviation of reliable delivery costs for topologies A and B.

 141

In the next topologies, from topologies C to F, as shown in Figure 7-7, Figure 7-8,

Figure 7-9 and Figure 7-10, we would like to benchmark the cost of adding additional

repositories to the system while we provide reliable delivery for a topic. We have

increased the number of repositories from zero to three.

Figure 7-7: Topology C; 3 brokers (B1, B2, B3), 1 publisher (P1) and 1 measuring subscriber (S1)

6��3���

6�

6��3���

68

6��3���

6�

�8(8

 ����	����

Figure 7-8: Topology D; 3 brokers (B1, B2, B3), 1 publisher (P1), 1 measuring subscriber (S1) and 1

repository

Figure 7-9: Topology E; 3 brokers (B1, B2, B3), 1 publisher (P1), 1 measuring subscriber (S1) and 2

repositories

 142

6��3���

6�

6��3���

68

6��3���

6�

 ����	������

 ����	������ ����	�����8

�8(8

Figure 7-10: Topology F; 3 brokers (B1, B2, B3), 1 publisher (P1), 1 measuring subscriber (S1) and 3

repositories

The results of delivery latency benchmarks for different payload sizes for

topologies C, D, E and F are shown in Figure 7-11 and Figure 7-12. The cost increase is

acceptable for redundant repositories as well. For each repository, the mean latency

increases for a few milliseconds. However, the cost increase is again constant for each

repository addition.

For publisher the steering repository is Repository 1 in topologies D, E and F.

Other repositories are storing the same topic that the publisher is publishing to. The

reason for cost increase for repository addition is that the steering repository also handles

messages from other repositories. Repository 2 and 3 publishes control messages as we

described in section 7.3. So Repository 1 also maintains reliable delivery topic

information at repositories 2 and 3. In addition to that, Repository 1 also publishes

control messages so that other repositories maintain its topic information in their storage

as well. Considering these control messages taking place to achieve redundant repository

support for reliable delivery topics, the cost is acceptable.

 143

Figure 7-11: Mean delivery costs for topologies C, D, E and F.

Figure 7-12: Standard deviation of latency measurements shown in Figure 7-11.

 144

We also provided benchmark results of topologies A, B, C, D, E and F in a

common figure (Figure 7-13 and Figure 7-14) so that we can compare these results.

Topology A and B contain only one broker but other topologies (C – F) contain three

brokers. Comparing the lines of topology A and C where none of these have repositories,

we can have an idea of cost increase with increase in the number of brokers. This

suggests that when we compare the effect of repositories added to the system, we need to

keep in mind the number of brokers that the brokering network has. Because depending

on where the client is connected, the number of brokers is also a factor in delivery

latency.

In general, the costs increase as the number of brokers and the number of

repositories for a given reliable-topic increase. The results also demonstrate that the costs

for reliable delivery are acceptable

Figure 7-13: Mean delivery costs for topologies A, B, C, D, E and F.

 145

Figure 7-14: Standard deviation of latency measurements shown in Figure 7-13.

In addition to above benchmarks, we also benchmarked costs associated with

various aspects of the framework. The results are summarized in Table 7-1. Some of

these costs are reported in milliseconds (msec) and some in microseconds (µsec).

Operation Mean Standard
Deviation

Standard
Error

Storage Overheads
 Message Storage 1408 µsec 141.71 µsec 31.69 µsec
 Message Retrieval 669 µsec 77.93 µsec 17.43 µsec
RDS recovery in a single repository system
 Recovery time after

a failure or
scheduled
downtime

85.7 msec 4.3 msec 958 µsec

Client Recovery
 Time to generate

Recovery response
for a publisher

825 µsec 215 µsec 48 µsec

 Time to generate
Recovery response
for a subscriber

1613 µsec 588 µsec 131 µsec

 146

Repository Recovery (1000 missed messages and 20 clients)
 Recovery Response

generation for
Repository

59.28 msec 5.54 msec 2.77 msec

 Recovery Time at
repository

11172 msec 1733 msec 867 msec

Repository Gossips
 Generation of

gossip
243 µsec 50 µsec 11 µsec

 Processing a gossip 241 µsec 16 µsec 3 µsec
 Table 7-1: Reliable delivery costs within the framework. Values reported for a message size of 8KB.

7.5 Summary

In this chapter, we gave an overview of the NaradaBrokering reliable delivery

scheme and the improvements we have made to this scheme. Then we extended the

scheme by incorporating support for repository redundancy to make it more failure

resilient. With this scheme, if there are N available repositories, reliable delivery

guarantees will be met even if N-1 repositories fail. We also measured several aspects of

the reliable delivery framework to have an idea of the costs involved in reliable

communications for different topologies.

 147

Chapter 8

Archived Streaming Service

Streaming of archived multimedia content is widely used in the today’s Internet

world. Usually the reason for this is to provide Media-On-Demand to users with high

quality multimedia content. A client has some control over the stream, such as pausing,

rewinding or forwarding depending on the choices provided to it. We have already

explained streaming concept in chapter 4 while we explained XGSP Streaming Gateway.

In this chapter, we focus on streaming session initiation and metadata support for

describing archive and replay sessions including streams in these sessions. Our streaming

architecture is based on messaging middleware and Web Services technology. An

important aspect of this architecture is that it utilizes a fault tolerant distributed

repository, WS-Context Service, to maintain session and stream metadata.

 148

8.1 Archived Streaming Service Design

Archived Streaming Service provides metadata support and messaging

middleware topic management to streaming sessions for archiving streams and replaying

archived streams. There are several reasons for the need of archived streaming service.

Some of these can be listed as follows;

i) Streams are archived with the topics they are published to. . That is, events store

includes the original topic names they were published to. During a replay

session, these archived streams need to be published to different topics, since

there may be several replay sessions for the same archived streams. Although

data in these streams are same, when they are published for a different replay

session, they are treated as different streams since the control of each of these

sessions is at a different client.

ii) As we explained in chapter 7, while replicating the repository to increase the

fault tolerance of the system, we need unique templateIDs for every template

that we store. The templateIDs used by the repository to map the topic names of

the streams are assigned by the archiving service.

iii) There may be many repositories storing many different templates. Also one

template may be stored (replicated) at many repositories. In this case, a

component should decide which repositories should be used during recording or

replay. This can be decided by the archived streaming service. In another sense,

repositories are managed for load balancing.

 149

Figure 8-1: Archived Streaming Service and interaction with other components in the system

Figure 8-1 demonstrates Archived Streaming Service and interactions with other

services in the system. Archived Streaming Service is a Web Service and can use

publish/subscribe mechanism to interact with other components in the system. Archived

Streaming Service can directly access WS-Context Service to update and retrieve

metadata of sessions and streams. While doing that it also interacts with Generic

 150

Streaming Service through messaging middleware to initialize the session for recording

or replay.

Figure 8-2: Archived Streaming Service operations

Each streaming session is assigned a Universally Unique Identifier (UUID) [112]

which can be generated by the client as well. If it is not provided by the client, Archived

Streaming Service generates one and provides it to the client during the session setup.

This service has the operations shown in Figure 8-2.

 151

All of these operations return WsRtspResponseType XMLmessage. The XML

fragment for this message is shown in Figure 8-3. Record stream and replay stream

information is passed via WsRtspStream field. WsRtspStream contains either a list of

AtomicStreams or a list of ReplayStreams as shown in Figure 8-4.

Figure 8-3a

<xs:complexType name="WsRtspResponseType">
 <xs:annotation>
 <xs:documentation>Rtsp response</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="WsRtspSessionID" type="xs:string"/>
 <xs:element name="ClientID" type="xs:string"/>
 <xs:element name="StatusCode" type="xs:int" minOccurs="0"/>
 <xs:element name="ReasonPhrase" type="xs:string" minOccurs="0"/>
 <xs:element ref="wsrtsp:WsRtspStream" minOccurs="0"/>
 <xs:element name="StartTime" type="xs:long" minOccurs="0"/>
 <xs:element name="StopTime" type="xs:long" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

Figure 8-3b

Figure 8-3: WsRtspResponseType a) graphical representation and b) XML fragment

 152

Figure 8-4: WsRtspStream definition as AtomicStreams and ReplayStreams

Sessions are initialized with recordSetup and playSetup operations. Each

session is differentiated with a session ID and it is unique. Sessions are closed with

teardownSession operation which only requires client ID and session ID.

8.1.1 Recording Sessions

If a client wants to record a session which may include one or more streams, it

needs to know which topics it wants to record. It may retrieve the topic names either from

WS-Context Service or it can be the source of the stream so that it already knows the

topic it is publishing to.

Since we use publish/subscribe middleware, client initiating the archiving process

does not need to be the one who is publishing the streams. It can be any separate

component that can initiate the recording. Some of the operations shown in Figure 8-2

can be called in recording session while some of them are not allowed.

The first operation that should be called in a recording session is recordSetup

operation. As an input, it also accepts an input of WsRtspStreamType which is a list of

 153

AtomicStreams. When returning the WsRtspResponseType message, NaradaBrokering

template information is included to each of the AtomicStream provided. AtomicStream

representation is given in Figure 8-10. A client uses that information to initiate storing of

streams (templates). In case the Archived Streaming Service cannot be accessed after the

setup operation, the client just simply makes another recordSetup call to any available

Archived Streaming Service. Since the new Archived Streaming Service already knows

the session state from WS-Context Service, the session can be reestablished and

recovered.

addRecordStream is to add more streams to a recording session while

removeStream is used to remove streams from a recording session. Since

WsRtspStreamType can contain multiple stream definitions, in all of these operations

multiple streams can be added or removed.

8.1.2 Replay Sessions

A replay session can include multiple streams as well. As in recording case, client

needs to know which streams it wants to replay. It can also retrieve this information from

WS-Context Service.

When a client initiates a replay session, related information is stored in WS-

Context Service. If another client wants to replay the same session, it can just retrieve

replay topics from WS-Context Service and subscribe to these replay topics without

interacting with Archived Streaming Service. In this case, a client is just a listener of the

session and cannot have control over the replay session.

 154

As in recording case, some of the operations shown in Figure 8-2 can be called in

replay session while some of them are not allowed. The first step to initiate a replay

session is to call playSetup operation. This will initialize the replay session. When a

client passes WsRtspStreamType message, it sets the ReplayStreams field.

ReplayStreamType message contains NBInfoType and AtomicStreamType fields. For

each AtomicStream, Archived Streaming Service sets NBInfo field to provide the replay

topic information to the client. After that the updated WsRtspStreamType message is

returned to the client.

A client can add streams to the replay session with addReplayStream operation.

WsRtspStreamType field is updated as in replaySetup operation and returned back to the

client. If the client wants to remove a stream from the replay session, it simply calls

removeStream operation and passes the streams it wants to remove.

8.2 Metadata Management

In order to manage collaboration and streaming sessions, we need to store

metadata related to these sessions. Sessions may have both static metadata and dynamic

metadata. Static metadata is the metadata that does not change during the lifetime of a

session. Dynamic metadata is the changing (added, updated, deleted) part of the metadata

of the session.

Static Metadata: Collaboration users need to know how many active sessions are

available and their associated detailed information. The session information may contain

meeting time, duration of the meeting or begin and end time of the meeting. From the

meeting time, users can decide whether the session is available or not. In the streaming

 155

sessions, a session may record or replay sessions. Metadata regarding a record session

may be considered as static metadata once the record session is over. Because during the

record, streams can be added to the session, hence metadata of the session is updated.

Once a stream is added to a record session, metadata of that stream becomes a static part

of the session metadata.

Dynamic Metadata: Collaborative and streaming sessions also have changing

metadata during their lifetime. Usually the changing part of the metadata is the part

related to the stream definitions, for instance streams available in the session. In

collaborative sessions metadata related to the users is dynamic, since users join and leave

the sessions. In streaming sessions, record sessions may have dynamic metadata until the

session is over, as we explained above. Replay sessions can be considered as dynamic

sessions hence they also have dynamic metadata. Since the metadata regarding the replay

session is deleted once the replay session is over.

For our system’s metadata we have used WS-Context Service as a metadata

repository. We also defined XML Schemas to define the session and stream metadata. In

the next two sections we will explain some of the important XML Schemas we have

defined and how we have used WS-Context Service to store these metadata. Details of

the XML Schemas can be found in the Appendix B.

8.2.1 GlobalMMCS Metadata Management

We have developed a metadata management service to maintain GlobalMMCS

sessions metadata from our streaming service perspective. We are only interested in the

active sessions and streams available in these sessions. GlobalMMCS metadata

 156

management service subscribes to XGSP Session Servers and Media Servers topics to

retrieve sessions and streams metadata. These metadata are stored in the WS-Context

Service. Figure 8-5 shows this process.

Figure 8-5: Retrieving GlobalMMCS metadata and storing them to WS-Context Service

There are two levels of metadata management: sessions level and intra-session

level. Sessions level management is to keep track of active sessions, that is, which

sessions are available so that which intra-session level management should be started.

Intra-session level management is to keep track of streams in the activated session.

WS-Context Service requires us to generate a session and store the context into

that session. Context can be XML or non-XML text. We need to provide SessionUserKey

while generating the session. Once we generate the session with this SessionUserKey,

WS-Context Service provides us a system key, SessionSystemKey, corresponding to the

 157

session. System key provided by WS-Context Service is a unique UUID and its

uniqueness is guaranteed by WS-Context Service. We use this system key to access the

session. In order to store the context, we also need to provide a user key for each context

we want to add to the session. We have used URI format while constructing the user keys

for the sessions and contexts to be stored into those sessions.

8.2.1.1 GlobalMMCS Sessions Management

Figure 8-6: Session representation

The Session representation is as in Figure 8-6. As can be seen from Figure 8-6,

the important fields of this representation are the SessionID and CommunitySessionID.

CommunitySessionID is unique within the community. Since a session within the

community can be activated and deactivated any time, we append a timestamp to this ID

to construct the new SessionID. Sessions level representation is just a list of these

sessions as shown in Figure 8-7.

 158

Figure 8-7: XgspSessions representation

There should be only one instance of this session in WS-context Service. So any

component in the system can access this session using the SessionUserKey. The mapping

between XML nodes and WS-Context User Keys are shown in Table 8-1. User key for

first node is chosen as Session User Key. Others are context user keys used within the

session.

XML Node Name XML Path User key
XgspSessions XgspSessions wsrtsp://xgspsessions
Session XgspSessions\ Session wsrtsp://xgspsessions/Session

Table 8-1: XML Node Name and WS-Context User Key mapping for XgspSessions representation

Each time a new session is activated, a new Session node should be added to the

XgspSessions node as a child node. Also we add a context using the context user key

(wsrtsp://xgspsessions/Session) to the WS-Context session that corresponds to this XML

representation. Doing this, we avoid overwriting the whole XML structure and we only

update a small part of it.

8.2.1.2 GlobalMMCS Intra-Session Management

At the intra-session level, the management of streams is the issue. In this section

we are interested in audio and video streams, but the framework can be extended to other

streams as well. GlobalMMCS session is defined as in Figure 8-8. In these sessions we

have audio and video list in addition to the session information. Video and audio lists are

 159

dynamically changing because of streams joining and leaving the session. We need to

update these lists.

Figure 8-8: A GlobalMCS session (XgspSession) representation

StreamInfo filed describes a stream in the session and it is shown in Figure 8-9.

StreamInfo can be used for any type of stream. In GlobalMMCS sessions, audio and

video streams’ event type is RTPEvent which is defined within NaradaBrokering system

to transport audio and video data. Streams can also be in JMS event format or NB event

(native NaradaBrokering event type) format.

 160

Figure 8-9: StreamInfo representation to describe any type of stream within messaging middleware

When a session is activated, after updating the XgspSessions session in WS-

Context Service, we also need to generate a new session in WS-Context Service for the

activated session. We follow a similar way as in XgspSessions case to store XgspSession

fields to WS-Context Service.

XML Node Name XML Path User key
XgspSession XgspSession wsrtsp://xgspsessions/sessionID
Session XgspSession\ Session wsrtsp://xgspsessions/sessionID

/Session
StreamInfos (for audio
streams)

XgspSession\
AudioStreamInfos
\StreamInfo

wsrtsp://xgspsessions/sessionID
/AudioStreamInfo

StreamInfos (for video
streams)

XgspSession\
VideoStreamInfos
\StreamInfo

wsrtsp://xgspsessions/sessionID
/VideoStreamInfo

Table 8-2: XML Node Name and WS-Context User Key mapping for XgspSession representation

 161

When generating a session in WS-context Service for the activated GlobalMMCS

session, the sessionID of the session is used in the user key. Session user key of this

session is the user key of the parent node which is defined for XgspSession

(wsrtsp://xgspsessions/sessionID). Since sessionID is constructed from a timestamp

added to CommunitySessionID of GlobalMMCS session which can only be one session

with that ID in GlobalMMCS environment. Appending sessionID to

wsrtsp://xgspsessions will ensure that there is only one WS-Context session with that

SessionUserKey. The sessionID is used for constructing user keys for audio and video

streams as well. Table 8-2 shows the user keys for XML nodes defined in XgspSession

representation.

8.2.2 Archive Metadata Management

Archive metadata management is similar to GlobalMMCS metadata management.

We have sessions and intra-session level management. Sessions level management is the

same as in GlobalMMCS sessions level management. XML structure is also similar; only

the parent node name is different. However, session description is different since stream

definition is different in archive sessions. In an archive session we have AtomicStream

which representation is shown in Figure 8-10.

 162

Figure 8-10: AtomicStream representation for archive sessions.

AtomicStream contains not only the StreamInfo, which is the original stream

definition based on the content of the stream but it also contains template and transport

information of the stream, which are required to store the stream to the repository. This

information is included in NBInfo field shown in Figure 8-10. The details of NBInfo are

shown in Figure 8-11.

Figure 8-11: NBInfo representation, which is used to describe transport and template information

regarding a stream.

 163

8.2.2.1 Archive Sessions Metadata Management

Sessions level management is same as in GlobalMMCS sessions level

management. The only difference is that the parent node name is ArchiveSessions

(Figure 8-12) instead of XgspSessions (Figure 8-7). This also reflects to user key

generation as can be seen from Table 8-3.

Figure 8-12: ArchiveSessions representation.

XML Node Name XML Path User key
ArchiveSessions ArchiveSessions wsrtsp://archivesessions
Session ArchiveSessions\Session wsrtsp://archivesessions/Session

Table 8-3: XML Node Name and WS-Context User Key mapping for ArchiveSessions representation

There should only be one instance of this ArchiveSessions session in WS-context

Service. SessionUserKey of this session is the user key of the parent node which is

wsrtsp://archivesessions.

When a session is activated, a new Session node is added to the ArchiveSessions

node and the context of that Session is added to the ArchiveSessions session in WS-

context Service using wsrtsp://archivesessions /Session as context key within that

session.

8.2.2.2 Archive Intra-Session Metadata Management

Archive sessions have only one type of stream, AtomicStream, which is explained

above. So whenever a stream is to be stored, a new node is added parent node which is

 164

ArchiveSession. ArchiveSession is shown in Figure 8-13. In addition to session

information it has the list of AtomicStreams.

Figure 8-13: ArchiveSession representation.

When streams are to be archived, an ArchiveSession is defined for that archive

session. This also requires generating a new session in WS-Context Service. As in

XgspSession case, we also use the SessionID of the ArchiveSession to generate user keys

for WS-Context session. How user keys are generated is shown in Table 8-4.

XML Node
Name

XML Path User key

ArchiveSession ArchiveSession wsrtsp://archivesessions/sessionID
Session ArchiveSession\Session wsrtsp://archivesessions/sessionID

/Session
AtomicStreams ArchiveSession\AtomicStreams

\AtomicStream
wsrtsp://archivesessions/sessionID
/AtomicStream

Table 8-4: XML Node Name and WS-Context User Key mapping for ArchiveSession representation

8.2.3 Replay Metadata Management

As with GlobalMMCS and archive metadata management, replay metadata

management also has two levels of management; sessions level and intra-session level.

XML structure is the same except that the parent node name is ReplaySessions. As

opposed to archive session, a replay session contains ReplayStream, as shown in Figure

 165

8-14. ReplayStream contains not only the Atomicstream to be replayed but also a new

NBTemplateInfo which contains the template information to which the stream will be

published.

Figure 8-14: ReplayStream representation

One of the reasons that a replay stream has different template information is that

the original stream might still be in archive process to enable real-time live replay of the

stream. If both streams, original and replay, have same template information this would

result in archiving the replay stream which is not desired. Although the content of the

replay stream is the same stream as the content of the original stream, they are different

streams because the original source of the former stream is not the repository but the

client publishing it.

Another reason is that, the same stream might be replayed in many replay

sessions. In order to have separate controls in each session, replay stream in each session

should be published to different topics and hence streams should have different

templates. This does not avoid having multiple users in one session. In that case, users

may have their own control sharing policies among each other as long as they use the

same streaming session.

 166

8.2.3.1 Replay Sessions Metadata Management

XML structure defined for replay sessions is the same as other session types,

archives and GlobalMMCS. But parent node’s name is ReplaySessions (shown in Figure

8-15), which should be different from others. But the session description is the same.

Parent node’s name is used to generate user keys for WS-Context sessions. User keys for

sessions level metadata management is shown in Table 8-5.

Figure 8-15: ReplaySessions representation.

XML Node Name XML Path User key
ReplaySessions ReplaySessions wsrtsp://replaysessions
Session ReplaySessions\Session wsrtsp://replaysessions/Session

Table 8-5: XML Node Name and WS-Context User Key mapping for ReplaySessions representation

There should be only one instance of WS-Context session that corresponds to the

ReplaySessions session. SessionUserKey of this session is the user key of the parent node

which is wsrtsp://replaysessions.

Each time a replay session is requested by the user, the context of the Session is

added to ReplaySessions session in WS-Context Service using wsrtsp://replaysessions

/Session as context key within that session.

8.2.3.2 Replay Intra-Session Metadata Management

Replay sessions have a list of ReplayStreams as shown in Figure 8-16. When a

user adds/removes a stream to/from replay session, the session metadata is updated.

 167

Figure 8-16: ReplaySession representation.

XML Node Name XML Path User key
ReplaySession ReplaySession wsrtsp://replaysessions/sessionID
Session ReplaySession\Session wsrtsp:// replaysessions/sessionID

/Session
ReplayStreams ReplaySession\ReplayStreams

\ReplayStream
wsrtsp://replaysessions/sessionID
/ReplayStream

Table 8-6: XML Node Name and WS-Context User Key mapping for ReplaySession representation

When a user wants to replay streams, a replay session is generated with the

corresponding WS-Context session for this replay session. This replay session also has a

sessionID like any other session. The sessionID is sessionID of the streaming session

which is unique. Streams to be replayed are added to the replay session and

corresponding WS-Context session. Table 8-6 shows the user keys, session user key and

context user keys, for WS-context session.

8.3 GlobalMMCS Archive Manager

GlobalMMCS sessions may contain many video and audio streams. Recording of

these streams is managed by GlobalMMCS Archive Manager which is specialized to start

only the archiving of GlobalMMCS sessions. Although there are many audio sender

clients in a GlobalMMCS session, usually there is only one speaker, which is the mix of

 168

all the audio streams in that session. So GlobalMMCS Archive Manager considers this

and only initiates archiving of this speaker for session recording. Since every new audio

client’s stream is mixed into the speaker, initiating archiving of speaker only once should

suffice. Figure 8-17 shows GlobalMMCS Archive Manager with other components

required in the system to enable archiving of GlobalMMCS sessions.

Figure 8-17: GlobalMMCS Archive Manager and interactions with other components in the system.

GlobalMMCS Archive Manager maintains some of the functionality of Archiving

Streaming Service in order to archive sessions. These functionalities relate to archiving

 169

rather than replaying. That is, GlobalMMCS Archiving Manager does not provide any

replay functionality for clients. Clients who want to replay GlobalMMCS streams should

connect to the Archiving and Replay Services explained above. We can list

GlobalMMCS archive manager’s functionalities as follows:

i. Decides which repository or repositories should be used to archive a session.

ii. Constructs AtomicStream metadata by adding NBTemplateInfo, which requires

templateID and repository information, to the StreamInfo.

iii. Monitors GlobalMMCS streams and decides which streams should be archived or

not. It can limit the number of streams to be archived in a session.

iv. When new streams join, it may add them to the session and when streams leave it

removes them from the session.

v. Stops the archive session once the session is deactivated, that is ended.

vi. Accesses WS-Context Service and generates WS-Context sessions that

correspond to archived GlobalMMCS sessions.

vii. Makes requests to Generic Streaming Service to generate archive sessions and

add/remove streams from those sessions. This will be explained in the next

chapter in detail.

8.4 Summary

In this chapter, we presented one of the components of streaming service –

Archived Streaming Service which concerns streaming session initiation and metadata

support for describing archiving and replay sessions including streams in these sessions.

We have explained Web Service Definition Language (WSDL) interface of this service

 170

and messages used. We described XML descriptions of sessions and streams and how we

store them in WS-Context Service which provides a fault tolerant and distributed

metadata repository that can be shared among components and clients in the system. We

also described GlobalMMCS Archive Manager.

 171

Chapter 9

Generic Archiving and Replay

In the previous chapter (chapter 8), we explained streaming session initiation and

metadata support for archiving and replay sessions where we utilized fault tolerant WS-

Context Service to manage and access metadata. In addition to archive and replay session

metadata, we also explained how we manage GlobalMMCS sessions and streams

metadata which provides necessary information for real-time GlobalMMCS sessions.

In this chapter, we focus on initiating media delivery for streaming sessions,

delivery of the stream. Our architecture is independent of media type and format. So it

provides a generic delivery mechanism which can be used not just for multimedia content

but also for any type of streaming content. It utilizes messaging middleware to achieve

this generic framework. It supports both archiving and replay of streams with replay of

real-time live streams.

 172

9.1 Generic Archiving and Replay Framework

As we noted above, in traditional streaming servers, a server needs to be aware of

the media format and encoding of the stream in order to start streaming to the client. Our

architecture provides a generic framework for recording and replay of any type of

streaming event or data. Because when we archive the stream, we do not archive it based

on the format or encoding of the stream.

In order to start an archiving or a replay session, an initiator, a client or a

component in the system needs to get session and stream metadata from distributed WS-

Context service as described in chapter 8. The component we describe in this chapter

provides streaming data capability to the overall architecture.

9.1.1 Uniform Event Type for Generic Framework

We receive the incoming streaming event or data as is and wrap it inside the

NaradaBrokering native event (NBEvent) before it is archived. Figure 9-1 shows the

fields we use when we wrap the received event or data inside the NBEvent. Events are

published to a topic and when the repository receives those events it changes the topic

name in order to avoid duplicate archiving. If the topic is not changed, the same event

would be published to the same topic and would be received again. The generated

NBEvent contains mapped topic information in TemplateInfo field. Timestamp field is

also added to the event so that during the replay this timestamp is taken into account.

 173

Figure 9-1: Fields used in NaradaBrokering native event

Timestamp information can be obtained from the client if the client uses NTP

timestamp. We implemented NTP within NaradaBrokering for this purpose, which is

explained in chapter 6. If the received event does not contain any timestamp information,

we generate NTP timestamp and use that timestamp for the event.

We use another field to indicate what type of event is actually stored. Event types

are JMS event, NaradaBrokering native event and NaradaBrokering RTPEvent which are

used in GlobalMMCS sessions to transport audio and video data or RTP packets if the

sender is using RTP when sending data.

9.1.2 Repository Changes

We use NaradaBrokering repository service to archive events. We added some

tables to maintain some of the stream metadata in order to provide stream position

seeking functionality to this generic framework. As part of the changes we maintain a

table that keeps timestamp information of events. Repository assigns a sequence number

to every event stored to database. Also a stream has a corresponding template ID which

separates stream events from other streams’ events. So timestamp table for streams can

be constructed as shown in Figure 9-2.

 174

Figure 9-2: Event timestamp table

Running queries on this table can give minimum and maximum timestamp

information. This table also provides timestamp information for any event archived,

which enables exact positioning within stream.

We also maintain session and stream metadata because of topic mapping required

during archiving. Another table is introduced for this purpose which has only one entry

per stream. Fields are shown in Figure 9-3.

Figure 9-3: Table entries for stream original template information

9.2 Session Archiving

Archiving concept is session based. A session recorder is responsible for storing

events of streams in a session. In order to start archiving, we defined a message object to

be used within messaging middleware as shown in Figure 9-4. In addition to starting

archiving of a session, we use this message to stop archiving, adding or removing streams

from the archive session, which is indicated in ControlType. This message also indicates

the event type of the stream, in EventType. It can be JMSEvent, RTPEvent or NBEvent.

 175

Figure 9-4: Session record request

Session recorder initiates a topic recorder for each stream. Topic recorder

subscribes to the topic from which it will receive streaming events. Each topic recorder is

assigned a topic name which is String type. While generating the new topic name, a

prefix is added to the original topic. For JMS messages, the prefix is /JMS/Record/, for

NaradaBrokering RTPEvent subscribers the prefix is /RTPEvent/Record/, and for

NaradaBrokering native event subscribers it is /NBEvent/Record/. Since topic names are

unique within the session the mapped topics would also be unique. The templateIDs for

streams are also received with this message.

Topic recorder assigns a NTP timestamp for generated NBEvent. So when an

event is wrapped inside an NBEvent, it contains the timestamp in addition to the new

topic name.

RTPEvent contains RTP packets which have media timestamp information. RTP

timestamp starts from zero and it is incremented for the media. JMS event can start from

a value or it can also start from zero. Based on whether they start from zero or from a

preset timestamp, in order to preserve the synchronization among streams, they need to

be replaced with NTP timestamps. In this case, offset is calculated from the timestamp of

the first event and the other timestamps are updated by that timestamp. If no timestamp

 176

information is included in the events, then timestamps included in NBEvent will be

obtained from NTP.

The original event is converted into byte array (marshaled) and put to the payload

of the generated NB event. This will allow us to get the original when by simply

unmarshaling the byte array based on the event type of the stream.

Topic recorder initiates the reliable delivery mechanism for the new topic name

and corresponding template ID. This allows topic recorder to be located independent of

the repository. But for performance reasons we implemented it within NaradaBrokering

repository service, which has direct access to reliable delivery mechanism features. Since

it uses the underlying reliable delivery mechanism, topic recorder also generates a

CompanionEvent, which is explained in chapter 7. The relationship between topic

recorder and NaradaBrokering reliable delivery service is shown in Figure 9-5.

Figure 9-5: Topic recorder and NB event generation

Types of topic recorders change based on the transport type rather than media

type. For example, for JMS subscription there needs to be a special topic recorder that

can subscribe to JMS topics and receive JMS events. Since NaradaBrokering

subscriptions is different from JMS subscriptions a topic recorder which is capable of

subscribing to NaradaBrokering topics is needed to subscribe to NaradaBrokering topics

in order to receive NB events. Likewise, RTPEvent subscription requires another topic

 177

recorder which is capable of subscribing to RTPEvent topics in order to receive

GlobalMMCS audio and video data.

Although we have defined topic recorders for the event types specified above, this

framework can be extended to other event types. Data types included in these event types

are no concern, since the framework components does not operate based on the type of

the data transported within these events.

Based on the event type, session recorder initiates appropriate topic recorder to

handle the topic. This is demonstrated in Figure 9-6. The decision is based on the

information received in session record request shown in Figure 9-4.

Figure 9-6: Session recorder

9.3 Session Replay

Similar to session recorder, replay is also session based. Session player is

responsible for streams in that session. In order to start replay, we define a message

object to be used within messaging middleware as shown in Figure 9-7. Session replay

request object can be used to add streams to and remove streams from the session, and

 178

forward, rewind or pause the session. ControlType field defines the type of the request.

The message also indicates the event type of the stream, in EventType field. It can be

JMSEvent, RTPEvent or NBEvent.

����	�
�'7

9� �������	�
�'7

.1�
������

��
���������

���	��5����

#�	�	
������	��

 ���������	��

Figure 9-7: Session replay request

Session player contains timestamp provider to provide clients with timestamp

information regarding streams in the replay session. Based on the client’s request (Figure

9-8a), the session player can send timestamp range (Figure 9-8b) for each of the stream in

the session. This range is updated if the stream is a real-time replay stream (will be

explained in section 9.4). During the archiving of a stream, stream’s end timestamp

changes so the end timestamp information needs to be sent to the client in order to allow

it to forward the stream. The timestamp range is fixed till the archiving of the stream has

finished. The other timestamp request type is the list of timestamps (Figure 9-8c) of all

the events in the stream. This is not practical for audio and video events, but it is useful if

the stream contains only a small number of events. Using a timestamp list, a client can

request an individual event. When sending timestamp information, either JMS events or

NB events are used. RTPEvent is only capable of transporting audio and video data. So

 179

based on the event type of the stream, timestamp information is exchanged with JMS

events or NB events. For streams with RTP event type, NB events are used for delivering

the timestamp information. If the client is capable of only handling JMS events, then the

timestamp information is send through a JMS connection and event. Otherwise, NB

events are used. One timestamp provider for one session player is sufficient to handle

timestamp information of all the streams in that replay session.

(a) (b) (c)
Figure 9-8: (a) Timestamp service request (b) Timestamp range reply (c) Timestamp list reply

Session player initiates a topic player for each stream. Replay topics are specified

in the session replay request for each of the stream. Topic player makes a proper

connection to the broker suitable with the event type of the stream. Replay topic type for

RTPEvents is a type of long topic and for JMS events they are a type of string topics. NB

events can be in various types supported in NaradaBrokering, such as String, XML.

In addition to topic player, the session player also contains an event retriever

(EventRetriever) and Session Time Differential Service (SessionTDS) components.

EventRetriever periodically reads events from repository. It maintains a rate control while

reading events. So the session buffer will not overrun from excessive amount of events in

 180

the memory. Jitter Reduction Service can be located either at the repository or at the

client side depending on the capability of the client and event type transported.

9.3.1 Running Jitter Reduction Services at the Repository

�
�
�
�
	�
�
��

Figure 9-9: Session player with Jitter Reduction Service at the repository

In this case EventRetriever passes events to Jitter Reduction Service

(SessionTDS) which orders events based on their timestamps and it also preserve the

timespacing between consecutive events while releasing them. We explained Jitter

Reduction Services (Buffering and Time Differential Services) in chapter 6. SessionTDS

is a specialized component that provides Jitter Reduction Service for the replay session.

Each session has its own Jitter Reduction Service (SessionTDS). Using a separate Jitter

Reduction Service for each replay session will order and timespace only streams in that

session. Components of session player with Jitter Reduction Service at the repository are

shown in Figure 9-9. Jitter Reduction Service chooses the topic player that is responsible

 181

for publishing the stream. A topic player is responsible for only playing one stream. So

there may be many topic players and they may be publishing the same type of event.

Each topic player modifies the topic name field before it publishes the archived

event. For instance, when replaying RTPEvents, the topic name which is type of long is

replaced with the replay topic name provided for that stream, which is a long value also.

This is the only field modified in the replay event. The rest is unmodified so that the

original stream is preserved. The original event may contain some other properties which

are used by subscribers.

This scenario is suitable for clients that cannot handle NaradaBrokering native

events (NB events). For example, a client that is capable of only receiving JMS events

cannot handle NB events, so repository should run Jitter Reduction Services. Jitter at the

output of topic players is very small since it runs Jitter Reduction Service. This scenario

is suitable for any type of clients whether they are JMS event and RTP event subscribers

or legacy RTP clients. It does not require any modification on the client side to run Jitter

Reduction Service.

9.3.2 Running Jitter Reduction Services at the Client

In this case, EventRetriever reads events from repository and passes them to topic

players according to the topic name the events contain. Each topic player also modifies

the topic name of the event before it publishes. A client subscribes to these topics and

receives events from all the topics passed to the Jitter Reduction Service. Jitter Reduction

Service orders and time spaces events before it passes them to specialized topic players

 182

inside the client. These topic players then handle the event, either they process them or

they pass them to further handle the data processing. This is shown in Figure 9-10.

� � �

5�����6��3��	
��

5�����3

56.1�
�

���	��

(�����

56.1�
�

���	��

(�����

56.1�
�

���	��

(�����

.1�
�

 ���	�1��

����	�
�(�����

56�.1�
�

�
�
�
�
	�
�
��

�	��������

(��1	���

��4�:56�

�1�
��

�

�4��.1�
��

���	�

(�����

 �(�.1�
�

���	�

(�����

56�.1�
�

���	�

(�����

��!���	!��

����	�
�(�����

56�.1�
�

����	�
�

�7�

��	�
�

�	��������

��!���	!��

�	��������

��
����

Figure 9-10: Session player with Jitter Reduction Service at the client

Running Jitter Reduction Services improve performance and also the jitter is

reduced more than the case running Jitter Reduction Service at the repository. Because

events released from Jitter Reduction Service do not go through network which could

 183

increase the jitter. Depending on the network bandwidth and proximity of the client to the

repository, jitter can be high in the case where Jitter Reduction Service is located at the

repository. This also brings performance degradation problems if there are many session

players. Because each session has its own buffer and runs separate time differential

service. Because of these reasons, client side Jitter Reduction Service would result in

better performance and lower jitter.

9.4 Active Replay of Real-time Streams

Streaming control over real-time live streams is usually limited in today’s

architecture. Although RTSP leaves seeking (rewinding, forwarding, etc.) of live streams

as optional functionality, RTSP based streaming servers do not implement it. This is

because of the streaming architecture they posses. Archive units in those systems do not

make the archive session available until the session is over. Clients can only play the live

stream without having control of it, besides starting and stopping it.

Our architecture provides the replay of real-time live streams with seeking

capability. Clients are allowed to rewind or forward the part of the stream archived. The

archiving process does not need to finalize in order to make the session available.

Metadata of the archive sessions are made available through WS-Context Service

so that any client interested in the archived sessions is notified and can access archived

session metadata to initiate replays of all archived sessions including replay of archived

real-time live streams. Also archived parts of the stream are not modified and it is not

locked by session recorders and topic recorders. This allows session players to run full

 184

replay functionalities, including seeking in real-time live streams, over the archived data.

Hence, archived parts of the stream are available for instant replay.

9.5 Session Synchronization

In the traditional streaming environment, when there are multiple streams in a

RTSP session, streaming players use Synchronized Multimedia Integration Language

(SMIL) description to play them in a timeline. SMIL is a layout language that allows

generation of multimedia presentations consisting of multiple streams in a synchronized

timeline. SMIL can also define relative timing among streams. In this case, streams are

initiated according to a reference stream. In SMIL, absolute timing can also be used. In

that case, streams are initiated when the time for the stream is reached. While presenting

a stream, it uses the media time specified in the media data.

In our architecture, there are two important components that allow us to

synchronize streams in a session.

• NTP timestamps: Events are either time stamped at the client with NTP

timestamp when they are generated or at the repository when they are

received. These timestamps are real-time timestamp. Since NTP provides an

accuracy of 0-30 ms depending on the proximity to atomic servers, if every

stream archived is time stamped with NTP, then streams are synchronized

within this range. This range is sufficient for collaboration systems.

• Jitter Reduction Service: This service contains a buffering service and a time

differential service, as explained in chapter 5. Buffering service orders events

while time differential service releases events according to the time

 185

differences between consecutive events, hence minimizing jitter. All of the

streaming events in a session go through the same buffer and are handled by

the same time differential service. Since all of them are in the same buffer,

they are ordered and released according to timespaces maintained among

events from different streams. As a consequence of this operation, events

reach players in an ordered and synchronized fashion. Hence, streams in a

replay session are synchronized without defining any relative or absolute

timing for them. This is depicted in Figure 9-11.

8 �;8<

��=

->?8�88

8�;8<

��=

->?888�

�������8

��������

��������

�������8

��������

��������

8��������	
���1�
������������,�������������

�
�������������%��!�,,��	
�����1	��

���6�,,��	
�����1	�����������%����
��

��������%�������	����	,,���
�	������1	��

����	����	,,���
�	������1	���

����������1�
�����	
��	
��

�	������	
��!�����
�

��
�����	1���1�
��

-��.1�
����������������
���	����������.1�
���,����

�	,,���
����������������
�%��
	@����	�%	
����%���%��

Figure 9-11: Synchronizing streams in a session using Jitter Reduction Service

 186

9.6 GlobalMMCS Videoconferencing Sessions Archiving

and Replay

As we mentioned before, GlobalMMCS sessions utilize RTPEvents for

transporting audio and video data. RTPEvents contain RTP packet in their payload and

contain some header information to be used within messaging middleware for routing the

event to clients.

GlobalMMCS components use NBEvent (NaradaBrokering native event) to

communicate with each other. Since RTPEvents are specifically designed to transport

audio and video data, they cannot be used for message exchange for signaling and other

negotiation purposes.

Because of the above reasons for archiving and replay of GlobalMMCS sessions

we use NBEvents for signaling and communication, and for data transport we use

RTPEvents.

9.6.1 Archiving GlobalMMCS Sessions

Topic recorders for GlobalMMCS sessions handle RTPEvents. They need to be

RTPEvent compatible clients in order to receive those events (Figure 9-12). Each stream

is handled by a different RTPEvent topic recorder.

Figure 9-12: RTPEvent topic recorder

 187

9
�
7
$

Figure 9-13: Archiving GlobalMMCS sessions

In GlobalMMCS sessions, the number of streams is dynamically changing

because clients join and leave the sessions. This requires adding/removing RTPEvent

topic recorders to/from archiving sessions. So when streams join GlobalMMCS session, a

corresponding topic recorder is initiated in the session recorder and when they leave the

session the corresponding topic recorder is removed from the session recorder. Session

recorder decides whether it should remove the topic recorder or not from

SessionRecordRequest message sent by GlobalMMCS Archive Manager. Archive

manager receives session and stream metadata, which is managed by GlobalMMCS

 188

metadata management service, from WS-context service. Archive manager locates

repositories and communicates with Generic Streaming Service to initiate archiving. It

decides which streams should be archived or not. As shown in Figure 9-13, topic

recorders can directly communicate with GlobalMMCS media servers to establish

streaming between media servers and topic recorders.

9.6.2 GlobalMMCS Stream Replay

Similar to RTPEvent topic recorders, topic players for GlobalMMCS streams are

RTPEvent players, clients capable of publishing RTPEvents, as shown in Figure 9-14.

Each topic player is responsible for a single stream.

Figure 9-14: RTPEvent topic player

During a GlobalMMCS replay session, if a replay client can only play

RTPEvents, then Jitter Reduction Service should be located at the repository as shown in

Figure 9-15. If replay is capable of playing multiple event types including RTPEvents,

then Jitter Reduction Service (SessionTDS) can be located at the client. Any number of

GlobalMMCS streams can be selected to form a replay session. Streams can be removed

or added by the client requesting the replay. Different replay sessions may replay the

same GlobalMMCS stream. Replay client sends SessionReplayRequest to session player

in order to initiate replay of GlobalMMCS streams.

 189

Figure 9-15: Session player for GlobalMMCS replay session

9.7 Anabas Session Archiving and Replay

Anabas eLearning and Collaboration system is an event based environment which

utilizes JMS events to transport data among its components. JMS events are used to

transport shared display events, text messaging chat, audio chat, whiteboard event, and

many others. Our architecture has been used to archive and replay Anabas session.

9.7.1 Anabas Session Archiving

Topic recorders for Anabas sessions handle JMS events. They need to be JMS

event compatible clients in order to receive those events (Figure 9-16). Similar to

GlobalMMCS topic recorders, each topic is handled by a different JMS event topic

recorder.

 190

Figure 9-16: JMS event topic recorder

Figure 9-17: Archiving Anabas sessions

In Anabas sessions, there is fixed number of topics. Topics are known when the

session is initiated. Although topic addition and removal functionality is provided to JMS

recording sessions, Anabas archive manager only needs to send one

SessionRecordRequest message to specify all topics to be archived. Session recorder

initiates all JMS event topic recorders during session initialization. When the session is

over, all of the topic recorders are removed and session recorder is closed. Archived

session metadata is maintained by Anabas servers. Figure 9-17 depicts a scenario for

archiving an Anabas session.

 191

When a session recorder is initiated for archiving an Anabas session, JMS event

topic recorders also subscribe to anabas session topics and start receiving events

published to those topics. As with RTPevent topic recorders, JMS event topic recorders

also generate NB events and corresponding companion events and pass them to

NaradaBrokering reliable delivery mechanism.

9.7.2 Anabas Session Replay

Topic players for Anabas session topics are JMS event publishers as shown in

Figure 9-18. Each topic player is responsible for a single stream and hence for a single

topic.

Figure 9-18: JMS event topic player

Since replay can be initiated by any component in the system,

SessionReplayRequest message can be sent by Anabas portal. Clients can only connect to

anabas servers to receive the replay session topics and subscribe to them, as shown in

Figure 9-17. Anabas clients are capable of handling only JMS events, so Jitter Reduction

Service needs to be located at the repository during replay session as shown Figure 9-19.

 192

Figure 9-19: Session player for Anabas replay session

9.8 Summary

In this chapter, we presented Generic Streaming Framework which can be used

not just for multimedia content but also for any type of streaming content. We have

explained session archiving and replay concepts where a session may contain several

streams. We then gave two examples where this framework has been used: archiving and

replay of GlobalMMCs sessions and archiving and replay of Anabas sessions.

 193

Chapter 10

eSports Collaborative Multimedia

Streaming and Annotation System

In chapter 9, we explained how GlobalMMCS and Anabas sessions can be

archived and replayed. GlobalMMCS archive manager and anabas portal are both used to

start and stop archived sessions when these sessions are not the source of the streams but

some other management components in their systems is. Archived sessions contain only

one type of stream, RTPEvent based GlobalMMCS streams or JMS event based Anabas

session topics. In addition to that, the streams being archived are real-time live streams.

The session topics do not contain replay (archived) streams together with real-time live

streams. Although streams can be instantly replayed while being archived, they are not

played together in the same session.

In this chapter, we would like to present eSports Collaborative Multimedia

Streaming and Annotation System which is built on top of the streaming architecture we

 194

have explained in this thesis. eSports system can provide new features with this streaming

architecture. In eSports system, clients can collaboratively and synchronously play and

archive real-time live video, take snapshots, and annotate those snapshots using

whiteboard application. Annotated stream can be replayed synchronously with the

original video stream. eSports system can be used in virtual education environments for

distance sports coaching and distance learning.

10.1 eSports System Design

eSports system is a collaborative multimedia annotation system over

heterogeneous grid computing environments. eSports system also supports not only the

archived video streams but also the real time live ones. Annotated streams can be

replayed synchronously together with the annotation streams. Figure 10-1 shows the

interaction of eSports portal and clients with NaradaBrokering messaging middleware

and our streaming architecture.

eSports system is built on top of the streaming architecture to provide new and

innovative features as an annotation system. Hence, it can access the streams in

GlobalMMCS sessions. As explained, GlobalMMCS integrates various

videoconferencing systems. With this, eSports can annotate a stream from any video

conferencing system with the help of Archive Service and Generic Streaming

Framework.

 195

Figure 10-1: Overall system including eSports system

 196

10.1.1 Capabilities Provided By Archive Service and Generic Streaming

Framework

The capabilities provided by streaming architecture to eSports system are as

follows:

• Archive and replay of NaradaBrokering native events; NB events can be used

for transporting any type of data in their payload. So they can be used to transport

multimedia content such as audio, video and images as well as text messages.

Since replay services are built around NB events they can be located at the client

side (such as Jitter Reduction Service) and any type of data can be archived and

replayed. Replay clients for different data types can be built. This enables eSports

system to stream any type of data which enriches the streaming application types

within the system.

• Archive and replay of GlobalMCSS sessions; GlobalMMCS is a conferencing

system that integrates heterogeneous videoconferencing environments such as

H.323 based system, the Access Grid and SIP based system. It also allows web

cam users to join and leave these sessions through XGSP clients. eSports system

can retrieve and play these streams in real-time while the session is going on.

Since GlobalMMCS sessions use RTPEvents to transport multimedia content,

eSports clients needs RTPEvent players. A camera viewing a sports game can be

used by GlobalMMCS clients to stream the sports game to videoconferencing

sessions. Since we can archive and replay GlobalMMCS streams, eSports can

access the real-time live games. Similarly, TV programs can be streamed into

 197

GlobalMMCS sessions. Hence, it enables eSports system to replay those

programs through our streaming architecture.

• Instant replay; Streaming architecture enables eSports clients to control the real-

time live streams. Capabilities include pausing, rewinding and forwarding (until

the end of the archived stream) the streams.

• Utilizing WS-Context Service; Every session and stream metadata is stored in

WS-Context service. It provides a distributed and fault tolerant metadata

repository which can be accessed through WSDL interfaces. Metadata of archived

and replay sessions stored in WS-Context service is also accessible by eSports

system. This will let eSports clients share the same session metadata by a single

URI.

• Transporting messages through NaradaBrokering messaging middleware;

We use NaradaBrokering messaging middleware for data transport. Since

NaradaBrokering messaging middleware is capable of software multicasting, one

replay session can be received by many clients subscribed to the same replay

session topics. The scalability of NaradaBrokering for RTPEvents can be seen in

ref. thesis [106].

 198

10.1.2 An Example eSports Session Scenario

The overall system including eSports system is shown in Figure 10-1. TV and

capture devices are shown in Figure 10-1 to indicate that the system is capable of

receiving those streams in a real-time live streaming scenario. In this scenario, a sports

game is streamed with these devices. These streams are archived and made available

through Archived Streaming Service. A coach and participants attend an eSports session

through eSports portal to discuss the live game. All of the participants of this session

share the same applications such as eSprot Player, eSports Whiteboard and Instant

Messenger which we will explain in the section 10.2.

Activities involved in this session are:

� Participants obtain eSports session metadata from WS-Context service. Coach

obtains archived session metadata as well.

� Coach initiates an archived session with TV or capture device video included in

the session. Participants receive replay streams whose control might be shared

among participants.

� Replayed real-time live stream is also being archived with new NTP timestamps

along with other streams in eSports session. So it can be replayed synchronously

with them.

� Coach takes snapshots from the replay stream and annotates it. Annotations are

seen by every participant in the session.

� Coach saves annotations. Annotations are streamed using NB events. That is, an

annotation stream is a NB event based stream. These annotations are considered

 199

as another stream where snapshots carry the same NTP timestamps of the video

frame it is taken from.

� Real-time live stream and annotation stream are also available for immediate

replay in a synchronized fashion in another session as well.

10.2 eSports Collaboration System Interface

eSports Collaboration System interface is shown in Figure 10-2. A snapshot of a

live eSports session is also shown in Figure 10-3. It includes two RTPEvent based video

players and whiteboard client that also enables text comments for whiteboard

annotations. In order to provide available sessions and streams to those sessions, it

includes the list of the current archived GlobalMMCS sessions list. Selected session and

stream information are displayed on fields indicated in Figure 10-2. Opening and closing

of a typical eSports session can be described as follows;

In order to initialize a new eSports session, a user needs to click “New Session”

button after providing sessionID and information. Upon clicking that button a timestamp

is appended to the sessionID and session XML message is sent to WS-Context service

with 3 streams information included; of which two of them are for video streams and the

other one is for whiteboard stream to be recorded.

 200

Figure 10-2: eSports Collaboration System Interface (eSports Recording)

 201

Figure 10-3: Snapshot taken from a live eSports session (eSports Recording)

 202

Once eSports session is initialized, a GlobalMMCS replay session can be started.

For this, a session on the list should be chosen and the user should click “Start replay”

button. This will send a message to Generic Streaming Service to start a replay session

for the archived GlobalMMCS session and for the streams in that session. Next step is to

select a stream from the replayed session and click either “Start Video 1” or “Start Video

2” to play the selected stream in one of the players. Streams replayed are also being

published as NBEvents and recorded.

Each player has its own snapshot button. This button enables the user to take

snapshots from the corresponding players and send them to the whiteboard player.

The stream play time is shown in the “Timeline”. The end time of this timeline is

updated if the replay session is a real-time live session. The user is able to pause the

replay session with “Pause Replay” button or he can go forward or backward over the

timeline by dragging the timeline cursor to the desired location.

“Close Session” terminates all the subscriptions and closes all the players and it

initializes the eSports interface for another session.

An eSports session as shown in Figure 10-3 can be instantly replayed while it is

active (not closed). The eSports replay client is shown in Figure 10-4. This client only

provides replay capability for an eSports session. The user can select the eSports session

from the session list and start the replay of that session. Pause, rewind and forward

functionalities are also provided to the user of that session.

The active eSports session can instantly be replayed or it can be replayed after the

session is closed.

 203

Figure 10-4: Snapshot taken from eSports replay session (eSports Replay)

 204

10.3 eSports Collaboration Tools

eSports collaboration applications are eSports player, whiteboard and instant

messenger. In eSports sessions, there are two roles, a coach and the student. According to

the role eSports collaboration tools can provide different capability. We will examine

these tools from streaming point of view.

10.3.1 eSports Player

eSports player is composed of one to two eSports video player units where each

of them is dedicated to one incoming video stream. eSports video player unit is shown in

Figure 10-5. They can play stream type of either RTPEvent or NB event. RTPEvent

handler is activated if the received stream is an archived GlobalMMCS video stream.

Event handler reads the payload of the event from RTPEvent or NB event and then

passes it to the video player. Video player displays the video data.

Figure 10-5: eSports Video Player Unit

 205

A video player provides interface to take snapshots of the played video. This

feature is only allowed for clients with coach role. In addition to passing the video data, it

also passes the NTP timestamp information of the data packet passed to the player of a

listener, which is a client whiteboard application with coach role. Whiteboard application

assigns timestamp information to the snapshot it has taken from the video player. If the

eSports session is archived then it is necessary to publish the video played. The stream

type is NB event. Even the played video is an archived GlobalMMCS video. Since it is

played in a new archive session, it is considered as a different stream. The master of the

session can rewind or forward the replayed stream, which would make it different from

the original stream. In this case, the timestamps passed to the timestamp listener are

generated at the eSports video player unit. If the received stream is RTPevent type stream

the NTP timestamp is again generated at the eSports video player unit.

If the eSports session is only a replay session which does not require archiving of

the session, then the event handler does not need to publish the stream. Because the input

stream of the event handler can be received by any other eSports client connected to the

same session.

10.3.2 Whiteboard

Figure 10-6: Relationship between eSports video player unit and whiteboard application

 206

Whiteboard takes snapshots and timestamps of the snapshots from eSports video

player unit as shown in Figure 10-6. Whiteboard content is shared among clients. So

when a snapshot is taken it is shared with other clients. Although any whiteboard client

can make annotations on the snapshot taken from video player, only clients with coach

role can produce the annotation stream which is archived in eSports session. Annotation

erasure is also done by clients with coach role. Other clients can only add comments such

as text, drawings, pictures, etc. One user’s comments whether text or drawing are

propagated to other users and can be viewed immediately, as shown in Figure 10-7.

Hence, all clients get a consistent and synchronized view of the shared whiteboard

content.

Figure 10-7: Shared whiteboard content

 207

When a client with coach role saves the annotated snapshot, NTP timestamp

received during snapshot process is used to timestamp the annotated snapshot. When

annotated snapshot is saved, it is saved as a JPEG image. Saving operation also produces

an NB event, where the annotated snapshot is the payload of the event and NTP

timestamp recorded during snapshot overwrites the event’s timestamp. The annotation

process will be explained in detail in section 10.4.

10.3.3 Instant Messenger

This is to support text based messaging among eSports clients to provide chat

capability in a session. Each client can post its message and receive messages from other

clients in the same session. When a message is posted, an NB event is generated with the

current NTP timestamp. The result of instant messaging is a text based NB event stream

as shown in Figure 10-8. This stream is archived along with other streams in the session.

Figure 10-8: Instant message streaming

 208

10.4 Stream Annotation

Figure 10-9 demonstrates the data flow between video stream replayed and the

whiteboard application which takes snapshots from the player for annotation. The

example shows only for two GlobalMMCS streams. But there may be more streams

depending on the design of the client.

 �(�.1�
�

��
������

0	����

������

 �(�.1�
�

56�.1�
�

9%	��!����

8

�

�

-

�

56�.1�
�

88

�

���������������

�

����	�
�������

 �(�.1�
�

��
�����6

 �(�.1�
�
56�.1�
�

; >

8<

�

��������������6

0	����

������

?

=

��!��44���

��������

��!��44���

�������6

�(.

Figure 10-9: Data flow between two video streams and whiteboard application

The data flow is as follows:

1. RTPEvent handler A receives GlobalMMCS video stream A.

2. The same stream is published as a different stream. Because replay stream is now

part of the eSports session and in order to replay the stream with other streams in

the eSports session, it needs to be published as a new stream containing consistent

timestamp with other stream.

 209

3. RTPEvent handler A feeds the video player with the video data received. Video

player is capable of playing the stream format received in RTPEvent.

4. The Whiteboard application takes snapshots from the video display. These

snapshots are images taken from the video player, which is in JPEG format.

5. Whiteboard also registers itself with the RTPEvent handler A handling the

incoming stream. RTPEvent handler A broadcasts the timestamps used in

generating a NB event. When whiteboard takes snapshots from a video player, it

also records this timestamp. When publishing the whiteboard event, which is an

annotated snapshot, it timestamps the generated NB event with the recorded

timestamp.

6. RTPEvent handler B receives GlobalMMCS video stream B.

7. RTPEvent handler B also publishes the stream in NBevent type with timestamps

recorded at that time.

8. The stream B events are also passed to a video player for replay.

9. Whiteboard can switch to stream B to take snapshots.

10. Whiteboard receives timestamp information of stream B events.

11. Whiteboard can select between streams and annotate them. Annotated snapshots

are wrapped inside NB events and these events are published to a topic which is

considered an annotation stream.

10.5 Performance Tests

We have measured the delay from source (stream publisher) to destination

(stream receiver); t4 – t1, storage overhead; t3 – t2 and jitter at the output of the storage.

 210

We conducted our tests in Local Area Network (LAN) and in Wide Area Network

(WAN).

10.5.1 Test Setup

The test setup is shown in Figure 10-10. We located the stream publisher to a

machine in LAN and some machines in WAN. Machine configurations are shown in

Table 10-1.

In LAN setup, we located the machine to gf4.ucs.indiana.edu. In the first WAN

setup, we located the stream publisher to synseis.geongrid.org (a remote machine in

University of California at San Diego - UCSD) and in the second WAN setup we located

the stream publisher to vlab2.scs.fsu.edu (a remote machine in Florida State University –

FSU).

In our tests, we have used NTP timestamps to timestamp packets. We have

collected data at eSports Test Client and computed parameters as will be presented in this

section. RTPEvents do not contain any timestamp information, so we included four long

fields to RTPEvent to record t1, t2, t3 and t4.

 211

Figure 10-10: Test setup for measuring the delay and jitter

Component Machine specifications JVM version
Stream Publisher
LAN test

OS Linux (Fedora Core release 1
(Yarrow))

CPU 4 Intel ® Xeon™ CPU 2.40GHz
Memory 2 GB

 1.4.2_03

Stream Publisher
WAN (FSU) test

OS Windows XP
CPU 4 Dual Core AMD Opteron(tm)

Processor 270 2 GHz
Memory 2 GB

 1.4.2_13

Stream Publisher
WAN (UCSD)
test

OS Windows XP
CPU 2 Intel® Itanium 2 IA-64 1.40 GHz
Memory 4 GB

 1.4.2_04

Broker OS Linux (Fedora Core release 1
(Yarrow))

CPU 4 Intel ® Xeon™ CPU 2.40GHz
Memory 2 GB

 1.4.2_03

Generic
Streaming
Service

OS Windows XP
CPU Intel® Pentium® 4 CPU 3.40 GHz
Memory 2 GB

 1.6.0-b105

eSports Test
client

OS Linux (Fedora Core release 1
(Yarrow))

CPU 4 Intel ® Xeon™ CPU 2.40GHz
Memory 2 GB

 1.4.2_03

Table 10-1: Machine configurations for LAN and WAN test setup

 212

10.5.1.1 Local Area Network Test

Stream duration for LAN test is 181435 milliseconds (~ 3 min. 1 sec.). Jitter at the

input of the Generic Streaming Service is shown in Figure 10-11 while the output jitter is

shown in Figure 10-12. Measured values are shown in Table 10-2.

Figure 10-11: Storage input jitter for LAN setup

 213

Figure 10-12: Storage output jitter for LAN setup

Parameter Measured Mean Standard Deviation Standard Error
Overall delay 177.9 msec 21.2 0.406
Generic streaming
overhead

174.8 msec 21.0 0.403

Jitter 0.0 msec 0.0032 0.00006
Table 10-2: Measured values for LAN setup

10.5.1.2 Wide Area Network Test (FSU)

Stream duration for WAN test (FSU) is 188321 milliseconds (~ 3 min. 8 sec).

Jitter at the input of the Generic Streaming Service is shown in Figure 10-13 while the

output jitter is shown in Figure 10-14. Measured values are shown in Table 10-3.

 214

Figure 10-13: Storage input jitter for WAN-FSU setup

Figure 10-14: Storage output jitter for WAN-FSU setup

 215

Parameter Measured Mean Standard Deviation Standard Error
Overall delay 200.6 msec 26.8 0.503
Generic streaming
overhead

174.9 msec 26.8 0.502

Jitter 0.0 msec 0.0145 0.0003
Table 10-3: Measured values for WAN-FSU setup

10.5.1.3 Wide Area Network Test (UCSD)

Stream duration for WAN test (UCSD) is 178360 milliseconds (~ 2 min. 58 sec).

Jitter at the input of the Generic Streaming Service is shown in Figure 10-15 while the

output jitter is shown in Figure 10-16. Measured values are shown in Table 10-4.

Figure 10-15: Storage input jitter for WAN-UCSD

 216

Figure 10-16: Storage output jitter for WAN-UCSD

Parameter Measured Mean Standard Deviation Standard Error
Overall delay 229.3 msec 18.2 0.350
Generic streaming
overhead

194.1 msec 18.2 0.350

Jitter 0.0 msec 0.0034 0.00007
Table 10-4: Measured values for WAN-UCSD setup

10.5.2 Evaluation of Test Results

For each case, a test stream is published for a duration of approximately 3 min.

and results are recorded at eSports test client. In order to take timestamps at points

indicated in Figure 10-10, we added 4 fields to RTPEvent and set the timestamps at each

point.

We have demonstrated how jitter reduction service reduces the jitter of a stream

generated from a client located in a Local Area Network and Wide Area Network. We

 217

have also measured the overall delay and the overhead of jitter reduction service into the

overall delay. In tables we showed this as Storage Overhead.

Buffer of jitter reduction service has the duration of 200 msec which is a typical

buffer size of a video player. This buffer is required to lower the jitter of the stream. The

longer the buffer duration the lower the jitter is expected.

As seen from the results, the dominant factor for stream delay is caused by

Generic Streaming Service overhead especially from the buffer of the jitter reduction

service. The rest of the delay is caused by the transport delay which depends on the

location of the client. The difference between “overall mean delay” and “generic

streaming overhead” demonstrates that the rest of the delay is caused by the distance

between the location of the publisher stream and Generic Streaming Service. Results are

as follows:

LAN Test:

177.9 - 174.8 = 3.1 msec

WAN- FSU Test:

 200.6 - 174.9 = 25.7 msec

WAN- UCSD Test:

 229.3 - 194.1 = 35.2 msec

 We have successfully reduced the jitter to zero while we kept the overall delay

around 200 msec and 250 msec. There are spikes however in all cases, which are caused

by thread switching and resource allocation by the underlying operating system.

 218

10.6 Summary

In this chapter, we explained eSports Collaborative Multimedia Streaming and

Annotation System which is built on Archive Service and Generic Streaming Framework

(Archived Streaming Service) we have explained in this thesis. We explained how

eSports system interacts with our streaming architecture to provide new features in the

annotation systems.

Through this streaming service, instant replay of real-time live streams is made

possible. It is able to support annotation of real-time live streams which can be captured

from TV programs or capture devices. It can also access streams in other communities

such as H.323 or the Access Grid, through GlobalMMCS.

Archived Streaming Service provides stream control functions such as pause,

rewind, forward for NB event based streams. This enables eSports clients to stream any

type of data with NB events. So, video data, whiteboard events and text messages can be

encapsulated inside NB events and those events are provided with the control functions

mentioned above.

 219

Chapter 11

Conclusion, Contribution and Future

Research Directions

11.1 Conclusion

In this dissertation, we have presented a fault tolerant, services-based generic

streaming framework based on publish/subscribe systems. We separated session control

and management services from data services.

We introduced XML Based General Session Protocol (XGSP) for integration of

heterogeneous videoconferencing systems and demonstrated that this protocol is flexible

and easy to extend to other multimedia streaming environments such as RealMedia

clients (RealPlayer) which can receive streams in videoconferencing sessions. This also

allows supporting heterogeneous client types; H.323 terminals, SIP clients, multicast

clients, RealPlayers, and cellular phone media players in one collaboration session

 220

sharing same streams in the session. We also extended XGSP framework to include

RTSP semantics (record, replay) to support archiving and replay of streams in this

integrated environment. Using XML format for signaling and metadata description

provides an easy integration of different collaborative environments to a common

collaborative environment.

We used NaradaBrokering native events (NB Event) to transport any type of data

such as audio, video, text and images. We encapsulated data inside NB Events and

transported them across brokering network. We presented NTP based Time Service and

Jitter Reduction Service within the broker system and concluded that these two services

are essential in order to replay streams at their original rate and in a synchronous fashion.

In our case, we implemented these services within NaradaBrokering system, but any

messaging system can be used for such streaming as long as they provide these services

within the messaging system.

We proposed a replication scheme within the brokering system. We introduced

control topics and new event types to implement this scheme within the brokering

system. Same guidelines can be followed for other messaging systems to implement this

replication scheme. We conducted tests for different topologies to measure the overhead

of this scheme. We investigated the effect of increasing the number of repositories on the

latency and jitter.

Generic Streaming Framework that we proposed works for every event type such

as NB Event, RTPEvent, JMS Event and can be used to stream any data type. It is

independent of data type of the stream.

 221

Using a shared, fault tolerant and distributed metadata repository service – WS-

Context Service provides easy management and distribution of metadata among services

and components in the system. Services and other components in the system can access

the session metadata by using a URL pointing to that metadata. Since WS-Context

Service is fault tolerant, sessions can easily be recovered from the metadata stored in the

WS-Context Service.

We used the services and components developed within this architecture to

develop an annotation system: eSports Collaborative Multimedia Streaming and

Annotation System. With the help of the streaming architecture we proposed in this

dissertation, eSports system can access streams in videoconferencing sessions and

annotate real-time live streams.

11.2 Summary of Answers for Research Questions

Here we summarize the answers for the research questions presented in this

dissertation;

1. How can we build gateways for the XGSP based videoconferencing system so

as to improve the heterogeneity of the system?

There are two types of gateways. First type of gateway just transforms the

client signals into XGSP signals and XGSP signals into client signals as described

in section 3.3 while explaining H.323 and SIP gateways. XGSP Session Server

needs to receive client information including its media capability through

JoinSession message. When a client leaves the session gateway it needs to send

 222

LeaveSession for the client leaving the session. Rest of the communication

between the gateway and the client connecting to it is hidden from XGSP Session

Server. Another type of gateway is described in chapter 4 while explaining XGSP

Streaming Gateway. This type of gateway does more than signal transformation.

While some of its components convert streams into another format, other

components of the gateway provide signaling support for the client.

2. How can we provide streams to mobile clients particularly cellular phone

clients?

As explained in the previous question, for this type of clients there needs

to be stream conversion. We explained in chapter 4 that streams in XGSP sessions

need to be converted into other streaming formats before being sent to these types

of clients. Cellular phone clients are limited in screen size and bandwidth and

utilize cellular network. Also a client provides limited API to be used in a flexible

way. Therefore, as explained in section 4.7, we need to have a gateway

(GlobalMMCS Mobile Gateway) similar to XGSP Streaming Gateway but one

that provides services for mobile clients to stream cellular clients.

3. What is the time discrepancy between two entities located on different

machines and updating their time with Time Service timestamps?

As described in chapter 5, Time Service provides NTP timestamps. NTP

can achieve 1-30 ms accuracy, where accuracy implies that using by NTP the

underlying clock is within 30 ms of time server clock (usually an atomic clock).

 223

However, this accuracy also depends on the roundtrip delay between the machine

and the time server supplying the time service. The difference between the delay

from the machine to the time server and the delay from the time server to the

machine also contributes to the accuracy of the offset computed.

We have tested the discrepancy of two Time Services running on two

different machines on the same LAN. The average discrepancy between them is

around 6 msec. However, the same roundtrip principle mentioned above also

applies to this test. The difference is that, the roundtrip in LAN is around 2-3 ms

which is much less than the roundtrip in WAN. We also need to take into account

the clock read accuracy which is 1 ms on Linux machines. Hence the error in

average discrepancy is bounded with this roundtrip delay and the clock read

accuracy.

4. How much can Jitter Reduction Service reduce jitter?

As explained in chapter 6, before releasing events, Buffering Service

buffers those events. This will delay events but this delay is required in order to

achieve a minimum jitter. For Time Differential Service (TDS) takes the first

event’s timestamp as a reference and releases events preserving the timestamp

between consecutive events. As seen from section 6.4, we can achieve a jitter less

than a millisecond.

 224

5. How much overhead is introduced because of the addition of repositories to

the messaging system?

For reliable delivery we need to have at least one repository. In reliable

delivery scheme, the publisher and the repository exchange control messages to

make sure that the repository stores the published event. Similarly, the subscriber

and the repository exchange control messages to make sure that the subscriber

receives the message. There is an increase in the cost compared to non-reliable

delivery system. But as seen in section 7.4, cost increase from one repository case

to two repositories or three repositories case is acceptable. This is because

repository redundancy scheme does not affect the underlying reliable delivery

mechanism. Repositories exchange messages among themselves without

interfering with the reliable delivery mechanism.

6. What is the difference between videoconferencing session metadata and

archived streaming session metadata? How can we categorize the metadata

in this streaming architecture?

In videoconferencing sessions, clients join and leave the session. So the

stream information in the session dynamically changes. Moreover, when the

session is over, these metadata have no meaning, since the session is no longer

available. Therefore, we only need to keep the metadata of videoconferencing

session for the lifetime of the session. This type of metadata is temporary and is

considered dynamic metadata.

 225

In archived streaming sessions, if a session is an archived session, the

information of streams archived in that session may be updated. Once a stream is

archived, its metadata is permanently entered to the session stream metadata even

if the stream is stopped, since some duration of the stream is already archived and

it is available even after the session is closed. This type of metadata is static

metadata. But if it is a replay session, the session metadata is dynamic, since

replay sessions are temporary. Although streams are archived, and thus their

metadata is static, these streams are replayed under different topics in the replay

session and are no longer available when the replay session is terminated.

7. How can we build a data format independent streaming architecture in order

to archive and replay streams?

Since client will replay the stream, it should be client’s concern to know

the media format and encoding. A client can obtain it from metadata of the stream

as explained in chapter 8. Thus, it should choose streams that it is capable of

playing. Generic Streaming Framework does not need to know the data format.

When it archives the streams, it needs to connect to a topic, if it is

NaradaBrokering topic it expects NB Events, if it is JMS topic it expects JMS

Events. Therefore, it only needs to preserve the original event format rather than

the format of the data in the payload of the event. NB Event and JMS Event can

be viewed as transport packets in messaging systems. In traditional streaming

architectures, data is transported with RTP packets. The payload of the RTP

packet is the stream data. Traditional streaming servers reconstruct RTP packets

 226

from the streams they archived. Therefore, they need to support the data format of

the stream and be capable of processing it. In our architecture, we receive events

whether they are NB Event, JMS Event or RTPEvent, and we encapsulate them

inside NB Event. We timestamp the NB Event (we generate the timestamp if the

client did not timestamp the published event) and archive it. During replay, we

replay it based on the timestamp they carry. Replay service only needs to know

the event type to make the required connection to transport the event and to

overwrite the topic information of the event. We demonstrated this framework for

JMS Events, NB Events and RTPEvents in chapter 9.

8. Which services should a messaging middleware possess to provide major

RTSP functionalities on streams?

Messaging system should have a Time Service which provides NTP

timestamps as described in chapter 5 and Jitter Reduction Service which can

release events preserving the timespacing between consecutive events as

described in chapter 6.

Timestamps are required so that we can provide play, rewind and forward

functionalities. Rewind is actually a play command where the time passed to the

play command refers to the time in the past compared to the current playing time.

Similar to rewind, forward is a play command where the time passed to play

command is the timestamp in the future compared to the current playing time.

Since these functionalities take timestamp as a parameter and since we need to

 227

synchronize the streams generated at different sources we need a NTP based Time

Service.

Jitter Reduction Service is needed since we need to replay events in their

original rate where the timespace between consecutive events is preserved.

Without such mechanism we would not know when to release an event to the

client.

9. How can we synchronize streams in a session? Do we need SMIL to

synchronize streams?

As we explained in section 9.5, SMIL is a layout language that tells the

player whether streams will be synchronized based on the absolute timing of the

streams or the relative timing among streams. In our streaming architecture, we

use NTP timestamps to timestamp events and replay events based on those

timestamps. That is, the timing is absolute timing of the streams. In addition to

that, we need Jitter Reduction Service to synchronize events from different topics.

Therefore, only one Jitter Reduction Service should be used for one replay

session. Because events from different topics will go through the same buffer and

twill be ordered based on their timestamps. This will make sure that an event that

carries a higher timestamp than another event from another topic will not be

replayed before that event.

 228

10. Where should we locate Jitter Reduction Service? What is the requirement

of this service in order to benefit from its functionality?

Jitter Reduction Service runs on NB Events. It only uses timestamps that

those events carry. As we explained in section 9.3.1 and 9.3.2, it can be located at

the repository or at the client side depending on the client’s capability. If the

client is capable of playing NB Events, it can be located at the client side. This

will also result in better jitter value, because if we run Jitter Reduction Service at

the repository, events released from TDS need to go through network which may

introduce jitter. However, running while locating it at the client makes sure that

the jitter of the input events is minimal, since events released from Jitter

Reduction Service do not go through the network.

11. How can we achieve instant replay of real-time live videoconferencing

streams?

The instant replay of real-time live videoconferencing streams is possible

in an integrated environment where the archived parts of the streams are provided

to streaming clients immediately. The client should be allowed to replay, rewind

and forward (until the archive point) the streams as we explained in section 9.4.

12. How much delay does Generic Streaming Framework introduce during

instant replay and how successful is it to reduce the jitter?

Generic Streaming Framework utilizes Jitter Reduction Service to reduce

the jitter of the incoming stream. From test results explained in section 10.5, the

 229

delay introduced during instant replay of streams can be around 200 msec

depending on the location of the published stream. Jitter Reduction Service uses a

buffer of 200 msec. The rest of the delay is introduced from the transport delay

caused by the location of the streams. Jitter Reduction Service can successfully

reduce jitter to less than 1 msec as shown in section 10.5.

13. What kind of functionalities can generic streaming framework provide to

annotation systems?

Through Archived Streaming Service explained in chapters 8 and 9,

annotation systems can display the following features;

� Videoconferencing streams are provided to annotation systems, which can

display those streams.

� They can also instantly replay real-time live streams which can be streams

captured either from TV programs or at remote events.

� They can annotate streams mentioned above as explained in section 10.3

and the annotated streams can be replayed synchronously with the

annotations.

� Any data format, i.e. text or image, can be archived and replayed like

video streams and can be replayed in the same sessions as explained in

section 10.2.

 230

11.3 Contribution

The main contribution of this dissertation is the development of a fault tolerant

and services-based streaming architecture based on messaging middleware systems to

integrate various video conferencing, streaming and annotation systems into an

interoperable collaborative environment.

This research suggests using XML format in collaboration control framework,

metadata description of the sessions and streams, and interactions between components of

the collaboration system. It is easier to develop an environment that integrates

videoconferencing and streaming systems with the help of service oriented architecture

and Web Services technologies.

This architecture allows mobile clients; particularly cellular phone clients to

receive streams from real-time videoconferencing sessions.

It uses a distributed fault tolerant metadata repository that can be shared among

various services and clients in the system-WS-Context Service. Components in the

system do not interact with each other to obtain metadata. They directly obtain metadata

from WS-Context Service through a unique URL. This makes the system simpler and

easier to manage. The collaboration environment is more tolerant, since the session

metadata can be recovered from WS-Context Service.

This research demonstrates that a data format independent generic streaming

framework for archiving and replay of streams can be built on top messaging middleware

systems with the help of service oriented architecture and Web Services technologies.

This study offers new functionalities for annotation systems such as providing replay of

real-time live videoconferencing systems so that they can annotate them. Via this system

 231

annotation system can provide whiteboards or text messages as streams like video

streams and replay all of them together in a synchronous fashion with RTSP

functionalities (rewind, forward, pause, etc.).

Another contribution of this research is the services provided to messaging

middleware. Major services are Time Service and Jitter Reduction Service. These two

services are essential for a messaging middleware in order to provide RTSP

functionalities for event based streams. Furthermore, our research also introduced a

replication scheme in order to increase the fault tolerant of the messaging system in

presence of repository failures.

11.4 Future Research Directions

We can list several research directives to extend this work:

First, XGSP Streaming Gateway converts streams into RealMedia format which

can be played in RealPlayers. As seen from test results the number of streams is limited.

In order to increase the number of streams converted, a streaming job scheduler, which

will schedule and coordinate streaming jobs in a distributed environment can be

developed. Also other streaming clients can be supported through this gateway or similar

gateways can be developed for them.

Second, we have used MySQL database system to store events. More tests can be

conducted on other databases or file-based storages to see if there would be performance

improvements. A hybrid-scheme such as using MySQL for querying events and using

file-based event storing and retrieval can be tested.

 232

Moreover, a caching mechanism can be introduced to storage service. This can be

used to decrease the number of storage access while replaying streams.

Replication scheme tests could be conducted in an intercontinental environment to

see the behavior in Wide Area Network (WAN). Since the latency introduced and

number of packets lost in WAN is higher than Local Area Network (LAN), it might be

helpful to improve the replication scheme.

 233

Appendix A

XGSP Audio/Video Schema

<?xml version="1.0" encoding="UTF-8"?>
<!-- by Hasan Bulut -->
<!-- XGSPAV.xsd (XGSP Audio/Video Metadata Schema) -->
<xs:schema targetNamespace="http://globalmmcs.cgl/xgsp"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xgsp="http://globalmmcs.cgl/xgsp">
 <xs:complexType name="ActiveSessionType">
 <xs:sequence>
 <xs:element name="SessionID" type="xs:string"/>
 <xs:element name="Active" type="xs:boolean"/>
 <xs:element ref="xgsp:SessionMediaDescription" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="CommunityType">
 <xs:sequence>
 <xs:element name="CommunityName" type="xs:string"/>
 <xs:element name="CommunitySessionID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="CommunitiesType">
 <xs:sequence>
 <xs:element ref="xgsp:Community" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Community" type="xgsp:CommunityType"/>
 <xs:element name="Media" type="xgsp:CommunitiesType"/>
 <xs:complexType name="SessionDescriptionType">
 <xs:sequence>
 <xs:element name="SessionID" type="xs:string"/>
 <xs:element name="SessionTime" type="xs:string"/>
 <xs:element name="URI" type="xs:anyURI"/>

 234

 <xs:element name="SessionName" type="xs:string" minOccurs="0"/>
 <xs:element name="SessionOwner" type="xs:string" minOccurs="0"/>
 <xs:element name="SessionInfo" type="xs:string" minOccurs="0"/>
 <xs:element ref="xgsp:Contact" minOccurs="0"/>
 <xs:element ref="xgsp:SessionMediaDescription"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ContactType">
 <xs:sequence>
 <xs:element name="Email" type="xs:string"/>
 <xs:element name="PhoneNumber" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Contact" type="xgsp:ContactType"/>
 <xs:element name="SessionDescription" type="xgsp:SessionDescriptionType"/>
 <xs:complexType name="MediaDescriptionType">
 <xs:sequence>
 <xs:element name="MediaType" type="xgsp:MediaType"/>
 <xs:element name="MediaFormat" type="xgsp:MediaFormatType"/>
 <xs:element ref="xgsp:Transport"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="TransportType">
 <xs:sequence>
 <xs:element name="IPAddress">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="7"/>
 <xs:maxLength value="15"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="PortNumber" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:positiveInteger">
 <xs:minInclusive value="1025"/>
 <xs:maxInclusive value="65365"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="TopicNumber" type="xs:long" minOccurs="0"/>
 <xs:element name="SSRC" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="TTL" type="xs:long" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Transport" type="xgsp:TransportType"/>
 <xs:element name="MediaDescription" type="xgsp:MediaDescriptionType"/>
 <xs:element name="AudioDescription" type="xgsp:MediaDescriptionType"/>
 <xs:element name="VideoDescription" type="xgsp:MediaDescriptionType"/>
 <xs:complexType name="JoinSessionType">
 <xs:sequence>
 <xs:element name="ClientID" type="xs:string"/>
 <xs:element name="SessionID" type="xs:string"/>
 <xs:element ref="xgsp:MediaDescription" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 235

 <xs:element name="SessionMediaDescription" type="xgsp:SessionMediaDescriptionType"/>
 <xs:complexType name="SessionMediaDescriptionType">
 <xs:sequence>
 <xs:element name="SessionID" type="xs:string"/>
 <xs:element ref="xgsp:AudioDescription"/>
 <xs:element ref="xgsp:VideoDescription"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="JoinSession" type="xgsp:JoinSessionType"/>
 <xs:complexType name="LeaveSessionType">
 <xs:sequence>
 <xs:element name="ClientID" type="xs:string"/>
 <xs:element name="SessionID" type="xs:string"/>
 <xs:element name="LeaveReason" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="LeaveSession" type="xgsp:LeaveSessionType"/>
 <xs:complexType name="SessionSignalResponseType">
 <xs:sequence>
 <xs:element name="ClientID" type="xs:string"/>
 <xs:element name="SessionID" type="xs:string"/>
 <xs:element name="ResponseType" type="xs:string"/>
 <xs:element name="Result">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="OK"/>
 <xs:enumeration value="FAIL"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element ref="xgsp:MediaDescription" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="VideoSourceSelectionType">
 <xs:sequence>
 <xs:element name="ClientID" type="xs:string"/>
 <xs:element name="SessionID" type="xs:string"/>
 <xs:element name="Active" type="xs:boolean"/>
 <xs:element ref="xgsp:VideoSource"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ClientType">
 <xs:sequence>
 <xs:element name="Username" type="xs:string"/>
 <xs:element name="SSRC" type="xs:string"/>
 <xs:element name="Description" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="VideoSource" type="xgsp:ClientType"/>
 <xs:element name="VideoSourceSelection" type="xgsp:VideoSourceSelectionType"/>
 <xs:complexType name="VideoMixerType">
 <xs:sequence>
 <xs:element name="SessionID" type="xs:string"/>
 <xs:element ref="xgsp:VideoSource" maxOccurs="4"/>
 </xs:sequence>
 </xs:complexType>

 236

 <xs:element name="VideoMixer" type="xgsp:VideoMixerType"/>
 <xs:complexType name="VideoMixerReplyType">
 <xs:sequence>
 <xs:element name="SessionID" type="xs:string"/>
 <xs:element name="MixerID" type="xs:string"/>
 <xs:element name="Result" type="xs:string"/>
 <xs:element name="Reason" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="VideoMixerReply" type="xgsp:VideoMixerReplyType"/>
 <xs:element name="Client" type="xgsp:ClientType"/>
 <xs:complexType name="StreamEventType">
 <xs:sequence>
 <xs:element name="SessionID" type="xs:string"/>
 <xs:element name="EventType" type="xgsp:EventType"/>
 <xs:element name="MediaType" type="xs:string"/>
 <xs:element ref="xgsp:Client"/>
 <xs:element name="ImagePath" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="MediaType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="AUDIO"/>
 <xs:enumeration value="VIDEO"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="MediaFormatType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="H261"/>
 <xs:enumeration value="H263"/>
 <xs:enumeration value="G711"/>
 <xs:enumeration value="GSM"/>
 <xs:enumeration value="MSGSM"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="EventType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="NEWSTREAM"/>
 <xs:enumeration value="BYESTREAM"/>
 <xs:enumeration value="ACTIVETOPASSIVE"/>
 <xs:enumeration value="PASSIVETOACTIVE"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="RequestAllStreamsType">
 <xs:sequence>
 <xs:element name="ClientID" type="xs:string"/>
 <xs:element name="SessionID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="RequestAllStreams" type="xgsp:RequestAllStreamsType"/>
 <xs:complexType name="RequestAllStreamsReplyType">
 <xs:sequence>
 <xs:element name="SessionID" type="xs:string"/>
 <xs:element name="AudioStreamList" type="xgsp:StreamListType"/>
 <xs:element name="VideoStreamList" type="xgsp:StreamListType"/>
 </xs:sequence>

 237

 </xs:complexType>
 <xs:complexType name="StreamListType">
 <xs:sequence>
 <xs:element ref="xgsp:StreamEvent" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="StreamEvent" type="xgsp:StreamEventType"/>
 <xs:element name="StreamList" type="xgsp:StreamListType"/>
 <xs:element name="ActiveSession" type="xgsp:ActiveSessionType"/>
 <xs:element name="Communities" type="xgsp:CommunitiesType"/>
 <xs:element name="SessionSignalResponse" type="xgsp:SessionSignalResponseType"/>
 <xs:element name="StreamSource" type="xgsp:ClientType"/>
 <xs:element name="RequestAllStreamsReply" type="xgsp:RequestAllStreamsReplyType"/>
 <xs:complexType name="VideoSwitchType">
 <xs:sequence>
 <xs:element name="ClientID" type="xs:string"/>
 <xs:element name="SessionID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="VideoSwitch" type="xgsp:VideoSwitchType"/>
</xs:schema>

 238

Appendix B

WsRtsp Schema

<?xml version="1.0" encoding="UTF-8"?>
<!-- by Hasan Bulut -->
<!-- metadataschema.xsd (WsRtsp Metadata Schema) -->
<xs:schema targetNamespace="http://streaming.cgl/wsrtsp/schema"
xmlns:wsrtsp="http://streaming.cgl/wsrtsp/schema"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:complexType name="AtomicStreamType">
 <xs:annotation>
 <xs:documentation>Stream information with broker transport template
information</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="StreamID" type="xs:string"/>
 <xs:element ref="wsrtsp:NBInfo"/>
 <xs:element ref="wsrtsp:StreamInfo"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="AtomicStream" type="wsrtsp:AtomicStreamType">
 <xs:annotation>
 <xs:documentation>Element of type AtomicStreamType</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="AtomicStreamsType">
 <xs:annotation>
 <xs:documentation>List of AtomicStream</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="wsrtsp:AtomicStream" minOccurs="0" maxOccurs="unbounded"/>

 239

 </xs:sequence>
 </xs:complexType>
 <xs:element name="AtomicStreams" type="wsrtsp:AtomicStreamsType">
 <xs:annotation>
 <xs:documentation>List of AtomicStream</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="CompositeStreamType">
 <xs:annotation>
 <xs:documentation>Includes zero or more template IDs of the atomic streams
</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="StreamID" type="xs:string"/>
 <xs:element ref="wsrtsp:NBTemplateInfo" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="CompositeStream" type="wsrtsp:CompositeStreamType">
 <xs:annotation>
 <xs:documentation>Element of type CompositeStreamType</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="CompositeStreamsType">
 <xs:annotation>
 <xs:documentation>List of CompositeStream</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="wsrtsp:CompositeStream" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="CompositeStreams" type="wsrtsp:CompositeStreamsType">
 <xs:annotation>
 <xs:documentation>List of CompositeStream</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="NBBrokerInfoType">
 <xs:annotation>
 <xs:documentation>Broker IP address and port number
information</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="BrokerIP" type="xs:string"/>
 <xs:element name="BrokerPortNumber" type="xs:int"/>
 <xs:element name="CommunicationType" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="NBBrokerInfo" type="wsrtsp:NBBrokerInfoType">
 <xs:annotation>
 <xs:documentation>Element of type NBBrokerInfoType</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="NBTemplateInfoType">
 <xs:annotation>
 <xs:documentation>Broker template information</xs:documentation>
 </xs:annotation>

 240

 <xs:sequence>
 <xs:element name="TemplateID" type="xs:int"/>
 <xs:element name="TemplateType" type="xs:int"/>
 <xs:element name="Template" type="xs:string"/>
 <xs:element name="ReplicaID" type="xs:int"/>
 <xs:element name="EntityID" type="xs:int" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="NBTemplateInfo" type="wsrtsp:NBTemplateInfoType">
 <xs:annotation>
 <xs:documentation>Element of type NBTemplateInfoType</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="NBInfoType">
 <xs:annotation>
 <xs:documentation>Includes NBBrokerInfo and NBTemplateInfo</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="wsrtsp:NBBrokerInfo"/>
 <xs:element ref="wsrtsp:NBTemplateInfo"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="NBInfo" type="wsrtsp:NBInfoType">
 <xs:annotation>
 <xs:documentation>Element of type NBInfoType.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="SessionType">
 <xs:annotation>
 <xs:documentation>Session related information.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="SessionID" type="xs:string">
 <xs:annotation>
 <xs:documentation>CommunitySessionID + timestamp (unique
ID)</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="CommunitySessionID" type="xs:string"
default="GlobalMMCS/AG">
 <xs:annotation>
 <xs:documentation>sessionID of the collaboration session</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="SessionCommunity" minOccurs="0">
 <xs:annotation>
 <xs:documentation>GlobalMMCS/WSRTSP</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="GlobalMMCS"/>
 <xs:enumeration value="GlobalMMCS/AG"/>
 <xs:enumeration value="WSRTSP/GENERIC"/>
 <xs:enumeration value="WSRTSP/GLOBALMMCS"/>
 </xs:restriction>
 </xs:simpleType>

 241

 </xs:element>
 <xs:element name="SessionInfo" type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Extra session information </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="BeginType" type="xs:long" minOccurs="0"/>
 <xs:element name="EndTime" type="xs:long" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Session" type="wsrtsp:SessionType">
 <xs:annotation>
 <xs:documentation>Element of type SessionType</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="SessionsType">
 <xs:annotation>
 <xs:documentation>List of sessions</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="wsrtsp:Session" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="XgspSessionType">
 <xs:annotation>
 <xs:documentation>GlobalMMCS session information including audio and video
streams list.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="wsrtsp:Session"/>
 <xs:element ref="wsrtsp:VideoStreamInfos" minOccurs="0"/>
 <xs:element ref="wsrtsp:AudioStreamInfos" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="XgspSession" type="wsrtsp:XgspSessionType">
 <xs:annotation>
 <xs:documentation>Element of type XgspSessionType</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="XgspSessions" type="wsrtsp:SessionsType">
 <xs:annotation>
 <xs:documentation>GlobalMMCS sessions.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="ArchiveSessionType">
 <xs:annotation>
 <xs:documentation>Session information and list of AtomicStreams</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="wsrtsp:Session"/>
 <xs:element ref="wsrtsp:AtomicStreams"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ArchiveSession" type="wsrtsp:ArchiveSessionType">
 <xs:annotation>
 <xs:documentation>List of archived atomic streams</xs:documentation>

 242

 </xs:annotation>
 </xs:element>
 <xs:element name="ArchiveSessions" type="wsrtsp:SessionsType">
 <xs:annotation>
 <xs:documentation>Sessions which have archived streams</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="StreamInfoType">
 <xs:annotation>
 <xs:documentation>Stream related information. Although specifically designed for
multimedia streams, it can also be used for any kind of stream.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="TopicID" type="xs:string"/>
 <xs:element name="Username" type="xs:string"/>
 <xs:element name="Media">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="AUDIO"/>
 <xs:enumeration value="VIDEO"/>
 <xs:enumeration value="TEXT"/>
 <xs:enumeration value="BINARY"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="MediaFormat">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="H261/RTP"/>
 <xs:enumeration value="ULAW"/>
 <xs:enumeration value="OTHER"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="EventFormat">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="RTPEvent"/>
 <xs:enumeration value="NBEvent"/>
 <xs:enumeration value="JMSEvent"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Description" type="xs:string" default="Not available"
minOccurs="0"/>
 <xs:element name="SSRC" type="xs:long" default="0" minOccurs="0"/>
 <xs:element name="ImagePath" type="xs:string" minOccurs="0"/>
 <xs:element name="StartTime" type="xs:long" minOccurs="0"/>
 <xs:element name="StopTime" type="xs:long" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="StreamInfo" type="wsrtsp:StreamInfoType">
 <xs:annotation>
 <xs:documentation>Element of type StreamInfoType</xs:documentation>
 </xs:annotation>
 </xs:element>

 243

 <xs:complexType name="StreamInfosType">
 <xs:annotation>
 <xs:documentation>List of streams</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="wsrtsp:StreamInfo" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="StreamInfos" type="wsrtsp:StreamInfosType">
 <xs:annotation>
 <xs:documentation>Element of type StreamInfosType</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="AudioStreamInfos" type="wsrtsp:StreamInfosType">
 <xs:annotation>
 <xs:documentation>List of audio streams</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="VideoStreamInfos" type="wsrtsp:StreamInfosType">
 <xs:annotation>
 <xs:documentation>List of video streams</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="WsRtspSessionType">
 <xs:annotation>
 <xs:documentation>Rtsp session inforation</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="WsRtspSessionID" type="xs:string"/>
 <xs:element name="ClientID" type="xs:string"/>
 <xs:element name="WsRtspMode" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="WsRtspSession" type="wsrtsp:WsRtspSessionType">
 <xs:annotation>
 <xs:documentation>Element of type RtspSessionType</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="WsRtspRequestType">
 <xs:annotation>
 <xs:documentation>Rtsp request</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="WsRtspSessionID" type="xs:string"/>
 <xs:element ref="wsrtsp:NBTemplateInfo" minOccurs="0"/>
 <xs:element ref="wsrtsp:ArchiveSession" minOccurs="0"/>
 <xs:element name="StartTime" type="xs:long" minOccurs="0"/>
 <xs:element name="StopTime" type="xs:long" minOccurs="0"/>
 <xs:element name="Speed" type="xs:int" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="WsRtspRequest" type="wsrtsp:WsRtspRequestType">
 <xs:annotation>
 <xs:documentation>Element of type RtspRequestType</xs:documentation>
 </xs:annotation>
 </xs:element>

 244

 <xs:complexType name="WsRtspResponseType">
 <xs:annotation>
 <xs:documentation>Rtsp response</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="WsRtspSessionID" type="xs:string"/>
 <xs:element name="ClientID" type="xs:string"/>
 <xs:element name="StatusCode" type="xs:int" minOccurs="0"/>
 <xs:element name="ReasonPhrase" type="xs:string" minOccurs="0"/>
 <xs:element ref="wsrtsp:WsRtspStream" minOccurs="0"/>
 <xs:element name="StartTime" type="xs:long" minOccurs="0"/>
 <xs:element name="StopTime" type="xs:long" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="WsRtspResponse" type="wsrtsp:WsRtspResponseType">
 <xs:annotation>
 <xs:documentation>Element of type RtspResponseType</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="WsRtspStreamType">
 <xs:annotation>
 <xs:documentation>Either an atomic stream or a composite
stream.</xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element ref="wsrtsp:AtomicStreams" minOccurs="0"/>
 <xs:element ref="wsrtsp:ReplayStreams" minOccurs="0"/>
 </xs:choice>
 </xs:complexType>
 <xs:element name="WsRtspStream" type="wsrtsp:WsRtspStreamType">
 <xs:annotation>
 <xs:documentation>Element of type WsRtspStreamType</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="StreamTopicType">
 <xs:annotation>
 <xs:documentation>Stream topic information</xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element name="TopicName" type="xs:string"/>
 <xs:element name="TopicType" type="xs:int"/>
 <xs:element name="TemplateID" type="xs:int"/>
 </xs:choice>
 </xs:complexType>
 <xs:element name="StreamTopic" type="wsrtsp:StreamTopicType">
 <xs:annotation>
 <xs:documentation>Element of type StreamTopicType</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="ReplayStreamType">
 <xs:annotation>
 <xs:documentation>AtomicStream with NBInfo</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="wsrtsp:AtomicStream"/>
 <xs:element ref="wsrtsp:NBTemplateInfo" minOccurs="0"/>

 245

 </xs:sequence>
 </xs:complexType>
 <xs:element name="ReplayStream" type="wsrtsp:ReplayStreamType">
 <xs:annotation>
 <xs:documentation>Element of type ReplayStreamType</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="ReplayStreamsType">
 <xs:annotation>
 <xs:documentation>List of ReplayStream</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="wsrtsp:ReplayStream" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ReplayStreams" type="wsrtsp:ReplayStreamsType">
 <xs:annotation>
 <xs:documentation>Element of type ReplayStreamsType</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="UniqueIDType">
 <xs:annotation>
 <xs:documentation>Request and respond message for ID
assignment</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="MessageType">
 <xs:annotation>
 <xs:documentation>Request / Response</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="REQUEST"/>
 <xs:enumeration value="RESPONSE"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="IPAddress" type="xs:string">
 <xs:annotation>
 <xs:documentation>IP address of the requesting client's
machine</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="PortNumber" type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>0 if no port number is available</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="EntityID" type="xs:int" minOccurs="0"/>
 <xs:element ref="wsrtsp:StreamTopic" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="UniqueID" type="wsrtsp:UniqueIDType">
 <xs:annotation>
 <xs:documentation>Element of type UniqueIDType</xs:documentation>
 </xs:annotation>

 246

 </xs:element>
 <xs:element name="ReplaySessions" type="wsrtsp:SessionsType"/>
 <xs:complexType name="ReplaySessionType">
 <xs:sequence>
 <xs:element ref="wsrtsp:Session"/>
 <xs:element ref="wsrtsp:ReplayStreams"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ReplaySession" type="wsrtsp:ReplaySessionType"/>
</xs:schema>

 247

Appendix C

WsRtsp WSDL Interface

<?xml version="1.0" encoding="UTF-8"?>
<!-- by Hasan Bulut -->
<!—WsRtsp.wsdl (WsRtsp Interface) -->
<wsdl:definitions name="WsRtsp" targetNamespace="http://streaming.cgl/wsrtsp/rtsp"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="http://streaming.cgl/wsrtsp/rtsp"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://streaming.cgl/wsrtsp/schema">
 <wsdl:types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:import namespace="http://streaming.cgl/wsrtsp/schema"
schemaLocation="metadataschema.xsd"/>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="playSetupRequest">
 <wsdl:part name="clientID" type="xsd:string"/>
 <wsdl:part name="rtspSessionID" type="xsd:string"/>
 <wsdl:part name="rtspStream" type="xsd1:WsRtspStreamType"/>
 </wsdl:message>
 <wsdl:message name="playSetupResponse">
 <wsdl:part name="rtspResponse" type="xsd1:WsRtspResponseType"/>
 </wsdl:message>
 <wsdl:message name="recordSetupRequest">
 <wsdl:part name="clientID" type="xsd:string"/>
 <wsdl:part name="rtspSessionID" type="xsd:string"/>
 <wsdl:part name="rtspStream" type="xsd1:WsRtspStreamType"/>
 </wsdl:message>
 <wsdl:message name="recordSetupResponse">
 <wsdl:part name="rtspResponse" type="xsd1:WsRtspResponseType"/>
 </wsdl:message>
 <wsdl:message name="removeStreamRequest">

 248

 <wsdl:part name="clientID" type="xsd:string"/>
 <wsdl:part name="rtspSessionID" type="xsd:string"/>
 <wsdl:part name="rtspStream" type="xsd1:WsRtspStreamType"/>
 </wsdl:message>
 <wsdl:message name="removeStreamResponse">
 <wsdl:part name="rtspResponse" type="xsd1:WsRtspResponseType"/>
 </wsdl:message>
 <wsdl:message name="teardownSessionRequest">
 <wsdl:part name="clientID" type="xsd:string"/>
 <wsdl:part name="rtspSessionID" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="teardownSessionResponse">
 <wsdl:part name="rtspResponse" type="xsd1:WsRtspResponseType"/>
 </wsdl:message>
 <wsdl:message name="addReplayStreamRequest">
 <wsdl:part name="clientID" type="xsd:string"/>
 <wsdl:part name="rtspSessionID" type="xsd:string"/>
 <wsdl:part name="rtspStream" type="xsd1:WsRtspStreamType"/>
 </wsdl:message>
 <wsdl:message name="addReplayStreamResponse">
 <wsdl:part name="rtspResponse" type="xsd1:WsRtspResponseType"/>
 </wsdl:message>
 <wsdl:message name="addRecordStreamRequest">
 <wsdl:part name="clientID" type="xsd:string"/>
 <wsdl:part name="rtspSessionID" type="xsd:string"/>
 <wsdl:part name="rtspStream" type="xsd1:WsRtspStreamType"/>
 </wsdl:message>
 <wsdl:message name="addRecordStreamResponse">
 <wsdl:part name="rtspResponse" type="xsd1:WsRtspResponseType"/>
 </wsdl:message>
 <wsdl:portType name="WsRtsp">
 <wsdl:operation name="playSetup">
 <wsdl:input message="tns:playSetupRequest"/>
 <wsdl:output message="tns:playSetupResponse"/>
 </wsdl:operation>
 <wsdl:operation name="recordSetup">
 <wsdl:input message="tns:recordSetupRequest"/>
 <wsdl:output message="tns:recordSetupResponse"/>
 </wsdl:operation>
 <wsdl:operation name="teardownSession">
 <wsdl:input message="tns:teardownSessionRequest"/>
 <wsdl:output message="tns:teardownSessionResponse"/>
 </wsdl:operation>
 <wsdl:operation name="addReplayStream">
 <wsdl:input message="tns:addReplayStreamRequest"/>
 <wsdl:output message="tns:addReplayStreamResponse"/>
 </wsdl:operation>
 <wsdl:operation name="addRecordStream">
 <wsdl:input message="tns:addRecordStreamRequest"/>
 <wsdl:output message="tns:addRecordStreamResponse"/>
 </wsdl:operation>
 <wsdl:operation name="removeStream">
 <wsdl:input message="tns:removeStreamRequest"/>
 <wsdl:output message="tns:removeStreamResponse"/>
 </wsdl:operation>
 </wsdl:portType>

 249

 <wsdl:binding name="WsRtsp" type="tns:WsRtsp">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="playSetup">
 <soap:operation soapAction="http://streaming.cgl/wsrtsp/rtsp/playSetup"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="recordSetup">
 <soap:operation soapAction="http://streaming.cgl/wsrtsp/rtsp/recordSetup"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="teardownSession">
 <soap:operation soapAction="http://streaming.cgl/wsrtsp/rtsp/teardownSession"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="addReplayStream">
 <soap:operation soapAction="http://streaming.cgl/wsrtsp/rtsp/addReplayStream"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="addRecordStream">
 <soap:operation soapAction="http://streaming.cgl/wsrtsp/rtsp/addRecordStream"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="removeStream">
 <soap:operation soapAction="http://streaming.cgl/wsrtsp/rtsp/removeStream"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>

 250

 </wsdl:binding>
 <wsdl:service name="WsRtspService">
 <wsdl:port binding="tns:WsRtsp" name="WsRtsp">
 <soap:address location="http://localhost:8080/Rtsp/services/Rtsp"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

 251

Bibliography

[1] Videoconferencing Cookbook Version 3.0, Video Development Initiative,
Advanced Videoconferencing Components and Management,
http://www.videnet.gatech.edu/cookbook, April, 2002.

[2] ITU-T Recommendation H.323, “Packet based multimedia communication
systems”, Feb. 1998.

[3] K. Almeroth, "The evolution of multicast: From the MBone to inter-domain
multicast to {Internet2} deployment," IEEE Network, vol. 14, pp. 10-20, 2000.

[4] Polycom Inc., http://www.polycom.com.
[5] Radvision Ltd., http://www.radvision.com.
[6] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler, "SIP: Session Initiation Protocol," RFC 3261,
Internet Engineering Task Force, June 2002, http://www.ietf.org/rfc/rfc3261.txt.

[7] The IP Telecommunications Portal , http://www.iptel.org/.
[8] The Access Grid Project, http://www.accessgrid.org/
[9] H. Eriksson, "MBONE: the multicast backbone," Communications of the ACM,

vol. 37, pp. 54-60, 1994.
[10] O. Hodson and C. Perkins, "Robust audio tool (RAT)," http://www-

mice.cs.ucl.ac.uk/multimedia/software/rat/.
[11] V. Jacobson and S. McCanne, "VIC: A video conferencing tool," http://www-

mice.cs.ucl.ac.uk/multimedia/software/vic/.
[12] The Virtual Rooms VideoConferencing System, http://www.vrvs.org/.
[13] D. Adamczyk, D. Collados, G. Denis, J. Fernandes, P. Galvez, I. Legrand, H.

Newman, and K. Wei, "Global Platform for Rich Media Conferencing and
Collaboration," CHEP03, Ed. La Jolla, California, March 24-28, 2003

[14] H. Schulzrinne, A. Rao, and R. Lanphier, "Real Time Streaming Protocol
(RTSP)," RFC 2326, April 1998, http://www.ietf.org/rfc/rfc2326.txt.

[15] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RFC 3550: RTP: A
Transport Protocol for Real-Time Applications " http://tools.ietf.org/html/rfc3550
2003.

 252

[16] IG Recorder, http://www.agsc.ja.net/services/igrecorder.php.
[17] inSORS Integrated Communications, http://www.insors.com/main.htm.
[18] T. Disz, R. Olson, and R. Stevens, "Performance model of the Argonne Voyager

multimedia server," in IEEE International Conference on Application-specific
Systems, Architectures, and Processors Zurich, Switzerland, 1997.

[19] Argonne National Laboratory, http://www-fp.mcs.anl.gov/fl/accessgrid/, Ed.
[20] T. Dorcey, "CU-SeeMe Desktop Video Conferencing Software," Connexions, vol.

9, 3, March 1995.
[21] J. Han and B. Smith, "CU-SeeMe VR immersive desktop teleconferencing,"

ACM Press New York, NY, USA, 1997, pp. 199-207.
[22] QuickTime, http://www.apple.com/quicktime/.
[23] RealNetworks, http://www.realnetworks.com/.
[24] M. Claypool and J. Tanner, "The effects of jitter on the peceptual quality of

video," in MULTIMEDIA '99: Proceedings of the seventh ACM international
conference on Multimedia (Part 2), 1999, pp. 115-118.

[25] J. R. Smith and B. Lugeon, "A Visual Annotation Tool for Multimedia Content
Description," in Proc. SPIE Photonics East, Internet Multimedia Management
Systems, November, 2000, pp. 49–59.

[26] D. Bargeron, A. Gupta, J. Grudin, E. Sanocki, and F. Li, "Asynchronous
collaboration around multimedia and its application to on-demand training," in
Proceedings of the 34th Hawaii International Conference on System Sciences
(HICSS-34), Maui, Hawaii September, 2000.

[27] G. D. Abowd, "Classroom 2000: An experiment with the instrumentation of a
living educational environment,"
http://www.research.ibm.com/journal/sj/384/abowd.html.

[28] D. Yamamoto and K. Nagao, "iVAS: Web-based Video Annotation System and
its Applications," in 3rd International Semantic Web Conference(ISWC2004)
Hiroshima, Japan, 7-11 November 2004.

[29] M. P. Steves, M. Ranganathan, and E. Morse, "SMAT: Synchronous Multimedia
and Annotation Tool," in Proceedings of the 34th Hawaii International
Conference on System Sciences (HICSS-34), Maui, Hawaii, September, 2000.

[30] The Gryphon Project,
http://researchweb.watson.ibm.com/distributedmessaging/gryphon.html

[31] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Design and evaluation of a
wide-area event notification service," ACM Trans. Comput. Syst., vol. 19, 3, pp.
332–383, 2003.

[32] SonicMQ, http://www.sonicsoftware.com/products/sonicmq/index.ssp.
[33] M. Hapner, R. Burridge, and R. Sharma, "Java Message Service Specification",

Sun Microsystems, http://java. sun. com/products/jms, 2000.
[34] Sun Java System Application Server,

http://www.sun.com/software/products/appsrvr/index.xml
[35] The IBM WebSphere MQ Family, http://www-

3.ibm.com/software/integration/mqfamily/
[36] BEA WebLogic Server,

http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/webl
ogic/server/.

 253

[37] K. Singh and H. Schulzrinne, "Interworking between SIP/SDP and H. 323," in
Proceedings of the 1st IP-Telephony Workshop (IPTel'2000), April 2000.

[38] S. Cisco, " H.323 and SIP Integration," Whitepaper,
http://www.sipcenter.com/sip.nsf/html/WEBB5YP4SU/$FILE/Cisco_sh23g_wp.p
df.

[39] RealAudio, http://www.realnetworks.com/products/codecs/realaudio.html.
[40] RealVideo, http://www.realnetworks.com/products/codecs/realvideo.html.
[41] RealMedia, https://datatype.helixcommunity.org/.
[42] Community Grids Lab, Fault Tolerant High Performance Information System

(FTHPIS), http://www.opengrids.org/extendeduddi/index.html.
[43] Global Multimedia Collaboration System (GLOBALMMCS),

http://www.globalmmcs.org.
[44] G. Fox, W. Wu, A. Uyar, H. Bulut, and S. Pallickara, "Global multimedia

collaboration system," Concurrency and Computation: Practice & Experience,
vol. 16, pp. 441-447, 2004.

[45] G. Fox, W. Wu, A. Uyar, and H. Bulut, "A Web Services Framework for
Collaboration and Audio/Videoconferencing," in The 2002 International
Multiconference in Computer Science and Computer Engineering, Internet
Computing(IC’02). vol. 2 Las Vegas, NV, June 2002, pp. 24-27.

[46] W. Wu, A. Uyar, H. Bulut, and G. Fox, "Integration of SIP VoIP and Messaging
with the AccessGrid and H. 323 Systems," in The 2003 International Conference
on Web Services (ICWS'03) Las Vegas, NV, USA, June 2003.

[47] W. Wu, H. Bulut, A. Uyar, and G. C. Fox, "Adapting H. 323 terminals in a
service-oriented collaboration system," IEEE Internet Computing, vol. 9, pp. 43-
50, July/August 2005.

[48] W. Wu, G. Fox, H. Bulut, A. Uyar, and H. Altay, "Design and Implementation of
A Collaboration Web-services system," Journal of Neural, Parallel & Scientific
Computations, vol. 12, pp. 391–406, 2004.

[49] W. Wu, H. Bulut, A. Uyar, and G. C. Fox, "A Web-Services Based Conference
Control Framework for Heterogenous A/V Collaboration," in 7th IASTED
International Conference on Internet and Multimedia Systems and Applications
Honolulu, Hawaii, USA, August 13-15, 2003, pp. 13-15.

[50] Anabas, Inc. eLearning and Collaboration, http://www.anabas.com.
[51] M. Handley, J. Crowcroft, C. Bormann, and J. Ott, "Very Large Conferences on

the Internet: The Internet Multimedia Conferencing Architecture." vol. 31, 1999,
pp. 191-204.

[52] C. Bormann, D. Kutscher, J. Ott, and D. Trossen, "Simple conference control
protocol service specification," 2001.

[53] ITU Recommendation H.225, "Calling Signaling Protocols and Media Stream
Packetization for Packet-based Multimedia Communication Systems," Feb.,
2000.

[54] ITU Recommendation H.245, "Control Protocols for Multimedia
Communication," Feb., 2000.

[55] ITU Recommendation H.243, “Terminal for low bit-rate multimedia
communication," Feb., 1998.

 254

[56] ITU Recommendation G.711, "Pulse Code Modulation (PCM) of Voice
Frequencies," 1988.

[57] ITU Recommendation H.261, “Video Codec for Audiovisual Services at p x 64
kbit/s," 1991.

[58] ITU-T Recommendation H.263, “Video coding for low bit rate communication,"
1998.

[59] ITU-T Recommendation T.120, “Data Protocols for Multimedia Conferencing,"
July 1996.

[60] P. Koskelainen, H. Schulzrinne, and X. Wu, "A SIP-based conference control
framework," ACM Press New York, NY, USA, 2002, pp. 53-61.

[61] X. Wu, P. Koskelainen, H. Schulzrinne, and C. Chen, "Use SIP and SOAP for
conference floor control," Internet Engineering Task Force, Feb. 2002.

[62] Implementation of the Globus Security Policy: v0.1 GLOBUS-SEC,
http://archive.nsf-middleware.org/documentation/NMI-
R1/0/GlobusToolkit/security/implementation.htm.

[63] R. Olson, "Certificate Management in AG 2.0," http://fl-
cvs.mcs.anl.gov/viewcvs/viewcvs.cgi/AccessGrid/doc/, Ed., March 5, 2003.

[64] ITU-T Recommendation G.114, “One Way Transmission Time," 05/2003.
[65] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T.

Berners-Lee, "RFC2616: Hypertext Transfer Protocol--HTTP/1.1," RFC Editor
United States, 1999.

[66] M. Handley and V. Jacobson, "SDP: Session Description Protocol," RFC 2327,
April 1998, http://www.ietf.org/rfc/rfc2327.txt

[67] RealNetworks, "Using RTSP with Firewalls, Proxies, and Other Intermediary
Network Devices," version 2.0/rev. 2,
http://docs.real.com/docs/proxykit/rtspd.pdf, 1998.

[68] Microsoft, Windows Media Networking Protocol Kit,
http://www.microsoft.com/windows/windowsmedia/licensing/netprokit.aspx.

[69] Microsoft, "Windows Media Format," http://msdn2.microsoft.com/en-
us/library/aa387410.aspx.

[70] D. Hoffman, G. Fernando, V. Goyal, and M. Civanlar, "RTP Payload Format for
MPEG1/MPEG2 Video," RFC 2250, Internet Engineering Task Force, Jan. 1998.

[71] Microsoft, "AVI File Format," http://msdn2.microsoft.com/en-
us/library/ms779631.aspx.

[72] F. Nack and A. T. Lindsay, "Everything You Wanted to Know About MPEG-7:
Part 1," IEEE MultiMedia, vol. 6, pp. 65-77, July 1999.

[73] F. Nack and A. Lindsay, "Everything You Wanted to Know About MPEG-7: Part
2," IEEE Multimedia, vol. 6, pp. 64-73, October 1999.

[74] J. M. Martinez, R. Koenen, and F. Pereira, "MPEG-7: the generic multimedia
content description standard, part 1," IEEE MultiMedia, vol. 9, pp. 78-87, April-
June 2002.

[75] MPEG, MPEG-7 Overview, http://www.chiariglione.org/mpeg/standards/mpeg-
7/mpeg-7.htm.

[76] D. Deeths, "Using NTP to Control and Synchronize System Clocks - Part I:
Introduction to NTP. Sun BluePrints™ OnLine," 2001.

 255

[77] A. S. Tanenbaum and M. Van Steen, Distributed Systems: Principles and
Paradigms: Prentice Hall PTR Upper Saddle River, NJ, USA, 2002.

[78] L. Lamport, "Time, clocks, and the ordering of events in a distributed system."
vol. 21: ACM Press New York, NY, USA, 1978, pp. 558-565.

[79] F. Mattern, "Virtual time and global states of distributed systems," 1989, pp. 215–
226.

[80] C. J. Fidge, "Logical time in distributed computing systems." vol. 24, 1991, pp.
28-33.

[81] F. Cristian, "Probabilistic clock synchronization." vol. 3: Springer, 1989, pp. 146-
158.

[82] R. Gusella and S. Zatti, "The accuracy of the clock synchronization achieved by
TEMPO inBerkeley UNIX 4.3 BSD." vol. 15, 1989, pp. 847-853.

[83] P. B. Danzig and S. Melvin, "High resolution timing with low resolution clocks
and microsecond resolution timer for Sun workstations." vol. 24: ACM Press New
York, NY, USA, 1990, pp. 23-26.

[84] P. Ramanathan, D. D. Kandlur, and K. G. Shin, "Hardware-assisted software
clock synchronization for homogeneous distributed systems," IEEE Trans.
Computers, vol. 39, pp. 514-524, April 1990.

[85] P. H. Dana, "Global Positioning System (GPS) Time Dissemination for Real-
Time Applications," Real-Time Systems Journal, vol. 12, pp. 9-40, 1997.

[86] M. Horauer, U. Schmid, and K. Schossmaier, "NTI: A Network Time Interface
M-Module for High-Accuracy Clock Synchronization," in Proceedings of the 6th
International Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS), Orlando Florida USA, March 30 - April 3 1998, pp. 1067-1076.

[87] D. L. Mills, "Network Time Protocol (Version 3) Specification, Implementation
and Analysis," RFC 1305 March, 1992.

[88] D. L. Mills, "Internet TimeSynchronization: the Network Time Protocol." vol. 39,
1991, pp. 1482-1493.

[89] D. Mills, "Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and
OSI," RFC 2030, October 1996.

[90] NTP: The Network Time Protocol, http://www.ntp.org/.
[91] K. P. Birman, "Replication and fault-tolerance in the ISIS system," in

Proceedings of the10th ACM Symposium on Operating Systems Principles, 1985,
pp. 79-86.

[92] R. Renesse, K. P. Birman, and S. Maffeis, "Horus: A Flexible Group
Communication System," Communications of the ACM, vol. 39, pp. 76-83, April
1996.

[93] D. Dolev and D. Malki, "The Transis approach to high availability cluster
communication," Communications of the ACM, vol. 39, pp. 64-70, 1996.

[94] K. P. Birman, R. van Renesse, and W. Vogels, "Spinglass: Secure and scalable
communications tools for mission-critical computing," in International
Survivability Conference and Exposition, DARPA DISCEX-2001 CA, June 2001.

[95] P. T. Eugster, R. Boichat, R. Guerraoui, and J. Sventek, "Effective multicast
programming in large scale distributed systems," Concurrency and Computation:
Practice and Experience, vol. 13, pp. 421-447, April 2001.

 256

[96] IBM, BEA Systems, Microsoft, and TIBCO Software, "Web Services Reliable
Messaging Protocol (WS-ReliableMessaging),"
ftp://www6.software.ibm.com/software/developer/library/ws-
reliablemessaging200502.pdf 2005.

[97] A. Chervenak, B. Schwartzkopf, H. Stockinger, B. Tierney, E. Deelman, I. Foster,
W. Hoschek, A. Iamnitchi, C. Kesselman, and M. Ripeanu, "Giggle: a framework
for constructing scalable replica location services," in Proceedings of ACM/IEEE
Supercomputing, SC2002, 2002, pp. 1-17.

[98] C. Baru, R. Moore, A. Rajasekar, and M. Wan, "The SDSC storage resource
broker," in Procs. of CASCON’98, Toronto, Canada 1998.

[99] The NaradaBrokering Project , http://www.naradabrokering.org.
[100] S. Pallickara and G. Fox, "NaradaBrokering: A Distributed Middleware

Framework and Architecture for Enabling Durable Peer-to-Peer Grids," in
Proceedings of ACM/IFIP/USENIX International Middleware Conference
Middleware, 2003.

[101] S. Pallickara and G. Fox, "On the Matching Of Events in Distributed Brokering
Systems," in Proceedings of IEEE ITCC Conference on Information Technology.
vol. 2, April 2004, pp. 68-76.

[102] S. Pallickara and G. Fox, "A scheme for reliable delivery of events in distributed
middleware systems," in Proceedings of the IEEE International Conference on
Autonomic Computing, 2004, pp. 328-329.

[103] G. Fox, S. Lim, S. Pallickara, and M. Pierce, "Message-based cellular peer-to-
peer grids: foundations for secure federation and autonomic services," Journal of
Future Generation Computer Systems, vol. 21, pp. 401-415, March 2005.

[104] G. Fox, S. Pallickara, and S. Parastatidis, "Towards Flexible Messaging for
SOAP-Based Services," in Proceedings of the IEEE/ACM Supercomputing
Conference, Pittsburgh, PA, 2004.

[105] S. Pallickara, M. Pierce, G. Fox, Y. Yan, and Y. Huang, "A Security Framework
for Distributed Brokering Systems," Available from
http://www.naradabrokering.org.

[106] A. Uyar, "Scalable Grid Architecture for Video/Audio Conferencing," in EECS
Department of Syracuse University Syracuse, NY: Syracuse University, Spring
2005.

[107] Helix DNA Server, https://helix-server.helixcommunity.org/
[108] W3C, "Synchronized Multimedia Integration Language (SMIL 2.0),"

http://www.w3.org/TR/2005/REC-SMIL2-20050107/ 2001.
[109] Sun Microsystems, "Java Media Framework 2.1," in

http://java.sun.com/products/java-media/jmf/2.1.1/index.html, 2000.
[110] Helix Community, https://helixcommunity.org/.
[111] D. Wisely, P. Eardley, L. Burness, and D. Wisely, IP for 3 G: Networking

Technologies for Mobile Communications: John Wiley & Sons, 2002.
[112] P. J. Leach and R. Salz, "UUIDs and GUIDs," IETF Internet Draft. Feb, 1998.

 257

Vitae

NAME:

Hasan Bulut

DATE OF BIRTH:

January 1, 1973

PLACE OF BIRTH:

Salihli, Manisa, TURKEY

DEGREES AWARDED:

May 2007 Ph.D. in Computer Science,

Indiana University
Bloomington, IN, U.S.A

May 2000 M.S. in Computer and Information Science
Department of Electrical Engineering and
Computer Science, Syracuse University,
Syracuse, NY, U.S.A.

June 1996 B.S. in Electronics and Telecommunication
Engineering
Istanbul Technical University
Istanbul, TURKEY

