WEB SERVICE ARCHITECTURE FOR MOBILE COMPUTING

Sangyoon Oh

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements
for the degree
Doctor of Philosophy
in the Department of Computer Science,
Indiana University
August 2006

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Doctoral Committee

Dr. Geoffrey C. Fox (Principal Advisor)

Dr. Dennis Gannon

Dr. Andrew Lumsdaine

Dr. Sun Kim

August 1st, 2006

il

© 2006
Sangyoon Oh
ALL RIGHTS RESERVED

il

Acknowledgements

First and foremost, I am sincerely grateful to my advisor, Dr. Geoffrey C. Fox for his
guidance and encouragement to this dissertation as well as my entire research career at
Indiana University. With his keen insight and extensive experience, he helped me to
focus on the important details. Working with him has been one of most rewarding
experiences.

I am also very thankful to my other committee members. I would like to thank Dr.
Andrew Lumsdaine for his valuable feedback and Dr. Sun Kim for his comments and
suggestions. I am particularly thankful to Dr. Dennis Gannon for his constructive
criticism on my research.

I have had the great pleasure of working with a wonderful set of people at
Community Grids Lab. I owe a great deal of thanks to Mehmet Aktas for providing
technical support for FTHPIS (Fault Tolerant High Performance Information Service)
which I used in my prototype implementation and providing encouragement that kept me
going through the hard times of the graduate student years. I am much indebted to Dr.
David Bryan Carpenter for countless productive discussions on various aspects of my
research. Discussions with him helped me to grow professionally. I am also thankful to
Dr. Marlon Pierce for his continuous help, support and advice. I would like to thank Dr.

Shrideep Pallickara for his help and advice on the topics of security and messaging.

v

Many others at Bloomington provided much advice and help to my research. In
particular, George Fletcher was deeply involved in many aspects of this research. He
provided countless hours of discussion and counsel during my graduate student years. I
would like to thank Harshawardhan Gadgil for his early comment on this research. I am
grateful to others, including Beytullah Yildiz and Kwangmin Choi, who filled my life in
Bloomington with the quality times.

I would like to thank staffs of Computer Science department, particularly Sherry Kay
who helped me with all the paper work and Lucy Battersby who provided me all
necessary information I need to know.

Last but not the least, I am especially grateful to my family for their support
throughout my long and winding road of graduate studies. My parents provided
invaluable support throughout my graduate student years and they encouraged me every
step of the way. This would not have been possible without their love and support. My

sisters, brother-in-law, and nieces with their love and support made this work worthwhile.

Abstract

The conventional Web Service communication framework does not adequately meet
the needs of mobile computing. It is physically constrained and requires an optimized
messaging scheme to prevent performance degradations in not only mobile computing,
but also conventional computing that is interacting with mobile applications. With our
novel architecture called the Handheld Flexible Representation (or HHFR), mobile
applications can negotiate characteristics for message stream and representation, and
exchange messages in an optimized streaming fashion. By distinguishing between
message semantics and syntax, the architecture provides an overall system framework for
Web Services applications in mobile computing environment. Despite its important role
in distributed computing, mobile computing hasn’t reached its full potential because of
the limited availability of high speed wireless connections, such as third generation
cellular technology (3G) or Broadband Wireless access. In this dissertation, we show that
the messaging scheme of our new architecture significantly speeds up the messaging
performance in comparison to a conventional SOAP-based Web Service messaging
scheme when the request and response messages are in the same syntax, i.e. the same

service is used continuously.

vi

Contents

List of Figures

1. Introduction and Motivation.....................ooiiiiiiiii i
1.1. Introduction: Web Service Technology and Mobile Computing.................
1.2. Motivation: Problems in Integrating Web Services with Mobile

L70) 10101153V
1.3. ThesSiS SUMMATY.....ouuiiitiiit et e e e e e reennas
1.4. Thesis ContribULIONS.vutit ettt
1.5. Thesis Roadmap.........cooiiiiii e,

2. Background and Related Work.......................ooiiiiii .
2.1. Lineage of XML Binary Representation..............ccovvviiiiiiiniennnenennn.
2.1.1. XML as a data interchange format....................cooiiiiiiiiiiiiinn.
2.1.2. XML binary characterization working group...............c...ooevnneen.
2.2. XML Alternatives: Self Contained or NOt............coooviiiiiiiiiiiiin..
2.2.1. Self contained approaches.............cooveiiiiiiiiiiiiiiiiiii e,
2.2.2. Non self contained approaches..............coooiviiiiiiiiiiiiiiininnn.
2.2.3. Processing headers............ccoiiiiiiiiiiiiii i
2.3. Compressing XML doCUMeNts.ovuiiiiiiieei i aee e
2.4, Binary attaChments.uvuiiitiiit et ereenees
2.4.1. Binary data as a MIME attachment: MTOM............................
2.4.2. Wrapping binary data: DIME. ...,
2.4.3. Comparing binary XML with sending binary data over SOAP.........

2.5 SUIMIMATY . ..ttt et e e ereeeas

vii

3. Background on Mobile Devices...................cooiiiiiiiii e,
3.1. Mobile computing €nVIFONMENL.couueenuterteeteeeeanieenieeieeneenieens
3.1.1. Limited programming library..............c..cooiiiiiiiiiiiiiii i,

3.1.2. Network CONNeCtion.ooueiiiiiiiii e,

3.2. Current Web Service supports in mobile computing....................eueeenee.
32,10 OVEIVIEW ...ttt e e e

3.2.2. Offloading computation using Java Servlet APL...........................

3.2.3. kSOAP and J2ME Web Services.........cooeviiiiiiiiiiiiiininnean..

4. The Handheld Flexible Representation Architecture.............................
4.1, DESIZN OVETVIEW ... ettt ette et et et et et e et et e e et e e eaeans
4.2. SOAP Infoset based data model and separation of representation.............

4.2.1. XML and SOAP Infoset........ccevuuiiniiiiiiiiiiiiiiiiieen,
4.2.2. Binary representation of SOAP Message.........c.ccovvviiiiinninnnn..
4.2.3. Simple_DFDL......oii i
4.3. Negotiation of CharacteristiCs.oouvvruieiitii i,
4.3.1. Supporting alternative representation of SOAP message...............
4.3.2. Negotiating characteristics of stream................ccooviiiiiiiin..
4.3.3. Negotiation STAZE.ueeuuttente ettt eee e
4.4. Message handling..........ooeviiniiiiii i e
4.4.1. Handler for SOAP Header Processing.............ccovvviiiiiiniinnnn.nn.
4.4.2. Message Transformation proCess.ooueevueeiiuiennienineenneennnnn.
4.4.3. View selection handler..............c.ooiiiiiiii

R T 000) 111, (A (0 (<P

5. The Prototype Implementation of the HHFR Architecture.....................
5.1. Prototype implementation OVEIVIEW..........oiuirutinneiniiniiniieiiinieaieennen
5.1.1. Implementing three key design iSSUES...........ovvviiviiiiiiiineennn.

5.1.2. Utilizing existing efforts: Apache Axis, kSOAP, and Information

Service of CGL (Fault tolerant High Performance Information

viii

40
40
41
43
45
45
46
47

49
50
52
53
54
56
57
58
58
60
62
63
64
66
68

70
71
72

Service, FTHPIS). ..o
5.2. Negotiation SCheme.oviiiiiii e
5.3. The Simple_DFDL: The DFDL-style Data Description Language...........
5.3.1. DEFDL OVEIVIEW. ...ttt e
5.3.2. Simple_DFDL ...
5.3.2.1. Structures and types of Simple_DFDL...........................
5.3.2.2. Declarations of Simple_DFDLoa
5.3.2.3. Data processing using Simple_DFDL
5.3.3. Comparisons between Simple_DFDL and DFDL.......................
5.4, Data StEAMINZ. ... vttt et et et et et e et et e e ee et e e e e e e nneeaneeans
5.4.1. High performance communication channel..............................

5.4.2. Queuing in the sender thread................cooiiiiiiiiiiiiiiii

. Prototype Evaluation and Discussion..............................co

6.1. Benchmark applications.............c.ooiiiiiiiiii i
6.1.1. String coNCateNAtion SETVICE.vuutennttiitiateeeaeeieeaiaeanen
6.1.2. Floating point number adding SErvice............covviviiriiiniennnennnn.

6.2. Performance cost analyze modeling................ccooviiiiiiiiiiiiiiineenn,

6.3. Performance evaluation configuration.................oooviiiiiiiiiiiiinn
6.3.1. CONNECHION SELUP. ... euttenttete ettt et e e e aee e
6.3.2. Measurement methodology..........coovviiiiiiiiiiiiiiiiiiie e,

6.4. Observed performance measurements and performance analysis.............
6.4.1. Observed measurements of the benchmark applications...............
6.4.2. Performance analysSiS...........ooueiiiiiiiiiiiiiiiiii e,

6.5. HTTP Persistent connection in mobile computing environment...............

0.0, SUMIMATY ...ttt e ettt et e e e e e e et et e et e et e eaeenaeenneens

. Optimizing Web Service Messaging Using a Context Store for Static Data.

7.1. Overview of WS-Context Service implementation of Community Grids
Lab (CGL). ettt e

7.2. WS-Context service as a Context-store of the HHFR and its usage...........

X

73
74
77
78
81
82
84
85
86
88
89
90

7.3, Performance evaluation.coeuuuneee ettt et 121

7.3.1. Performance evaluation model.................c.ooiiiii 122
7.3.2. Evaluation configuration..............cooeiiiiiiiiiiiiiiiiiieaiens 125
7.3.3. Experiment 1: Context-Store access time.........oouvevreernnernneannn.. 125

7.3.4. Experiment 2: Evaluation of performance measurement of full

SOAP message and optimized message with Context-store usage....... 127

7.3.5. Experiment 3: Scalability of the Context-store........................... 130

7 R el 03 T) P P 131

8. Future Work..... ... 134
8.1. SOAP mesSage COMPIESSION. .. .ueunutteteenttetiteeteeatteateeeeaaeeaeenans 134
8.2. Data description language.oooueiiiiiiiiiiii i 136
8.3 FIIHOIS. .ottt 137

8.4. Multi-transport protocol supports for high performance channel............... 138

9, COMCIUSIONS. oo e 139

Bibliography 143

List of Figures

Figure 2.1 Simple example of Fast Infoset indexing.................cooevviieiiiiiennnne.
Figure 2.2 Simple example of XOP-SOAP message..........c.ccovviiiniiieieeniiieenne.
Figure 2.3 DIME fieldS.......coiiiiii e e e e
Figure 2.4 Simple example of DIME message............covviiiviiiiiiiiinie e,
Figure 3.1 J2ME components and organization...............c.eeeveeiniirienennsenieennnnen.
Figure 3.2 Computation Offloading scheme using proxy for mobile Web Service....
Figure 4.1 Illustrated overview of HHFR architecture...................ccccooviiinnnee.

Figure 4.2 Possible message exchange between two WS-RM endpoints................

Figure 4.3 Relationship of different forms of SOAP messages and their defining

o703 11 (5.« O PR
Figure 4.4 viewHandler: Selecting filters for optimized representation...................
Figure 4.5 Representation formatting and transforming representation.................
Figure 5.1 Simple overview of prototype implementation....................coeevveeenee.
Figure 5.2 Modified sequence diagram of negotiation Stage...............occceevvveennnenn.
Figure 5.3 Abstracted overview of DFDL architecture..................ccccoivviiiennnnn.
Figure 5.4 Simple_DFDL modules in HHFR prototype and their interactions.........

Figure 5.5 Simplified message writing process using streamer stub............cccccce....

Figure 5.6 High performance communication channel layer diagram of TCP

X1

26

36

37

38

42

46

50

59

63

65

67

72

77

79

85

86

EST6TC] 0110 OO SO U PRSP TR PRUPRUPPRPRUPRRRPON
Figure 6.1 Abstract comparison between the conventional Web Services and the
using the HHFR in the benchmark testing............c..cooiiiiiii i,
Figure 6.2 Overviews of interactions between Web Services and clients in a SOAP
Lo B ¢1c 12 3 [1 PP
Figure 6.3 Overviews of corresponding interactions between HHFR participants in
A HHFR tESt SCENAIIO. tiiiititiiiieiiecie ettt ettt
Figure 6.4 Abstract overview of the connection setup between Treo600 and service
MACKINE.
Figure 6.5 Total time to finish streams of the string concatenation application

(2 SEIINES PET MESSAZE) ... e eneeneete et et et ettt et ettt et e e et e e et e eeaeeaeenas
Figure 6.6 Total time to finish streams of the string concatenation application

(4 SIIINZS PET MESSAZE) . .. v e eneeennte et ettt et e et e et et e et et e e e eaeeaaeeeeeenaes
Figure 6.7 Total time to finish streams of the string concatenation application

(8 SIIINZS PET MESSAZE) . .. v e eneeeteeenteetteeate et e et e et e et et e e e et e eieeeaeennes
Figure 6.8 Total time to finish streams of the string concatenation application

(16 SIrINGS PEI MESSAZE) .« v e veeetentett et ettt e ettt et et et e eeeaneeaeenn
Figure 6.9 Total time to finish streams of the floats addition application

(2 f10ALS PET TNESSAZE) . .+« ve et ettt et ettt ettt et e ettt et e e
Figure 6.10 Total time to finish streams of the floats addition application

(4 £10ALS PET TNESSAZE) . .« e ve ettt et ettt et et e ettt et e eenene
Figure 6.11 Total time to finish streams of the floats addition application

(8 f10ALS PET NESSAZE) . .+ e veeneenteet et ettt ettt e et et et e eaene

Xii

89

94

96

98

102

108

108

108

108

109

109

109

Figure 6.12 Total time to finish streams of the floats addition application
(16 fl0ALS PET TNESSAZE) .+« nve ettt et ettt et et e et et e et et e e e e e aeeae 109
Figure 7.1(a) getContext SOAP request message created using AXiS..........ccceeeeeeee. 119

Figure 7.1(b) getContext SOAP request message created using kSOAP for the

mobile WS-ConteXt Client............oeiiiiiiiiiiiiiiiiiieeeeneenecsieeeeseeeneeneeeneeee. 119
Figure 7.2 Mobile and Conventional context service clients..................cceoeennee 120
Figure 7.3 System parameters.cooevuviiiienreininieniieneenneeneeereeseeeseeneessneeneee 123
Figure 7.4 System parameters with time frame..................ccccooiiiinniinicviiene. 123
Figure 7.5 Set up for measuring context-store accessing overhead..............ccccceee.. 126
Figure 7.6 WS-RM message example for Context-store access measurement.......... 126
Figure 7.7 Scenario for WS-Addressing example............c.oovveiiiiiiiiiniieenicee. 128
Figure 7.8 Sample SOAP message for WS-Addressing example..............ccccceeeeee. 128

Figure 7.9 Round trip time of optimized message exchange through the HHFR
high performance channel compared with full message exchange.............ccccccce.. 129
Figure 7.10 Total time to finish Context-store request message processing (i.e.,

Xiii

Chapter 1.

Introduction and Motivation

This dissertation presents an architecture for optimizing Web Service performance in
mobile computing. Our thesis is that the conventional Web Service communication
framework does not adequately meet the needs of mobile computing. It is physically
constrained and requires an optimized messaging scheme to prevent performance
degradations in not only mobile computing, but also conventional computing that is
interacting with mobile applications. We propose a novel architecture called the
Handheld Flexible Representation (or HHFR), with which mobile applications can
negotiate characteristics for message stream and representation, and exchange messages
in an optimized streaming fashion. By distinguishing between message semantics and
syntax with a high-performance channel, the architecture provides an overall system
framework for Web Services applications in mobile computing environment. Despite its

important role in distributed computing, mobile computing hasn’t reached its full

potential because of the limited availability of high speed wireless connections, such as
third generation cellular technology (3G) or Broadband Wireless access. In this
dissertation, we show that the messaging scheme of our new architecture significantly
speeds up the messaging performance in comparison to a conventional SOAP-based Web
Service messaging scheme when the request and response messages are in the same
syntax, i.e. the same service is used continuously. We expect our research to grow in

significance as the mobile infrastructure improves.

1 Introduction: Web Services technology and Mobile Computing

Web Services technology profoundly affected distributed computing after it first
emerged a few years ago. Like its predecessors, such as the Common Request Broker
Architecture (CORBA) [100], Remote Method Invocation (RMI) [101] and Distributed
Component Object Model (DCOM) [102], Web Services’ primary goal is to inter-relate
distributed functionalities. But unlike its predecessors, it achieves its goal in an elegant
and technology-neutral manner; it provides well-defined interfaces for distributed
functionalities, which are independent of the hardware platform, the operating system,
and the programming language. So distributed functionalities, or services, which may be
running on different hardware platforms, may be running in different operating systems,
or may be written in different programming languages, can communicate through web
Service interfaces.

The interoperability of Web Services mainly comes from its Extensible Markup
Language (XML) based open standards. The Simple Object Access Protocol (SOAP) [84]

is defined in XML. Since it is text-based and self-describing, the protocol can convey

information between services in heterogeneous computing environments without
worrying about conversion problems. Naturally, there are many other Web Service
specificationsl. Two of them, which are based on XML, are Web Service Description
Language (WSDL) [85] and Universal Description, Discovery and Integration (UDDI)
[103]. WSDL defines a standard method of describing a Web Service and its capability,
and UDDI defines XML-based-rules for publishing Web Service information. Because of
its strong interoperability across diverse services in a distributed environment, Web
Service-based Service Oriented Architecture (SOA) has become the backbone of Grid
computing. The Open Grid Services Architecture (OGSA) [29] defines a standard Web
Service environment for Grid computing.

Just as Web Services technology has become an industry standard way of connecting
remote and heterogeneous resources, mobile devices have become a vital part of people’s
everyday life. People use mobile devices anytime and anywhere, (e.g. cellular phones,
PDA devices with either a cellular or a wireless local area network (WLAN) connection
based on the IEEE 802.11 specifications [104], and hand held game consoles). In this
dissertation, we define mobile devices to be those that are not only small size computing
devices, but are also equipped with a wireless connection so that they can participate in
some type of distributed computing. The number of cellular service subscribers has
increased rapidly in the last 5 years2. As cellular phones become important devices, their
usage is not limited to voice communication. People can also check Email and access the

Internet with a cellular phone. In fact, cellular phones are so useful that fewer people are

! We will use both specification and standard interchangeably throughout the dissertation. To be precise, a
standard is a specification that has undergone a formal or de facto evaluation process.

* Cellular phone services are also gradually replacing landline phone services. According to a study which
was conducted by the U.S. Bureau of the Census, 7% of all American households only have cellular phones
and that rate rises to 20% for persons age 15 to 24 [107].

wearing a wrist watch these days because they check the time with their cellular phone
[138]. New models of cellular phone devices are capable of playing digital audio and
video files, and they are also equipped with adequate memory space (e.g., 1GB secure
digital memory) to store hundreds of music or video files. The features of the PlayStation
Portable (PSP) [108] include ability to play movies®, and/or music, and it is not limited to
gaming. PSP also supports IEEE802.11b [105] and IEEE802.11g [106] connections
which allow the user to play a game with other players. Because of these improvements,
Mark Weiser’s Ubiquitous computing will become viable with the proliferation of mobile
devices [50].

Recently, the capability of mobile devices and wireless connection technology has
increased dramatically. The performance of the mobile device is significantly enhanced
by faster processors, larger installed memory, and enhanced user display. Meanwhile, the
connection to a network has become easier through a widely available packet-switched
2.5G or 2.75G network as well as through third generation networks®, which are in an

early developmental stage in US.

2 Motivation: Problems in integrating Web Services with Mobile
Computing
Web Services technology recognizes mobile computing as an area to which it should

expand. Through integration, Web Services enables pervasive accessibility by allowing

for user mobility as it overcomes the physical location constraints of conventional

? Universal Media Disc (UMD) is used for playing movies, music, and games on PSP.

* There is another breakthrough in the metropolitan area network (MAN) technology, IEEE 802.16. Though
we limit our presentation to the cellular technology, since it is the most dominant and popular wireless
technology with billions of subscriber. Also the IEEE 802.16, including WiBro (Wireless Broadband),
which is deployed in South Korea, is at too early a stage to discuss its popularity.

computing. However, mobile computing also requires a technology that connects mobile
systems to a conventional distributed computing environment. Web Services may be the
perfect candidate for such connection, since a strong interoperable capability is the key
requirement of the technology. This will be important for its success when we consider
the fact that the mobile computing environment is much heterogeneous in terms of
hardware platform, operating system, and programming language. This, the integration of
mobile computing with Web Services technology will give many advantages to both
sides.

However, despite the fact that the condition of mobile computing has so much in
improved recent years, applying current Web Service communication models to mobile
computing may result in unacceptable performance overheads. This potential problem
comes from two factors. First, the encoding and decoding of verbose XML-based SOAP
messages consumes resources. Therefore Web Service participants, particularly mobile
clients, may suffer from poor performance compared to other distributed computing
approaches such as HTTP (Representational State Transfer: REST [109]), RMI or
DCOM. Second, the performance and quality gap between wireless and wired
communication will not close quickly.

As discussed, there have recently been radical improvements in the performance of
wireless cellular connections. However, there are important obstacles which prevent the
performance of wireless connections to match that of wired systems. First, 3G
technology, which provides a maximum bandwidth 300~500kbps for downloading and
56~90kbps for uploading, can not match the bandwidth capabilities of a wired

connection, which provide 10Mbps~1Gbps for both downloading and uploading. Second,

3G has a limited deployment and currently does not reach most of the US non-
Metropolitan areas 5, Third, wireless connections using radio waves face more
degradation factors like buildings and landmarks than wired connections. Such
degradation results: a poor quality of service for wireless connections. Ultimately, both of
these factors are decided by battery-life and the rate of power consumption: mobile
devices depend on a battery to maintain operations. Since a faster processor and a faster
connection usually require more power consumption than slower devices, they will
shorten the device’s use time, which will lead not only to usage difficulties but also
consumer resistance. This slows the deployment of 3G technology.

The problems created by encoding/decoding and slow wireless connections are the
following: First, the message size will increase when data is converted into a textual
format, which contains not only data, but also many descriptive tags. The size increase
can be as high as an order of magnitudes, if the document structure is especially
redundant (e.g., in the case of arrays). Even in a conventional computing environment, it
is always good to have a small message. But in mobile computing, it is absolutely
required because of the narrow bandwidth connection.

Secondly, encoding data into a SOAP message requires a text-conversion, where the
in-memory representation is converted into a textual format. The decoding process does
the reverse work. If the data is non-textual, such as a floating point number, the

conversion is very expensive in terms of performance overhead, which is especially

significant for relatively low-powered mobile devices.

5 Even in fully serviced areas, such as South Korea, limited numbers of cellular users are using 3G, because
of its high cost to use.

Finally, even though the Web Service specification is not limited to any specific
transport protocol in its architecture, the Hyper Text Transfer Protocol (HTTP) protocol
is currently the most popular transport protocol among mobile Web Service
implementations. However, particularly in mobile computing it does not perform
adequately to be used in some application domains, which need high performance
communications. Because it is based on a request/response paradigm, sending a request
in HTTP is tied to receiving a response. When the communication channel has a high

latency, this request/response paradigm produces performance degradation.

3 Thesis Summary

This dissertation proposes a novel architecture called the Handheld Flexible
Representation (HHFR) ° for efficient and optimized Web Service messaging
performance in mobile computing. HHFR introduces a negotiation stage in order to set up
a high performance communication channel. This distinguishes between message
semantics and syntax to allow for a flexible representation of a message. In HHFR, a
Web Service participant initiates a stream, which is a series of message exchanges using
the same structure and type, by sending a SOAP request message to negotiate the
characteristics of the following communicated messages with another participant. If the
negotiation is successful, which means that the other participant agrees to use the HHFR
scheme, the two participants or endpoints, exchange messages in a preferred
representation. The preferred representation is the negotiated format of messages and it is

not limited to SOAP-style, but rather supports many optimized formats. The message’s

% It would be abbreviated as HFR, but conventionally, Handheld is abbreviated as HH in mobile computing.

semantic content is preserved while the syntax used to express the content is agreed upon
in the negotiation stage, and the HHFR uses this negotiation to establish a message
stream.

There are three key design points of the HHFR architecture, which make the message
exchanges in HHFR efficient. Firstly, in the HHFR, applications exchange messages in a
streaming style. The HHFR sets up a message stream between the participants based on
the characteristics negotiated. The message exchange is then freed from “waiting for
response” by adapting an asynchronous messaging style, and it can be implemented
through various transport protocols such as the connection-oriented Transmission Control
Protocol (TCP), the connectionless User Datagram Protocol (UDP), or HTTP with a
persistent connection’.

Secondly, HHFR uses a Data Format Description Language (DFDL)* [58]-style data
description language, named the Simple_DFDL, to represent a message structure and
type. The HHFR distinguishes between message semantics and syntax, and the syntax is
represented in the Simple_DFDL.

Thirdly, in the HHFR, a Context-store module holds the static (within a particular
stream) data of the messages: These include a) the unchanging or redundant SOAP
message parts, b) the Simple_DFDL file as a data representation, and c¢) negotiated
characteristics of a stream. By storing the message fragment or meta-data of the stream as
context, the application can exchange slimmed down messages that contain only the vital

part of the message content without losing the formal ability to be able to produce the

THTTP 1.1 specification defines the mechanism to send one or more (usually, between two and five)
requests.

¥ It is a XML Schema based descriptive language proposed by the Global Grid Forum (GGF). In Chapter 2,
we will discuss it in detail.

conventional SOAP message representation on demand. For the context-store we use the
Fault Tolerant High Performance Information Service (FTHPIS) [110], which is WS-
Context [95] compliant and was developed by the Community Grid Laboratory at Indiana
University. Our architecture represents a novel use of this technology and presents
interesting new performance measurements on FTHPIS.

In order to demonstrate the potential of HHFR, we focus on an application domain
where two Web Service participant nodes exchange a series of messages. In this
dissertation, we define this message series as a stream. For applications using a specific
service, messages in the stream have the same structure and the same data type, if the
client application links to the same service repeatedly. Applying our new approach to the
stream yields many advantages in communication performance, such as the ability to use
a flexible representation and to store meta-data in the Context-store. The overhead in
setting up our approach is only incurred once per stream and amortized over the many
messages potentially contained in a stream.

In this dissertation, we describe the architecture design and implementation of the
HHFR-based Web Service communication platform which is compatible with
conventional SOAP Web Services. The prototype of the architecture, which is
implemented in Java, is presented in detail and is evaluated through two benchmark
applications. We present performance results demonstrating that the HHFR achieves
efficient Web Service communication and outperforms the conventional SOAP
communication particularly with applications that exchange messages in a streaming
fashion. Our presentation is particularly focused on applications in mobile computing, but

the approach may be more general.

4 Thesis Contributions

This dissertation investigates significant research problems that emerge with the
increasing need for a system level framework integrating Web Services technology and
mobile computing with a broad, clean architecture rather than using various ad-hoc
approaches. Those research problems include, but are not limited to:

e The verbosity of the XML-based SOAP message format causes performance
degradation in Web Service message exchanges in mobile computing. This
performance issue involves:

o The size of messages which increase after a SOAP serialization.
o Encoding and decoding includes the conversion between text to/from non-text
format conversion

e A conventional Web Services communication channel does not adequately meet the
need of mobile computing environments for the following reasons:

o A high latency wireless connection slows down overall message exchanges.
o The conventional Web Service transport, HTTP, ties sending a request
message with receiving a response message.

These problems have been investigated by many researchers. As a result, there have
been many systems proposed to solve them. However, to the best of our knowledge, none
of these proposals or implementations tried to provide a system level solution rather than
an ad-hoc solution for part of the problem.

The goal of this dissertation is to design a system-level architecture that can:

¢ Distinguish the semantics from the representation of Web Service message content.

10

e Describe a representation or syntax of the message in a XML-based description
language.

e Support a high-performance communication channel.

® Provide a mechanism to negotiate the characteristics of a stream, which is a series of
message exchanges.

e Provide an interface to an Information Service to store the meta-data of stream.

In this dissertation, we present our investigations into the problems of Web Services
and our design and implementation of the Handheld Flexible Representation (HHFR),
which meet goals stated above. Therefore this dissertation makes the following

contributions in the area of mobile computing:

The Handheld Flexible Representation Architecture and the prototype

implementation: the main contribution and focus of our dissertation is the HHFR

architecture, which offers a system level comprehensive communication framework to

Web Services applications in mobile computing environment. The architecture and its

prototype implementation include the following contributions:

® Proposing and implementing an asynchronous messaging system through a high-
performance communication channel to reduce the performance overhead in mobile
communication. Because of high latency, the interval between the request and the
response through wireless connections is essentially unnecessary overhead that
wastes communication time. Asynchronous messaging combined with a high-

performance channel reduce the performance gap by filling up “a logical pipeline” [3]

11

between two endpoints. We show that our approach can utilize the connection better
than conventional methods. Once two endpoints agree on using second channel to
exchange messages, they send and receive messages in streaming fashion.

Defining the Simple_DFDL. The flexible representation can be achieved by
separating the semantics of a message and its representation. We present a detailed
discussion of the Simple_DFDL, which describes the data format for the HHFR
prototype. We also present the structure of the Simple_DFDL, which is similar to that
of DFDL.: i.e., the Simple_DFDL language describes the data format, the Schema
Processor builds the HHFR Data Model, and the stub converts data from and to a
preferred representation.

Proposing the Context-store to store the meta-data of a stream and implementing
interfaces to the FTHPIS. We present our approach which saves the meta-data of a
stream to reduce the size of the messages in the stream, and implements interfaces to
the Information Service. Our empirical experimental results show significant

performance savings by using this approach.

Detailed Performance Evaluations: we present a detailed performance evaluation of the

HHFR through two benchmark applications. Each application covers different data

domains: strings and floating point numbers. The results show that applications in the

HHFR outperform the conventional SOAP-based Web Service communication through

HTTP. We present the Context-store related performance results, which show bandwidth

savings by storing meta-data to the Context-store and exchanging slimmed down

messages. In addition, the scalability analysis shows that a server can support several

12

thousands of simultaneous streams in our approach to use Information Service as a

Context-store.

List of recommendations for an ultimate solution: an additional contribution of this
dissertation is our recommendation for an ultimate solution. We present a list of our

recommendations uncovered through our studies and investigations.

The HHFR architecture can be used in many areas. For example, a Geographic
Information System (GIS) client on a mobile device can benefit from our novel
architecture. Assume that the client receives periodical GIS information, such as
temperature and pressure, and that the gathered periodic information as a collection will
generate a graph. Since conventional Web Service messaging supports only SOAP
formats and a high latency and narrow bandwidth wireless connection is not sufficient for
big data set, the client should have a framework, by which it can choose among various
data format such as ASCII’, Geography Markup Language (GML) [111], and binary and

thereby utilize the wireless connection better.

S Thesis Roadmap

The rest of this dissertation is organized as follows.
In Chapter 2, we present background on the HHFR architecture, presenting previous,
and on-going efforts which address the performance limitations of SOAP based Web

Services technology. In Chapter 3, we give an overview of mobile computing and the

? American Standard Code for Information Interchange

13

current status of mobile Web Services. This chapter explores the specific mobile
computing problems, which are added to the existing problems of conventional
distributed computing, and it also details the current Web Services strategies for mobile
computing.

Chapter 4 describes our HHFR architecture in detail. The architecture proposed in
Chapter 4 is an idealized solution and we discuss a prototype where practical
considerations require some compromises in Chapter 5. The prototype is then subjected
to several tests, which are analyzed to help clarify the key features of the full HHFR
architecture.

Chapter 6 presents a detailed performance study of the two benchmark applications
we used to demonstrate the performance saving aspects of the HHFR architecture design.
In Chapter 7, we discuss the Context-store implementation of the architecture design and
its performance evaluations, which are specifically design to examine the Context-store’s
validity. Finally, in Chapter 8 and Chapter 9, we outline several areas for future work and

present the conclusions of our research.

14

Chapter 2.

Background and Related Work

In this chapter, we present background on the HHFR architecture, presenting
previous, and on-going efforts, which address the performance limitations of SOAP
based Web Services technology. Some of these efforts do not specifically target mobile
computing environments, but they share similar research issues with mobile computing.
As explained in the previous chapter, Web Services in a mobile computing environment
face problems of performance-degradation similar to the conventional distributed
computing environment. So a primary research issue in the mobile Web Service area is
the attempt to provide an efficient message processing scheme while preserving XML’s
interoperability.

Related work on solving this problem can be categorized as either individual message
optimization or as message stream optimization. An individual message optimization

approach produces a simplified, efficient, and self-contained message, which is a

15

different format (or representation) to XML. The messages in the different representation
can be converted to and from the XML format, which is called roundtripping. For
example, Fast Infoset (FI) from Sun Microsystems [61] [62] and XBIS [13], [72] by
Dennis Sosnoski fall into this category.

On the other hand, the message stream approach optimizes a whole sequence of
related messages, which we define as a stream'. This approach includes a certain form
of negotiation to define stream characteristics, and optimized message representation in
the stream. Examples of this category include Fast schema from Sun Microsystems [60]
[141] and our own HHFR architecture [44].

Within this chapter, we will describe other related works as well whose goal is
attaching binary data to SOAP message. Examples of this include are Message
Transmission Optimization Mechanism (MTOM) [86], XML-binary Optimized
Packaging (XOP) [87] and Direct Internet Message Encapsulation (DIME) [63].

We classify the 6 approaches described in Table 2.1.

Table 2.1 Categorized XML Optimization Efforts

Individual Message Approach Stream of Messages Approach
(Self-Contained Message) (Non Self-Contained Message)
Fast Infoset of Sun Microsystems ExtremeFastWS

XML Schema-Based Compression (XSBC) Fast Web Service of Sun Microsystems
XML Infoset Encoding (XBIS) Handheld Flexible Representation

' From the application level point of view, we use the term a session for consecutive messages between a
service and a client.

16

1 Lineage of XML Binary Representation

The self-contained markup syntax of XML makes SOAP messages self-describing.
Yet its syntax causes performance limitations (or degradation) in some computing
domains. In this section, we describe previous work on Binary Representations for XML

and SOAP.

1.1 XML As A Data Interchange Format

XML has become a popular data format for interchanging information because it is
self-describing and easy to implement. Since each data field'' of an interchanged
messalge12 is individually described by its markup, they are individually understandable
and can be modified independently of other data field. An application uses an engine,
which is called parser in many cases, to process XML data. The parser can be a separate
module and maintained independently. Consequently, applications whose data
interchange format is XML can be loosely coupled to each other regardless of what
platform they are running and in what programming language they are built.

Yet there are problems with XML in mobile computing. One reason is that the data
size is larger after a transformation from binary format to text-based XML. Also XML
document requires non-trivial amounts of processing time to parse, transform, and
validate text-based markup syntax. Despite the performance degradation that exists when
using XML, application developers and users in a conventional distributed computing

domain are not very concerned, because their machines are powerful and have

11 i.e. Information Items defined by XML Information Set (Infoset) specification [82]

12 It is either a single XML document or a collection of multiple XML document. For example, a SOAP
message instance consists of multiple XML documents. Header parts may contain several XML, but a
payload should have one XML document.

17

connections sufficiently fast. But mobile computing and real-time computing are not like
conventional distributed computing in that regard. They are sensitive to the performance
overhead. The processing overhead of XML and SOAP is amplified in the relatively low-
powered and low-bandwidth mobile computing environment. In addition, real-time
computing is much more sensitive to transmission latency due to the larger data and
increased processing required.

As a result, there has been much discussion of, and effort put into, finding more

efficient, but still XML-conformant representations.

1.2 XML Binary Characterization Working Group

Binary XML is defined by the XML community as “A format that does not conform
to the XML specification yet maintains a well-defined, useful relationship with XML.”
[90] In other words, we can also define it as any format that has a filter'® and its inverse
to conventional XML. Binary XML is quite common because there are many areas that
need the binary XML specification when the verbosity of XML causes performance
degradation.

The report of the W3C Workshop [89] on Binary Interchange of XML Information
Item Sets (Infoset)'* [82] documents the increasing demands for binary XML. The report
incorporates both the conclusions of the workshop, which met in September 2003, and
several dozen position papers that were presented at the workshop [60] [64] [1]. The

purpose of the workshop was to study methods of compressing XML documents and

13 A filter converts formats between the conventional XML and Binary XML. It may or may not need to
access information outside a format (i.e. a message)
'* We have a detailed explanation and discussion in Chapter 4.

18

transmitting pre-parsed and schema specific objects. The requirements of binary XML

Infoset as identified at the workshop are the following:

1) It must maintain universal interoperability.

2) It should provide a generalized solution that is not limited to a specific application
domain.

3) Processing time including data binding time should be reduced from original XML
documents.

4) There should be a negotiation — if it fails and the receiver cannot understand the

binary, it should fall back to the XML/SOAP text format.

The discussion led W3C to form the XML Binary Characterization Working Group
(XBC WG) [112] for further research. In March 2005, a series of XBC WG notes were
released, providing a formal definition of binary XML [57], its use cases [91],
measurement methodologies [93], and properties [92]. The XML Binary Characterization
note specifies the W3C recommended property requirements that must by supported by
binary XML. The properties are:

¢ Transport independence: the binary XML format should be independent from the
transport service in that it should be error-free and deliver the messages in order,
regardless of the message length.

e Human Language Neutral: the format also should not impose more restrictions on
one human language than another.

® Royalty Free: the format should be free to create and use.

19

e Platform Neutrality: platform neutrality doesn’t require the format to perform
identically on all computer platforms and architectures; rather it requires that
binary XML not be defined around any platform specific parameters.

e Content Type Management15 : Content Type Management means that the format
should define its own media types, encodings, or both. The XML stack consists of
validation, transformation, querying, APIs, canonicalization, signatures, encryption,
and rendering.

¢ Integratable into the XML Stack: the format should easily find its place within the

existing body of XML-related technologies.

In section 5 of the XBC Characterization note, three additional properties are
mentioned that must be supported: Direct Readable and Writable'®, Compactness, and
Processing Efficiency. A scheme, which otherwise looks to be well composed, could
violate one of the required properties, and so cannot be considered as a W3C endorsed
binary XML. A popular example is GNU ZIP (GZIP) [76]. It preserves the byte-to-byte
integrity of XML and provides a good compactness. Yet, its overall performance is poor
when it is applied to a short document with non-redundant vocabulary since its
processing time includes compression and decompression time as well as serialization
and deserialization. Because of this long processing time, which violates the processing
efficiency requirement, GZIP is not considered to be a W3C endorsed binary XML.

The imperative to speed up Web Services for small devices are well summarized in

W3C’s “XML Binary Characterization Use Cases [91]” document. This document

' The last two property requirements are necessary to ease integration between existing XML and web
technologies and the new binary XML format.
'® The format should be serialized in one logical step.

20

describes situations where XML possesses potential overheads and defines these
situations where devices have limited memory, limited processing power, and a limited
battery life. These are critical factors for Web Services for small devices, and they are
even more critical when they are connected to narrow bandwidth and high latency
networks. As a result, this computing domain would have considerable benefits from a

small packet and streaming processing scheme.

2 XML Alternatives: Self Contained or Not

Some systems or proposals do not satisfy all the requirements of the W3C XML
Binary Characterization, but they can still provide good insights into the performance
problem of XML and good designs to tackle it. To that end, we will discuss proposals for
optimized XML messaging including those inconsistent with the W3C requirement. As
discussed, we categorize the research into the optimization of XML message processing
into two groups: the individual message approaches and the stream of messages

approaches.

2.1 Self Contained Approaches

Most proposals that follow the XML Binary Characterization of the W3C have a goal
of producing a self-contained alternative to an individual XML message, optimized for
faster processing and smaller packet size.

The basic optimization strategy is to replace a redundant vocabulary with indexes.

Tables and indexing are key elements of the mechanism. This approach is similar to

21

Table 2.2 Encoding/Decoding Steps

Encoder Decoder
1. Add a newly encountered string to 1. Add a newly encountered string to
table. table.
2. Replace the string with index on the 2. On encountering an index, look up the
next occurrence. corresponding string and substitute it.

3. Repeat 2 for all string occurrences until 3. Repeat 2 for all index occurrences until

the end of the document the end of the document

document compression, but it focuses more on processing speed as opposed to reducing
document size, which is the main concern of most compression schemes.

Message processing begins when an encoder transforms an XML document into an
optimized format, i.e., a message in an optimized representation. In processing, an
encoder traverses through an XML document. When it encounters a new string, the
encoder adds the string to a table and gives it an index. If the string recurs, the encoder
replaces the string with its index. The encoder continues replacing strings with indexes
until it reaches the end of the document. Later a decoder transforms the optimized
message back into an XML document. The decoder reverses encoding procedure, also
using tables and indexes. Decoder adds a string to a table when it encounters the new
one'’. When it encounters an index, the decoder replaces the index with a corresponding
string from the table. Positive integer values are used for indexing because this is a
straightforward process and the size of positive integer value is small. Table 2.2 shows

transforming steps by encoder and decoder. In addition to replacing strings, the

' If the new string is accompanied with an index, the index puts into the table together with the string. See
our discussion about Fast Infoset.

22

compression may be applied to character information items to reduce their size, where an
XML specific compression tool, such as XMill [31], can be used.

By preserving XML information items and properties, the individual message
optimizing scheme produces a message format that is still self-contained yet can be
converted back into the XML document format. This is the primary advantage of this
approach; it produces an efficient and lightweight representation. But the conversion of
the alternative representation back to the XML document has one significant limitation,
the conversion of canonicalized information items. For example, there is no way to
distinguish two different forms of empty elements in the inversion process, e.g. <el/>
and <el></el>. It is because both of those empty elements are permitted as well-
formed XML elements by the XML specification and yet each of the two elements has
the same canonicalized form. So any XML application does not distinguish between
those two different representations. So an empty element could easily be converted into
representation, different from the original. Again, the normalizing white spaces of start
and end tags, the relative and lexicographic order of namespace and attribute axes, and
any replaced entity references may not be converted in the original element. The XML
Infoset data model is not bound to the specific representation. So the XML Infoset based
XML application extracts XML Infoset information from the XML document that is well
formed by XML specification, but it would keep them in the preferred canonicalization
format, which may differ from the original. The reverse-conversion'® could then produce

a different representation from the original.

18 The conversion back to the XML document format

23

The encoding and decoding schemes do not need to address the reliability issue. Since
an individually optimized message is self-contained, the approach is independent of the
transport protocol, and it will not be affected by the characteristics of that protocol.
Therefore, each message delivery depends on the transport protocol’s transmission

control.

Fast Infoset

We will give a practical example of individual message optimization using the Fast
Infoset specification of Sun Microsystems. Fast Infoset (FI) aims to provide an XML
alternative in order to provide faster and more efficient Web Services in restricted
computing environments. The specification was proposed at the W3C Workshop on
Binary Interchange of XML information Item by Sun Microsystems and it was
researched at the same company. Later they proposed it as a specification under Abstract
Syntax Notation One (ASN.1) [78]. Fast Infoset uses an existing standard to achieve
interoperability. The telecommunication industry standard, ASN.1 is a flexible notation
that describes a data structure and type of message exchange by providing a set of formal
and platform independent rules for describing data. The mapping XML Schema to ASN.1
is defined in the X.694 standard [99].

In the Fast Infoset specification, the serialized XML document is called the Fast
Infoset Document. It contains information items and their properties as well as the
hierarchical structure of the XML document. Examples of supported properties of
information items are children, notations, character encoding schemes, versions,
namespace names, localnames, prefixes, namespace attributes, and the normalized value

of attribute information items. Fast Infoset introduces many features that improve

24

message processing performance; for instance, the primary feature is to replace redundant
vocabularies. It uses predefined tables and references to an external vocabulary called an
Initial Vocabulary. This idea exploits common entries in a SOAP envelope, many of
which are already known before encoding in many cases. Using an initial vocabulary
table allows the transformation process to avoid processing known entries dynamically.
This means that processing time is significantly reduced.

FI has several features that contribute to faster processing and smaller message size
when it produces a Fast Infoset document. Some of them are:

® Length-prefixing of content

e Noend tag

e No escaping of character data
¢ Embedding of binary content

FI prefixes the context length for a decoder so that it can allocate resources accurately
and possibly reject a content that exceeds the size limit. In addition to prefixed content
length, FI removes the end tags from the document. The designers of FI claims that
escape character checking is time consuming and they remove the step. FI allows binary
data embedding in the document so that the conversions from and to base64 can be
avoided.

Figure 2.1 shows an example document and its transformation according to the Fast
Infoset specification. Figure 2.1(a) is the XML document. Figure 2.1(b) shows the
corresponding representation with indexed strings and qualified names in a symbolic
form. Figure 2.1(c) and 2.1(d) give a qualified name table and a generic string table,

respectively.

25

A curly bracket is used for an identifying string, i.e. a new string and a square bracket

is used for a replaced string. Thus, “[1]1<>{1}two” of 2.1(b) means that the qualified

name “tag” is indexed as 1 in the qualified name table and an index of 1 is used for

generic string “two”. The Fast Infoset document is encoded using ASN.1.

Sroots Local Name Generic Strin;
<tag>one</tag> (Qualified Name) g
<tag>two</tag>
<anotherTag>one</anotherTag> 0 root 0 One
</root>

(a) 1 tag 1 Two
{0}<root>
{1l}<tag>{0}one
[1]<>{1}two 2 anotherTag)
{2}<anotherTag>[0]

(b) ()

Figure 2.1. A Simple Example of Fast Infoset Indexing

XBIS and Cross Format Schema Protocol XFSP

Developed by Dennis Sosnoski, XBIS also uses a generic scheme for replacing

repetitive words (a define-and-replace scheme). XBIS is similar to XMill, which is a

XML specific compressing tool and will be described in Section 3 in terms of how it

replaces repetitive words with an index, but there is a difference between the two. XMill

processes an entire document at once whereas XBIS processing can encode a streaming

input, so the transformation allows encoding and decoding to start on a partial document.

XBIS forms all the components of the XML document in the same order they appear in

the text. Like other repetitive words replacement schemes, it defines each name as text

only once, and then uses a handle value to refer back to the name when it is repeated.

26

Cross Format Schema Protocol (XFSP) [1] is another project that serializes XML
documents based on a schema. Initially it was created to provide as a flexible definition
of network protocols. It is written in Java and uses the DOM4J [113] model to parse the
schema. Combined with XML Schema-based Compression (XSBC) [12], XFSP provides
binary serialization and a parsing framework. Eric Serin and Don Brutzman of the Naval
Postgraduate School designed and implemented XFSP, and are currently researching
streaming X3D [23] documents in the XFSP framework. X3D is a XML-based open

standard for three dimensional data.

2.2 Non Self-Contained Approaches

Another approach to improving Web Service performance uses a stream of
messages. In this approach, messages are not self-described and are in an alternate
representation.

The steps of this type of message processing are simpler than the steps in the
individual message optimization approach, which needs to replace repetitive words (e.g.
in this type of message processing does not require a data conversion to and from text
format). But in order for it to work a customized encoder and decoder are required
because the application processes a message that is not a general self-contained XML
message, but rather it is an alternative format message. The encoder and the decoder must
write and read the schema specific data equivalent to XML information items as it is
defined in the XML Schema document. The application is not able to handle a message
unless it follows the type and structure in the schema.

Generation of the encoder and decoder could either happen dynamically or statically:

27

e Since an XML Schema document describes a structure and types, the application
builds an encoder and decoder by parsing an XML Schema of the message. To use a
different format for exchanging messages, the application simply parses a schema
document in the new message format and generates the new encoder and decoder
dynamically.

e When the schema of messages is fixed for the lifetime of the given application, the
encoder and decoder in the application can be generated statically when it is compiled
and deployed.

The stream of messages approach has obvious advantages and disadvantages. One of
the advantages is the performance gained by avoiding a text conversion. Since the
approach does not require text-based XML data format, the application is able to ship
binary data directly without conversion. Also, the size of messages can be reduced by not
requiring a descriptive markup for XML information items.

One of the disadvantages comes from the same reason: the messages are not self
contained. The strength of XML messaging lies in the descriptiveness of the XML
documents. In the processing of messages in the series of messages'’, processing one
message does not affect the processing of other messages. Because it separates data (i.e.,
semantics of the message) from its XML syntax, the representation of one message must
be similar to other messages in the stream. So this approach does not allow any changes
in the structure and types of messages in the stream.

Despite the disadvantage presented here, some application domains needing high-
performance communication should be able to sacrifice the self-describing characteristic

of an XML document.

' We define the series of messages as a stream in the previous chapter.

28

Extreme! Lab’s Multiprotocol Approach Recommendation (ExtremeFastWS)
Extreme! Lab at Indiana University researches the limits of SOAP performance for
scientific computing where large data sets, such as arrays, are common [35] [36]. Their
experiments show major improvements by using a) a schema-specific parser mechanism
for arrays, b) a persistent connection, and c) a streaming of messages to prevent full-
serializing objects from determining length. The most serious overhead when exchanging
large scientific data sets is the conversion from in-memory floating point numbers to a
textual format. This research suggests that it is more beneficial for scientific applications
to use multiple communication protocols including a binary representation and fast
protocols other than SOAP. The problems faced here with conventional Web Services are
similar to the ones in mobile computing. Both need to overcome the performance

limitations of SOAP.

Fast Web Services from Sun Microsystems

Fast Web Services (FWS) of Sun Microsystems is intended to provide a fast and
efficient Web Services specification that is interoperable with existing technologies and
minimizes the impact on application developers. It has been developed by the same group
of people at Sun as Fast Infoset. The FWS implementation encodes XML information
item data using ASN.1 encoding rules, like X.694. The difference between Fast Infoset
and Fast Web Services is that Fast Infoset uses a self-contained message while Fast Web

Services uses a schema specific binary data format.

29

Fast Web Services provides fast processing and low bandwidth usage by adopting the
ASN.1 standard to XML schema. Additionally, since its data transformation is
transparent to the application developer, the Web Service Definition Language (WSDL)
and higher layer are unchanged in developing applications. But since the approach needs
a tailored encoder and decoder — a stub and a skeleton for the schema specific data — it

has a limited expandability.

Example: Data Format Description Language

The Data Format Description Language (DFDL) [58] from the Global Grid Forum
(GGF) falls into the stream of messages category in a broad sense. DFDL defines both
the structure and type of binary information using an XML Schema style language.

DFDL is a descriptive language that is proposed to describe a binary format file or
stream for Grid computing. Like Extensible Scientific Interchange Language (XSIL)
[59], it is XML-based and comes with an extensible Java data model. DFDL defines the
structure and type of data. For example, it defines whether the data is big-endian or little-
endian. It also defines complex data formats such as arrays. DFDL is designed to be
processed through a DFDL parser.

The message format description in our HHFR architecture is based on DFDL. In this
architecture, we define a simple XML-schema-based descriptive language and develop a
language parser using the XML Pull Parser (XPP) [7]. Our prototype implementation will
show the design advantages of our architecture. We will discuss DFDL in more detail in

Chapter 5.

30

2.3 Processing Headers

There are already over a dozen specifications that define SOAP header elements
providing message routing, transactional semantics, message security, etc. SOAP 1.2
requires all top-level information item in the header to be namespace qualified. So the
SOAP header becomes a consistent place to put messaging metadata that is guaranteed
not to conflict with other metadata in the same SOAP message.

Despite the fact that there is no specific guideline in the SOAP specification about
what information should be placed in the SOAP headers, the headers usually contain
information that assists Web Services to communicate with each other in a secure and
robust way. Examples include information for message exchange, security information,
routing instructions, etc.

The handlers in the Axis [27] architecture which process the SOAP messages
demonstrate how the system processes the headers. The handler is a module, which acts
as a message interceptor, as it processes a part of a SOAP message. A target Web Service
of the given SOAP message is considered to be one of the handlers, which is located at
the end of the handler chain. A simple example of processing a header with handlers
involves a WS-Addressing header, which could be encrypted. An addressing handler
examines an address header in the SOAP message and then dispatches an appropriate
service. If the header is encrypted, a security handler in the chain should be activated.

Compared to the SOAP body, which is consumed by the services, the header itself is
processed by the system, i.e. all handlers other than the Target Service in the Axis. This
different processing level makes it difficult to apply the same alternative representation

strategy to the headers while keeping them compatible to general Web Service

31

specifications. The conventional Web Service framework, e.g., Axis or the .NET
framework of Microsoft [25], cannot understand the new alternative representation which
differs from the SOAP format. For example, a ReliableMessaging handler in the system,
which is defined by the WS-Reliable Message specification [96], cannot process a header
in the alternative representation, e.g. the representation defined by the WS-Reliablility
[114], because it does not recognize it as a SOAP header.

The WS-Security [97] case is more complicated. The WS-Security specification
allows Web Service participants to encrypt individual elements rather than the whole
SOAP message, and this makes the specification more flexible and efficient. At the same
time, encrypting individual elements makes the Security handler hard to implement in an
alternative representation other than SOAP because the representation doesn’t have the
element syntax of XML specification.

To process the message in the alternative representation, the system, which is a Web
Service container or a SOAP engine that understands it, would convert back to a SOAP
message format and process the headers in a conventional method. The drawback of this
method is the conversion overhead. Since the goal of the alternative representation
includes high-performance processing of the message, converting back to the SOAP
message format creates a huge redundant overhead to message processing. One way
around this redundancy is to place a handler that understands the new alternative
representation in the early phase of the handler-chain like a transport handler in the AXIS
architecture and processes the header.

The object model for Axis2 [28], called the Axis Object Model (AXIOM) has an

interesting approach to this problem. Internally, Axis2 uses an XML Infoset based data

32

model — AXIOM. The AXIOM allows the Axis2 SOAP engine more freedom to process
alternative representations flexibly since In-Pipe takes the incoming SOAP message and
maps it into AXIOM object, which is XML Infoset based and doesn’t stick to the XML

syntax.

3 Compressing XML Documents

The XML document optimizations described in the previous section could be
considered compression schemes for XML documents. However, they are not ‘true
compression schemes’ because the optimizations reduce the processing overhead as well
as reduce the size of the document.

A self-contained and human-readable XML document may often be huge because of
its text-encoding and descriptive tags. Due to this fact, extensive research has been done
on compressing XML documents. The Results of this research can be applied to Web
Services to improve performance in this setting.

gzip [76] is a data compression program that is based on the DEFLATE [77]
algorithm, which is a combination of LZ77 [55] and Huffman coding [55]. The gzip file
format uses a variable length code table for encoding source symbols just like other
DEFLATE algorithm-based data compression formats — e.g., PKZIP [16], PNG [75] and
ZIP. The gzip is a widely-used generic text transformation standard used in much early
research on the restricted environments. The adoption of gzip in Web Services to reduce
the size of SOAP messages is straightforward, but it doesn’t add processing time. This is
true because a message must be compressed before sending it and decompressed after

receiving it. Because the redundancy checking in the compression algorithm consumes

33

many processor cycles, it doesn’t save time in most mobile computations. So while
generic text-based compression works well where powerful machines communicate over
a slow connection, like a modem connection, it doesn’t give much advantage in mobile
computing environment with limited processing power and memory space.

Compared with generic compression, which yields poor performance on small
messages, XML-specific compression e.g., XMill [31] and Millau [32] may do much
better. XMill is a XML specific compressor based on a grouping strategy. It rearranges
document text and groups text items together based on their semantics to achieve a better
compression ratio. Start tags are assigned to integer values and end tags are replaced by a
‘/’. Dictionary encoding is used to assign the integers. After the rearrangement, text items
in a group will have many similarities. Later, a conventional compression algorithm, such
as gzip, is applied to a specific memory window, which includes multiple text groups.
This algorithm then exploits the similarities between text items in a group.

Even though the XML specific compression achieves a better ratio between original
size and compressed size (the experiment in Ref [31] shows it performs twice or better)
and reduces the document size, the additional layer required compressing and
decompressing add a significant overhead to the overall processing. Since the
compression method saves bandwidth but does not reduce processing time, it can not

serve as a full solution to the performance bottleneck in mobile Web Services.

4 Binary Attachments

We will now describe efforts to attach binary data to Web Service messages. The

primary motives of these efforts include data integrity and reducing processing

34

overheads. Yet it is also important to consider the idea behind efficient binary data

processing.

4.1 Binary Data as a MIME Attachment: MTOM

The W3C XML Protocol Working Group has released the draft of Message
Transmission Optimization Mechanism (MTOM) [86], XML-binary Optimized
Packaging (XOP) [87], and Resource Representation SOAP Header Block (RRSHB)
[88]. Together these specifications target two data domains — multimedia data and data
that includes digital signatures. Increasingly, multimedia data is exchanged using SOAP.
Audio, graphic, and video files already have standardized formats, like JPEG, GIF, and
MP3. They may be very large files, but they are efficiently encoded with specific
algorithms. Encoding these multimedia files in SOAP would consume many extra
processor cycles, which would be intolerable in some application domains. So the
attachment of binary data is an important issue if Web Services technology is to be used
pervasively in the multimedia data domain.

XOP is an alternative serialization to the W3C recommended XML [81]. XOP is a
MIME-based package, allows binary data to be included along with an XML document,
and avoids text-conversion overhead, though it still preserves the XML markup structure.
MTOM describes how XOP is layered onto the SOAP and the HTTP transport.

The last specification, RRSHB, describes the semantics and serialization of a SOAP
header block for carrying resource representations in SOAP messages. The
representation element is an information item that describes the type of Web

Resource, for instance image files, by including the resource attribute in any URI. Its

35

--MIME_Boundary

Content-ID: <mymainpart@crf.canon.fr>

Content-Type: application/xop+xml;charset=UTF-8;type=""application/soap+xml"’
Content-Transfer-Encoding: binary

<soap:Envelope xmlns:soap=""http://www.w3.0rg/2003/05/soap-envelope"’
xmins:xmlmime=""http://www.w3.0rg/2004/06/xmlmime"'
xmlns:xop=""http://www.w3.0rg/2004/08/xop/include'' >
<soap:Header></soap:Header>
<soap:Body><ns1:EchoTest xmlns:ns1=""http://example.org/mtom/data''>
<nsl:Data>
<xop:Include href=""cid:thismessage:/frog.jpg''>
</xop:Include>
</nsl:Data></ns1:EchoTest>
</soap:Body>
</soap:Envelope>

--MIME_Boundary

Content-ID: <thismessage:/frog.jpg>
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

--MIME_Boundary--

(a) MTOM/XOP Message
--MIME_Boundary
Content-ID: <mymainpart@crf.canon.fr>
Content-Type: application/xop+xml;charset=UTF-8;type=""application/soap+xml"’
Content-Transfer-Encoding: binary

<soap:Envelope xmlns:soap="'"http://www.w3.0rg/2003/05/soap-envelope"’
xmlns:xmlmime=""http://www.w3.0rg/2004/06/xmlmime"’
xmlns:xop=""http://www.w3.0rg/2004/08/xop/include''>
<soap:Header></soap:Header>
<soap:Body><nsl:EchoTes