

SCALABLE, FAULT-TOLERANT
MANAGEMENT OF GRID SERVICES:

APPLICATION TO MESSAGING
MIDDLEWARE

Harshawardhan Gadgil

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the Department of Computer Science
Indiana University

May 2007

 ii

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of
the requirements for the degree of Doctor of Philosophy.

Doctoral Committee

April 5, 2007

Geoffrey Fox, Ph.D.

(Principal Advisor)

Randall Bramley, Ph.D.

Beth Plale, Ph.D.

Edward Robertson, Ph.D.

 iii

Copyright © 2007

Harshawardhan Gadgil

Department of Computer Science

Indiana University

ALL RIGHTS RESERVED

 iv

To my Parents, with sincere love and respect.

 v

ACKNOWLEDGEMENTS

During the course of present research work, I have benefited from support, encouragement and

guidance from my family, mentors, colleagues and friends. I owe them a great deal of gratitude

and wish to express my sincere thanks.

I’m indebted to my advisor, Prof. Geoffrey Fox. Without his inspiring guidance, invaluable

advice, constant encouragement and confidence in my abilities, this dissertation would not have

been possible. I would like to express my deepest gratitude for all his help.

I would especially like to thank Dr. Shrideep Pallickara. I’ve had the opportunity to work closely

with him while contributing to the NaradaBrokering project and during this dissertation. I’ve

learnt a lot from his impeccable attitude towards research while endless discussions with him

have helped shape a lot of my ideas. I would also like to thank Dr. Marlon Pierce who provided

guidance when the going seemed tough during various bottlenecks encountered in the last four

years. I am also thankful to my committee members: Prof. Edward Robertson, Prof. Beth Plale

and Prof. Randall Bramley, for their useful comments.

Through my graduate school, I’ve been fortunate to have the support and encouragement from

many colleagues and friends at Indiana University. I would like to thank my lab mates: Sangyoon

Oh, Mehmet Aktas, Hasan Bulut, Galip Aydin, Ahmet Sayar and Beytullah Yildiz in the

Community Grids Lab at Indiana University. My friends: Pavan, Amit, Sidharth, Ketan, Deep,

Sharat and Sumit have been around, especially during the final phase of Ph.D. Their company

has been especially helpful when unwinding every day’s work.

I owe a great deal of thanks to my family for supporting and encouraging me at every step of my

Ph.D. work. My parents have been an immense source of inspiration and have encouraged me

every step of the way. They deserve much credit for all my accomplishments. For my wife

Prajakta, no words of praise can suffice. She has been my pillar of strength during the grueling

 vi

years of my Ph.D. I cannot thank her enough for all the support and encouragement that she has

provided. I would not have made it this far without her.

Finally, I would like to thank the entire Computer-Science department and the CGL staff who

have in one way or other helped make the last six years a fun and rewarding experience. Thank

you.

 vii

ABSTRACT

Scalable, Fault-tolerant Management of Grid Services: Application to

Messaging Middleware

By

Harshawardhan Gadgil

Doctor of Philosophy in Computer Science

Indiana University, Bloomington

Prof. Geoffrey C. Fox, Chair

 The service-oriented architecture has come a long way in solving the problem of

reusability of existing software resources. As Service-based architectures emerge, management of

the application which comprises of a large number of distributed services becomes even more

difficult as resources appear, move and disappear across the network. Further, the application

components may span disparate network boundaries, which add a variety of constraints such as

network policies, blocked transports and authentication requirements. Services exist on different

platforms and are written in different languages. This makes use of any single management

technology inefficient and promotes non-interoperability.

 In this thesis, we present a management architecture that combines publish-subscribe and

service-oriented computing principles for managing a set of distributed entities. The use of service-

oriented architecture adds interoperability to the management process. The proposed system

adopts a distributed hierarchical architecture to achieve scalability. We show that the architecture

is tolerant to failures in the management framework itself and can be extended to provide user-

level fault-tolerance of managed resources by implementing appropriate policies. Finally, we

 viii

present an empirical evaluation of the system and demonstrate that the proposed architecture

adds an acceptable number of additional resources required for providing fault-tolerance of

various components in the system.

 ix

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...V

ABSTRACT ... VII

LIST OF FIGURES .. XIV

LIST OF TABLES .. XVI

CHAPTER 1. INTRODUCTION ..1

1.1. Introduction ..1

1.2. The concept of Resource Management..3

1.2.1. Definition of term “Resource” .. 3

1.2.2. Aspects of Resource / Service Management... 4

1.3. Motivation...5

1.3.1. Fault-tolerance .. 7

1.3.2. Scalability... 7

1.3.3. Performance .. 8

1.3.4. Interoperability ... 8

1.3.5. Generality .. 9

1.3.6. Usability... 9

1.4. Use Cases...9

1.5. Research Issues ...10

1.6. Summary of Thesis Contributions ...11

1.7. Thesis Outline ...12

CHAPTER 2. LITERATURE SURVEY...13

 x

2.1. Fault Tolerance Strategies ...13

2.1.1. Replication... 14

2.1.2. Check-pointing.. 16

2.2. Scalability Strategies ..17

2.3. Management Systems..18

2.3.1. Web service based Management Specifications ... 19

2.4. Messaging Systems ..20

2.4.1. NaradaBrokering .. 21

2.5. Discussion ...22

CHAPTER 3. MANAGEMENT FRAMEWORK..23

3.1. Framework Components...25

3.1.1. Hierarchical Bootstrap System.. 25

3.1.2. Managee (Resource to be Managed) .. 27

3.1.3. Service Adapter... 28

3.1.4. Manager ... 29

3.1.5. Registry .. 35

3.1.6. Messaging Nodes.. 36

3.1.7. User... 36

3.1.8. Fork Process... 37

3.2. Summary of components ..37

3.3. Issues in Distributed System...39

3.3.1. Consistency.. 39

3.3.2. Security .. 43

CHAPTER 4. SERVICE-ORIENTED MANAGEMENT...45

4.1. The WS Management Processor...46

4.2. WS Transfer...49

 xi

4.3. Eventing...49

4.4. Enumeration ...50

4.5. Extensibility ..51

4.6. Summary ...51

CHAPTER 5. PERFORMANCE ANALYSIS ..52

5.1. Introduction ..52

5.1.1. System Configuration .. 53

5.2. XML processing overhead ..53

5.3. Maximum Resources managed per Manager Process ..56

5.4. Initialization Costs ...58

5.4.1. Discussion.. 58

5.5. Runtime Response Costs ...60

5.5.1. Observations.. 61

5.6. Performance Model..63

5.7. Amount of Management Infrastructure Required...68

5.7.1. Using 4-way replicated registry and typical values for D and M 70

5.7.2. Using a shared registry .. 71

5.7.3. If a messaging node is not used .. 71

5.7.4. Varying the number of maximum resources managed by a single Manager............... 72

5.8. Failure Recovery Costs ..73

5.8.1. Resource Failure.. 73

5.8.2. Registry Failure... 75

5.8.3. Messaging Node Failure.. 76

5.8.4. Manager Failure.. 76

5.9. Discussion ...77

CHAPTER 6. PROTOTYPE AND ITS EVALUATION ..79

 xii

6.1. Motivating Example...79

6.2. Management of Brokers ..81

6.3. Generating Broker Topologies..82

6.4. Cluster Topology..83

6.5. Ring Topology ..84

6.6. NAT Traversal for Broker Connections ..85

6.7. Policies ...86

6.7.1. Wait for user Input ... 87

6.7.2. Automatically Instantiate .. 87

6.8. Analysis of Broker Management..88

6.8.1. Interactions between Broker Manager and Broker Service Adapter.............................. 89

6.8.2. When can TXZ be ignored?... 92

6.8.3. Interactions with Registry ... 94

6.8.4. Managee – Registry Interaction .. 97

6.9. Benchmarking Topology deployment...98

6.9.1. Resource State Size ... 98

6.9.2. Initialization Costs.. 99

6.9.3. Ring Topology... 100

6.9.4. Cluster Topology .. 101

6.9.5. Results A: Recovery Costs for a single Resource (Broker) .. 102

6.9.6. Results B: Topology recreation costs for a set of Resources (Topology of Brokers)... 104

6.10. Discussion ...105

CHAPTER 7. CONCLUSIONS AND FUTURE WORK...107

7.1. Summary of Answers for Research Questions...108

7.1.1. How can we build a fault-tolerant management architecture? 108

7.1.2. Can the management framework be made scalable?... 109

 xiii

7.1.3. If such a system can be built, what is the overhead of such a system and is this

overhead acceptable?.. 109

7.1.4. How can we enable global management of resources (i.e. when access to resources

may be restricted by presence of firewall and NAT devices)?.. 110

7.1.5. Can the management system be made interoperable and extensible? 110

7.2. Management of General Grid Services..111

7.3. Future work ..112

APPENDIX – A: THE MANAGEMENT GRAPHICAL USER INTERFACE................................113

APPENDIX – B: EXPERIMENTAL RESULTS (RUNTIME RESPONSE COST)127

APPENDIX – C: GLOSSARY OF TERMS USED ..130

APPENDIX – D: MANAGEMENT OF RESOURCES USING WS MANAGEMENT

FRAMEWORK ..132

REFERENCES ..139

 xiv

LIST OF FIGURES

Figure 1 Generic Management Framework ... 24

Figure 2 Achieving scalability through hierarchical arrangement ... 25

Figure 3 Overview of a Unit of Management Architecture ... 27

Figure 4 Anatomy of a Service Adapter .. 28

Figure 5 Anatomy of a Manager Process... 30

Figure 6 Message flow between components .. 32

Figure 7 Anatomy of a Registry Service.. 35

Figure 8 WS Management Processor... 46

Figure 9 WS Management message processing flowchart .. 47

Figure 10 Event Flow between Resource and Resource Manager... 50

Figure 11 Maximum threads spawned when each thread maintains resource state of specified

buffer size ... 57

Figure 12 Test Setup .. 61

Figure 13 Increasing managers on same machine improves performance. However, there is no

significant difference when number or manager processes is greater than number of

processors on the machine .. 62

Figure 14 Increasing managers on multiple machine improves performance 63

Figure 15 Managers saturate and response time stops increasing linearly 63

Figure 16 Modeling components of response time as seen by the resources................................. 64

Figure 17 Saturation point for a single manager process... 67

Figure 18 How Additional Infrastructure varies with number of resources a single manager can

manage .. 73

Figure 19 Teacher - student relationship based collaborative session ... 80

Figure 20 Topology Generator GUI (a) Topology Summary (b) Topology Parameters 82

 xv

Figure 21 Cluster Topology ... 83

Figure 22 Anatomy of a Node Address ... 84

Figure 23 Sample assignment of Node address and cluster formation on Grid Farm machines ... 84

Figure 24 Ring Topology (a) Level - 0 Links (b) Sample node address assignment..................... 85

Figure 25 NAT Traversal for creating connections ... 86

Figure 26 Registry Interaction ... 96

APPENDIX A

Figure A1 Main Window... 113

Figure A2 Resource Properties .. 115

Figure A3 After creating a new node... 116

Figure A4 Default Policy (Require User Interaction) .. 117

Figure A5 Alternate Policy (Automatically spawn a new Broker) .. 118

Figure A6 Topology Generator.. 119

Figure A7 Warning Dialog asking for link deletion confirmation... 119

Figure A8 Ring topology parameters... 120

Figure A9 Nodes and Links Configuration for RING topology .. 121

Figure A10 Cluster topology parameters ... 122

Figure A11 Nodes and Links Configuration for CLUSTER topology .. 122

Figure A12 Editing Links .. 123

Figure A13 Deleting Links .. 124

Figure A14 Manual Link Creation... 125

 xvi

LIST OF TABLES

Table 1 Summary of Architecture Components .. 38

Table 2 Test Machine Configuration ... 53

Table 3 Time spent in processing WS Management formatted REQUEST messages for Broker

Management.. 55

Table 4 Time spent in processing WS Management formatted RESPONSE messages for Broker

Management.. 55

Table 5 Interactions between Broker Service Adapter and Broker Network Manager 90

Table 6 Resource-specific information stored in Registry... 94

Table 7 Recovery after Failure (non-initialized state) ... 100

Table 8 Time (initialized state) required per operation (msec).. 100

Table 9 State and initialization time per management thread .. 102

Table 10 Observed recovery time for a single broker.. 103

Table 11 Observed Times for deploying network of brokers .. 105

APPENDIX B

Table B 1 Response Cost (1 Manager on 1 machine).. 127

Table B 2 Response Cost (2 Managers on 1 Machine).. 127

Table B 3 Response Time (4 Managers on 1 Machine)... 128

Table B 4 Response Time (2 Managers on 2 machines, 1 on each machine).............................. 129

Table B 5 Response Time (4 Managers on 4 Machines, 1 on each machine) 129

 1

Chapter 1. Introduction

1.1. Introduction

Computing Systems are constantly undergoing revolution. From the early inception of modern

computers in 1945, until about 1985, computers were large and expensive. As a result, most

organizations had only a handful of computers and no means to connect them, effectively these

machines operated independently.

Starting mid-80s, this scenario changed drastically. Advancement in technology made powerful

CPUs common. These provided the power of mainframes but at a fraction of the price. The size of

computing devices went down from a roomful to one that could fit in the palm of human hand.

The second development was the invention of high speed computer networks which allowed

multitude of machines to be connected together. Large amounts of data could be moved between

them at a rate in excess of 100 million bits/sec. The result of these technologies is that it has now

 2

become not only feasible but also easy to connect computing systems composed of a large

number of computers connected by high-speed network links.

A side-effect of the advancement was that different computing systems were introduced. Some

were made too simple to carry out the duties they were supposed to perform while others were

made too complex. The cost of building and maintaining them rocketed, not to mention the

nearly impossible task of integrating different systems together. As more and more software

systems are built, similar situations and patterns appear. Naturally, we want to reuse the

functionality of existing systems rather than building them from scratch. This led to the idea of a

Service Oriented Architecture (SOA) [1, 2], which is an architectural style for loosely coupling

interacting software agents. A SOA provides an interoperable platform that helps maximize

reusability of existing software resources. While it is clear that SOA and its current

implementation, Web services [3], will have profound impact on the next generation of

distributed systems, many aspects of this platform still require significant research and

development.

The emerging trend of building distributed applications is to reuse distributed services. A

successful distributed application benefits from properly managed (configured, deployed and

monitored) services while effective management of these distributed services benefits from well-

instrumented computer software and hardware. One challenge is that the technologies used to

deploy, configure, secure, monitor and control resources have evolved independently of each

other. For instance, many network devices use SNMP (Simple Network Management Protocol)

[4], Java applications use JMX (Java Management eXtensions) [5], while servers implement

management using CIM (Common Information Model) [6] or WBEM (Web-based Enterprise

Management) [7].

The Web services community has addressed this challenge by adopting a SOA using Web service

technology to provide flexible and interoperable management protocols. The goal of the SOA is not

 3

to replace existing protocols but to successfully extend management frameworks to permit more

effective integration with existing management systems. The flexibility comes from the ability to

quickly adapt to rapidly changing requirements. The interoperability comes from the use of XML

based interactions that facilitate implementations in different languages, running on different

platforms and over multiple transports.

This dissertation is motivated by understanding the need for a Distributed Management Framework

that effectively combines “Management operations in a distributed system” and “SOA principles”;

evaluating the system design parameters in terms of scalability, fault-tolerance, performance,

interoperability, generality and usability; and evaluating how these factors influence the overall

infrastructure cost in terms of additional resources.

1.2. The concept of Resource Management

1.2.1. Definition of term “Resource”

Before we discuss the aspects of resource / service management, we would like to clarify the use

of term Resource as used in this thesis. Distributed applications are composed of components

which are entities on the network. We consider a specific case of distributed applications where

these entities can be controlled by zero or modest state. We define modest state as being one

which can be exchanged using very few messages (typically 1 message exchange). These entities

in turn can initialize and control components with much higher state. Such components could be

hardware (e.g. network, CPU, memory) or software (e.g., file-systems, databases or services). We

consider the combination of such an entity and the component associated with it as a manageable

resource. Note that we do not imply any relation to other definitions of the term “resource”

elsewhere in literature (e.g. WS – Resource as defined by WS – Resource Framework [8]).

Since the primary target of the implementation of this thesis is management of software services,

we consider a software service as a manageable resource.

 4

1.2.2. Aspects of Resource / Service Management

The primary goal of Resource Management is the efficient and effective deployment of available

resources. A distributed system is composed of a large number of widely distributed resources.

Management can be defined as the function that aims at “Maintaining the system’s ability to provide

its specified services with a prescribed quality of service”. Resource management can be divided into

two broad domains: one that primarily deals with efficient resource utilization, and another that

deals with resource administration activities such as configuration, deployment and monitoring.

In the first category, resource management deals with resource allocation and scheduling, the

goal being sharing resources fairly while maintaining optimal resource utilization. For example,

an operating system [9] provides resource management by providing fair overall resource

sharing among users through various means such as process scheduling and memory

management. Condor [10] provides a specialized job management for compute-intensive jobs.

GRAM (Grid Resource Allocation Manager) [11] provides an interface for requesting and using

remote system resources for the execution of jobs.

The second category deals with appropriately configuring and deploying resources (services)

while maintaining a valid run-time configuration according to some user-defined criteria. In this

case management has static (configuring and bootstrapping the system components) and dynamic

(runtime monitoring and event handling) aspects. In general terms, management can be viewed

as a control activity that involves detecting events that alter the ability of an administered system

to perform its function and reacting to these events by trying to restore this ability. These

administration operations may be summarized as follows1:

1. Configuration and lifecycle operations such as CREATE, DELETE

1 http://devresource.hp.com/drc/slide_presentations/wsdm/index.jsp

 5

2. Handling runtime events

3. Monitoring status and performance

4. Maintaining system resources according to user defined criteria

This dissertation addresses the challenges faced in resource administration.

1.3. Motivation

Tshe phenomenal progress of technology has driven the deployment of increasing number of

devices ranging from RFID devices to supercomputers. These devices are widely deployed,

spanning corporate administrative boundaries. Deployment areas are typically protected by

firewalls, thus limiting access to resources. Further, the low cost of hardware has made

replication a cost-effective approach to fault-tolerance especially if software replication is used.

These factors have contributed to the increasing complexity of today’s applications which are

composed of ever increasing number of resources: hardware (hard-drives, CPUs, networks) and

software (services). Management is required for maintaining a properly running application;

however, existing approaches have shown limitations in successfully managing such large scale

systems.

Firstly, as the size of systems and applications increases (in terms of number of hardware

components, software components and geographical scale) it is certain that some parts of

application components will fail. An analysis of the causes of failures of Internet services [12]

shows that most of the service's downtime may be attributed to management errors (e.g. wrong

configuration) and that software failures come second. However, few efforts have yet been

devoted to remedy this situation.

Secondly, administration tasks have mainly been performed by persons. A great deal of the

knowledge needed for administration tasks is not formalized and is part of the administrators'

know-how and experience. As the size and complexity of the systems and applications are

 6

increasing, the costs related to administration are taking up a major part of the total information

processing budgets, and the difficulty of the administration tasks tends to approach the limits of

the administrators' skills. The traditional manager-agent model which is the base of widely used

management protocols and frameworks (such as SNMP and CMIS/CMIP) is also showing its

inability to cope with the current highly dynamic managed systems.

These constraints have motivated a new approach, the so-called Autonomic Computing [13]

movement, where a significant part of management-related functions is performed automatically

with minimal human intervention. Autonomic computing aims at providing systems and

applications with the following self-management capabilities, namely: Self-configuration

(automatic configuration according to a specified policy), Self-optimization (continuous

performance monitoring), Self-healing (detecting defects and failures, and taking corrective

actions) and Self-protection (taking preventive measures and defending against malicious

attacks). Several research projects [14] are active in this area.

Thirdly, different types of resources in a system require different resource-specific management

frameworks. As we have discussed before, the resource management frameworks for different

types of resources have evolved independently. This complicates the application implementation

by requiring the use of different proprietary technologies for managing different types of

resources or using ad-hoc solutions to interoperate between different management protocols.

Finally, centrally managing a distributed application poses many problems. Core problem is

scalability. Centralized systems are also vulnerable to a single point of failure. This motivates the

need for a distributed management infrastructure. We posit that “The management framework itself

must be tolerant of failures to provide a successful management framework”.

These factors have motivated the need for a distributed management framework. We envisage a

generic management framework that is capable of managing any type of resource. By

implementing interoperable management protocols we can effectively integrate existing

 7

management systems. Such a system must be autonomous in providing this functionality with

minimum user interaction. One of the chief characteristics of an autonomous system is to provide

self-healing that automatically handles failures within the system.

We now provide a summary of the desired characteristics of the management framework:

1.3.1. Fault-tolerance

As systems span wide networks they become difficult to maintain and resource failure is norm.

Resource failure could be a result of the actual resource failing or a result of failure of some

related component such as the network making the resource inaccessible. In such a case, it may

be required to instantiate a new resource2 to take over the functionality of failed resource. Finally,

the resource managers themselves might fail making resource management ineffective.

To account for failure scenarios within the management framework, recovery from failures must

be facilitated. Typically this would be done by re-instantiating a copy of the failed management

framework component which takes over the functionality of the failed component. This,

however, leads to possible inconsistencies as failures cannot be reliably distinguished from

slowed processes. The schemes outlined for tackling failures must take into account such issues

to avoid possible race conditions.

1.3.2. Scalability

As the number of manageable resources increases, the management framework must scale to

accommodate management of the additional resources. For example, LHC Grid [15] is a system

with a large number of manageable resources. These resources include a large number of CPU

nodes (in excess of 10000) for computation, disk nodes for storage and tape servers for access to

mass storage among others. Recent web-service offerings from Amazon [16] such as Amazon’s

2 This would be TRUE for software resources such as services

 8

EC2 (Elastic Compute Cloud) involves running applications on as many or as few systems as

required and dynamically resizing the compute capacity. This represents a set of widely

distributed resources constantly in a state of flux, as the compute capacity goes up and down.

Further, the management framework represents additional components that are introduced in

the system. Addition of these components (Ref: Section 3.1) is necessary to provide the various

features such as fault-tolerance and interoperability. The management framework must scale in

terms of these additional components required.

1.3.3. Performance

Runtime events are generated by resources and the management system takes a finite amount of

time to respond to faults. The challenge is to achieve acceptable performance in terms of recovery

from failure and responsiveness to faults as the number of manageable resources and the

additional components required increases. In this thesis, we primarily focus on recovery from

failure in terms of responding to run-time events.

1.3.4. Interoperability

Resources may exist on different platforms and may be written in different languages. This

promotes use of proprietary solutions for management. Consider for example, Windows

Management Instrumentation (WMI) [17] and Java Management eXtensions (JMX) [5]. These

frameworks have been quite successfully implemented. However, these frameworks are not

interoperable and thus it limits the applicability of any of these systems for management of

resources in heterogeneous systems or platforms. To address interoperability, we leverage

service-oriented principles and enable management by implementing a Web-service based

management protocol.

 9

1.3.5. Generality

Resource management framework must be generic. This means that it should equally apply to all

types of resources i.e., hardware or software resources. Resource-specific management would still

be required to be defined by providing a resource-specific management modules and resource-

specific policies while the framework provides the basic scalability and fault-tolerance.

1.3.6. Usability

The architecture must be usable in terms of autonomous operation provided by the framework.

The framework provides autonomous operation by appropriately instantiating failed

management components with minimum user interaction.

1.4. Use Cases

Resources differ in their use and have widely varying characteristics. These characteristics

determine the management requirements of the resource. We now describe a few sample use

cases that are illustrative of the applicability of the management framework to systems with

different resource requirements.

Resources not only vary in their use but also in their capabilities: A typical example would be a

slow vs. fast hard disk. One would configure an application such that a slower hard disk would

store unvarying data that requires minimum disk access such as application code while a faster

hard disk would be configured to be used as high performance storage for continuously varying

data such as swap space. Such a configuration is important for performance reasons.

Resources are of completely different types and requirements: A critical infrastructure

application such as a Servo Grid Framework [18] consists of services such as a workflow service

[19] for executing workflows, a context database service [20] for storing system state and services

that integrate local and remote map services (Web Feature Service [21] and Web Map Service

 10

[22]). Each of these services requires application-specific configuration and lifecycle management.

Failures are normal and a critical requirement of real-time applications is to keep application

components always up and running. Thus, the management framework would also monitor the

system for faults and take corrective actions (e.g. create alternate instances of services if a

previous instance fails), thus providing continuous and autonomous operation.

Resource need and availability is in a state of flux: Consider for example, an audio/video

collaboration system such as GlobalMMCS [23]. This system relies on a distributed messaging

substrate for routing audio/video packets to participants. As participants join and leave, the

messaging substrate must be appropriately managed to adjust to varying load. Further, runtime

metrics provided via monitoring and possible failures within the substrate would require an

administrator to dynamically adjust substrate characteristics such as transports (e.g. TCP vs.

UDP).

Resources are widely distributed as scale of application increases: As we build bigger systems,

these individual resources get widely dispersed. Network constraints such as security policies

and presence of firewalls and NAT devices limit access to resources. As we have previously

noted, in case of software resources (services) different platforms and language implementations

make it harder to use a single technology to manage the variety of resources.

1.5. Research Issues

In this thesis, we describe the architecture design and implementation of a distributed

management framework that addresses the desired features mentioned in Section 1.3. We have

thoroughly analyzed the system to determine how the system would respond and have

presented benchmarks on a typical resource. A major goal of this dissertation is to formulate how

much additional software infrastructure is required to manage a set of resources with respect to

the number of resources being managed.

 11

We now summarize the research issues we plan to address in this thesis:-

1. How can we build a fault-tolerant management architecture?

2. How can the management framework be made scalable?

3. If such a system can be built, what is the overhead of such a system and is this overhead

acceptable?

4. How can we enable global management of resources (i.e. when access to resources may be

restricted by presence of firewall and NAT devices)?

5. Can the management system be made interoperable and extensible?

1.6. Summary of Thesis Contributions

This dissertation investigates significant research problems which emerge with a need to

uniformly manage a set of distributed resources. We present a novel approach that addresses the

issues outlined in Section 1.3 to provide universal management architecture. The work has

resulted in the design and implementation of a distributed management framework that is:

1. Tolerant to failures in management framework as well as resource failures by implementing

resource-specific policies;

2. Scalable in terms of additional resources required to provide fault-tolerance and

performance;

3. Interoperable by use of Web service based management protocol for communication between

resources and their respective managers and

4. Generic such that it can be applied equally well to any set of manageable resources

Finally, to demonstrate the use of the management framework, we provide a proof-of-concept

implementation for managing a Grid Messaging Middleware: NaradaBrokering.

 12

1.7. Thesis Outline

This thesis is organized as follows:-

We present our literature survey in Chapter 2. Here we present an overview of various strategies

used in our system such as fault-tolerance and scalability. We also present a brief overview of

messaging systems and Web service based management protocols. We conclude the chapter

noting the principles applied in our architecture.

We then describe the management architecture in detail in Chapter 3. Here we define the various

components of the system and the role they play in the overall architecture.

This is followed by a discussion on the use of a service oriented approach towards management

in Chapter 4. Here we introduce the service-oriented management framework based on WS-

Management.

In Chapter 5 we analyze the system and discuss the feasibility of our approach. In order to prove

that the costs of adding additional resource are acceptable, we answer the question, “How much

Management Infrastructure is required to handle N Resources?”

Chapter 6 applies the principles towards management of a distributed messaging middleware

system (NaradaBrokering). Here we outline the various scenarios in which the prototype was

deployed and a discussion on the analysis of system performance in each case.

Finally we present our conclusion and outline the direction of future work in Chapter 7. Here we

present answers to the research questions presented in Section 1.5.

 13

Chapter 2. Literature Survey

This thesis leverages well-known principles in distributed systems for achieving scalability and

fault-tolerance. In this chapter, we present an overview of the various strategies relevant to our

work. We also present examples of systems where these concepts have been implemented. We

then discuss existing approaches to management and a discussion of the Web-service based

management standards. Finally we present an overview of a messaging middleware:

Naradabrokering.

2.1. Fault Tolerance Strategies

Distributed systems have addressed fault-tolerance of application components via strategies such

as request-retry, replication and check-pointing. Faults in distributed systems are normal and it is

desired that the system continues operation in presence of failures. Fault-tolerance is defined [24]

 14

as the characteristic by which “A Distributed System can mask the failure occurrence and recover from

failure”.

We now present an overview of some of these schemes.

2.1.1. Replication

Replication schemes provide seamless transfer of control to a new or existing duplicate service

instance when failure is detected. Replication can be Passive (primary / backup) where only the

primary replica processes requests and then state is transferred to other replicas. This helps

provide availability in a simple manner. Passive replication does not offer any performance

improvement since on failure a backup is promoted to primary which spends some time to

restore state from logs.

When performance is an issue and cost of computation is less, Active replication is used. In active

replication, every replica invokes the operation independently and hence all replicas have the

most current state. Thus, on failure, recovery is almost instantaneous. Active replication,

however, requires all operations to be carried out at all replicas in the same order. Although

techniques such as Lamport’s Timestamps [25] or using a central coordinator that functions as a

Sequencer can be used, they suffer from scalability problems. Ref [26] presents a hybrid approach

for achieving Totally Ordered Multicast in large scale systems.

Distributed databases such as Oracle [27] use replication to provide load balancing and high

availability in presence of faults. Agents-based technology provides the ability to perform

intelligent operations, interactions and cooperation between autonomous components and has

also been recognized [28] as a promising technology for managing Web services. Agents provide

a fault tolerant substrate for performing system tasks and are very suitable for tasks such as

management of distributed resources [29].

 15

Object based distributed systems are an extension of the object-oriented programming systems.

As the name suggests, Distributed Object Computing allows objects distributed on different

computers across a heterogeneous network to interoperate as a unified whole and appear as

being local to the application. Communication with remote objects is transparently handled via

system specific protocols. Notable efforts are Distributed Component Object Model (DCOM) [30]

from Microsoft, Common Object Request Broker Architecture (CORBA) [31] from OMG (Object

Management Group) and Java / Remote Method Invocation (Java/RMI) [32] from Javasoft.

DCOM

DCOM addresses fault tolerance via Automatic Transactions which allow a developer to specify a

series of method invocations (possibly on different objects) that can be grouped into a

transaction. A separate transactions manager module called the Distributed Transactions

Coordinator (DTC) handles the actual implementation of the transactions using standard

transaction semantics based on a two-phase commit protocol.

CORBA

CORBA addressed fault-tolerance in version 3.0. The basic approach for dealing with faults is to

replicate objects into object groups. Such groups consist of one or more identical copies of same

object. Such a group can be referenced as if it were a single object and offers the same interface as

the replica it contains. This provides replication transparency from the user point of view. Different

replication strategies may then be implemented such as active replication, passive replication or

quorum based replication. A Replication Manager is responsible for creating and managing a

group of replicated objects which in turn can be replicated for fault-tolerance.

Java / RMI

The object-oriented nature of Java facilitates code reuse and significantly reduces development

time. Further, a wide variety of interfaces and language extensions are available for the Java

Virtual Machine (JVM) that makes Java an attractive development platform for most GRID

 16

applications. JVM, however, does not support fault-tolerance. Fault-tolerance is enabled by using

systems such as Nomads [33], which modify the JVM to capture the execution state of the

application. This is, however, inappropriate for heterogeneous systems where different machines

may have different JVMs. Ref [34] describes an approach to make the process of check-pointing

independent of the JVM used by modifying the program’s bytecode rather than the JVM.

These systems have been successful in their respective areas. However, a crucial limitation is that

they are platform specific and not easily interoperable. There are ad-hoc solutions to achieve

interoperability, such as constructing bridges to translate messages between systems. However,

there are other limitations such as fundamental differences between data-types, differing

distributed object models and non-friendliness with firewalls and proxy servers. Thus, these

systems are unsuitable as a building block to our management framework.

2.1.2. Check-pointing

Check-pointing schemes allow a computation to continue from where it failed rather than re-

running the computation. Check-pointing is mainly used in computing systems to store the

current state of operation. By switching to an earlier checkpoint, a system can reload the previous

state and resume computation from the point of failure. Check-pointing is used in many systems

such as Condor [10], XCAT [35] and MPI based message passing system such as OpenMPI [36] and

FT-MPI [37] to store system state and recover from a previous state after failure has occurred.

Besides recovery, check-pointing also enables other features such as process migration [38] which

allows a failed process to continue on another machine from the point where it failed.

The main challenge in check-pointing is achieving a globally consistent [39] snapshot of the

system’s state. A survey of various roll-back and recovery protocols can be found in [40]. The

main techniques are briefly summarized below:

 17

Independent Check-pointing occurs when all processes maintain local check-points. The main

advantage is simplicity and performance. However, such checkpoints may not necessarily be

globally consistent. Thus, when processes roll back to the latest checkpoint and if this checkpoint

is not globally consistent, another roll back is necessary. Further rolling back is necessary if the

last roll back is again inconsistent. This cascaded rollback may lead to what is called the domino

effect.

Coordinated check-pointing ensures that all processes synchronize to jointly write their state.

Although achieving global synchronization is costly in terms of the complexity and time

required, the snapshots are automatically globally consistent. Coordinated check-pointing comes

in two flavors, blocking and non-blocking. Blocking algorithms block all check-pointing processes

which commit to automatically achieve a globally consistent snapshot. Ref [41] and [42] provide

details on blocking coordinated check-pointing implementation. A non-blocking coordinated

check-pointing algorithm that uses application-level check-pointing is presented in [43].

2.2. Scalability Strategies

Scalability is a desirable property of a system, a network or a process, which indicates its ability

to either handle growing amounts of work in a graceful manner or to be readily enlarged.

Scalability can be measured in various dimensions such as load scalability (easily expand or

contract resource pool to accommodate heavier or lighter loads), geographical scalability (maintain

usability regardless of resource locations) and administrative scalability (easily use and manage a

single system irrespective of number of organizations using it).

One of the strategies for improving scalability in a large scale system is to use asynchronous

communication. The principle idea is to hide communication latencies by allowing multiple

requests to be made. When a response arrives, a special handler continues computation of a

previously issued request.

 18

Another important scaling technique is via distribution. Distribution involves splitting a

component into smaller parts and subsequently spreading those parts across the system. A

popular system that uses a hierarchical distribution is the DNS (Domain Name System) [44]. The

DNS hierarchically organizes the namespace into a tree of domains which are further divided

into non-overlapping zones. The names in each zone are handled by a single name server.

Hierarchical distribution has also been extensively used in monitoring systems such as SNMP [4]

MonALISA [45] and Astrolabe [46].

Finally load distribution techniques such as replication aid scaling by helping prevent

performance degradation. In geographically distributed systems communication latency can be

avoided by satisfying requests from a nearby resource. Caching, a special form of replication, is

used (typically by clients of resources) that mirrors resource’s state locally. This, however, leads

to consistency problems and it is up to the resource and the client to determine the degree of

inconsistency that the system can tolerate.

2.3. Management Systems

Various system specific management architectures have been developed and have been quite

successful in their areas. Examples include SNMP (Simple Network Management Protocol) [4]

CMIP [47] and CIM [6]. SNMP defines an application layer protocol that facilitates exchange of

management information among network devices. SNMP agents gather data which is aggregated

using a tree based hierarchy. This information can further be queried and integrated via a variety

of distributed monitoring frameworks. SNMP uses a registry of monitored objects such as CPU,

router, bridge, printers in Management Information Base. Thus, component-wise SNMP is similar

to the architecture presented in this thesis. However, SNMP deals only with network resources.

Lack of security reduces SNMP to a monitoring facility rather than a management facility.

As discussed in Section 1.2.2, monitoring is an essential part of management but not all of it.

There are a variety of distributed monitoring frameworks such as Ganglia [48] and Network

 19

Weather Service [49]. The primary purpose of these systems is to provide monitoring of global

grid systems and aggregation of metrics collected from various sources.

The Java community has introduced JMX [5] (Java Management eXtensions), which enables any

Java-based resource to be automatically manageable. JMX technology provides tools for building

distributed, Web-based management system for managing and monitoring Java applications,

devices and service-driven networks. However, JMX can typically be accessed only by clients

using Java technology making it non-interoperable. This issue is being partly addressed by

providing a Web service connector for JMX Agents [50]. While JMX presents the capability to

instrument applications with appropriate messages, metrics and control mechanism, a Web

service based management protocol provides a more cross-platform, standards-based interface.

Similarly, WMI [17] (Windows Management Instrumentation) from Microsoft enables local and

remote monitoring and management of Microsoft Windows based machines.

A main feature lacking among these management systems is interoperability. As previously

described, to address interoperability, the distributed systems community has been orienting

towards the Web services architecture which is based on a suite of specifications that defines rich

functions while allowing services to be composed to meet varied QoS (Quality of Service)

requirements. There already are proposals [51] to leverage the Web services management

principles in the context of existing management frameworks. The Service Oriented Architecture

provides a simple and flexible framework for building sophisticated applications.

2.3.1. Web service based Management Specifications

A crucial application of the Web services architecture is in the area of systems management. WS

Management [52] and WS Distributed Management (WSDM) [53] are two competing

specifications in the area of management using Web services architecture.

 20

Both specifications focus on providing a Web service model for building system and application

management solutions, specifically focusing on resource management. This includes basic

capabilities such as creating and deleting resource instances and setting and querying service

specific properties and providing an event driven model to connect services based on the publish

/ subscribe paradigm.

WSDM breaks management in two parts: Management using Web services (MUWS [54]) and

Management of Web services (MOWS [55]). MUWS focuses on providing a unifying layer on top

of existing management specifications such as CIM from DMTF, SNMP and OMI (Open

Management Interface) [56] models. MOWS presents a model where a Web service is itself

treated as a manageable resource. Thus, MOWS will serve to provide support for the

management framework and support varied activities such as service metering, auditing, SLA

management, problem detection and root cause failure analysis, service deployment,

performance profiling and life cycle management.

WS Management, on the other hand, attempts to identify a core set of Web service specifications

and usage requirements to expose a common set of operations central to all management

systems. This minimum functionality includes ability to discover management resources,

CREATE, DELETE, RENAME, GET and PUT individual management resources such as settings and

dynamic values, ENUMERATE contents of containers and collections, SUBSCRIBE to events

emitted by managed resources and EXECUTE resource-specific management methods. Thus, the

majority of overlapping areas with the WSDM specification are in the MUWS specification. Ref.

[57] presents a proposal for evolution of a common management specification.

2.4. Messaging Systems

Distributed systems rely on communication between the resources and the clients. The

publish/subscribe paradigm [58] has recently received increasing attention as it is well adapted

to support interaction among loosely coupled distributed services in a large scale application. The

 21

primary goal is to glue independent applications together without re-engineering individual

components. In a publish/subscribe framework, subscribers register their interest in an event or a

pattern of events and are subsequently asynchronously notified of events fired by publishers.

Several systems such as Gryphon [59], Siena [60] and Elvin [61] have made significant progress in

this area.

Our proposed framework uses NaradaBrokering messaging middleware as the event channel for

communicating between various components of the system. It has been developed in the

Community Grids Lab at Indiana University [62]. Our choice of using NaradaBrokering was

primarily motivated by the fact that it is home grown software with a variety of features such as

firewall traversal and support for various security schemes. We now present an overview of the

NaradaBrokering messaging system.

2.4.1. NaradaBrokering

NaradaBrokering [63] is a messaging infrastructure, based on the publish/subscribe paradigm,

that enables distributed entities to communicate with each other through the exchange of

messages. NaradaBrokering has been successfully deployed in the context of collaborative

applications, audio/video conferencing applications and GIS systems. Projects that currently

leverage the NaradaBrokering projects include the SERVOGrid [64], GlobalMMCS [23], the WEB-

IS effort at the Florida State University and the University of Minnesota, and finally, the Anabas

[65] system which provides support for shared displays and online collaborative meeting

software.

NaradaBrokering incorporates several services such as - reliable delivery [66], ordered delivery,

secure delivery of messages [67], access to globally synchronized timestamps, reduction of jitters

by preserving time spacing between messages, compression / decompression and fragmentation

/ de-fragmentation of messages. NaradaBrokering incorporates support for several

communication protocols such as TCP, UDP, HTTP, SSL and Parallel TCP: this facilitates

 22

communications in a variety of network realms. The system also supports enterprise messaging

standards such as the Java Message Service (JMS) [68]. More recently, the system has

incorporated support for SOAP and several Web service specifications [69] such as WS-Eventing,

WS-ReliableMessaging [70] and WS-Reliability [71].

2.5. Discussion

The approach discussed in this thesis leverages a distributed messaging infrastructure to provide

scalability and a mix of both replication and check-pointing to provide fault-tolerance.

Specifically, the architecture implements passive replication and independent check-pointing which

helps provide the desired level of fault-tolerance with simplicity of implementation.

Use of a messaging middleware helps improve the scalability of the system. It provides a simple

publish / subscribe interface for delivering and receiving messages. For example, a single entity

can easily communicate with multiple other entities by subscribing or publishing to appropriate

topics. NaradaBrokering has support for multiple transports and can traverse firewalls, thus

allowing communication with entities behind firewalls.

Finally, our choice of management protocol is WS – Management. Our choice of leveraging WS

Management was mainly motivated by the simplicity of WS Management and also the ability to

leverage WS Eventing [72] implemented recently in the OMII container [73]. We have been using

the management architecture for modeling management of a distributed brokering infrastructure

[74].

 23

Chapter 3. Management Framework

In this chapter we describe our management framework. The components have been designed

keeping in mind the main criteria of management introduced in the previous chapter, namely

scalability, fault-tolerance and remote management. We then present an overview of the

consistency and security issues that arise in the context of our framework and discuss our

approach to address them.

The proposed architecture assumes that external system state required to manage resources is

small and can be captured using a message based interface. The external state is defined as the

minimum state required in bootstrapping the resource after a failure occurs. The resource’s

internal state is still managed by the resource. An advantage is that we can use independent check-

pointing scheme to save resource-specific state at minimal cost. The only requirement is the

existence of a scalable, fault-tolerant database which serves as a registry to help store system

 24

state. An example of such a fault tolerant store would be a Context Database [75]. For the purpose

of implementation, we implemented a prototype registry that stores all information in memory

with an optional extension to store to local file system for fault-tolerance purposes.

Further, the type of resources that require management is large. The number of management

interactions required is even larger and specific to the resource in question. There is no “one shoe

that fits all” manager that can satisfy the management requirements of all possible resources.

Hence, we employ a resource-specific manager that encompasses the functionality of managing a

specific resource. The management framework provides the basic functionality such as

scalability, fault-tolerance, performance and interoperability while resource-specific management

can leverage these facilities to provide scalable, fault-tolerant management.

Figure 1 shows a generic management framework. In the context of this thesis, we assume that

the resource to manage and the resource manager are Web services.

R
esource

M
anager

M
an

ag
em

en
t

In
te

rfa
ce

Figure 1 Generic Management Framework

The Resource that needs management is any application-specific component. We term such a

resource as a manageable resource. Usually, with the right configuration, a resource-specific

manager can directly interact with the resource and manage it. However, when the resource

being managed is not intrinsically a Web-service, a wrapper service that provides a Web-service

front-end is required. The Management Interface is an entity-specific proxy that has a Web-service

interface on one end and an entity-specific interface on the other end. This proxy acts as

translator of Web-service based messages to entity-specific command.

 25

3.1. Framework Components

3.1.1. Hierarchical Bootstrap System

ROOT

EuropeUS

CGL

/ROOT/US/CGL

Service Adapter
wrapping a Managee

/ROOT/Europe/CARDIFF

...

... ...

CARDIFF

Manager Agent

Messaging Nodes

Local Registry (OR an
endpoint to a global registry

... ...

Submit
Management

Tasks

Parent Nodes ensure all
registered child nodes are

always up and running

Bootstrap nodes may be actively
replicated to provide fault-tolerance

Figure 2 Achieving scalability through hierarchical arrangement

The overall management framework consists of units arranged hierarchically. Each unit is

controlled via a bootstrap node. The hierarchical organization of units makes the system scalable

in a wide-area deployment.

The bootstrap service mainly exists to serve as a starting point for all components of the system.

The bootstrap service also functions as a key fault-prevention component that ensures the

 26

management architecture is always up and running. The service periodically starts, checks the

overall system health and if some component has failed, reinstates that component.

The bootstrap services are arranged hierarchically as shown in Figure 2. As shown in the figure,

we call the leaf nodes of the bootstrap hierarchy as being active bootstrap nodes. This means that

these nodes are responsible for maintaining a working management framework for the specified

set of machines (domain).

The non-leaf nodes are passive bootstrap nodes and their only function is to ensure that all

registered bootstrap nodes which are their immediate children are always up and running. This

is done through periodic heartbeat messages. Failure is detected when a heartbeat is not received

within a specified timeframe. We consider the following cases:-

1. If the connection is not lost but the child node has not sent a heartbeat message, the parent

node tries to contact the child node and check its health. If the connection can be re-

established successfully, the management process continues as before.

2. If the connection is lost, this could be either due to an intermediate network failure or

because the actual bootstrap process died.

In either case, the parent node may try to re-establish contact for K number of times. If successful,

the process continues as usual, else a network alarm is raised (e.g. e-mail the appropriate service

provider / administrator with failure details, or the parent bootstrap node automatically re-

spawns the child bootstrap node).

In our implementation, we assume that the root bootstrap node is always alive. If this node goes

down, the system administrator would bring this up in finite amount of time. Alternatively, the

root nodes themselves may be replicated, which ensure that at least one of the nodes is always up

and running. For instance, assume a 3-way replication. On failure, the live node can bring up the

other two failed node. This follows from the assumption that all three nodes do not

simultaneously crash.

 27

We now describe the main components of each unit of the framework. A unit of management

framework consists of one or more manageable resources, their associated resource managers,

one or more messaging nodes (NaradaBrokering brokers, for scalability) and a scalable, fault-

tolerant database which serves as a registry. The arrangement of these components is shown in

Figure 3. We now describe each of these components in detail. We will then discuss some of the

consistency and security issues in the system and means to address them.

Figure 3 Overview of a Unit of Management Architecture

3.1.2. Managee (Resource to be Managed)

We refer to Managee as the component that requires management. We employ a service-oriented

management architecture and hence we expect that these Managees have a Web service port that

accepts management related messages. In the case where the Managee is not a Web service, we

augment the Managee with a service adapter that serves as a management service proxy. The

service adapter is then responsible for exposing the managed resources of the Managee.

 28

3.1.3. Service Adapter

WS Management Processor

RESOURCE SPECIFIC MANAGEMENT
Maps WS-Management messages to Resource

specific operations

Resource to
Manage

Transport

Figure 4 Anatomy of a Service Adapter

The Service Adapter is a proxy that serves to primarily leverage NaradaBrokering’s publish /

subscribe framework. The Service Adapter also hosts the WS Management processor (Refer

Section 4.1) that provides a service-oriented management interface to manage the Managee. The

structure is illustrated in Figure 4.

In addition to serving as a management interface, the service adapter also performs the following

functions

1. Send regular heartbeat messages to the assigned resource manager process. This helps

the resource manager to determine aliveness of the Managee.

2. The Service Adapter may persistently maintain current Managee configuration. Updates

to the configuration would be written to stable storage whenever possible. This would

allow a failed Managee to be brought up quickly to the last known configuration.

3. Provide transport independent message delivery between the Service Adapter and

Manager via Messaging Nodes (Section 3.1.6). QoS is improved by employing multiple

 29

transports. If a particular transport is unavailable (blocked ports, authentication issues),

then the Service Adapter tries to poll for another transport that might be usable. E.g. If

direct TCP connection is not possible due to blocked outgoing ports, then messages may

be tunneled over HTTP/HTTPS/SSL connections to the Messaging nodes. Failure of this

connection is gracefully handled by retrying several times before concluding failure.

Further, the Service Adapter may try different Messaging nodes to connect to, should a

particular Messaging node be unreachable after several tries. An alternate way of

connecting to the best available messaging node is to use the Broker Discovery Protocol

[76].

4. Finally, the service adapter also periodically renews itself with the registry. As will be

discussed in later (Ref. Section 3.3.1), every service adapter has an instance id which

allows us to track duplicate instances of resources. If the current instance id of service

adapter is less than the instance id as seen in the registry, then the service adapter silently

cleans up and shuts down. This helps avoid duplicates.

3.1.4. Manager

A manager is a multi threaded process and can manage multiple resources at once. Manager

processes typically maintain very little or no state so that they can be easily replaced on failure.

This makes the manager robust. Section 5.5 discusses more on the maximum number of requests

a single manager can handle. The structure of management process is shown in Figure 5.

 30

Manager Heartbeat
Thread

Un-Managed Resource
Finder Thread

NB Transport

TCP Transport

HTTP Transport

UDP Transport

TRANSPORT SUBSTRATE

Message
Queue

Resource Specific
Manager

Event Listener

Resource
Management

Service Adapter
Manager Module

Heartbeat
Listener

Resource Specific
Manager

Event Listener

Resource
Management

Service Adapter
Manager Module

Heartbeat
Listener

Figure 5 Anatomy of a Manager Process

The Manager process supports multiple transports such as NB or plain UDP / TCP / HTTP. The

choice of a particular transport is determined by the quality of service desired.

NB is the most desirable mode of transport, since multiple entities can communicate over NB

transport by subscribing to an appropriate topic and publishing to a topic specific to the

destination entity. This makes the overall architecture scalable since only one physical connection

is required to an available broker for the Manager process to communicate with multiple

resources. Further NB can tunnel through firewalls and NAT and thus the Manager can manage

resources present behind firewalls.

Using TCP or HTTP is desirable when the target entity supports only these modes of transport.

UDP is typically used in communication with the registry rather than leveraging NB, as this

makes the Manager – Registry communication impervious to messaging node failures. Further,

using UDP also improves scalability of the system as there are no setup and connection

maintenance costs. UDP, however, suffers from packet loss and the system must employ retrying

of requests that did not elicit a response. Further, some operations may not be idempotent so the

system must also detect and discard duplicate requests.

The Manager process starts off with two main threads:-

 31

1. The Manager Heartbeat Thread that periodically renews the Manager in the Registry. This

allows other Manager processes to check the state of the currently managed resources

and if a Manager process has not renewed its existence within a specified time, all

resources assigned to the failed Manager are then distributed among other Manager

processes.

2. The Un-Managed Resource Finder Thread that periodically polls the registry to see if there

are any un-managed resources. The number of resources that a particular Manager

process manages is determined by the MAX_SAM_MODULES configuration property. This

may be set appropriately by experimentation for the type of resources in question. (Refer

Section 5.5 for an analysis of this quantity). If no resource could be found for

management, the Manager process exits. This allows the number of managers to

automatically adjust to only the required number.

The Manager process also has a queue-based transport substrate. The transport substrate

interfaces multiple types of transports as shown in the figure. Messages arriving are placed in an

internal Message Queue and are routed to their appropriate destination by a message routing

thread. Queuing of messages ensures that at no point is a thread busy processing a message

while blocking the incoming messages.

The Manager process spawns off a Service Adapter Manager Module for each resource that is

assigned to it. This module contains two threads, one specifically for processing heartbeats and

another for performing resource-specific management tasks (termed as the Resource Manager). If

the resource provides events via WS – Eventing, the resource manager may subscribe to these

events by maintaining an Event Listener.

The message flow between various components is illustrated in Figure 6.

 32

Get Un-managed
Resource

Unmanaged Resource’s
Endpoint ReferenceWill Manage

Resource
(Service
Adapter)

Manager Registry

HEARTBEAT Message

Renew Status

Manager assumes
responsibility of

Managing the Resource

Manager periodically
renews status

Dealing with
Missed Heartbeats

Missed HEARTBEAT

Request Status

No Response
Until TIMEOUT

Commit:
Resource is

UNREACHABLE

HEARTBEAT

HEARTBEAT

...

HEARTBEAT

HEARTBEAT
Renew Status

Manage

Manage

Get User Defined
Configuration

Update State

Response
Request State

ResponseManagement Process
done periodically

Response
Request State

Perform Operations IFF Required

Service Adapter
periodically renews its
Instance Id in registry

Renewal of Instance
Renewal Response

Figure 6 Message flow between components

Web-service Messaging

The manager – managee interaction is based on a Web-service based management protocol. Our

current implementation uses WS – Management based interactions. However, WS – Distributed

Management could also have been used. WS – Management was primarily chosen because of its

simplicity and also to leverage the Web-service based eventing model recently added in

NaradaBrokering messaging middleware. Details of the service-oriented messaging framework

are provided in Chapter 4.

 33

Managing Service Adapters through Heartbeats

The Manager periodically polls the registry to see if there are any available resources to manage.

On finding an un-managed resource, it performs the following steps:

The Manager contacts the Service adapter and registers itself with the Service adapter. This

implies that the Service Adapter will send heartbeat events to the registered manager. The

manager and Service Adapter may also negotiate communication characteristics such as duration

of heartbeat and security.

The Service Adapter periodically sends heartbeat message to the Manager. The manager keeps

track of the heartbeat messages to determine the status of the Service Adapter.

If a heartbeat is missed, the Manager tries to contact the Service Adapter.

• If SUCCESSFUL, the process continues as normal.

• If FAILURE occurs after several retries, the Manager may conclude the Service Adapter

as unreachable and updates the Service Adapter’s status in the registry. A consistency

problem may occur if two managers try to manage the same resource. Consistency is

handled as discussed in Section 3.3.1.

The Manager maintains only short term state and periodically updates the overall state in the

registry.

Periodically, the Resource Manager reads a user-defined configuration from the Registry and

matches it with the current state of the resource. If the states do not match, the Resource Manager

performs operations on the Resource. Finally the state is updated in the Registry.

Managing Managers

The managers follow the Passive Replication scheme. If the manager fails for any reason, the

manager’s state does not get updated in the registry as frequently as it should. When a manager

process queries the registry for available resources to manage; the registry also includes resources

 34

whose assigned managers have not renewed their state within the time limits defined by system

parameters. Thus, if managers fail, their assigned resources automatically get re-assigned to an

existing Manager process. Thus, detection of failure and recovery takes a finite amount of time

rather than being instantaneous. An analysis of recovery period is presented in Section 5.8.4.

Fault Tolerance

One would usually run multiple managers. As mentioned previously, manager process maintain

very little or no state. This state is regularly committed to the registry. Thus, if a manager process

fails then the resource that it was managing can be easily assigned to another manager process.

This allows the new manager to continue managing the resource in the event of failure of the old

manager process. The newly created resource manager then reads the user-defined state from

registry and gathers the current state of resource by querying the appropriate service endpoint.

These two states are matched and any inconsistencies are appropriately resolved by the resource

manager.

Event Handling

Various application-specific runtime events are generated by managed components (Managees).

The resource manager can set appropriate access rights as to which entities are allowed to

subscribe to specific events generated by the Managee. In cases where a large number of events

are produced or events are produced at a very high frequency, the manager may get overloaded

while handling all types of events. This factor should be taken into consideration when designing

the system and limiting the number of resources a single manager should manage. Further, in the

case that a resource manager does not have the necessary functionality to address the variety of

events that might be generated, a separate service responsible for handling specific type of events

may be employed. This service may in turn be configured and managed through the

management architecture.

 35

3.1.5. Registry

REQUEST
PROCESSOR

In-memory
CACHE

Registry Service

TR
A

N
SP

O
R

T
SU

B
ST

R
A

TEREQUEST

RESPONSE

DATABASE
LOCAL

FILE SYSTEM

PERSISTENT
STORE SERVICE

WS-CONTEXT
SERVICE

...

In-Memory Cache for quickly
serving READ() operations

Internally Distributed for scalability
and faul-tolerance purposes

Figure 7 Anatomy of a Registry Service

The Registry stores system state. System state comprises of runtime information such as

availability of managers, list of resources and their health status (via periodic heartbeat events)

and system policies, if any. General purpose information such as default system configuration

may also be maintained in the registry.

Usually read operations can be directly served from an in-memory cache but writes are always

written directly to the persistent store. Figure 7 shows an overview of registry internals. The

Request Processor provides logic for manipulating the data stored in the registry. This mainly

includes checking for manager processes that have not renewed within the system defined time

frame and to serve as a matching engine to match new resources to managers. The request

process service may be replicated to provide fault-tolerance. If case of multiple instances of

request processor services, we assume that these services are appropriately configured to load-

balance incoming requests while the registry service component as a whole automatically

provides consistency of persisted information.

The registry is backed by a Persistent Store Service which allows the data written in registry to be

written to some form of persistent store. Persistent stores could be as simple as a local file system

or a database or an external service such as a WS – Context [77] service. We assume the persistent

 36

store to be distributed and replicated for performance and fault-tolerance purposes. Thus, the

local file-system could use a mirrored RAID disk storage for tolerating disk failure. Similarly the

database component can replicate at a remote site.

Implementation of such a registry service is out of scope of our current work. As a prototype, we

provide an implementation that stores entries in memory and optionally can persist to local file

system.

3.1.6. Messaging Nodes

Messaging nodes consist of statically configured NaradaBrokering broker nodes. The Messaging

nodes form a scalable message routing substrate to route messages between the Managers and

Service Adapters. These nodes provide multiple transport features such as TCP, UDP, HTTP and

SSL. This allows a Managee, present behind a firewall or a NAT router, to be managed (e.g.

connecting to the Messaging node and utilizing tunneling over HTTP/SSL through a firewall).

By employing multiple Messaging nodes, one can achieve fault-tolerance as the failure of the

default node automatically causes the system to switch to using a backup Messaging node. We

assume that these nodes rarely require a change of configuration. Thus, on failure, these nodes

can be restarted automatically using the default static configuration for that node.

3.1.7. User

The user component of the system is the service requestor. A user (system administrator for the

resources being managed) specifies the system configuration per Managee which is then

appropriately set by a Manager. In some cases, there would be a group of Managees which

require collective management. An example of this is the broker network where the overall

configuration of the broker network is dependent on the configuration of individual nodes.

System configuration (Refer Chapter 6) is set by the user while the execution of necessary actions

 37

is performed by the management architecture in a fault-tolerant manner. The user interface for

Broker Management is explained in detail in Appendix A.

3.1.8. Fork Process

For the purposes of our implementation, we assume daemon processes running on hosts where

the system is installed. These daemon processes (referred henceforth as “Fork Process”) are used

to spawn various components of the system, such as, bootstrap service, manager processes and

whenever possible, even service adapters for certain resources. If a host is physically rebooted,

we assume the host’s initialization script to automatically start the fork process.

3.2. Summary of components

The various components of our architecture are summarized in Table 1.

Bootstrap

Service

Bootstrap service is used to bootstrap the system and also ensure fault-tolerance of

the entire management architecture. The bootstrap nodes are arranged

hierarchically to scale the system over a wide area. This is detailed in Section 3.1.1.

Managee

Managee represents the actual resource being managed. Aliveness of these

components is detected by periodic heartbeat events sent by the associated service

adapter. This is described in detail in Section 3.1.2.

Service

Adapter

Service adapter serves as a mediator between the manager and the Managee. The

service adapter component is explained in more detail in Section 3.1.3.

Manager

Manages the Managee by sending appropriate messages to the service adapter.

The interactions are based on a Web-service based management protocol such as

WS Management, although WS – Distributed Management could also be used. The

 38

Manager is explained in detail in Section 3.1.4.

Registry
The registry component is used to maintain system state. Details are provided in

Section 3.1.5.

Messaging

nodes

Messaging nodes provide a scalable, transport protocol independent messaging

substrate. Details are provided in Section 3.1.6.

User
The user is the service requestor and functions as the administrator of the

resources being managed. This is explained in detail in Section 3.1.7.

Fork

Process
Used to spawn processes on remote hosts. Explained in detail in Section 3.1.8.

Table 1 Summary of Architecture Components

We now discuss how the desired features mentioned in Section 1.3 can be addressed:

Fault-tolerance is primarily achieved by leveraging a fault-tolerant registry to store systems state.

The system components are themselves made fault-tolerant by periodically running system health-

checks to ensure that all crucial components of the management architecture are alive. A

hierarchical bootstrapping mechanism ensures that individual domains are alive and on failure,

can try to instantiate the failed domains.

Scalability is achieved on two levels: (a) In each individual unit of management framework, the

use of a messaging substrate improves scalability by reducing the number of physical

connections required between a manager process and the messaging node and (b) The units

themselves are arranged hierarchically to scale the system for wide-area deployment.

 39

Interoperability is achieved by leveraging a Web-service based messaging protocol for

management of resources.

The system can deal with any type of resource (hardware or software) by suitably wrapping the

resource with a wrapper to provide a Web service interface. This makes the framework generic

for use with any type of resource.

Finally, the system is autonomous and handles failures with minimum user interaction. This

makes the system usable for management needs.

We will discuss performance in Chapter 5.

3.3. Issues in Distributed System

A distributed system has to deal with various issues to successfully function. We have addressed

scalability and fault-tolerance as two important characteristics. We now discuss two other issues

namely, Consistency and Security and provide the means to address them.

3.3.1. Consistency

Distributed systems are faced with many consistency issues such as duplicate requests, messages

arriving out of order and multiple instances of resources leading to inconsistency. Specifically,

this raises a number of consistency issues in our system such as:

1. Two or more managers managing the same resource;

2. Old messages reaching after newer messages;

3. Multiple copies of resources existing at same time (Orphaned resources). This is true

when resources are software services and the management framework spawns a new

instance of the service to account for a possible failure of the old instance and

 40

4. Multiple system health check routines spawned by the bootstrap service may see

incoherent system state exacerbating the consistency of the system state.

To address these issues we impose the following consistency check scheme:

i. We rely on the registry to generate a unique Instance ID (IID) per instance of resource or

manager thread created. This ID could be an NTP timestamp or a simple sequence number

that is guaranteed to be unique and monotonically increasing. Further, we assume that

when the registry generates this number, all replicas of the registry have the same view of

the number.

ii. Every time a new resource requires management, it needs to register itself with the

registry. Further, each service adapter periodically registers its presence in the registry.

This facility is required to determine duplicate resources (in the case when the

management framework can create new instances of resources such as by means of

spawning processes). The resource’s service adapter automatically gets its instance id when

it registers in the registry and is returned via the registration response. Also, during

renewals, the registry simply returns the current known instance id.

iii. A resource-specific manager thread also obtains its unique Instance ID when it is assigned a

resource to manage. This unique id is used by the resource-specific manager to construct a

unique Message ID to be used for every message sent from that entity. This Message ID is a

combination of the sender’s Instance ID and a monotonically increasing sequence number.

Retries of requests use the same Message ID rather than generating a new Message ID. This

allows the resource to discard duplicates.

We now discuss, how the above inconsistencies may be resolved using these restrictions:

1. If a manager process is considered dead / unreachable due to a missed / delayed

heartbeat, the health check spawns a new manager process to take over the responsibility

of managing the resources which were being managed by the previous manager. If the

 41

old manager tries to invoke a management operation on the resource, the service adapter

looks at the message and can disregard the old manager’s request. Thus, a request

coming from a manager with Instance ID A (IIDA) is considered by the resource’s service

adapter to be obsolete if the resource is currently being managed by a manager with

Instance ID (IIDB) and if IIDA < IIDB.

2. By keeping track of the last known successfully processed message’s message ID,

duplicates and obsolete messages may be discovered and discarded.

3. In some cases, a user-defined policy may cause new instances of resources to be spawned

when an old resource is deemed unreachable. In such cases, if the old resource comes

back up, we get multiple duplicate resources existing at the same time. This may lead to

application specific inconsistencies.

We assume that in such a case, if a user defined policy states that a new resource can be

instantiated, a user defined policy also exists on how to deal with multiple copies of

resource. Given this assumption, duplicate resources may be detected and

inconsistencies may be resolved as follows:

a. Consider a resource-specific managers M and an instance R1 of resource R.

Assume, M is managing R1 and at some point concludes that R1 is unreachable.

M then instantiates R2 by virtue of a user-defined policy.

b. Soon after, R1 comes back up and sends heartbeat / event to manager M. In the

current implementation, M discards this heartbeat / event. Hence, it will no

longer manage R1.

c. Further, R1 periodically renews itself in registry also. The registry response is

simply the current known instance id of the resource R. When R1 sees that R2

exists such that R2 > R1, R1 silently shuts down.

 42

4. To prevent multiple health checks from running at the same time and introducing

inconsistencies in the system, we implement the following policy:

a. Health check always runs for a pre-determined time interval x, during which it

either reports success back to the bootstrap node OR self-terminates, if it cannot

successfully bring up failed components of the management framework. Further,

it also sends periodic heartbeats to the bootstrap service to note that it is alive

and running.

b. If the health check routine becomes unreachable from the bootstrap service and

is unable to deliver heartbeats in timely fashion, the bootstrap node may

conclude that the health check routine is dead and spawn a new health check

process. This may introduce race conditions and inconsistencies if the old health

check process is not actually dead.

c. To prevent this, the bootstrap service will always wait a little over the time

interval of health check x, before re-spawning a new health check routine, unless

the existing health check routine has reported success. Thus, even if the previous

health check is unable to deliver heartbeats, it would have self-terminated after

its interval x.

As a final note, the auto instantiation scheme presented above poses a problem when systems get

partitioned and managers in each partition spawn duplicate processes to compensate for all

missing processes. As an illustration, if one partition (A) contains about 97% of resources, while

the other partition (B) contains 3% of resources, the managers can end up building an extra 97%

of missing resources on partition B. This problem would become significantly complex if there

were 3 partitions containing 98%, 1% and 1% of resources. While we consider this situation as

being out of scope of our current work, we imagine specification of appropriate mechanisms and

policies to handle such situations.

 43

As an illustration, a failure-recovery mechanism could state that spawning processes to

compensate for missing resources should be done only if the missing resources do not exceed y%.

A user-defined policy would set y = 3, thus ensuring that managers do not spawn more than a

fixed number of duplicate resources.

3.3.2. Security

A distributed system gives rise to several security issues such as but not limited to:

1. Denial of service attacks

2. Unauthorized users accessing resource

3. Man in the middle attack that impersonates an entity

4. Malicious users modifying messages (such as when a messages passes over insecure

intermediaries)

The NaradaBrokering messaging substrate provides schemes for dealing with such types of

issues. We present an overview of these schemes below:

1. The Topic Creation and Discovery scheme [78] ensures that the physical location of the

entities (such as host and port) is never revealed. This is the first step towards providing

denial of service. Further, the topic creation scheme ensures that every entity has a

unique topic and discovery of this topic is restricted in many ways such as by providing

an access control and presenting valid credentials. This prevents unauthorized clients

from finding resources or sending garbage messages to essential services.

2. The Security Framework [67] provides secure end-to-end message delivery of messages.

The security infrastructure requires all entities to provide valid credentials before they

can exchange messages. Entities are identified by the entity’s digital certificate which is

validated against a root certificate authority’s certificate. Once validated, the entity can

request creation of a session key which can be used for all further communication with

 44

that entity. This scheme provides security against man-in-the-middle attacks, message

modification and inspection of encrypted messages when traveling over insecure

intermediaries.

3. Use of digital signatures helps establish trust and detect modification of message by

malicious entities.

 45

Chapter 4. Service-Oriented Management

In this chapter, we present an overview of the implementation of WS – Management framework

for modeling management interactions. As described in Section 2.3.1, the WS Management

framework only defines the minimum required interactions and the application is free to extend

beyond this minimum specification. Further, a manageable endpoint is not required to support

all interactions specified (such as GET, PUT, CREATE, DELETE, RENAME) but only those that make

sense in the particular context of the application. Further, not all manageable resources would

provide enumeration or the eventing model. However, it is required that if an application intends

to support these models then it must implement the WS Enumeration [79] and WS Eventing [72]

specifications, respectively.

 46

4.1. The WS Management Processor

The WS Management specification provides basic functionality by leveraging WS-Enumeration

[79], WS – Transfer [80] and WS – Eventing [72] specifications. Any other resource-specific

operations can be defined in addition, if the existing operations are not sufficient for the

management requirements. The basic WS Management processor can then be deployed using the

Service Adapter to provide a WS – Management interface. The WS Management implementation

contains components as shown in Figure 8.

Figure 8 WS Management Processor

Once a message is received, the WS Management processor processes the message according to

the steps illustrated in Figure 9. The processing begins by checking the maximum envelope size for

the response. WS Management specifies that if the maximum envelope size is specified then the

minimum size must be 8192 octets to reliably encode all possible faults. This element may be

discarded if mustUnderstand is set to FALSE. When TRUE and the value is less than 8192, a

fault is thrown.

 47

Extract SOAP
Message

Max Envelope
Size Specified

If Size
specified, Size

OK ?

Operation
Timeout specified

?

Fragment
Transfer ?

START
Timer

Mark
Fragment

SEND Fault

Timer
Expired ?

Process
Message

Send
Response

NO

NO

NO

NO

YES

YES

YES

YES

Note Size

YES

NO

Message
Recieved

Verify Locale
Supported ?

NO

YES

FAULT

Figure 9 WS Management message processing flowchart

 48

Management operations typically span locales, and many items in responses can require

translation. Typically this applies to descriptive information intended for human readers which is

sent back in the response. Translation of such information to a specific language can be specified

by an optional locale element. If the message processor is unable to process the requested

translation, an appropriate fault is thrown. In our implementation, non-English locale results in a

fault.

An operation timeout may be specified to indicate that a response is desired within the specified

timeframe. If specified, a timer is started. If a response is indeed generated (success or failure) the

timer is cancelled. However, if the timer expires before the processing has finished, a TimedOut

fault is sent back to the requestor. WS Management states that any state changes that may have

occurred during the processing, are later inspected by the requestor by making one or more GET

requests to retrieve the service state.

Other processing such as Fragment Transfer and Locale check are done. Fragment transfer is

required when the request size is too big to send in one single message hence the request may be

fragmented. It is the service’s responsibility to determine the logic of dealing with fragmented

requests. Finally, the Process Message block is invoked. Depending on the characteristics of a

particular resource, only a subset of operations may be supported.

A final check happens just before the message response is sent. As discussed above, if the

maximum response size constraint is not met, a fault is sent instead of the actual message.

According to WS Management, the resource itself may be queried for state which would provide

a hint as to the success or failure of previous operation. Idempotent operations may be re-

invoked by specifying a suitable maximum response size.

 49

4.2. WS Transfer

The main operations (GET, PUT, CREATE, DELETE) are leveraged from the WS Transfer

specification and this forms the basis of WS Management processor. The framework provides an

abstract class WSManProcessor which must be extended to provide the correct functionality.

The WSManProcessor provides abstract functions for the above operations including the

RENAME operation (defined by WS Management). It is the service writer’s responsibility to return

an UnsupportedFeature fault when the resource does not wish to provide functionality for

one or more operations.

If the resource provides runtime events or allows for enumeration, the functionality can be

provided by extending the WSEvProcessor or WSEnProcessor respectively. Further, for

extensibility purposes, where the resource requires enabling management through a richer set of

functions, the ResourceSpecificOperationProcessor maybe extended to provide

resource-specific functionality.

We now describe each of these functionalities below. An example of how a resource management

framework may be built is shown in Appendix D.

4.3. Eventing

WS Eventing allows a management interface to send notifications to interested entities (referred

to as event subscribers). We leverage WS Eventing from NaradaBrokering’s support for Web

service Eventing. NaradaBrokering provides the event generator (event source) and event

receiver (event sink) interfaces. Our architecture reverses these roles. Thus, the WSEvProcessor

(Service Adapter side) behaves as an Event Sink for the generated events. These events are sent

over the Service Adapter’s transport over to the Resource Manager where a WSEvClient

functions as an Event Source and provides events to the appropriate sink running on the

Resource Manager. This is illustrated in Figure 10. A separate component (the WS Eventing

 50

Subscription Manager) must be run. This component interacts with the Event Generator to store

valid subscriptions. This component is itself a Web service and is currently accessible by sending

messages to the SUBSCRIPTION-MANAGER topic.

WSEventing
Event Generator

WSManProcessor

WSEvProcessor
(Event Sink)

Resource Manager

WSEvClient
(Event Source)

WSEventing
Event Sink

Requests are forwarded
to Event Generator,

Events are sent through
WSEvProcessor

RESOURCE

Eventing Requests
(Subscribe, UnSubscribe,
Renew, etc..) and Events

EVENTS

WS Eventing
Subscription Manager

SERVICE ADAPTER

Resource-specific
Event Handler

External Service used
for storing subscriptions

Events are sent over Service Adapter’s
transport to the Resource Manager

Figure 10 Event Flow between Resource and Resource Manager

4.4. Enumeration

 Usually managed resources produce logs or contain multiple entries in internal containers which

form the resource state. Such entries may be retrieved by enumerating the resource’s containers.

The resource may provide such a capability by implementing the WSEnProcessor.

The WS Enumeration processor internally assigns unique ids for enumerations (referred to as

Enumeration Context) for each valid enumeration. Invalid enumeration contexts (e.g. expired or

unknown) are automatically dealt with by the framework during validation of incoming

enumeration requests. However, the responsibility of actual data management lies with the

resource. Further, the resource can control supported operations. Thus, for example if the

 51

resource does not support enumeration renewals then the service adapter must throw an

appropriate fault such as UnableToRenew.

4.5. Extensibility

Resources may provide additional resource-specific functionality which cannot be modeled by

the default operations provided. This functionality is provided by implementing the

ResourceSpecificOperationProcessor abstract class. This interface provides a simple

function processResourceSpecificMgmtRequest which can define additional resource-

specific management message handling.

4.6. Summary

In this chapter, we presented a brief overview of the two Web service based management

protocols. We discussed the reasons for our choice of implementing WS Management and

provided an overview of the WS Management framework.

 52

Chapter 5. Performance Analysis

In this chapter, we present an analysis of the system and present benchmark results. The main

purpose of benchmarking analysis is to show the feasibility of the system. We describe our

benchmarking approach and include observed measurements.

5.1. Introduction

Our first experiment is to establish a base level for the maximum publish rates supported by a

NaradaBrokering Broker. To measure this, we setup a measuring subscriber that sums up the

total messages received in a 5 second interval. Our observations indicate that the broker can

support in excess of 5000 messages / sec when the message size is about 512 bytes and in

excess of 4500 messages / sec when the message size is about 1024 bytes.

 53

Since majority of the message interactions comprise of messages which can be encoded using ~ 1

Kbytes (Refer Table 3, Table 4), we assume “5000 messages/sec” as the maximum publish

rate that can be supported by the broker. We use this as the basis for all the analysis presented

henceforth.

5.1.1. System Configuration

All our experiments were conducted on the Community Grids Lab’s GridFarm cluster (GF1 –

GF8). Table 2 summarizes the configuration of the machines

Component Details

Processor Dual Intel Xeon (2.4 GHz) Hyper threaded CPUs.

Memory 2 GB RAM

Operating System Linux 2.4.22-1.2199.nptlsmp

Java Version Java Hotspot™ Client VM (build 1.4.2_03-b02, mixed mode)

Network Linked via a 1 Gbps link

Table 2 Test Machine Configuration

5.2. XML processing overhead

The WS Management framework (presented in Chapter 4) was implemented in Java. We have

used the XMLBeans [81] version 2.0.0 for mapping the schemas to Java Objects. WS Management

relies heavily on the SOAP 1.2 specification, specifically for handling faults. SAAJ (Soap

Attachments API for Java) version 1.3 supports SOAP 1.2. However, to maintain compatibility

with other leveraged software packages, we implemented our own SOAP marshalling and un-

marshalling framework using XMLBeans.

XMLBeans does not validate documents by default. Hence, before each requested operation is

executed, we validate the corresponding XML against its schema. In some cases, additional

processing is necessary for completely inspecting the message. This processing primarily includes

 54

matching the requested <wsman:ResourceURI> and <wsman:Selector> with the resource

instance.

In this section, we present some results on the costs associated with marshalling and un-

marshalling the various management messages in the system. The benchmarks are presented in

the context of messages used in managing the NaradaBrokering messaging system (Refer

Chapter 6).

We measure the time taken to create and process a request and response message. Table 3 shows

the timings and typical message sizes for requests. The marshalling time refers to the time

required to create the request. This message is then processed by a WSManProcessor which

checks for various WS Management constructs such as OperationTimeout, Locale, and

MaximumEnvelopeSize and also is responsible for conversion of byte representation of XML to

usable Java objects. After this step, the message (Java representation) is forwarded to the actual

resource’s management interface which may do additional processing on the message.

Specifically, this step checks for valid input data.

Once a response is determined, we measure the time it takes to create the response. Table 4 lists

the associated response messages and typical message sizes. In the marshalling step the response

is checked for maximum envelope size and then marshaled. This response message is then

processed by the WSManClient which preprocesses the message to check for faults before

delivering it to the resource manager thread. The Broker specific XML processing refers to

inspecting the response and validating the XML.

Unmarshalling (msec)

Operation
Typical Message

Size (Bytes)

Marshalling

time (msec)
Generic XML

processing

Broker Specific

XML Processing

Create Broker 813 1.332 2.411 0.078

Get Broker

Information
809 0.928 1.377 0.059

 55

Create Link 1194 1.189 1.36 0.703

Delete Link 1102 1.207 1.558 0.626

Delete Broker 934 0.954 1.381 0.236

Set Broker

Configuration
2590 4.028 1.428 1.301

Table 3 Time spent in processing WS Management formatted REQUEST messages for Broker

Management

Unmarshalling (msec)

Operation
Typical Message

Size (Bytes)

Marshalling

time (msec)
Generic XML

processing

Broker Specific

XML Processing

Create Broker 1108 0.565 1.058 0.274

Get Broker

Information
1398 0.454 1.26 0.528

Create Link 1214 0.602 1.027 0.301

Delete Link 726 0.363 0.936 0.161

Delete Broker 726 0.353 0.911 0.154

Set Broker

Configuration
724 0.381 0.87 0.217

Table 4 Time spent in processing WS Management formatted RESPONSE messages for Broker

Management

Each of the above operations was run 1000 times and the average time was reported.

To find the average XML overhead per operation we add the marshalling time for XML, the

generic and broker specific XML processing for requests and their associated responses. Thus, for

example, the “Create Broker” operation takes about

1.332 + 2.411 + 0.078 + 0.565 + 1.058 + 0.274 ≈ 5.7 msec

We observe that, the average total XML overhead is about 6 msec per operation. The “Set Broker

Configuration” request operation puts each broker property and hence the message size is much

 56

higher. However, this operation is invoked only once before creating a broker instance and hence

the overhead is acceptable.

For responses, the DeleteBroker and DeleteLink, operations take approximately the same

time since in both cases a <ResourceDeleted> element is sent back confirming the deletion.

5.3. Maximum Resources managed per Manager Process

In our architecture, the Manager process is multithreaded. Per resource being managed, there are

3 threads: the first periodically checks the heartbeat status for aliveness of managed resource, the

second monitors the events originating from the Managee, and the third performs the actual

management work. A separate set of threads maintain internal queuing whose primary work is

to dispatch incoming messages to appropriate threads for further processing. Finally, transport

level objects require their own set of threads (e.g. a TCP Listener thread that listens for incoming

TCP connections / UDP listener thread that listens for incoming datagram packets). We maintain

a connection pool with the messaging node so there would be additional P threads which

represent the size of connection pool (P). Thus, per Manager process there are a total of

D*(THManagement + THHeartbeatCheck + THEventProcessing) + P * THTransport +

THManagerProcessing

= D*(1 + 1 + 1) + P * 1 + THManagerProcessing

= 3D + P + THManagerProcessing

Where, D is the number of resources a manager process is managing and P is the size of

connection pool with the broker (typically ~ 10). Further, THManagerProcessing is a very small

number (~ 5). Thus, we get, number of threads

≈ 3D + 15

Further, each resource has to maintain some resource-specific state that gets updated and written

to registry at regular intervals. This data is very resource-specific and determines the number of

 57

threads that can be spawned. Figure 11 shows the number of threads that can be spawned when

each thread maintains a specific amount of resource state.

Figure 11 Maximum threads spawned when each thread maintains resource state of specified

buffer size

The state size per resource is very dynamic and is very resource-specific. We present the analysis

in case of broker management in Section 6.9.1.

As an illustration, assume that the state size for a typical resource is 16 Kbytes. Note that not all

threads in a system maintain 16K state. Assuming only the management threads maintain 16K

buffers and heartbeat threads maintain much less state, the total possible threads would be

approximately (7000 + 4000) / 2 ≈ 5500.

With 3D + 15 threads per process and approximately 5500 allowed threads, we get D ≈ 1800.

Thus, theoretically, approximately 1800 resources can be managed by a single Manager process.

However, as the number of threads increases, the response time per thread also increases (Refer

 58

Section 5.5). System policy dictates how much response delay each resource can tolerate which

would affect the number 1800 derived above.

5.4. Initialization Costs

The steps in the initialization process are as follows:-

Repeat while More Resources can be Managed

{

 RSA = Get UNMANAGED Service Adapter from Registry

 Initialize Service Adapter Manager Module

 for Registered Service Adapter (RSA)

}

As discussed above, a single manager process can manage multiple resources (theoretically ~

1800) but can only process a specific number of concurrent requests. We analyze this factor in

more detail in Section 5.6. The initialization cost typically involves reading from registry and

initializing the resource –specific management thread. Read from registry typically takes about 5

msec and depends on the amount of data read from registry. Initialization of resource-specific

management thread is a resource-specific activity. We note that this is a one time cost.

5.4.1. Discussion

The registry is the central part of the whole system and limits the number of queries that can be

executed every second. The “Get UNMANAGED Service Adapter” operation is not a simple “Get”

operation but involves going through all existing Registered Service Adapters and finding the

first best match.

This usually involves finding a service adapter which was previously deemed UNREACHABLE or

the service adapter was never MANAGED or if a MANAGED service adapter is found then the

 59

associated manager has not successfully renewed in the MAX_ALLOWED interval. The currently

implemented algorithm is summarized in the following pseudo-code:

FOR EACH Service Adapter x REPEAT

IF x.status == UNREACHABLE, then that SAM-Module has relinquished

control of the service adapter. Now find another service adapter 'y'

such that

 y = ServiceAdapter

 WHERE ((y.status == UNREACHABLE ||

 y.status == REGISTERED AND x != y)

 ||(y.status == MANAGED &&

 (currentTime - y.manager.lastRenewal > MAX_ALLOWED)))

IF (y != NULL) then such a service adapter is indeed found

 set y.status = MANAGED;

 set y.manager = myManagerID

 return y;

Here, the first condition selects a new service adapter y, if the following 2 conditions are met

1. y was previously unreachable or y has recently REGISTERED and was never managed.

2. y is currently being managed but the Manager process currently managing y has not

renewed itself in the maximum allowed time.

The second condition above, automatically assigns management of resources to alternate

managers when their associated managers have failed.

For simplicity, the current implementation implements this as an O(N2) operation. To see how,

note that the first request goes through only 1 record, the second request goes through 2 records

 60

and so on. The Nth request goes through all N records. Thus, on an average 1 + 2 +...+ N =

N*(N+1)/2 = O(N2) reads are done.

This may be reduced to an O(N) operation at the cost of maintaining 2 tables, one for

UNREACHABLE and REGISTERED service adapters and another one for MANAGED service

adapters. Only when a suitable service adapter is not found in the first table, the second table will

be consulted. Once a service adapter is selected, it would be moved to the MANAGED service

adapters table. Similarly, when a service adapter is deemed UNREACHABLE, it is moved to the

first table. Lookup in first table is O(1) since always the first record would match. Lookup in

second table will still be O(N2), but would help to reduce startup costs. If there is any specific

resource matching to be performed, this step would still require going through the entire table to

find the best possible match.

5.5. Runtime Response Costs

The most important deciding factor which determines the maximum number of requests a

manager process can handle is how the response time varies as the number of resources being

managed by a single process increases. This would also enable us to formulate the number of

Manager processes required and the number of resources that can be managed by a single

instance of the management architecture. We define a single instance as comprising of one or

more messaging nodes, one Registry and one or more Manager processes. Finally, this number

also determines how the system scales.

The test setups are shown in Figure 12. As shown in the figure, we increased managers on single

machine (Setup A) and multiple machines (Setup B). The testing methodology was as follows:

1. The resources are run via a thread pool that sends pre-generated events to the managers.

2. Just before sending these events, we start a timer.

 61

3. In response to the events, the resource-specific manager thread responds back to the

resource.

4. When all managees get their corresponding response, we stop the timer and the difference

corresponds to the overall response time.

Setup A: Running Managers on same machine

Setup B: Running Managers on multiple machines

Broker Resources

Broker Resources

Figure 12 Test Setup

5.5.1. Observations

As expected, with an increase in the number of managed resources, the number of threads per

manager process grows (roughly 2 x Number of Managed resources). Thus, the average response

time increases. In our case, there was no registry access during processing of the event, however,

this behavior is resource-specific and may require one or more registry accesses in certain cases.

The detailed results are included in Appendix B. We summarize the observations below:

 62

1. Figure 13 (a) shows the average response time as we increase the number of managers on a

single machine. Figure 13 (b) shows a close-up of the average response time for 2 and 4

managers. We note that on the same machine, increasing managers beyond the number of

available processors does not improve average response time. This is because the processes

contend for processors and the hence the observed time for running 4 managers on a 2

processor machine is slightly higher than running 2 manager processes on a 2 processor

machine. We attribute the difference to context switching between processes.

(A) (B)

Figure 13 Increasing managers on same machine improves performance. However, there is no

significant difference when number or manager processes is greater than number of

processors on the machine

2. Further, running managers on different machines decreases the average response time as

number of managers are increased (Figure 14).

3. Finally, we note (Ref. Figure 15) that average response time increases linearly with the

number of concurrent requests but shoots up as the managers become saturated.

 63

(A) (B)

Figure 14 Increasing managers on multiple machine improves performance

(A) (B)

Figure 15 Managers saturate and response time stops increasing linearly

5.6. Performance Model

Figure 16 shows the components of the average response time. These components are as follows:-

TP = Processing time per request at the manager

TX = Message transit time at broker. This value is ≈ 1 msec when broker is not saturated

 64

TR = Processing time at Resource (which is minimal for testing purposes) and represents the un-

marshalling cost of response. Our test measurement does not consider cost of processing the

response, but simply the minimal cost associated with arrival of response (un-marshalling XML).

Apart from these factors, there is network latency LMB between Manager and Broker, and LBR

between Broker and Resource

Thus, for any event, the total event handling time TE is the sum of all above:

TE = TP + 2 * (LMB + TX + LBR) + TR(1)

Figure 16 Modeling components of response time as seen by the resources

Note that the multiplier 2 refers to request and response. We now discuss the various factors as

follows:

To compute TX, note that a single broker (when not saturated, can give throughput up to 5000

messages /sec) for message sizes 512 bytes, and > 4500 messages/sec for message size 1024 bytes.

For sake of illustration, let us assume the maximum throughput to be about 4000 messages /sec.

For N concurrent requests, we have N responses and so as long as 2N < 4000, the broker is not

saturated, i.e. the broker transit time can be ignored for N < 2000. Since we posit, that each broker

can support up to a maximum of 800 resources we consider TX to be very small.

 65

Further the Network latency will be considered as a constant L i.e.

L = 2*(LMB + LBR) ...(2)

Further, TR is constant and represents the un-marshalling costs of the response (about 1 msec).

We consider all constants as

K = L + 2*TX + TR ..(3)

Thus, the total event handling time (as seen by individual resources), from (1), (2) and (3) is:

TE = TP + K ..(4)

Further, TP can be broken down into time required for the processing thread to perform

additional operations (TEXTERNAL), pure processing (TCPUMANAGER) and an additional time spent in

process scheduling (TSCHEDULING).

The external operations include one or more registry or disk accesses. If external calls are

blocking calls, this allows other requests to be handled while the thread blocks on response from

external dependent components. In our experimental setup, there is no external dependency

while handling the event and so TEXTERNAL = 0. So our model refers to a case where the only time

spent is processing the message and there is no dependence on external factors.

TSCHEDULING becomes significant when there are more processes than available processors. For

E.g.: This explains why the average response time when running 4 managers on single machine is

slightly greater than running 2 managers on a single machine, where the machine, GridFarm, has

2 available processors per machine. While, further analysis of this factor is out of scope of our

current work, we note that this factor should be considered when determining the number of

managers that must be run per machine given a desired quality of service (such as average

response time when all managed resources simultaneously generate events).

Finally, TCPUMANAGER is a Resource-specific activity that includes the necessary processing

including un-marshalling of request and marshalling of corresponding response.

 66

Thus, we get,

TP = TCPUMANAGER + TEXTERNAL + TSCHEDULING

Further, on hyper-threaded processors, multiple requests can be processed simultaneously. If C is

the number of threads that can be simultaneously active, then up to C requests can be processed

in time TP. Thus, the average time required for processing C requests is TP/C and the total time

for processing N requests (TPROC) is

TPROC = (N/C)*TP ..(5)

N = Number of concurrent requests

TP = Processing time per request on manager's side

C = Maximum number of threads that can execute simultaneously (C = 2 in our case, for hyper

threaded processors)

As an illustration, we collected the average of event processing times for 150 resources (using a

single manager on 1 machine) and we get an average value of TP = 8.37 msec. Thus,

TPROC = (N/C)*TP = (N/2)*8.37 ≈ 4.2*N(6)

Thus, total observed time (theoretical, assuming TP = 8.37) for processing N concurrent events is

TOBV = TPROC + K

 = (N/C)*TP + K

 ≈ 4.2*N + K..(7)

Here K represents the constant (that combines network latency, broker transit time and un-

marshalling time on resource). Since the number of resources only affects the processing time at

manager, this constant is independent of N as long as the broker is not saturated with processing

messages.

 67

Further, our test setup runs on Grid farm machines which has every processor hyper-threaded

i.e. it can run a max of 2 threads simultaneously (C = 2). Thus, the maximum request

processing rate by a single multithreaded manager process is

D = (C/TP) requests/sec

Further, the manager will not be overloaded as long as the total requests to be processed are <=

maximum outgoing rate i.e. <= D. When the manager is managing more than D requests, the

manager gets overloaded. Hence, we would see degradation in performance. Thus, D determines

the maximum number of concurrent requests that a single manager can handle with linear

increase in response time.

As an illustration, theoretically (for TP = 8.37 msec and C = 2),

D = (C/TP) * 1000 = (2/8.37) * 1000 ≈ 239 requests / sec

To find the observed break point of manager we steadily increase the number of concurrent

requests on 1 manager. The test setup puts the value of D ≈ 210, as observed in Figure 17.

Figure 17 Saturation point for a single manager process

 68

Thus, we conclude that a single manager can be assigned (D ≈ 200) resources, subject to the

conditions of test setup such as resource-specific event handling. While D could be much higher

than 200, weighing other factors such as desired average response time, we limit the value of D to

200. For sake of illustration, we use the value of D = 200 in future calculations when

determining percentage of additional management infrastructure required.

5.7. Amount of Management Infrastructure Required

We now try to answer the research question, “How much Management Infrastructure is required to

handle N Resources?”

We make one assumption as the basis of our analysis. As discussed in previous section, a single

manager process can handle a maximum of D requests with a linear increase in response time.

We assume that a single manager is assigned no more than D resources so that we get the

average response time as a linear function of D. Further, this also puts a lower bound on the

number of components required.

If only the Manager – Managee interaction is carried over the messaging substrate then the

messaging substrate needs to support N + (N/D) simultaneous connections. To improve

performance, we usually have a connection pool between manager and broker. Let P be the size

of this connection pool. Similarly, an additional connection pool may be used for the registry. Let

M be the maximum number of connections allowed by the messaging node. Then we have

N + (N/D)*P + P <= M

or N <= (M-P)D/(P + D)

Thus, for example, in our measurements, the broker could reliably support about 800

simultaneous TCP connections. As an illustration, if D = 200 and P = 10, then the total

resources per domain are approximately 752. Various approaches may be used to scale to

support larger number of resources. One way is to switch to a less costly transport protocol such

 69

as UDP. UDP is connection-less and hence there is no limitation on the maximum open file

descriptors. However, it is also unreliable. Hence, more logic must be employed to deal with

missed, duplicate or out-of-order messages. The second approach is to use a strongly connected

cluster of brokers. This approach requires additional management in setting up links between the

various messaging nodes and maintaining them in a fault-tolerant fashion. A third way would be

to redistribute resources such that they are in different management domains, possibly creating

additional child domains as necessary.

Note that the main node that limits the number of connections is the messaging node (broker).

However, a broker is not absolutely required unless a subset of resources is behind firewalls /

NAT devices. Further, using a broker also implies that a manager need not maintain a separate

connection for each resource it manages, which is required when using HTTP/TCP. Assuming a

broker is required; the amount of infrastructure required can be computed as follows:

1. Let M be the maximum number of resources that a single messaging node can support. Thus,

to manage N resources, we require CEILING (N/M) messaging nodes.

2. Assuming 1 messaging node per leaf domain, we require N/M leaf domains (Refer Section

3.1.1).

3. Further, per domain we need at least M/D manager processes per leaf domain. A single leaf

domain would also have its own boot strap node and one or more instances of registry (or

registry endpoint).

4. Finally, let R be the minimum number of registry instances required. Thus, if we use a 3-way

replicated registry database, we have R = 3.

Thus, total number of management infrastructure processes at the lowest leaf level is

(Components/Domain) * Number of Domains

 70

= (R registry + 1 messaging node + 1 bootstrap node + M/D managers) *

(N/M)

= (2 + R + M/D)*N/M

To manage the N/M leaf domains, an additional number of passive bootstrap nodes are required.

Typically the number of passive nodes would be << N/M and we ignore it for the purpose of this

analysis.

Thus, for managing N resources we require an additional (2 + R + M/D)*N/M processes. Thus,

we compute the number of additional resources required as the percentage of additional

infrastructure with respect to the number of resources being managed as follows:

MGMTINFRASTRUCTURE

 [(2 + R + M/D)*N/M] * 100

= ------------------------- %

 N

= [(2+R)/M + 1/D] * 100 %

To see how much is this value and how it is affected by different factors, we will consider a few

cases. In all the numerical calculation presented below, the assumption is that the value of N is

very large. If N were small (e.g. N = 10), we still require the basic management framework

components such as messaging node, bootstrap service, 1 or more manager processes and

registry.

5.7.1. Using 4-way replicated registry and typical values for D and M

Assuming typical values of D and M are D = 200 and M = 800. When each leaf domain has its

own registry and assuming its 4-way replicated, we have R = 4. Then,

MGMTInfrastructure

= [(2+R)/M + 1/D] * 100 %

 71

= [(2+4)/800 + 1/200] * 100 %

≈ 1.2%

5.7.2. Using a shared registry

In the case where a common registry is used, each leaf domain would have 1 registry service

interface that is always maintained up and running. Thus, R = 1 and we get,

MGMTInfrastructure

= [(2+R)/M + 1/D] * 100 %

= [(2+1)/800 + 1/200] * 100 %

≈ 0.87%

5.7.3. If a messaging node is not used

If a messaging node is not used, then the managers have to open a separate connection to the

resource it is managing. This poses a problem in cases where the resources being managed are

behind a firewall and the firewall blocks incoming connections. In case where there are no

firewalls, then the percentage of management infrastructure can be computed as follows:

MGMTInfrastructure

= (R registry + 1 bootstrap node + N/D managers)

= 1 + R + N/D

Thus, percentage of management infrastructure is

 1 + R + N/D

= ----------- * 100%

 N

= [(1+R)/N + 1/D] * 100 %

For very large N (N >> R), the percentage of infrastructure is

 72

≈ (1/D) * 100 %

Assuming D = 200, we get

MGMTInfrastructure = 0.5%

5.7.4. Varying the number of maximum resources managed by a single

Manager

Let us keep the maximum number of entities that can be handled by a single messaging node (M)

to 800. This is a number that typically represents the maximum ports that a single process can

successfully open3. This number will also vary in some cases, depending on the maximum

message/sec the messaging node has to support.

Figure 18 shows how the percentage of additional management infrastructure varies with D. We

see that even when we fix the maximum clients per messaging node to 800 and have a shared

registry (R = 1), the additional management infrastructure required is < 5% until D = 25.

Reducing the value of D below 25, exponentially increases the additional infrastructure required.

Finally, when for every resource there is a single manager process more than additional

infrastructure required is more than 100%. The reason why this value is slightly more than 100%

is because, apart from managers, there are additional components such as registry, messaging

node and bootstrap service that make up the management infrastructure.

3 Typical configuration allows any single process to open a maximum of 1024 files (files, sockets, devices) although this may be

changed through appropriate system configuration.

 73

Figure 18 How Additional Infrastructure varies with number of resources a single manager can

manage

Thus, we conclude that for large N, and when D ≈ 200, fault-tolerant management of the system

can be achieved by adding about 1% more resources. Thus, the approach uses an acceptable

number of extra resources.

5.8. Failure Recovery Costs

5.8.1. Resource Failure

The system follows the following algorithm to recover from failure:

1. Check heartbeat interval

a. If lastRenewal > 5 * MAX_HEARTBEAT_INTERVAL

 74

THEN check if I’m still the registered manager of the resource in question.

• The MAX_HEARTBEAT_INTERVAL is set to 10 sec, so the

difference is usually 50 seconds

This step usually involves a READ operation from Registry.

b. If I’m not the currently registered owner (my heartbeat reached late and it was

concluded that I failed) then relinquish control of the resource.

2. If I’m indeed the registered manager, then proceed to re-register myself with the

resource’s service adapter.

a. If the service adapter has not responded after MAX_RETRIES, the correction procedure

kicks in. The correction procedure is usually resource dependent and could be to

simply notify the user or actually try to re-instantiate another resource instance if

possible.

• The MAX_RETRIES is set to 2 with a 10 sec wait period for each try, thus the

resource manager waits for another 20 sec before concluding failure.

Thus, the total time to start the recovery phase is

TDetection

= 5 * MAX_HEARTBEAT_INTERVAL + MAX_RETRIES * WAIT_FOR_RESPONSE

≈ 70 sec

After this period, the actual correction process begins. Recovery time is a resource dependent

quantity and thus we define the total recovery time as

TRecovery = TDetection + TCorrection

A discussion of the correction time for Broker Management is discussed in Section 6.9.

 75

5.8.2. Registry Failure

During the initial startup or after a failure, a registry has to reload all data from the persistent

store service. Alternatively, data may be loaded only when requested. There are trade-offs when

using either of the approaches; improving registry startup cost vs. worsening time to serve read

requests. The current implementation simply loads all entries from persistent store. The time to

reload the registry from context depends on the number of resources and the data stored per

resource. Thus, there are 1 or more resource-specific elements. Further, for each registered

components (Service Adapter, Manager, Messaging Node), there is 1 metadata object. To put this

in perspective of the total objects, we define the following

NResourceElements = the number of Resource-specific entries per resource

NServiceAdapters = the total number of service adapters.

D = number of resources assigned to a single Manager process

Then, NManagers = NServiceAdapters/D

NMessagingNodes = number of messaging nodes used for communication. This is usually very less (1

– 5) and may be ignored.

Thus, the total number of registered objects in the Registry

NObjects

= NServiceAdapters*NResourceElements + 1*NServiceAdapters + 1*NManagers + 1*NMessagingNodes

Assuming that the registry allows 200 operations per second, the time required to retrieve / store

all objects is NObjects/200 seconds.

As an illustration, if

NResourceElements = 5, NServiceAdapters = 100, D = 10 and NMessagingNodes = 1,

then the total time

 76

TRetrieve

= (5*100 + 1*100 + 100/10 + 1) / 200

= 611/200

≈ 3 seconds.

Thus, on failure, for the system to regain its last state, about 3 seconds overhead would be spent

in reloading the entire system state from persistent store in addition to other initialization costs

(e.g. starting up the registry process and establishing appropriate connections).

5.8.3. Messaging Node Failure

Failure of messaging node causes loss of connection between all Managees and their associated

Managers. The bootstrap service periodically (e.g., every 10 seconds) runs a health check

manager that detects failure of the messaging node by sending PING requests to the messaging

node and checking for responses. If a messaging node is down, a messaging node is forked off by

sending a message to the appropriate Fork Daemon process. The Service Adapter and Manager

processes detect failure of connection to broker and automatically try to re-establish contact with

the broker. Once a connection is re-established, management process starts off where it left.

Since the health check manager runs only periodically (e.g. once every 10 seconds or more and is

configurable), system failures can only be detected within 10 seconds. Thus, the system may be

un-responsive for about 10 + TRestore time period, where TRestore is the time required by the

system to restore to the state before failure. This typically should only entail operations that cause

the Resource Manager to read state from the Managee (Resource) it is managing.

5.8.4. Manager Failure

When a Manager process fails, management of all the associated Managees fail. As the number of

resources managed by a manager process increase, the number of Managees which loose a

 77

Manager also increases and so does the recovery time. Further, Manager failure is detected

relatively late. As an illustration, the usual heartbeat interval for Managers is HManager = 5

seconds. A Manager is considered failed for all practical purposes, if it fails to renew for 4 *

HManager = 20 seconds. After this interval, all resources managed by the failed Manager are

automatically assigned to a new or an existing manager process, which has fewer than D

resources assigned.

Again, after a Manager process failure, all assigned Resources become UNMANAGED. After 20

seconds (this is a system dependent parameter and may be adjusted as required), the system

health check process will detect a failed Manager and invoke another Manager process to take

care of the UNMANAGED resources. If D is the number of resources a manager process manages,

then the Manager process needs to load the information for D Managees. If K is the average

number of information items that comprise the state, then the total resource-specific information

that needs to be loaded from the registry is D*K and the total message exchange is 2*D*K.

Further this is a read-only operation and can be easily served from an in-memory cache.

Assuming about 5 msec retrieval time (includes processing + latency) per information object,

the total time is about 5*D*K msec. As an illustration, if D = 100 and K = 10, then time

required will be ≈ 5 sec. Additional time is spent in informing the Service Adapters of the new

Manager after which the usual process of management continues.

5.9. Discussion

A set of benchmarks in context of NaradaBrokering management were presented and in all cases,

the average XML processing overhead was found to be ≈ 5 msec. The total overhead for the

“Get Broker Information” operation is about 4.6 msec. This operation represents a periodic health

check routine invoked by the manager process to check the aliveness of broker and validate

runtime configuration. All other operations would be used primarily during initialization and

during recovery from failure and thus their costs are acceptable.

 78

From the observations presented in the chapter so far, we note that a single manager process can

handle about 200 requests simultaneously. This number is typical while the actual number is

dependent on the resource being managed and time varies with various other interactions such

as one or more registry accesses. We assume that this factor would be appropriately adjusted to

achieve the desired quality of service.

Every registry access typically adds 5 msec overhead. However, as the number of entities doing

a registry access increases, requests are queued as the registry is unable to keep up with the

deluge of requests. Thus, ideally, there should be no frequent registry accesses to minimize

response time. This implies that the runtime state maintained by the resource manager must be

sufficiently small as to be updated in registry by as few calls as possible.

Thus, the management architecture scales better when the resources can be managed by

maintaining only small amount of runtime state.

 79

Chapter 6. Prototype and its Evaluation

Messaging based distributed brokering infrastructures have gained much popularity in recent

years in the distributed computing community. They have been instrumental in helping to

provide clear demarcation between the application logic and Quality of Service aspects. These

brokering systems employ a large number of connected peers called brokers which form a

messaging substrate. To get the maximum benefit from the services provided by the messaging

substrate, it is required to setup these brokers and connect them in topologies specific to the

application. To demonstrate the use of the management architecture, we have implemented

management of a grid messaging middleware (NaradaBrokering).

6.1. Motivating Example

Various topologies [82] on connecting these peers exists, each based on differing routing, fault-

tolerance and cost characteristics. Run-time metrics are gathered using monitoring techniques

 80

[83] which measure various aspects of the system that enable us to understand the performance

of the system and in some cases, provide hints on improving the performance. This naturally

leads to re-deployment of the brokering network with a different configuration. To summarize,

we need an architecture that enables us to rapidly bring-up and tear down a broker network. It is

also required to set specific configuration settings for every broker and have the ability to change

the configuration on-the-fly. We term these actions collectively, as management of the brokering

infrastructure.

Other peer-2-peer (P2P) based systems use static topologies which may be inefficient in some

cases. P2P systems based on distributed hash tables such as Chord [84] use a bootstrap node to

get a node address. Future additions automatically get address from one or more previously

initialized nodes when they join the network. CAN [85] uses a similar approach where an

incoming node contacts a bootstrap node to retrieve a set of randomly chosen nodes. These

systems do not take network distances in to account when creating the routing table which may

result in certain lookups resulting in overlay hops spanning the entire diameter of the network.

Figure 19 Teacher - student relationship based collaborative session

Consider the problem of deploying a brokering network for supporting 10000 clients in a

collaborative [23] fashion. Ref. [86] shows that a single broker can support up to 1500

 81

simultaneous participants with audio streams with very good quality audio while about 400

participants can simultaneously receive video with acceptable quality. For a higher number of

participants, we can employ a tree-based structure as illustrated in Figure 19. The problem lies in

deploying the brokering topology suitable for supporting multiple clients. With a growing

number of clients, one may wish to deploy a network of multiple brokers (For e.g., 10000 / 400 =

25 brokers in the above scenario) so that all clients may receive acceptable audio / video

transmission. Further, for fault-tolerance purposes, one may also want to have multiple links

between brokers such that the failure of a subset of links may not crash the entire system. Finally,

setting up of links becomes complicated if one or more brokers are behind restricted networks or

in different administrative domains.

6.2. Management of Brokers

NaradaBrokering consists of multiple peers called brokers. These brokers can be connected in

specific topologies, each topology providing varying degree of fault-tolerance and number of

links. Further, connection between brokers can use different types of transports such as TCP,

UDP and SSL among others. Selection of one of such available protocols (“will tolerate missing

packets but require scalability as in UDP” vs. “require a dedicated loss-less TCP connection”) is

application dependent and must be configured dynamically.

Further, setting up of a link between 2 brokers may involve a 3rd service and / or additional

configuration entries. An example is UDP based P2P connection traversing NATs) in which case,

a relay service is used to record each endpoint’s public address. Another example is setting up an

HTTP(S) connection which may require traversing an authenticating firewall. This in turn

requires a username and password to authenticate the outgoing connection.

Finally the management architecture must also allow an administrator to shutdown existing

brokers and bring them up again with a completely different configuration. We term these

actions as “Managing the Grid Messaging Middleware”.

 82

6.3. Generating Broker Topologies

(a)

(b)

Figure 20 Topology Generator GUI (a) Topology Summary (b) Topology Parameters

Brokers are dependent resources. This dependency is introduced by the fact that to establish a

connection between brokers, both brokers must be appropriately configured and be up and

running. If the target broker is down, then the source broker needs additional time to establish a

connection. This delay adds to the overall deployment time of the topology.

The Management GUI provides an extensible Topology Generator. Currently we provide support for

generating a CLUSTER topology and a RING topology. Figure 20 shows the GUI for the topology

generator. The parameters for the selected topology can be set in the “Topology Parameters” tab.

These parameters are used by the generator code while generating the topology. We now

describe the two topologies and analyze these topologies in terms of deployment time.

 83

6.4. Cluster Topology

0

0

Cluster containing 0 level connections
between nodes

Super Cluster Containing 1 or more connections to
nodes between clusters

1
0 0

2

Super Super Cluster containing one or more connections between super clusters

0

Figure 21 Cluster Topology

Figure 21 shows the first topology which is a cluster of brokers. This topology consists of a set of

brokers connected in a CHAIN at the lowermost level (level 0 connections). The choice of CHAIN

is arbitrary and any other topology may be used at the lowermost level. Two or more clusters

may be combined at a super-cluster level. In the topology generator, the first node from each

cluster is selected to be connected in a CHAIN at the super-cluster level. Finally, two or more

super-clusters are connected to form a super-super-cluster at level 2.

NaradaBrokering allows a maximum of 32 nodes per cluster, 32 clusters per super-cluster and 32

super-clusters per super-super-cluster. Each node in the broker network is assigned a node

address (Refer Figure 22) that aids in event dissemination. The node address which is

represented by a set of integers such as <8, 2, 1, 4> must refer to a unique node in the

network. Each level in the set is represented by an integer and since integers are usually 32-bit

wide, we get 32 unique positions for each level. This causes a maximum of 32 entities per level.

Thus, node addresses <..., 2, 5> and <..., 2, 1> are invalid since the level 0 nodes

have node address bits as 5:[0101] and 1:[0001] which has the last bit common and such

node addresses are considered invalid during processing an address request.

 84

Level 3
...1000

Level 2
...0010

Level 1
...0001

Level 0
...0100

Figure 22 Anatomy of a Node Address

A sample node address assignment on the Grid Farm machines is shown in Figure 23. Here note

that all nodes in the same cluster differ only at level 0. Similarly any 2 nodes in the same super-

cluster differ only in the number at level 1.

Super Super Cluster containing one or more connections between super clusters

1,1,1,1
gf1

1,1,1,2
gf2

1,1,1,4
gf3

1,1,2,1
gf4

1,1,2,2
gf5

1,2,1,1
gf8

1,2,1,2
gf7

1,1,2,4
gf6

0

1

0

2

Super Cluster Containing 1 or more connections to
nodes between clusters

Cluster containing 0 level connections
between nodes

0

0

0

Figure 23 Sample assignment of Node address and cluster formation on Grid Farm machines

6.5. Ring Topology

The basic ring topology is illustrated in Figure 24(a). This topology is a level 0 interconnect of a

circular linked list. With this topology we can have a maximum of 32 nodes per ring (since

NaradaBrokering allows a maximum of 32 nodes per level). If there are more nodes in the ring,

they will be connected at level 1.

 85

Figure 24 (b) shows a sample arrangement with the actual node addresses. Both, the ring and

cluster topology have an important characteristic that all nodes are present on un-firewalled and

non-NAT’ed hosts.

(a)

1,1,1,1
gf1

1,1,1,32
gf6

1,1,1,2
gf2

1,1,1,16
gf5

1,1,1,8
gf4

1,1,1,4
gf3

0

0

0

0

0

0

(b)

Figure 24 Ring Topology (a) Level - 0 Links (b) Sample node address assignment

6.6. NAT Traversal for Broker Connections

An important requirement of peer-2-peer communication is establishment of links directly

between the peers in question. A general strategy (when 2 peers behind NATs wish to

communicate) is to use a third peer in the outside (non – NAT’ed) network. This approach

although being very simple to implement, suffers from scalability problem. As the number of

distinct peers that wish to communicate increases, this third peer may easily become overloaded.

Another approach is to establish a direct link [87-89] between the peers. We use a relay server

present on an un-firewalled node to aid the discovery of public/private IP addresses for creating

links. A technique known as hole-punching is utilized to establish the link. This is illustrated in

Figure 25. The connections between peers can then be setup using the steps illustrated in [90].

 86

156.56.104.180:1072
156.56.104.170:2106

P2P Relay
Server

www.webservicelocator.org:60055

192.168.1.100:4500
192.168.0.10:1072

Direct Link established
between peers

Link Maintained between
peer and Relay server

Peer’s Private IP:Port

Peer’s Public IP:Port

NAT device

Connection via local
router

Figure 25 NAT Traversal for creating connections

We use a randomly generated UUID string to correlate multiple P2P connections. Once a

connection is established, communication between the peers may be carried in normal fashion.

The prototype contains an implementation of UDP hole punching. The connections can be

established only when the NAT is a cone NAT rather than a symmetric NAT. In cone NATs the

IP:PORT translation is preserved when originating IP:PORT is same. In symmetric NATs, a new

public port number (sequentially incremented) is assigned for every new outgoing connection. In

this case, port prediction techniques must be applied. Such techniques are being investigated in

STUNT [91].

6.7. Policies

The management architecture provides 2 policies that determine the action to take on detection of

failure. In general, failure detection is a non-deterministic process, i.e., it is impossible to

distinguish deterministically between a SLOW process and a FAILED process. The management

architecture, however, uses heartbeat and multiple retries to make a guess about the resource’s

status. If a resource cannot be contacted by any known means, it is considered as failed.

 87

Policies are specified as a WS-Policy [92] document. The prototype currently defines the

following policies:

6.7.1. Wait for user Input

The policy states that no action is to be taken. Rather, the resource manager will wait until the

resource is re-instantiated via some out-of-band means. The resource manager will note that the

resource in question is UNREACHABLE and update this status in the registry. Periodically,

previously UNREACHABLE resources are reassigned to new resource manager processes and the

new resource manager tries to establish contact with this resource. If successful, the management

process continues as usual. If unsuccessful, the resource manager will rewrite the status as

UNREACHABLE and exit. This policy is specified as follows:

<pol:Policy xmlns:pol=http://schemas.xmlsoap.org/ws/2004/09/policy

 xmlns:pol1="http://www.hpsearch.org/schemas/2006/07/policy">

 <pol:All>

 <pol1:RequireUserInput/>

 </pol:All>

</pol:Policy>

The system administrator / user may then suggest a different course of action to overcome the

failure.

6.7.2. Automatically Instantiate

In this policy, the user specifies that the resource instance be automatically created. Towards this

end, the user is responsible for specifying the location of the fork process daemon. The resource

manager will try to re-instantiate the resource by sending an appropriate message to the fork

process daemon. The policy may be specified as follows:

<pol:Policy xmlns:pol=http://schemas.xmlsoap.org/ws/2004/09/policy

 xmlns:pol1="http://www.hpsearch.org/schemas/2006/07/policy">

 88

 <pol:All>

 <pol1:AUTOInstantiate

 forkProcessLocator="udp://156.56.104.152:65535"/>

 </pol:All>

</pol:Policy>

The failed resource is restarted with the basic default configuration such as the UUID and

resource type. Once instantiated, the resource sends a message to the resource manager who then

continues the management as before by configuring the resource to bring it up to the last known

user-defined configuration.

A point to note about this particular policy is that, the fork process may not always be accessible

by direct UDP connection, such as when the resource (broker) is behind a firewall. In such a case,

the fork process may be contacted by having either the fork process connect to the system’s

messaging node and subscribe to a topic or routing the request to the appropriate fork process

via a publicly visible service endpoint which has been appropriately configured.

Finally, it must be noted that when using this policy, consistency would be handled as per the

discussion presented in Section 3.3.1.

6.8. Analysis of Broker Management

As mentioned earlier, the actual management work within the Manager process is done by a

Resource-specific Resource Manager thread. The Resource Manager thread defines the

interactions specific to the resource being managed and interacts accordingly with the Managee.

System policies also play a major role on the degree of interaction between the Resource Manager

and Managee. The number of interactions determines the scalability of management architecture.

As the number of interactions increase, the time spent in performing an activity increases. This is

typically the case with retrieving system state or committing state to the registry.

 89

6.8.1. Interactions between Broker Manager and Broker Service Adapter

We define the interactions in 5 major groups, namely HeartBeat (IHeartbeat), Create (ICreate),

Delete (IDelete), Modify (IModify) and Event (IEvent).

We outline the interactions for our prototype system which manages a distributed brokering

network. Here the Resource Manager is the Broker Network Manager (BNM) and the Managee

counterpart is the Broker Service Adapter (BSA). All interactions use 2 messages, 1 for Request

and 1 for the associated Response. The Link Loss event and heartbeat message is only a

notification style message from the BSA to BNM and hence only 1 message is involved. A receipt

of this event or lack of one (e.g. heartbeat) may trigger one or more interactions defined above

depending on system policy.

Message
Type From To Operation When is it executed?

Time
Interval
(msec)

Num
Msgs

MHeartbeat BSA BNM Heartbeat Sends aliveness heartbeat E.g. every
5 sec 1

MRetrieve BNM BSA Get Broker
Information Retrieves Broker State.

Policy
Dependent
E.g. every

10 sec

2

MSetConfig BNM BSA Set
Configuration

Once at start and later
ONLY when

configuration change is
requested.

- NA - 2

MCreateBroker BNM BSA Create Broker

Once at start and later
ONLY when failure

occurs or configuration
change is requested.

- NA - 2

MCreateLink BNM BSA Create Link

Once at start and later
ONLY when

configuration change is
requested.

If there are K links, this is
executed K times

- NA - 2

MDeleteBroker BNM BSA Delete Broker Only when configuration
change requested - NA - 2

MDeleteLink BNM BSA Delete Link

Only when configuration
change requested

If K links need to be
deleted, this is executed

- NA - 2

 90

K times

MLinkLossEvent BSA BNM Event – Link
Loss When failure occurs - NA - 1

Table 5 Interactions between Broker Service Adapter and Broker Network Manager

To approximately find the number of messages exchanged per second between each pair of BSA

and BNM, we also define the following:

Symbol Description

FHeartbeat Heartbeat frequency (usually 1/5) (once every 5 sec)

FRetrieve Frequency of retrieving broker state. Usually 1/10 (once every 10 sec)

K Number of links originating from a given managed broker (initially created)

Z Number of links that are created after modification

Then the various interactions result in the following messages:-

IHeartbeat

 = MHeartbeat * FHeartbeat + MRetrieve * FRetrieve

 = 1 * (1/5) + 2 * (1/10)

 = 2/5 messages/sec

ICreate = (MSetConfig + MCreate + K* MCreateLink) = (4 +2K) messages

IModify = [(K * MDeleteLink + MDeleteBroker)

 + (MSetConfig + MCreateBroker + Z * MCreateLink)]

 = [(2K + 2) + (4 + 2Z)]

 = 6 + 2K + 2Z messages ... (Deterministic state change)

IModify = [MDeleteBroker + (MSetConfig + MCreateBroker + Z * MCreateLink)]

 = [2 + (4 + 2Z)]

 = 6 + 2Z messages ... (OK, since deleting broker deletes links)

IDelete = (K * MDeleteLink + MDeleteBroker)

 = (2 + 2K) messages ... (Deterministic state change)

IDelete = MDeleteBroker = 2 messages ... (OK, since deleting broker deletes links)

IEvent = MLinkLossEvent messages

 91

Here, When the broker is deleted, all the links are also deleted, so the term K * MDeleteLink is

unnecessary, but may be included for cases where a deterministic state change is desired rather

than an abrupt change. In the analysis that follows, we assume that cleaning up involves only

deleting the broker i.e. 1 interaction (2 messages). Further, modification involves deleting the

broker, setting configuration, creating the broker and creating outgoing links from the broker.

The above equations define the number of messages that occur between 1 BSA – BNM pair. If

there are N managees (BSA) then,

Message rate to sustain for heartbeat messages

= (IHeartbeat)*N = 2N/5 messages/sec

For N = 800, the message rate is 320 messages / sec << 5000, well within the max

messages supported by a single broker. On the other hand, the broker will be overloaded with

heartbeat messages when

N → 5000 * 5/2

i.e. N → 12500

An initial one-time cost exists for N * ICreate = N*(4 + 2K) messages that are exchanged

during the initial run for ICreate. For shutting down the entire system, an exchange of N *

IDelete = N*2 messages is required. Again for N = 800 and K = 10, the values are 19200 and

1600 respectively. With a broker supporting up to 5000 messages per second, we can conclude

that the maximum overhead spent in message transit is up to 4 sec. The total time in creating /

deleting N (= 800) resources will be 4 + TExec seconds, where TExec is the time spent in

retrieving data from registry and determining the configuration, setting configuration and for the

broker to instantiate and create links. Typically TExec » 4 sec and hence we posit that message

transit time is negligible in our system as compared to other costs and can be disregarded.

Let X be the number of Managees that report failure (X <= N) which requires the associated

Resource Managers to take some or other action. Usually the action in case of broker network

 92

would be to simply recreate the missing link, and the messages exchanged would be X*2*Z.

Assuming that the action is to completely flush out the broker and recreate the broker and links

(worst case), the number of messages exchanged is

= X * IModify

= X * (6 + 2Z)

Let TXZ be the time to transmit Z messages. If TRecovery is the average time spent in processing a

failure message and determining the appropriate action, then the total time is

Time = TXX*(3+K) request messages + X * TRecovery + TXX*(3+K) response messages.

 = X * TX(6+2K) + X * TRecovery

Again, TRecovery involves one or more interactions with the registry. We foresee that as the major

cost involved and hence we ignore the TX(6+2K) term.

6.8.2. When can TX
Z be ignored?

For most of the analysis presented here, we chose to ignore the latency of data transmission .This

is mainly motivated by the fact that TRecovery » TX. To see why, we define the following:

TProcess - the time to process each request (Involves 1 or more interactions with Registry)

TExec - the time spent in actually executing the requested action. As a rule of thumb, 2 message

exchanges are required for every action. Thus, when the total actions taken are 1+K, total

message exchanges is 2+2K, and the total time spent is (1+K)*TExec.

TA<->B - the Average latency of data transfer between entities A and B.

Total time per broker

= TModify

= TBSA<->BNM + TBNM<->Registry + TProcessAtRegistry + TProcess(BNM<->BSA)

= TX(6+2K) + TX(2+2K) + (1+K)*TExecRegistry + (1+K)*TExec(BNM<->BSA)

Total messages exchanged = (6+2K) + (2+2K) = 8+4K

 93

Here the term (2+2K) assumes that when there is 1 interaction, 1 request-response is required

to do a status check with the registry. Thus, for 1 broker and K links, we require (2+2K)

interactions.

Hence, the average messages exchanged per second is

 (8+4K) * 1000

 = ---

 TX(6+2K) + TX(2+2K) + (1+K) * TExecRegistry + (1+K) * TExec(BNM<->BSA)

For the sake of illustration, assuming the following typical values

TX = 5 msec, TExecRegistry = 5 msec, TExec(BNM<->BSA) = 50 msec

We get,

 (8+4K) * 1000

Rate = --

 (6+2K)*5 + (2+2K)*5 + (1+K)*5 + (1+K)*50

 (8+4K) * 1000

 = ------------------------------

 30+10K + 10+10K + 5+K + 50+50K

 (8+4K) * 1000

 = -------------

 95+71K

K is the number of outgoing links from a broker and depends on topology. Typical values of K are

from 0 to 3. Thus, the message rate for K = 0 is ~ 85 messages / sec and for K = 3 is ~ 65

messages/sec.

 94

In each case, the broker can easily support the required message rate and hence we can conclude

that the data transfer time is negligible and hence can be ignored. Alternatively, If there are X

resources which report failure, then assuming that a single broker can transmit up to 5000

messages per second, the number of failures that can be sustained per second is 5000/85 ≈ 58

(in case of K = 0) or (5000/65 ≈ 77 , in case of K = 3). TX becomes significant when number of

brokers failing per second is greater than this value. Further note that the above calculation is an

approximation and does not take into account practical limitations of systems such as queuing of

messages at the registry which would make TExecRegistry > 5 msec. Brokers are dependent

resources, i.e., when a broker A has an outgoing link to broker B, then for that link to be created,

broker B must have been initialized and be ready to accept incoming connections. Failure of this

condition would easily increase TExec(BNM<->BSA) from 50 msec to a few seconds.

6.8.3. Interactions with Registry

The system state is periodically offloaded to the registry. Interactions with registry also occur

when a user requests a state change and hence the resource managers periodically poll the

registry. In our system, query for system state happens via separate messages for each type of

information element sought. Amount of data offloaded to registry varies depending on the

resource involved. In our current implementation, we read / write to registry using separate

messages. The main information that gets stored in the registry is summarized in the table below

Type Information Typical Size

Node Info Information regarding a broker node 1 K – 2 K

Link Info Information regarding links between brokers 400 - 500 Bytes

Resource Log

List of LogEntries for each type of resource. Thus, for

each broker, there is a separate ResourceLog for the

broker and a separate ResourceLog for each outgoing

link from the broker

Varies depending on

number of entries in

the Log and size of

each LogEntry.

Table 6 Resource-specific information stored in Registry

 95

Thus, if a particular Resource Manager requires retrieving 10 different resource-specific

configuration policies, it makes 10 different calls to the registry. Requests may be multiplexed in

one request but has not been implemented for simplicity purposes.

The main interactions are as follows:-

1. From the point of view of Broker management, the resource manager retrieves the Resource-

specific Broker Node information followed by K more calls to retrieve K link information

objects. Thus, the total messages are MReadState = 2*(1 + K). The factor of 2 accounts for

the asynchronous request – response message exchange.

2. A manager typically offloads his state in the registry (only the Resource Log) which accounts

for MWriteState = 2*(1 + K) messages. The current implementation follows the pattern

shown in Figure 26.

3. A separate heartbeat thread keeps registering in registry the aliveness of the manager

process. This involves MRegisterRenew = 2 messages. Thus, even when the Manager process is

multithreaded, we still have a single heartbeat thread that renews its aliveness with the

registry. The system assumes that if the manager process is alive and running, it is managing

the assigned Managees. If at some point, the Managee is deemed UNREACHABLE (possibly

after multiple retries and failure to establish successful contact), the associated Resource

Manager thread updates the Managee’s state in the registry. This accounts for 2K messages

(A Request-Response message for each of the K UNREACHABLE Managees).

4. The Manager process also periodically checks for presence of unmanaged managees whose

management can be taken over if possible. Since this is either a one time cost or occurs only

when an assigned Managee is UNREACHABLE, we may consider the cost negligible unless the

MTBF (Mean Time Between Failure) of the system is low.

 96

Figure 26 Registry Interaction

Thus, to summarize, the total interaction is given by

Total messages

= MReadState + MWriteState + MRegisterRenew + MGetManagee

= 2*(1+K) + 2*(1+K) + 2 + 2D

= 4K + 2D + 6

Out of the above terms, (for a stable system), only the MReadState and MRegisterRenew are executed at

regular intervals. Current values are once every 10 seconds for reading state and once every 5

seconds for renewing via heartbeats. Hence, the message rate is

Rate = 2(1+K)/2 + 2/5

 = 7/5 + K messages/sec

Requests may be done using a separate TCP connection per request / response, sending

messages over UDP or using the messaging node for sending requests / responses. In the current

implementation, we use UDP transport for communication between Manager and Registry.

However, this may very well be carried over a topic via the messaging nodes. An advantage of

using a separate UDP transport mechanism is to reduce failure when messaging node goes down.

Requests made over TCP require establishing a separate TCP connection every time a message is

sent and is more costly as opposed to using UDP or messaging node for communication.

Apart from storing data, additional processing is required to adjust internal data structures. For

example, when a manager process is assigned a resource to manage, the resource’s service

 97

adapter’s UUID is stored in the Manager’s internal tables for future access. Also, a search through

all the records might be required to check if any Manager process has not renewed within the

system specified time interval, in which case all the Managees managed by this Manager would

be assigned to a separate manager process. As explained in Section 3.1.5, the registry is usually

backed by some form of persistent storage to ensure fault-tolerance. Writes to registry are

committed only when the persistent storage acknowledges the write. Reads can usually be served

from an in-memory cache. Thus, writes are much costlier than reads. Hence, the goal is to

minimize the writes to the registry. As an example, when the persistent storage is served by a

WS-Context services, the writes to registry take about 45 msec, while reads can be served within

30 msec (without database access) - 37 msec (with database access). Ref [93] discusses the

interactions when using a WS – Context service implementation of the registry.

The definition of a resource state is highly dependent on the resource in question. From the point

of view of broker management, only the user commits Node and Link Information. This

information is static unless the user specifically requests a change in the configuration of

managed brokers. Once submitted, it is assumed that this information remains static over a long

period of time. The Managers only write to registry when the Resource Log has changed. For a

relatively non-varying system, the Resource Log will not change for a long time. Thus, writes

occur less frequently.

6.8.4. Managee – Registry Interaction

When Managees are instantiated, their associated Service Adapters register themselves in the

registry. Unless failure occurs, the registration involves 2 messages (a registration request and

associated response). Future heartbeat messages are sent to the Resource Manager and so also all

events associated with the functioning of the Resources. If a Registration request message fails to

reach the Registry, the Service Adapter tries after waiting for a small interval (usually 2 seconds)

 98

and tries until a successful registration has occurred. Registration process is idempotent, so

duplicate registration is acceptable.

Note that this is a required step as only the registered Service Adapters may be managed by the

management framework. In our current implementation, the registration process simply

involves, storing the Resource metadata. In future, the Service Adapter may optionally present

security credentials such as digital certificate, username/password or some other form of valid

credentials, so that only valid (authorized) resources would be registered.

6.9. Benchmarking Topology deployment

To benchmark the time it takes to deploy a topology from scratch, the topologies are created and

committed to the registry. The manager process executes a registry check routine every 2

seconds. This interval is configurable and would affect the time it takes for the deployment

process to start. Further, not all resources (broker service adapters) would have been initiated at

the same time, so the time at which the registry is read for presence of updated resource

configuration (Node / Link Information) is different. This implies that a node may be initiated

before a node it is dependent on. This causes delays in deploying the overall broker network.

We utilize the concepts and equations defined in Chapter 5 when computing the deployment and

recovery (after failure) times.

6.9.1. Resource State Size

The state size per resource is very dynamic and is very resource-specific. As listed in Table 6 the

objects that make up the broker state comprise of the following:-

1. NodeInfo object – Stores Node information such as Broker Configuration and outgoing

links (approximately 2 Kbytes);

 99

2. LinkInfo object – Stores details regarding the link, such as protocol to use, destination

host and port of the broker to which the broker in question will connect to (one per

outgoing link), approximately 512 bytes;

3. Resource Log (log of entries, varies as per the number of logging entries) – With 128 Byte

string entry and 16 entries, the size is about 2 Kbytes and

4. BrokerInformation – The current state of broker that is regularly loaded from the broker.

This varies depending on number of outgoing links and is approximately 1 Kbyte with 5

links.

So, assuming 5 links, the size of state per thread is

= 1 * NUMNodeInfo + 5 * NUMLinkInfo + (1+5) * NUMResourceLog + 1 * NUMBrokerInformation

≈ 1*2048 + 5*512 + 6*2048 + 1*1024 bytes

≈ 16 Kbytes

Thus, the runtime state size of the Broker Resource is small and hence the Broker is an ideal

example of a Resource that can be managed using our management architecture.

6.9.2. Initialization Costs

In this case, we note the amount of time it takes for a broker management system to perform

actions such as starting /shutting the broker, setting configuration and creating / deleting links.

Table 7 lists the time required for the operation to take place the first time. The time required

after the system has been initialized is shown in Table 8.

 Mean
Standard

Deviation
Maximum Minimum

Standard

Error

Set Configuration 778.0 15.47 812.0 761.0 5.0

Create Broker 610.1 19.3 643.0 591.0 6.1

Create Link 160.5 7.3 174.0 153.0 2.3

Delete Link 104.5 4.7 111.0 98.0 1.5

 100

Delete Broker 142.0 4.2 149.0 136.0 1.3

Table 7 Recovery after Failure (non-initialized state)

 Mean
Standard

Deviation
Maximum Minimum

Standard

Error

Set Configuration 33.90 10.17 52.00 22.00 3.22

Create Broker 56.67 6.18 67.00 48.00 2.06

Create Link 26.67 5.66 36.00 20.00 1.89

Delete Link 20.11 4.08 28.00 13.00 1.36

Delete Broker 129.20 6.14 141.00 118.00 1.94

Table 8 Time (initialized state) required per operation (msec)

The time required per operation in initialized state is significantly less as compared to in the non-

initialized state because the JVM needs to load the appropriate classes the first time they are

referenced and this takes more time. Once initialized, further modifications take lesser time.

Further, note that deleting a broker takes approximately the same time. This is because, in both

cases, no new classes are loaded to delete a broker object and this merely represents a cleanup of

existing objects.

6.9.3. Ring Topology

The Ring topology contains N nodes and exactly N links (one per each node). Thus, applying the

formulae in preceding sections, we get

State per management Thread:

= 1 * NUMNodeInfo + 1 * NUMLinkInfo + (1+1) * NUMResourceLog + 1 * NUMBrokerInformation

= 1*2048 + 1*512 + 2*2048 + 1*1024 bytes

= 7.5 Kbytes

Each thread needs to load 2 objects from registry and write 2 objects to registry while committing

state. Thus,

 101

TReadState ≈ 2 * 5 = 10 msec

TWriteState ≈ 2 * 5 = 10 msec

This assumes that each read / write operations requires 5 msec to complete. On failure, the

resource endpoint (the broker service adapter, in our case) needs to be spawned. This entails,

sending an appropriate message to the configured Fork Process to spawn the process. Once a

BSA is spawned, a node in a ring topology can be brought up within

TCorrection

= TReadState + TRestart

= TReadState + (TSetConfig + TCreateBroker + TCreateLink)

= 10 + (778 + 610.1 + 160.5)

≈ 1548 msec

6.9.4. Cluster Topology

The cluster topology with N nodes is constructed as follows:

Each cluster is a chain of nodes. Thus, there are (C – 1) links for C nodes. For each node except

the last, there is one outgoing link per node. Further, multiple clusters are connected in a chain to

form a super-cluster. For this purpose, we select the first node from each cluster. Thus, the nodes

connecting clusters have a maximum of 2 links each. Similarly, the nodes selected to connect

super-super-clusters have 3 links each. Thus, the number of outgoing links varies from 0 to 3.

Table 9 shows the state that is maintained per management thread and the time required for

reading /writing the state.

Number

of Links
State (Kbytes) TReadState TWriteState

0

1 * 2048 + 0 * 512

+(1+0)*2048 + 1 * 1024

= 5.0 Kbytes

1 * 5 = 5 msec 1 * 5 = 5 msec

1 1 * 2048 + 1 * 512 2 * 5 = 10 msec 2 * 5 = 10 msec

 102

+(1+1)*2048 + 1 * 1024

= 7.5 Kbytes

2

1 * 2048 + 2 * 512

+(1+2)*2048 + 1 * 1024

= 10.0 Kbytes

3 * 5 = 15 msec 3 * 5 = 15 msec

3

1 * 2048 + 3 * 512

+(1+3)*2048 + 1 * 1024

= 12.5 Kbytes

4 * 5 = 20 msec 4 * 5 = 20 msec

Table 9 State and initialization time per management thread

Thus, on failure, a single node in a cluster topology can be brought up within

TCorrection

= TReadState + TRestart

= TReadState + [TSetConfig + TCreateBroker + (TCreateFirstLink + TAdditionalLinks)]

Thus, for nodes with no links, we get

TCorrection

= 5 + 778.0 + 610.1

≈ 1393 msec

and for nodes with 3 links, we get

TCorrection

= 20 + 778.0 + 610.1 + 160.5 + 2* 26.67

≈ 1622 msec

6.9.5. Results A: Recovery Costs for a single Resource (Broker)

In this test, we benchmark the actual time it takes to create a broker from scratch after it has

failed. For the purpose of testing, a static broker is assumed to exist. The managed broker creates

links to the static broker and we time recovery after failure. A step-wise procedure is outlined

below:

 103

1. The resource manager sends a shutdown message to broker which kills itself on receiving

the message.

2. The resource manager times out, and starts a timer before initiating any action. Then it

reads state of broker from registry.

3. A message is sent to the registered fork-process daemon to restart the failed resource.

This step is required if the death of a broker also implies that its resource adapter is dead,

in which case, the recovery process involves additional cost of recreating an instance of

the broker service adapter.

4. The broker service adapter starts and registers itself in the registry and with the broker

manager.

5. The broker manager then sets configuration, instantiates the broker object and creates a

link to a known static broker.

6. After the link is created, a full recovery of broker has occurred, and we stop the timer

started in step 2 above.

The results are presented in Table 10.

 Average (msec) Standard Deviation (msec)

Spawn Process 2362 56.71

Read State 7.7 2.54

Restore (1 Broker + 1 Link) 1420.5 27

Restore (1 Broker + 3 Links) 1615.8 258.72

Table 10 Observed recovery time for a single broker

Thus, we note that the time to reload state from registry is about 8 msec while the time to do a

recovery is about 1420 msec. If the resource recovery requires creation of a service adapter as a

 104

front end to creating a resource an additional time is required to spawn the process and receive

confirmation. This increases the cost by about 2400 msec.

6.9.6. Results B: Topology recreation costs for a set of Resources

(Topology of Brokers)

In the second test, we construct topologies of brokers and time the topology re-creation time.

Thus, in this case, we manually shutdown brokers and recreate the topology with the specified

criteria. Once the resource-specific information is read, the broker network manager uses this

information to configure the broker as per the user defined requirement. The testing

methodology used is as follows:

A test accumulator sends a "SHUTDOWN" message to all brokers and starts a timer. After the

first broker manager reports that it is starting correcting things another timer is started. When the

last broker is successfully instantiated, the time difference is calculated. Thus,

Overall: Time from sending SHUTDOWN message to getting the last broker instantiated.

Total: Time from first broker instantiation start to last broker instantiation done. Instantiation is

defined as achieving the exact configuration as set by user i.e. broker + required links

Then, Difference = Overall - Total = Response time for manager to detect failure and start taking

action.

Number of

Nodes

Total Links in the

network

Overall Time

(msec)

Total Time

(msec)

Difference

(msec)

Ring:

8 8 12515 12372 143

4 4 8906 8224 682

1 (NO LINKS) 1156 770 386

 105

Cluster:

8 7 15968 15937 31

Table 11 Observed Times for deploying network of brokers

Table 11 lists typical system startup times. For the purpose of testing, the broker network

manager checks the health of broker and its configuration every 2 seconds. This time is highly

dynamic and is dependent on when individual components get initialized. Note that the

observed time is highly dependent on the state of the broker topology when the links are created.

Thus, if a broker A connects to broker B and broker B was not initialized and ready to accept

connections, then broker A waits for a certain period of time before retrying connection. This

would increase the time to deploy a topology as the number of brokers and hence the inter-

dependency increases.

6.10. Discussion

The tests indicate that the failure detection can usually be done pretty quickly and failed state is

restored within a reasonable time frame. Note that, as the number of brokers requiring

management grows, the 2 second interval for successive health checks becomes impractical if

each health check interval involves one or more reads from the Registry.

The Registry can only service a finite amount of request per second [93]. As an example,

assuming 200 requests per second can be serviced by the registry, and if a particular broker

manager requires 5 requests, then the system limits the maximum managers being served to 40.

This factor limits the scalability of the system. Further, if the Registry is busy servicing initial

requests, future requests can easily get queued and their associated responses may get delayed

resulting into timeouts and thrashing, as resource managers spend more time getting responses

from registry rather than getting any useful work done.

 106

One way to get over this hurdle is to make registry requests at a lesser frequency. However, we

note that if the operation is executed less frequently (e.g. every 2 minutes) then detection of

failure would be slower. The detection of failure is fast when the process executes the “Read

State” operation frequently. The choice is dependent on the desired quality of service and

resource requirements and thus this parameter is resource dependent.

 107

Chapter 7. Conclusions and Future Work

In this dissertation, we have presented a scalable, fault tolerant management framework. To

make the management framework extensible we employed a service-oriented architecture based

on WS-Management. WS-Management was selected because of its simplicity and also because we

could leverage the WS-Eventing support recently added to the NaradaBrokering core.

A proof-of-concept implementation on how management can be utilized in managing

NaradaBrokering was demonstrated and the prototype was evaluated. By enabling a GUI based

management tool based on the management framework, broker topologies can be dynamically

deployed and modified as required by a particular application. We believe that appending

management capabilities to existing NaradaBrokering framework would promote interesting

ways of utilizing NaradaBrokering’s capabilities. We feel this is an important contribution to the

NaradaBrokering system as the management framework not only provides ease of deployment of

 108

brokers but also maintains the runtime configuration in a fault-tolerant manner transparent to the

administrator of the deployed system. Such a capability is important for providing continuous

access to clients when failures occur because of causes beyond human control.

The management framework provides maximum scalability when the runtime state required for

the resource being managed is small. We define small as being one which can be written to or

read from a registry using minimum number of interactions. When this condition is satisfied, the

use of proposed management architecture is feasible. Our experimental evaluation shows that the

management architecture adds about 1% additional processes to provide fault-tolerant

management for a large number of resources. This feasibility is a result of use of

NaradaBrokering itself as a scalable messaging substrate for communication. Further by using

NaradaBrokering, resources behind firewalls can be managed by having them simply connect to

the domain specific messaging node using tunneling protocols supported in NaradaBrokering.

7.1. Summary of Answers for Research Questions

We summarize the answers of the research questions presented in Section 1.3.

7.1.1. How can we build a fault-tolerant management architecture?

The system has been designed to be fault-tolerant in face of failure. The overall fault tolerance is

the result of fault tolerance of individual components. Thus, the management framework is fault-

tolerant by definition by the use of a hierarchical bootstrapping process which ensures that the

system is continuously up and running when components fail. Management is fault-tolerant as

the system state maintained within each resource manager is small as a result of which, on

failure, a new resource manager may be separately instantiated and management continued from

the point of failure. Finally, the resource management is itself fault-tolerant by use of such

policies wherever applicable. As an illustration, we showed in Section 6.7.2 the

 109

AUTOInstantiate policy used by the broker network that automatically instantiates a new

resource instance when failure of managed resource is detected.

7.1.2. Can the management framework be made scalable?

Scalability of the system is by design. The overall management framework is arranged

hierarchically (Refer Section 3.1.1) which allows scaling in a wide area deployment. For local

scalability, we use a “publish-subscribe” based scalable messaging substrate. Our empirical results

show that typically a single manager process can handle up to 200 requests with a linear increase

in response time. Further a single manager process only needs to maintain a very few number of

physical connections with the messaging node with respect to the number of resources it is

managing. Communication is enabled by publishing/subscribing to appropriate topics. Finally our

results show that with such a setup, a large number of distributed resources can be managed by

an additional 1% extra resources. This makes the system scalable.

7.1.3. If such a system can be built, what is the overhead of such a system

and is this overhead acceptable?

The management framework introduces several key components apart from the actual resources

being managed. These key components (Resource Managers, Registry, Bootstrap Nodes, and

Messaging Nodes) impart scalability and fault-tolerance to the management of the target

resources. When the resource satisfies the criteria of a small runtime system state (Refer Section

5.9), we empirically proved that management can be done in a fault-tolerant fashion using about

1% more processes with respect to the number of resources being managed. This overhead is

quite acceptable for managing large number of distributed resources.

 110

7.1.4. How can we enable global management of resources (i.e. when

access to resources may be restricted by presence of firewall and NAT

devices)?

Remote management is enabled in the system by leveraging a “publish-subscribe” based

messaging system which imparts Location Transparency. The resource to be managed is wrapped

with a Service Adapter that is capable of communicating with a messaging node that is used to

deliver management related messages from the resource manager to the resource in question.

When resources are behind restricted networks such as due to NAT and firewalls, the Service

Adapter is responsible for establishing a connection to the local messaging node. Use of

NaradaBrokering based messaging node makes the delivery of messages between concerned

entities impervious to network restrictions in most cases. The system leverages

NaradaBrokering’s firewall tunneling capabilities in presence of firewalls. NaradaBrokering

supports a variety of transports such as TCP, UDP, HTTP, and SSL which may be used to connect

to the local messaging node when other transports are restricted by firewalls. When resources are

behind NATs, the Service Adapter will connect to the local domain’s messaging node (which is

typically in a non NAT’ed network with respect to the resource in question) and management

can be enabled.

7.1.5. Can the management system be made interoperable and extensible?

The management system implements a service oriented management protocol, specifically WS-

Management. Extensibility of management is due to the design of WS Management specification

which does not restrict users from defining their own management actions apart from the default

provided actions. Interoperability is achieved since any WS Management capable client may

invoke appropriate management actions on the target resource.

 111

7.2. Management of General Grid Services

Grid applications are composed of multiple services possibly running in different administrative

domains. As defined in [94] the primary benefits are “coordinated resource sharing and problem-

solving in dynamic, multi-institutional Virtual Organizations”. Here we discuss some of the key

properties of our architecture and how they can be beneficial in the Grid computing community:-

1. The architecture is scalable for wide area deployments. This makes it suitable for

managing services which are distributed over a wide area such as encompassing multiple

administrative domains of different participating institutions (service providers).

2. By leveraging multiple transport feature of NaradaBrokering, we can manage resources

which might be behind restricted networks. The management framework can be

configured using domain specific policies. This would help managing resources that fall

under disparate administrative domains without violating the resource provider’s

policies.

3. The architecture implements a service-oriented management approach. This makes the

management extensible which simplifies addition of newer management capabilities. Use

of Web-service based management protocols makes the management system

interoperable. This would enable existing or future management architectures written

using different languages or developed on different platforms to seamlessly manage

these resources.

4. The scheme proposed in this thesis enables fault-tolerance of management architecture

and of managed resources as illustrated in Chapter 6.

We believe that the above mentioned properties make the architecture suitable for enabling

management of resources, possibly belonging to multiple institutions or different administrative

domains and enforcing a variety of (access and security) policies.

 112

7.3. Future work

Our current implementation and the feasibility of the system are based on the following

conditions that the managed resource and its manager must satisfy:

1. The external runtime state required to be maintained per resource is small.

2. This state can be read / written from/to registry and resource in a small number of calls

These conditions are true for loosely coupled resources where the resource can be bootstrapped

using some minimal configuration, and the resource is well-equipped to pursue further

configuration / initialization.

In future, we would like to apply this framework to broader domains. We believe that this

dissertation can spin off further research when the management framework is applied to in

broader domains. This can bring up many interesting research issues, specifically challenging

scalability of the system.

The system does not implement any security at this point. Thus, a malicious process may

arbitrarily invoke operations on the resource which may result in the resource being moved to an

unexpected state and not meeting its desired quality of service. As part of future work, we plan

to look into implementing WS – Security [95] based security or NaradaBrokering’s security

infrastructure as outlined in Section 3.3.2.

Finally, more comprehensive metrics need to be taken into account when deploying manager

processes. Current solution distributes manager processes in a round-robin fashion over the

available set of participating nodes. Future solutions would also take into account system metrics

such as CPU utilization, available memory and locality when deploying a new manager process

or assigning resources to manager processes.

 113

APPENDIX – A: THE MANAGEMENT GRAPHICAL USER

INTERFACE

In this appendix we illustrate the Broker Management Graphical User Interface with screen shots

and describe the working of the prototype.

1. Main Window

Registry
Location

Available Broker Service
Adapter (BSA) Nodes

Resource
(Physical)
Location

and Status

Reloads
data from

configured
Registries

Last ‘N’ Log
entries. ‘N’ is
configurable

Various
available
functions

Left
Pane

Right
Pane

Figure A1 Main Window

 114

The main window (Figure A1) shows a list of available Broker Service Adapter nodes and their

associated registries. By selecting a node from the tree (left pane), one can view / set properties

specific to the selected resource. The right pane consists of various resource-specific tabs for

configuring the selected resource.

The Reload button on the toolbar, reloads data from the registry. This overwrites the current user

state and configuration.

Commit button is used to save all changes to the registry.

The Topology Generator button starts the topology generator which uses default topology

generation algorithms. If a user specific topology is desired, then the Links tab can be used to

create and deploy a user-defined topology. Currently the Topology Generator provides support

for 2 topologies RING and CLUSTER.

Remove All Links deletes all current links from the registry after the next commit.

The Load Sample Data is for debugging purposes to check the User interface functionality.

We now discuss the various tabs and functionalities of the GUI. The functionality depicted here is

very specific to Broker Management.

2. Resource Properties

Figure A2 shows the main Resource properties window.

 115

Resource Properties Tab

Allows Creating a new Broker
Node and setting properties

Figure A2 Resource Properties

The resource properties tab shows an editable table of Configuration Properties and their Values.

Currently new values cannot be created. However, existing values can be edited. This allows a

user to configure a broker node to run specific services (such as, Run TCP and UDP transport on

specified ports but do not run HTTPS/SSL and HTTP etc…).

The first step is to create a new node and assign the default values. This can be done by clicking

the “Create Node” button. Figure A3 shows the default configuration properties after creating a

new node.

 116

Figure A3 After creating a new node

To make any changes, simply double click the “Value” and press “Enter” when done. Finally, the

changes to a node’s configuration may be saved (on the user’s side) by clicking “Save Changes”.

3. Policies

Failure of nodes would cause the application using the broker to function erratically. Usual

method is to re-instantiate a new broker process manually. Whenever possible, this may be

automated by setting the appropriate policy. The default policy [Figure A4] is to wait for “User

Interaction” which simply put, “Does Nothing”.

 117

An alternate policy [Figure A5] is to use one of the Fork Process Daemons to spawn a broker

process and use the newly spawned process in lieu of the failed broker process. The following

MUST be noted for using this feature.

Figure A4 Default Policy (Require User Interaction)

 118

Figure A5 Alternate Policy (Automatically spawn a new Broker)

In the current prototype implementation, Only Fork Process Daemons directly accessible (via UDP

/ TCP /HTTP or via a NB topic) can be used to spawn a new process.

A failed process is typically indistinguishable from a SLOW process. Thus, the conclusion of a

process failure is solely dependent on missing heartbeats and the inability of the manager to

successfully establish a contact with the target resource after several retries.

4. Generating Topologies

The Topology Generator button on the toolbar starts the topology generator module. Currently we

have implemented a RING and a CLUSTER topology generator. Each of these topologies have

specific characteristics and may be used in specific situations. The main window for the topology

generator is shown in Figure A6.

 119

Figure A6 Topology Generator

On the left side is a list of available nodes. An Available Node is defined as a node which was

“created” using the “Create Node” on the Resource Properties page. Such a node is assumed to be

completely configured as any changes to this node after the links generation process would result

in an incorrect deployment of the broker topology.

Figure A7 Warning Dialog asking for link deletion confirmation

The type of topology to generate can be selected from the drop-down list and after setting

topology specific parameters on the “Topology Parameters” tab, the user clicks “Generate” to

 120

generate the topology. The topology generation deletes all previous links and creates new links.

A warning is issued (as shown in Figure A7) before the topology generation is started.

We now show the RING and CLUSTER topology generation on a sample data set.

Ring Topology

The Ring topology does not have any major topology specific parameters. When deploying

broker network involving brokers behind NAT devices, a third party relay server (present in a

non-NATed network) is used. The location of this server may be configured here as shown in

Figure A8.

Figure A8 Ring topology parameters

The generated topology for an 8-node network is shown in Figure A9.

 121

Figure A9 Nodes and Links Configuration for RING topology

Cluster topology

Cluster topology has more configuration parameters than the basic RING topology. These

parameters [Refer Figure A10] define the characteristics of the generated topology such as

number of clusters, super-clusters and super-super-clusters.

 122

Figure A10 Cluster topology parameters

A sample cluster generated for an 8 node network using the above set parameters is shown in

Figure A11.

Figure A11 Nodes and Links Configuration for CLUSTER topology

 123

Links Tab for creating / deleting /
editing Links between Broker Nodes Outgoing Links from Selected Node

Selected Node

Figure A12 Editing Links

5. Editing Links

The Links tab allows a user to edit pre-created links (via the topology generator) or create / delete

/ modify user-defined links. Figure A12 shows the links created in an earlier run of CLUSTER

topology generator. NODE-3 has 3 out-going links.

Deleting Existing Links

To delete a link, simply select the link to delete and click on Delete LinkInfo as shown in Figure

A13.

 124

Figure A13 Deleting Links

Manually Creating Links

While creating links, the following must be noted

Links can only be created between configured nodes. i.e. nodes which have been assigned

properties in the Resource Properties tab after creating the node via Create Node.

If the configuration changes after creating links, then the created links may not be deployed

properly. This is because the link information contains physical IP addresses and port of the

destination broker and this information is set when the link information is created. Thus, it is

necessary to first set the broker configuration and then create the link.

A link using a specific protocol between 2 nodes can only be created once and is directional, i.e. if

a TCP link exists from NODE-1 to NODE-2, another TCP link from NODE-1 to NODE-2 cannot be

 125

created, however, a TCP link from NODE-2 to NODE-1 can be created. Similarly an NIOTCP link

between NODE-1 to NODE-2 can be created even if a TCP link was previously created.

The link creation is illustrated in Figure A14.

Selected Node
List of Nodes to

which Links can be
created

Possible Link Types Create New Link Button

Figure A14 Manual Link Creation

To create a link from say NODE-1 to NODE-2, select NODE-1 in the left pane. The Right pane’s

Links tab shows the available nodes. Available nodes are instantiated nodes as defined above.

Selecting an available node populates the available protocol list depending on the services

configured on NODE-2. After selecting a protocol, simply click on the New button to create the

link information for the link.

After nodes have been created and configured and the required link information set, the entire

configuration information can be committed to registry by clicking the Commit button on the

 126

toolbar. The manager process associated with the nodes then picks up the configuration and

deploys the network of brokers as defined by the user.

6. Shutting down the Broker Network

To shutdown the broker network, simply go to the Resource Properties tab and click Delete Node.

After the required nodes have been deleted, this information is committed to the registry by

clicking the Commit button. The delete request is then acted upon by the respective manager

processes.

 127

APPENDIX – B: EXPERIMENTAL RESULTS (RUNTIME RESPONSE

COST)

1. Runtime Response Cost (Single Machine):

Resources 50 100 150 200 210 220 300
 384 720 1050 1338 1568 3452 10103
 377 728 1063 1349 1541 5103 9694
 358 730 1017 1361 1513 4288 10213
 356 687 1011 1358 1517 4602 9890
 378 701 1003 1348 1559 4092 10878
 357 693 1029 1329 1489 5142 10940
 349 667 1061 1366 1404 4909 10389
 350 664 1009 1384 1390 3865 10130
 399 698 1014 1361 1411 4039 11005
 355 704 1013 1339 1465 5507 10105

Mean 366 699 1027 1353 1486 4500 10335
Standard Deviation 17 23 23 16 66 658 458

Standard Error 5 7 7 5 21 208 145

Table B 1 Response Cost (1 Manager on 1 machine)

Resources 100 200 300 400 500
 538 1079 1594 2254 6712
 546 1095 1575 2157 6414
 561 1075 1542 2181 7281
 556 1031 1522 2379 7448
 565 1043 1519 2218 8202
 539 1027 1566 2136 6261
 539 1055 1586 2237 7820
 537 1084 1491 2240 7016
 519 1059 1481 2033 6948
 536 1052 1473 2305 7277

Mean 544 1060 1535 2214 7138
Standard Deviation 14 23 44 95 602

Standard Error 4 7 14 30 190

Table B 2 Response Cost (2 Managers on 1 Machine)

 128

Resources 100 200 300 400 500
 698 1049 1677 2245 2668
 597 1070 1592 2264 2626
 580 1113 1635 2193 2571
 579 1107 1590 2189 2774
 594 1049 1571 2152 2764
 577 1139 1529 2127 2591
 593 1062 1615 2071 2758
 598 1040 1535 2071 2711
 655 1030 1583 2075 2575
 584 1106 1538 2086 2540

Mean 606 1077 1587 2147 2658
Standard Deviation 40 37 47 73 89

Standard Error 12 12 15 23 28

Table B 3 Response Time (4 Managers on 1 Machine)

 129

2. Runtime Response Cost (Multiple Machines):

Resources 100 200 300 400 500
 382 744 1110 1538 4739
 391 737 1064 1502 5961
 391 737 1122 1476 5052
 353 674 1053 1624 6070
 348 695 1024 1645 6067
 366 669 1139 1608 6722
 380 670 1109 1446 5492
 359 721 1091 1650 6360
 365 703 1020 1385 6340
 357 720 1023 1387 5686

Mean 369 707 1076 1526 5849
Standard Deviation 16 29 45 103 614

Standard Error 5 9 14 32 194

Table B 4 Response Time (2 Managers on 2 machines, 1 on each machine)

Resources 100 200 300 400 500
 283 501 884 764 1091
 301 445 825 858 954
 228 470 887 840 1155
 311 439 622 879 1101
 233 522 781 821 905
 307 503 728 837 926
 207 483 837 710 1140
 252 470 797 815 1087
 249 429 781 853 1191
 298 460 720 729 1272

Mean 267 472 786 811 1082
Standard Deviation 38 30 81 57 120

Standard Error 12 10 26 18 38

Table B 5 Response Time (4 Managers on 4 Machines, 1 on each machine)

 130

APPENDIX – C: GLOSSARY OF TERMS USED

1. D (Maximum requests that can be handled by a manager process)

Refers to the maximum number of requests that can be managed by a single Manager

Process. For analysis sake, we assume this to be the number of resources assigned to a

manager process

2. Manager

A multithreaded process that simultaneously manages multiple resources. This process

comprises of multiple resource manager threads each of which manages a single resource.

3. Resource Manager

A single thread of execution that contains enough logic to completely manage the resource in

question.

4. Managee

Refers to the resource being managed.

5. Service Adapter

This is a wrapper over the Managee that provides a transport interface with the messaging

node while also hosting a WS Management based message processor.

6. Bootstrap Node

Refers to the bootstrapping agent that periodically runs a health check manager. This

component helps in maintaining fault-tolerance and ensures scalability via a hierarchical

arrangement.

7. Messaging Node

 131

A NaradaBrokering broker instance that forms the messaging substrate for communication

between distributed components.

8. Registry

A distributed database / service that persistently maintains system state.

9. Fork Process

An agent that may be remotely contacted to fork off a process on the local node.

 132

APPENDIX – D: MANAGEMENT OF RESOURCES USING WS

MANAGEMENT FRAMEWORK

1. Wrapping Resources with WS Management Processor

(WSManProcessor)

public class ResourceServiceAdapter extends WSManProcessor {
 /* Creates the Resource To manage */
 ResourceToManage resource = new ResourceToManage();

 /* Initialize the WS Management interface.
 This is done through the Service Adapter */
 public ResourceServiceAdapter(MessageSender messageSender,
 String universalEndpoint) {
 super(messageSender, universalEndpoint);
 }

/* The resource exports a GET operation that returns the time */
 public void processWxfGet(EnvelopeDocument envelopeDocument,
 MessageHeaders headers, XmlFragmentDocument xmlFrag)
 throws WSManServiceException {
 String x = resource.getTime();
 XmlObject resp = XmlObject.Factory.newValue(x);
 sendMessage(WSManActionURIs.Wxf_GetResponse, headers, resp);
 }

 /* The PUT operation is NOT supported, so throw a fault */
 public void processWxfPut(EnvelopeDocument envelopeDocument,
 MessageHeaders headers, XmlFragmentDocument xmlFrag)
 throws WSManServiceException {
 log.warn("wsman:UnsupportedFeature");

 // wsman:UnsupportedFeature :: wsman:faultDetail/NotSupported
 FaultDetailDocument fdd = WSManServiceUtil.
 GenerateFaultDetailDocument(
 WSManFaults.faultDetailNotSupported);

 throw new WSManServiceException(
 WSManFaults.wsmanUnsupportedFeature, fdd);
 }

 133

 /* Other operations may be similarly defined */
 . . .
}

2. Implementing Eventing (WSEvProcessor)

public class EvGenService extends WSManProcessor {

 static Logger log = Logger.getLogger("EvGenService");

 public EvGenService(MessageSender ms, String endpoint) {
 super(ms, endpoint);
 DummyEventGenerator evGen = new DummyEventGenerator(this,
 SubscriptionManagerEndpoint.subManagerULoc);
 setWSEvProcessor(evGen);
 }

 // Other WSManProcessor operations...
}

public class DummyEventGenerator
 extends WSEvProcessor implements Runnable {

 static Logger log = Logger.getLogger("DummyEventGenerator");

 /**
 * @param manProc
 * @param subscriptionManagerEndpoint
 */
 public DummyEventGenerator(WSManProcessor manProc,
 UniversalLocator subscriptionManagerEndpoint) {
 super(manProc, subscriptionManagerEndpoint.toString());
 new Thread(this).start();
 }

 public void run() {

 // Generate an event every 10 seconds...
 while (true) {
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {

 134

 log.error("", e);
 }

 String event = "<Time><SystemTime>"
 + System.currentTimeMillis()
 + "</SystemTime></Time>";

 System.out.println("EVENT: " + event);

 XmlObject body = null;
 try {
 body = XmlObject.Factory.parse(event);
 } catch (XmlException e) {
 log.error("", e);
 }

 try {
 // Sends the event to topic “/test”
 sendEvent(body, null, "/test");
 } catch (Exception e) {
 log.error("Error sending message ! Discarding...", e);
 }
 }
 }
}

3. Enumerating set of values (WSEnProcessor)

public class EnumService extends WSManProcessor {

 static Logger log = Logger.getLogger("EnumService");

 /**
 * @param transportType
 * @param param
 * @param bufferServicePort
 */
 public EnumService(MessageSender ms, int transportType,
 String param, int bufferServicePort) {
 // , String endpoint) {
 super(ms, "");
 UUIDEnumerator enumService = new UUIDEnumerator(this);
 setWSEnProcessor(enumService);

 135

 }

 // Other WSManProcessor operations...
}

public class UUIDEnumerator extends WSEnProcessor {

 // Stores whats being enumerated
 private Hashtable table;

 private Hashtable enumStatus;

 public UUIDEnumerator(WSManProcessor manProc) {
 super(manProc);
 table = new Hashtable();
 enumStatus = new Hashtable();
 }

 public EnumerationInfo Enumerate(MessageHeaders headers,
 Enumerate enumerate)
 throws WSManServiceException {
 String context = UIDGenerator.getUUID();
 Object o = enumerate.getExpires();

 Calendar now = new GregorianCalendar();
 GDuration expiry;

 if (o instanceof GDuration) {
 // A duration is specified,
 // add it to now to get the expiry time
 GDuration dur = (GDuration) o;
 GDuration now_Dur = XmlDateFactory.CalendarToGDuration(now);
 expiry = now_Dur.add(dur);
 } else {
 XmlDateTime xdt = (XmlDateTime) o;
 expiry =
 XmlDateFactory.CalendarToGDuration(
 xdt.getCalendarValue());
 }

 // IF the expiry gets set to some value before now, then throw an
 // exception
 if (XmlDateFactory.GDurationToCalendar(expiry).before(now)) {
 throw new WSManServiceException(
 WSManFaults.wsenInvalidExpirationTime, null);

 136

 }

 EnumerationInfo eInfo = new EnumerationInfo(context,
 enumerate.getEndTo(),
 XmlDateFactory.GDurationToCalendar(expiry), enumerate
 .getFilter());

 table.put(context, expiry);

 // Lets say for example sake, that out Enuemrator returns
 // max of 10 elements before giving out an <wsen:EndOfSequence>
 enumStatus.put(context, new Integer(10));

 return eInfo;
 }

 public GetStatusResponseDocument GetStatus(MessageHeaders headers,
 String context, GetStatusDocument getStatusDoc)
 throws WSManServiceException {

 GDuration gd = (GDuration) table.get(context);

 GetStatusResponseDocument respDoc =
 GetStatusResponseDocument.Factory.newInstance();
 GetStatusResponse resp = respDoc.addNewGetStatusResponse();

 resp.setExpires(gd);
 return respDoc;
 }

 public PullResponseDocument Pull(MessageHeaders headers,
 String context, PullDocument pullDoc)
 throws WSManServiceException {

 // NOTE: CONTEXT VALIDATION HAS BEEN PREVIOUSLY DONE !
 PullResponseDocument pullRespDoc = PullResponseDocument.Factory
 .newInstance();
 PullResponse pullResp = pullRespDoc.addNewPullResponse();

 pullResp.setEnumerationContext(WSEnServiceUtil
 .ObjectToEnumerationContext(context));

 ItemListType listType = ItemListType.Factory.newInstance();

 int maxElems = pullDoc.getPull().getMaxElements().intValue();

 137

 int elementsRemaining =
 ((Integer) enumStatus.get(context)).intValue();

 for (int i = 0; i < maxElems; i++) {

 if (elementsRemaining == 0) break;

 // Generate / Get the next element to send
 String element = "[" + elementsRemaining + "]: "
 + UIDGenerator.getUUID();
 UUIDEntryDocument uuidDoc =
 UUIDEntryDocument.Factory.newInstance();
 UUIDEntry entry = uuidDoc.addNewUUIDEntry();

 entry.setEntryNumber(i);
 entry.setUUID(element);
 XmlContentTransfer.copyAsLastChild(uuidDoc, listType);
 --elementsRemaining;
 }

 if (elementsRemaining == 0) {
 pullResp.addNewEndOfSequence();
 enumStatus.remove(context);
 table.remove(context);
 } else {
 enumStatus.put(context, new Integer(elementsRemaining));
 }

 pullResp.setItems(listType);

 return pullRespDoc;
 }

 public void Release(MessageHeaders headers, String context,
 ReleaseDocument releaseDoc) throws WSManServiceException {

 // OK, simply clear off the resources
 enumStatus.remove(context);
 table.remove(context);
 }
 public RenewResponseDocument Renew(MessageHeaders headers,
 String context, RenewDocument renewDoc)
 throws WSManServiceException {
 // We do not allow renewals, so simply throw a fault

 138

 throw new WSManServiceException(
 WSManFaults.wsenUnableToRenew, null);
 }
}

4. Custom Operations

public class ResourceSpecificOperations
 extends ResourceSpecificOperationProcessor {

 public CustomOperations(WSManProcessor wsManProcessor) {
 super(wsManProcessor);
 }

 /* Provides Custom Operation, Init UUID,
 Action: http://test.com/InitUUID */
 public void processResourceSpecificMgmtRequest(
 EnvelopeDocument envelopeDocument, MessageHeaders headers,
 XmlFragmentDocument xmlFrag) throws WSManServiceException {

 if (headers.xGetAction().equals("http://test.com/InitUUID")) {
 // Does some resource-specific operation...
 invokeUUIDInitProc();
 wsManagementProcessor.sendMessage(
 "http://test.com/InitUUIDResponse", headers, null);
 }
 else {
 // Throw an operation not supported exception
 log.warn("wsman:UnsupportedFeature");

 // wsman:UnsupportedFeature :: wsman:faultDetail/NotSupported
 FaultDetailDocument fdd =
 WSManServiceUtil.GenerateFaultDetailDocument(
 WSManFaults.faultDetailNotSupported);
 throw new WSManServiceException(
 WSManFaults.wsmanUnsupportedFeature, fdd);
 }
 }

 private void invokeUUIDInitProc() {
 ...
 }
}

 139

REFERENCES

[1] Channabasavaiah, K., K. Holley, and J. Edward Tuggle. Migrating to a
Service Oriented Architecture. Dec 2003, Available from: http://www-
128.ibm.com/developerworks/library/ws-migratesoa/.

[2] Channabasavaiah, K., K. Holley, and J. Edward Tuggle. Migrating to a
Service Oriented Architecture - Part 2. Dec 2003, Available from:
http://www-128.ibm.com/developerworks/library/ws-migratesoa2/.

[3] Booth, D., H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and
D. Orchard. Web Services Architecture. feb 11, 2004, Available from:
http://www.w3.org/TR/ws-arch/.

[4] Case, J., M. Fedor, M. Schoffstall, and J. Davin. A Simple Network
Management Protocol (SNMP). 1990, Available from: RFC: 1157,
http://www.ietf.org/rfc/rfc1157.txt.

[5] Kreger, H., Java Management Extensions for application management. IBM
Systems Journal, 2001. 40(1).

[6] Distributed Management Task Force, I. Common Information Model (CIM).
Available from: http://www.dmtf.org/standards/cim/.

[7] Distributed Management Task Force, I. Web-Based Enterprise Management
(WBEM). Available from: http://www.dmtf.org/standards/cim/.

[8] Czajkowski, K., D. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D.
Snelling, S. Tuecke, and W. Vambenepe. The WS-Resource Framework. May
2004.

[9] Silberschatz, A. and P.B. Galvin, Operating Systems Concepts. Fifth Edition
ed. 1999: Addison Wesley Longman, Inc.

[10] Condor Project. Available from: http://www.cs.wisc.edu/condor/.

[11] Grid Resource Allocation Manager. Available from:
http://www.globus.org/toolkit/docs/3.2/gram/ws/index.html.

[12] Oppenheimer, D., A. Ganapathi, and D.A. Patterson. Why do Internet
services fail, and what can be done about it ? in USENIX Symposium on Internet
Technologies and Systems (USITS '03). March 2003.

http://www-128.ibm.com/developerworks/library/ws-migratesoa/
http://www-128.ibm.com/developerworks/library/ws-migratesoa/
http://www-128.ibm.com/developerworks/library/ws-migratesoa2/
http://www.w3.org/TR/ws-arch/
http://www.ietf.org/rfc/rfc1157.txt
http://www.dmtf.org/standards/cim/
http://www.dmtf.org/standards/cim/
http://www.cs.wisc.edu/condor/
http://www.globus.org/toolkit/docs/3.2/gram/ws/index.html

 140

[13] Kephart, J.O. and D.M. Chess, The Vision of Autonomic Computing. IEEE
Computer Magazine, 2003. 36(1): p. 41-50.

[14] Research, I. Research Projects in Autonomic Computing. 2003, Available from:
http://www.research.ibm.com/autonomic/research/projects.html.

[15] LCG - LHC Computing Grid Project. Available from:
http://lcg.web.cern.ch/LCG/.

[16] Amazon Web Services. Available from: http://aws.amazon.com.

[17] Microsoft. Windows Management Instrumentation (WMI). Available from:
http://www.microsoft.com/whdc/system/pnppwr/wmi/default.mspx.

[18] Aydin, G., M.S. Aktas, G.C. Fox, H. Gadgil, M. Pierce, and A. Sayar.
SERVOGrid Complexity Computational Environments (CCE) Integrated
Performance Analysis. in 6th IEEE/ACM International Workshop on Grid
Computing Grid2005 Conference. Nov 2005. Seattle, WA: p. 256 - 261.

[19] HPSearch. Available from: http://www.hpsearch.org/.

[20] Aktas, M.S., G.C. Fox, and M. Pierce, Fault Tolerant High Performance
Information Services for Dynamic Collections of Grid and Web Services. (To
Appear) in "Semantic Grid and Knowledge Grid: Systems and Applications"
Special Issue of Future Generation Computer Systems: The International
Journal of Grid Computing: Theory, Models and Applications.

[21] Vretanos, P. Web Feature Service Implementation Specification. 2002,
Available from: OpenGIS project Document: OGC 02-058, version 1.0.0,
http://www.opengeospatial.org/standards/wfs.

[22] Beaujardiere, J.d.L. Web Map Service. 2004, Available from: OpenGIS
project Document: OGC 04-024,
http://www.opengeospatial.org/standards/wms.

[23] Global MultiMedia Conferencing System (GlobalMMCS). Available from:
Project page: http://www.globalmmcs.org.

[24] Tanenbaum, A.S. and M.v. Steen, Distributed Systems: Principles and
Paradigms. 1st edition ed: Prentice Hall.

[25] Lamport, L., Time, Clocks, and the Ordering of Events in a Distributed System.
ACM Communications, July 1978. 21(7): p. 558-565.

http://www.research.ibm.com/autonomic/research/projects.html
http://lcg.web.cern.ch/LCG/
http://aws.amazon.com/
http://www.microsoft.com/whdc/system/pnppwr/wmi/default.mspx
http://www.hpsearch.org/
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wms
http://www.globalmmcs.org/

 141

[26] Rodrigues, L., H. Fonseca, and P. Verissimo. Totally Ordered Multicast in
Large-Scale Systems. in 16th Intl. Conf. on Distributed Computing Systems.
1996: p. 503-510.

[27] Oracle. Available from: http://www.oracle.com.

[28] Foster, I., N.R. Jennings, and C. Kesselman. Brain Meets Brawn: Why Grid
and Agents Need Each Other. in 3rd International Joint Conference on
Autonomous Agents and Multi Agent Systems, AAMAS'04. July 2004. New
York, NY: p. 8 - 15.

[29] Nguyen, X.T. and R. Kowalczyk. Enabling Agent-Based Management of Web
Services with WS2Jade. in 5th International Conference on Quality Software
(QSIC). 2005.

[30] Eddon, G. and H. Eddon. Understanding the DCOM Wire Protocol by
Analyzing Network Data Packets. March 1998, Available from:
http://www.microsoft.com/msj/0398/dcom.aspx.

[31] The Object Management Group (OMG). . Available from:
http://www.omg.org/technology/documents/.

[32] Javasoft. Java Remote Method Invocation - Distributed Computing for Java
(White Paper). 1999, Available from:
http://java.sun.com/marketing/collaterral/javarmi.html.

[33] Suri, N., J.M. Bradshaw, M.R. Breedy, P.T. Groth, G.A. Hill, R. Jeffers, T.S.
Mitrovich, B.R. Pouliot, and D.S. Smith. NOMADS: toward a Strong and Safe
Mobile Agent System. in 4th International Conference on Autonomous Agents.
2000. Barcelona, Spain: p. 163-164.

[34] Garbacki, P., B. Biskupski, and H. Bal. Transparent Fault Tolerance for Grid
Applications. in European Grid Conference (EGC2005). Feb 2005. Amsterdam,
The Netherlands.

[35] XCAT Project at Indiana University. Available from:
http://www.extreme.indiana.edu/xcat/.

[36] OpenMPI. Available from: http://www.openmpi.org.

[37] FT-MPI. Available from: http://icl.cs.utk.edu/ftmpi/.

[38] Al-Tawil, K.M., M. Bozyigit, and S.K. Naseer. A Process Migration
Subsystem for a Workstation-Based Distributed Systems in 5th IEEE

http://www.oracle.com/
http://www.microsoft.com/msj/0398/dcom.aspx
http://www.omg.org/technology/documents/
http://java.sun.com/marketing/collaterral/javarmi.html
http://www.extreme.indiana.edu/xcat/
http://www.openmpi.org/
http://icl.cs.utk.edu/ftmpi/

 142

International Symposium on High Performance Distributed Computing (HPDC-
5 '96). 1996. Los Alamitos, CA.

[39] Chandy, K.M. and L. Lamport, Distributed snapshots: Determining global
states of distributed systems. ACM Transactions on Computer Systems, Feb
1985. 3(1): p. 63-75.

[40] Elnozahy, M., L. Alvisi, Y.-M. Wang, and D.B. Johnson. A Survey of
Rollback-Recovery Protocols in Message-Passing Systems, Technical Report
(CMU-CS-99-148), School of Computer Science, Carnegie Mellon University.
June 1999.

[41] Sankaran, S., J.M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P. Hargrove,
and E. Roman, The LAM/MPI Checkpoint/Restart Framework: System-Initiated
Checkpointing. International Journal of High Performance Computing
Applications, 2005. 19(4): p. 479-493.

[42] Krishnan, S. and D. Gannon. Checkpoint and Restart for Distributed
Components in XCAT3. in 5th IEEE/ACM International Workshop on Grid
Computing (Grid 2004). Nov 2004.

[43] Bronevetsky, G., D. Marques, K. Pingali, and P. Stodghill, Automated
application-level checkpointing of mpi programs. Principles and Pratice of
Parallel Programming, June 2003.

[44] Mockapetris, P. Domain Names - Implementation and Specification. Nov 1987,
Available from: RFC: http://tools.ietf.org/html/rfc1035.

[45] Newman, H.B., I.C. Legrand, P. Glavez, P. Voicu, and C. Cirstoiu.
MonALISA: A Distributed Monitoring Services Architecture. in CHEP 2003.
March 2003. La Jola, CA.

[46] Renesse, R.V., K.P. Birman, and W. Vogels, Astrolabe: A robust and scalable
technlolgy for distributed system monitoring, management and data mining.
ACM Transactions on Computer Systems, 2003. 21(2): p. 164 - 206.

[47] Warrier, U., L. Besaw, L. LaBarre, and B. Handspicker. The Common
Management Information Services and Protocols for the Internet (CMOT and
CMIP). 1990, Available from: http://www.ietf.org/rfc/rfc1189.txt.

[48] Massie, M., B. Chun, and D. Culler, The Ganglia Distributed Monitoring
System: Design, Implementation and Experience. Parallel Computing, July
2004. 30(7).

http://tools.ietf.org/html/rfc1035
http://www.ietf.org/rfc/rfc1189.txt

 143

[49] Wolski, R. Forecasting Network Performance to Support Dynamic Scheduling
using the Network Weather Service. in High Performance Distributed
Computing (HPDC). 1997: p. 316 - 325.

[50] BEA, CISCO, HP, IBM, and Oracle. JSR 262: Web Services Connector for Java
Management Extensions (JMX) Agents. 2006, Available from:
http://jcp.org/en/jsr/detail?id=262.

[51] IBM, HP, CA, and Cisco. Proposal for a CIM mapping to WSDM. 2005,
Available from:
ftp://www6.software.ibm.com/software/developer/library/ws-
wsdm.pdf.

[52] Arora, A., J. Cohen, J. Davis, M. Dutch, and et.al. Web Services for
Management. June 2005, Available from:
https://wiseman.dev.java.net/specs/2005/06/management.pdf.

[53] HP. Web Services Distributed Management (WSDM). March 2005, Available
from: http://devresource.hp.com/drc/specifications/wsdm/index.jsp.

[54] OASIS-TC. Web Services Distributed Management: Management Using Web
Service (MUWS 1.0) Part 1 & 2, OASIS Standard. Available from:
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsdm.

[55] OASIS-TC. Web Services Distributed Management: Management of Web
Services (WSDM-MOWS) 1.0 OASIS Standard. Available from:
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsdm.

[56] WebMethods and HP. Open Management Interface. Available from:
http://www1.webmethods.com/PDF/OMI_Spec.pdf.

[57] HP, IBM, Intel, and Microsoft. Toward Converging Web Service Standards for
Resources, Events, and Management. Available from:
http://msdn.microsoft.com/library/en-
us/dnwebsrv/html/convergence.asp.

[58] Eugster, P.T., P.A. Felber, R. Guerraoui, and A.-M. Kermarrec, The many
faces of publish/subscribe. ACM Computing Surveys (CSUR), June 2003.
35(2): p. 114-131.

[59] Strom, R., G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukherjee, D.
Sturman, and M. Ward. Gryphon: An Information Flow Based Approach to

http://jcp.org/en/jsr/detail?id=262
ftp://www6.software.ibm.com/software/developer/library/ws-wsdm.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-wsdm.pdf
http://devresource.hp.com/drc/specifications/wsdm/index.jsp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www1.webmethods.com/PDF/OMI_Spec.pdf
http://msdn.microsoft.com/library/en-us/dnwebsrv/html/convergence.asp
http://msdn.microsoft.com/library/en-us/dnwebsrv/html/convergence.asp

 144

Message Brokering. in International Symposium on Software Reliability
Engineering. 1998.

[60] Carzaniga, A., D.S. Rosenblum, and A.L. Wolf. Achieving Expressiveness
and Scalability in an Internet-Scale Event Notification Service. in Nineteenth
ACM Symposium on Principles of Distributed Computing (PODC2000). July
2000. Portland, OR.

[61] Segal, B. and D. Arnold. Elvin has left the building: A publish/subscribe
notification service with quenching. in AUUG97. Sep 1997. Brisbane,
Australia: p. 243 - 255.

[62] NaradaBrokering: Project Web Site. Available from:
http://www.naradabrokering.org.

[63] Pallickara, S. and G. Fox. NaradaBrokering: A Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer Grids. in ACM/IFIP/USENIX
International Middleware Conference. 2003.

[64] ServoGrid. Available from: http://www.servogrid.org.

[65] Anabas, Inc., Available from: http://www.anabas.com.

[66] Pallickara, S. and G. Fox. A Scheme for Reliable Delivery of Events in
Distributed Middleware Systems. in IEEE International Conference onf
Autonomic Computing. New York, NY: p. 328-329.

[67] Pallickara, S., M. Pierce, H. Gadgil, G. Fox, Y. Yan, and Y. Huang. A
Framwork for Secure End-to-End Delivery of Messages in Publish / Subscribe
Systems. in 7th IEEE/ACM International Conference on Grid Computing (Grid
2006). 2006. Barcelona, Spain.

[68] Java Message Service. Available from: http://java.sun.com/products/jms.

[69] Pallickara, S., G. Fox, B. Yildiz, and S.L. Pallickara. On the Costs of Reliable
Messaging in Web/Grid Service Environments. in IEEE International Conference
on e-Science & Grid Computing. 2005. Melbourne, Australia: p. 344 - 351.

[70] BEA, Microsoft, IBM, and T. Software. Web Services Reliable Messaging
Protocol (WS-ReliableMessaging). March 2004, Available from:
ftp://www6.software.ibm.com/software/developer/library/ws-
reliablemessaging200403.pdf.

[71] Web Services Reliable Messaging TC WS-Reliability. Working draft (Jan 26,
2004), Available from: http://www.oasis-

http://www.naradabrokering.org/
http://www.servogrid.org/
http://www.anabas.com/
http://java.sun.com/products/jms
ftp://www6.software.ibm.com/software/developer/library/ws-reliablemessaging200403.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-reliablemessaging200403.pdf

 145

open.org/committees/download.php/5155/WS-Reliability-2004-01-
26.pdf.

[72] Microsoft, IBM, and BEA. Web Services Eventing (WS – Eventing). Aug 2004,
Available from: http://ftpna2.bea.com/pub/downloads/WS-
Eventing.pdf.

[73] Pallickara, S., G. Fox, M. Aktas, H. Gadgil, B. Yildiz, S. Oh, S. Patel, M.
Pierce, and D. Yemme. A Retrospective on the Development of Web Service
Specifications. July 2006.

[74] Gadgil, H., G. Fox, S. Pallickara, and M. Pierce. Managing Grid Messaging
Middleware. in Challenges of Large Applications in Distributed Environments
(CLADE). 2006. Paris, France: p. 83 - 91.

[75] Fault Tolerant High Performance Information Service,
http://www.opengrids.org/extendeduddi/.

[76] Pallickara, S., H. Gadgil, and G. Fox. On the Discovery of Brokers in
Distributed Messaging Infrastructures. in IEEE Cluster. Sep 27 - 30, 2005.
Boston, MA.

[77] Bunting, B., M. Chapman, O. Hurley, M. Little, J. Mischinkinky, E.
Newcomer, J. Weber, and K. Swenson. Web Services Context (WS-Context).
Available from: http://www.arjuna.com/library/specs/ws_caf_1-0/WS-
CTX.pdf.

[78] Pallickara, S., G. Fox, and H. Gadgil. On the Discovery of Topics in
Distributed Publish/Subscribe systems. in 6th IEEE/ACM International
Workshop on Grid Computing Grid 2005. 2005. Seattle, WA: p. 25-32.

[79] Microsoft and BEA. Web Service Enumeration (WS - Enumeration). Sep 2004,
Available from: http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-enumeration.pdf.

[80] Microsoft. Web Service Transfer (WS - Transfer). Sep 2004, Available from:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-
transfer.pdf.

[81] Apache XML Beans. Available from: http://xmlbeans.apache.org.

[82] Network Topologies. Available from:
http://en.wikipedia.org/wiki/Network_topology.

http://www.oasis-open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf
http://www.oasis-open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf
http://www.oasis-open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf
http://www.oasis-open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf
http://www.oasis-open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://www.opengrids.org/extendeduddi/
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-enumeration.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-enumeration.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-transfer.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-transfer.pdf
http://xmlbeans.apache.org/
http://en.wikipedia.org/wiki/Network_topology

 146

[83] Gunduz, G., S. Pallickara, and G. Fox, An Efficient Scheme for Aggregation
and Presentation of Network Performance in Distributed Brokering Systems.
Systemics, Cybernetics and Informatics, 2004.

[84] Stoica, I., R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. in
SIGCOMM. 2001.

[85] Ratnasamy, S., P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. in SIGCOMM. 2001.

[86] Uyar, A., Scalable Service Oriented Architecture for Audio/Video Conferencing.
2005, Syracuse University.

[87] Rosenberg, J., J. Weinberger, C. Huitema, and R. Mahy. STUN - Simple
Traversal of User Datagram Protocol (UDP) Through Network Address
Translators (NATs). 2003, Available from:
http://www.ietf.org/rfc/rfc3489.txt.

[88] Rosenberg, J., R. Mahy, and C. Huitema. TURN: Traversal using Relay NAT.
July 2004.

[89] Guha, S. and P. Francis. Characterization and Measurement of TCP Traversal
through NATs and Firewalls. in Internet Measurement Conference (IMC). Oct
2005. Berkeley, CA.

[90] Ford, B., P. Srisuresh, and D. Kegel. Peer-to-Peer Communication Across
Network Address Translators. 2005, Available from:
http://www.brynosaurus.com/pub/net/p2pnat/.

[91] Guha, S., Y. Takeda, and P. Francis. NUTSS: A SIP based Approach to UDP
and TCP Connectivity. in SIGCOMM'04 Workshop. Aug 2004. Portland, OR:
p. 43 - 48.

[92] IBM, B. Systems, Microsoft, S. AG, S. Software, and VeriSign. Web Services
Policy Framework (WS - Policy). March 2006, Available from:
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
polfram/ws-policy-2006-03-01.pdf.

[93] Aktas, M., G. Fox, and M. Pierce. Fault Tolerant High Performance
Information Services for Dynamic Collections of Grid and Web Services. in
FGCS Special issue from 1st International Conference on SKG2005 Semantics,
Knowledge and Grid. Nov 27-29, 2005. Beijing, China.

http://www.ietf.org/rfc/rfc3489.txt
http://www.brynosaurus.com/pub/net/p2pnat/
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-polfram/ws-policy-2006-03-01.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-polfram/ws-policy-2006-03-01.pdf

 147

[94] Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International J. Supercomputer Applications,
2001. 15(3).

[95] Microsoft, IBM, and VeriSign. Web Services Security (WS-Security) Version
1.0. April 2002, Available from: http://www.verisign.com/wss/wss.pdf.

http://www.verisign.com/wss/wss.pdf

Vita

Name: Harshawardhan Gadgil

Date of Birth: May 24, 1979

Place of Birth: Mumbai, India

Education:

May, 2002 M.S., Computer Science

Indiana University, Bloomington, Indiana

May, 2000 B.E., Computer Engineering

Mumbai University, Mumbai, India

Experience:

Jan 2003 ~ Aug 2006 Research Assistant

Community Grids Lab, Indiana University

Bloomington, Indiana

May 2001 ~ July 2001 Summer Intern

Microsoft Corporation, Redmond, Washington

Aug 2000 ~ December 2002 Teaching Assistant

Indiana University, Bloomington, Indiana

	Acknowledgements
	Abstract
	List of Figures
	List Of Tables
	Chapter 1. Introduction
	1.1. Introduction
	1.2. The concept of Resource Management
	1.2.1. Definition of term “Resource”
	1.2.2. Aspects of Resource / Service Management

	1.3. Motivation
	1.3.1. Fault-tolerance
	1.3.2. Scalability
	1.3.3. Performance
	1.3.4. Interoperability
	1.3.5. Generality
	1.3.6. Usability

	1.4. Use Cases
	1.5. Research Issues
	1.6. Summary of Thesis Contributions
	1.7. Thesis Outline

	Chapter 2. Literature Survey
	2.1. Fault Tolerance Strategies
	2.1.1. Replication
	2.1.2. Check-pointing

	2.2. Scalability Strategies
	2.3. Management Systems
	2.3.1. Web service based Management Specifications

	2.4. Messaging Systems
	2.4.1. NaradaBrokering

	2.5. Discussion

	Chapter 3. Management Framework
	3.1. Framework Components
	3.1.1. Hierarchical Bootstrap System
	3.1.2. Managee (Resource to be Managed)
	3.1.3. Service Adapter
	3.1.4. Manager
	3.1.5. Registry
	3.1.6. Messaging Nodes
	3.1.7. User
	3.1.8. Fork Process

	3.2. Summary of components
	3.3. Issues in Distributed System
	3.3.1. Consistency
	3.3.2. Security

	Chapter 4. Service-Oriented Management
	4.1. The WS Management Processor
	4.2. WS Transfer
	4.3. Eventing
	4.4. Enumeration
	4.5. Extensibility
	4.6. Summary

	Chapter 5. Performance Analysis
	5.1. Introduction
	5.1.1. System Configuration

	5.2. XML processing overhead
	5.3. Maximum Resources managed per Manager Process
	5.4. Initialization Costs
	5.4.1. Discussion

	5.5. Runtime Response Costs
	5.5.1. Observations

	5.6. Performance Model
	5.7. Amount of Management Infrastructure Required
	5.7.1. Using 4-way replicated registry and typical values for D and M
	5.7.2. Using a shared registry
	5.7.3. If a messaging node is not used
	5.7.4. Varying the number of maximum resources managed by a single Manager

	5.8. Failure Recovery Costs
	5.8.1. Resource Failure
	5.8.2. Registry Failure
	5.8.3. Messaging Node Failure
	5.8.4. Manager Failure

	5.9. Discussion

	Chapter 6. Prototype and its Evaluation
	6.1. Motivating Example
	6.2. Management of Brokers
	6.3. Generating Broker Topologies
	6.4. Cluster Topology
	6.5. Ring Topology
	6.6. NAT Traversal for Broker Connections
	6.7. Policies
	6.7.1. Wait for user Input
	6.7.2. Automatically Instantiate

	6.8. Analysis of Broker Management
	6.8.1. Interactions between Broker Manager and Broker Service Adapter
	6.8.2. When can TXZ be ignored?
	6.8.3. Interactions with Registry
	6.8.4. Managee – Registry Interaction

	6.9. Benchmarking Topology deployment
	6.9.1. Resource State Size
	6.9.2. Initialization Costs
	6.9.3. Ring Topology
	6.9.4. Cluster Topology
	6.9.5. Results A: Recovery Costs for a single Resource (Broker)
	6.9.6. Results B: Topology recreation costs for a set of Resources (Topology of Brokers)

	6.10. Discussion

	Chapter 7. Conclusions and Future Work
	7.1. Summary of Answers for Research Questions
	7.1.1. How can we build a fault-tolerant management architecture?
	7.1.2. Can the management framework be made scalable?
	7.1.3. If such a system can be built, what is the overhead of such a system and is this overhead acceptable?
	7.1.4. How can we enable global management of resources (i.e. when access to resources may be restricted by presence of firewall and NAT devices)?
	7.1.5. Can the management system be made interoperable and extensible?

	7.2. Management of General Grid Services
	7.3. Future work

	Appendix – A: The Management Graphical User Interface
	Appendix – B: Experimental Results (Runtime Response Cost)
	Appendix – C: Glossary of terms used
	Appendix – D: Management of resources using WS Management Framework
	References

