
BUILDING A SCALABLE FRAMEWORK FOR
THE COLLABORATIVE ANNOTATION OF

REAL TIME DATA STREAMS

TAO HUANG

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree of
Doctor of Philosophy

int the Department of Computer Science
Indiana University

January 2013

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

Doctoral Committee
Professor Geoffrey C. Fox, Chair

Professor Gregory J. E. Rawlins

Professor Minaxi Gupta

Professor Kay Connelly

January 11th, 2013

ii

Copyright c© 2013

TAO HUANG

ALL RIGHTS RESERVED

iii

ACKNOWLEDGEMENTS

This dissertation would not have been accomplished without the guidance and the

help of several individuals who in one way or another contributed and extended their

valuable assistance in the preparation and completion of this research. I would like

to give my sincere thanks to all these remarkable people.

First and foremost, my utmost gratitude to my advisor Prof. Geoffrey C. Fox,

distinguished scientist and director of Pervasive Technology Institute at Indiana Uni-

versity, for his encouragement and guidance in the completion of this dissertation and

the exceptional research environment he offered. His perpetual energy and enthusi-

asm in research had motivated all his advisees, including me. In addition, he was

always accessible and willing to help his students with their research. As a result,

research life in Bloomington became smooth and rewarding for me.

I was delighted to attend Prof. Gregory J. E. Rawlins’s course and have in-depth

discussion on system design and implementation with him. He sets an example of a

respectable researcher for his rigor and passion on research.

Prof. Minaxi Gupta and Prof. Kay Connelly deserve special thanks as my thesis

committee members and advisors. I could not finish this dissertation without them

generously offering time, support, guidance and good will throughout the preparation

and review. I am thankful for their suggestions, constructive comments, kindnesses

and keen intellects.

I would also like to thank all members of Community Grids Lab for the priceless

moments that we shared together. It has been a great honor to work with these

extraordinary people. I particularly thank Prof. Shrideep Pallickara from Colorado

State University for his reviews and productive discussions on extensive areas of my

iv

research. I thank Ms Mary Nell Shiflet for her prompt help on my scheduling and

coordinating requests on research resources.

Last but not least, my gratitude to my family for their unflagging love and support

throughout my life, this dissertation is simply impossible without them. My parents,

Peizong Huang and Qingli Peng, have been a constant source of emotional, moral

and of course financial support during my postgraduate years, I could hardly image

how far I could achieve without them. My wife Juntao Yu has been, always, my

pillar, my joy and my guiding light, I would not have finished this degree without her

encouragement.

v

TAO HUANG

BUILDING A SCALABLE FRAMEWORK FOR THE COLLABORATIVE
ANNOTATION OF REAL TIME DATA STREAMS

With the fast development of Internet technology, competent on-line collaboration

tools are currently being used daily to improve group productivity. There are no

longer such limitations for people to work on digital contents using designated plat-

forms on specific networks. They can choose different collaboration services with

diverse connectivity and user interface options. As an important feature of on-line

collaboration systems, collaborative annotation on real time streams is being thought-

fully investigated and studied by different research entities all over the world. Sys-

tems such as Vannotea[Schroeter et al., 2003] and SIDGrid[Bertenthal et al., 2007]

have been invented for common collaboration requirements such as audiovisual com-

munication and digital annotation, and they have accomplished the targets very well.

However the majority of such systems are designed and implemented to process merely

specific data such as multimedia streams, which can be hardly extended to support

generic contents such as real time data from earthquake sensors, traffic monitors

and medical instruments. It is challenging to design and develop such a framework

that supports creating, sharing and replaying annotations on generic data streams

regardless of end user’s multiplicity of connectivity and supporting platforms. In this

dissertation, we investigated major characteristics of popular collaboration and anno-

tation systems on both desktop and mobile platforms, summarized key requirements

and research difficulties of building a distributed collaborative annotation framework,

and then presented our prototype of such a system that supports annotating generic

data streams in heterogeneous environments. The analysis of experiment results

demonstrates that our decisions on the system architecture and design have provided

various advantages over previous systems on both performance and scalability.

vi

TABLE OF CONTENTS

CHAPTER

I. Introduction . 1

1.1 Annotation in Distributed Collaboration 1
1.2 Motivation . 3
1.3 Research emphases . 4

1.3.1 Annotation on Generic Realtime Data 4
1.3.2 Annotation Distribution and Storage 6
1.3.3 Annotating Realtime Data in the Mobile Environment 8
1.3.4 Platform Design and Implementation 8

1.4 Contributions . 10
1.5 Thesis Organization . 10

II. Research Background and Survey of Related Technologies . 11

2.1 Traditional Collaboration and Annotation Systems 11
2.1.1 H.323 and SIP systems 12
2.1.2 MRAS . 14
2.1.3 VideoAnnEx . 15
2.1.4 Vannotea . 16
2.1.5 SIDGrid . 16
2.1.6 A Collaborative Annotation Framework for Social

Network Users . 17
2.1.7 eSports . 18
2.1.8 Summary . 19

2.2 Mobile Collaborative Annotation 20
2.2.1 Mobile Annotation Systems 20
2.2.2 Android Based Annotation Systems 21

III. A Scalable Framework of the Collaborative Annotation . . . 23

3.1 Architecture Choices . 23
3.2 Messaging Systems . 26
3.3 Architecture of the Framework 28
3.4 Session Management . 29
3.5 User Experience Design . 31

3.5.1 A Sample Desktop User Interface on Windows . . . 32
3.5.2 User Interfaces for other Platforms 33

vii

3.6 Structure and Feature Comparison 33

IV. Annotation on Generic Streams 37

4.1 Annotation Interface . 37
4.2 Stream Rendering . 40
4.3 Stream Archiver . 41
4.4 Annotation Management . 42

V. Annotations in the Mobile Environment 44

5.1 Collaboration bewtween mobile and desktop clients 45
5.2 Improved session control for the mobile environment 46
5.3 Multimedia Proxy . 47
5.4 Adapting annotation meta-data 50

VI. Jitter Reduction and Fault Tolerant Services 51

6.1 Jitter Reduction Service . 51
6.1.1 Time Buffering Service 53
6.1.2 Time Differential Service 54

6.2 Replicated and Fault Tolerant Services 56
6.2.1 Overview of NaradaBrokering Reliable Delivery Service 56
6.2.2 NaradaBrokering Reliable Delivery Service Extensions 63
6.2.3 Redundant and Fault-tolerant Repository/Archiving

Service . 65

VII. Experiments of Scalability and Robustness 72

7.1 Performance Experiments on Desktops 72
7.1.1 Resource usage Test 72
7.1.2 Annotation Latency Test 73

7.2 Performance Experiments on Mobile devices 74
7.2.1 Resource usage Test 74
7.2.2 Latency Test . 75

7.3 Framework Scalability Experiments 76
7.3.1 Resource usage Test 76
7.3.2 Latency Test . 77

VIII. Conclusions and Future Work 79

8.1 Summary . 79
8.2 Conclusion . 79
8.3 Future work . 80
8.4 List of Publications Related to This Thesis 80

viii

REFERENCES . 82

APPENDICES . 87

ix

LIST OF FIGURES

Figure

1.1 Two ways of presenting annotations 5
1.2 Methods of annotation distribution 7
1.3 Platform architecture . 9
2.1 H.232 system architecture . 13
2.2 SIP system architecture . 14
2.3 Microsoft Research Annotation System 15
2.4 IBM VideoAnnEx . 16
2.5 Vannotea from University of Queensland 17
2.6 The Social Informatics Data (SID) Grid 18
2.7 Multimedia annotation in eSports 19
3.1 Detailed system architecture . 29
3.2 A Snapshot of The Sample Desktop User Interface. 32
4.1 Three Layers of the Annotation Client Interface 38
4.2 Class Diagrams of Stream Processing Interfaces. 39
4.3 A Running Example of the Stream Buffer 41
4.4 Annotation DOM Object in plain XML 42
5.1 Collaborative Annotation between Desktop and Mobile users. 46
5.2 Methods of annotation distribution 47
5.3 Multimedia proxy for audiovisual stream playback. 48
5.4 Annotation interface of the mobile client. 49
6.1 Jitter Reduction Service . 53
6.2 Ideal Time Differential Service thread invocation 55
6.3 Summary of interactions between entities 58
7.1 CPU Usages of A Stream Archiver Saving Multimedia Streams . . 72
7.2 Time Delays of Freehand Whiteboard Events 73
7.3 Resource usages of playing video streams with different parameters . 74
7.4 Start latency of playing video streams with different parameters on

different networks. 75
7.5 Responding time of Archiving & Replaying Service for different num-

ber of requests. 77

x

LIST OF TABLES

Table

3.1 Comparison of Selected Messaging and Queuing Systems 27
3.2 Comparison with Previous Systems 34
4.1 Supported Multimedia Formats . 40
5.1 Comparison of Technologies Used to Support Different Features . . 45
7.1 Average Time Before Session List Changes under Different System

Loads . 77

xi

CHAPTER I

Introduction

1.1 Annotation in Distributed Collaboration

Internet has evolved tremendously during the past decade, it becomes the most

important platform for information publication, sharing and servicing. With the

deployment of high speed networks such as Internet2[Kratz et al., 2001] and 4G

LTE[3GPP , 2010], it becomes possible to access and process large amount of dig-

ital data despite location and time constraints. People tend to move their personal

data and computational jobs into Cloud platforms such as Amazon S3[Amazon LLC ,

2006], Google Drive[Google Inc., 2012] and Microsoft Azure[Microsoft , 2010], there-

fore they can utilize the best computational and storage resources to serve their

purposes with minimum cost. In addition to storage and computation, on-line col-

laboration is also an importation service necessary to Internet users. It helps resolve

geographic, time and communication difficulties that people may encounter during

their inter-organizational cooperation.

During the past decade, various distributed collaboration platforms[Childers et al.,

2000][Schroeter et al., 2003][Bertenthal et al., 2007] have been designed and imple-

mented to help people in accessing, editing and collaborating on data of their interests

easily. Among all popular cooperation activities, annotation is one of the most com-

monly conducted tasks and therefore becomes an obligated feature of many collabo-

ration systems. It is also important for these platforms to support easy integration

of new types of content data and have user friendly desktop and mobile interfaces.

1

Annotation in general is defined as the process of adding opinions, comments,

making notes or explanations to portions of content data. It is being used in different

application areas, varying from interpreting plain texts to commenting on multimedia

clips. People can choose to annotate their content data in multiple dimensions such

as textual criticism in 1-Dimension annotation on literatures and cartography in spa-

tial annotation. From most annotating activities being conducted over the Internet

today, we have made a conclusion that most of them focus on static data which are

prerecorded and preprocessed with relevant meta-data for analysis, processing and

reviewing afterwards. This simple “Record-Annotate-Replay” routine is useful and

effective for academic and research purposes such as training, weather forecasting

and genome decoding[Stein, 2001]. However it may not be suitable for scenarios that

require annotating and analysis on data streams being generated in real time.

One good example of annotation on real-time/live data streams would be earth-

quake prediction. Thousands of earthquake sensors have been deployed in areas with

frequent crustal motions, for example California, United States and islands of Japan.

If a timely analysis and annotation on abnormal crustal activities could be done and

presented to the authority, damages and casualties caused by disasters such as Tohoku

earthquake in 2011 might be controlled at a minimal level. Another important case is

traffic control in large cities. It is common that traffic control departments of major

cities in the world are overwhelmed by live video feeds captured from all areas within

the city. An automatic traffic monitoring and accidents reporting system can help

them improve efficiency and accuracy enormously. Most recently, with the widespread

use of smart phones and hand-held devices, Near Field Communication[Want , 2011]

makes eCommerce much simpler and faster. Monitoring live transactions data over

the mobile network becomes important and useful to protect customers from identity

theft and phishing.

Collaborative annotation defines joint commenting on the shared content data

2

by a group of users that have similar interests. It is important for the supporting

platform to record both user inputs as well as the context data generated during

the collaboration. Both information have the same the importance for the user to

interpret the content. Taking on-line course training as an example: students may

have questions on particular sections of the instructor’s handouts or e-documents.

Currently they can make comments or ask questions through web forums and emails,

instructors can respond accordingly but the context of the question is lost after the

conversation finishes privately. Other students cannot benefit from the discussion

without digging into previous conversations and gaining the context. Even though

there are limited implementation of such context preservation in some systems, they

are still text oriented and cannot apply to generic data.

1.2 Motivation

There are three major motivations that drive this extensive research of a collab-

orative annotation platform on generic content data. Firstly there are high demands

of collaborative annotation in various application areas, varying from production in-

dustry to academic research institutes. Large amount of streaming data are being

generated and accumulated daily. It is impossible for a single person or group to store

or process such massive data by itself. According to Youtube statistics[YouTube LLC ,

2012], 72 hours of video are uploaded to its website every minute all over the world.

2.5 quintillion bytes of data such as climate information from sensors, posts to social

media sites, digital pictures and videos, purchase transaction records, and cell phone

GPS signals are created every day[IBM Corp., 2012]. Mining and analyzing such

big data is impossible for a single computing entity or person to accomplish without

collaborative work. There are also cases, taking the Tohoku earthquake described in

previous section as example, that joint efforts are required by multiple administrative

authorities to handle disastrous emergencies with computer based aids.

3

Secondly, it would be much convenient if we are able to annotate on live data

streams. Given those typical use scenarios presented in previous section, collaborative

annotation on real time content will benefit lots of people with faster responses to

their problems in reality.

Thirdly, current systems are developed separately to serve their own purposes on

specific content data. Many duplicated efforts have been spent on similar functionali-

ties among various systems. People will benefit a great deal after we summarize their

similarity and design a universal platform with common collaboration features. A

simple integration interface will increase the adaptability of the platform even more

since now we can add supports to new types of content data without extra work.

Lastly, it is important to add support to mobile devices such as tablets and smart

phones, giving the face that they are becoming the major accessing ends to live data

streams such as video feeds and sensor data. [YouTube LLC , 2012] has stated that

traffic from mobile devices has tripled in 2011 and more than 20% of global views are

from mobile devices.

1.3 Research emphases

To address motivations listed in previous section, we identified following research

topics varying from distributed data storage to universal data support.

1.3.1 Annotation on Generic Realtime Data

There are two ways of presenting annotations on content data, either embedding

them within the actual content (for example annotations in Youtube, Wikipedia,

Google Maps and Genome Annotations) or displaying them alongside the content

(for example MRAS[Bargeron et al., 2001], Vannotea[Schroeter et al., 2003] and

ELAN[Berez , 2007]). The following picture shows a side by side comparison of these

two choices.

4

Figure 1.1: Two ways of presenting annotations

The first method helps users interpret the annotations at exact places, thus pro-

viding better semantic understandings. It is really helpful in multidimensional an-

notations such as cartography, but there are obvious shortcomings. For example,

annotations may become too large therefore block the important portions of underly-

ing contents. This sometimes may break the semantic connections between different

parts of the content. The second method, on the contrary, keeps the integrity of the

content and provides the semantic related information such as location through de-

scriptive text comments. It is not as explicit as the first method and those comments

may be ambiguous sometimes. Since the proposed platform is designed to support

generic content data, it would be better to support both methods at the same time

when necessary.

Unlike static content data, the status of real time data streams is transient and

changes quickly. Some annotations are only meaningful at particular time spots

during rendering of those streams, therefore it is required that the platform supports

pausing/resuming the content streams while users are annotating them or viewing

annotations already added. The status of the streams being annotated should be

retained during those procedures and resumed later on. To solve this problem, three

modes for annotations are proposed here:

5

• Digress Mode: In this annotation mode, the streams being annotated are paused

to allow the annotation to be inserted and positioned. The newly received

content data will be buffered locally and continued to be used for rendering after

the annotation process is finished. This mode is generally used by annotating on

prerecorded data streams and not recommended for real time streams since the

local buffering will cause delay of rendering and therefore asynchronous status

among different clients, which may break normal communication and correct

understanding.

• Commentary Mode: In this mode, the rendering of content data streams will not

be interrupted while being annotated. All annotations added will be received

immediately and presented on the client immediately. Annotations that are

unable to be presented in time will be stored and can be replayed when the

users choose to switch to Digress mode.

• Compound Mode: This mode is a combination of above two modes which allows

users to annotate on all streams in the session, including annotation data created

by other users.

All these three modes will be applied to different scenarios of annotation and

should be able to switch to each other according to the users choice.

1.3.2 Annotation Distribution and Storage

In order to ensure the fluency of annotating on the client side, both content and

annotation data events will be stored locally in buffered files. Since they are also

stored permanently on the remote storage service nodes, consistency must be kept so

that every client node gets the same views of both content and annotations. There

are two general methods of keeping such consistency, either through broadcasting

updates from clients or mediating all nodes by the storage service. In the second

6

method, changes submitted from clients will be combined into one large batch event

and pushed to clients periodically. Figure 1.2 depicts an example of both methods in

a live annotation session.

Figure 1.2: Methods of annotation distribution

Both methods will be provided in the platform for different scenarios such as live

annotation and afterwards commenting. When users are collaborating in a live an-

notation session, it is important that they can see each other’s modifications on the

content data in time. Annotation events will be transmitted among them immedi-

ately without processing. Storage service node does make copies of these events and

generate a long batch historical file for other users to view after the live session. Mod-

ifications occurred during the reviewing processes will be added to this batch event

and then pushed to other session reviewers clients periodically. Session attendees

will not know the content under viewing is modified until they restart the process or

makes changes themselves. Through this method, the storage service can serve users

in live sessions with more resources and attention.

Due to its simplicity and generality, most annotation systems define their own

annotating languages based on XML. For example, MPEG-7[ISO/IEC Moving Pic-

ture Experts Group, 2004] standard from ISO/IEC is widely used among audiovisual

annotation systems [Savakis et al., 2003][Ren and Singh, 2005][Bargeron et al., 2001]

for fast and efficient searching for material that is of interest to the user. A set of

Description Schemes and Descriptors are used to define descriptions of the underline

7

multimedia content data and schemes for coding those descriptions are also well stan-

dardized. Although the meta-data are stored separately from the audiovisual content,

relations between them based on timestamps are created and stored inside the XML.

Since we focus on annotating real time data streams, a similar scheme can be used

and extended based on more generic RDF[W3C RDF Group, 2004] specification to

meet our requirements.

1.3.3 Annotating Realtime Data in the Mobile Environment

Another interesting and important research is to extend the platform into mobile

environments. Due to its limited computing resource and presenting layout, mobile

devices can hardly provide the same level of user experience on annotating real time

data streams as those applications on desktops/laptops. The instability of mobile

networks such as 3G/EDGE also requires the platform to be more tolerant to high

possibility of network losses and delays. Therefore several features with rich user ex-

perience described in section 1.3.1 should be translated to simpler presentation forms

that are available on mobile devices, for example translating time-line based annota-

tions to simple tags over the video clips. Data communications between annotation

storage service and mobile clients might also need to be combined together at a higher

level to minimize side effects caused by unstable mobile networks.

1.3.4 Platform Design and Implementation

The final objective of this dissertation is to develop a platform prototype which im-

plements the common annotation capabilities on generic data streams in distributed

environment. This implementation will serve as a workbench to test the design in

terms of usability from both annotator and viewers points of view. The performance

and scalability of the platform will also be tested with a number of clients working to-

gether within the Pervasive Technology Institute as well as outside campus of Indiana

8

University. Figure 1.3 below depicts an outline of the proposed framework.

Figure 1.3: Platform architecture

As shown above, the platform is divided into several key components. A session

management component is deployed on a dedicated server to control session events

being generated from attending clients and service nodes. Stream archiving compo-

nent can be deployed on different machines sending constant reports to the session

server. Clients will be downloaded from the web portal with different plug-in based

on processing requirements of different data types. And all controlling and streaming

events will be transmitting over the data distribution network such as NaradaBroker-

ing[Pallickara and Fox , 2003].

To support different types of streams in client, a web interface is presented to

edu users for them to submit their own implementation of the streaming processing

interface [Huang et al., 2009]. They will be responsible for implementing stream

processing plug-in of the platform and submit it through the web portal. Once the

submission is done, the platform will be able to handle the requested type of real time

data, and apply existing annotation functions on them.

9

1.4 Contributions

The major contribution of this research is to provide a scalable annotation frame-

work of live data streams. It simplifies the efforts of collaborative annotation on real

time streaming data, and it also presents an efficient system that supports cross-

platform collaboration and a standard interface for generic data stream annotation.

The profiling and evaluation being done in this research also show us an more ac-

curate and efficient method for research entities to apply it on related collaboration

systems in the future.

1.5 Thesis Organization

In this research, a comprehensive survey is firstly conducted on existing distributed

annotation and collaboration systems. Through analysis of those systems, important

features and requirements are summarized for building a scalable framework for the

collaborative annotation of real time data streams. A prototype of such framework

is designed and implemented to verify the correctness of our thoughts and methods

in solving various research issues such as multi-dimensional annotation of real time

data, flexible replaying of the annotation, robust annotation storage and distribu-

tion, simple but well defined interfaces for supporting new data types and so on.

Finally, experiment results on the platform prototype testify the scalability of the

framework, and some problems we encountered during annotating live data in mobile

environments are also addressed.

10

CHAPTER II

Research Background and Survey of Related

Technologies

Distributed collaboration and annotation systems have been developed in the past

decade all around the world. These systems are designed to service different aspects of

collaboration. Commercial H.323[Karim, 2000] systems such as Polycom and Tand-

berg provide most reliable audiovisual communication among heterogeneous networks

and therefore dominate the video conferencing market. As a free alternative, Access

Grid[Childers et al., 2000] is very popular in the academic community. Scientific dis-

cussions and lectures are being held on this system almost every day. Besides video

conferencing, document sharing and annotation is another major requirement of cur-

rent collaborative annotation systems. Tools such as Google Docs[Google Inc, 2005]

and Microsoft Office 365[Microsoft Corporation, 2011] become very popular for doc-

ument based team work over the Internet. Gradually all these tools tend to absorb

each other’s popular features. For instance, Access Grid now has basic document

sharing capabilities via its web portal while Google Docs users can video chat with

each other through either the new Gmail feature or Google+ hangout.

2.1 Traditional Collaboration and Annotation Systems

Collaborative platforms that support annotation have already been developed by

various software companies and academic groups all over the world. Several example

systems are introduced and compared in this section to help summarize major features

11

that a collaborative annotation framework should have and problems that it should

address.

2.1.1 H.323 and SIP systems

As the most commonly used video conferencing standard, H.323 is an Interna-

tional Telecommunications Union standard aiming at multimedia communication over

packet switched Networks. It is defined as an umbrella standard which specifies its

components to be used within an H.323-based environment. It provides conference

management functionality for audio/video conferences using the call signaling func-

tionality of H.225[ITU Recommendation H.225 , 2000], H.245[ITU Recommendation

H.245 , 2000]. H.225 and H.245 provide call set-up and call transfer of real-time

connections to support small-scale multipoint conferences. The H.243[ITU Recom-

mendation H.243 , 1998] protocol defines some commands between the H.323 Multi-

point Control Unit (MCU) and H.323 terminals to implement audio mixing, video

switch and cascading MCU. Codecs used within H.323 system are G.711[ITU Rec-

ommendation G.711 , 1988] for audio, H.261[ITU Recommendation H.261 , 1991] and

H.263[ITU Recommendation H.263 , 1998] for video and T.120[ITU Recommendation

T.120 , 1996] for data. T.120 recommendation contains a series of communication and

application protocols. It also includes services to support real-time, multi-point data

applications in collaborations sessions. Figure 2.1 below shows major components of

a typical H.323 system.

As shown above, there are following six major components:

1. Terminals are endpoints that provide audio/video/data to another endpoint.

2. Gatekeepers (GK) provide admission and call control services to endpoint. They

also provide services such as address translation, RAS control, call redirection

and zone management to H.323 participants.

12

Figure 2.1: H.232 system architecture

3. Multipoint controller (MC) establishes a H.245 control channel with H.323 par-

ticipant to negotiate media capabilities.

4. Multipoint processor (MP) provides media switching and mixing functionalities.

5. Multipoint control unit (MCU) is an endpoint that enables three or more end-

points to participate in a conference.

6. Gateway (GW) provides real-time, two-way communication between H.323 end-

points and non-H.323 endpoints.

H.323 protocol defines how these components communicate with each other, and

the communication between them is defined in binary format. There are many pop-

ular products [Polycom Inc, 2000] [IVCi LLC , 2009] [OpalVoip and H323Plus , 2007]

implemented based on this standard and they can inter-operate with each other.

The Session Initiation Protocol (SIP) is a text based and HTTP-like style (request-

response) application layer protocol for establishing, modifying and terminating ses-

sions. SIP was designed to solve problems for IP telephony. It provides functions

13

such as user location resolution, capability negotiation, and call management. SIP

capabilities are basically equivalent to the services H.225 and H.245 in H.323 proto-

col. Although SIP does not define the conference control procedure like H.243, there

are some researches for SIP based conference control protocol[Koskelainen et al.,

2002][Wu et al., 2002].

Figure 2.2: SIP system architecture

As shown in Figure 2.2, main components of a SIP system are: SIP clients, a

SIP Proxy Server, a Registrar Server, a Location Server, a Redirect Server and a

SIP MCU. The SIP Proxy Server primarily plays the role of routing and enforcing

policy of call admission. It provides an instant messaging service, forwarding SIP

Presence Event messages and SIP text messages to SIP clients. The SIP registrar

accepts REGISTER requests and saves the received information in location server.

2.1.2 MRAS

Microsoft research released its annotation system MRAS[Bargeron et al., 2001]

in 2000, the system was designed to help Microsoft employees gain better training

experience through asking questions on pre-recorded lecture videos. As show in Figure

2.3 The questions are anchored on the multimedia content and answered by the

instructors asynchronously. Since the questions can be synchronously replayed with

14

the class content, students that have similar questions at the same time spot will

benefit from reading answers to the previous question. Collaboration is achieved

through discussions on the questions and their answers. MRAS doesn’t support live

video feeds and students who are watching the same video streams could not exchange

their thoughts in the real time.

Figure 2.3: Microsoft Research Annotation System

2.1.3 VideoAnnEx

IBMs Mpeg-7 annotation tool VideoAnnEx[Smith and Lugeon, 2000] was also

released in 2000. It can parse Mpeg video files and segment them into small shot units.

Each shot unit can be annotated with a description from three default categories:

static scene, key object and event. All shot units in Figure 2.4 are stored into a

XML file as well as their descriptions/annotations following the Mpeg-7 standard.

Users can search among the descriptions and replay the video shots alongside the

description they are looking for. VideoAnnEx is a stand-alone annotation program

that as well as MRAS cannot process live video feeds, and it does not support sharing

and manipulating video streams among distributed users either. It can merely process

MPEG-1 and MPEG-2 video files and the descriptions are limited to three pre-defined

15

categories. It is difficult to extend the system without modifying its source.

Figure 2.4: IBM VideoAnnEx

2.1.4 Vannotea

Researchers from University of Queensland invented Vannotea[Schroeter et al.,

2003] to help facilitate collaborative video indexing, annotation and discussion of

video contents in a distributed broadband environment. It supports most features

that VideoAnnEx has and provides more flexibility on the meta data of video seg-

ments. In Figure 2.5, Vannotea users are able to save, browse, retrieve and share

both objective descriptions of the video files as well as subjective annotations on

them. The videos files are still limited to Mpeg-2 format and users can only create

text descriptions.

2.1.5 SIDGrid

The Social Informatics Data Grid (SIDGrid)[Bertenthal et al., 2007] from Uni-

versity of Chicago is a new cyber infrastructure designed to transform the methods

that are used by social and behavioral scientists to collect and annotate data, col-

laborate and share data, and analyze and mine large data repositories. It provides a

16

Figure 2.5: Vannotea from University of Queensland

novel integration of annotation, analysis, and search for multimodal data as well as

a powerful framework for web-based, distributed collaborative annotation and anal-

ysis. As you can see from Figure 2.6, all annotation tasks are carried out through a

modified version of the open source audiovisual annotation tool named ELAN[Berez ,

2007]. Researchers can work with each other using a web based central archive of

multimodal data, annotation and analysis. Though the browser-based interface helps

achieve the collaboration objectives such as searching and discussion, it still cannot

support annotating and analyzing data generated in the real time. And no collabora-

tions on ad-hoc annotation are allowed, users can only work on prerecorded content.

2.1.6 A Collaborative Annotation Framework for Social Network Users

A collaborative annotation framework[Shevade et al., 2005] from Arizona State

University was proposed in 2005 to enable members of a social network to collabo-

ratively annotate a shared media collection. It provides recommendations based on

17

Figure 2.6: The Social Informatics Data (SID) Grid

low-level features, context, commonsensical and linguistic relationships. The frame-

work firstly parses three major features of the shared media, computes the feature

distances based on histograms of these features, and then uses a concept filtering

method of the user context to adapt the final recommendation results. The research

is mainly focused on its algorithm of generating more semantic relevant recommen-

dation to avoid useless new annotations. The algorithm heavily depends on features

of the shared media which are uploaded images and cannot be used on real time data

streams.

2.1.7 eSports

eSports[Zhai et al., 2005] developed by Community Grids Lab is another attempt

to enable collaborative annotation on multimedia content over the distributed net-

work, especially the grid-computing network. It enriched the annotation on mul-

timedia contents from simple text to more diverse forms such as graphic shapes,

audio/video clips. As its name indicates, eSports system aims to help sport coaches

train their trainees remotely through vocal and graphic annotations on real time or

archived video streams. As the Figure 2.1.7 shows below, coaches can take snapshots

18

of sample gestures in the video and comment on them to help students understand

their classes. Annotations and video streams are archived using NaradaBrokering

storage service and can be replayed synchronously based on their time stamp prop-

erty. Since the streams are stored as a series of NaradaBrokering events rather than

large video files, users can ask to replay any part of the stream without loading all

related events. Live chat is also implemented to improve the real time communication

in the system.

Figure 2.7: Multimedia annotation in eSports

2.1.8 Summary

There are many other platforms/tools that share similar features of above sys-

tems. To address all the objectives/problems of building a scalable framework for

the collaborative annotation of real time data streams, it is quite obvious that the

proposed research should have following major features:

• The target system should be able to support creating, archiving and replaying

multiple forms of annotations on either real time or prerecorded data streams

without knowing their characteristics.

19

• The target system should support both synchronous and asynchronous commu-

nications on both annotations and content streams.

• A robust session management is required to make the proposed system tolerant

to possible hardware or network failures.

• The target system should be adaptive to underlying networks, from high speed

Internet to unstable ad-hoc mobile networks.

2.2 Mobile Collaborative Annotation

Researches have been done on different aspects of collaborative annotation on

mobile phones. Due to the multimedia capability and location awareness of those

devices, most of the research mainly focuses on annotation on digital contents such

as photos, audiovisual data and location information. In this section, we give brief

analysis on some of these systems and explain how they affect our design.

2.2.1 Mobile Annotation Systems

Many efforts have been spent in bringing multimedia annotation on current mobile

platform. In [Yeh et al., 2004], Yeh introduces a hybrid searching technique for

location recognition based on image and keywords. It however does not support

operations in real time. Reference [Anguera et al., 2008] is an annotation system for

digital contents on cell phone but its lack of server side supports makes it impossible

for users to collaborate with each other. As an improvement of existing mobile search

systems such as Layar[Layar , 2012], [El-Saban et al., 2011] uses image and video

information in extracting information about a scene. It also associates tags with

the content for later usage and supports capturing short videos instead of images in

Google Goggle[Google Inc, 2010].

20

In [Wilhelm et al., 2004], Anita et al develops a lightweight client application

which uses camera phones to capture images and annotate on them. All the annota-

tion information is stored remotely on a dedicated metadata server and organized in a

faceted classification structure. This enables rich description of the images and over-

comes the limitations of strictly hierarchical metadata structures and keyword based

approaches in prior image annotation systems. However, the limited screen size of

the mobile device causes a problem for the system to display and enable navigation

on such faceted meta data structure.

Jintao et al investigate four major techniques in their paper [Wang and Canny ,

2006] for collecting end-user place annotations interactively using cell phones. Based

on their usability test results, they conclude that ”photo memo plus off line editing”

is the most favorite approach in ease of use. Although their approach elaborates on

providing most convenient user interface for the end users to generate location based

annotation data on images stored on their cell phone, annotation in a team oriented

fashion was not addressed.

Most of previously described systems mainly focus on utilizing the ubiquitous

feature of mobile devices and their network access with geographic information to

support user friendly annotation experience. Few of them have talked about support-

ing collaboration between mobile and desktop users and almost none of them can

support such capability. This becomes the motive of design and implementing the

mobile extension of the collaborative annotation framework.

2.2.2 Android Based Annotation Systems

Android is one of the youngest and most promising operating system of the mobile

OS family. It is maintained by the Open Handset Alliance [Google Inc, 2009] led by

Google and it has greatly evolved since 2009. Four major versions have been released

in the past three years and there are many android-enabled mobile devices such as

21

smartphones and tablets currently available in the market. As a descendant of Linux,

android supports almost every feature of a modem computer and its user interface is

designed to be compatible with all user interactions on regular computers except that

they are touch based. The android development framework is inspired and designed

based on Oracles Java and swing toolkit which makes it easy to port existing java

based system onto the android platform.

In [Wang et al., 2011], Zixuan Wang et al present an image annotation system

based on android devices and a dedicated web server. It basically uses the android

smart phone to capture images and create tags on specific portions of them. Rel-

evant annotation of the same object on different images is grouped together based

on similarity algorithms to help the user share better semantic understanding of the

object. Most of the analysis is done by the web server after end users submit their

photo tags and android devices are merely working as input devices. Moreover, it is

quite difficult for this system to support collaborations on their images in the real

time without sending queries to the web server.

22

CHAPTER III

A Scalable Framework of the Collaborative

Annotation

3.1 Architecture Choices

To achieve a robust and flexible collaborative annotation framework, we sum-

marized and compared popular architecture choices made by previously introduced

systems based on various of our requirements.

Client and Server(C/S) paradigm was mostly used among early systems such as

MRAS and VideoAnnEx. Smart client talks to the server for data that need to be

displayed and commits back user inputs for permanent changes. It is the server’s

responsibility to understand both content and interaction data as well as the logic of

binding them together. Client code simply interprets the relationship and presents it

to the end user. This makes it easy to extend the system to different platforms if the

data presentation and user interaction are simple and universal. However, with the

increase of data throughput and complexity of the meta data, this centralized server

becomes a bottleneck of the system and it becomes almost impossible to be extended.

It normally ends up with deploying duplicate servers and having a dedicated task

scheduling server to load balancing the task. User interactions on different platforms

such as desktops and mobile devices may also be quite different from each other.

Sometimes it is hard to port client codes from one platform to another.

Multi-tier Architecture tries to resolve above problems by encapsulate and inte-

23

grate various functionalities in different tiers. It is a kind of client-server architecture

in which the presentation, the application processing, and the data management are

logically separate processes. The simplest known multi-layer architecture is 2-tier or

client/server system. This traditional two-tier, client/server model requires clustering

and disaster recovery to ensure resiliency. While the use of fewer nodes in an enter-

prise simplifies manageability, change management is difficult as it requires servers to

be taken offline for repair, upgrading, and new application deployments. Moreover,

the deployment of new applications and enhancements is complex and time consum-

ing in fat-client environments, resulting in reduced availability. A 3-tier information

system consists of the following layers:

• Presentation layer presents information to external entities and allows them to

interact with the system by submitting operations and getting responses;

• Business/Application logic layer or the middle-ware programs that implement

the actual operations requested by the client through the presentation layer.

The middle-tier can also control user authentication, access to resources as well

as performing some of the query processing for the client, thus removing some

of the load from the database servers;

• Resource management layer also known as data layer, deals with and imple-

ments the different data sources of an information system.

In fact, a 3-tier system is an extension of a 2-tier architecture where the application

logic is separated from the resource management layer[Edwards , 1999]. By the later

1990s, as the Internet became an important part of many applications, the industry

extended the three-tier model to an N-tier approach. As a consequence the data tier

became split into a data storage tier and a data access tier. In very sophisticated sys-

tems an additional wrapper tier can be added to unify data access to both databases

and web services.

24

Service Oriented Architecture (SOA) is about how to design a software system that

makes use of services of new or legacy applications through their published or discov-

erable interfaces. Systems are often distributed over networks. SOA also aims to make

services interoperability extensible and effective. It prompts architecture styles such

as loose coupling, published interfaces, and a standard communication model in order

to support this goal. Systems such as eSport and SIDGrd choose this architecture to

overcome problems in C/S paradigm. Their system capabilities are delivered and con-

sumed via loosely coupled, reusable, coarse-grained, discoverable, and self-contained

services interacting via a message-based communication model(Naradabrokering in

eSports and SOAP/RESTFul messages in SIDGrid). Unlike C/S model, which is

based on design and development of tightly-coupled components for processes within

an organization, using different protocols and technologies such as CORBA, DCOM,

etc, SOA focuses on loosely-coupled software applications running across different ad-

ministrative domains, based on common protocols and technologies, such as HTTP

and XML. SOA is related to early effort on the architecture style of large scale dis-

tributed systems.

Based the analysis and comparison of above architectures, SOA is obviously the

better choice for the collaborative annotation framework to provide high throughput

streaming services such as archiving and replaying as well as robust session man-

agements. It also helps the framework become scalable by providing different levels

of servicing quality and capability. We also choose the idea of functionality separa-

tion and encapsulating in multi-tier architecture to make sharable components on the

client side to be reused on different platforms easily. More details can be found in

the following chapters.

25

3.2 Messaging Systems

There are several useful standards in this field. The best known is the Java Mes-

sage Service (JMS)[Oracle, 2001] which specifies a set of interfaces outlining the com-

munication semantics in pub/sub and queuing systems. Advanced Message Queuing

Protocol (AMQP) [amqp, 2012] specifies the set of wire formats for communications;

unlike APIs, wire-formats are cross platform. In the Web service arena there are

competing standards WS-Eventing and WS-Notification but neither has developed a

strong following. We now present in Table 3.8, a comparison between a few common

messaging and queuing systems.

We also give MuleMQ[Mule Soft , 2010b] which is the messaging framework un-

derlying the enterprise service bus (ESB) [Mule Soft , 2010a] system Mule developed

in Java of which there are 2500 product deployments as of 2010. The focus of Mule

is to simplify the integration of existing systems developed using JMS, Web Services,

SOAP, JDBC, and traditional HTTP. Protocols supported within Mule include POP,

IMAP, FTP, RMI, SOAP, SSL, SMTP. ActiveMQ [Apache, 2007] is a popular Apache

open source message broker while WebSphereMQ[IBM , 2002] is IBMs enterprise mes-

sage bus offering. Finally we list the open source NaradaBrokering[Pallickara and

Fox , 2003] that is notable for the broad range of supported transports and was suc-

cessfully used to support a software MCU (Multipoint Control Unit) for multi-point

video conferencing and other collaboration capabilities.

26

System Features Active MQ Mule MQ Websphere MQ NaradaBrokering

JMS compliant Yes Yes Yes Yes

Distributed broker

nodes

Yes Yes Yes Yes

Delivery guaran-

tees

Based on jour-

naling and

JDBC drivers

to databases.

Based on the

Realm disk store,

1 file per channel,

messages purged

by TTL.

Exactly once deliv-

ery supported

Guaranteed and

exactly-once

Ordering guaran-

tees

Publisher order

guarantee

Not clear Publisher order

guarantee

Publisher-order,

time-order based

on Network Time

Protocol

Access Model Using JMS classes JMS, Adm. API,

and JNDI

Message Queue

Interface (MQI),

JMS

JMS, WS-

Eventing, and

native interfaces

Support for buffer-

ing

Yes Yes Yes Yes

Time decoupled

delivery

Yes Yes Yes Yes

Security scheme Authorization

based on JAAS for

authentication

Access control

lists, authenti-

cation, SSL for

communication

SSL, end-to-end

application level

data security

SSL, end-to-end

application level

data security, and

ACLs

Support for Web

Services

REST REST REST, SOAP

based interactions

WS-Eventing

Transports TCP, UDP, SSL,

HTTP/S, Mul-

ticast, in-VM,

JXTA

Mule ESB supports

TCP, UDP, RMI,

SSL, SMTP and

FTP

TCP, UDP,

Multicast, SSL,

HTTP/S

TCP, Paral-

lel TCP, UDP,

Multicast, SSL,

HTTP/S, IPSec,

non-blocking TCP

Subscription for-

mats

JMS spec allows for

SQL selectors, Also

access to individual

queues.

JMS spec allows for

SQL selectors, Also

access to individual

queues.

JMS spec allows for

SQL selectors, Also

access to individual

queues.

SQL Selectors,

Regular expres-

sions, ¡tag, value¿

pairs, XQuery and

XPath

Table 3.1: Comparison of Selected Messaging and Queuing Systems

Note that the four non-cloud systems support Java Message Service JMS. Also

27

there are some key features of messaging systems that are listed in the table but

not discussed in this brief section. These are security approach and guarantees and

mechanisms for message delivery. Time decoupled delivery refers to the situations

where the producer and consumer do not have to be present at the same time to

exchange messages. Fault tolerance is also an important property some messaging

systems such as NaradaBrokering can back up messages and provide definitive guar-

antees. This table is only illustrative and there are many other important messaging

systems. For example RabbitMQ[VMWare, 2010] is a new impressive system based

on AMQP standard.

It is quite obvious from the table 3.1 above that NaradaBrokering provides com-

plete and diverse feature supports and meets our requirements for delivering a robust

and mature collaborative platform. And you can find from the following sections

that we have taken full advantage of this messaging system to achieve fluent real time

communications between clients on both desktop and mobile platforms.

3.3 Architecture of the Framework

Figure 3.1 below depicts a typical scenario of using our framework. A stream

annotator is feeding a live video stream to the system and making notes on it. Client

A and B are live collaborators in the same session and they are able to ask questions

on the video stream while it is being played. Another client using a handheld device

is watching the collaboration activities between the annotator and client A and B.

Session information, annotations and stream data are transmitted and exchanged

using Naradabrokering events. All events are automatically stored into the stream

repository for later replays. Different metadata are stored in each events header,

and information within them facilitates functions such as stream synchronization and

system recovery.

There are three major components in the system: Session Manager, Annotation

28

Figure 3.1: Detailed system architecture

Client and Stream Archiver. Session Manager maintains all session related informa-

tion such as client joining or leaving. The client is responsible for generating content

streams as well as receiving and replaying streams from other clients. It also parses

annotation events to reproduce actual annotations on the content stream. Stream

Archiver is spawned by Session Manager to archive live streams in the stream repos-

itory, either locally or remotely. It is also responsible for retrieving archived streams

as per the clients requests.

3.4 Session Management

Due to the pub/sub nature of the Naradabrokering[Pallickara and Fox , 2003]

system, we use heartbeats to manage the session information in the system. Each

component in the system continuously publishes its own heartbeat event to public

channels. All clients will monitor heartbeat events in the session channel and main-

tain their own copies of the session status, i.e. list of active clients in current session.

Unresponsive clients will be removed from the list if other clients cannot hear from

29

them for more than three seconds. Session Manager monitors the session channel as

well and periodically broadcasts its own client list as the standard for participating

clients to synchronize their lists with. Session Manager will also monitor the service

channel to control active stream archivers and remove unnecessary ones. A status re-

port will be generated and stored in the local file system and remote stream repository

after a customizable period of time.

As the core management component of a distributed system, Session Manager

should be available all the time and be able to recover from disastrous situations

such as program crashes and power outages. We use two strategies to maintain such

durability: Local recovery and Remote recovery.

• Local recovery: Alongside the running Session Manager, a daemon process (gray

manager in Figure 1) keeps collecting session information as other clients do.

It starts taking over the management responsibility when the running manager

freezes and stops publishing standard heartbeat. It will kill the original manager

process, changes its own status by parsing the latest status report on the file

system and create another daemon process to take over its previous job. Since

clients will not check the source of the standard heartbeat, they will not know

the manager has been replaced.

• Remote recovery: We could not apply local recovery if there were hardware

problems or power outages on the running manager machine. In such circum-

stances, all clients will find a best machine among them by exchanging and

comparing their hardware information. The most appropriate client will create

the manager process, adjust its status according to the remote status report

and start collecting information from both the session and service channels.

30

3.5 User Experience Design

One important feature of this collaborative annotation framework is to separate

its graphic user interfaces from underlying service components such as annotation

archiving, distribution and replaying. Through such separation, user experience re-

searchers can focus on investigating capabilities and differences between targeted

supporting platforms and design best user interfaces. In general, a system based on

this annotation framework will need to provide following experiences on its client:

• A session chooser which users can select a session of their interests to join.

• A stream list which shows what content/archived streams are available for play

within the session.

• An annotation panel for displaying/rendering streams so that users can interact

with.

• A stream replay panel(Optional) which helps users to find streams that they

have opened and annotated.

• A time line panel(Optional) which enables users to select arbitrary time spot of

the opened/replaying stream so that they can add annotations at.

There can be other optional user experience elements such as stream preview win-

dow/panel as well as system/session monitor. They are defined by the system require-

ments and how to design and deliver them for various platforms is out of the scope

of this dissertation. In section 4.1 of next chapter, we give a detailed explanation on

how we separate the user interface from service components through a layered archi-

tecture for presentation, logic and data transmission. User researchers can focus on

good presentation designs without concerns about breaking underlying functionalities

if the system complies to the communication interfaces defined in the framework.

31

3.5.1 A Sample Desktop User Interface on Windows

Figure 3.2 is a snapshot of our sample annotation client running on Windows. We

implement the client using SWT library[Eclipse, 2012], an OS-independent widget

toolkit from the Eclipse project. The client comprises a tree based client list and

three composite panels. Each panel can be maximized to show as much information

as possible.

Figure 3.2: A Snapshot of The Sample Desktop User Interface.

The client list on the left displays all participating clients in the same session. The

user can open any data stream (video steam in the snapshot) being sent by a client.

Once the receiver of this data stream is created and started successfully, the renderer

window will be displayed in the stream renderer list on the right panel. Users can

also select to create a clone of the playing renderer to the center panel by checking

the check box underneath it. A stream progress widget is also created on the progress

panel below once the clone starts playing. Unlike the original renderer window on

the right, the cloned renderer can be positioned anywhere on the center panel and

the user is able to either rewind or fast forward the playing content by dragging the

progress indicator on its stream progress widget.

Alongside the client list, there is an archive list that only displays information of

data streams stored by stream archivers. Users can apply all available operations on

32

these archived streams as if they were normal live streams. There is no difference

between them and the live stream since they are just duplicates of the stored live

streams from the event repository, loaded and published by stream archivers. More

details of archiving and replaying streams will be explained in the next section.

3.5.2 User Interfaces for other Platforms

Due to the cross platform supports of SWT and JMF, our annotation client for

Windows can be used directly on other desktop platforms such Mac OS and Linux.

The only limitation is that JMF may not have full audiovisual encoding/decoding

support on these platforms. This is not a limitation caused by the design of the

collaborative annotation framework and can be easily solved by replacing the media

component with other modern technologies.

3.6 Structure and Feature Comparison

As a descendant of GlobalMMCS [Wu et al., 2006], NaradaBrokering [Pallickara

and Fox , 2003] and other collaboration systems [Bulut , 2007] built in Pervasive Tech-

nology Insitute, this collaborative annotation framework greatly enhances function-

ality and makes their feature components such as reliable message delivery, stream

recording/archiving and media playback reusable to its users, improve the system

robustness and avoid duplicate work among derived annotation systems that share

similar characteristics. The following table 3.2 gives a structure and feature compar-

ison between the annotation framework and those previous systems.

33

Features GlobalMMCS High Performance

Stream Recording and

Manipulation System

[Bulut, 2007]

Collaborative Annotation

Framework

System Architecture C/S, extension

through gateways

C/S, extension through

gateways

Decoupled, Service Oriented

Cross OS support Windows/Linux Windows/Linux Windows/Linux/MacOS(Limited,

see table 4.1) /Android

Multimedia Support support from JMF support from JMF support from JMF and Android

Media Framework

Generic Stream Support Multimedia Only Yes, need translation gate-

ways

Yes, both client and service node

Reliable Data Delivery No Yes, extension to the

NaradaBrokering Reliabile

Delivery Service

Yes, extension to the

NaradaBrokering Reliabile

Delivery Service

Mobile support Basic web based

thin client

Basic web based thin client Full featured native mobile

client

Robustness Unstable, demo

only

Unstable Stable with correctly deployed

services

Table 3.2: Comparison with Previous Systems

As you can see from the table, previous systems such as GlobalMMCS were im-

plemented based on a centralized design which makes them difficult to be extended

and scale. Various dedicated gateways were introduced to extend their supports for

other platforms. This increased the complexity of the service components on the

server side since they have to detect the payload type through multiple handshake

communications between the client and server, set up correct extension gateways to

service the incoming data stream and translate/transcode them into system formats

that service components can understand. A single failure at each step explained here

may cause the server end up in a unstable state and crash eventually.

Through a service oriented design (section 3.3), the collaborative annotation

framework introduced in this dissertation avoids above problems by decoupling fea-

ture components into separate services that can be started/stopped based on requests,

34

using a simplified yet robust session management scheme (section 3.4) to minimize

the system complexity and adding extra redundancy (section 6.2.3) to the underly-

ing messaging system to ensure service availability. This service/plugin based design

also enables us to introduce new features such as generic stream support and mobiles

support. We give a complete list of them as follows:

1. Multimedia support: enables recording, rendering and archiving audiovisual

data streams through Java Media Framework [Oracle, 2004] for desktop ma-

chines and Android Media Framework[Open Handset Alliance, 2009] for mobile

devices.

2. Simple Desktop/Mobile Client Templates: simple yet complete client templates

for the framework users to reuse on different operating systems.

3. Layered Annotation Programming Interface: a decoupled programing interface

that enables framework users to extend it through different recorder and ren-

derer implementations (see section 4.1).

4. Decoupled service oriented framework: separate service/feature components

from user interfaces and underlying messaging transmission.

5. Session Manager: a simple session management service which provides robust

recovery strategies(see section 3.4).

6. Stream Archiver: a robust real time data recording and replaying service which

enables preserving and playing back annotation meta data as well as their con-

tent streams.

7. Annotation Manager: a service that provides indexing and searching within the

stored annotation meta data.

35

8. Reliable Data Delivery and Repository: an extension to the underlying NaraBro-

kering messaging system that enables reliable stream delivery as well as stor-

ing(see chapter VI).

More details for some of these features and services can be found in chapter IV

and chapter V.

36

CHAPTER IV

Annotation on Generic Streams

The most important feature of this research is to provide capabilites of collabo-

rative annotation on generic real time data. In this section, we will address some

research issues we encountered during the design and implementation of the desktop

interface of the collaborative annotation platform. These issues vary from simple

integration interface for the platform users, Stream rendering and archiving and an-

notation management.

4.1 Annotation Interface

Figure 4.1 below shows three layers of our annotation interface: Transmission

layer, Logic layer and Presentation Layer from the bottom up. Each takes its own

responsibility of processing the streaming data.

The Transmission layer is responsible for creating and managing actual data trans-

mission handlers (called DataTransmitter in the source). Each transmission handler

contains a pair of NaradaBrokering event consumer and publisher, and it subscribes

itself to a particular topic specified by the ID of the stream it operates on. In order

to minimize the cost of handler creation and termination, a pool of handlers (around

5 handlers) are created during the start up of the client. Similar to the Java thread

pool, transmitting handlers are assigned and recollected by a handler manager.

The Logic layer works as an important mediating layer between the Transmis-

sion layer and the Presentation Layer. For stream capturing and rendering, a stream

37

Figure 4.1: Three Layers of the Annotation Client Interface

sender or receiver will be created to connect a stream source/renderer from the pre-

sentation layer with a transmitting handler from the transmission layer and start the

processing. There is a stream manager in this layer to manage all active senders

and receivers. The Annotation manager also sits within this layer to associate and

synchronize content data streams with the annotation streams.

The Presentation layer is the upper-most layer and it contains the graphic user

interface, stream source and renderer managers. Similar to the DataSource class

in the JMF library, a stream source is an object that can generate real time data

constantly when it is started. It can be paused or stopped. Stream renderers are

used to decode received stream data and display the content on the screen.

Figure 4.2 below is a class diagram that shows the interrelationships between the

stream source/renderer interfaces and the stream sender/receiver classes.

Since the stream source/sink interfaces in above picture only define the generic

38

Figure 4.2: Class Diagrams of Stream Processing Interfaces.

behaviors of a real time data stream, users can easily write their own stream sources

and renderers to extend the system. They just need to implement those interface

methods in their existing source/rendering classes and compile them with the client

source. This will save a lot of effort as opposed to understanding and modifying source

codes of the entire system. In our current release, we have implemented several stream

sources such as video/audio capturing source, file capturing source and screen captur-

ing source and their corresponding renderers. With the help of the GlobalMMCS[Wu

et al., 2006] media module, our system supports various video/audio formats on dif-

ferent operation systems. They are listed in the Table 4.1 below.

39

OS Video Audio Screen Capture

Windows H.261, H.263,

DIVX, JPEG

ULAW, GSM,

DVI, G729

H.261, DIVX, JPEG

Linux H.261, H.263,

JPEG

ULAW, GSM,

DVI

N/A

Mac H.261, JPEG ULAW, GSM,

DVI

N/A

Android H.263, H.264 ULAW, GSM,

G729

N/A

Table 4.1: Supported Multimedia Formats

4.2 Stream Rendering

There are two modes of rendering received data streams in our client: live and

buffered. The first mode is the default one. Events of an incoming data stream are

temporarily stored in a small in-memory buffer to reduce the influence of possible

event losses in the transmission. Sometimes, it would be useful if users could rewind

the playing content to the exact position that they want to insert annotations at.

This requires enabling the buffered mode of rendering the stream. As depicted in the

following figure 4.3, decoded video frames are written into a temporary file and can be

retrieved from any time spot based on the frame rate information inside the stream?s

video codec. When the user makes a rewind operation on the current stream progress,

a buffered stream source is created at the correct playing time and started to read the

correct video frames from the buffer file for the stream renderer to display. A reading

clock controls the speed of the buffered source and makes sure that it generates frames

at the right frame rate. Despite the disk access overhead introduced here, this feature

enables annotation on live video streams while they are being watched.

40

Figure 4.3: A Running Example of the Stream Buffer

4.3 Stream Archiver

Stream Archiver is one of the most important components in the system. It takes

the responsibilities of archiving live data streams and replaying them per the client?s

requests. In our current implementation, the archiver stores every stream event into

a remote database alongside the meta-information such as time stamp and stream

description in the event?s header. When a request of replaying a particular data

stream is received, the corresponding archiver will read all stream events based on

time range information within the request. Events will be published to a specific

replaying topic based on the request ID known by the requesting client.

As explained in the previous section, Stream Archiver is monitored and controlled

by the Stream Manager. When a sending stream is stopped, Stream Manager will

terminate its corresponding archiver unless there are some clients requesting to replay

this stream.

41

4.4 Annotation Management

In Figure 4.4, you can see that there is a stream progress panel on the bottom of the

client. It allows users to control the rendering of data streams on the center annotation

panel and create annotations on them. The stream progress widget displays the length

and playing progress of the stream. When an annotation is created, information of

all the stream renderers on the annotation panel is stored into a XML DOM object

and each renderer starts to update this object with its newest progress. Following is

an XML example generated from a simple annotation DOM object.

Figure 4.4: Annotation DOM Object in plain XML

As seen in the above picture, there are no actual stream events stored in this XML

file. We only record information that represents the layout of all active streams in

the annotation panel, for example, position of the renderer on the center annotation

panel, absolute start time of the stream and its duration. All this information will be

used to reconstruct the annotation scenario later on.

42

When the annotation owner closes the annotation, an XML copy of the annotation

object will be saved remotely in the annotation storage. A local copy is also created as

backup for fast accessing. When the user decides to replay the annotation he creates,

the client will first check the local file system before asking the remote repository.

The Dom object will be parsed and created from the XML file and all renderers will

be regenerated as well as their annotation.

43

CHAPTER V

Annotations in the Mobile Environment

From the introduction and analysis of existing mobile annotation systems in sec-

tion 2.2, we can see that most existing systems are limited to capturing simple digital

data such as images and geographic data. And the annotation methods that these

systems support are also quite primitive and restricted to simple tagging and text

comments.

Since we want to provide similar user experience in the mobile extension as in

the desktop client of our collaborative annotation framework, it is important that

the mobile extension should be able to support several key features required by the

system. We give a side by side feature support comparison between technologies that

android provides and those we used in the collaborative annotation framework in

Table 5.1. It is quite obvious that the android platform meets almost every require-

ment to build such an extension for the collaborative annotation framework. And as

mentioned in the previous section 2.2, the java based android development framework

also makes migrating key components of the existing annotation framework into the

mobile environment quite simple.

44

Features Annotation Framework Android Platform

User interface GWT, AWT Android UI framework

Audiovisual

Capturing

JMF based Android Multimedia

Framework

Image Process GWT, AWT OpenGL ES 1.0/2.0

Whiteboard GWT based canvas Android Canvas

Data Transmit NaradaBrokering, RabbitMQ Simple RTSP streaming

Data Storage Raw data file, XML metadata Raw data file or xml file

Location sensor 3rd party sensors Supported by default

Table 5.1: Comparison of Technologies Used to Support Different Features

5.1 Collaboration bewtween mobile and desktop clients

Figure 5.1 below shows how the collaborative annotation is done between desktop

and mobile users in the system. Both content and session streams are transmitted

through NaradaBrokering network. Each time a mobile user logs on the system, it will

firstly send out a query event to request latest session information. Once it receives

such an update from the session manager, it will subscribe to the corresponding topic

and start the underlying broker client to receive data streams that its user chooses

to process. If the selected data stream is a multimedia data stream that requires

streaming support of android platform, a Stream proxy will be created to redirect the

payload of NaradaBrokering events for the android media player to render locally.

The design of the proxy will be explained in details in section 4.2. Events for other

types of data streams will be passed on to corresponding handlers the same way as

in the desktop client.

There are two major differences between the mobile client and the regular desktop

clients in the above picture. Since the mobile users are more prone to network issues

45

Figure 5.1: Collaborative Annotation between Desktop and Mobile users.

such as disconnection and low connectivity, we need to design a better mechanism for

them to save and restore their session status from possible connection problems. Due

to the lack of direct RTP support for android media players [19], we need a proxy to

understand RTSP requests from the android media player and feed it with the raw

RTP data from NaradaBrokering events.

5.2 Improved session control for the mobile environment

In our collaborative annotation platform, we use heartbeats to manage the ses-

sion information due to the pub/sub nature of the NaradaBrokering platform. Each

component in the system continuously publishes its own heartbeat event to public

channels. All clients will monitor heartbeat events in the session channel and main-

tain their own copies of the session status. Unresponsive clients will be removed from

the list if other clients cannot hear from them for more than several seconds. In our

framework, a dedicated Session Manager as in Fig. 1 is running and responsible for

monitoring the session status and synchronizing with every client nodes. It will also

generate status reports periodically and store them in the remote storage node. Since

the mobile client may reside in low bandwidth networks and has higher probability of

losing connection with the system, we decide to make our mobile client synchronize

46

the session monitor only and ignore heartbeat events from other clients to reduce

the possibility of misjudging their status. And if the mobile client detects its session

information is stale, it will send out a request for a batch update since last successful

synchronization. Figure 5.2 below depicts the procedure that our session monitor

handles abnormal leaves of mobile clients.

Figure 5.2: Methods of annotation distribution

From the picture above, we can see that once a mobile client rejoins the same live

session in our system, it will compare its status with the session manager based on

the timestamp and send out batch update request if necessary. The session commu-

nication has been minimized to the lowest necessary level to reduce the possibility

of status misjudging due to high possibility of network outages. Besides the session

information, other metadata like past annotation events and stream changes are also

included inside the batch update events.

5.3 Multimedia Proxy

Since the android multimedia framework doesnt support direct RTP streaming,

we design and implement a multimedia proxy to communicate with the android media

player and redirect to it actual RTP media packets. This proxy is basically a simple

RTSP server which handles requests from the android media player for media playback

and codec information. After a successful communication, the proxy feeds in the

47

player RTP packets extracted from the NaradaBrokering events. Figure 5.3 below

shows how the mobile client processes multimedia data streams sending by desktop

clients.

Figure 5.3: Multimedia proxy for audiovisual stream playback.

When the mobile user chooses to play a multimedia stream from the live stream

list, a proxy will be created to receive NaradaBrokering events from the correspond-

ing topic, extract the RTP packets from their payloads and buffer them locally. An

android media player will then be created on the mobile client and sends out a RTSP

request to the proxy for media data for playback. Once all the RTSP based communi-

cations such as OPTIONS, DESCRIBE, SETUP and PLAY are done successfully, the

media player will start to receive RTP packets from a local port and play the media

content defined by the proxy. Currently only H.263 format for the video and Mpeg-3

format for the audio are supported due to the limitation of the android multimedia

framework [20]. Other media codecs such as H.261 and Divx/Mpeg4 which are sup-

ported on desktop clients are not available on the mobile client currently. The local

buffering and communication between the proxy and the media player can cause a

delay of initial playing of the audiovisual data. But once the initialization is finished,

fluent collaborative annotations on media contents are achievable on a reasonable

level within high speed networks. Our preliminary experiment has proved this in the

48

latter section.

Figure 5.4 below comprises snapshots of the mobile client running on an android

smart phone. It is made up of two major activities (running entities on the android

platform) that are responsible for session/stream selection and stream annotation.

Image on the left shows a demo session that contains multiple attendees. One of

them is sending out a live video stream as well as a live audio stream. Once the

client user selects to open a video stream from the list, an annotation activity will be

brought up as shown in the bottom right picture. Annotation operations are available

for selection on a top floating tool bar and they can be hidden to provide better view of

the streaming content if necessary. An extra annotation panel can be brought up from

right to display past annotations generated by other clients. If the mobile user selects

to view one of those annotations, the media player will be rewound to the correct time

spot based on the time stamp information of the annotation. The annotation itself

will be layout on top of the content stream. Most annotation operations available on

desktop clients are also implemented on the mobile client in order to maintain the

same user experience within the system.

Figure 5.4: Annotation interface of the mobile client.

This client can provide better user experience on android based tablet devices due

to larger screens and more accurate user interactions. The layout of components in

49

above images may change slightly but the actions would remain the same on both

mobile and tablet devices.

5.4 Adapting annotation meta-data

As described in section 4.4, we use XML DOM objects to save information that

represents the layout of content streams in the annotation panel and related anno-

tations. Due to the limited display size of the mobile client, we make changes to

the schema of the XML metadata by adding types of source device, stream source

location and so on. Annotation events created by mobile clients will also contain

geographic information with them for future features such as annotation search and

recommendation based on location.

50

CHAPTER VI

Jitter Reduction and Fault Tolerant Services

To enable its user to deliver robust and high quality collaborative annotation

systems, our framework needs to be fault tolerant to both software and hardware

abnormalities. In this chapter, we are going to introduces several built in services

that we added to ensure the robustness of the framework.

6.1 Jitter Reduction Service

Jitter reduction is considered to be one of the most important quality of service

measurements within collaborative systems. It refers to discontinuous playback of

the content payload caused by network problems. And it can be controlled in a

reasonable level through local buffering. In this section we will discuss on why and

how we incorporate a jitter reduction service in the underlying messaging system.

As a typical example of real time systems, multimedia applications mandate timely

delivery of content and generally sustain loss of media packets very well. This makes

UDP a very good choice for transporting media, since unlike TCP it does not incor-

porate an error detection/correction mechanism which adds delays associated with

individual packets. Since UDP is point to point, it is best to use RTP over UDP

when sending streams from one client to another directly. It is generally difficult to

guarantee that all data traversing a packet-switched network will experience exactly

the same delay. Packets encounter queues in switches or routers and the lengths of

these queues vary with time, meaning that the delays tend to vary with time, and

51

as a consequence, are potentially different for each packet in the A/V stream. In the

case of audio streams, high jitter values can cause voice breaks while in the case of

video streams high jitters may cause degenerations in the image quality. In order

to overcome the negative effects of high jitter, real-time audio/video clients typically

have a buffer which buffers events up to 200 milliseconds and then proceeds to release

them preserving the time spacing between packets. These buffering and time spacing

services enhance jitter reduction. The way to deal with this at the receiver end is to

buffer up some amount of data in reserve(as described in section 4.2), thereby always

providing a store of packets waiting to be played back at the right time.

As shown in previous chapters, messaging systems such as NaradaBrokering can

be used to deliver multimedia content, while brokers are distributed over a wide range

of geographical area with different Internet connections. Same high jitter reasons may

still exist for messaging systems.

Most messaging systems lack such a mechanism when they are used to deliver mul-

timedia content for collaboration systems, such as transporting multimedia content

within event to the client. This requires that a necessary Jitter Reduction Service

in messaging systems, especially if collaboration sessions contain replay of archived

streams. This Jitter Reduction Service requires that events are timestamped using

NTP timestamps explained in the previous chapter. Because only in that case events

from different streams generated from different machines would be ordered correctly

and timespacing between events preserved.

In order to achieve low jitter, two services are incorporated within the Jitter

Reduction Service, one is Buffering Service which orders events and the other is Time

Differential Service, which preserve the time space between events when releasing

them. Figure 6.1 shows this relationship between these two sub services.

52

Figure 6.1: Jitter Reduction Service

6.1.1 Time Buffering Service

Buffer size normally varies based on the requirements of the content being play-

back. In real-time videoconferencing systems, for example, the buffer size of the

messaging system is usually set to a low value so that packets will be delayed for up

to 200msec while in streaming applications such as Youtube, the buffer size is set to

a relatively high value which causes long delays such as 5-10 seconds.

Buffer size also affects the jitter. Small buffer size may cause high jitter while

larger buffer size can helps to reduce the jitter. Buffering service described in this

section provides a customizable buffer size based on the entitys needs.

If a packet is delayed a long time, it goes into the buffer until its playback time

arrives. If it gets delayed for a long time, it will not be stored for very long in the

receivers buffer before being played back. Therefore, we have effectively added a

constant offset to the playback time of all the packets as a form of insurance. The

only time we run into trouble is when packets get delayed in the network for such a

long time that they arrive after their playback time, causing the playback buffer to

be drained.

The function of buffering service is to buffer some amount of events and release

them in an orderly fashion to Time Differential Service. This will ensure that the

events received within the buffer duration are ordered and events are delayed for

buffer duration.

The design of the buffering service has incorporated four configurable parameters

53

pertaining to the release of time-stamped messages:

• The first criterion is the number of messages in the buffer maintained by the

buffering service. If the number of messages reaches the maximum number of

entries, it starts to release the time-ordered messages.

• The second criterion is the total size of the messages in the buffer. This along

with the first criterion enables us to circumvent buffer overflows.

• The third criterion corresponds to the time spent by messages within the buffer.

In some cases, the rate of messages arriving at an entity may be too slow and this

may cause longer and unwanted delays within the buffer. The time-duration

factor makes sure that the messages are released after a maximum specified

duration if the first two criteria are not met.

• The final criterion is the release factor of the buffer. This typically has a value

between 0.5 and 1.0. When any of the release criteria mentioned above is met,

it releases at least release factor * total buffer length messages. So that time-

ordering for late coming events are achieved to some extend.

6.1.2 Time Differential Service

In collaborative systems simply receiving messages in time-order may not be

enough. An entity may also place constraints on the maximum jitter that it can

tolerate. The Time Differential Service (TDS) provides two very important func-

tions. First, it reduces the jitter in messages caused by the network. Second, it

releases messages while preserving the time spacing between consecutive messages.

Preserving time spacing between messages is not an easy task primarily because most

operating systems do not provide strict real-time capabilities. Depending on the oper-

ating system, the scheduling of processes and threads does not necessarily guarantee

the CPU for that process or thread after a specified interval. For example, using

54

Java on the Windows operating system, user-level threads can obtain the CPU back

only after 10 milliseconds. Based on the scheduling configuration of Linux operating

system this duration can vary from 1 millisecond to 10 milliseconds or more.

One of the main reasons that TDS uses threads rather than traditional polling to

release events in the queue is to avoid high CPU utilizations. In the case of polling,

in order to release events in the queue, their timestamps should be checked very

frequently. This can lead to very high CPU utilizations. Furthermore, since the rate

at which events are generated is not constant: the time spacing between consecutive

events vary. Using threads ensures that the CPU utilizations are significantly lower.

The reason that we have multiple threads instead of one to release the events in the

queue is due to issues related to the programming language (Java) and the operating

system. For example, on Linux (Fedora 2), in order to check the timestamps every

millisecond, we need to use at least three inter-leaving threads since each thread wakes

up after a minimum of 3 milliseconds. On Windows, this value is 10 milliseconds;

this high value may not be able to address jitter reduction adequately.

Figure 6.2: Ideal Time Differential Service thread invocation

TDS spawns five threads to process messages released by the buffering service,

as shown in Figure 6.2. Threads are configured so that one thread runs for (t time

duration and wakes up after 4(t time duration. Since threads are not strict real time

(Java threads) we can only approximate the run time and sleep time duration values.

Note that TDS itself maintains another buffer for processing. Each thread is initiated

one after another with a specified time difference between consecutive initiations.

Each thread sleeps for a specified time-slice. By interleaving the durations at which

these threads wake-up, TDS can operate on the buffer at finer intervals while ensuring

55

that CPU utilizations are low. The time-slice interval for individual threads impacts

CPU utilization. We have observed that if the time interval between threads is 1

millisecond the CPU utilization stays around 5-6%, when this interval is decreased

to 10 microseconds, it can reach about 20-25% on a Linux machine (1.5 GHz CPU

512 MB RAM). When a thread wakes up, it checks to see if any messages need to be

released, and it does so if needed. It is done by comparing the messages timestamp,

the local clock obtained from the high resolution timer and the time at which the

last message was released. By preserving the time-spacing between messages, TDS

reduces the jitter significantly.

6.2 Replicated and Fault Tolerant Services

Reliable delivery of messages is an important problem that needs to be addressed

in distributed systems. Topics over which authorized publishers and subscribers can

have reliable communications are referred to as reliable-topics. The reliable delivery

scheme in NaradaBrokering system enables reliable delivery of messages in the pres-

ence of link and node failures. The communication links within the system can also

be unpredictable, with messages being lost, duplicated or re-ordered in transit over

them, en route to the final destinations. This is facilitated by a specialized repository

node. In this chapter, after we give an overview of the reliable delivery scheme in

NaradaBrokering system, we present our strategy to make this scheme even more

failure resilient, by incorporating support for repository redundancy.

6.2.1 Overview of NaradaBrokering Reliable Delivery Service

The scheme for reliable delivery of messages[Pallickara and Fox , 2003], issued over

a reliable-topic, needs to facilitate error corrections, retransmissions and recovery from

failures. In this system, a specialized repository node which manages this reliable-

topic plays a crucial role in facilitating this. The repository facilitates reliable delivery

56

from multiple publishers to multiple subscribers over its set of managed reliable-topics.

The only requirement for the basic reliable delivery scheme is that if a repository fails,

it should recover within a finite amount of time.

This reliable delivery guarantee holds true in the presence of four distinct condi-

tions.

• Broker and Link Failures: A broker network may have individual or multiple

broker and link failures. Once the broker network recovers, the delivery guar-

antees should be met.

• Prolonged Entity disconnects: If an entity is disconnected and misses events, the

delivery guarantee will be met, with the entity receiving all the events missed

in the interim once the entity reconnects.

• Stable Storage Failures: It is possible that stable storages present in the system

may fail. The delivery guarantees must be satisfied once the storage recovers.

• Unpredictable Links: The events can be lost, duplicated or re-ordered in transit

over individual links, en route to the final destinations.

To enable the management of reliable-topics, the repository facilitates the regis-

tration and de-registration of authorized clients (publishers & subscribers) for reliable

communications over the reliable-topic. Publishers and subscribers that are not ex-

plicitly authorized (and registered) by the reliable-topic owner cannot avail reliable

communications over that topic. To support error-corrections, retransmissions, and

recovery from failures (including those of the repository itself) a repository also needs

provision stable storage so that messages and other information pertinent to the re-

liable delivery algorithm can be stored.

Figure 6.3 summarizes the interactions between entities over a reliable topic.

These interactions are explained in the following sub-sections.

57

Figure 6.3: Summary of interactions between entities

6.2.1.1 Control-Events

The reliable delivery algorithm involves communications between various entities

through the exchange of control- events (summarized in Figure 6.3). The control-

events (simply events, for brevity, hereafter) relate to intermediate steps to facilitate

reliable delivery, acknowledgements, error-corrections, retransmissions and recovery

related operations. Our notation for events identifies the source, the destination(s)

and the type of control-event: Source2Destination-ControlType. For purposes of

brevity, we use only the starting alphabets of the entities involved in the exchange.

Thus, an acknowledgement issued by the repository to the publisher is represented as

R2P-ACK. The destination part is in bold-face if there are multiple destinations.

58

6.2.1.2 Publishing Messages

The messages issued by publishers to a topic will also be received at the repository.

To ensure that the repository can know about and retrieve missed messages for every

published message, the publisher also issues a P2R-Order event to the reliable-topic

repository.

A publisher stores every message that it publishes, over a reliable-topic, in its local

buffer (maintained in memory), which serves as a temporary storage. The catenation

numbers contained within the P2R-Order event allows the reliable-topic repository

to determine the order in which these messages were generated and to determine if

messages were lost in transit.

6.2.1.3 Repository Processing of Published Message

Upon receipt of a message (issued over one of its managed reliable-topics), the

repository queues the message in a temporary buffer, this message is not acted upon

until the corresponding P2R-Order event is received. The repository also checks with

the identifier contained in the event to see if this event has been previously received at

the repository. If a message correlated with this duplicate event is in the repositorys

temporary buffer, that message is also discarded as a duplicate.

If the published message has been received, an acknowledgement R2P-ACK event

is issued back to the publisher. If the published message corresponding to the P2R-

Order event is missing, the repository issues a negative acknowledgement R2P-NAK

event to the publisher to retrieve the missing message. The repository also checks

to see if there are any gaps in the P2R-Order events received from the publisher.

When the repository stores the message it assigns a monotonically increasing sequence

number.

59

6.2.1.4 Processing Repository Acknowledgements

A positive acknowledgement R2P-ACK event signifies successful receipt of the

message and the corresponding P2R-Order event at the repository. The local buffer

entry corresponding to this message can then be removed. Upon receipt of the nega-

tive acknowledgement R2P-NAK event the message(s) corresponding to the specified

catenation number(s) are retrieved and prepared for retransmission. The retransmis-

sion occurs in the P2R-Retransmit event which contains both the original published

message along with the catenation number for the message.

6.2.1.5 Message Storage and Persistence Notifications

Upon successful receipt of a published message at the repository, in addition to

the operations outlined in section 6.2.1.3 the repository performs three additional

functions.

First, depending on the topic type contained in the original published message,

the repository loads the appropriate matching engine to compute destinations for the

published message based on the registered subscriptions.

Second, the repository adds an entry to the dissemination table that it main-

tains. For a given sequence number, the dissemination table enables a repository to

keep track of destinations that have not explicitly acknowledged the receipt of the

corresponding published message.

Finally, the repository issues an event signifying the persistence of the published

message. If S is the set of registered subscribers to a given reliable-topic, and if S* is

the subset of subscribers whose subscription constraints are satisfied by the published

message, then the R2S*-Persistent event signifies that it would be received only by

that subset of subscribers.

The R2S*-Persistent event contains the sequence number assigned to the published

message and also the identifier associated with the published message. A subscriber

60

can then correlate a published message and its persistent event.

6.2.1.6 Processing Persistent Events at the Subscriber

A subscriber to a reliable-topic receives published messages from the publishers,

and events from the repository. Upon receipt of a message from a publisher, a sub-

scriber stores this message in its temporary local buffer. A subscriber releases a

message only if both the message and the corresponding R2S*-Persistent event have

been received.

If the subscriber has received both the message and the corresponding R2S*-

Persistent event, it proceeds to issue an acknowledgement to the repository. If the

subscriber encounters a R2S*-Persistent event without the corresponding published

message it concludes that the message was lost in transit. It issues a S2R-NAK

event with the missing sequence number(s) for a given reliable-topic to retrieve the

corresponding messages.

6.2.1.7 Processing Subscriber Acknowledgements

Upon receipt of an acknowledgement from the subscriber, the repository checks

the dissemination table to see if there are any un-acknowledged messages within the

range of sequence numbers contained in the S2R-ACK event.

On receipt of the S2R-ACK event from a subscriber, the repository updates the

dissemination table entries corresponding to the sequence(s) contained in the event to

reflect the fact that the subscriber received messages corresponding to those persistent

event sequences.

The repository maintains a sync for every subscriber to the reliable-topics that it

manages. The subscriber sync corresponds to the sequence number up until which

the repository is sure that this subscriber has received all preceding messages. A

subscriber maintains a local copy of this sync.

61

If the subscriber has received all the messages that it was supposed to receive,

and if there were no missed messages between the subscribers current sync and the

highest sequence number contained in the S2R-ACK event, the repository advances

the sync point associated with this subscriber and issues a R2S-Sync event which

notifies the subscriber about this sync advancement. Only upon receipt of this event

is the subscriber allowed to advance its sync.

It is possible that the repository, based on the S2R-ACK event, detects that there

are some persistent event sequences which were not explicitly acknowledged by the

subscriber. The repository assumes that these un-acknowledged messages were lost

in transit to the subscriber.

After the detection of missed sequences, the repository issues an R2S-Rectify

event, which contains information pertaining to the clients sync advancement (if it is

possible) and also the sequencing information and message-identifiers of the missed

messages.

6.2.1.8 Processing Errors and Syncs Advances

Upon receipt of the R2S-Rectify event a subscriber performs three steps. First, the

subscriber checks to see if any of the messages that it maintains in its temporary buffer

has the identifier(s) corresponding to those listed in the R2S-Rectify; this accounts

for the case where the R2S*-Persistent event was lost in transit to the subscriber,

but the original published message was not. If the message exists in the temporary

buffer, the message is delivered.

Second, the subscriber then proceeds to issue a S2R-NAK negative-acknowledgement

event to the repository while excluding messages that were reliably delivered in the

previous step. The S2R-NAK issued by the subscriber corresponds to the case where

messages corresponding to the listed sequence numbers were lost in transit.

Finally, the subscriber advances its sync based on the advancement contained in

62

the R2S-Rectify event. Note that this is also done in response to the R2C-Sync event.

6.2.1.9 Subscriber and Publisher Recovery

When a subscriber reconnects to the broker network after failures or a prolonged

disconnect, it needs to retrieve the missed messages published over a reliable-topic.

The recovering entity issues a recovery request S2R-Recovery for every reliable-topic

that it had previously subscribed to.

Upon receipt of the recovery request, the repository scans the dissemination table

starting at the sync associated with the client. The repository then generates an

R2S-Rectify event, which is processed by the subscriber to advance its local sync and

also to initiate retransmissions as described earlier in section 6.2.1.8.

In the case of publisher recovery, the repositorys recovery response includes the last

known catenation number for a given reliable-topic to which the publisher published.

6.2.2 NaradaBrokering Reliable Delivery Service Extensions

We extend the NaradaBrokering Reliable Delivery Service with a repository repli-

cation algorithm[Bulut , 2007]. This impacts the reliable delivery protocol and can be

summarized as follows:

• A Publisher uses a monotonically increasing catenation number each topic it

is publishing to. This is necessary for the repository to detect lost messages.

Detecting gaps from a monotonically increasing sequence of catenation numbers

is faster than detecting gaps from a sequence of ¡previous catenation number,

catenation number¿ pair.

• To reduce the number of events exchanged between repository-publisher and

repository-subscriber, we propose a lazy acknowledgment scheme. For this, the

repository issues a R2P-NAK event to the publisher every few (configurable)

63

seconds and the subscriber issues an S2R-ACK event to the repository every

few (configurable) seconds. This allows us to include a list of lost message

catenations into a single R2P-NAK event and a list of catenation numbers into a

single S2R-ACK event, hence reducing the number of R2P-NAK and S2R-ACK

events. This scheme can be viewed as lazy negative acknowledgement because

repository issues NAK to the publisher including a list of catenation numbers of

missed events and lazy positive acknowledgement because the subscriber issues

ACK to the repository including a list of catenation numbers of received events.

• Upon the receipt of a P2R-Order event, the repository stores the corresponding

message without waiting for missed messages. For lost messages, an entry is

added to a storage table with a status flag to indicate that the message is

being recovered and needs to be stored. A sequence number is also assigned

for those missed events. This procedure avoids accumulation of messages. For

example, suppose message i and all previous messages are stored successfully

without any gaps between them. The messages from i+2 to i+20 arrive with

the corresponding P2R-Order events which carry the catenation numbers of the

corresponding messages. The repository assigns sequence numbers to missed

events i+1 and messages from i+2 to i+20. An entry for message i+1 is added

to the storage table with a flag indicating that it has not been received yet.

Then repository stores messages from i+2 to i+20 successfully and publishes

R2P-ACK event for them. For missed message i+1, the entry is overwritten as

a message arrives. In the previous case, messages from i+2 to i+20 were not

stored until message i+1 was received successfully. Waiting for message i+1 to

store all messages afterwards also would cause burst in storing messages and

publishing R2P-ACK events.

64

6.2.3 Redundant and Fault-tolerant Repository/Archiving Service

In the previous sections, we outlined our strategy to ensure a reliable delivery. In

this scheme if there is a failure at the repository(i.e. Archiving Service), the clients

interested in reliable communication, over any of the managed reliable-topic, need

to wait for this repository to recover prior to the reliable delivery guarantees being

met. We now extend this scheme to ensure that the reliable delivery guarantees are

satisfied in the presence of repository failures. To achieve this, we include support for

multiple repositories constituting a repository-bundle for a given reliable-topic; it is

not necessary that the topics managed by these repositories be identical. A repository

may thus be a part of multiple repository-bundles at the same time.

We support a flexible redundancy scheme with easy addition and removal of repos-

itories that manage a given reliable-topic. There are no limits on the number of

repositories for a given reliable-topic. This scheme can sustain the loss of multiple

repositories: in a system with N repositories for a given reliable-topic N-1 of these

repositories can fail, and reliable delivery guarantees are met so long as at least one

repository is available.

The repositories that constitute the repository-bundle for a given reliable-topic

function autonomously. At any given time, for a given reliable-topic, a client commu-

nicates with exactly one repository within the corresponding repository-bundle. This

entity is also allowed to replace this repository with any other repository within the

bundle at anytime.

Besides additional redundancy, and the accompanying fault-tolerance, a highly-

available, distributed repository scheme enables clients to exploit geographical and

network proximities. Using repositories that are closer ensures reduced latencies in

the receipt of events from the repository. Packet loss-rates typically increase with the

number of intermediate hops (for UDP and Multicast).

Besides the selection of the repository from a repository-bundle, as part of the

65

bootstrap, operations at the clients are identical to those in place for a single reposi-

tory.

6.2.3.1 Steering Repository

A publisher or a subscriber to a reliable-topic can interact with exactly one repos-

itory within the repository-bundle for that reliable-topic; this repository is referred

to as the steering repository for that publisher/subscriber. At any time, a client is al-

lowed to replace its steering repository with any other repository from the repository

bundle.

Every repository within the bundle keeps track of a clients delivery sequences pas-

sively and actively. For a given entity, at any given time, there will be one steering

repository operating in the active mode by initiating error-corrections and retransmis-

sions. Other repositories operating in the passive mode do not initiate these actions.

At every repository, within the repository-bundle for a given reliable-topic, the

list of registered clients is divided into two sets - those that the repository steers and

those that it does not. The repository operates in the active mode for the steered

clients and in the passive mode for the clients that it does not steer. In the active

mode, a repository performs all functions outlined in section 6.2.1. In the passive

mode, a repository listens to all events initiated by the publishers and subscriber;

however, the repository will not issue events related to reliable communications to

the clients that it does not steer. Operating in the passive mode, allows a repository

to take over as the steering repository for clients that it does not presently steer.

When a client is ready to initiate reliable communications, it has to designate a

steering repository from the set of repositories within the repository-bundle associated

with the reliable-topic. Selection of the steering repository is done based on network

proximity using probes to compute network round-trip delays to the repositories. The

client then issues an event over the repositorys communications-topic designating it

66

as the steering repository. Upon receipt of this event, the repository adds that client

to its list of steered clients.

6.2.3.2 Ordered Storage of Published Messages

For every published message, the publisher issues a P2R-Order event (where R

is the repository-bundle), which is received by all repositories within the repository-

bundle. This allows all repositories within the repository-bundle to keep track of

the published messages. However, only the steering repository (operating in active

mode) for this publisher is allowed to issue the R2P-ACK and R2P-NAK events to

acknowledge the receipt of messages and to initiate retransmissions respectively.

Retransmissions issued in response to the R2P-NAK event are sent to all repos-

itories using the P2R-Retransmit event. The rationale for this is that if a message

was lost in transit to the publishers steering-repository, there is a good chance that

the message (or the corresponding P2R-Order) event was also lost in transit to the

other repositories.

6.2.3.3 Generation of Persistence Notification

Once a published message is ready for storage at the repository, the message is

assigned a sequence number and is stored onto stable storage along with the published

message. In this scheme each repository is autonomous, and thus maintains its own

sequencing information. This implies that a message published by a publisher, may

have different sequence numbers at different repositories. It follows naturally that

the sync associated with a given subscriber can be different at different repositories.

However, the catenation number associated with a publisher is identical at every

repository within the repository-bundle.

A repository computes destinations associated with every published message.

These destinations are computed based on the subscriptions registered by subscribers

67

to this reliable-topic irrespective of whether subscribers they are steered by the repos-

itory or not. The repository then proceeds to issue a persistence notification. The

topic associated with the R2S*-Persistent event is such that it is routed only to the

subset S* of its steered subscribers with subscriptions that are satisfied by the topic

contained in the original message.

6.2.3.4 Acknowledgements, Errors and Syncs

Upon receipt of R2S*-Persistent events from its steering repository, a subscriber

proceeds to issue acknowledgements. This acknowledgement, the S2R-ACK is is-

sued over the repository-bundle communications topic. Since, the message is received

by the repository-bundle, all repositories are aware of delivery sequences at differ-

ent subscribers. The S2R-ACK event contains sequence numbers corresponding to

its steering repository and also includes the identifier associated with the steering

repository.

Error correction, and sync advancements, for a given subscriber is initiated by

its steering repository through the R2S-Rectify event. Retransmission requests by a

subscriber are targeted by its steering repository in the S2R-NAK event.

6.2.3.5 Gossips between Repositories

Repositories within a repository-bundle gossip with each other. Repositories

within a repository-bundle need to exchange messages about the registration/de-

registration of clients to a managed reliable-topic as well addition and removal of

subscriptions by clients to a reliable-topic. A given repository stores each of these

actions and assigns each action the next available sequence number.

68

6.2.3.6 Dealing with Repository Failures

A publisher detects a failure in its steering repository, if it does not receive R2P-

ACK events for published messages within a certain time duration. A subscriber de-

tects a steering-repository failure if it receives published messages to reliable-topics,

but no corresponding persistence notifications from its steering repository. These

clients then proceed to discover a new steering repository. The publisher then ex-

changes information about its catenation number with the replacement steering repos-

itory. If there is a mismatch wherein the steering repository’s catenation is lower than

that at the publisher, the repository proceeds to retrieve this message from a reposi-

tory within the bundle.

6.2.3.7 Recovery of a Repository

Upon recovery from a failure, it needs to discover an assisting-repository: this is

a repository within the repository bundle that is willing to assist the repository in

the recovery process. The recovering replica first checks to see if the list of registered

clients and subscriptions have changed, and proceeds to retrieve updates to this list.

Next, the repository proceeds to retrieve the list of catenation numbers associated

with the publishers. Based on these catenation numbers, the repository computes the

number of missed messages and proceeds to set aside the corresponding number of

sequences. For messages (missed and real-time) that it stores, a recovering-repository

issues Gossip-ACK acknowledgements at regular intervals.

The recovering-repository proceeds to do two things in parallel. First, it proceeds

to retrieve missed messages from the assisting repository. For every missed message

the recovering-repository also retrieves a dissemination list associated with it. This

allows a repository to keep track of the subscribers that have not acknowledged these

messages. Additionally, the repository-table entries corresponding to each message

are also retrieved. A repository cannot be the steering repository for any entity till

69

all the missed messages have been retrieved.

Second, it subscribes to various communications topics so that it can start receiv-

ing messages published in real-time. The first time a repository receives a message

from a publisher, it checks to see if the catenation number associated with that mes-

sage indicates missed messages. This could happen because the missed message(s)

would have been in transit to the assisting repository. Thus, during recovery if the

assisting repository reported a catenation number of 2000, and if the catenation num-

ber associated with the first real-time message received from the publisher is 2010 it

implies that there are 9 additional messages from this publisher that are missed.

The repository sets aside 9 sequence numbers, and issues a request to retrieve these

messages. The repository also proceeds to store the published message based on the

newly advanced sequence number.

6.2.3.8 Addition of a Repository

When a repository is added to the repository-bundle associated with a reliable-

topic, the newly added repository takes the following steps. First, it needs to discover

an assisting-repository: this is a repository which is present in the repository bundle

and one which is willing to assist the repository in the addition process.

Second, the repository retrieves the list of registered clients, and the subscriptions

registered by the registered subscribers. As described in section 6.2.3.7 the repository

then proceeds to retrieve missed messages along with the corresponding dissemination

lists and repository-table entries in addition to processing real-time messages.

6.2.3.9 Graceful Removal of a Repository

When a repository is ready to leave a repository bundle, it proceeds to issue

an event to its active steered clients, requesting them to migrate to another repos-

itory. The departing-repository then operates in silent mode as far as the clients

70

are concerned. The departing-repository also gossips with other repositories within

the repository-bundle to check if the catenation numbers associated with previously

steered publishers is greater than or equal to its last known value at the departing-

repository.

Once a repository has confirmed that all messages published by its previously

steered publisher have been received at one of the repositories within the bundle, it

is ready to leave the repository-bundle. The departing repository then simply issues

a Gossip-Leave event. Repository table entries corresponding to this repository will

no longer be maintained at other repositories.

71

CHAPTER VII

Experiments of Scalability and Robustness

7.1 Performance Experiments on Desktops

7.1.1 Resource usage Test

To prove the scalability and robustness of our system, we did several performance

tests on the stream archiver by feeding different numbers of multimedia streams in

different formats at the same time. CPU usages of the running archiver process are

logged and displayed in the following Figure 7.1.

Figure 7.1: CPU Usages of A Stream Archiver Saving Multimedia Streams

The experiments were done on an Intel Pentium 4 machine with a 3.40GHz CPU

and system memory of 1.75G. The results show us that the stream archiver works

72

pretty well on streams that are made up of events with small payloads, such as audio

streams and highly compressed video stream in the figure. Less than 10% CPU was

used to process 20 simultaneous Video.H.263 streams. Since a large event payload

requires more copy instructions and system I/Os, it is not hard to explain why CPU

usages were so high when the stream archiver tried to archive those Video.JPEG

streams. We also notice that the CPU usages of brokers in the NaradaBrokering sys-

tem were also at a quite high level when they are transmitting Video.JPEG streams.

7.1.2 Annotation Latency Test

Figure 7.2: Time Delays of Freehand Whiteboard Events

Our desktop client has a built-in whiteboard (see Figure 4.1) to support free-hand

drawing annotation as eSports[Zhai et al., 2005] does. It is important that drawings

such as lines, shapes and inserted images are displayed timely on remote clients,

especially when users are working on real time data streams. Delayed or disordered

annotations will cause problems to the real time communication. We tested our

system by sending large amounts of free-hand whiteboard events in one second while

system users are playing different types of multimedia streams. We record the time

73

difference between each event’s creation time and rendering time at remote clients.

The Average of all differences recorded in the same test is used as the final result.

Though ascending, time delays caused by the system are still much lower than

the required perception level of delay (200-400ms for video streams) in a cooperation

system[Huang et al., 1999]. Distributed users will not have any problems on white-

board annotations in the system while they are cooperating on supported real time

data streams.

7.2 Performance Experiments on Mobile devices

7.2.1 Resource usage Test

We also conducted two performance experiments on the new mobile extension of

the collaborative annotation framework. The first test was to see the resource usages

of a typical annotation on video streams sent with different encoding parameters

from the desktop client. The mobile client was running on a HTC Inspire 4g android

smart phone with 1GHz Scorpion CPU and 768MB internal memory. Multiple video

streams were sent to the smart phone with different FPS (frame per second) and

quality. The test results are shown in the following Figure 7.2.1.

Figure 7.3: Resource usages of playing video streams with different parameters

The test results show that the CPU usage of the smartphone falls below 30% for

74

a typical H.263 video stream with 25 FPS and video quality 80. And the memory

consumption is managed within the limitation of regular android apps (16MB per

app). This proves that our mobile client can be quite responsive to user interactions

such as adding annotations and replaying past ones.

7.2.2 Latency Test

Figure 7.4:
Start latency of playing video streams with different parameters on dif-
ferent networks.

The second experiment was designed to evaluate the latency caused by local buffer-

ing the streaming data and communication between the proxy and media player.

The mobile client was running on three different types of mobile networks: AT&Ts

EDGE, 3G and a wireless network. The time was measured between the time that

a NaradaBrokering event was received from the desktop client and the time that the

android media player starts playing. Figure 7.4 above contains test results of our mo-

bile client receiving video streams with different parameters. It shows that the delay

was managed under a reasonable level for our mobile client on wireless networks and

we saw expected long delays (longer than 10 seconds) on low bandwidth and unstable

75

networks such as EDGE and 3G. We however noticed that the latency may be slightly

improved by using events with smaller payload size which may speed up the trans-

mission between the broker and the mobile client on those networks. However the

improvement was quite limited and we can hardly get a fluent collaboration between

the desktop and mobile applications.

7.3 Framework Scalability Experiments

In order to investigate the scalability of event-based infrastructure and our frame-

work implementation, two experiments were conducted to answer the following re-

search questions:

• How is the performance of the archiving and replaying services when the number

of such requests increases?

• How fast does the framework respond to possible mobile client loss under heavy

payload? This is very crucial to the better user experience of the annotation

framework.

7.3.1 Resource usage Test

To answer the first question, we increased the number of simultaneous requests and

measured the responding time of the archiving and replaying service. From the results

in the Figure 7.5 below, we conclude that our design of the archiving and replaying

service can provide prompt response to the end user even if there are hundreds of

them using the framework at the same time. The logged responding time increased a

lot after a particular threshold(400) is root caused by the hardware limitation of the

server these tests were conducted on. The disk I/O was logged as 100% (using iotop

on the linux server) during those scenarios.

76

Figure 7.5:
Responding time of Archiving & Replaying Service for different number
of requests.

7.3.2 Latency Test

The second question was answered by monitoring the time before the session list

changes in the session server after manually disconnecting several mobile clients(by

killing the application). We increased the number of events being transmitted over the

event-based network which simulates different level of system loads on the framework.

Messages per Second Average time(ms)

0 0

314 0.73

876 1.11

1219 1.79

1682 2.41

2013 2.99

2508 3.87

Table 7.1: Average Time Before Session List Changes under Different System Loads

77

Table 7.1 above shows us that the annotation framework is quite responsive to

session changes even under reasonable system loads. The average time before the

session list updates is controlled at a reasonable level(less than 3 seconds) which

minimizes the user experience impact caused by possible client disconnections.

78

CHAPTER VIII

Conclusions and Future Work

8.1 Summary

In this thesis, we introduce a framework system that supports collaborative an-

notation on generic data streams. It enables sending, browsing, rendering and an-

notation on real time data streams in distributed environments and our experiment

results show that it works properly for compressed data streams under high stress

circumstances.

We also present our efforts to extend the collaborative annotation framework

into the mobile environment. We have implemented a user friendly prototype of the

mobile client with event translating proxies for the mobile users to collaborate with

desktop users easily. The performance experiments show that our design can provide

satisfying user experience on android-based mobile devices with wireless connection.

8.2 Conclusion

This framework expands its scope of application through generalizing the proce-

dure of data stream processing and defining basic stream capturing and rendering

interfaces. Users are able to quickly extend the system by writing their own stream

sources/renders. Through implementing those interface methods, we can support

more types of data streams other than mere multimedia ones in the system, which

makes it more capable of satisfying diverse application requirements. The system also

79

provides a simple user interface to simplify the manipulation of streaming data and

it also supports annotation on live data streams via local stream buffers.

8.3 Future work

Our next step is to continue the development of this prototype to improve its

stability. More stream sources and renders will be added to the system to support

data streams generated by non-multimedia sources such as earthquake sensors, hand-

held devices and medical instruments. A configuration detector will be added to the

system to simplify the recognition of new StreamSource and StreamSink. We plan

to standardize our annotation metadata format into MPEG-7 compatible version so

that we can have more accurate search functionality. To improve the stability and

performance of the system on low bandwidth networks and conduct further experi-

ments for more sophisticated use cases. We also plan to apply the same design on

other mobile platforms such as iOS and Windows mobile.

8.4 List of Publications Related to This Thesis

Following is a list of publications directly related to this thesis:

• Tao Huang, Geoffrey Fox “Collaborative Annotation of Real Time Streams on

Android-Enabled Devices” Workshop 13-IoT Internet of Things, Machine to

Machine and Smart Services Applications (IoT 2012) at The 2012 International

Conference on Collaboration Technologies and Systems (CTS 2012) May 21-25,

2012 The Westin Westminster Hotel Denver, Colorado, USA, Technical Report

February 14 2012

• Tao Huang, Shrideep Pallickara, Geoffrey Fox “A Distributed Framework for

Collaborative Annotation of Streams” Proceeedings of The 2009 International

80

http://grids.ucs.indiana.edu/ptliupages/publications/Collaborative%20Annotation%20of%20Real%20Time%20Streams%20on%20Android-Enabled%20Devices.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Collaborative%20Annotation%20of%20Real%20Time%20Streams%20on%20Android-Enabled%20Devices.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/A%20Distributed%20Framework%20for%20the%20Collaborative%20Annotation%20of%20Streams.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/A%20Distributed%20Framework%20for%20the%20Collaborative%20Annotation%20of%20Streams.pdf

Symposium on Collaborative Technologies and Systems CTS 2009 May 18-22,

2009 The Westin Baltimore Washington International Airport Hotel Baltimore,

Maryland, USA

• Wenjun Wu, Tao Huang, Geoffrey Fox “Building Scalable and High Efficient

Java Multimedia Collaboration” Proceedings of IEEE 2006 International Sym-

posium on Collaborative Technologies and Systems CTS 2006 conference Las

Vegas May 14-17 2006; IEEE Computer Society, Ed: Smari, Waleed & McQuay,

William, pp18-25. ISBN 0-9785699-0-3 DOI

• Wenjun Wu, Geoffrey Fox, Hasan Bulut, Ahmet Uyar, Tao Huang “Service

Oriented Architecture for VoIP conferencing” Special Issue on Voice over IP -

Theory and Practice of the International Journal of Communication Systems

Volume 19, Issue 4 , Pages 445 - 461 Edited by John Fox, P. GburzynskiDOI

81

http://grids.ucs.indiana.edu/ptliupages/publications/CTS-GlobalMMCS.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CTS-GlobalMMCS.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/soa-voip-05.doc
http://grids.ucs.indiana.edu/ptliupages/publications/soa-voip-05.doc

REFERENCES

82

REFERENCES

3GPP (2010), 3GPP Long Term Evolution Standard,
https://sites.google.com/site/lteencyclopedia/home.

Amazon LLC (2006), Amazon simple storage service (amazon s3),
http://aws.amazon.com/s3/, [Online; accessed 30-September-2012].

amqp (2012), AQMP Open standard for messaging middleware,
http://www.amqp.org/confluence/display/AMQP/Advanced+Message+Queuing+Protocol.

Anguera, X., J. Xu, and N. Oliver (2008), Multimodal photo annotation and retrieval
on a mobile phone, in Proceedings of Multimedia Information Retrieval, pp. 188–
194.

Apache (2007), Apache ActiveMQ open source messaging system,
http://activemq.apache.org/.

Bargeron, D., A. Gupta, J. Grudin, Sanocki, E., Li, and F (2001), Asynchronous col-
laboration around multimedia and its application to on-demand training, in Pro-
ceedings of the 34th Hawaii International Conference on System Sciences (HICSS-
34).

Berez, A. L. (2007), Review of eudico linguistic annotator (elan), Language Docu-
mentation & Conservation 1(2), pp. 283–9.

Bertenthal, B., et al. (2007), Social informatics data grid, in e-Social Science Confer-
ence.

Bulut, H. (2007), High performance recording and manipulation of distributed
streams, Ph.D. thesis, Indiana University Bloomington.

Childers, L., T. Disz, R. Olson, M. E. Papka, R. Stevens, and T. Udeshi (2000),
Access grid: Immersive group-to-group collaborative visualization.

Eclipse (2012), SWT Library, http://www.eclipse.org/swt/.

Edwards, J. (Ed.) (1999), 3-Tier Server/Client at Work, 1st edition, John Wiley &
Sons.

El-Saban, M., X.-J. Wang, N. Hasan, M. Bassiouny, and M. refaat (2011), Seamless
annotation and enrichment of mobile captured video streams in real-time, in IEEE
Internation Conference on Multimedia and Expo (ICME).

83

Google Inc (2005), Google Docs, http://docs.google.com.

Google Inc (2009), Open handset alliance, http://www.openhandsetalliance.com/.

Google Inc (2010), Google goggle, http://www.google.com/mobile/goggles.

Google Inc. (2012), Google drive, https://www.google.com/intl/en/drive/start/index.html,
[Online; accessed 30-April-2012].

Huang, L., M. Iijima, and K. Sezaki (1999), A survey on human perception of delay
in a cooperation system, in IEICE Communications Society Conference.

Huang, T., S. Pallickara, and G. Fox (2009), A distributed framework for collabo-
rative annotation of streams, in Proceedings of 2009 International Symposium on
Collaborative Technologies and Systems, pp. 440–447.

IBM (2002), WebSphereMQ, http://www-01.ibm.com/software/integration/wmq/.

IBM Corp. (2012), Ibm big data, http://www-01.ibm.com/software/data/bigdata/,
[Online; accessed 30-Jan-2012].

ISO/IEC Moving Picture Experts Group (2004), Mpeg-7 standard,
http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm.

ITU Recommendation G.711 (1988), Pulse Code Modulation (PCM) of Voice Fre-
quencies.

ITU Recommendation H.225 (2000), Calling Signaling Protocols and Media Stream
Packetization for Packet-based Multimedia Communication Systems.

ITU Recommendation H.243 (1998), Terminal for low bit-rate multimedia communi-
cation.

ITU Recommendation H.245 (2000), Control Protocols for Multimedia Communica-
tion.

ITU Recommendation H.261 (1991), Video Codec for Audiovisual Services at p x 64
kbit/s.

ITU Recommendation H.263 (1998), Video coding for low bit rate communication.

ITU Recommendation T.120 (1996), Data Protocols for Multimedia Conferencing.

IVCi LLC (2009), Tandberg VCS, http://www.ivci.com/videoconferencing-tandberg-
video-communication-server.html.

Karim, A. (2000), H.323 and associated protocols,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8534.

Koskelainen, P., H. Schulzrinne, and X. Wu (2002), A sip-based conference control
framework, in ACM Press New York.

84

Kratz, M., M. Ackerman, T. Hanss, and S. Corbato (2001), NGI and Internet2:
Accelerating the Creation of Tomorrow’s Internet, Stud Health Technol Inform, pp.
84(Pt 1):28–32.

Layar (2012), Layar Vision, http://www.layar.com/.

Microsoft (2010), Windows azure, http://www.windowsazure.com/, [Online; accessed
30-September-2012].

Microsoft Corporation (2011), Office 365, www.microsoft.com/Office365.

Mule Soft (2010a), Mule ESB, http://www.mulesoft.com/.

Mule Soft (2010b), Mule MQ open source enterprise-class Java Message Service (JMS)
implementation, http://www.mulesoft.org/documentation/display/MQ/Home.

OpalVoip, and H323Plus (2007), Office 365, http://openh323.sourceforge.net.

Open Handset Alliance (2009), Android Multimedia Framework,
http://developer.android.com/guide/topics/media/index.html.

Oracle (2001), Java Message Service JMS API,
http://www.oracle.com/technetwork/java/index-jsp-142945.html.

Oracle (2004), Oracle Java Media Framework API,
http://www.oracle.com/technetwork/java/javase/download-142937.html.

Pallickara, S., and G. Fox (2003), Naradabrokering: A distributed middleware frame-
work and architecture for enabling durable peer-to-peer grids, in Proceedings of
ACM/IFIP/USENIX International Middleware Conference Middleware-2003, Rio
Janeiro, pp. 41–61.

Polycom Inc (2000), VideoStation MP Series, http://www.it-telecoms.org/video-
conferencing-h323.html.

Ren, W., and S. Singh (2005), An automated video annotation system, in ICAPR
(2), Lecture Notes in Computer Science, vol. 3687, edited by S. Singh, M. Singh,
C. Apté, and P. Perner, pp. 693–700, Springer.

Savakis, A., P. Sniatala, and R. Rudnicki (2003), Real-time annotation using mpeg-7
motion activity descriptors, in Mixed Design of Integrated Circuits and Systems 10.

Schroeter, R., J. Hunter, and D. Kosovic (2003), Vannotea - a collaborative video
indexing, annotation and discussion system for broadband networks, in In K-CAP
2003 Workshop on Knowledge Markup and Semantic Annotation.

Shevade, B., H. Sundaram, and M. Yen-Kan (2005), A collaborative annotation
framework, in 2005 IEEE International Conference on Multimedia and Expo, pp.
1346–1349.

85

Smith, J. R., and B. Lugeon (2000), A visual annotation tool for multimedia con-
tent description, in Proc. SPIE Photonics East, Internet Multimedia Management
Systems.

Stein, L. (2001), Genome annotation: from sequence to biology, Nature Reviews Ge-
netics, 2, 493–503 (July 2001), doi:10.1038/35080529.

VMWare (2010), RabbitMQ open source Enterprise Messaging System,
http://www.rabbitmq.com/.

W3C RDF Group (2004), RDF specification, http://www.w3.org/RDF/.

Wang, J., and J. Canny (2006), End-user place annotation on mobile devices: A
comparative study, in CHI.

Wang, Z., O. Gnawali, K. Heath, and L. Guibas (2011), Collaborative image an-
notation using image webs, in Proceedings of the Army Science Conference (ASC
2010).

Want, R. (2011), Near field communication, IEEE Pervasive Computing, 10 (3), 4–7.

Wilhelm, A., Y. Takhteyev, R. Sarvas, N. House, and M. Davis (2004), Photo anno-
tation on a camera phone, in Proc. CHI Extended Abstracts, pp. 1403–1406.

Wu, W., T. Huang, A. F. Mustacoglu, M. Pierce, and G. Fox (2006), Globalmmcs
collaborative clients and services for portals.

Wu, X., P. Koskelainen, H. Schulzrinne, and C. Chen (2002), Use sip and soap for
conference floor control, in Internet Engineering Task Force.

Yeh, T., K. Tollmar, and T. Darrell (2004), Searching the web with mobile images
for location recognition, in Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition (CVPR 04), p. 7681.

YouTube LLC (2012), Youtube statistics, http://www.youtube.com/t/press statistics,
[Online; accessed 21-October-2012].

Zhai, G., G. Fox, M. Pierce, W. Wu, and H. Bulut (2005), esports: Collaborative and
synchronous video annotation system in grid computing environment, in Proceed-
ings of IEEE International Symposium on Multimedia (ISM2005).

86

APPENDICES

87

APPENDIX A

Vitae

Name of Author: Tao Huang

Place of Birth: Jingzhou, People’s Republic of China

Degrees Awarded:

Jan 2013 Ph.D. in Computer Science

Indiana University

Bloomington, IN, U.S.A.

March 2004 M.S. in Computer Science

Beihang University

Beijing, China

July 2001 B.S. in Computer Science & Engineering

Beihang University

Beijing, China

88

Experience:

May 2012 Jan 2013 Software Development Engineer

Microsoft Corporation

Redmond, WA, U.S.A.

Jan 2005 April 2012 Graduate Research Assistant

Pervasive Techology Institute

Indiana University

Bloomington, IN, U.S.A.

Sept 2001 Feburary 2004 Graduate Research Assistant

School of Computer Science

Beihang University

Beijing, China

89

	Introduction
	Annotation in Distributed Collaboration
	Motivation
	Research emphases
	Annotation on Generic Realtime Data
	Annotation Distribution and Storage
	Annotating Realtime Data in the Mobile Environment
	Platform Design and Implementation

	Contributions
	Thesis Organization

	Research Background and Survey of Related Technologies
	Traditional Collaboration and Annotation Systems
	H.323 and SIP systems
	MRAS
	VideoAnnEx
	Vannotea
	SIDGrid
	A Collaborative Annotation Framework for Social Network Users
	eSports
	Summary

	Mobile Collaborative Annotation
	Mobile Annotation Systems
	Android Based Annotation Systems

	A Scalable Framework of the Collaborative Annotation
	Architecture Choices
	Messaging Systems
	Architecture of the Framework
	Session Management
	User Experience Design
	A Sample Desktop User Interface on Windows
	User Interfaces for other Platforms

	Structure and Feature Comparison

	Annotation on Generic Streams
	Annotation Interface
	Stream Rendering
	Stream Archiver
	Annotation Management

	Annotations in the Mobile Environment
	Collaboration bewtween mobile and desktop clients
	Improved session control for the mobile environment
	Multimedia Proxy
	Adapting annotation meta-data

	Jitter Reduction and Fault Tolerant Services
	Jitter Reduction Service
	Time Buffering Service
	Time Differential Service

	Replicated and Fault Tolerant Services
	Overview of NaradaBrokering Reliable Delivery Service
	Control-Events
	Publishing Messages
	Repository Processing of Published Message
	Processing Repository Acknowledgements
	Message Storage and Persistence Notifications
	Processing Persistent Events at the Subscriber
	Processing Subscriber Acknowledgements
	Processing Errors and Syncs Advances
	Subscriber and Publisher Recovery

	NaradaBrokering Reliable Delivery Service Extensions
	Redundant and Fault-tolerant Repository/Archiving Service
	Steering Repository
	Ordered Storage of Published Messages
	Generation of Persistence Notification
	Acknowledgements, Errors and Syncs
	Gossips between Repositories
	Dealing with Repository Failures
	Recovery of a Repository
	Addition of a Repository
	Graceful Removal of a Repository

	Experiments of Scalability and Robustness
	Performance Experiments on Desktops
	Resource usage Test
	Annotation Latency Test

	Performance Experiments on Mobile devices
	Resource usage Test
	Latency Test

	Framework Scalability Experiments
	Resource usage Test
	Latency Test

	Conclusions and Future Work
	Summary
	Conclusion
	Future work
	List of Publications Related to This Thesis

	REFERENCES
	APPENDICES

