
THE FLORIDA STATE UNIVERSITY 
COLLEGE OF ARTS AND SCIENCES 

 
 
 

A Modular Data Pipelining Architecture (MDPA) for enabling 

Universal Accessibility in P2P Grids 

 
by 

 
Sangmi Lee 

 
 
 
 

A Dissertation submitted to the  
Department of Computer Science 

in partial fulfillment of the  
requirements for the degree of 

Doctor of Philosophy 
 
 
 

Degree Awarded: 
Summer Semester, 2003 

 
 
 

Copyright © 2003 
Sangmi Lee 

All Rights Reserved



 ii

The members of the Committee approve the dissertation of Sangmi Lee defended on July, 3, 
2003. 
 
 
 
 
 

 
Gordon Erlebacher 
Professor Directing Dissertation 
 
 
 
Larry Dennis 
Outside Committee Member 
 
 
 
Geoffrey C. Fox 
Committee Member 
 
 
 
Gregory Riccardi 
Committee Member 
 
 
 
Robert A. van Engelen 
Committee Member 
 
 
 
 
 
 

The Office of Graduation Studies has verified and approved the above named committee 
members. 

 
 

 
 
 



 iii

 
 

 
 
 
 

To my parents 



 iv

 
ACKNOWLEDGMENTS 

 
 
 

I would like to thank all those that have offered me their support and encouragement 

while working on this thesis. 

In particular I would like to acknowledge the inspiration and guidance given to me by 

Professor Geoffrey Fox, supervisor of my research during my graduate studies. He gave me 

a lot of opportunities to work on great research issues and inspired me with his brilliant 

ideas. As time goes by, my appreciation for him will be deeper and deeper. I would like to 

thank my advisor Professor Gordon Erlebacher for his support me during my Ph.D.  

I strongly appreciate the support and patience of my father, Kwang-Ho, who 

encouraged me in every step of my graduate studies. I would like to thank my mother, 

Jung-Ji who has been the best listener for every new approach and idea that I discussed 

with her while paying a huge amount for these international calls. I’d also like to thank my 

brother, Sangwoo for his support during my hard time.  

I would like to thank all of my colleagues in Community Grid Laboratory and friends 

of mine.  



 v

 
TABLE OF CONTENTS 

 
 

List of Figures…………….……………….……...……………………….……………... viii 
List of Tables…………………………………...………………………….………………..x 
Abstract……………..………………………...…………………………………………… xi 
 
Chapter 1 INTRODUCTION..................................................................................................1 
 

1.1 Introduction ..............................................................................................................3 
1.2 Key concepts of Peer-to-Peer Grids and Enabling Technologies ............................6 
1.3 Building a Distributed Service within a Peer-to-Peer Grids Concept ......................9 
1.4 Motivations behind MDPA ....................................................................................10 
1.5 Research Objectives ...............................................................................................13 
1.6 Author’s Contributions...........................................................................................14 
1.7 Dissertation roadmap..............................................................................................15 

 
Chapter 2 BACKGROUND..................................................................................................17 
 

2.1 Classical Software Architectures for Presentation Generation in User Interactive 
Services...................................................................................................................18 

2.1.1 PAC-Amodeus architecture.............................................................................18 
2.1.2 Model-View-Controller architecture...............................................................20 

2.2 Approaches to Adapt New Devices........................................................................21 
2.2.1 Proxy based Architectural Approaches ...........................................................21 
2.2.2 Standards for Heterogeneous Environments ...................................................22 
2.2.3 Incorporating with Transcoding Technologies ...............................................24 

2.3 Challenges posed by Web service Architecture .....................................................26 
2.4 Summary.................................................................................................................28 

 
Chapter 3 MODULAR DATA PIPELINING    ARCHITECTURE ....................................29 
 

3.1 Architecture Overview ...........................................................................................31 
3.1.1 Data source (DAT) ..........................................................................................32 
3.1.2 Control Logic (CTL) .......................................................................................32 
3.1.3 Document Transformer (DTX) .......................................................................32 
3.1.4 Presentation Client (PCL) ...............................................................................33 
3.1.5 Minimal Client (MCL) ....................................................................................33 

3.2 Event Processing ....................................................................................................34 
3.2.1 Data flow of Event Processing ........................................................................34 
3.2.2 Event Processing Patterns in MDPA...............................................................38 



 vi

3.3 Architecture of a Stage ...........................................................................................40 
3.4 Modularization and Packaging ...............................................................................42 
3.5 Web Service Approach to MDPA ..........................................................................43 

3.5.1 Dataflow in Web service .................................................................................44 
3.5.2 Deployment of MDPA within Web service infrastructure..............................45 
3.5.3 Packaging of Stages as Web service ...............................................................46 

3.6 Summary.................................................................................................................47 
 
Chapter 4 MODELING MDPA............................................................................................49 
 

4.1 Modeling MDPA....................................................................................................50 
4.1.1 Architectural Pattern of “Pipes and Filters” ....................................................51 
4.1.2 Representation with PT-nets ...........................................................................53 
4.1.3 Definition of Modular PT-nets ........................................................................55 

4.2 Event Processing in MDPA....................................................................................57 
4.3 Definition of a Service with MDPA.......................................................................59 

4.3.1 Interface of MDPA..........................................................................................59 
4.3.2 Basic Stage Managements...............................................................................60 
4.3.3 The MCL stage................................................................................................62 
4.3.4 The PCL stage .................................................................................................65 
4.3.5 The DTX stage ................................................................................................66 
4.3.6 The CTL stage.................................................................................................68 
4.3.7 The DAT stage ................................................................................................69 
4.3.8 A service in MDPA .........................................................................................71 

4.4 Analysis of Design MDPA.....................................................................................72 
4.5 Summary.................................................................................................................74 

 
Chapter 5 AGGREGATION AND COLLABORATION WITH MDPA BASED 

SERVICES ......................................................................................................75 
5.1 Aggregating of Services .........................................................................................77 
5.2 Collaboration models and Interoperability in MDPA ............................................79 

5.2.1 Shared Display Model .....................................................................................81 
5.2.2 Shared Output Port Model...............................................................................83 
5.2.3 Shared Input Port Model .................................................................................85 

5.3 Summary.................................................................................................................86 
 
Chapter 6 INCORPORATING CONTENT ADAPTATION STRATEGIES TO ENABLE 

EFFicIENT INTERACTION ..........................................................................88 
6.1 Adapting Content....................................................................................................89 
6.2 Application -aware Transcoding ............................................................................90 

6.2.1 Measuring Fidelity of Shared Information......................................................92 
6.2.2 Transcoding in Shared Display .......................................................................93 
6.2.3 Transcoding in Shared Input Port model.........................................................94 



 vii

6.3 Summary.................................................................................................................97 
 
Chapter 7 DEPOYING MDPA AS WEB SERVICES: CAROUSEL WEB SERVICE ......98 

7.1 The CAROUSEL Web Service ................................................................................100 
7.1.1 Content servers ..............................................................................................102 
7.1.2 Event service .................................................................................................103 
7.1.3 Client application ..........................................................................................104 
7.1.4 Aggregator.....................................................................................................105 

7.2 Universal Access in Carousel Web service ..........................................................105 
7.3 Content Adapting in CAROUSEL Web service.......................................................107 

7.3.1 Workflow of CAROUSEL Web Service...........................................................108 
7.3.2 Message filtering for heterogeneous devices ................................................110 

7.4 Network Communication issues in CAROUSEL Web service (Security, Reliability, 
Fault Tolerance)....................................................................................................111 

7.5 Summary...............................................................................................................113 
 
Chapter 8 CONCLUSION ..................................................................................................115 

8.1 Contributions ........................................................................................................116 
8.2 Future works.........................................................................................................118 

8.2.1 User Interface ................................................................................................118 
8.2.2 Intelligent Messaging Middleware................................................................118 
8.2.3 Deployment with OGSI.................................................................................119 
8.2.4 Extending Adaptability to Wearable Devices ...............................................120 
  

BIBLIOGRAPHY ………………………………………………………….………...…  121 
 
BIOGRAPHICAL SKETCH  ….....…………………………..………………………….130



 viii

 

List of Figures 

Figure 1.1 A Peer-to-Peer Grid........................................................................................... 8 

Figure 1.2 Middleware Peer Groups of Services at the “edge” of the Grid........................ 9 

Figure 2.1 Arch model ...................................................................................................... 18 

Figure 2.2 The MVC architecture..................................................................................... 20 

Figure 2.3 WebSphere portal and transcoding technology............................................... 25 

Figure 2.4 Service Oriented Architecture of Web Services.............................................. 27 

Figure 3.1 Object Processing in Distributed System ........................................................ 29 

Figure 3.2 Object pipelining in MDPA............................................................................. 32 

Figure 3.3 Event processing in MDPA with an example of SVG .................................... 35 

Figure 3.4 Event Filtering for Heterogeneous Customization of User Presentations....... 36 

Figure 3.5 Data flow of SVG example ............................................................................. 37 

Figure 3.6 Dataflows in Different Event types ................................................................. 39 

Figure 3.7 Architecture of a Stage in MDPA with dataflow of CTL event...................... 41 

Figure 3.8 Dataflow in Web service ................................................................................. 44 

Figure 3.9 Input and Output Port Defining in Web service for MDPA............................ 45 

Figure 3.10 Various Styles of Packaging Stages with Web service infrastructure........... 47 

Figure 4.1Two modules Sharing Transition ..................................................................... 55 

Figure 4.2 Classifications of events in MDPA ................................................................. 58 

Figure 4.3 Stages and Interface of MDPA........................................................................ 59 

Figure 4.4 Defining Interface with Fusing Transitions..................................................... 60 

Figure 4.5 Possible dataflows in a stage ........................................................................... 62 

Figure 4.6 PTMCL : MCL stage with PT-net ...................................................................... 63 

Figure 4.7 PTPCL : PCL stage with PT-net........................................................................ 64 

Figure 4.8 PTDTX : DTX stage with PT-net....................................................................... 67 

Figure 4.9 PTCTL : CTL stage with PT-net........................................................................ 68 

Figure 4.10 PTDAT : DAT stage with PT-net..................................................................... 70 

Figure 5.1 Collaboration in Heterogeneous Environments............................................... 76 

Figure 5.2 Aggregating Dataflow of Generating Presentation ......................................... 78 

Figure 5.3 Collaboration with Shared Display Model ...................................................... 82 



 ix

Figure 5.4 Collaboration with Shared Output Model ....................................................... 84 

Figure 5.5 Collaboration with Shared Input model .......................................................... 87 

Figure 5.6 Deploying Collaboration model as Web Service ............................................ 99 

Figure 5.7. Shared Input model as Web service ............................................................. 100 

Figure 5.8 Architecture of the CAROUSEL Web service.................................................. 103 

Figure 6.1 Dataflow in CAROUSEL Web service to support Universal Access ............... 106 

Figure 6.2 Workflow of Setup session in the CAROUSEL Web service........................... 108 

Figure 6.3 Setup session and collaborative browser....................................................... 109 

Figure 6.4 Sharing remote content adapting technologies................................................ 90 

Figure 6.5 400 % Zoom in Images in Bitmap and Vector graphics ................................. 95 

Figure 6.6 Styling with CSS for Black and White PDAs ................................................. 96 

Figure 6.7 Object flow of collaborative SVG................................................................... 97 

Figure 7.1 Wearable Devices.......................................................................................... 120 

 



 x

List of Tables 

Table 4.1 User Event types and the Stages ....................................................................... 57 

Table 4.2 The Description of Detail Dataflow based on Event Types ............................. 73 

Table 6.1 The resultant data from test session of Garnet shared display.......................... 94 



 xi

 
 
   

ABSTRACT 
 

 

The enormous growth in wireless communications and miniaturized handheld 

devices in the last few years, have given rise to a vast range of new services for 

heterogeneous user environments. The concept of a Peer-to-Peer (P2P) Grid has 

extended traditional distributed services to accommodate diverse user devices, resources 

sharing environments and higher level services. In traditional multi-tier distributed 

services, services have generally been designed for accessing back-end resources and 

middleware without taking into consideration the display and networking capabilities of 

clients. Current developments in the design of miniature devices, their growing compute, 

display and communication capabilities, combined with their increasing ubiquity in 

day-to-day life mandate a paradigm shift in the way services are designed.  

In this dissertation, we suggest that the nature and capabilities of these devices be 

factored in, into the design of services. Doing so would enable the service to cope with 

the ever-changing landscape of pervasive devices within the P2P Grid infrastructure. 

We address a number of interrelated issues. First, we propose a software architecture, 

called the Modular Data Pipelining Architecture (MDPA), which separates user 

presentation from data, and refines data processing within stages of the pipeline which 



 xii

can potentially be deployed for Web-based collaborative application in P2P Grid 

environments. Second, MDPA provides a modular approach to this problem which can 

be expanded incrementally to deal with future changes in the nature of these devices. 

Third, although this thesis has been organized in the context of device capabilities, 

some of the ideas could be extended to deal with changing protocol, transport and 

communication standards in other network centric communication environments.  

We also introduce how we deploy the software architecture for the P2P Grid 

represented with Web service semantics. We also present a Universally Accessible Web 

service architecture, CAROUSEL Web service, which is our collaborative Grid service 

linked with a Web Service infrastructure and event brokering service. Finally, we also 

describe our approaches to content adaptation for different devices and users.  



 1

 

CHAPTER 1  INTRODUCTION 

 

The explosive growth of the wireless network in the last few years and emergence of 

new devices has given rise to a vast range of new services for the heterogeneous user 

environment. The concept of Peer-to-Peer (P2P) Grid [Fox+02a] allows the distributed 

system to accommodate the diverse user devices and higher level of services. Hitherto, 

traditional multi-tier distributed services have generally been designed considering only 

back-end resources and middleware. The computing, display and networking capabilities 

of clients were not taken into consideration. Clients were expected to meet a set of 

explicit, and sometimes implicit, constraints prior to utilizing the service. The current 

developments in the design of miniature devices, their growing compute, display and 

communication capabilities, combined with their increasing ubiquity in day-to-day life 

mandate a paradigm shift in the way services are designed. We suggest that the nature 

and capabilities of these devices be factored in, into the design of services. Doing so 

would enable the service to cope with the ever-changing landscape of pervasive devices 

for P2P Grid architecture. 
There have been various approaches to minimize the effects of interface changes on 

the application as a whole, and promote portability among heterogeneous user display 

environments. In early 80s and 90s, there have been the classical approaches of model-

based User Interface Management Systems (UIMS) according to the Seeheim model  

[Phaff+85], which emphasized the separation between application logic, dialog control, 

and presentation component. Model-View-Controller (MVC) pattern [Goldberg+84] also 



 2

addressed the separation of data and user view, in addition, enabled multiple views to be 

rendered individually from the data and communicate each other synchronously. The 

enormous approaches followed such as the Presentation-Abstraction-Control (PAC) 

model [Coutaz+87] and Arch model [Bass+92]. Also various software architectures 

combined multiple conceptual models have been appeared [Dewan+95, Coutaz+97]. The 

paradigm of separation with data and user presentation is deployed in current software 

architectures designed for scientific visualizations [Brodlie+96], and also web-based 

applications [Shaeck+02, Arsanjani+02]. Nevertheless, existing software architectures do 

not adequately meet the needs of pervasive collaboration services in P2P Grid. In design 

of collaborative services supporting heterogeneous devices, there are various 

requirements should be considered. For instance, multi-functional collaborative services 

such as require more general software architecture to define and extend their features 

flexibly including asynchronous/synchronous collaboration. Also it expects to adapt 

heterogeneous user devices and resources. Software architectures designed for specific 

system such as scientific visualization is not suitable for general purpose services. 

Meanwhile, classical conceptual patterns are not enough to define current sophisticated 

distributed services which have multiple steps of data processing for user presentation, 

although the basic concepts of them offer good basis for structure new software 

architecture.   

In this thesis, we propose software architecture, called the Modular Data Pipelining 

Architecture (MDPA), which inherits the idea of separating user presentation from data, 

and refines data processing as stages of the pipeline for Web-based collaborative 

application in P2P Grid environments. MDPA provides more extensibility and 

interoperability to P2P Grid. Therefore, it enables P2P Grid to support heterogeneous 

user devices with flexible resource accessing. MDPA supports collaboration between 

users with various flexibility of resource sharing.   

A modular approach of MDPA would facilitate re-use and would only entail small 

incremental changes to cope with new devices. This thesis presents a modular 

architecture for designing services in the context of the P2P grid, which as we will 

elaborate in subsequent sections, is an emerging system that draws upon the body of 

work existing in P2P and grid systems. This modular approach builds upon the emerging 



 3

standards based approach to building, composing, registering and discovering services 

[Hoscheck+02]. 

The impact and scope of this thesis are at three distinct levels. First, it suggests 

changes in the way services are designed. Second, it outlines a modular approach to this 

problem which can be expanded incrementally to deal with future changes in the nature 

of these devices. Finally, although this thesis has been organized in the context of device 

capabilities, some of the ideas of this thesis could be extended to deal with changing 

protocol, transport and communication standards with its software architectural idea. 

 

1.1 Introduction 

  

The portability of new miniaturized devices, together with their ability to connect 

conveniently to networks in different places, makes mobile and ubiquitous computing 

possible. Mobile computing is the capability to perform computing tasks while a user is 

on the move, or visiting places other than the usual environment [Coulouris+01]. 

Similarly, ubiquitous computing is the harnessing of many small, cheap computational 

devices that are present in users’ physical environments, including the home, office and 

elsewhere. The term ‘ubiquitous’ is intended to suggest that small computing devices will 

eventually become so pervasive in everyday life that they are scarcely noticed. That is, 

their computational behavior will be transparently and intimately tied up with their 

physical function. There are several traditional approaches to mobile computing, such as, 

mobile agents, network computers, or thin-client concept as variations of the traditional 

client-server model. These approaches are considered by the system developers, based on 

their characteristics and constraints of services.  

Currently, popular Internet services supports diverse devices. Yahoo! [Yahoo] 

currently provides services for PDAs and Web-enabled phones with features to access 

search engines, and send e-mail, in addition to remote synchronizing services. AOL 

[AOL] and MSN [MSN] also support mobile devices with their well-known instant 

messenger and access to e-mail accounts. Initially, their services were dominated by the 



 4

portal service approach. However, these services have evolved to encompass richer 

services in real time environment.  

Distributed services for mobile devices over the Internet are getting increasingly 

sophisticated and networked resources are innovatively utilized. The resources in 

distributed services include database accesses, online services, remote file services, and 

search and subsequent discovery of a communal resource located on another computer. 

Emergence of new network communication architectures has influenced resource 

utilization. The most significant innovative architectures are the emergence of these Peer-

to-Peer technologies and Grid systems.  

The Grid [Grid, GridWG, Foster+98, Globus] has made dramatic progress recently 

with impressive technology and several large important applications initiated in high-

energy physics [PhysicsGrid, IVDGL], earth science [NEES, SCEC] and other areas 

[Johnston+00, Fusion]. At the same time, there have been equally impressive advances in 

broadly deployed Internet technology. We can cite the dramatic growth in the use of 

XML, the "disruptive" impact of peer-to-peer (P2P) approaches [Oram+01] that have 

resulted in a slew of powerful applications and the more orderly, but still widespread, 

adoption of a universal Web Service approach to Web-based applications [Booth+03, 

Christensen+01]. There are no crisp definitions of Grids and P2P Networks that allow us 

to unambiguously discuss their differences and similarities and what it means to integrate 

them. However these two concepts conjure up stereotype images that can be compared. 

Taking "extreme" cases, Grids are exemplified by the infrastructure used to allow 

seamless access to supercomputers and their datasets. P2P technology facilitates 

sophisticated resource sharing environments between "consenting" peers over the "edges" 

of the Internet, enabling ad hoc communities of low-end clients to advertise and access 

resources on communal computers. Each of these examples offers services but they differ 

in their functionality and style of implementation. 

The P2P example could involve services to set-up and join peer groups, browse and 

access files on a peer, or possibly to advertise one's interest in a particular file. The 

"classic" grid could support job submittal, status services and access to sophisticated data 

management systems. Grids typically have structured robust security services while P2P 

networks can exhibit more intuitive trust mechanisms reminiscent of the "real world". 

Grids typically offer robust services that scale well in pre-existing hierarchically arranged 



 5

organizations. P2P networks are often used when a best effort service is needed in a 

dynamic poorly structured community. If one needs a particular "hot digital recording", it 

is not necessary to locate all possible sources; a P2P network need only search enough 

plausible resources to ensure that success is statistically guaranteed. On the other hand, a 

3D simulation of the universe might need to be carefully scheduled and submitted in a 

guaranteed fashion to one of the handful of available supercomputers that can support it. 

There are several attractive features in the P2P model, which motivate the development 

of hybrid systems.  Deployment of P2P systems is entirely user driven obviating the need 

for any dedicated management of these systems. Resource discovery and management is 

an integral part of P2P computing with peers exposing the resources that they are willing 

to share and the system (sometimes) replicates these resources based on demand. Grids 

might host different persistent services and they must be able to discover these services 

and the interfaces they support. Peers can form groups with the fluid group memberships 

and are thus very relevant for collaboration [Fox+02]. This is an area that has been 

addressed for the Grid in [Grid] and also in a seminal paper by Foster and collaborators 

[Foster+98] addressing broad support for communities. 

A P2P Grid would comprise services that include those of Grids and P2P networks 

while naturally supporting environments that have features of both limiting cases. We can 

discuss two examples where such a model is naturally applied. In High Energy Physics 

data analysis (e-Science problem discussed in [eScience]), the initial steps are dominated 

by the systematic analysis of the accelerator data to produce summary events roughly at 

the level of sets of particles. This Grid-like step is followed by "physics analysis", which 

can involve many different studies and much debate between involved physicists 

regarding the appropriate methods to study the data. Here we see some Grid and some 

P2P features. As a second example, consider how one uses the Internet to access 

information – in search of either news items or multimedia entertainment. Perhaps the 

large sites like Yahoo, CNN and future digital movie distribution centers have a Grid like 

organization. There are well-defined central repositories and high performance delivery 

mechanisms involving caching to support access. Security is likely to be strict for 

premium channels. This structured information is augmented by the P2P mechanisms 

popularized by Napster with communities sharing MP3 and other treasures in a less 

organized and controlled fashion. These simple examples suggest that whether for 



 6

science or commodity communities, information systems should support both Grid and 

P2P capabilities.  The proposed P2P grid, which integrates the evolving ideas of 

computational grids, distributed objects, web services, P2P networks and message 

oriented middleware, comprises resources such as relatively static clients, high-end 

resources and a dynamic collection of multiple P2P subsystems. We investigate the 

architecture, comprising a distributed brokering system that will support such a hybrid 

environment. Services can be hosted on such a P2P grid with peer groups managed 

locally and arranged into a global system supported by core servers. Access to services 

can then be mediated either by the "broker middleware" or alternatively by P2P 

interactions between machines "on the edge".  The relative performance of each approach 

(which could reflect computer/network cycles as well as the existence of firewalls) would 

be used in deciding on the implementation to use. P2P approaches best support local 

dynamic interactions; the distributed broker approach scales best globally but cannot 

easily manage the rich structure of transient services, which would characterize complex 

tasks. Such P2P Grids should seamlessly provide services and resources to users, which 

are also linked to each other. We can abstract such environments as a distributed system 

of "clients" that consist either of "users" or "resources" or proxies thereto. These clients 

must be linked together in a flexible fault tolerant, efficient, high performance fashion. 

The messaging infrastructure linking clients (both users and resources of course) would 

provide the backbone for the P2P grid. 

Peer-to-Peer Grids allow heterogeneous user devices to share resources over the edge 

of the infrastructure. Dealing with heterogeneity in devices, and addressing scaling in this 

should be inherent in the design decisions for the P2P Grid.   

 

1.2  Key concepts of Peer-to-Peer Grids and Enabling 

Technologies 

 

P2P Grid is based on the key concepts of distributed object technology, resources 

available over the Internet and services. Distributed object technology is implemented 

with objects defined in an XML-based IDL (Interface Definition Language) such as 



 7

WSDL (Web Services Definition Language) [Christensen+01]. This allows “traditional 

approaches” like CORBA [Scallan] or Java [SUN] to be used “under-the-hood” with an 

XML [Bray+00] wrapper providing a uniform interface. As another key concept of P2P 

Grid, we consider resources accessible via the Internet. W3C defines any “object” labeled 

by a URI (Universal Resource Identifier) as a resource, whether an external or internal 

entity [Berners-Lee+98]. This includes not only macroscopic constructs like computer 

programs or sensors but also their detailed properties. One can consider the URI as the 

barcode of the Internet. There are also of course URLs (Universal Resource Locations) 

that indicate location. One can equate these two concepts (URI and URL). Although 

inadvisable in principle, it is of course common practice. 

Finally, the environments of Peer-to-Peer Grids are built on top of a service model. 

A service is an entity that accepts one or more inputs and gives one or more results. 

These inputs and results are the messages that characterize the system. Within the context 

of WSDL [Christensen+01], the inputs and outputs of services are defined as input and 

output ports as components of the Web services. 

Within this architecture, everything is a resource. The basic macroscopic entities 

exposed directly to users and to other services are built as distributed objects that are 

constructed as services, enabling access to capabilities and properties through a message-

based protocol. Services contain multiple properties, which are themselves individual 

resources. A service corresponds roughly to a computer program or process; the interface 

of a communication channel to subroutine calls with input parameters and returned data. 

The critical difference from the past is that one now assumes that each service runs on a 

different computer scattered around the globe. In principle services can be dynamically 

migrated between computers. Distributed object technology allows us to properly 

encapsulate the services and provide a management structure. The use of XML and 

standard interfaces like WSDL give a universality that facilitates the interoperability of 

services from different sources.  



 8

Database

Database

Event/
Message
Brokers

Event/
Message
Brokers

Event/
Message
Brokers

Peer-to-Peer

Peer-to-Peer

Peer-to-Peer

Peer-to-Peer

 

Figure 1.1 A Peer-to-Peer Grid 

 

There are several important technology research and development areas, upon which 

the above infrastructure builds namely, 

• Basic system capabilities are packaged as Web Services [Booth+03]. These include 

security, access to computers (job submittal, status etc.) and access to various forms 

of databases (information services), including relational systems, LDAP 

[Yeong+95], and XML databases/files. Network-wide search techniques about web 

services or the content of web services could also be included here. 

• The messaging sub-system between resources that provide addressing functionality, 

performance and fault-tolerance [Pallickara+03a].  

• Toolkits that enable applications to be packaged as interoperable distributed 

services and “libraries” or more precisely components. Near-term targets include 

areas like image processing used in virtual observatory projects or gene searching 

used in bio-informatics [Globus]. 

• Application meta-data needed to describe all stages of the scientific endeavor. 

• Higher-level and value-added system services such as network monitoring, 

collaboration and visualization. 

• Investigation of Semantic Grid [Hendler+02] or approaches to the representation of 

and discovery of knowledge from Grid resources.  



 9

• Aggregator for integrating multiple distributed services and defining the user’s 

display, which accepts user customization and delivers user interfaces [Jetspeed, 

Websphere]. 

 

 

Grid
Middleware

Database

Database

M
id

dl
ew

ar
e

Pe
er

 G
ro

up

Middleware Peer Group

Middleware Peer Group

M
iddlew

are
Peer G

roup

Grid
Middleware

Grid
Middleware

Grid
Middleware

 

Figure 1.2 Middleware Peer Groups of Services at the “edge” of the Grid 

 

1.3 Building a Distributed Service within a Peer-to-Peer Grids Concept 

In a Peer-to-Peer Grids architecture, traditional Grid services with a Web 

middleware that mediates between back-end resources and clients are arranged as 

depicted in Figure 1.1. Just as in a classic 3-tier architecture, there are clients, back-end 

resources and multiple layers of middleware linked with the messaging service. This is a 

natural virtual machine seen by a given user accessing a resource. However, the 

implementation could be very different. Access to services could be mediated by “servers 

in the core” or alternatively by direct peer-to-peer interactions between machines “on the 

edge”. The distributed object abstractions with separate service and message layers allow 

either Peer-to-Peer or server-based implementations. The relative performance of each 

approach would be used in deciding on the implementation to use. P2P is best in 

supporting local dynamic interactions; the server approach scales best globally but cannot 

easily manage the rich structure of transient services, which would characterize complex 



 10

tasks. Figure 1.2 shows Grids control central services while “services at the edge” are 

grouped into less organized “middleware peer groups”. Often one associates P2P 

technologies with clients but in a unified model, they provide services, which are part of 

the middleware. As an example, one can use the JXTA search [SUN+03] to federate 

middle tier database systems; this dynamic federation can use either P2P or more robust 

Grid security mechanisms.  

We can ask if this new approach to distributed system infrastructure affects key 

hardware and software infrastructure, and their performance requirements. First we 

present some general remarks. Servers tend to be highly reliable these days [Fox+02 a]. 

Typically, they run in controlled environments, but also their software can be proactively 

configured to ensure reliable operation. One expects servers to run uninterrupted for 

months and often one ensures that they are modern hardware configured for the job at 

hand. Clients on the other hand can behave quite erratically, with unexpected crashes and 

network disconnections, as well as sporadic connectively typical of portable devices. 

Transient data can be stored on clients; however permanent information repositories must 

beside on servers – here we talk about “logical” servers as we may implement a session 

entirely within a local peer group of “clients”. Robustness of servers needs to be 

addressed in a dynamic fashion and on a scale greater than in previous systems. 

Traditional techniques – replication and careful transaction processing – can probably be 

extended to handle servers. Realistically, clients are assumed to be both unreliable and 

sort of outside our control. Some clients will be “antiques” and underpowered and are 

likely to have many software hardware and network instabilities. In the simplest model, 

clients “just” act as a vehicle to render information for the user with all the action 

performed on “reliable” servers.  

 

1.4 Motivations behind MDPA 

 

Our interest in MDPA is motivated above all by the prospect of innovative new uses 

of diverse devices and wireless communication services. During the last few years, 



 11

mobile computing with pervasive devices has emerged as a new computing paradigm. 

The key enabling technologies are, 

 

• Portable devices: Handheld devices including Personal Digital Assistants 

(PDAs), laptops, smart phones, pagers, and wearable devices such as JAVA ring, 

smart watch etc. These devices have diverse computing capabilities such as 66 MHz 

to 400 MHz, with displays ranging 1bit black and white to over 64K color display. 

The interactive capabilities include touch screen style interaction with a stylus pointer, 

small buttons, extensible keyboard, voice recognizing system, etc. 

 

• Wireless and satellite network communication: Reliable wireless network 

communication such as wireless LAN (802.11b) or 3G network communications, has 

integrated portable devices integrated to the clients of distributed systems over the 

Internet. Meanwhile, the use of satellite communication has maximized the advantage 

of mobile computing; also it is joined with wireless computing and provides high 

quality of networking services. The current broadband wireless networking service is 

capable of delivering new services – streaming video, audio, gaming, backup storage, 

and much more. These network service providers also support various middleware 

services enabling their clients to access existing information systems.   

 

The favorable effects of increasing capabilities on client devices coupled with falling 

prices have resulted in widespread use of the devices to access information systems. The 

distributed services of P2P Grid should consider supporting virtually any device, over a 

broad range of networks, and allow new applications to be easily built and deployed.  

As demonstrated in figure 1, the concept of P2P Grid supports natural environments 

that have back-end resources and diverse users that require the service. Before the 

emergence of various user devices with wireless network communication, the 3-tier 

distributed service could expect unified user devices for their clients. Therefore, the 

infrastructure of the service focused on the back-end resources or middleware messaging 

services. New approaches that address the heterogeneity of back-end resources have been 

focused on during the last several years. Object brokering systems, such as CORBA 



 12

[Scallan], process different types of objects from various computing resources. However 

the current diversity of user devices requires the data processing that considers the 

heterogeneity of end user devices as well. 

Early efforts include software architectures for user interface, such as the Seeheim 

model, MVC, and PAC. After these classical models, there have been various advanced 

approaches in field of user interface design. One of the most active approaches is 

scientific visualization, which maps raw data set to a graphical form for effective 

processing by our visual senses. The scientists are well served by a range of powerful 

systems, such as IRIS Explorer [Brodlie+96], AVS [Upsen+89] and IBM Data Explorer 

[IBM+02]. These support a visual programming paradigm of Modular Visualization 

Environments (MVE), which allows the users to select a set of modules to fit together in 

a pipeline, transforming raw data to geometry and then to images. Also collaborative 

capability between scientists is considered in their visualization model [Wood+95]. 

However, since these approaches are focused on a specific task, presenting scientific data, 

it is not adaptable into general purposed distributed services without modification. 

Meanwhile, the concept of separation user view from resources is deployed in emerging 

Web-based service infrastructures [Arsanjani+02, Shaeck+02]. To support various types 

of collaborative features, P2P Grids require software architecture refined with suitable 

granularity and a clear definition of process. With the current portal based infrastructure, 

we cannot describe sophisticated collaborative features, such as message based 

synchronous collaboration. 

MDPA provides a modular approach to asynchronous/synchronous collaboration in 

P2P Grids infrastructure. It supports reusability of each data module, thus only entail a 

small incremental adapting effort for new devices or environments. MDPA is based on 

the approaches of standardization and emphasizing interoperability. Finally, MDPA 

supports the universal accessible environment for P2P Grid service to heterogeneous user 

devices. 

 

 

 

 



 13

1.5 Research Objectives 

 

There are various approaches to universal accessibility to the rich functionalities 

available in distributed systems. P2P Grids should consider the heterogeneity of 

environment very carefully. Diversity of network communication is one of the aspects 

that needs to be considered. The users require seamless access to services over the 

heterogeneous network environment. Service providers should thus consider the diversity 

in computing and display capabilities of entities utilizing their services. The capability of 

computing or displaying is extremely optimized for the characteristics of the devices. In 

this dissertation, we aim for a universal accessible Peer-to-Peer Grid based on a software 

architecture.    

The goal of this dissertation is to design a generic software architecture that 

provides: 

• Modulated data processing: The distributed services over the P2P Grids 

infrastructure provides various capabilities such as: accessing database systems, 

using a super--computing unit for computational purposes, maintaining systems 

remotely, collaborating with other users, and visualizing data from services etc. 

The data processing in these different tasks different steps of processing leading 

up to the task to provide service. MDPA is constructed to define generic data 

processing that is able to consider heterogeneous user environments and various 

service tasks including collaboration.  

 

• Flexible Interoperability between data processes: The interprocessing between 

objects in a P2P Grid is a fundamental requirement to facilitate multi user services. 

MDPA is expected to support various resource sharing methods for flexible 

collaboration. Without the characterization of the data process, the processing 

cannot predict the types of interaction with other processors in a given step. The 

characterization of data processing is for avoiding wasted resources derived from 

ambiguous interface design. In addition, MDPA should provide the means to 

communicate to other data processing seamlessly. 

 



 14

• User Interactivity: If the interprocess communication is for the communication 

between data processes, we consider communication between users and services. 

The user interactive system needs the ability to perform the user’s request. The 

request from the user is understood as a user event in an event-based system. To 

process event-based distributed services, the new architecture should be able to 

support communications from both sides: from users to back-end services for 

delivering user’s requirements, and from the back-end services to the users for 

showing them the results.   

• Universal Accessibility: Adapting to heterogeneous user devices is one of the 

objectives major in MDPA. Adapting to new environments should be factored 

into the design of P2P Grid services. Thus, adapting process should be considered 

even in the design of collaborative features, and it is one of critical factors needed 

to decide the type of collaboration.   

 

Eventually, the new architecture provides the environment for data processing for 

heterogeneous clients with diverse devices and supports distributed services including 

real-time collaboration. This architecture enables the Peer-to-Peer Grid to extend the 

concept of resources to every heterogeneous computing unit.   

We also provide a prototype of this software architecture, which shows the 

fundamental units and deployment to collaboration models. This prototype also presents 

how universal accessibility is adapted to this software architecture. Moreover, the 

prototype will be an example of the implementation over the modern system 

infrastructure.  

 

1.6 Author’s Contributions 

This dissertation is based on accumulated experiences in the research of 

collaborative distributed services. As a graduate student, Sangmi Lee has been working 

on the project CAROUSEL in Community Grid Laboratory led by Dr. Geoffrey C. Fox, 

since 2001. She has been active in the area of collaborative distributed service since she 

started to work for the Tango Interactive project at Syracuse University with Dr. Geoffrey 



 15

C. Fox in 1999. Since 2000, she has focused on the universal accessibility issue while 

working on the Garnet message service system developed at Florida State University. 

Here is the summary of her contributions to this dissertation, 

• Designing and modeling of the event model of the MDPA: She defined each event 

type and did modeling with Petri Net theory. 

• Designing and modeling service extensions to MDPA: She designed and modeled 

the aggregation and collaboration of services using MDPA. 

• Designing the architecture of the CAROUSEL Web service [Fox+02d]: As a major 

designer, she designed the Carousel Web service architecture. 

• Implementation a prototype of the CAROUSEL Web service with the collaborative 

SVG browser [Lee+03a]: As a prototype, she implemented a collaborative Web 

service, the collaborative SVG browser for heterogeneous user devices. 

• Designing and implementing the application sharing features for mobile devices 

within the Garnet system [Fox+02b, Fox+02c, Lee+02, Lee+03b]. The Garnet 

system provides application sharing methods, shared Display and shared export. 

She designed and implemented both these sharing features for mobile users.  

• Designing and implementing the user application for GMSME (Garnet Message 

Service Micro Edition) [Fox+02b]:  She designed and implemented features of 

shared application for the client with GMSME.  

1.7 Dissertation roadmap 

 

This dissertation is organized in the following manner: 

In chapter 2, we present the background and discuss previous work in data 

processing of distributed systems. First, we present existing software architectures for 

processing user presentations.  Then, we focus on the accommodation of heterogeneous 

devices and multi-user interactive systems.  

Chapter 3 describes the fundamental architecture of MDPA and the approaches to 

satisfy the major design issues. Also, we present how we deploy MDPA into the 

emerging Web Services infrastructure. Chapter 4 presents our modeling of MDPA. We 



 16

utilize the Filter and Pipes pattern to structure, and Modular PT-net theory to represent, 

MDPA. 

In chapter 5, we discuss the aggregation of services and collaborative services with 

MDPA. Chapter 6 focuses on incorporating content adaptation strategies in MDPA. We 

present content adaptation for heterogeneous devices with the demonstrative case study 

of the Carousel Web Service. Based on the modeling in chapter 5, we present how the 

services provide collaborative features to users in heterogeneous environments in chapter 

7. Also, we describe how we deploy the collaboration models within the Web Service 

infrastructure. Finally, we present a demonstrative case study with the Web services 

architecture, the CAROUSEL Web Service.   

Chapter 8 describes the conclusion of the dissertation and analyzes our approach. 

Also, we summarize our work and suggest plans for future researchers investigating this 

area of distributed computing. 



 17

 

 

CHAPTER 2   BACKGROUND 

 

There have been several software architectures for interactive service. These are also 

known as user interface architectures or user interface management systems. e.g. Seeheim 

[Phaff+85], PAC-Amodeus [Coutaz+95], Model-View-Controller(MVC) [Goldberg+84]. 

Most of these architectures are based on the traditional approach of an interactive 

software, which separates the user interface from the application. The application part 

processes the task related to the functionality of the service. Meanwhile, the user 

interface part contains the representation of this functionality to the user(s) of the system.  

The principle of separating an interactive service into application and user interface 

parts has advantages while trying to achieve universal accessibility. Such a scheme 

provides demarcation of the device dependent part and the functional part of a service. 

However, the types of devices that can participate in services, which were offered only 

for traditional desk top systems before, have increased with enhanced capabilities in 

miniaturized machines and advances in wireless communications. Therefore, the services 

cannot support the diversity of participants’ devices with the traditional user interface. 

Finally, there are several efforts to provide the customized services to users who access 

the service with CPU/bandwidth limited devices, such as supporting adapting content or 

mobile protocols in a proxy architecture.   

In this chapter, we review well-known traditional software architectures in section 

2.1. In section 2.2, we describe some adaptive architecture which extends these 



 18

traditional architectures. In section 2.3, we describe popular adapting technologies 

supporting the software architecture for heterogeneous environments. Finally, we 

introduce the Web service infrastructure briefly in section 2.4. Web Service infrastructure 

provides interoperability between Web-based applications with its standardized data and 

interface design. We use the Web service infrastructure for prototyping the MDPA 

architecture in this dissertation. 

    

2.1  Classical Software Architectures for Presentation 

Generation in User Interactive Services 

Among the many existing user interface architectures, we discuss the PAC-

Amodeus [Coutaz+95] and the MVC [Goldberg+84] architectures. One of the merits of 

these architectures is that these architectures can be mapped very well onto object-

oriented concepts.  

 

2.1.1 PAC-Amodeus architecture 

 

The PAC-Amodeus model [Coutaz+95] is a combination of the Arch model 

[Bass+98] and the Presentation-Abstraction-Control (PAC) model [Coutaz+87]. The 

Arch model, which refined the Seeheim model [Phaff+85], distinguishes five components 

of an interactive service. The structure of the Arch model is shown in Figure 2.1. 

 

Dialogue
Component

Interaction Toolkit
ComponentFunctional Core

Presentation
Component

Domain Adaptor
Component

 

Figure 2.1 Arch model 



 19

 

The domain-specific component encapsulates the functionality of the system and 

offers an abstraction of the application semantics. The interaction toolkit component 

encapsulates the physical interaction, such as the platform-dependent implementation of 

user interface widgets as well as hardware details. The presentation component provides 

an abstraction from the interaction toolkit component and provides platform-

independence. The dialogue component contains task level sequencing and provides the 

mapping between domain specific objects and user interface specific objects. The domain 

adapter component adds domain related behavior to the functional core that is needed by 

the dialogue component. 

There are three kinds of objects depending on the path that it is traversed. The 

domain object traverses through the dialogue component, domain adapter component, 

and functional core. The dialogue component and the presentation component exchange 

presentation objects (abstract, virtual objects representing aspects of interaction). The 

presentation component and the interaction toolkit component exchange interaction 

objects. 

The Presentation-Abstraction-Control (PAC) model is used [Coutaz+87] for the 

dialogue component. PAC is a multi-agent model that structures the dialogue component 

as a hierarchy of interacting agents. For example, an agent can correspond to a window, a 

group of widgets, or a single widget. 

There are three facets in each agent: an abstraction facet, a presentation facet, and a 

control facet. The abstraction facet contains the data or objects and the presentation facet 

encapsulates the presentation logic of the agent. The control facet controls the 

communication between abstraction and presentation and the communication between 

subordinate and superordinate agents.  

The PAC-Amodeous model separates the functional part and the user display part 

from an application. However, since the functional parts are encapsulated as a part, the 

design of integrating new adapting functionality is not clearly defined in the whole 

architecture. This can lead to raising complexity for maintaining a service, such as adding 

content adapting technology for new emerging device.   

 



 20

2.1.2 Model-View-Controller architecture 

 

The Model-View-Controller (MVC) architecture is a well-known object-oriented 

model that has been applied earlier in the Smalltalk environment [Goldberg+84]. As one 

of three major components, the model represents the underlying information of a specific 

user interface element. The view displays this information in a certain way, while the 

controller knows how the user interactions with the view will affect the information in 

the model. If the model changes, it notifies its view(s) of this change. The model itself is 

linked to the application objects. The view and the controller are tightly coupled and they 

are even often combined into a single object. Note that there is a lot of coupling and 

interdependency in instantiations of the MVC architecture. 

Application
Objects

Controller

Model

Viewuser Input display output

 

Figure 2.2 The MVC architecture 

 

Figure 2.2 depicts the MVC architecture. The MVC architecture makes multiple 

synchronized views on the same information possible, which is required in heterogeneous 

environments. Furthermore, application objects are isolated from changes in the ‘look 

and feel’ of the user interface. Therefore, it can be an object which is shared in a 

collaborative service.  

However, the MVC architecture also has the adaptability problem. The concept of 

adaptability is usually defined as “robustness to change”. Since the MVC architecture is 

refined coarsely, the design of an adapting process for new devices cannot be clearly 

defined. Therefore, adapting a new device or new technology will require a lot of effort 

in the maintenance of the service. 



 21

 

2.2 Approaches to Adapt New Devices   

Adaptation for data processing for heterogeneous clients has been actively 

investigated by many research groups. In this subsection, we explore the approaches 

based on the categories of, proxy based architectures, standardization of data and 

protocols, and transcoding technologies. 

2.2.1 Proxy based Architectural Approaches  

 

One of the most common approaches is developing a proxy-based system for new 

client environments. Here the client environment includes new hardware, new network 

communication technology, a new security method and so forth. A proxy is defined as a 

service representative that resides at the client’s site [Smith+99]. It provides an interface 

to the service and takes care of the communication protocol with that service. It also takes 

care of the marshalling of data, checking of the validity of calls, and any other low-level 

processing, thereby making distribution transparent to the client. Due to this transparency 

proxies are popular and have been adapted by many distributed systems. 

The proxy service provides seamless access from heterogeneous network 

communication environments. iMobile from AT&T Wireless [Rao+01] is a proxy-based 

platform, which acts as a message gateway that allows mobile devices using various 

protocols on different access networks to relay messages to each other. 

The WBI project [Barrett+99] from IBM uses intermediaries to produce and 

manipulate web content, perform content distillation, and implement protocol extensions. 

Recently, a transcoding proxy was introduced as a web intermediary between Web 

servers and client devices to adapt to the varying bandwidths of different client 

communication links. Similarly, TranSend [Fox+98], a scalable transformational Web 

Proxy from UC-Berkeley, focuses on how datatype-specific content distillation can be 

efficiently implemented by deploying infrastructural proxy services. iMobile from AT&T 

[Rao+01] and the ICEBERG project from UC-Berkeley [Wang+00] concentrate on any-

to-any communication services and personal mobility services. 



 22

Moreover, W3C working group called CC/PP (Composite Capabilities/Preferences 

Profiles) [Reynolds+00] develops a structured and universal format that allows a client 

device to tell an origin server or proxy about its profile.  

The proxy-based architecture has the advantage of being more manageable while 

providing an easy scheme to extend existing services for heterogeneous devices. 

However, a proxy may not always be the best place to perform content adaptation. The 

scheme may entail in efficient bandwidth utilization if a lot of contents downloaded to the 

proxy are later discarded due to the limited screen size or bandwidth of the receiving 

device. Furthermore, the content provider may prefer to perform its own transcoding 

service to fully control the outcome. The Apache Cocoon [Apache+99] project allows the 

automatic generation of HTML, PDF, and WML files through the processing of statically 

or dynamically generated XML files using XSL [Adler+01] and XSLT [Kay+03].  

 

2.2.2 Standards for Heterogeneous Environments 

 

With a profound impact of XML [Bray+00], the information over the Internet is 

powered with the interoperability. An important feature of this language is the separation 

of presentation from the content, which makes it easier to select and/or reformat the data. 

XML is used as an extensible syntax for metadata model designed for interoperable 

information systems. The markup languages derived from XML also inherit this 

interoperability of XML. 

Apart from usability, interoperability is one of the critical topics for integrating 

heterogeneous application running of different platforms. Standards are governed by 

many different groups including official bodies, not for profit organizations and industry 

consortia. Each group is charged with gaining consensus for the implementation of 

particular standards, often within a particular application domain. For example The 

World Wide Web Consortium (W3C) is the consortia leading development of standards 

relating to the Web. W3C provides guidelines for developing universal accessible Web 

content [Chisholm+99], and detail technical resources such as [Koivunen+99, Jacobs+99, 

McCathieNevil+00].  



 23

OASIS (formerly SGML Open, the international consortium that has guided the 

SGML industry since 1993) provides the guidance, process, and infrastructure necessary 

for e-business framework, Web Services, security, public sector etc [OASIS+03]. There 

are also several groups developing standards for specific areas: Multimedia Services 

Affiliate Forum (MSAF) [MSAF], International Digital Enterprise Alliance 

(IDEAlliance) [IDEAlliance], the European Telecommunications Standards Institute 

(ETSI) [ETSI], Text encoding initiative (TEI) [TEI], Unicode Consortium 

[UnicodeConsotium], and American National Standards Institute (ANSI) [ANSI], etc.  

For implementers it is as well to remember that there are an awful lot of standards 

being developed by a very wide range of consortia and official bodies. This has meant 

that often standards are being developed, by many different groups, for products and 

services that essentially offer the same functionality. 

XML is deployed for developing metadata sets. Berners-Lee defines metadata as 

“machine understandable information for the web” [Berners-Lee+97]. W3C has 

developed the Resource Description Framework (RDF) [Lassila+99] and its relative 

Platform for Internet Content Selection (PICS) [Chu+98]. Dublin Core Metadata 

Initiative (DCMI) [DCMI] develops interoperable online metadata standards for general 

purpose of resources. DCMI’s activities include metadata refinements and guidelines for 

the metadata usage. The idea of metadata to manage the resources on the Web is 

developed to ontology-based knowledge representation languages. The term ontology is a 

formal specification of the concepts and relations of some domain. Structuring resources 

over the Internet is approached with underlying information structure based on metadata 

represented with XML. The higher lever information structures make it possible for the 

heterogeneous devices to manage the information content from the distributed system in 

unified way.  

Obviously, using XML enabled the heterogeneous applications to exchange 

information each other and build distributed service effectively. It also encompasses 

applications developed for different platforms. However, as we mentioned before, the 

standardizing is investigated in a lot of groups in the world. It causes another 

interoperability problem also. According to the system designer’s choice, the 

interoperability can be limited within the group of applications using same metadata sets. 



 24

Moreover, the complexity of data processing such as parsing, indexing, or searching 

documents can overload some of the limited CPU capability handheld devices.  

 

2.2.3 Incorporating with Transcoding Technologies 

 

Transcoding is the process of dynamically mutating and customizing a document 

based on the characteristics of the requesting device and on the user's preferences. 

Transcoding is used to convert image or video formats (reduction resolution or data 

compression). However it is also used to fit document and graphics files to the unique 

constraints of mobile devices and other Web-enabled products.  

Web clipping technology proposed by Palm [Palm+02] initially is now the 

widespread solution for accessing to Web contents from miniaturized wireless devices. 

The web clipping architecture includes client-side applications that run on a handheld 

device, proxy servers for handling translation between the web clipping application 

format and HTML, and content servers. The client-side application is called a web 

clipping application. It is constructed in HTML and translated into the web clipping 

application format. Once this application is installed on a handheld device, content is 

delivered from the content provider's own web site as a subset of the HTML 3.2 standard.  

A number of distributed services use the transcoding technology to generate the 

document for their heterogeneous clients. Duke University’s Quality Aware Transcoding 

project [Chandra+00] and TranSqui [Maheshwari+01] from University of Massachusetts 

utilize the transcoding technology in their proxy server and provide accessibility to 

heterogeneous user devices.  

As a case study, we describe how IBM’s WebSphere Everyplace Access [IBM+02] 

applies the transcoding technologies to their Web service based architecture. We will 

discuss the Web service infrastructure in detail, in section 2.3.  



 25

Portal
Filter

Portlet
Fileter

Portlet

Portal
Aggregator

Transcoding
Technology

 

Figure 2.3 WebSphere portal and transcoding technology 

 

WebSphere Portal invokes transcoding technology at two different levels: the 

individual portlet level and the full page level as depicted in Figure 2.3. Meanwhile, 

WebSphere defines the portlets as the visible active components end users see within 

their portal pages [WebSphere].   

The client device makes a request to the portal, which the Portal Filter receives. The 

Portal Filter calls the WebSphere Portal to receive its contents, which then calls the 

aggregator to aggregate the page. Then, the aggregator selects the portlets based on a 

combination of values. If a portlet is configured to be transcoded, and it provides a 

markup that the Transcoding Technology can use, then it will be selected. The portlet 

filter calls the portlet to receive its contents. The invoked portlet then returns its contents. 

The portlet filter sends the portlet’s contents to Transcoding Technology for processing, 

associating the portlet’s contents with a default URI unless otherwise specified. The 

Transcoding unit then returns the processed contents to the portlet filter. The portlet filter 

returns the processed contents as if it were a proper portlet returning contents normally. 

The aggregator, having finished aggregating the page, returns the page.  

Now, the portal filter sends the portal’s aggregated contents to Transcoding unit for 

processing. Transcoding unit returns the processed contents. The portal filter returns the 

processed contents to the client. Transcoding technology is adapted to the Web service 



 26

architecture as a computing unit and finally the user gets the regenerated document fitted 

on their environment.  

 

2.3 Challenges posed by Web service Architecture  

 

W3C’s Web service working group defines Web service in [Booth+03], 

“A software application identified by a URI, whose interfaces and bindings are 

capable of being defined, described, and discovered as XML artifacts. A Web 

service supports direct interactions with other software agents using XML based 

messages exchanged via internet-based protocols”  

The use of Web Services on the World Wide Web is spreading rapidly, because the 

need for application-to-application communication and interoperability grows. These 

Web Services provide a standard means of communication among different software 

applications, running on a variety of platforms and/or frameworks. Therefore, the Web 

Services enables us to deploy our software architecture efficiently with its well-defined 

interfaces and communication strategies in this dissertation.  

Web Services is enabled based on the potential for a combination of XML [Bray+00], 

the Web, the SOAP [Box+00] and WSDL specifications [Christensen+01], and to-be-

defined protocol stacks to address many of the problems these technologies have 

encountered. Compared to previous distributed object systems such as Microsoft’s COM 

family and the OMG CORBA standard [Scallan], Web Services provides interoperability 

between processes over the Web.  

The Web services infrastructure places into relationship various components and 

technologies that comprise a Web services “stack” or completely functional 

implementation. Valid implementations include subsets or parts of the stack, but must at 

least provide the components within the basic architecture. Components and technologies 

that extend the basic architecture are represented within the extended architecture. 

The basic architecture includes Web services technologies capable of: 

• Exchanging messages 

• Describing Web services 



 27

• Publishing and discovering Web service descriptions 

The basic Web services architecture defines an interaction between software agents 

as an exchange of messages between service requesters and service providers as 

illustrated in Figure 2.4. Requesters are software agents that request the execution of a 

service. Providers are software agents that provide a service. Agents can be both service 

requesters and providers. Providers are responsible for publishing a description of the 

service(s) they provide. Requesters must be able to find the description(s) of the services. 

Requestor Provider

Discovery
Agencies

Service
Description

Fi
nd

Publish

Interact Service

Service
Description

Client

 
Figure 2.4 Service Oriented Architecture of Web Services 

 

Software agents in the basic architecture can take on one or all of the following roles: 

• Service requester -- requests the execution of a Web service 

• Service provider -- processes a Web service request 

• Discovery agency -- agency through which a Web service description is 

published and made discoverable 

A software agent in the Web services architecture can act in one or multiple roles, 

acting as requester or provider only, both requester and provider, or as requester, provider, 

and discovery agency. Since the service description is required to establish a binding, a 

service is invoked after the description is found. 

The basic Web service architecture is based on the interactions between these three 

roles of agents. The interactions involve the publish, find, and bind operations. These 

roles and operations act upon the web service artifacts: the web service software module 

and its description. In a typical scenario a service provider hosts a network accessible 

software module (an implementation of a web service). The service provider defines a 



 28

service description for the web service and publishes it to a requestor or service discovery 

agency. The service requestor uses a find operation to retrieve the service description 

locally or from the discovery agency (i.e. a registry or respository) and uses the service 

description to bind with the service provider and invoke or interact with the web service 

implementation. Service provider and service requestor roles are logical constructs and a 

service may exhibit characteristics of both. 

Requesters and providers interact using one or more message exchange patterns 

(MEPs) that define the sequence of one or more messages exchanged between them. A 

service description is hosted by a discovery service to which a provider publishes the 

description, and from which the requester discovers the description. The description 

includes data type and structure information, identifies the MEP, and contains the address 

of the service provider. 

   

 

2.4 Summary 

 

The traditional approaches of interactive software have been focused on separation 

of the user interface from the application. As the requirement of adapting various devices 

for the distributed services grows, the software architecture needs to consider the 

heterogeneity of user devices. In this chapter, we explored the traditional software 

architecture for the interactive services, and the approaches for the adapting new devices. 

Additionally, we introduced the Web Service infrastructure which is the emerging 

interoperable environment for applications based on the Web.  



 29

 

CHAPTER 3    MODULAR DATA PIPELINING 

ARCHITECTURE 

 

An object in a distributed service is typically in some process structured with several 

services as depicted in Figure 3.1. We describe the set of distributed services using data 

pipelines. Each stage of the pipeline is a distributed service with data flowing from one 

stage into another. 

The modularization process is essential to simplify and enhance the adaptability of 

sophisticated distributed services. Compared to traditional environments, adapting to the 

needs of pervasive devices requires additional data processing and information. 

Furthermore, technologies that adapt content have matured significantly and users expect 

more customized services on their preferred devices.  

Our aim in this chapter is to introduce our architectural approach for adapting new 

devices, and clients efficiently: the Modular Data Pipelining Architecture (MDPA).  

MDPA abstracts data processing into several stages. Each stage is designed to function 

independently as a module of the pipeline.   

 

 

Object or
Distributed

Service

Object or
Distributed

Service

Object or
Distributed

Service

Object or
Distributed

Service

User
Presentati-

on
 

Figure 3.1 Object Processing in Distributed System 



 30

Prior to describing the architecture, we outline the basic constraints for this 

architecture, 

 

• Modularity: A service is required to be modularized based on the 

characteristics of each stage. To satisfy this requirement, each module must 

perform its task without communicating with other stages, except for processing 

via predefined input and output ports.   

 

• Adaptability: An existing service should be able to adapt new types of 

resources, including computing units, networking constraints, user devices, and 

data processing technologies into its workflow with minimum modification. The 

adapting should be considered from first phase of design architecture as a general 

data processing not as an additional computing unit. 

 

• User interactivity: The system should process user events correctly in the 

data processing environment designed for heterogeneous user devices.  

 

• Flexibility: To support various types of user event processing, the software 

architecture must enable the service access to any stage flexibly and process user 

events.  This feature is also needed for interoperating between different pipelines.  

 

• Reusability: Even for a given user, we should be able to manage data in 

different ways. For example, if a user’s preferences change, the system should 

reproduce the object based on the new preference. Each stage of MDPA should 

keep its object instance, and avoid wasting resources on duplicating processing. 

Furthermore, different services should be able to utilize a stage defined in other 

pipeline originally.   

 

• Scalability: Each application provides an individual data pipeline to 

generate user presentation. This pipeline must be able to integrate other pipelines 

and generate a new user display correlated with other pipelines.  



 31

 

• Interoperability: For the collaborative system, data pipelines are required 

to be able to share their objects. Furthermore, integrated distributed services need 

interoperability between local or remote applications. Our work also addresses 

this integration of data pipelines with efficient interoperability.  

 

This chapter is structured as follows. Section 3.1 presents overview of MDPA with 

the characteristics of each stage. In section 3.2, we explain the event processing of 

MDPA. Section 3.3 describes the basic architecture of a stage in MDPA. In section 3.4 

we discuss the design issues in MDPA. We describe the Web service approach to design 

the MDPA in section 3.5. Finally, in 3.6, we present summary of the chapter. 

3.1 Architecture Overview 

The fundamental unit of MDPA is the stage, which are the bubbles in Figure 3.2.  

Every stage is defined based on the characteristics of data processing in that stage.  Well-

defined stages are helpful for interacting with other pipelines. This interaction with other 

pipelines requires interfaces to access the object in collaborative service. Without 

defining the characteristics for stages, interactions between multiple stages and services 

can be ambiguous and redundant. Even for data pipelines used in different services, 

developers should be able to reuse a stage which was designed for other services. To 

facilitate such re-use, the design of a stage should clearly expose its characteristic 

functionality. Thus, we distinguish five fundamental stages based on their functional 

characteristics: Data source (DAT), Control Logic (CTL), Document Transformer (DTX), 

Presentation Client (PCL), and Minimal Client (MCL).  

 



 32

Universal user devices

real time
multimedia

IBM

computation unit

DAT CTL DTX PCL MCL

Database

Generating user presentation

User event transmit

 

Figure 3.2 Object pipelining in MDPA 

3.1.1 Data source (DAT)  

 

 MDPA processes various types of data objects from resources sitting on the edge of 

the P2P Grid: raw data from runtime equipment, output of a computational unit, or output 

from DBMS etc. The most critical functionality of the DAT stage is accessing these 

actual resources and passing these objects to the CTL stage.  

3.1.2 Control Logic (CTL) 

 

The major goal of CTL is generating an environment for semantic control of the data 

object in the DAT stage. The raw data in the DAT stage is transformed to a more 

accessible object type, such as a DOM tree. The user event captured from an end user is 

transmitted through several stages with filtering, and in the CTL stage, accesses, the 

original data object with the semantic meaning. 

3.1.3 Document Transformer (DTX) 

 

Document Transform is the process of filtering the object, with loss of fidelity, to 

appropriately fit the limitations of a client device or reduced network bandwidth. The 

object can be transformed across different data types or similar data types. For example, 

the image data object can adjust its color depth or the resolution of the image for different 

devices or needs. Moreover, the image object can be transformed to a completely 

different data type such as voice or text for extremely limited devices or special needs. 



 33

The DTX stage also incorporates data optimizations for limited network environments or 

data transformations for different network protocols. Therefore, DTX should adapt to the 

various technologies available locally or remotely.  

3.1.4 Presentation Client (PCL) 

 

PCL is the stage of generating an abstract presentation for each client. PCL can be 

described with the markup languages defining User Interface such as HTML, WML, or 

UIML. PCL provides a functional interface for clients, and filters the user’s event to the 

user interface event. One of the most important goals of PCL is integrating services. For 

the integrated service providing multiple features, presentation views from different data 

pipelines for different services are integrated in PCL stages and provide user 

presentations in a single user display.    

3.1.5 Minimal Client (MCL)   

 

MCL is the stage most dependent on devices and user preferences. Heterogeneity of 

the input mechanism is considered directly in the MCL. Therefore, each type of device 

should have its own MCL stage which supports its capability. To facilitate adapting new 

devices, the MCL stage, which must be located on user’s device, provides only minimal 

functionality -- such as user interface. MCL stage directly deals with user’s input and 

output interfaces, such as framebuffer, key inputs, voice input, etc. In MCL, user events 

do not have the semantic meaning of the service.    

 

We described the characteristics of each stage in MDPA briefly. In section 3.2, we 

present the event processing in MDPA. 

 

 



 34

3.2 Event Processing 

MDPA is an event based software architecture. The event-based user interactive 

system processes data when a user event occurs. The user event is processed with several 

steps. First, a user event is captured. Here, the user event includes a mouse click, a voice 

command, keyboard input, etc. The captured event traverses the MDPA data pipeline. 

Before being delivered, the event is adjusted by the filters defined in each stage. Finally 

the event is processed and a newly generated user presentation is delivered to the user 

after traversing the stages along the path from user to certain stage. The user presentation 

is also tuned in each stage with its presentation filters. Eventually, the user receives a 

response from the service. 

3.2.1 Data flow of Event Processing 

 

There are two directions of dataflow in MDPA, 

• Event transmission: This pertains to the path taken by a user event captured in the 

MCL stage. This user event traverses the data pipeline until the event is processed. 

Each stage evaluates the user event, modifies it as necessary, and passed it to the next 

stage.  

• Presentation Generation: This pertains to the path taken by the user presentation 

generated by the event processing. The user presentation is delivered to a user device. 

Stages that the presentation visits filter the presentation and pass the output on to next 

stage. 

 Event transmitting and presentation generating traverse in opposite directions along 

the data pipeline direction in their dataflow. The MCL stage is the first stage along the 

event transmission path, while it is the last stage for the presentation generation. 

The process of adapting content is bi-directional along the pipeline and performed 

during both the dataflows. During the session of a service, the user event is captured in 

the user display environment customized for a specific user device. Since the presentation 

is filtered, information regarding the presentation cannot be applied to the original data 

object directly. Therefore, the event transmission also requires adjusting information 

pertaining to the user event. We call this “back channel communication”. 



 35

DAT CTL DTX PCL MCL

<?xml vers
<!DOCTYPE
<!--local DT
<svg width=
<desc>This
 

User Event Transmission

SVG document
with the original

size of 1200 x 2000

DOM tree of
SVG

document

Rendered Image
with CSS for PDAs

(resolution of
160 x 160)

SVG browser
 for PDAs

Actual Display
on PDA

Generating Presentation View  

Figure 3.3 Event processing in MDPA with an example of SVG 

 As an example, we illustrate the Scalable Vector Graphics (SVG) [Ferraiolo+01] 

browser with a MDPA architecture. SVG is the W3C 2D graphic standard language in 

XML. SVG supports vector graphic shapes, image, and text. Graphical objects can be 

grouped, styled, transformed and composed into previously rendered objects. To browse 

a SVG image, users require a SVG browser, which parses the document, styles and 

renders the image. Figure 3.3 depicts the event processing in our SVG example. Let’s 

consider an example: drawing an arrow on a map illustrated with SVG documents. The 

display that the PDA user is seeing currently is a customized view for a PDA at a 

resolution of 160 x 160. The user points to (80, 80), the center of the presentation in his 

PDA screen, with the stylus. The event with the information of (80, 80) should be 

mapped to the position that denotes the center of the SVG image, based on the original 

coordinate system. Otherwise, the pointed position is not correct in different customized 

presentation views as depicted in Figure 3.4. Although the user wants to point to the 

center of the SVG document, the position pointed by PDA client is only a corner of that 

SVG image in the user presentation of the conventional desktop device. Moreover, when 

the user changes the resolution, and one user is looking at a different view of the 

presentation with others, we also cannot expect that the pointed position means the same 

the actual position in SVG image as shown in Figure 3.4-(b) and (c).   



 36

User presentation
for PDA

with resolution
customization

(80, 80)

(80, 80)

(80, 80)

User presentation
for Desktop PC

with zoomed image

User presentation
for Desktop PC

with original resolution(a)

(b)

(c)

 

Figure 3.4 Event Transformation for Heterogeneous Customization of User 

Presentations 

(a) Pointing the center of user presentation (80, 80) in the customized user 

presentation for the PDA  

(b) Pointed user presentation for PCs with same position as (a) without 

filtering the event 

(c) Pointed user presentation for PCs with same position as (a) without 

filtering event when the user zoomed the image. 

 

Therefore, each stage should provide event filtering processing to map the event 

from the customized environment to the original environments. The most popular method 

is to keep track of history. For every pipeline, the activities are stored in a history buffer 

(a file). For simple processing, this strategy is very useful. In the SVG example, this can 

be used easily to recalculate the previous object based on the history. 

However, there are some sophisticated tasks for which it complicated to get to the 

previous object. If the data is compressed to conserve network bandwidth, it needs 

specific reverse functions called “decompress” or “defrost” for accessing the previous 

object. Unfortunately, not all transcoding methods provide a reverse function. Since 

current transcoding methods, such as CCS or codecs, do not consider reverse 

functionality, this approach is rather difficult to implement. Therefore, we realized that 



 37

this is one of the major problems of the document object modeling in collaborative and 

interactive information systems.  

In the SVG example, pointing at the (80, 80) event should be filtered to enable 

processing in the PCL stage. For instance, captured event (80, 80) is captured as the 

stylus clicking at the position (80, 80) on the PDA screen. This event is filtered to 

clicking (x, y) in an image displayed via the browser in the PCL stage. The event with 

position (x, y) is passed to the DTX stage and the DTX stage maps (x, y) to (x’, y’) which 

no longer corresponds to the PDA coordinates. Finally, the event arrives in the CTL stage 

with the actual coordinate (x’, y’) of the original image. The CTL stage filters the event 

to a semantically meaningful command, such as svgTest.addelement(arrow, 

x’, y’).  

MCL stagePCL stage

EFMCL(e)EFPCL(EFMCL(e))EFDTX(EFPCL(EFMCL(e)) )

EFCTL(EFDAT(EFDTX(EFMCL(EFMCL(e))))) = eDAT

EPCTL(eDAT) PFDTX(EPCTL(eDAT)) PFPCL(PFDTX(EPCTL(eDAT))) PFMCL(PFPCL(PFDTX(EPCTL(eDAT))))

User event e

DAT stage CTL stage DTX stage

EFi : Event filtering function in Stage i
EPi : Event Processing function in Stage i
PFi : Presentation filtering function in Stage i

 

Figure 3.5 Data flow of SVG example 

 

The event svgTest.addelement(arrow, x’, y’) is processed by event 

processing in the CTL stage, and the user presentation is generated as an output of the 

event processing. The output from the CTL stage is passed to the DTX stage for filtering 

the user presentation. Also the output of the DTX stage is delivered to the PCL stage, 

filtered and passed to the MCL stage. Finally, the MCL stage provides the actual user 

display depicted with the bitmap information. Figure 3.5 shows the data flow for the steps 

involved in the SVG event example.  

We define the functions, event filtering, event processing, and presentation filtering 

for stage I, as EFi, EPi, PFi. The result of each function performing the event processing 

feeds each other as input or output. Figure 3.5 illustrates how each function passes its 

output as input for the next stage in the dataflow. 



 38

As seen in the example, this event processing does not traverse all the stages of 

MDPA. User events in MDPA may or may not traverse all the stages in MDPA. We 

classify existing events with this traversing pattern, and describe it in section 3.2.2. 

 

3.2.2 Event Processing Patterns in MDPA 

 

A distributed service supports various types of events. We classify the existing 

events based on the patterns of event processing in MDPA. The user event in MDPA is 

processed in three major steps: event filtering, event processing, and presentation filtering. 

Each stage contains every component based on the characteristics of the stage. However, 

not every user event requires the execution of all the components, or even traversing all 

the MDPA stages. As an extreme example, there is a user event processed only in the 

MCL stage, such as moving the mouse. The display just shows the new position of the 

mouse pointer. It does not perform any function other than repositioning the mouse 

pointer in the user’s display. This event only requires event processing in the MCL stage. 

If each event should traverse every stage of the MDPA, including mouse pointer 

repositioning events, obviously the response times for certain user events will be 

unnecessarily high. Nevertheless, we still need full stages of MDPA for a service. It is 

because a service contains various types of events which require visiting stages in 

different patterns.     

We classify the types of user events according to the traversal pattern in the path for 

event and presentation: MLC event, PCL event, DTX event, CTL event, and DAT event. 

As we mentioned in this section, there are events that are only processed in the MCL 

stage such as mouse moving, keyboard typing and echoing the typed character, etc. We 

classify these events as MCL events. MCL events do not traverse to other stages except 

for MCL stage. The output of event processing is directly delivered to the user display.  



 39

PCL stageDAT stage CTL stage DTX stage MCL stage

DAT stage CTL stage DTX stage MCL stage

PCL stageDAT stage CTL stage MCL stage

PCL stageDAT stage DTX stage MCL stage

PCL stageCTL stage DTX stage MCL stage

CTL stage

DAT stage

DTX stage

PCL stage

(a) MCL event

(b) PCL event

(c) DTX event

(d) CTL event

(e)  DAT event

PCL stageCTL stage DTX stage MCL stageDAT stage

(f) EXT event

 

Figure 3.6 Dataflows in Different Event types 

 

There are some user events, which, although similar to MCL events, but actually be 

should classified carefully in different groups, such as clicking a button or a turning dial. 

In user interfaces, we click a mouse at different locations, but if the position is defined as 

an area specifying a “button”, we see the button area indicating a button-press or if it is 

dial, the dragging mouse event also acts as turning the dial. Without defining the button 

or dial in the PCL stage, a user cannot receive the display. We classify these events as 

PCL events and this type of event should traverse both the MCL and PCL stages. For 

instance, the event “clicking position (x, y)” is passed to PCL stage, and it is filtered to 

“push button A”. The event “push button A” is processed in PCL stage, and generates a 

new presentation depicting a button press in the relevant area. The new presentation is 

actually presented as bitmap information and changes the information in a framebuffer. 

Compared to distinguishing MCL and PCL events, it is more straightforward to 

classify DTX, CTL, and DAT events. The events regarding the transformation of 

presentations are classified as DTX events, which include events such as changing 



 40

resolution, or changing image format. These types of events are captured in MCL and 

transmitted to PCL. Filtered events in MCL and PCL stages are fed into the DTX stage as 

an input. The DTX stage filters the event and processes the event to generate a new 

presentation view. The newly generated presentation is passed to the PCL stage along the 

“presentation generating” path and the presentation filter in PCL processes the new 

presentation to fit the user’s display. Finally, the MCL receives the output of user 

presentation from the PCL stage, and displays bitmap image data on to user’s device. 

CTL events pertain to those events that require access to parsed data objects located in 

the CTL stage. The example of a SVG event demonstrates this type of event in section 

3.2.1. DAT events deal with   access to resources such as loading a new document or 

refreshing a page. Meanwhile, the EXT event is a classification for events that require 

access to resources located outside the pipeline. Loading documents from a Web server, 

sending a query to DBMS, or accessing a remote file server are examples of EXT events. 

Figure 3.6 presents the patterns of dataflow for each event type. Now we describe the 

detailed structure of the stages in 3.3. 

    

 

3.3 Architecture of a Stage 

Each stage of MDPA includes major components that comprise: interface, 

presentation filters, event filters, event processor, and stage manager. Figure 3.7 depicts 

the architecture of a stage while depicting the dataflow in the SVG browser example in 

section 3.2.1. 

 

 



 41

Input Port facing
DTX stage

Event
Filter

Event
Processor

Presentation
Filter

Event
Filter

Event
Processor

Presentation
Filter

Stage Manager

Output Port
facing DAT stage

Input Port
facing DAT stage

Output Port
facing DTX stage

Output Port facing
PCL stage

Input Port facing
PCL stage

Output Port facing
CTL stage

Input Port facing
CTL stage

CTL stage

DTX stage

Stage Manager

Filtered event by
event filter in
DTX stage

User presentation
generated by

event processor in
CTL stage

User presentation
filtered by

presnetation filter
in DTX stage

Filtered event by
event filter in
PCL stage

 
Figure 3.7 Architecture of a Stage in MDPA with dataflow of CTL event 

 

• Interface: The interface in MDPA is a set of ports designed to face other 

stages, users, or resources. We distinguish these ports as input and output 

ports according to the direction of data transmission.  

• Presentation Filters: To allow for heterogeneous devices, MDPA is designed 

for customizing user presentation views. Each stage processes the filtering of 

user presentation based on the characteristics of user devices and the 

functionality of the service. 

• Event Filters: To process events while adapting to heterogeneous devices, 

each stage of MDPA provides event filters. A stage has one or multiple event 

filters, and also may have no filter. Another purpose of event filtering is 

regenerating an event for the stage. For instance, the event captured in the 



 42

MCL stage cannot be processed in the CTL stage without reformatting. Since 

each stage processes its task in a modular way, the event reformatting also 

should be performed individually in each stage.   

• Event Processor: Each stage contains an event processing component.  

• Stage Manager: Each stage provides stage manager to support efficient data 

flow, such as data caching, event queuing, etc. A stage manager also provides 

concurrency handling.  

 

Figure 3.7 also shows partial data flow of a CTL event whose actual processing is 

performed in the CTL stage. The input port facing the DTX stage receives a filtered event 

through MCL, PCL, DTX stages. The event filter in the CTL stage reformats the received 

event to a DOM interface function for accessing the DOM tree in the CTL stage. Now 

actual accessing of the DOM tree is executed in the event processor of the CTL stage. 

The modified DOM, which is the output of the Presentation filter of the CTL stage, is 

passed to the DTX stage via output port facing the DTX stage. The  DTX stage styles the 

document, makes adjustments based on the user profile, and passes the output to the PCL 

stage. After the traversed of the presentation through the PCL, and MCL stages, the users 

browse the new SVG image in their browser. 

As shown in the SVG example, not every event processor performs their task. 

Meanwhile, the direction of dataflow is reversed at the stage that the event processor 

performs its task in.   

The stage manager maintains the instance of the data pipeline. Since the data 

pipeline is structured with linked stages, if the stage is failed, the pipeline is broken. We 

assume that the MDPA data pipeline processes its event only when all the stage is alive. 

The stage manager handles the object instance of a stage.   

3.4 Modularization and Packaging 

In MDPA, flexibility is considered to support various types of services or deploy to 

infrastructure. To support various characteristics of functionalities and to adapt to 

different software infrastructures, the data pipeline should be able to define the data 



 43

processing with appropriate granularity. The flexible packaging of stages also makes 

adapting new infrastructure possible, such as Web services or P2P infrastructures.     

To satisfy the need for flexibility, MDPA imposes three major requirements for each 

stage: modularization of stages, accessibility to resources and communication between 

stages. 

First, every stage of the MDPA is designed as an independent module. The 

functionality of a stage is independent of the other stages. After a stage takes an output 

object from a prior stage as input, the stage is able to generate its output without invoking 

any process located in the other stages. Recursive processing over stages are not allowed 

in MDPA. 

Second, the stages of MDPA need to provide an accessing method to access remote 

or local resources. When a function within a stage needs to access other resources, such 

as user profiles or stylesheets, it is able to access the resource based on capabilities 

available in the stage. Otherwise, the stages would be severely limited when they are 

packaged for various functionalities. 

Third, MDPA requires predefined communication ports between stages to structure a 

pipeline architecture. With the input and output ports, each stage can pass the object to 

adjacent stages. A careful definition of input and output port is important to the design of 

a  collaborative service, where the input or output ports are shared, and master’s input or 

output object is fed to other participant’s stage as if it is from their own pipeline. 

Section 3.5 shows how MDPA is deployed within a Web service infrastructure. 

 

3.5 Web Service Approach to MDPA 

The Web service concept allows objects to be distributed across web sites where 

clients can access them via the Internet. Moreover, the use of XML [Bray+00] and 

standard interfaces like WSDL (Web Services Definition Language)[Christensen+01] or 

UDDI (Universal Description, Discovery and Integration of Web services)[UDDI+00] 

provides interoperability between services, including Grids[Grid], which comprise robust 

largely asynchronous shared resources. The current Web service infrastructures, such as 

Apache project’s Jetspeed [Jetspeed] or WebSpheres [WebSphere] from IBM, provide 



 44

services and development tools for mobile devices. However, these approaches based on 

portal services are not efficient to support real time services such as synchronous 

collaborative services. 

We addressed the emerging heterogeneous user environment comprising PDAs 

(Personal Digital Assistants) and generalize it to universal accessibility. Mobile systems 

are typically slow, unreliable, and have unpredictable temporal characteristics. Further, 

the user interface is clearly limited. The design of distributed mobile applications needs 

to identify the practicalities, reliability, and possibilities of continuous interaction and 

integrate synchronous and asynchronous collaboration. One of the steps to enable 

universal accessibility is by intelligently defining user “profile” and the semantic of Web 

services.  

3.5.1 Dataflow in Web service 

 

An object in Web services is typically in some pipeline, as seen in Figure 3.8, 

somewhere between the original object to the displayed user interface. Each stage of the 

pipeline is a Web service with data flowing from one stage to another. Rather than a 

simple pipeline, one can have a complex dynamic graph linking services together. In this 

section, we deploy our MDPA pipelining architecture. The modular design of MDPA 

enables the Web service to be designed based on the characteristics of the processing. 

Therefore the reuse of a given Web service for other distributed services is possible. We 

consider the output stage of MDPA as a “document” – each with its own document object 

model; preferably different instances of the W3C DOM (Document Object Model). The 

final user interface could be a pure audio rendering for a visually challenged user, or a 

bitmap transmitted to a primitive client not able to perform full browser functions. 

 

Object
or Web
Service

Object
or Web
Service

Object
or WS
Viewer

Object
or WS
Display

WS : Web Service  

Figure 3.8 Dataflow in Web service 

 



 45

 
 

3.5.2   Deployment of MDPA within Web service infrastructure 

 

We have presented the functionalities of each stage in MDPA. The stages in MDPA 

can be deployed as a Web service. Since MDPA is designed with the module, the 

functionality defined in any stage of MDPA can be deployed as a stand alone Web 

service.  

We can deploy MDPA architecture into the Web service infrastructure by defining 

input/output ports with a standard interface, such as WSDL. Each stage of MDPA can be 

implemented in various ways. The communication between stages is processed via these 

ports, if each stage is located in different Web services.  

Current multi-functional distributed services require a scalable framework to such as 

new Web services for adapting third-party Web applications.  MDPA supports the 

integration of multiple services and the Web service approach provides the environment 

of aggregating with its standard such as UDDI or WSDL. Local or remote Web services 

are integrated into portals as portlets, which are user-facing, interactive web application 

components. A Web service is started with the exchange of messages between the service 

provider and the requestor. WSDL defines the exchange of messages between the service 

provider and the requestor as an operation [Christensen+01]. The messages in operations 

are described abstractly, and are bound to a concrete network protocol and a message 

format. The service is defined with an input or output port as a minimal description. Our 

research extends negotiation capabilities on output ports to support diverse dynamic 

client requirements for universal access. 

Application or
Content source

U
F

IO

R
F
I

O

WSDL

Web Service

RFIO  : Resource Facing  Input/Output ports
UFIO  : User Facing Input/Output ports  

Figure 3.9 Input and Output Port Defined in Web service for MDPA 



 46

In order to describe a general approach to collaboration, we need to assume that 

every Web service has one or more ports in each of the four classes shown in Figure 3.9 . 

The first class is resource-facing input ports, which supply the information needed to 

define the state of the Web service. User-facing input port(s), which allow control 

information to be passed by the user, may augment these resource-facing input ports. The 

final class is user-facing output ports that supply information needed to construct the user 

interface. Asynchronous collaboration can share the data (e.g. URL for a Web page or 

body of an email message) needed to define a Web service (display Web page or browse 

e-mail in examples).  

3.5.3   Packaging of Stages as Web service 

 

The stages of MDPA can be packaged as Web service in various ways. Figure 3.10 

depicts several of packaging styles. Figure 3.10-(a) packages the DAT, CTL and DTX 

stages as a Web service. In this packaging, each stage does not have to communicate with 

each other with the input/output ports defined following Web service semantics, such as 

WSDL. Since each stage does not provide Web service input and output ports, developers 

cannot reuse each stage for other services without knowing specific interface definition 

used inside of the Web service. Therefore, this type of packaging has low interoperability 

and reusability. However, we expect higher efficiency in this model. 

Meanwhile, Figure 3.10-(b) shows the style where every stage is designed as 

individual Web services. Since every input and output port is defined with Web service 

semantics, each stage can be reused easily. Furthermore, interoperability with other 

services is obvious.  

However, in real pervasive services, multiple filtering is processed in the DTX stage 

to generate a user presentation with multiple transcoding technologies. Transcoding is 

one of the most popular ways to tune content from a service provider. Transcoding is the 

transformation that converts the multimedia object from one form to another, frequently 

trading object fidelity for size, and is used to convert image or video formats (reduction 

resolution or compress data). Moreover, it is more efficient to develop some very 

expensive rarely used transcoding technologies as individual Web services. Otherwise, 

services are designed do not use the resources efficiently.  Figure 3.10 illustrates how 



 47

multiple Web services are collapsed into a single stage. This style provides the 

interoperability and reusability to deploy MDPA within a Web service infrastructure. 

Additionally, it provides a more flexible design method for designing services with 

MDPA. 

 

DAT CTL DTX

DTX

WS WS WSDAT CTL

DAT DTXCTL

(a)

(b)

(c)

Object transmit via Web service Input/output port
Object transmit via Input/output port between stages

WS Web Service Stages of MDPA
 

Figure 3.10  Various Styles of Packaging Stages with Web service infrastructure 

 

3.6  Summary 

In this chapter, we introduced MDPA which is an event based software architecture 

designed for heterogeneous user environments.  We presented the overview of MDPA in 

section 3.1 with a brief description of its stages and functionality. In section 3.2, we 

described the event processing in MDPA. Based on the event processing, the basic 

architecture of stage was described in section 3.3. The MDPA contains interface, event 

filters, presentation filters, event processor, and stage manager as major components. The 



 48

interface of MDPA is a set of input and output ports for communicating with other stages. 

Each stage communicates with other stages, resources, or users via these ports.  

Structuring a service with MDPA requires appropriate design for modularity of 

stages and the packaging of stages. We modularize this process with functional 

characteristics and approached flexibility with various packaging styles. 

The Web service infrastructure provides interoperability using XML and standard 

interfaces like WSDL or UDDI. We explained how we can deploy MDPA in a Web 

service infrastructure by defining input and output ports with WSDL. We also discussed 

the design issues to designing MDPA as Web service. 

In chapter 4, we will describe the modeling of MDPA and each stage of MDPA 

based on the discussion of this chapter. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



 49

 

CHAPTER 4     MODELING MDPA  

 

The MDPA is modeled with the software architecture pattern of Pipes and Filters to 

show its dataflow clearly. Originally, the pattern of Pipes and Filters is structured with a 

set of filters [Schach+99], which denote the functions, and set of pipes which link these 

filters. We define a set of filters and pipes as a stage which processes its task modularly. 

Since MDPA is event based software architecture, a service in MDPA is specified with 

the event sets that are supported in the service. The processing of an object in a 

distributed service is refined with five stages in MDPA. Based on this refinement, we 

reclassify existing events according to the modularization process in MDPA. Therefore, 

an event in MDPA is also influenced by the characteristics of data processing. For 

example, an event related to only the current user display and an event processed with the 

original data object will be classified into different event types. We present the 

classification of events in MDPA, and the formal specification of the event system.  

In this chapter we present the modeling of a service with MDPA. To model the 

service in MDPA, we start with the design of MDPA from presenting data flow in each 

stage. The representation of dataflow utilizes Petri net theory [Peterson+81] which is 

formalism for modeling the dataflow and concurrent event processing, with defining of 

its places and transitions therefore called as place and transition net (PT-net). We 

introduce the basics of PT-net and Modular PT-net [Christensen+00] in section 4.1.2. 



 50

The service designed with PT-net is analyzed with two methods. First, we simulate 

the data flow with a PT-net based simulator. Second, the reachability approach is used for 

verifying the connectivity. A description of each stage and the result of analysis are 

attached in Appendix A. 

This chapter is organized as follows, section 4.1 presents the background of the 

modeling method, based on pipes and filters. Furthermore, we introduce PT-net and 

present the basic formal definitions. Moreover, we introduce higher level PT-net model, 

Modular PT-net. Section 4.2 describes the event model in MDPA. The classification of 

existing event sets and formal specification based on the event model is presented. 

Section 4.3 shows how we define each stage of MDPA, and finally a service of MDPA 

with Modular PT-net model. Section 4.4 mentions the analysis of defined service in 

MDPA, and presents how it can be verified based on the analysis. A summary of this 

chapter is followed in section 4.5. 

4.1 Modeling MDPA 

 

MDPA is modeled with the pattern of the Pipes and Filters to present the data flow in 

P2P Grid services. Compared to other architectural patterns such as client-server or 

object-oriented patterns, the pattern of Pipes and Filters enables the design to be more 

flexible with easier creation of prototypes [Buschmann]. In section4.1.1, we describe the 

advantages we can inherit when we adapt the Pipes and Filters pattern for the software 

architecture of P2P Gird in detail. 

As a specification and design method, we utilize PT-net which is a widely known 

formalism for modeling dataflow and concurrent event processing. Presented for the first 

time by C.A. Petri in 1962 [Petterson+81] it has since been the focus of a lot of research 

work. The main uses of Petri nets are for discrete event simulation and modeling complex 

systems such as communication protocols or distributed databases. The major advantages 

of using PT-net in such areas are their expressiveness with regards to concurrency related 

concerns, their graphical representation, their mathematical foundation, and their 

excitability. PT-net is often ranked amongst the state-based formalisms, which may be 

due to a hasty assimilation with finite stage automata. 



 51

PT net models a system by a set of places and a set of operations (called transitions). 

The state of a system is modeled at any moment by a distribution of tokens in the net’s 

place. Place and transitions are connected by directed arcs, which define when each 

transition is allowed to occur, and what the effect of its occurrence will be. A transition is 

allowed to occur when each of its input places holds at least one token. The occurrence of 

the transition consumes a token in each input place and sets a token; the occurrence of the 

transition consumes a token in each input place and sets a token in each output place. 

Moreover, an integer weight n is associated with each arc by the forward and backward 

incidence function, thus allowing the consumption or setting of n tokens in a place at a 

time. Generally, a transition occurrence may consume or produce tokens. Especially, we 

illustrate this architecture as Modular PT-net model [Christensen+00] to illustrate our 

modular architecture efficiently. Modular PT-net model illustrates a PT-net in which the 

individual modules, defined as PT-nets, interact via shared places and transitions. The 

Modular PT-net technology is useful for defining data pipelines that contain multiple 

modules with its modularity. Moreover, the concept of shared nodes is clearly applied to 

describe the packaging of modules.  

 In section 4.1.2 and 4.1.3, we will describe the basic formal definitions that we will 

use often in this dissertation to specify and design MDPA. 

4.1.1 Architectural Pattern of “Pipes and Filters”  

 

The major methods of describing the architecture of a software product might be 

object-oriented, pipes and filters, or client-server with a central server providing file 

storage and computing facilities for a network of client computer [Schach+99]. 

The architectural pattern which is “Pipes and Filters” is defined in [Buschmann+96] 

as, 

"The Pipes and Filters architectural pattern provides a structure for 

systems that process a stream of data. Each processing step is encapsulated in 

a filter component. Data [are] passed through pipes between adjacent filters. 

Recombining filters allows you to build families of related filters."  



 52

The filters are the processing units of the pipeline in classical pipes and filters pattern, 

and the pipes are the connectors—between a data source and the first filter, between 

filters, and between the last filter and a data sink.  

For designing software architecture with the pattern of pipes and filters, we should 

divide the task into a sequence of processing steps. Next step is enabling the filters to 

execute concurrently. Finally, we should connect the input to the sequence of processing 

steps to some data source, such as an object. Also, we must connect the output of the 

processing sequence to some data sink, such as an object or display device. 

A filter usually may be active or passive. An active filter runs as a separate process 

or thread; it actively pulls data from the input data stream and pushes the transformed 

data onto the output data stream. A passive filter is activated when an output from the 

filter is pulled or input to the filter pushed by its definition. 

With using Pipes and Filters pattern, we can inherit the benefits [Buschmann+96] 

such as,  

• Intermediate files unnecessary, but possible. File system clutter is avoided 

and concurrent execution is made possible.  

• Flexibility by filter exchange. It is easy to exchange one filter element for 

another with the same interfaces and functionality.  

• Flexibility by recombination. It is not difficult to reconfigure a pipeline to 

include new filters or perhaps to use the same filters in a different 

sequence.  

• Reuse of filter elements. The ease of filter recombination encourages filter 

reuse. Small, active filter elements are normally easy to reuse if the 

environment makes them easy to connect.  

• Rapid prototyping of pipelines. Flexibility of exchange and recombination 

and ease of reuse enables the rapid creation of prototype systems.  

• Efficiency by parallel processing. Since active filters run in separate 

processes or threads, pipes-and-filters systems can take advantage of a 

multiprocessor.  



 53

A service with MDPA is designed as a set of modules in data pipeline. Each module 

is distinguished with its functional characteristics. A module is illustrated as a set of 

filters and pipes in MDPA. We define the modules as “stages”. Therefore, the stage 

contains a set of filters and pipes.  

4.1.2 Representation with PT-nets 

 

A PT-net is composed of four parts: a set of places P, a set of transitions T, a weight 

function W, and a mapping function for the initial marking M0. We start by giving the 

definition of PT-nets, and introducing the notations to be used in this chapter. We use the 

following definition of PT-net,  

DEFINITION 4.1  A PT-net is a tuple PN = (P,T,W,M0), satisfying, 

(i) P is a finite set of places; 

(ii) T is a finite set of transitions. The sets of net elements are disjoint: TI P = {}; 

(iii)W is the arc weight function mapping from (P×T) U  (T×P) intoΝ ; 

(iv) M0 is the initial marking. M0 is a function mapping from P intoΝ . 

 

Now we define markings and steps for PT-nets. 

 

DEFINITION 4.2  A marking is a function M mapping from P into Ν  while a step is a 

non-empty and finite multi-set over T. The sets of all markings and steps are denoted by 

M and Y, respectively. 

 

We denote the set of multi-sets over a set A by AMS. 

The enabling and occurrence rules of a PT-net can now be defined. 

 

DEFINITION 4.3 A step Y is enabled in a marking M, denoted by [YM , iff the 

following property is satisfied: 



 54

∑∑
∈∈

+







−=∈∀

YtYt
ptWtpWpMpMPp ),(),()()(: 11  . 

 

Note the summations above are over a multi-set Y. This means that W(p,t) and 

W(t,p) appears in Y. We say that M2 is directly reachable from M1 by the occurrence of 

step Y, which is denoted by: M0 [ 21 MYM . [M  denotes the set of markings reachable 

from M. 

Meanwhile, we describe transition with input and output functions also, 

 

DEFINITION 4.4   For a transition T, input and output function are defined as, 

I: T  P ∞ is the input function, a mapping from transitions to bags of places. 

O: T  P ∞ is the output function, a mapping from transitions to bags of places. 

 

For example, the transition in PT-net G of Figure 4.1 has input and output function, 

I(t) = {p1}, and O(t) = {p2}. 

Most theoretical work on PT-net is based on the formal definition of PT-net 

structures given above. However, a graphical representation of a PT-net structure is much 

more useful for illustrating the concepts of PT-net theory. A PT-net graph is a 

representation of a PT-net structure as a bipartite directed multigraph. 

A PT-net structure consists of places and transitions. Corresponding to these, a PT-

net graph has two types of nodes. A circle O represents a place; a bar | represents a 

transition. Since the circles represent places, we call the circles places. Similarly, we call 

the bars transitions. 

Directed arcs (arrows) connect the places and the transitions, with some arcs directed 

from the places to the transitions and other arcs directed from transitions to places. An arc 

directed from a place p to a transition t defines the place to be an input of the transition. 

Multiple inputs to a transition are indicated by multiple arcs from the input places to the 

transition. An output place is indicated by an arc from the transition to the place. Again, 

multiple outputs are represented by multiple arcs.  

A PT-net is a multigraph, since it allows multiple arcs from one node of the graph to 

another. In addition, since the arcs are directed, it is a directed multigraph. Since the 



 55

nodes of the graph can be partitioned into two sets (places and transitions), such that each 

arc is directed from an element of one set (place or transition) to an element of the other 

set (transition or place), it is a bipartite directed multigraph. 

We utilize the graphical representation to present our design with PT-net to illustrate 

each stage. Meanwhile, we adapt a higher level concept of PT-net, which is Modular PT-

net to represent whole architecture of MDPA in a more simplified fashion.  

 

t

p1

p2

G

p1

t

G1

p2

t

G2

 

Figure 4.1Two modules Sharing Transition 

 

4.1.3 Definition of Modular PT-nets 

 

The use of high-level PT-net formalisms has enabled creation of PT net based 

models of large systems. We illustrate our system by means of Modular PT-nets in which 

the individual modules interact via shared places and shared transitions. Sharing is often 

accomplished using place fusion sets and transition fusion sets. These two strategies for 

communications are present in a number of models, e.g. see 

[Battiston+91,Christensen+94] for models using shared transitions and see [Huber+90, 

Jensen+92] for models using place fusion. Figure 4.1 shows the original PT-net G is 

modulated to G1 and G2 which are sharing transition t. 

We will now give the definition of a modular PT-net.  

DEFINITION4.5  A modular PT-net is a triple MN = (S, PF, TF), satisfying the 

following requirements: 

(i) S is a finite set of modules such that: 

(a) Each module, Ss∈ , is a PT-net: 

                              s = ( Ps, Ts, Ws, Mos); 



 56

(b) the sets of nodes corresponding to different modules are pair-wise 

disjoint: 

            Sss ∈∀ 2,1 : [ ]{})()( 221121 =⇒≠ TsPsTsPsss UIU . 

(ii) ⊆PF 2p is a finite set of place fusion sets such that: 

(a) U Ss
PsP

∈
=  is the set of all places of all modules; 

(b) For nodes TPx U∈  we use )(xS  to denote the module to which x 

belongs. For all p in P we define M0(p) = M0s(p)(p); 

(c) members of a place fusion set have identical initial markings: 

                       ( ) ( )[ ]20102,1 :: pMpMpfppPFpf =∈∀∈∀     

(iii) ⊆TF  2T is a finite set of transition fusion sets where:    

               U Ss
TsT

∈
=  is the set of all transitions of all modules. 

 

For the sake of simplicity, we use the same names for objects (places or transitions) 

belonging to different modules, but which have to be fused together. 

A Modular PT-net contains a finite set of modules, each of them being PT-net. These 

modules must have disjoint sets of nodes. Each place fusion set is a set of places to be 

fused together. 2p denotes the set of all subsets of places. We mandate that all elements of 

a place fusion set have the same initial marking. Note that we do not demand the place 

fusion sets to be disjoint. Each transition fusion set is a set of transitions to be fused 

together. Similarly, we do not mandate that the transition fusion sets to be disjoint. Figure 

4.1 presents Modular PT-net with sharing transition. 

Stages in MDPA are represented as modules of a Modular PT-net. There are five 

modules in MDPA: DAT, CTL, DTX, PCL, and MCL. Each subset is defined as PT-net 

with a quintuplet <subset.P, subset.T, subset.W subset.M>. Each subset defines 

transitions for input and output to provide interface to other stages, resources, or users. 

Each transition located in a subnet represents the process performed in the stage.  

With using Modular PT-net model, we define the design of service in MDPA. Prior 

to describe our design, we present the specification of event processing in MDPA. 



 57

4.2 Event Processing in MDPA 

Data processing in MDPA is based on user events. We classify existing user event 

for the distributed services according to the pattern of event processing over the MDPA 

architecture. There are six categories of events: MCL event, PCL event, DTX event, CTL 

event, DAT event, and External event. Here the External event is defined as the event, 

which accesses the resource located in outside of pipeline such as loading Web Pages, or 

accessing remote DBMS.  

A helpful starting point is the classification of user events in MDPA (see Figure 3.5). 

In the collaborative service, there are collaborative and non-collaborative events. If the 

event changes only the state of the service which captured event originally, the event is 

not considered as collaborative event. Meanwhile, in the collaborative service, master’s 

event affects the state of a user’s service. In this chapter we describe how MDPA 

supports non-collaborative event processing to show the basic mechanism of event 

processing. In chapter 5 we will focus on collaborative event processing in detail.  

For demonstrative purpose, we present an example event set of SVG (Scalable 

Vector Graphics) browser. SVG is a 2D vector graphics standard format from W3C and 

has a structured XML syntax. In this example, we provide examples for 6 types of user 

events.  

Table 4.1 User Event types and the Stages 

Event 
Type 

Filtering 
Event 

Event 
Processing

Filtering 
User Presentation 

MCL event MCL MCL MCL 
PCL event MCL, PCL PCL PCL, MCL 
DTX event MCL, PCL, DTX DTX DTX, PCL, MCL 
CTL event MCL, PCL, DTX, CTL CTL DAT, DTX, PCL, MCL 

DAT event MCL, PCL, DTX, CTL, 
DAT 

DAT CTL, DTX, PCL, MCL 



 58

 

Collaboration
CollaborativeNon-collaborative

Pl
ac

e
M

C
L

D
AT

C
TL

D
TX

PC
L

Mouse Moving

Add a Circle Object

Changing Image Format

Scrolling Rendered Image

Load New SVG DocumentEX
T

Browsing Source

 

Figure 4.2 Classifications of events in MDPA 

 
Event processing includes three steps of data processing: event filtering, event 

processing, and filtering of user presentation. As we described in chapter 3, the user event 

captured from a user device is filtered and transmitted to the stage where the event is 

finally executed.  After the event is transmitted, the event is executed and starts to 

traverse the data pipeline in reverse direction to filter the user presentation. Table 4.1 

illustrates the user event type and the stages which are visited for event processing in 

each step. 

In current sophisticated services, the event usually performs multiple types of events 

to provide a more user friendly response: For instance, when the user wants to load a new 

document, current browsers perform EXT, PCL, and MCL events together. First, the 

user’s mouse is moved to the area specified as a “loading” button and the event of 

clicking mouse once or twice is captured in MCL. Then, the clicking mouse is transferred 

to “push button” of GUI, because the area is specified as a GUI button, and the area is 

blinking, which is the event processing of PCL event. Finally, the event traverses pipeline, 

and loads new data. From the new data, the user’s new presentation view is generated 

through the pipeline. This is EXT event type as we defined earlier in this section. This 

pertains to the user interface design. In this chapter, we do not consider the design of user 

interface. Every event here is a single activity related to user input. 

 



 59

4.3 Definition of a Service with MDPA 

A service in MDPA is defined as a Modular PT-net. A set of modules denotes stages 

in MDPA. Each module is defined as a PT-net. Meanwhile, the modules are linked via set 

of ports which is called interface. Finally, a service is structured with the stages and 

interfaces as illustrated in Figure 4.3. 

Stage DAT Stage CTL

User Presentation Generating

Stage DTX Stage PCL Stage MCLResource

Event Transmit

Place Fusing
Transition Arc

Interface
Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Interface Interface Interface Interface Interface

User

 

Figure 4.3 Stages and Interface of MDPA 

In this section, first, we define the interface with the concept of fusing transitions. 

Definition of each stage follows. Finally, a service is defined with the stages and interface.   

4.3.1 Interface of MDPA 

The dataflow of MDPA is performed by communication via interfaces. Each 

interface contains a set of Input ports and a set of Output ports. Input and Output ports are 

denoted as a set of fusing transitions shared by communicating stages. Figure 4.4 shows 

how the transitions are shared and how stages are linked. We provide formal definition of 

interface in a stage of MDPA as follows, 

DEFINITION 4.6 The Interface of a stage s is defined as,  

  Interfaces = Input portsU  Output ports,, such that: 

(i) For node x, we use )(xS  to denote the stage to which x belongs. 

(ii) Input port is a set of transitions t such that, 

(S(O(t))) = s ∧  (S(I(t)) = s’) ∧  (s≠ s’), 

(iii) Output port is a set of transitions t such that, 

(S(I(t))) = s ∧  (S(O(t)) = s’) ∧  (s≠ s’). 



 60

t

Stage A

Output Data of Stage A

Input Data of Stage B

Interface between
Stage A and B

Stage B

Stage A

Stage B

Output Data
of Stage A

Output port facing
Stage B

Input port facing
Stage A

Input Data
of Stage B

Place Transition ArcFusing
Transition  

Figure 4.4 Defining Interface with Fusing Transitions 

The interface links each stage and provides a communication method for resources 

or users. Therefore, the input port is defined as a set of transitions which has one arc from 

outside of the stage and another arc to inside of the stage. Similarly, the output port is 

defined as a set of transitions which has one arc from inside of the stage and another arc 

to outside of the stage. Furthermore, in the Modular PT-net, the interface is defined a set 

of fusing transitions, because each port is shared by two adjacent stages. 

Since MDPA is designed for supporting service between resources and user based on 

P2P Grid environments, the pipeline should provide the interface for resources and user. 

The definition of interface is also available for resources and users.  

4.3.2 Basic Stage Managements 

 

Since the modular architecture is designed to process the data in each module 

independently, the object instance needs to be managed efficiently. Otherwise, it can 

cause unnecessary transitions between stages and redundant data processing in each stage. 

To avoid being prone to such disadvantages, we provide functionality of managing object 

instance to individual stages. These functionalities are processed in Stage Manager.    



 61

 

The basic object managing of MDPA is in the following way: 

• Instance of stage 

We assume that the pipeline is structured only when every stage is available. If a 

stage is crashed, the pipeline is broken. The place which shows “This stage is 

available.” is marked if the stage is available.  

• Concurrency 

The input pertaining to presentation generating and event transmit path, along with 

multiple events transmits, can result in concurrency problems. We synchronize 

events and presentation view in every stage and maintain event queue to prevent 

transition conflicts or deadlocks. 

• Cache the Output 

The output object at a given stage is accessible even after the processing of that 

stage is finished. This is for providing reusability to MDPA. By keeping the object 

instance, the output can be processed with the followed user events without 

reproducing. Each stage consists of a cache to store the “n” outputs of data 

processing.  

We describe the stages from section 4.3.3 through section 4.3.7. Each PT-net is 

illustrated over the basic architecture of a stage depicted in Figure 4.5. There are three 

possible dataflows in a stage, and DAT stage has an additional dataflow to process the 

EXT event. As depicted in Figure 4.5, event is transmitted through input port, event filter, 

and output port. The presentation from adjacent stage is filtered via input port, 

presentation filter, and output port. Meanwhile, the event is processed in a stage through 

input port, event filter, event processor, presentation filter and output port. In this case, 

the stage processes the data in two opposite directions. Since the EXT event is required 

for accessing resources, dataflow points to outside the stage via its output port. The 

dataflow of EXT event processing is only for the DAT stage. 



 62

  Output
   Port

 Presen-
tation
Filter

Event
Processor

      Event
     Filter

Stage Manager

Input Port Output Port

Input
PortPr

es
en

ta
tio

n 
G

en
er

at
in

g

Event Transm
itting

Event Processing

EXT Event Processing in D
A

T

 

Figure 4.5 Possible dataflows in a stage 

 

4.3.3 The MCL stage 

 

The MCL stage is a stage of MDPA, which is closest to user devices. MCL stage 

defines input events from the user’s input behavior directly, such as clicking a mouse 

button or moving a mouse etc. The user presentation view is actually rendered and 

accessed in the MCL stage for each user device. For the visual user interface, actual 

framebuffered image is updated with an MCL event. The event queue and cache are also 

provided here as stage manager. MCL stage contains input/output ports facing the users 

in the path of event transmit, and input/output ports facing the PCL stage in the path of 

presentation generating. We call these input and output ports as interface of MCL stage. 

Meanwhile, these ports are shared with facing stage or user. Therefore, we define the 

input and output ports as fusing transitions in Modular PT-net. 

 

 



 63

receive presentation
from PCL stage

Presentation is receive
from PCL stage

Generated
Presentation

Presentation
filtering

Presentation
filtering

Filtered
presentation

Caching Output Filtered &
stored Output

This stage is
available

Display
Presentation

Event
Queuing

Event
is in Queue

Event
processing

Input Port
facing PCL stage

Output Port
facing PCL stage

Output Port
facing User

Input Port
facing User

Stage
Manager

Event
Filter

Event
Processor

Presentation
Filter

receive event

received event

filtering event

filtered event

transmit event
to PCL stage

CTL
event

EXT
event

DTX
event

DAT
event

PCL
event

MCL
event

Events
from User

Filtered
events

from MLC

Filtered
Presentation

from PCL

User
Presentation

CTL
event

EXT
event

DTX
event

DAT
event

PCL
event

t1 t2 t3 t4 t5 t6

t7 t8 t9 t10 t11 t12

t13t14

t15t16

t17

t18

t19 t20 t21 t22 t23 t24

m1 m2 m3 m4 m5 m6

m7 m8 m9 m10 m11 m12m13m14m15

m16

m17 m18

Place Transition ArcFusing
Transition

 

Figure 4.6 PTMCL : MCL stage with PT-net 

 

Therefore, MCL stage is denoted as a PT-net, such as, 

DEFINITION 4.7 MCL stage is defined as a PT-net such that: 

(i) PTMCL = ( PMCL, TMCL, WMCL, MoMCL) defined in Figure 3.5 graphically, 

          PMCL, TMCL are defined in Figure 4.6 graphically. 

          ∀ p∈MCL, WMCL (p) = 1, constantly. 

          MoMCL(mcl.m18) = 1, initially. 

(ii) InterfaceMCL = Input port facing PCL stage  

                                           U  Input port facing USER 

                             UOutput port facing PTL stage  

                             UOutput port facing USER,             such that: 

                      Input port facing PCL stage = {mcl.t15}  



 64

                      Input port facing USER = {mcl.t1, mcl.t2, mcl.t3, mcl.t4, mcl.t5, 

mcl.t6} 

          Output port facing PCL stage = {mcl.t20, mcl.t21, mcl.t22, mcl.t23, mcl.t24} 

               Output port facing USER = {mcl.t18} 

(iii) Each Input and Output functions for transitions are defined in Figure 4.6  

graphically. 

 

The place mcl.m18 which denotes “This stage is available” is required to be marked 

to access PCL stage or user, initially.   This place checks whether the instance of stage is 

alive or not, while also providing synchronization for incoming events and presentations. 

receive presentation
from DTX stage

Presentation is receive
from PCL stage

Generated
Presentation

Presentation
filtering

Presentation
filtering

Filtered
presentation

Caching Output
Filtered &

stored Output
This stage is

available

Transmit Presentation
to MCL stage

Event
Queuing

Event
is in Queue

Event
processing

Input Port
facing DTX stage

Output Port
facing DTX stage

Output Port
facing MCL stage

Input Port
facing MCL stage

Stage
Manager

Event
Filter

Event
Processor

Presentation
Filter

receive event

received event
from MCL stage

filtering
event

filtered
event

transmit event
to DTX stage

presentation
aggregating

 presentation

CTL
event

EXT
event

DTX
event

DAT
event

CTL
event

EXT
event

DTX
event

DAT
event

PCL
event

Filtered
events

from MLC

Filtered
Presentation

from PCL

Filtered
Presentation

from DTX

Filtered
events

from PCL

m16

m15

m11m12m13

m14

m17

m10

m1 m2 m3 m4 m5

m6 m7 m8 m9

t1 t2 t3 t4 t5

t10 t6 t7 t8 t9

t11
t12

t13

t14
t15

t16

t18

t17

t19 t20 t21 t22

Place Transition ArcFusing
Transition

 

Figure 4.7 PTPCL : PCL stage with PT-net 

 
 
 
 
 
 



 65

 
 

4.3.4 The PCL stage 

 

Figure 4.7 illustrates the design of PCL stage, which provides input and output 

interfaces for the DTX stage and MCL stage respectively. PCL stage generates the actual 

user presentation. Besides event filtering and generating user presentation view for single 

MDPA, the PCL stage is designed specifically for aggregating multiple pipelines into a 

unified user presentation view. Therefore, the fusing transition pcl.t18, denoting “receive 

presentation from DTX stage” also supports the input from DTX stage of other data 

pipelines. We discuss the interoperating between data pipelines in chapter 5. 

Similar to the MCL stage, there are cache and event queue and concurrent 

controlling units in the Stage Manager.  

Therefore, we define PCL stage as, 

 

DEFINITION 4.8  PCL stage is defined as a PT-net such that: 

(i) PTPCL = ( PPCL, TPCL, WPCL, MoPCL) 

          PPCL, TPCL are defined in Figure 4.7 graphically. 

          ∀ p∈PCL, WPCL (p) = 1, constantly. 

          MoPCL(pcl.m17) = 1, initially. 

(ii) InterfacePCL = Input port facing DTX stage  

                                           U  Input port facing MCL stage 

                             UOutput port facing DTX stage  

                             UOutput port facing MCL,             such that: 

                      Input port facing DTX stage = {pcl.t18}  

                      Input port facing MCL stage = {pcl.t1, pcl.t2, pcl.t3, pcl.t4, pcl.t5} 

          Output port facing DTX stage = {pcl.t19, pcl.t20, pcl.t21, pcl.t22} 

                     Output port facing MCL stage = {pcl.t17} 

(iii) Each Input and Output functions for transitions are defined in Figure 4.7 

graphically. 

 



 66

 

4.3.5 The DTX stage 

 

DTX is the stage designed for adapting data according to device profiles or user 

preferences. Therefore, there are various data transfers in the DTX stage. For complicated 

data adapting process, the presentation filtering can be multiple steps of filters. We 

discuss the data adapting process in chapter 6 in detail. Another important functionality 

of DTX is reverse filtering of events. DTX stage must transmit information in a way such 

that user interactions can be properly passed back from the user with the correct semantic 

meaning. Let us assume that DTX translated the coordinate of graphical data to 

manipulate the output of CTL. For an event that occurred in translated coordinate, DTX 

must map to the information according to the original coordinate. Otherwise, the user 

cannot expect the accurate result in their generated presentation. 

However, the reverse mapping can be quite complicated and it is not clear how this 

is achieved in general as the pipeline. Current browsers and transformation tools (such as 

XSLT) do not appear to address this. For this reversibility problem, MDPA allows the 

generation of new output from the original raw data set in the DAT stage. The ambiguity 

of reverse functionalities still exists, but we can expect that every reverse function will 

get correct output with this design. 

Adapting remote processing is also supported in DTX stage, such as transcoding 

technologies or accessing user profiles. Therefore, the deploying DTX can be in various 

styles. We describe the adaptability of MDPA in Chapter 5 in detail with its various types 

of deployments. 

DEFINITION 4.9 DTX stage is defined as a PT-net such that: 

(i) PTDTX = ( PDTX, TDTX, WDTX, MoDTX)  

          PDTX, TDTX are defined in Figure 4.8 graphically. 

          ∀ p∈DTX, WDTX (p) = 1, constantly. 

          MoDTX(dtx.m14) = 1, initially. 

(ii) InterfaceDTX = Input port facing CTL stage  

                                           U  Input port facing PCL stage 



 67

                             UOutput port facing CTL stage  

                             UOutput port facing PCL,             such that: 

                      Input port facing CTL stage = {dtx.t15}  

                      Input port facing PCL stage = {dtx.t1, dtx.t2, dtx.t3, dtx.t4} 

          Output port facing CTL stage = {dtx.t16, dtx.t17, dtx.t18} 

                     Output port facing PCL stage = {dtx.t14} 

(iii) Each Input and Output functions for transitions are defined in 

Figure 4.8 graphically. 

 

 

receive presentation
from CTL stage

Presentation is received
from CTL stage

Generated
Presentation

Presentation
filtering

Presentation
filtering

Filtered
presentation

Caching Output Filtered &
stored Output

This stage is
available

Display
Presentation

Event
Queuing

Event
is in Queue

Event
processing

Input Port
facing CTL stage

Output Port
facing CTL stage

Output Port
facing PCL stage

Input Port
facing PCL stage

Stage
Manager

Event
Filter

Event
Processor

Presentation
Filter

receive
event

received
event

filtering
event

filtered
event

transmit event
to CTL stage

Filtered Presentation
from DTX

Filtered
events

from PCL
CTL

event
EXT
event

DAT
event

DTX
event

CTL
event

EXT
event

DAT
event

Filtered
events

from DTX

Filtered Presentation
from CTL

t1 t2 t3 t4

t5 t6 t7 t8

t9t10

t11t12

t15

t13
t14

t16 t17 t18

m1 m2 m3 m4

m5 m6 m7 m8m9m10m11

m12

m13 m14

Place Transition ArcFusing
Transition

 

Figure 4.8 PTDTX : DTX stage with PT-net 



 68

 

 

4.3.6 The CTL stage  

 

CTL provides control logic to the data object from DAT stage. Therefore, the event 

processing in the CTL stage requires accessing original data object with the semantic 

meaning. For the document based object model, the output of the CTL stage is a DOM 

object. Via the DOM interface, the event in CTL accesses the data object. However, not 

all data processing is based on the DOM in actual distributed services. Therefore, the 

CTL stage also depends on the object structure. New presentation generated in CTL stage 

starts to traverse the pipeline towards the user display.  

receive presentation
from DAT stage

Presentation is receive
from DAT stage

Generated
Presentation

Presentation
filtering

Presentation
filtering

Filtered
presentation

Caching Output Filtered &
stored Output

This stage is
available

Display
Presentation

Event
Queuing

Event
is in Queue

Event
processing

Input Port
facing DAT stage

Output Port
facing DAT stage

Output Port
facing DTX stage

Input Port
facing DTX stage

Stage
Manager

Event
Filter

Event
Processor

Presentation
Filter

received event

filtering event

filtered event

transmit event
to DAT stage

Filtered
events

from DTX
CTL
event

EXT
event

DAT
event

Filtered Presentation
from CTL

Filtered Presentation
from DAT

Filtered
events

from CTL

DAT
event

EXT
event

t1 t2 t3

t4 t5 t6

t7 t8

t9t10

t11t12

t14

t13

t15

m1 m2 m3

m4 m5 m6m7m8m9

m10

m11 m12

Place Transition ArcFusing
Transition

 

Figure 4.9 PTCTL : CTL stage with PT-net 



 69

 

We define CTL stage as, 

DEFINITION 4.10 CTL stage is defined as a PT-net such that: 

(i) PTCTL = ( PCTL, TCTL, WCTL, MoCTL)  

          PCTL, TCTL are defined in Figure 4.9 graphically. 

          ∀ p∈CTL, WCTL (p) = 1, constantly. 

          MoCTL(ctl.m12) = 1, initially. 

(ii) InterfaceCTL = Input port facing DAT stage  

                                           U  Input port facing DTX stage 

                             UOutput port facing DTX stage  

                             UOutput port facing DAT,             such that: 

                      Input port facing DAT stage = {ctl.t13}  

                      Input port facing DTX stage = {ctl.t1, ctl.t2, ctl.t3} 

          Output port facing DAT stage = {ctl.t7, ctl.t8} 

                     Output port facing DTX stage = {ctl.t15} 

(iii) Each Input and Output functions for transitions are defined in 

Figure 4.9 graphically. 

 

4.3.7 The DAT stage 

 

The DAT stage is a stage that is closest to the resource among all the stages in 

MDPA. Since DAT also provides data cache, it does not need to access the resources 

every time.  Therefore, we define two distinguished patterns of event processing in the 

DAT stage: DAT event, and EXT event. For the presentation filtering and event filtering 

through the data pipeline, these two event processing types traverse stages in a same 

pattern. However, in DAT stage, DAT event does not access the resources and EXT 

event accesses the resource. We define the DAT with these different event flows in 

Figure 4.10. 



 70

receive presentation
from DAT stage

Data from Resource

Data FIltering

Filtered Data

Caching Output Filtered &
stored Output

This stage is
available

Display
Presentation

Event
Queuing

event
is in queue

Event
processing

Input Port
facing DAT stage

       Output Port
facing DAT stage

Output Port
facing DTX stage

Input Port
facing DTX stage

    Stage
Manager

Event
Filter

Event
Processor

Presentation
Filter

received
event

filtering event

filtered event

Access
Resource

event is in
queue

filtered event

event accesses
resource

Filtered Presentation
from DAT

Filtered events
from CTL

Access resourceLoad Data from
resource

EXT
event

DAT
event

t1 t2

t3 t4

t5

t6

t7

t8

t10

t13

t11

t12

m1m2

m3

m4

m5

m6m8m9

m10

m11 m12

Place Transition ArcFusing
Transition

t9

 

Figure 4.10 PTDAT : DAT stage with PT-net 

Stage DAT is defined as, 

DEFINITION 4.11 DAT stage is defined as a PT-net such that: 

(i) PTDAT = ( PDAT, TDAT, WDAT, MoDAT),  

   PDAT, TDAT are defined in Figure 4.10 graphically. 

          ∀ p∈DAT, WDAT (p) = 1, constantly. 

          MoDAT(dat.m12) = 1, initially. 

(ii) InterfaceDAT = Input port facing RESOURCE  

                                           U  Input port facing CTL stage 

                             UOutput port facing RESOURCE  

                             UOutput port facing CTL,             such that: 

                      Input port facing RESOURCE = {dat.t12}  

                      Input port facing CTL stage = {dat.t1, dat.t2} 

          Output port facing RESOURCE = {dat.t13} 



 71

                     Output port facing CTL stage = {dat.t11} 

(iii) Each Input and Output functions for transitions are defined in 

Figure 4.10 graphically. 

                                   

4.3.8 A service in MDPA 

 

Eventually, the service is defined as a Modular PT-net such that, 

DEFINITION 4.12 The single service in MDPA is defined as a triple MNService = (S, 

PF, TF) such that: 

(i) S is a finite set of modules called as “stage”. 

       S = {PTDAT, PTCTL, PTDTX, PTPCL, PTMCL} 

Where each stage defined as a PT-net such that: 

PTDAT = (PDAT, TDAT, WDAT, MoDAT); 

PTCTL = (PCTL, TCTL, WCTL, MoCTL); 

PTDTX = (PDTX, TDTX, WDTX, MoDTX); 

PTPCL = (PPCL, TPCL, WPCL, MoPCL); 

   PTMCL = (PMCL, TMCL, WMCL, MoMCL);  

(ii) There is not fusing place in MNService,  Therefore PF = {} 

(iii) We define Interface of stage s as a set of fusing transitions in stage s,  

Interfaces = InputPorts U  OutputPorts where, 

InputPorts is a set of fusing transitions, such that: 

                ip∈s, O(ip) ∈s, and I(ip) ∈s’ where s ≠ s’. 

OutputPorts is a set of fusing transitions, such that  

                op∈s, I(op) ∈s, and O(op) ∈s’ where s ≠ s’ 

There is a set of fusing transitions in MNService,. 

TFservice =InterfaceDATU  InterfaceCTL U  InterfaceDTX U  interfacePCL U interfaceMCL 

 

The PT-net for individual stages is defined in Definition 4.7, Definition 4.8, 

Definition 4.9, Definition 4.10, and Definition 4.11. 



 72

4.4 Analysis of Design MDPA 

 

We analyze stages with the reachability approach, and simulation. The reachability 

tree represents the reachability set of a PT-net. The tree represents all possible sequences 

of transition firings. Every path is a tree, starting at the root and corresponds to a legal 

transition sequence. A PT-net is bounded if there exists an integer k such that the number 

of tokens in any place cannot exceed k. This property can be tested by using the 

reachability tree. If the PT-net is bounded, the PT-net represents a finite state system 

[Peterson+81]. 

We attached the results of full script of design and analysis for each stage, in 

appendix A. Each event types require their unique data flows. Our design of MDPA must 

satisfy each of these different data flows. Table 4.2 shows the detail descriptions of 

dataflow required in each event type. This description is organized by the stages and 

processing steps. The source and destination is the place which the event or presentation 

starts and arrives for the process. Pre-condition is a set of places which should be marked 

to fire the process, and Post-condition is a set of places which should be marked after the 

process. 

For two nodes vs and vd, we define DPF (vs, vd) to denote the set of all directed finite 

paths connecting vs and vd, i.e. all finite sequences of nodes and arcs v1,a1,v2,a2,…vn 

where v1 =  vs,vn = vd, and for all i in 1,…n, N(ai) = (vi, vi+1) where N is a node function. 

It is defined from arc into a set of nodes. 

Next we consider Strong Connected Components (SCCs). Two nodes are strongly 

connected, if and only if, there exists a finite directed path, which starts at a source node 

and ends in a destination node. From the reachability tree, we can calculate the SCC 

graph.  

 

 

 



 73

Table 4.2 The Description of Detail Dataflow based on Event Types 

Event Type Step Stage Pre-cond. Post-cond. Source Destination 

EF MCL mcl.m18 mcl.m18 mcl.m1 mcl.m7 
EP MCL mcl.m18 mcl.m18 mcl.m7 mcl.m14 MCL event 
PF MCL mcl.m18 mcl.m18 mcl.m14 mcl.m17 

MCL mcl.m18 mcl.m18 mcl.m2 mcl.m8 EF PCL pcl.m17 pcl.m17 pcl.m1 pcl.m10 
EP PCL pcl.m17 pcl.m17 pcl.m10 pcl.m12 

PCL pcl.m17 pcl.m17 pcl.m12 pcl.m16 
PCL event 

PF MCL mcl.m18 mcl.m18 mcl.m15 mcl.m17 
MCL mcl.m18 mcl.m18 mcl.m3 mcl.m9 
PCL pcl.m17 pcl.m17 pcl.m2 pcl.m6 EF 
DTX dtx.m14 dtx.m14 dtx.m1 dtx.m5 

EP DTX dtx.m14 dtx.m14 dtx.m5 dtx.m10 
DTX dtx.m14 dtx.m14 dtx.m10 dtx.m13 
PCL pcl.m17 pcl.m17 pcl.13 pcl.m16 

DTX event 

PF 
MCL mcl.m18 mcl.m18 mcl.m15 mcl.m17 
MCL mcl.m18 mcl.m18 mcl.m5 mcl.m11 
PCL pcl.m17 pcl.m17 pcl.m4 pcl.m8 
   DTX dtx.m14 dtx.m14 dtx.m2 dtx.m6 EF 

CTL ctl.m12 ctl.m12 ctl.m1 ctl.m4 
EP CTL ctl.m12 ctl.m12 ctl.m4 ctl.m8 

CTL ctl.m12 ctl.m12 ctl.m8 ctl.m11 
DTX dtx.m14 dtx.m14 dtx.m11 dtx.m13 
PCL pcl.m17 pcl.m17 pcl.13 pcl.m16 

CTL event 

PF 

MCL mcl.m18 mcl.m18 mcl.m15 mcl.m17 
MCL mcl.m18 mcl.m18 mcl.m4 mcl.m10 
PCL pcl.m17 pcl.m17 pcl.m3 pcl.m7 
DTX dtx.m14 dtx.m14 dtx.m4 dtx.m8 
CTL ctl.m12 ctl.m12 ctl.m3 ctl.m6 

EF 

DAT dat.m12 dat.m12 dat.m1 dat.m3 
EP DAT dat.m12 dat.m12 dat.m3 dat.m7 

DAT dat.m12 dat.m12 dat.m7 dat.m11 
CTL ctl.m12 ctl.m12 ctl.m9 ctl.m11 
DTX dtx.m14 dtx.m14 dtx.m11 dtx.m13 
PCL pcl.m17 pcl.m17 pcl.13 pcl.m16 

DAT event 

PF 

MCL mcl.m18 mcl.m18 mcl.m15 mcl.m17 
MLC mcl.m18 mcl.m18 mcl.m6 mcl.m12 
PCL pcl.m17 pcl.m17 pcl.m5 pcl.m9 
DTX dtx.m14 dtx.m14 dtx.m3 dtx.m7 
CTL ctl.m12 ctl.m12 ctl.m2 ctl.m5 

EF 

DAT dat.m12 dat.m12 dat.m2 dat.m4 
EP DAT dat.m12 dat.m12 dat.m4 dat.m8 

DAT dat.m12 dat.m12 dat.m9 dat.m11 
CTL ctl.m12 ctl.m12 ctl.m9 ctl.m11 
DXT dtx.m14 dtx.m14 dtx.m11 dtx.m13 
PCL pcl.m17 pcl.m17 pcl.13 pcl.m16 

Ext. event 

PF 

MCL mcl.m18 mcl.m18 mcl.m15 mcl.m17 



 74

 

First, we analyze each module. Our design should satisfy the constraint that every 

(source, destination) is SCCs for all processes in Table 4.2. For instance, we examine 

whether each pair of source and destination has a direct path between them. With analysis 

tools, Tina Ver. 2.5.1 [LAAS], and Visual Object net++ [Drath], we showed that every 

(source, destination) is strongly connected. After analyzing the module, we now analyze 

the linkage of modules. By the definition of interface which is defined as a set of fusing 

transitions, we illustrate the destination of one stage and source of another stage are 

strongly connected.  

4.5 Summary 

In this chapter, we modeled MDPA with the software architectural pattern of Pipes 

and Filters. Furthermore, every detailed data flow is depicted with the PT-nets model. 

Finally, the dataflow over the whole pipeline structuring a service is defined as a Modular 

PT-net.  

The modular approach simplifies the design phase and also the analysis phase. We 

analyzed each stage with the reachability approach. The dataflow through the whole 

pipeline is analyzed with the modular analysis and definition of fusing transitions 

between modules. 

In the next chapter, we will focus on the scalability and interoperability in MDPA 

with the development of a collaborative system.  

 

 

 

 

 



 75

 

CHAPTER 5 AGGREGATION AND COLLABORATION 

WITH MDPA BASED SERVICES 

A service designed with MDPA contains modular stages which is structuring 

pipeline for distributed services in P2P Grids environments. Current distributed services 

are provided as a single service or integrated services. For instance, well known portal 

services such as Yahoo! [Yahoo], and MSN [MSN], provide multiple services within its 

integrated user environment. We call this integrating effort as the aggregation of the 

services.  

With MDPA, multiple services are possible to be aggregated in single user’s 

environments. A part of data pipeline is shared by multiple services. In the integrated 

service, a MCL stage is shared by data pipelines which provide services. Generating user 

presentation view of MCL stage is shared by multiple services completely. However, the 

places and transitions related to the event handling should be processed individually, 

because they have to be defined with its unique functionality of each service. Similarly, 

the generation of user presentation within PCL also can be shared. We define an 

aggregated service as a Modular PT-net and show how multiple services are integrated in 

MDPA. 

Next, we describe collaboration models with MDPA in this chapter. The 

collaborative service is an extreme example of distributed services. While enabling the 

design of a collaboration service, MDPA should consider the capability of interoperating 

between services. Furthermore, the ubiquitous environment requires a flexible resource 



 76

sharing method, because of the diversity of hardware capabilities and communication 

environments.  

Figure 5.1 shows a snapshot of collaboration in the heterogeneous environments. 

Heterogeneous devices require factors such as CPU capabilities, network communication, 

or display types of their specific environments to be taken into account during design 

decisions. The collaboration in the heterogeneous environments requires diversity in their 

collaboration session to be managed seamlessly. We introduce collaboration models 

according to different stages and thus provide various flexibilities in sharing resources. 

 
 

Figure 5.1 Collaboration in Heterogeneous Environments 

 

MDPA is possible to be deployed to current advanced infrastructure, such as Web 

Service. The Web Service infrastructure provides a universal service description method, 

such as WSDL [Christensen+01], and data syntax for exchanging information between 

Web based distributed services [Bray+00]. We illustrate how we deploy the collaborative 

models with MDPA into Web service infrastructure in this chapter. 



 77

This chapter is organized as follows. First, we describe the aggregation of services in 

MDPA, and illustrate the integration mechanism in section 5.1. Section 5.2 covers the 

collaboration models in MDPA. We provide descriptions and definitions for each model. 

Also we discuss various flexibilities in collaboration based on each model.  

5.1   Aggregating of Services  

 

MDPA provides scalability with the aggregation of multiple services into a single 

user presentation. A user is allowed to register with multiple services and browse these 

services in a single viewer. The aggregation of services is provided by the PCL stage and 

also by sharing unified MCL stage. Generated presentations in each pipeline of the 

services are passed to one PCL input as shown in Figure 5.2. Figure 5.2 shows how the 

user presentation generated for service A, and B are aggregated into one user display. 

To aggregate two data pipelines of Service A and B, it requires, 

• Interface facing each data pipeline: The PCL stage should support sets of 

interface for each data pipeline. Since input and output depend on the data 

pipeline, the interfaces must be distinguished. For aggregating of two services 

named Service A and Service B, PCL stage should support set of input ports 

facing Service A, and set of input ports facing Service B for presentation 

generation. There should also be set of output ports facing Service A, and set of 

output ports facing Service B for the event transmission path. 

• Shared process of presentation generating: The presentation generating is shared 

by Service A and B. Therefore, an input from the DTX stage of service A or B, is 

processed in the PCL stage and passed to the MCL stage. 

• Independent event transmitting to each data pipeline: However, the event from 

MCL should be distinguished by its association with specific services. Otherwise, 

the PCL stage cannot transmit the event through the relevant output ports. 

Therefore, the user event should not be shared in the PCL stage. 

• Unified MCL stage for a single device: The integrated service provides a unified 

user display. Therefore, there is only one MCL stage which browses the display 

and catches user events.  



 78

  

Input  Output Input  Output Input  Output

DAT CTL

User Presentation Generation

DTX PCL MCLResourceB

Place Transition Arc

Input  Output Input  Output Input  Output

Input port facing
DTX of Service A

User

ResourceA

Fusing Transition
Between Service

A and B

Input port facing
DTX of Service B

FusingPlace
Between

Service A and B

Input  OutputInput  Output

 

Figure 5.2 Aggregating Dataflow of Generating Presentation 

 

We define an aggregated service as a Modular PT-net based on the definitions of 

stages in chapter 4. 

 

DEFINITION 5.1    An aggregated service is a modular PT-net is a triple 

aggregatedMN = (S, PF, TF), satisfying the following requirements: 

(i) S is a finite set of services which defined as Modular PT-net such that: 

Ss∈∀ , service s is a Modular PT-net defining each single service: 

             S = ( serviceA, serviceB, serviceC…); 

(ii) PF  is a finite set of place fusion sets between services Ss∈∀  ,such that: 

      PF = {serviceA.mcl.m10, serviceA.mcl.m14, 

serviceA.mcl.m15, serviceA.mcl.m17, serviceA.mcl.m18, 

serviceB.mcl.m10, serviceB.mcl.m14, serviceB.mcl.m15, 

serviceB.mcl.m17, serviceB.mcl.m18 } 

members of a place fusion set have identical initial 

markings: 

      ( ) ( )[ ]20102,1 :: pMpMpfppPFpf =∈∀∈∀  

(iii)TF is a finite set of transition fusion sets where: 



 79

      TF = { serviceA.mcl.t10, serviceA.mcl.t15, 

serviceA.mcl.t16, serviceA.mcl.t17, serviceA.mcl.t18, 

serviceB.mcl.t10, serviceB.mcl.t15, serviceB.mcl.t16, 

serviceB.mcl.t17,  serviceB.mcl.t18} 

 

Definition 5.1 denotes the aggregating of services in MDPA. The places and 

transitions related to generating presentation are shared in this architecture. Event 

transmitting is performed individually by the specification of each service. Note that 

there is only one PCL and one MCL stage for a user using an aggregated service. Each 

service shares a set of places and transitions located in the PCL and MCL stages to 

generate its user presentation view. Meanwhile, event transmitting is not shared. Since 

each service defines its own event processing which may differ depending on the services, 

it is not allowed to share the places or transitions related to event transmit. To focus on 

the generating presentation process, we describe only the user view generation in Figure 

5.2.        

In a real service, while designing interfaces for different services one should consider 

the capability of communication and data interoperability. Popular XML technology 

meets our requirement. Moreover, WSDL like service description languages can provide 

powerful interoperability to this architecture. We applied MDPA architecture to current 

the Web Service infrastructure for demonstration purposes.  

    

5.2       Collaboration models and Interoperability in MDPA 

 

MDPA considers the interoperability between users. As we described in previous 

subsection, an aggregated service for single user is defined with Modular PT-net in 

Definition 5.1. Now we consider the cooperation between services. Among the 

distributed services over a P2P Grid, there is a collaborative service for sharing resources 

among multiple users. Interoperability is an important criterion since the object is shared 

during traversal over the data pipelines.   



 80

There are many styles and approaches to collaboration. In asynchronous 

collaboration, different members of a community access the same resource. The Web has 

revolutionized asynchronous collaboration where in its simplest form, one member is 

posting or updating a web page, and others are accessing it. Asynchronous collaboration 

has no special time constraints and typically each community member can access the 

resource in their own fashion; objects are often shared in a coarse grain fashion with a 

shared URL pointing to a large amount of information. Asynchronous collaboration is 

quite fault-tolerant as each user can manage their access to the resource and 

accommodate difficulties such as poor network connectivity. Further, well-established 

caching techniques can usually be used to improve access performance as the resource is 

not expected to change rapidly.  

Synchronous Collaboration is at higher level no different from the asynchronous case 

except that the sharing of information is done in real-time. The real-time constraint 

implies delay of around 10-1000 msec. per participant or rather “jitter in transit delays” 

of a “few” msecs. Note these timings can be compared to the second or so it takes a 

browser to load a new page; the several seconds it takes a lecturer to gather thoughts at 

the start of a new topic; and the 30 msec. frame size natural in audio/video transmission. 

These numbers are much longer than the parallel computing MPI message latency 

measured in microsecond(s) and even the 0.5 -3 msec. typical latency of a middlze-tier 

broker. 

Nevertheless synchronous collaboration is much harder than the asynchronous case 

for several reasons. The current Internet has no reliable quality of service and so it is hard 

to accommodate problems coming from unreliable networks and clients. If your 

workstation crashes during an asynchronous access, you just need to reboot and restart 

your viewing at the point of interruption; unfortunately in the synchronous case, after 

recovering from an error, one cannot resume where one lost contact because the rest of 

the collaborators have moved on. Further synchronizing objects among the community 

must often be done at a fine grain size. For asynchronous education, the teacher can share 

a complete lecture whereas in a synchronous session we might wish to share a given page 

in a lecturer with a particular scrolling distance and particular highlighting.  

In summary synchronous and asynchronous collaboration both involve object 

sharing but the former is fault sensitive, has modest real-time constraints and requires 



 81

fine grain object state synchronization. We discuss collaboration models for synchronous 

collaboration with MDPA. Based on the understanding of collaborative service, we also 

consider the heterogeneity of user devices in same the collaboration session. Different 

users can require different flexibilities of data accessing. 

The motivation of a collaboration model within MDPA is to support a flexible 

heterogeneous environment for users. An object in MDPA can be shared in different 

stages. The flexibility of collaboration depends on where the object is shared in the 

pipeline and how much manipulations data is allowed for the users. By only sharing the 

display, users cannot expect significant flexibility in sharing resources. Meanwhile, if 

each user can maintain their own replicate of the service, and exchange only user events, 

the service can support more flexibility.  We present three collaboration models each 

providing a different depth of flexibility in MDPA: Shared Display Model, Shared 

Output Model, and Shared Input Model. 

5.2.1 Shared Display Model 

 

In the shared display model, participants of Shared Display share the master’s 

framebuffered image and exchange information about the management of states. To 

support heterogeneous clients, a service requires sophisticated shared display 

environments to automatically change size and color resolution to suit each community 

member. For this content adapting process, we can add some filters into Figure 5.3 

between the master’s output port and the participants’ input ports.  

Basically, the service is required process which captures the output of master’s MCL 

output object and communication for sending it to the participants. The participant 

requires a browser, which is able to display the MCL output from master’s data pipeline.   

We define a collaborative service designed based on the shared display model as the 

Modular PT-net. Each stage of a service in Modular PT-net conforms to the definitions in 

chapter 4.  

 



 82

Master

Participant A

Participant B

DAT CTL

User Presentation Generating

DTX PCL MCLResource

Event Transmit

Interface
Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Interface Interface Interface Interface Interface

MCL
Output

MCL

Output

Place

Transition

ArcFusing
Transition

Adjusted
object for
participant

A

Adjusted
object for
participant

B

Filtering

Filtering

Input
port

Input
port

Master's
output

Master's
output

Filtering for
Heterogeneous

devices t1

m4

m3

t3

m2

t2
t4

m1

 

Figure 5.3 Collaboration with Shared Display Model 

DEFINITION 5.2. A collaborative service using Shared Display Model is a modular 

PT-net with tuple of SharedInputCollab = (S, PF, TF), satisfying the following 

requirements: 

(i) S is set of Master and Participants defined as Modular PT-net such that: 

(a) Master is a service (DEFINITION 4.12). 

(b) Participants is a set of partial services which includes at least MCL 

stages. 

(c) Filters is a PT-net filter = (S, P, W, M), such that, 

Set of places and set of transitions are defined in Figure 5.3 

graphically. 

       ∀ p∈filter, WFilter (p) = 1, constantly. 

       ∀ p∈filter, MFilter (p) = 0, initially. 

(ii) PF  = {} 

(iii)TF is a finite set of transition fusion sets where: 

      TF = {Master.mcl.t18, filter.m1, filter.m2} 



 83

Shared display model has one key advantage – it can immediately be applied to all 

shared objects. Shared display has two objects; it has two obvious disadvantages - it is 

rather difficult to customize and requires substantial network bandwidth.  

We can suggest two types of solutions, 

• Design MCL stage to perform data compression and customization. – This 

method is the most immediate solution for the Shared display’s disadvantages. 

However, developing multi-functional user faced applications is not productive in 

the current situation where there are a multitude of heterogeneous devices 

emerging. 

• Design a middleware to support data management – Practically, the transition 

between master’s pipeline and participants’ pipeline is performed by network 

communication. The method of communication will vary from TCP/IP socket 

connection to intelligent messaging system. To reduce the workload on the user 

device and to satisfy the requirements of heterogeneous devices, developing a 

versatile messaging middleware is important. This middleware is required to 

support heterogeneous communication environments, data compression for low 

bandwidth devices, and minimum data customization for a given user’s needs.  

 

5.2.2 Shared Output Port Model 

 

Shared output port model only involves a full data pipeline as depicted in Figure 5.4. 

The output port defined between DTX and PCL stages is shared by participants A and B. 

Therefore, the participants will get the output of master’s DTX stage directly to their PCL 

stage as if it is their own input data. 

One simple example can be built around any content or multimedia server with 

multicast output stream(s). This method naturally gives, like shared display, an identical 

view for each user but with the advantage of typically less network bandwidth since the 

bitmap display usually is more voluminous than the data transmitted to the client to 

define the display.  

With Shared output port model, participants still can expect the content adapting of 

PCL stage. Although it does not fully support complete data adapting like the stage DTX 



 84

stage, participants are allowed to customize their presentation in a limited fashion, such 

as changing the document format from HTML to WML for mobile devices. 

 

Participant A

Participant B

MasterDAT CTL DTX PCL MCLResource

Event Transmit

Interface
Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Interface Interface Interface Interface Interface

Place

Transition

Fusing
Transition

PCL MCL
Input  Output Input  Output

Interface Interface

PCL MCL
Input  Output Input  Output

Interface Interface

Arc

User Presentation Generating

Interface Interface

 

Figure 5.4 Collaboration with Shared Output Model 

 

Based on the design of the service in Chapter 4, we can design the collaborative 

service using the Output Port model.  

 

DEFINITION 5.3. A collaborative service using Shared Output Port Model is a 

modular PT-net with tuple of SharedInputCollab = (S, PF, TF), satisfying the following 

requirements: 

(i) S is set of Master and Participants defined as Modular PT-net such that: 

(a) Master is a service (DEFINITION 4.12). 

(b) Participants are sets of partial services which includes at least MCL and 

PCL stages. 

(ii) PF  = {} 



 85

(iii)TF is a finite set of transition fusion sets where: 

      TF = {Master.dtx.t14, Master.pcl.t18, ParticipantA.pcl.t18,  

                 ParticipantB.pcl.t18} 

 

5.2.3 Shared Input Port Model 

 

In the shared input port model, one replicates the pipeline to be shared with one copy 

for each client. Then sharing is achieved by intercepting the pipeline before the master’s 

pipeline and directing copies of the messages on each input port of the master’s pipeline 

to each of the replicated pipelines. We can illustrate this with a more familiar PowerPoint 

example. Here all the clients have a copy of the PowerPoint application and the 

presentation to be shared. On the master client, one uses some sort of COM wrapper to 

detect PowerPoint change events such as slide and animation changes. These change 

events are sent to all the participating clients. One can build a similar shared Web 

browser and for some browsers (such as that for SVG from Apache) one can in fact 

directly implement the standard of interface defined for the pipeline. However, the input 

to the DTX stage from the PCL stage should be filtered, since the user presentation is 

customized for each user in the DTX stage. Therefore, the input can be shared after the 

filtering in DTX stage of the master’s pipeline.   

 

DEFINITION 5.4. A collaborative service using Shared Input Port Model is a modular 

PT-net with a triple SharedInputCollab = (S, PF, TF), satisfying the 

following requirements: 

(i) S is a finite set of  services (DEFINITION 4.12) which defined as Modular PT-

net such that: 

     Each service, Ss∈ , is a Modular PT-net defining each service for Master 

and Participants: 

             s = ( Master, ParticipantA, ParticipantB,…); 

(ii) PF  = {} 

(iii)TF is a finite set of transition fusion sets where: 



 86

      TF = {Master.ctl.t15, Mater.dtx.t15, ParticipantA.ctl.t15, 

ParticipantB.dtx.t15, ParticipantB.ctl.t15, ParticipantB.dtx.t15,...} 

 

There are advantages and disadvantages in the shared input model. Using the Shared 

Input Model uses can achieve maximum flexibility in their collaborative services. The 

replicated service for each user provides a fully functional data adapting process to each 

user presentation. Also there is the advantage of network bandwidth usage. Since the 

communication between users are only exchanging shared events, compared to other 

models, users can perform the collaborative features independent of other participants’ 

network communication environments.  

However, there are also disadvantages in the Shared Input Port Model. Compared to 

the previous models, service providers should provide full data pipelines for each shared 

application. Therefore this is very time consuming to develop if one must do this 

separately for each shared application.  

Figure 5.5 illustrates the dataflow of sharing of CTL, DAT and EXT event from 

master. Note that each shared event has to be filtered in the DTX stage of the master’s 

data pipeline.  

 

5.3          Summary 

 

MDPA supports event based distributed services such as a collaborative service. 

Also MDPA provides the architectural environment of aggregating multiple services into 

single user presentation view. In this chapter, we presented a formal description of the 

aggregated service and three major collaboration models. We presented various 

collaboration models supporting different flexibilities to users: Shared Display model, 

Shared Input Port model, and Shared Output Port model. 

 

 



 87

MasterDAT CTL DTX PCL MCLResource

Interface
Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Interface Interface Interface Interface Interface

User Presentation Generating

DAT CTL DTX PCL MCLResource

Interface

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Participant

Place TransitionFusing
Transition

Arc

MasterDAT CTL DTX PCL MCLResource

Interface
Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Interface Interface Interface Interface Interface

DAT CTL DTX PCL MCLResource

Interface

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Participant

(a)

(b)

(c)

Resource

Event Transmit

Interface Interface Interface Interface Interface Interface

MasterDAT CTL DTX PCL MCL

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

DAT CTL DTX PCL MCLResource

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Output Input

Input  Output

Participant

 
Figure 5.5 Collaboration with Shared Input model 

(a) Dataflow in processing collaborative CTL event 

(b) Dataflow in processing collaborative DAT event 

(c) Dataflow in processing collaborative EXT event 



 88

 

CHAPTER 6   ADAPTATION STRATEGIES TO 

INCORPORATING CONTENT ENABLE EFFICIENT 

INTERACTION 

The availability of miniaturized devices and wireless communications has made 

mobile computing feasible. MDPA is motivated by the requirement of adapting 

heterogeneous devices as client devices into the P2P Grid service. An ever more mobile 

workforce, and the computerization of inherently mobile activities is driving a need for 

applications to be integrated with traditional distributed systems. Mobile cellular 

telephones are widely available these days. A handheld computer integrated with such a 

telephone is called as a smartphone. Currently wireless network service vendors have 

introduced a wide bandwidth telephone network, 3G communication [Sprint], and it 

enhances the possibility of adapting a smartphone as a client in traditional distributed 

systems. Existing wireless LAN technology is already equipped to PDAs and laptops, and 

enables pervasive computing with its wide-bandwidth network communication 

[IEEE+95]. Pervasive or ubiquitous computing is a new emerging computing style, 

which adapts various computing devices throughout our living and working spaces. 

These devices include PDAs, smartphones, traditional desktops, wearable computers and 

so on. These devices coordinate with each other and network services seamlessly. 

In this chapter, we describe our approach to adapt heterogeneous devices into 

collaboration services while presenting a prototype of the CAROUSEL Web Service. We 

cover issues that range from transcoding methods to design strategies while combining 

various adapting technologies for collaboration services. The rest of this chapter is 



 89

organized as follows: Section 6.1 describes the steps of adapting heterogeneous devices 

as a client device in the Carousel Web service. We explain content adapting strategies 

based on the characteristics of collaborative features in section 6.2. The summary of this 

chapter is followed in section 6.3.   

 

6.1 Adapting Content 

 

The major process of content adapting is performed in the DTX stage. Sometimes, 

multiple processing is required for adapting data. For example, resolution adjustment, 

color adjustment, and data compression can be required for a single data object. However, 

there are also expensive or rarely used content adapting technologies in the multimedia 

area, such as special effects or converting text to voice, etc. This can be quite a complex 

problem by needing to maintain these complicated processes for every service instance. 

We suggest that the service should access these remote technologies as a service 

requester.   

Figure 6.1 shows how multiple services can access remote technologies. We can 

consider remote technologies as shared resources. Therefore, again, in the design of the 

service with Modular PT-net, the shared resources can be denoted as fusing places 

[Christensen+00]. The concurrency problem is considered in accessing remote 

technologies A, B, and C for the service I and II. 

The design of the content adapting process requires proper selection of technologies 

based on the characteristics of the application. We investigate the utilization of various 

transcoding technologies in this design of collaboration services. In the shared display 

model, one shares the bitmap display and the state is maintained between the clients by 

transmitting the changes in the display. Meanwhile, the shared input/output port model 

filters the output of each application to one of a set of common formats and builds a 

custom shared event viewer for these formats. This allows a single collaborative viewer 

to be leveraged among several different applications. Document formats such as W3C’s 

Scalable Vector Graphics (SVG) [Ferraiolo+01] or Adobe, Inc.’s Portable Document 

Format (PDF) [Adobe] are particularly interesting and the support of collaborative 



 90

viewers is a major advantage of the CAROUSEL Web service. The scalability of vector 

graphics, and separation of user presentation from the master’s content, enables the 

shared input/output port model to provide more flexibility for scientific visualization or 

geographical information systems. The constraints of “real-time synchronous 

collaboration” for both methods, implies a delay of 10-100 millisecond for each 

participant [Fox+02a]. In shared display method, the time constraint is the most 

important factor to perform its illusion of collaboration. Basically shared input/output 

port model also requires this “real-time” constraint; however the fidelity of shared 

resource has a higher priority within the range of time delay for synchronous 

collaboration. We investigate the technology for adapting content that can maximize the 

collaborative features and optimize network bandwidth. In section 6.4, we discuss the 

content adapting based on the collaborative features. 

 
Transcoding

Technology A

Transcoding
Technology B

Transcoding
Technology C

......

...... ............

......

......

stage DTX of service IIstage DTX of service I  

Figure 6.1 Sharing remote content adapting technologies 

                         

6.2 Application -aware Transcoding  

 

Originally, transcoding technology has been considered for converting multimedia from one 

format to another format preferred by specific devices [Chandra+00]. We utilize various 

transcoding technologies to adapt shared content based on the type of collaboration. Here 



 91

transcoding technology includes image resizing, converting image formats, compressing data, 

and transform technology such as the use of stylesheets. 

Transcoding is one of the most popular ways to tune content from a service provider. 

Transcoding is the transformation that converts a multimedia object from one form to another, 

frequently trading object fidelity for size, and is used to convert image or video formats 

(reducing resolution or compressing data) [Chandra+01]. A classical approach from ORL AT&T 

Lab’s VNC [AT&T] allows user to customize encoding methods. As extended versions of VNC 

for mobile devices, there are Harakan Software’s PalmVNC [Harakan], Nokia’s Java VNC 

viewer [Nokia]. These approaches are implemented on the client side of the VNC protocol for 

PDAs and wireless phone. They enabled a mobile device to be a thin client of a traditional 

desktop coupled with the sharing of master’s view and the execution of user events.   

Transcoding technology is also used to fit document and graphics files to the unique 

constraints of mobile devices and other Web-enabled products. A number of distributed services 

use transcoding technology to generate documents for their heterogeneous clients [Chandra+01, 

Intel, Oracle, IBM+02b, Smith+99]. The Apache Cocoon [Apache+99] project allows automatic 

generation of HTML, PDF, and WML files through the processing of statically or dynamically 

generated XML files using XSL [Adler+01] and XSLT [Kay+03]. The idea of transcoding is also 

adapted to Web service architectures. Duke University’s Quality Aware Transcoding project 

[Chandra+00] investigates differentiated Web services, which enables the Web services and Web 

servers to manage their available bandwidth with its quality aware transcoding. IBM introduces 

WebSphere Everyplace Access [IBM+02b], which supports developers and administrators to 

utilize the transcoding technology by accessing portlet which performs transcoding. Transcoding 

technology is developed as a component of WebSphere, which is IBM’s Web service 

infrastructure [WebSphere]. WebSphere Everyplace Access is designed to perform its transcoding 

process in its individual portlet. This approach is different from existing distributed systems 

supporting the transcoding process for heterogeneous devices, because it enables the transcoding 

process to be separated from the proxy architecture. It also enables content providers to provide 

high-quality transcoding technologies on the server side.  

For collaboration services, different collaborative features may need different transcoding 

technologies according to their unique functionality.  In this Chapter, we will explain our 

approach based on two different resource sharing features, shared display and shared export. As 

an implementation of Shared Display Model, shared display is the simplest method for sharing 



 92

documents with the frame-buffer, corresponding to either a window or the entire desktop, 

replicated among the collaborating clients. Shared display does not allow significant flexibility; 

for instance, different clients cannot examine separate viewpoints of a scientific visualization. 

More flexible sharing is possible by sharing object state updates among clients with each client 

being able to choose how to realize the update on its version of the object, a process known as 

the shared export mechanism which may be an implementation of the Shared Input or Output 

Model [Fox+02a].  

Shared display requires fast and efficient propagation of the master’s change of 

display. Thus reducing the size of data over the wireless network is critical. On the other 

hand, shared export provides more flexible visualization and needs to ensure quality of 

the graphic and user interactivity to provide a user’s preferred view. 

 

6.2.1 Measuring Fidelity of Shared Information 

 

For the sharing of resources in heterogeneous environments, the fidelity of the 

original resource and the efficient transmission of data are tradeoffs in the real-time 

collaboration service. Fidelity measurements have been done in data compression for 

image or vedio[Mohan+99]. Distortion of compressed data is typically measured as the 

mean squared error (MSE) between the source and its compressed version. One problem 

with the MSE based distortion measure is that it may not correspond to the perceived loss 

of fidelity [Jayant+93]. However, a bigger drawback is the difficulty of formulating a 

meaningful distortion measure when the adaptation is drastic. For example, it is difficult 

to measure the loss of fidelity when document based graphical information is transcoded 

with stylesheet, or transcoded to its textual alternatives. To resolve this problem, Mohan 

defines the fidelity of transcoded information in [Mohan+99] and provides approache to 

measure the fidelity of content adapting.       

                                                      

V(Mij) = (perceived value of transcoded version Mi)  /  (perceived value of original Mi0)      

V∈[0,1], V = 1, for original item Mi0    ,V = 0, when the item is excluded Mimi 

 



 93

Where, Mi = {Mij}, j = 0, mi, is computed by transcoding Ai into j versions with 

different resolutions and modalities. The original version is denoted as Mi0. 

The benefit of V is that we have a measure for fidelity that is applicable to 

transcoding of media at multiple resolutions and multiple modalities. This also allows us 

to compare document items that were in different media types. Measuring fidelity is 

useful to analyze various dynamic content adaptation policies. 

 

6.2.2 Transcoding in Shared Display 

 

Since Shared Display is sharing documents with the frame-buffer, modest client 

dependence is possible with mobile devices, for example receiving a reduced size image. 

Some collaboration systems support remote manipulation with user interactions on one 

machine holding a replica frame-buffer transmitted to the instance holding the original 

object. This is an important capability in help desk or consulting applications, similar to 

situations that occur frequently in the debugging of code.  

The shared display processes the image captured from the master’s framebuffer in 

three ways. First, it resizes the images based on the device profile. Table 1 shows a 

resultant data of a test session from the Garnet collaboration service with Microsoft 

PowerPoint. Garnet is our earlier prototype of the collaborative system [Fox+02b]. The 

resolution is customizable on the client side. Second, shared display should support 

graphic format transformation for specific environments, for example Mobile Information 

Device Profile (MIDP) from Sun supports only raw bitmap data and the PNG (Portable 

Network Graphics) [Adler+96] graphic format. To deal with this case, bitmap based Java 

canvas image object, or GIF, JPEG image should be transformed to PNG image for 

MIDP equipped smartphone clients. Finally, the compression of image data should be 

supported to save network bandwidth. We demonstrate the compression of image data 

with Huffman [Huffman+52] and LZ77 [Storer+82] algorithm in table 6.1. For raw 

bitmap data, comprising of 8 bit of RGB and alpha, the demonstration in Table 6.1 

eliminates alpha bits which represents transparency of image, and reduces the 

communicating data size to 25%. Table 1 presents the actual data size transformed via a 

wireless LAN network or 3G communication service as well.  



 94

As shown in Table 6.1, the shared information for iPaq users and Treo users provide 

very low fidelity of the original information. However, with the decrease of resolution 

and the compression of data, the amount of transmitted data decreased to 1.2 ~ 0.004 % 

of original image. Although there exists the trade-off between the fidelity and transmitted 

data size, the user can choose their preferences based on condition specified within the 

constraints of their device capabilities. 

 

Table 6.1 The resultant data from test session of Garnet shared display 

Hardware 
Specification 

Desktop PC 
1280 x 1024 

LAN 
SUN J2SE 

PDAs (iPaq 3900) 
240 x 320 

Wireless LAN 802.1b
SUN PersonalJAVA 

Smartphones 
(Treo300) 
160 x 160 

3GWirelessCommunic
ation 

SUN MIDP 

Image 

   
 
 
 

Image Size (pixels) 1106 x 930 553 x 465 120 x 100 

Transmitted data 
size (KBytes) 4017.9 KB 

50.9KB 
(1.2 % of original 

image) 

1.7 KB 
(0.004 % of original 

image) 
Image Format Bitmap image Bitmap image PNG image 
Fidelity Value 1.0 0.125 0.0043 

 

6.2.3 Transcoding in Shared Input Port model 

 

Since the shared input port model allows users to access more abstract stages of an 

object, it provides significant flexibility with view points based on user preferences 

[Lee+02a]. For instance, different users can browse a display data that is generated from 

identical data sources but is rendered in different ways. This is very time consuming to 

develop if one must do this separately for each shared application. The shared export 

model filters the output of each application to one of a set of common formats and builds 

 



 95

a custom shared event viewer for these formats. This allows a single collaborative viewer 

to be leveraged among several different applications.  

Scalability implies that each client can resize and scroll while preserving correct 

positions of pointers and annotations for their various resolutions. As depicted in Figure 

6.2, the benefit of the vector graphics format is its scaling/resizing ability. For mobile 

devices which have limited display size, this ensures flexible resource access based on 

user preferences. SVG is useful as it is already available for Adobe Illustrator and both 

PowerPoint and Macromedia Flash are exportable to this syntax. Currently there is a 

Flash (which is a binary 2D vector graphics format) to SVG converter [Pronet+00] from 

the University of Nottingham while OpenOffice.org’s OpenOffice [OpenOffice] exports 

PowerPoint to SVG. 

 

 
(a)                                             (b) 

Figure 6.2 400 % Zoom in Images in Bitmap and Vector graphics 

 

 

Another advantage of SVG is its formatting effects with stylesheets. SVG inherits 

XML’s styling technology such as the use of CSS syntax and properties or XSL. Figure 

6.3 shows the different output images rendered with different stylesheets. The advantage 

of styling with stylesheet is flexibility in reformatting images. In addition to color 

adjustment, Figure 6.3 - (b) is transformed by CSS stylesheet, which redefines the width 

of a brush stroke to be wider  and the text style to more recognizable.    



 96

To provide individual presentation to each user, Garnet allows every user to own 

their object instance in shared export [Lee+03b]. Figure 6.4 is the object flow of the SVG 

shared export for each user. Image rendering and transformation are performed in the 

content server of the CAROUSEL Web service to reduce the workload in mobile devices. 

Eventually the ready-to-use image is delivered to PDAs or smartphones. There are 

several graphic formats supported in mobile devices. SUN’s MIDP supports only PNG 

and raw bitmap graphics, while SUN’s Personal Java runtime environment supports 

JPEG and raw bitmap graphics. Thus, we provide format conversion for specific mobile 

environments. Some of the graphic formats include data compression mechanisms; 

however, raw bitmap image data needs additional data compression to better utilize 

wireless network bandwidth. Data compression capabilities can be fine tuned by 

individual users based on their needs. 

 

 

 

Figure 6.3 Styling with CSS for Black and White PDAs 

 

Since the Shared Input port model is designed for more flexible and high quality 

resource sharing, stringent timing constraints are not the overriding factors. Along with 

the scalability of vector graphics, shared export provides maximized resource sharing to 

users. The users are able to browse the best quality of image supported by their devices.     



 97

SVG Document Rendering Image Formatting Data Compression

Stylesheet User Profile

User Event

 

Figure 6.4 Object flow of collaborative SVG 

 

6.3 Summary 

 

Adapting new devices are considered as a stage of major data processing in MDPA. 

In this chapter, we described the methods of adapting new devices provided in MDPA. 

Adapting new devices is dealt with in the DTX, and the PCL stage. The process in DTX 

stage contains major content adapting such as transcoding, and transformation, etc. 

Meanwhile, the process in PCL is higher level of filtering such as transformation of 

markup languages.  

In the collaboration service, shared display model is used for features, which require 

immediate response to users. Therefore, the faster response from service is more 

important even though the shared information provides lower fidelity of the original 

information. Meanwhile, the shared input port model provides better flexibility to share 

resources. Therefore, higher fidelity is more important than response time within the 

constraints of synchronous collaboration. We described how we support user’s 

requirements in different application features. 



 98

 

CHAPTER 7  DEPOYING MDPA AS WEB SERVICES: 

CAROUSEL WEB SERVICE 

As we described in section 5.2.1, in the shared display model with MDPA, 

participants shares the bitmap data and the state of the master user by transmitting (with 

suitable compression) the changes in the display of the master’s framebuffer. As with 

video compression like Moving Picture Experts Group (MPEG), one uses multiple event 

types with some defining full display and others just giving updates. Obviously, the 

complete display requires substantial network bandwidth but it is useful every now and 

then, so that one can support clients joining throughout a session, has more fault tolerance 

and can define full display update points (major events) where asynchronous clients can 

join a recording. Supporting heterogeneous clients requires that sophisticated shared 

display environments automatically change size and color resolution to suit each 

community member. Figure 7.1-(a) illustrates that the Shared display model with a Web 

service requires an intelligent and powerful event-based messaging system. The event 

system should provide the data compressions based on the MIME type of data for 

collaboration service. Moreover, the data compression should be based on the user’s 

profile or preferences. Shared display has one key advantage – it can immediately be 

applied to all shared object. For existing Web service, we can apply the shared display 

method for providing collaboration service immediately. 

 



 99

Participant A

Participant B

Web
Service

 Web
Service

Web
Service
Display

Master
Web

Service
Display

Web
Service
Display

Event(Message)
Service

Participant A

Participant B

Web
Service
Display

Web
Service
Viewer

Master

Web
Service
Display

Web
Service
Viewer

Web
Service
Display

Web
Service
Viewer

Collaboration as a Web
service Set up Session

Event(Message)
Service

Application
or

U
F
IO

R
F
I O

WSDL

Web Service

Web service message
interceptor

(a) (b)

 
Figure 7.1 Deploying Collaboration model as Web Service 

(a) Shared Display model as Web Service 

 (b)  Shared Output model as Web Service 

 

As we presented in section 5.2.2, only a single Web service is involved in the Shard 

Output Port model. Since the user-facing ports of a Web service define the user interface, 

this mechanism simply gives a collaborative version of any Web service. In this model, 

we also require the event service and the message interceptor as depicted in Figure 7.1 – 

(b). The output data from a Web service is intercepted by the message interceptor and 

multicast to each participant of the session. Like the Shared display model, the Shared 

Output Port Model also shares identical user presentation views between participants. 

However, the Shared Output Port Model supports more flexibility. Since the Web service 

message interceptor catches the data between user facing output ports defined by the Web 

service and the aggregator, the user can inherit the benefit of Web service infrastructure 

such as flexible generation of user presentation view such as translating markup 

languages from HTML to WML for some mobile devices, or changing presentation 

layouts. Also, the developer can provide a setup environment for setting up the 

collaboration session as a Web service portal [Lee+03a].  

Meanwhile, the Shared Input Port Model requires individual replications of the Web 

service for each client. The event service delivers the collaborative event input from the 

Master’s Web service to the participants’ Web service. Each Web service generates a 

user presentation view based on the arrived of a collaborative input event. In the Shared 

Input Port Model, only the user facing input ports are shared. However, in MDPA 

architecture, the input port sharing should consider the adjustment of the object in the 



 100

DTX stage. The data object is tuned for each heterogeneous device in the DTX stage. 

Therefore, the user event should be filtered based on the processing of the DTX stage. 

The collaborative input event also should be filtered to be processed correctly in different 

user environments for participants.  

Web
Service
Display

Application
or

U
F
IO

R
F
I O

WSDL

Web Service
Web

Service
Viewer

Master

Web
Service
Display

Application
or

U
F
IO

R
F
I O

WSDL

Web Service
Web

Service
Viewer

Web
Service
Display

Application
or

U
F
IO

R
F
I O

WSDL

Web Service
Web

Service
Viewer

Collaboration as a Web
service Set up Session

Event(Message)
Service

Participant A

Participant B  
Figure 7.2. Shared Input model as Web service 

 

As a proof of concept, we developed a collaboration service as a Web service with a 

collaborative model: CAROUSEL Web service. We present the architecture and 

components in next subsection. 

 

 

7.1 The CAROUSEL Web Service 

 

As we presented in chapter 3, the Web service infrastructure provides a standardized 

environment to deploy MDPA. Using XML [Bray+00], WSDL [Christensen+01], or a 

SOAP [Box+00] like standard provides the interoperability between services. Grids like 

shared resources are integrated and provide the distributed service which is sharing the 

largely asynchronous resources. The current Web service infrastructures such as the 

Apache project’s Jetspeed [Jetspeed] or WebSpheres [Webspheres] from IBM provide 

services and development tools for mobile devices. However, these approaches based on 



 101

portal services are not efficient to support real time services such as synchronous 

collaborative services. 

We present the CAROUSEL Web service as a prototype of collaboration based on 

MDPA. For demonstrative purposes, we have developed a collaborative SVG browser as 

a feature of the Carousel Web service. We present features of the collaborative SVG 

browser in this section. SVG is a 2D vector graphics standard format from W3C and has 

a structured XML syntax [Bray+00]. We have adapted SVG as a format for shared export 

within our collaboration research. The user-interface will display an SVG image rendered 

by the content server, provide a display customization environment and process basic 

collaborative functionalities.  

It is approached based on the collaboration models we presented in section 5.2. 

Especially, we present a prototype of input port collaboration, shared SVG. Clients on 

heterogeneous devices each get a different presentation view of the replica of each Web 

service. Moreover, each user will get non-collaborative services, such as individual 

scrolling or zooming image, customized based on their user profiles. The object sharing 

in our model of Figure 5.5 is achieved by intercepting the pipeline before the “master” 

Web service and directing copies of the messages on each input port of the master Web 

service to the replicated copies. To support devices with limited capabilities, such as 

PDAs or smart phones, the most elaborate processing is implemented in the content 

server, and only ready-to-use data is delivered to users. For instance, each user has their 

object instance for the service with non-collaborative input/output ports, and every 

presentation view is customized based on the specified user profile. However, the client 

device only keeps thin client which can perform the MCL stage. The customizability is 

provided in this example as each client has the freedom to accept or reject data defining 

the shared Web service.  

To satisfy the requirement of sophisticated collaboration, the collaborative system 

should consider sharing resources in various ways. The resources here include many 

kinds of objects such as databases, data streams or visualizations. Our approach 

originates from the refinement of this data processing. Each object is processed in a well-

defined dataflow, MDPA, which is designed to facilitate flexible data management. Each 

stage of the pipeline is a Web service with data flowing from one stage to another.  



 102

The Carousel Web service contains four major components: content servers, 

aggregator, client application and event service. To provide rich 

synchronous/asynchronous collaboration features we build a message based collaboration 

architecture. The set of cooperating services in our framework are deployed using the 

message service for communication. Each component is linked together with their 

input/output ports designed to support Web services semantics.  

 

 

7.1.1 Content servers 

 

Each collaborative feature of the CAROUSEL Web service is designed as individual 

remote content servers in  

Figure 7.3. The major requirements of content servers are, 

• Content generation/processing for collaborative/non-collaborative features 

• Ports facing towards resources 

• Customizing content processing for pervasive users 

The requests from the user to the content server can be classified as collaborative and 

non-collaborative requests. The bitmap based user output can easily be managed on a 

given user interface, while the output rendered from the filtered document should process 

every user command in rendering units for its quality of service. For instance, the SVG 

content server generates and delivers a new SVG image when a user requests a zoomed 

image only for his or her interest but not for sharing. Otherwise, every user application 

must keep its own copy of original documents and the processing unit too. Every 

collaborative and non-collaborative event is transmitted via the NaradaBrokering 

messaging service.  

The content server is designed as a portlet comprising Web services, and provides 

input and output ports. Each portlet in the CAROUSEL Web service defines distributed 

objects in a XML-based IDL (Interface Definition Language) called WSDL 

[Christensen+01]. The overall structure of every message, including input and output, are 

defined in WSDL. The output/input ports support dynamic communication channels to 

NaradaBrokering and general HTTP communication. In order to customize the portlet 



 103

presentation for each user on pervasive devices, the content server allows any number of 

transformations. The stylesheets specially designed for universal devices map the original 

document to the customized one. Every customization is performed based on the user 

profile from the client.  

HTTP Client

NB client
Minimum

Collaborative
Environment

Event Service

Content Server Content Server

3rd Party
Service

Remote
Resources

NaradaBrokering
Communication

Server

Collaboration Session
Manager

HTTP/WML
Client

NB client
Minimum

Collaborative
Environment

Web Service Portal

Portal Aggregator

Portlet

Portlet Portlet

Portlet

Collaborative Content Servers

Collaborative Applications
for Desktop PCs

Collaborative Applications
for Mobile Devices  

 

Figure 7.3 Architecture of the Carousel Web service 

 

 

7.1.2 Event service 

 

The CAROUSEL Web service is a message-based collaborative system. To provide 

messaging between heterogeneous user network environments and Web services, 

NaradaBrokering [Fox+02b] from the Community Grid Labs is adapted as a general 

event brokering system. NaradaBrokering supports centralized, distributed and peer-to-

peer (P2P) messaging models with a dynamic collection of brokers supporting a 

generalized publish-subscribe mechanism. NaradaBrokering can operate either in a 

client-server mode like JMS [SUNb] or in a completely distributed JXTA-like peer-to-

peer mode [SUN+03]. By combining these two disparate models, NaradaBrokering can 



 104

allow optimized performance-functionality trade-offs for different scenarios. At the 

transport level NaradaBrokering provides support for TCP, UDP, Multicast, SSL and 

RTP. NaradaBrokering’s cluster-based architecture allows us to support client 

configurations that can scale to arbitrary size. For the remote resources behind of the 

firewall, NaradaBrokering provides the capability to communicate across firewall/proxy 

boundaries. We expect that the collaborative system developed based on 

NaradaBrokering’s messaging infrastructure will provide the collaboration service, to the 

users in heterogeneous network environments, with more reliability within a scalable 

network framework. 

For mobile users, such as PDAs and smart phone, HHMP (HandHeld Message 

Protocol) [Fox+02c] will be integrated to NaradaBrokering as a service in its transport 

layer. Mobile clients have modest performance and size in comparison with traditional 

desktop machines. Therefore, they require particularly efficient protocols. HHMP is an 

efficient lightweight protocol. Furthermore, HHMS’s communication protocols are 

designed keeping in mind specific mobile devices. For example, a wireless Internet 

accessing service for smart phone or PDA phones supports only HTTP, which entails 

request-response based transmission primitives currently. HHMS will provide virtual 

two-way transmission primitives for collaborative network communication environment 

to these limited devices. Each communication service is selected from the user profile of 

the client’s specification, and assigned to the client automatically.   

 

7.1.3 Client application 

 

The client application is designed to entail minimal data processing. Therefore, the 

MCL stage is processed as a client application. The customized output data is delivered 

and displayed through the client application. The major features of the client application 

are -- user specification, display portlet presentation, and processing user input events.  

In the first step, pertaining to the user specification, every user can setup their 

working environment for their specific machines as well as preferences in the portal 

presentation view. The operating systems, display types, communication methods and 

preferred resolutions are the basic factors selected in this phase. 



 105

After the initial setup, the collaboration features customized with the user profiles 

specified in client’s setup are provided. Collaborative events such as a major presenter’s 

zooming in on a SVG image or changing new URLs are wrapped with the collaborative 

application protocol and the event message is delivered to content servers via event 

services as an XML message. The non-collaborative events are delivered to content 

servers with the information which identifies the type of the event.  

 

7.1.4 Aggregator 

 

Several collaborative features designed as content servers and supporting services, 

are implemented as portlets and can be aggregated within a portal. The user sees the 

portal presentation view, which is the aggregation of the presentations of each portlet. 

Therefore, aggregator of Carousel Web Service is based on the processing of the PCL 

stage. The portlet presentation views can be in separate windows and can either be 

distinct or partially layered on top of each other. This portlet presentation view includes 

all kinds of machine-dependent outputs such as bitmap display or audio streams. 

7.2 Universal Access in Carousel Web service 

Universal access in the Carousel Web service is approached by having the user 

output/input defined intelligently by an interaction between the user “profile” (specifying 

user/ client capabilities and preferences) and the semantics of general Web services 

[Booth+03]. The service itself specifies the most important parts of its user-facing view 

and the output should be modified for clients with limited capabilities. This implies that 

the data processing in services is deficient in the sense that there must be a clear flow not 

only from the “basic Web services” to the user, but also back again. This can be quite 

complicated and it is not clear how this is achieved in general as the pipeline from Web 

services to user can include transformations, which are not reversible. For this 

reversibility problem, the content servers of Carousel Web service are designed such that 

it keeps the original document in itself, and provides an interface to the original 

document to generate a new output for each event. The ambiguity of reverse 



 106

functionalities still exists, but we can expect that every reverse function will get correct 

output with this design.  

In WSDL, the inputs and outputs of operations are termed as ports. The Carousel 

Web service is designed with one or more ports in each Web service component to 

provide a general approach as a collaborative application. Here we will discuss how we 

linked each Web service component via these input and output ports and approach the 

universal access in this object flow of Web services.  

Each Web service is designed with three major user-facing ports as an output port of 

the modular pipeline of Figure 7.4. First, there is the main user-facing specification 

output ports that in general do not deliver the information defining the display, but rather 

a menu that defines many possible views. A selector in Figure 7.4 combines a user profile 

from the client (specified on a special profile port) with this menu to produce the 

“specification of actual user output” that is used by a portal, which aggregates many user 

interface components (from different Web services) into a single view. The result of the 

transformer may just be a handle, which points to a user facing customized output port. 

This output port allows users to select user interface components - operating systems, 

display types, and resolution preferences. 

 

Application or 
Content source

U
F

IO

R
F
I

O

WSDL

Web Service

Filter

Selector

Aggregator

Selection View
Customized View

Control Channel

User Profile

Control Channel
RenderorCustomized View

 
Figure 7.4 Dataflow in Carousel Web service to support Universal Access 

                                 

 

Second, there is the customized user-facing output port that delivers the selected 

view from selector of the Web service to the client. This in general need not pass through 

the portal, as this only needs the specification of the interface and not the data defining 

the interface. For collaborative SVG, specification of the output port could involve a 

choice of display type or resolutions. Rendering an image from an SVG document 



 107

transformed with CSS stylesheets [Lie+96] is a customized user–facing output 

presentation. The conversion between stylesheets could in fact involve a general filter 

capability of the event service as another Web filter service. It seems appropriate to 

consider interactions with user profiles and filters as outside the original Web service, 

since they can be defined as interacting with the service using a general logic valid for 

many originating Web services.  

Finally, we have user-facing input/output port, which is the control channel, shown 

in Figure 7.4. 

Note that in the Carousel Web service, we have lump a portal (such as Jetspeed 

[Jetspeed] from Apache) as part of the “event service” as it provides a general service 

(aggregating user interface components) for all applications (Web services). This 

packaging may not be the most convenient, but architecturally, portals share features with 

workflow, filters and collaboration. These are services that operate on message streams 

produced by Web services. Considering universal access in this fashion could make it 

easier to provide better customizable interfaces and help those for whom the current 

display is unsuitable. 

 

7.3 Content Adapting in CAROUSEL Web service 

 

MDPA is designed to adapt shared content for heterogeneous devices. Moreover, the 

process related adapting content is based in the DTX stage and the PCL stage. The 

content adapting process is done based on the predefined device profile, user’s 

preferences, and the characteristics of service features.  

Predefined device profile: These may be several client devices utilizing distributed 

services. This may range from the wall screen to limited smartphone devices. The device 

profile keeps information about the individual user device such as display types, 

operating systems, CPU capability, etc. 

User preferences: Services should consider the user’s preferences.  For example, 

some users may prefer the more detail information even if it would cause longer 

transmission time during responses. On the other hand, some users may prefer more 



 108

abstract information, as opposed to detailed descriptions, for efficient information 

exchanges.  

Characteristics of application: As we mentioned earlier in this chapter, we should 

consider the purpose of the service feature. Each feature has a different purpose, and the 

service should provide appropriate content adapting technology for each feature. 

7.3.1 Workflow of CAROUSEL Web Service 

 

A predefined device profile is stored in the distributed database system. In the setup 

session, users can change their device profile, and the device profile is updated by the 

information from the setup session. The device profile contains, display type (resolution, 

color depth, etc.), proxy utilization, network protocol, network bandwidth, operating 

system, hardware capabilities (memory, CPU capability, etc.), version of script or markup 

language, and service vendor, etc. Similar to other components, the information described 

in the profile must be ready for processing by any machine or application. The device 

profile is represented with XML. The information in the profile can be accessed for 

processing in the DTX stage and the PCL stage. 

 

Add a Collaborative
Featured Portlet

Setup User
Environments

Download
Collaborative
User Interface

Invoke
Collaborative
User Interface

Start
Collaboration

Session

Update User
Profile

User Registration

If setup is
updated

If setup is not
updated

If user interface
is not runnable

If user interface
is runnable  

 

Figure 7.5 Workflow of Setup session in the CAROUSEL Web service 



 109

 

 

Figure 7.5 illustrates how the Carousel Web service is designed to provide a 

customizable user environment with its user setup session. First, the user selects the 

collaborative features in their list of portlets. This is then followed by a setup session 

where users input their device requirements. Figure 7.6 – (a) is a snapshot of the user 

display for the setup session in the Carousel Web service.  Prior to starting a collaborative 

session, the users are allowed to change their device profile. 

Based on the information in the user device profile, the selected collaborative 

interface is downloaded. Figure 7.6 – (b) is a snapshot of the collaborative user interface 

for desktop PC. 

Meanwhile, user preferences can be specified during setup sessions, or a user can 

change some preferences during the session. For example, we allow users to change the 

resolution of their display in our prototype, or to scroll their display in the prototype of 

the collaborative SVG browser.   

 

 

 

(a)                                                                           (b) 

Figure 7.6 Setup session and collaborative browser 



 110

 

 

7.3.2 Message filtering for heterogeneous devices  

 

 

A content server in the CAROUSEL Web Service generates multiple instances of 

heterogeneous users and collaborative services. We can consider three categories of 

messages. 

 Non-collaborative and collaborative message: Each user can have its own 

service instance which is not shared with other participants. For instance, each 

user can browse SVG images based on their preferred resolution by adjusting 

user preferences. Meanwhile, collaborative events are shared among users. 

Therefore, those messages should be filtered in the NaradaBrokering according 

to the purpose of user events.  

 Messages for heterogeneous devices: For collaborative messages, different users 

in different devices will get customized contents generated based on their device 

profiles. NaradaBrokering filters the specific message and delivers it to the user. 

 Messages for the master collaborator and participants: As a policy of 

collaborative services, we assume that there is a master collaborator and 

participants. The role of the master collaborator is managed by the session 

manager, and collaborative messages are assumed only from the users who have 

the role of master collaborator. There can be multiple master collaborators in a 

session. NaradaBrokering also filters the user events and deliver to content 

server. 

 The filtering in NaradaBrokering is processed based on the architecture of publish 

and subscribe. When a service is started, the session manager decides the topics that will 

be used for the sessions and specific devices. Since the session manager is also designed 

as a Web service, the aggregated portal receives information about the NaradaBrokering 

node and topic. The aggregated portal distributes the information to users and content 

server, and the content server starts to process user events and publishes them to be 

received by specific subscribers of the NaradaBrokering system. For a single 



 111

collaborative input, multiple outputs can be published with different topic ids. Meanwhile, 

each heterogeneous user subscribes to topics within NaradaBrokering based on the 

information from the session manager. Finally, each user receives customized output 

generated by the content server, and filtered by the NaradaBrokering system. 

 

 

NaradaBrokering

Topic published
for PC users in

collaborative event

Topic published for
smartphone users in
collaborative event

Topic published
for PDA users in

collaborative event

Topic published for
Non-collaborative event for

user B
Topic published

for Non-collaborative event
for user C

Topic published
for Master user

Smartphone user
subscribed topic for

collaborative event as
participants

 
Figure 7.7 Filtering collaborative message for smartphone user in the 

NaradaBrokering 

 

 

7.4  Network Communication issues in CAROUSEL Web service 

(Security, Reliability, Fault Tolerance) 

 

The CAROUSEL Web service provides three phases of network communication: 

HTTP connection for setup in pre-session, communication with SOAP for invoking 



 112

collaborative Web services, and NaradaBrokering connection for real-time collaborative 

session. Therefore, we have to consider security issues for these network communications.  

For the traditional Web Service schema, we can apply general security solutions to 

the CAROUSEL Web service. We described the basic scheme in Figure 7.8. HTTP 

connection is used for the communication between users and the aggregative portal web 

site. Since a user’s private information is exchanged via setup and login services, security 

should be seriously considered in this phase. We can consider the common solution 

deployed for secure connection such as SSL [Freier+96]. 

Before starting the real-time collaborative session, the aggregative Web portal should 

communicate to the back-end Web content server. Between the aggregative Web portal 

and the content server, SOAP is used as a messaging scheme. We can consider a secure 

SOAP solution, such as SOAP security extention from W3C [Brown+02]. 

Eventually, the CAROUSEL Web Service should consider secure communication with 

NaradaBrokering. Most of the current mobile devices are supported by proxy-based 

network communication architecture in the transport layer. For instance, wireless LAN, 

IEEE 802.11b requires a wireless communication access point between wireless PDAs 

and enables PDAs to access the conventional LAN service. The 3G, and 2.5G network 

communications also require such a gateway from the wireless service provider. 

Therefore, ensuring point-to-point network security is feasible in the transport layer, 

however, the end-to-end network security should be supported by multiple points, such as 

service providers or local wireless access points. 

Security framework provided by NaradaBrokering is based on message level security. 

Therefore, if mobile devices are capable of encrypting and decrypting using the securely 

distributed keys, then end-to-end security is able to be ensured in this system. The 

security framework of NaradaBrokering is described in [Pallickara+03b]. 

 

 



 113

Aggregative Web Portal

NaradaBrokering

Web Service Content
Server

Heterogeneous Users

SHTTP SecureSOAP

NaradaBrokering Security

Framework

NaradaBrokering Security

Framework

 
Figure 7.8 Network Communications for the CAROUSEL Web Service 

 

Similarly, some other network communication issues such as reliability and fault 

tolerances should also be considered in the CAROUSEL Web service. Currently, accessing 

the aggregative Web Portal is stateless for each client. The state managing in the 

aggregative Web service is one of the required feature of this architecture.  

Meanwhile, NaradaBrokering is JMS compliant [Fox+02c], and messages are 

delivered based on the JMS specification [Sun+02]. Since HHMS is designed as a 

network communication protocol supported by NaradaBrokering within the CAROUSEL 

Web service, it will also inherit the reliability and fault tolerance features of 

NaradaBrokering. However, wireless networks in mobile computing are is very 

unreliable. Therefore, a research of reliable network management and fault tolerance are 

required as advanced research issues. 

 

 

7.5 Summary 

 

The CAROUSEL Web service is a prototype of collaborative service with MDPA. In 

this chapter, we described how we deploy our collaboration models within the Web 

service infrastructure and the architecture of the CAROUSEL Web service.  



 114

Our prototype CAROUSEL Web service shows detailed steps of adapting 

heterogeneous devices. First, user’s device profile is adjusted in the setup session. Users 

are allowed to modify their device profile before starting the collaboration session. 

Second, during the session, users can change their preferences. 

In addition, we discussed security, reliability, and fault tolerance issues for 

subsequent researches.  

 

 

 

 

 
 
 
 



 115

 

CHAPTER 8   CONCLUSION 

 
In this dissertation we have suggested a software architecture for data processing 

between P2P Grid resources and heterogeneous user devices. This research is driven by 

the experiences of integrating heterogeneous devices into distributed services of P2P 

Grids. The users, accessing P2P Grids resources, are already accustomed to utilizing 

more than one network enabled computing devices, such as laptops, desktops, PDAs, and 

smartphones. 

Our software architecture, MDPA inherits the idea of traditional user interface 

architectures where there is a separation of user presentation from the original data, and 

refines data processing as stages of the pipeline for Web-based collaborative application 

in P2P Grid environments. MDPA provides more adaptable and interoperable 

architectural environments to the P2P Grid and enables support for heterogeneous user 

devices with flexible resource accessing strategies. MDPA also supports collaboration 

between users with a similar flexibility in resource sharing.   

Adaptability is an important concept for the design of services accessible from 

heterogeneous devices. A modular approach of MDPA would facilitate re-use and would 

only entail small incremental changes to cope with new devices. This thesis presented a 

modular architecture for designing services in the context of the P2P grid. This modular 

approach builds upon the emerging standards based approach to building, composing, 

registering and discovering services. 



 116

The impact and scope of this thesis are at three distinct levels. First, it suggests a 

change in the way services are designed. Second, it outlines a modular approach to this 

problem which can be expanded incrementally to deal with future changes in the nature 

of these devices. Finally, though this thesis has been organized in the context of device 

capabilities, some of the ideas of this thesis could be extended to deal with changing 

protocol, transport and communication standards. 

During the course of this dissertation we have: 

 refined the data process to customize for heterogeneous user environments; 

 categorized the user events based on the pattern of event processing; 

 shown the software architecture based on the Filters and Pipes pattern; 

 modeled the software architecture with Modular PT-net theory; 

 explained the aggregating of services with the pipeline architecture; 

 described how the users can collaborate via the interoperable pipeline 

architecture; 

 shown how we could deploy the pipeline architecture with a Web service 

infrastructure; 

 implemented the prototype of a collaborative SVG Web service for 

heterogeneous environments;  

 explained how MDPA incorporate and interact with content adaptation 

technologies; and addressed the design problems of adapting content in 

heterogeneous collaborative services.  

 

8.1 Contributions 

 

In this dissertation we looked to make the following specific contributions to the 

field of Peer-to-Peer Grids computing: 

 

• Refinement of data processing. The data processing in middleware of Peer-to-

Peer Grid architecture are refined in MDPA. The data processing is modularized, 



 117

and defined with its functional characteristics. This provides a predictable and 

simplified development environment to interact the P2P Grids.    

  

• Interoperable data processing architecture. In order to perform highly 

interactive distributed services such as collaboration, the software architecture is 

designed to support interoperability among individual data processing. This 

dissertation suggests a seamless method of interoperating between the objects.    

 

• A modeling of collaboration in different degree of flexibilities. With this 

software architecture, we also suggest a new aspect of distributed software 

development supporting a flexible degree of collaboration features. This 

dissertation deploys the concepts of flexibility in collaborative system design 

over our software architecture design and suggests collaboration models with 

different degrees of flexibility in different stages of the MDPA. Thus, it 

contributes to the systematic design environment of the collaboration system to 

P2P Grids and also enables the heterogeneous users to have dynamic flexibility 

in their collaborative features. 

 

• An adaptable system to support Universal Accessibility. The data processing to 

support universal accessibility are processed in various steps. Data filters or 

transcoders for multimedia information and user profiles are the most popular 

resources to generate data fitting on the user devices or preferences. The MDPA 

design enables the P2P Grid to adapt to new emerging technologies and devices 

more efficiently. 

 

• Prototype with demonstrative application. To show our approaches in emerging 

modern infrastructures, we developed a demonstrative system based on an 

existing Internet collaboration system. Also for demonstrating collaboration 

models with various degrees of flexibilities, we built a collaboration system 

including popular features based on Web service infrastructures. In chapter 3, 4, 



 118

and 5, we present our approach with these functional examples, and chapter 6 

provides the numeric resultant data to present the performance.    

The major contribution of MDPA to the P2P Grid is universality of clients. This is 

obviously enhances the concept of resources in P2P Grid environments. With MDPA, 

developers also have advantages with its simplified and systematic data processing 

environment. MDPA provides generic software architecture for P2P Gird supporting 

heterogeneous user devices.   

8.2 Future works 

In the future, other researchers in this field may look to extend this work along a 

number of different lines.  

 

8.2.1 User Interface 

 

The user interface should consider the flexible accessibility to data object. Each stage 

of MDPA has different flexibility to access the original data object. The user interface 

should be designed to consider the multiple flexibilities even in the same service. Since 

the CPU capability of mobile devices and network bandwidth are improving rapidly, the 

range of the differences in device capabilities will be far greater than it is now. Therefore, 

providing multiple flexibilities should be considered as a common design factor of user 

interface for mobile devices.  

 

8.2.2 Intelligent Messaging Middleware 

 

In the development of collaborative services, the messaging system is a critical factor 

of system performances. For mobile devices, the messaging system should be accessible 

from heterogeneous network communication environments seamlessly. As we explained 

in chapter 5, we develop collaborative Web service based on MDPA with linkage to 

NaradaBrokering messaging system. Currently we have the message framework, HHMS, 



 119

which relays the message from NaradaBrokering messaging system to wireless devices. 

Since message is delivered to wireless device via PDA adaptor which is a client node of 

NaradaBrokering system, it causes overload of data transfer.  

In addition, developers should reproduce sophisticated features which are provided 

by NaradaBrokering already. For example, the reliability issues including fault tolerant 

should be considered in PDA adaptor without any inheritance of advanced features in 

conventional NaradaBrokering system. Moreover, the information about the users 

accessed from wireless devices are not revealed to collaborative server transparently.  

For improving performance, it should support basic data optimization based on the 

type of the data. For example, the shared display model of collaboration requires some 

basic data processing in the message middle ware, such as data compression, or data 

format conversion.  

 

8.2.3 Deployment with OGSI 

 

Deployment with Open Grid Services Infrastructure (OGSI) [Tuecke+03] is required. 

The OGSI provides an environments to integrate key Grid technologies with Web service 

mechanisms to create a distributed system framework. In chapter3, we described that 

MDPA is deployed within the Web service infrastructure successfully. Since OGSI 

inherits from the Web service infrastructure, we expect MDPA to be compliant with the 

OGSI environment as well. OGSI version 1.0 defines a component model that extends 

WSDL and XML schema definition to incorporate the concepts of stateful Web services, 

references to instances of services, and asynchronous notification of state change etc. 

With the features of OGSI, the state management of MDPA can be implemented more 

easily, such as the lifetime management and multiple instances for collaborative services. 

Compared to the traditional Web service infrastructure, each stage of MDPA can be 

implemented more intelligently with OGSI’s extended ports types.    

 



 120

8.2.4 Extending Adaptability to Wearable Devices 

Heterogeneous devices should be adapted for multiple purposes. Emerging devices 

are not utilized as mobile clients with limited capability any more. As shown in Figure 

8.1, Wearable devices such as Wearable Digital Assistant (WDA), or heads-up display 

goggles, can be integrated as a part of services with its unique task designed based on the 

specific advantages inherent in each individual device. For example, the WDA, or 

wearable camera can assist a presenter in a collaborative session. Meanwhile, in the same 

session, heads-up display goggles or Intelli-pen can be applied as display or input 

equipments of participants. The system architecture to integrate these devices working on 

the wireless network environments such as Bluetooth is also required.  

 

 
 

 

Figure 8.1 Wearable Devices 

 

 

 

 



 121

 

 

 

 

 

 

 

 

BIBLIOGRAPHY 

 

[Adler+96] M. Adler, et al.“PNG (Portable Network Graphics) Specification Version 1.0”, 
W3C Recommendation, 1996, http://www.w3.org/TR/PNG#Credits 

 

[Adler+01] S. Adler, et el.“ Extensible Stylesheet Language (XSL) Version 1.0”, W3C 
Recommendation, 2001, http://www.w3.org/TR/xsl/ 

 

[ANSI] American National Standards Institute, http://www.ansi.org/ 

 

[AOL] America  Online Inc.  http://www.aol.com 

 

[Apache+99] The Apache XML project, COCOON, http://xml.apache.org/cocoon/ 

 

[Arsanjani+02] A. Arsanjani, et al., “Web Service Experience Language Version 2”, 
2002, http://www-106.ibm.com/developerworks/library/ws-wsxl/ 

 
[AT&T] AT&T Laboratories, VNC - Virtual Network Computing from AT&T 

Laboratories Cambridge, http://www.uk.research.att.com/vnc/ 
 

[Barrett+99] R. Barrett and P.P. Maglio, “Intermediaries: An approach to manipulating 
information streams”, IBM Systems Journal, 38, pp.629~641 

 



 122

[Bass+92] L. Bass, R. Faneuf, R. Little, N. Mayer, B. Pellegrino, S. Reed, R. Seacord, S. 
Sheppard, and M. R. Szczur A Metamodel for the Runtime Architecture of an 
Interactive System, The UIMS Tool Developers Workshop, SIGCHI Bull., ACM, 
24, 1, 1992, pp.32-37 

 

[Bass+98] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison-
Wesley, 1998 (SEI Series in Software Engineering) 

 

[Berners-Lee+97] T. Berners-Lee, “Metadata Architecture”, W3C Note, 1997, 
http://www.w3.org/DesignIssues/Metadata.html 

 

[Berners-Lee+98] T. Berner-Lee, "Uniform Resource Identifiers (URI): Generic Syntax", 
Draft Standard for URIs, W3C, 1998. http://www.ietf.org/rfc/rfc2396.txt 

 

 [Booth+03] D.Booth, M. Champion, C.Ferris, F. McCabe, E. Newcomer, and D. 
Orchard, "Web Services Architecture", 2003, W3C, http://www.w3c.org/TR/ws-
arch 

 

[Bray+00] T. Bray, J.Paoli, C.M. Sperberg-McQueen, and E. Maler, " Extensible Markup 
Language (XML) 1.0 (Second Edition)", W3C Recommendation, Oct,2000. 
http://www.w3.org/TR/REC-xml 

 

[Box+00] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. 
Nielsen, S. Thatte, D. Winer, “Simple Object Access Protocol (SOAP) 1.1”, W3C 
Note 2000, http://www.w3.org/TR/SOAP/ 

 

[Brodlie+96] K. Brodlie, J. Wood, and H. Write, “Scientific Visualization: Some Novel 
Approaches to Learning”, in Proceeding of ACM, SIGCSE conference, Barcelona, 
1996. 

 
[Brown+01] A. Brown, et al.,”SOAP security extentions: Digital Signature”, W3C Note, 

2001, http://www.w3.org/TR/SOAP-dsig/ 
 

[Chandra+00] S. Chandra, C. Ellis and A. Vahdat, “Differentiated Multimedia Web 
Services using Quality Aware Transcoding”, InfoCom, 9th Annual Joint 
Conference Of The {IEEE} Computer And Communications Societies, 2000 

 

[Chandra+01] S. Chandra, A. Gehani, C. Ellis and A. Vahdat, Transcoding 
Characteristics of Web Images, Multimedia Computing and Networking, Jan, 



 123

2001, San Jose, CA. 
 

[Chisholm+99] W. Chisholm, G. Vanderheiden, and I. Jacobs, “Web Content Accessibility 
Guidelines 1.0”, W3C Recommendation, 1999, http://www.w3.org/TR/WCAG10/ 

 

[Christensen+01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, "Web 
Services Description Language (WSDL) 1.1", W3C Note, 2001, 
http://www.w3c.org/TR/wsdl 

 

[Coulouris+01] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems 
Concepts and Design, Addison Wesley, Third Edition, 2001  

 

[Coutaz+87]J. Coutaz, “PAC, an Object Oriented Model for Dialog Design”, in 
Proceedings Interact’87 (North Holland, 1987), pp.431-436 

 

[Coutaz+95] J. Coutaz, L. Nigay, D. Salber, "Agent-Based Architecture Modelling for 
Interactive Systems", in: P. Palanque, D. Benyon (eds.), Critical Issues in User 
Interface Engineering, Springer-Verlag, London, 1995, pp. 191-209 

 

[Coutaz+97] J. Coutaz, “PAC-ing the Architecture of Your User Interface”, in 
Proceedings Eurographics Workshop on Design, Specification and Verification of 
Interactive Systems, Springer Verlag.,1997, pp. 15-32 

 

[Chu+98]Y. Chu, P. DesAutels, B. LaMacchia, and P. Lipp, “PICS Signed Labels(DSig) 1.0 
Specification”, W3C Recommendation, 1998, http://www.w3.org/TR/REC-DSig-
label/ 

 

[DCMI] Dublin Core Metadata Initiative, http://dublincore.org/ 

 

[Dewan+95] P. Dewan, “Multiuser Architectures”, in Proceedings EHCI’95, Working 
Conference on Engineering Computer Human Interaction. 

 
[Drath] Rainer Drath, “Visual Object Net++”, http://www.systemtechnik.tu-

ilmenau.de/~drath/visual_E.htm 
 

[eScience] United Kingdom e-Sciene Activity, http://www.escience-grid.org.uk 

 

[ETSI] European Telecommunications Standard Institute, http://www.etsi.org/ 



 124

 

[Freier+96] A. Freier,P.Karlton, P.Kocher, “The SSL Protocol, Ver. 3.0”, 
http://wp.netscape.com/eng/ssl3/ssl-toc.html  

 

[Foster+98 ] I. Foster and C. Kesselman (Eds.), "The Grid: Blueprint for a New 
Computing Infrastructure", Morgan-Kaufman, 1998. See especially D. Gannon, and A. 
Grimshaw, "Object-Based Approaches", pp. 205-236, of this book. 

 

[Fox+98] A. Fox, S. Gribble, Y. Chawathe and E. A. Brewer, “Adapting to Network and 
Client Variation Using Active Proxies: Lessons and Perspectives,” in A special issue 
of IEEE Personal Communications on Adaptation, 1998, 
http://citeseer.nj.nec.com/fox98adapting.html 

 

[Fox+02a] Geoffrey Fox, Dennis Gannon, Sung-Hoon Ko, Sangmi Lee, Shrideep 
Pallickara, Marlon Pierce, Xiahong Qiu, Xi Rao, Ahmet Uyar, Minjun Wang, 
Wenjun Wu, Book chapter on Peer-to-Peer Grids 
http://grids.ucs.indiana.edu/ptliupages/publications/p2pgridbook.pdf 

 
[Fox+02b] Geoffrey Fox, Sung-Hoon Ko, Kangseok Kim, Sangyoon Oh, Sangmi Lee on 

"Integration of Hand-Held Devices into Collaborative Environments" IC'02 June 
2002 Las Vegas, NV, 
http://grids.ucs.indiana.edu/ptliupages/projects/carousel/papers/PDA_IC2002.pdf 

 

[Fox+02c] Geoffrey Fox, Shrideep Pallickara, “JMS Compliance in the Narada Event 
Brokering System”, Proceedings of  the 2002 International Conference on Internet 
Computing (IC-02). Volume 2 pp 391-397 

 
[Fox+02d] Geoffrey Fox, Sangmi Lee, Sung-Hoon Ko, Kangseok Kim, Sangyoon Oh, 

“Carousel Web service: Universal Accessible Web service Architecture for 
Collaborative Application”,  
http://grids.ucs.indiana.edu/ptliupages/projects/carousel/papers/Carousel_PerCom
03.pdf 

 
 

[Fusion] DoE Fusion Grid at http://www.fusiongrid.org 

 

[Globus] Globus Grid Project http://www.globus.org 

 

[Goldberg+84] A. Goldberg, “Smalltalk-80: The Interactive Programming Environment, 
Addison-Wesley Publ., 1984. 



 125

 

[Grid] The Grid Forum http://www.gridforum.org 

 

[GridWG] GridForum Grid Computing Environment working 
group(http://www.computingportals.org) and survey of existing grid portal 
projects. http:www.computingportals.org/cbp.html 

 

[Harakan] Harakan Software,  PalmVNC,http://www.btinternet.com/~harakan/PalmVNC/ 
 

[Hendler+02] J. Hendler, T. Berners-Lee, E. Miller, " Integrating Appliations on the 
Semantic Web," Journal of the Institute of Electrical Engineers of Japan, Vol 
122(10), October, 2002, p. 676-680, http://www.w3.org/2002/07/swint 

 

[Hoschek+02] W. Hoschek, "The Web Service Discovery Architecture",In Proc. of the 
Int’l. IEEE/ACM Supercomputing Conference (SC2002), 2002 

 
[Huffman+52] Huffmann, D.,” A Method for the Construction of Minimum Redundancy 

Codes,” Proceedings of the IRE 40(9): 1098-1101, 1952 
 

[IBM+02a] IBM Raleigh Lab., “Transcoding Technology in WebSphere Everyplace 
Access: Using Transcoding Technology to Expand your Pervasive Portal”, IBM 
WebSphere Developer Technical Journal, Sept, 2002. 
http://www7b.boulder.ibm.com/wsdd/techjournal/0209_thrasher/thrasher.html 

 

[IBM+02b] IBM Research, "Open Visualization Data Explorer ", 2002, 
http://www.research.ibm.com/dx/ 

 

[IDEAlliance] International Digital Enterprise Alliance, http://www.idealliance.org/ 

 

[Intel] Intel Inc., Intel quickweb, http://www-us-east.intel.com/quickweb/ 

 

[IVDGL] International Virtual Data Grid Laboratory, http://www.ivdgl.org/ 

 

[Jacobs+99] I. Jacobs, J. Brewer, “Accessibility Features of CSS”, W3C Note, 1999, 
http://www.w3.org/TR/CSS-access 

 

[JetSpeed] The Apache Jakarta Project, Jetspeed, 
http://jakarta.apache.org/jetspeed/site/features.html 



 126

 

[Johnston+00] W. Johnston, D. Gannon, B. Nitzberg, A. Woo, B. Thigpen, L. Tanner, 
"Computing and Data Grids for Science and Engineering," Proceedings of Super 
Computing 2000. 

 

[Kay+03] M. Kay, “XSL Transformation (XSLT) Version 2.0“, W3C Working Draft 
2003, http://www.w3.org/TR/xslt20/ 

 

[Koivunen+99] M. Koivunen, “Accessibility Features of SMIL”, W3C Note, 1999, 
http://www.w3.org/TR/SMIL-access/ 

 

[LAAS] Laboratory for Analysis and Architecture of Systems, “Tina Ver. 2.5.1”, 
http://www.laas.fr/tina/announce-2.5.1.html 

 

[Lassila+99] O. Lassila, and R.R.Swick, “Resource Description Framework(RDF) Model 
and Syntax Specification”, W3C Recommendation, 1999, 
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ 

 

[Lee+02] Sangmi Lee, Geoffrey Fox , Sunghoon Ko, Minjun Wang, Xiaohong Qiu "Ubiquitous 
Access for Collaborative Information System Using SVG", Proceedings of  SVG OPEN, July, 
2002, Zurich, Switzerland 

 

[Lee+03a] Sangmi Lee, Sunghoon Ko, Geoffrey Fox, Kangseok Kim, Sangyoon Oh, “A Web 
Service Approach to Universal Accessibility in Collaboration Services” in 
Proceedings of 1st International Conference on Web Services Las Vegas June 2003 

 

[Lee+03b] Sangmi Lee, Sunghoon Ko, Geoffrey Fox, Adapting Content for Mobile Devices 
in Heterogeneous Collaboration Environments in Proceedings of the 2003 
International Conference on Wireless Networks Las Vegas June 2003  

 

[Maheshwari+01] A. Maheshwari, A. Sharma, K. Ramamritham and P. Shenoy, “TranSqui: 
Transcoding and Caching Proxies for Heterogeneous E-Commerce Environments”, 
Technical Report, 2001, 
http://www.cs.umass.edu/Dienst/UI/2.0/Describe/ncstrl.umassa_cs%2FUM-CS-
2001-051 

 

[MSN] Microsoft Corporation http://www.msn.com 

 



 127

[MSAF] Multimedia Services Affiliate Forum, http://www.msaf.org/ 

 

[McCathieNevil+00] C. McCathieNevile, M. Koivunen, “Accessibility Features of SVG“, 
W3C Note, 2000, http://www.w3.org/TR/SVG-access/ 

 

[Mohan+99] R. Mohan, J. Smith and C. Li, “Adapting Multimedia Internet Content for 
Universal Access”, IEEE Transaction on Multimedia, vol.1, pp.104-114, 1999. 

 

[NEES] NEES Earthquake Engineering Grid, http://www.neesgrid.org/ 

 

[Nokia] Nokia, Java VNC  viewer, http://www.mgroeber.de/nokia.htm 

 

[OASIS+03] OASIS, “OASIS Technical Committee Guidelines”, 2003, http://www.oasis-
open.org/committees/guidelines.php  

 

[OpenOffice] OpenOffice.org , OpenOffice.  http://www.openoffice.org  

 

[Oracle] Oracle Inc., “Oracle portal-to-go; any service to any device”, white paper, 
Oct,1999, http://www.oracle.com/mobile/portaltogo/ 

 

[Oram+01] Oram, A. (eds) 2001.  Peer-To-Peer: Harnessing the Power of Disruptive 
Technologies, March, 2001, O’Reilly, ISBN 0-596-00110-X 

 

[Palm+02] Palm Inc. “Web Clipping Apps Development”, 2002, 
http://www.palmos.com/dev/tech/webclipping/ 

 

[Pallickara+03a] Shrideep Pallickara, Geoffrey Fox, “NaradaBrokering: A Middleware 
Framework and Architecture for Enabling Durable Peer-to-Peer Grids”, in 
proceedings of ACM/IFIP/USENIX International Middleware Conference, 2003, 
http://www.naradabrokering.org/papers/NB-Framework.pdf 

 

[Pallickara+03b] Shrideep Pallickara, Marlon Pierce, Geoffrey Fox, Yan Yan, Yi Huang, “ A 
Security Framework for Distributed Brokering Systems”, 
http://www.naradabrokering.org/papers/NB-SecurityFramework.pdf 

 

[Phaff+85] G.E. Phaff, et al.,“ User Interface Management System“, Eurographics Seminars, 
Springer verlag, 1985 



 128

 

[PhysicsGrid] Particle Physics Grid Project Site, http://www.griphyn.org/ 

 
[Probets+00] S. Probets, “Flash and SVG”, 

http://broadway.cs.nott.ac.uk/projects/SVG/flash2svg/ 
 

[Rao+01] C. Rao, D, Chang, Y, Chen and M, Chen, “iMobile: A Proxy-Based Platform for 
Mobile Services”, Wireless Mobile Internet, 2001, pp.3-10 

 

[Reynolds+00] F. Reynolds, C. Woodrow, H. Ohto, “Composite Capability/Preference 
Profile(CC/PP) Structure”, W3C working draft, July, 2000, 
http://www.w3.org/TR/2000/WD-CCPP-struct-20000721/ 

 

 

[Scallan] T.Scallan, "CORBA Primer Whitepaper", Whitepaper, Segue Software, Inc. 
http://www.omg.org/news/whitepapers/seguecorba.pdf 

 

[SCEC] SCEC Earthquake Science Grid, http://www.scec.org 

 

[Shaeck+02] T. Schaeck, “ Web Services for Remote Portals (WSRP) Whitepaper”, 2002, 
http://www.oasis-
open.org/committees/wsrp/documents/wsrp_wp_09_22_2002.pdf 

 

[Smith+99]J.R. Smith, R. Mohan, and C.Li, “Scalable multimedia delivery for pervasive 
computing.” In Proc. of ACM Multimedia, Oct. 1999, pp.131-140, ACM Multimedia, 
Orlando, Florida 

 

[Storer+82] J. Storer, and T.G. Szymanski, “Data Compression via Textual Substitution”, 
Journal of the ACM 29:928-951, 1982 

 

[SUN] Sun Microsystems, Inc. "JAVA 2 Platform", http://www.java.sun.com/ 

 
[SUN+02] Sun Microsystems Inc. “Java Message Service”, 

http://java.sun.com/products/jms/docs.html 
 

[Sun+03] Sun Microsystems Inc., "Project JXTA Technology: Creating Connected 
Communities ", 2003, http://www.jxta.org/project/www/docs/JXTA-Exec-Brief-
032803.pdf 



 129

 

[TEI] Text Encoding Initiative, http://www.tei-c.org/ 

 

[Tuecke+03] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. 
Maquire, T. Sandholm, D. Snelling, and P. Vanderbilt, “Open Grid Services 
Infrastructure (OGSI) Version 1.0 (draft)”, http://www.ggf.org/ogsi-wg 

 

[UDDI+00] Universal Description, Discovery and Integration(UDDI), “UDDI Technical 
White Paper”, 2000, 
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf 

 

[UnicodeConsortium] The Unicode Consortium, 
http://www.unicode.org/unicode/consortium/consort.html 

 

[Upsen+89] Upson, C., Faulhaber Jr, T., Kamins, D., Laidlaw, D., Schlegel, D., Vroom, 
J., Gurwitz, R., et al. "The Application Visualization System: A Computational 
Environment for Scientific Visualization". IEEE Computer Graphics & 
Applications,1989 

 

[Wood+95] J. Wood, H. Write, and K. Brodlie, “CSCV – Computer Supported 
Collaborative Visualization”, in Proceedings of Display Group International 
Conference on Visualization and Modeling, 1995 

 

[Wang+00] H. Wang, B. Raman, C.Chuah, R. Biswas, R. Gummadi, B. Hohlt, X. Hong, E. 
Kiciman, Z. Mao, J. Shih, L. Subramanian, B. Zhao, A. Joseph, and R. Katz, 
ICEBERG: An Internet-core Network Architecture for Integrated Communications, 
IEEE Personal Communications, Special Issue on IP-based Mobile 
Telecommunication Networks, 2000 

 

[WebSphere] IBM Inc. “WebSphere software platform”, http://www-
3.ibm.com/software/info1/websphere/index.jsp?tab=highlights 

 

[Yahoo] Yahoo! Inc., http://www.yahoo.com 

 

[Yeong+95] W. Yeong, T. Howes, S. Kille, " Lightweight Directory Access Protocol", 
Internet Request for Comments:1777,Standards Track,  Network Working Group, 
http://www.umich.edu/~dirsvcs/ldap/doc/rfc/rfc1777.txt 



 130

BIOGRAPHICAL SKETCH 
 
 
Name 

Date of Birth 

Place of Birth 

Education 

 

 

 
Publications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Sangmi Lee 

April,28,1970 

Seoul, Korea (ROK) 

• M.S. Computer and Information Science, Syracuse University, 

NY, USA, 2000  

• B.S. from Sookmyung Women’s University in Physics, Seoul, 

Korea, 1993 

 

• Journal Articles 

 

Geoffrey Fox, Sung-Hoon Ko, Marlon Pierce, Ozgur Balsoy, Jake Kim, 

Sangmi Lee, Kangseok Kim, Sangyoon Oh, Xi Rao, Mustafa Varank, 

Hasan bulut, Gurhan Gunduz, Xiaohong Qui, Shrideep Pallickara 

Ahmet Uyar, Choonhan Yoon. “Grid Services for Earthquake Science”, 

Concurrency and Computation: Practice and Experience in ACES 

Special Issue, 2002. 

 

• Conference Articles 

Sangmi Lee, Sunghoon Ko, Geoffrey Fox, Kangseok Kim, Sangyoon 

Oh, “A Web Service Approach to Universal Accessibility in 

Collaboration Services” in Proceedings of 1st International Conference 

on Web Services, Las Vegas, June 2003  

Sangmi Lee, Sunghoon Ko, Geoffrey Fox, “Adapting Content for 

Mobile Devices in Heterogeneous Collaboration Environments”, in 

Proceedings of the International Conference on Wireless Networks, Las 

Vegas, June 2003 



 131

 

 

Hasan Bulut, Geoffrey Fox, Dennis Gannon, Kangseok Kim, Sung-

Hoon Ko, Sangmi Lee, Sangyoon Oh, Xi Rao, Shrideep Pallickara, 

Quinlin Pei, Marlon Pierce, Aleksander Slominski, Ahmet Uyar, 

Wenjun Wu, Choonhan Youn , “An Architecture for e-Science and its 

Implications” to be presented at 2002 International Symposium on 

Performance Evaluation of Computer and Telecommunication Systems 

(SPECTS 2002) July 17 2002 

Sangmi Lee, Geoffrey Fox, Sunghoon Ko, Minjun Wang, Xiaohong 

Qui, “Ubiquitous Access for Collaborative Information System Using 

SVG”, SVG Open, 2002, July, 2002, Switzerland  

Geoffrey Fox, Sung-Hoon Ko, Kangseok Kim, Sangyoon Oh, Sangmi 

Lee, “Integration of Hand-Held Devices into Collaborative 

Environments”, in Proceedings of the International Conference on the 

Internet Computing, June 2002 

 

• Book Contribution 

 

Geoffrey Fox, Dennis Gannon, Sung-Hoon Ko, Sangmi Lee, Shrideep 

Pallickara, Marlon Pierce, Xiaohong Qiu, Xi Rao, Ahmet Uyar, Minjun 

Wang, Wenjun Wu Book chapter on Peer-to-Peer Grids. Making the 

Global Infrastructure a Reality Grid. Published by John Wiley, West 

Sussex, England. ISBN 0-470-85319-0, 2003 

 

 

• Technical Reports 

Geoffrey Fox, Sangmi Lee, Sunghoon Ko, Kangseok Kim, Sangyoon 

Oh, “CAROUSEL Web service: Universal Accessible Web service 

Architecture for Collaborative Application”, Community Grid Lab, 



 132

Indiana University, November 2002  

Geoffrey Fox, Sung-Hoon Ko, Kangseok Kim, Sangyoon Oh, Sangmi 

Lee “Integration of Hand-Held Devices into Collaborative 

Environments”, Community Grid Lab, Indiana University, January 

2002  

 

 

 


