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© Introduction
The program in ONEDIM1.BAS can be used to address problems in Ben-
nett 76, page 211210, Section 55
Note that we use units of metres and not feet s in the book and o the
relevant parameters are:
Granty a, = 8797 msec~®

and the alr resistance numbers are

agffera) 0017 m
ay(nosedive) 0025 )
agthorizontal) 003 m”!
We solve the dfferential equation
V=o -aulyl @

where y measures the vertical height. y increases as one goes downwards.

e comr o et 1 2 s e eqntion o = and = S

b=t )

D: Use of Program

Inreply to



Drag coefhcient a2?
enter the appropriate value 0 will give motion without drag
OBENTER

will gve the Skydiver her masamur resistance

Inreply to.

Il T, Y, dy/d?

enter the iutial values of tme, height, velocity.

- separated by commas, for instance
00,0 ENTER

Inreply to

Tor Yrange?

use either.

YENTER

LENTER

It response was y, program will integrate from , to a final value of

<

Yy gven by response to
Final Y value?

6.2 ENTER

)

1s an appropriate reply for problem 5.2 of Bennett 76 (p 2

1 response was t to T or Y range?”. the program will fx not the y
interval but the ¢ interval. In thus case, one integrates from t, to t; given
by the response to
Funal T value?

Now the problem is set up, the user can generate various solutions -

exact or approximate. These are generated by replies to the request



-
¥ or v2. ODE Option, TStepsize?
which should be answered by

c1. ¢2, 6 ENTER

 should be the character y or the character v. If

15 stored at each grid point If ¢2 = v the velocity is stored.
2 should be x e rk2 or rié. If c2 = x, the exact solution wil be found.

It ¢2 = e, Eulers method of solvng the ordinary diflerential equations (3)

will be used. €2 = rk? or rké means that the second or fourth order Runge-
Kutta method wil be used in soling differential equations. These solution
techniques are discussed in Section E. 4 1s the step s1ze in t to be used in

calculating solution. y or v will be calculated at t = ,.t, + &, + 25 etc.

‘The nal value of L il be ¢ was entered as , i the reply to T or Y range?”
was entered as  but i y was specfied for latter opton. the inal value of t 15
that value that makes y(t) = yy for this particalar method of soution. For
these reasons, one sets up & grid in t which is uniform except for the last

value. Some care should be taken 1n choosing 6. One wants, maybe, around

100 gri pounts and so should choose & = 01 (¢ ~ &), Thus s impossible to
calculate ahead of time 1y and not £ 1s specified. In this case, one may.
wish to do some preliminary calculations with various £'s to see roughly

how long it wil take to get toy,

Atter calculating away (which may take & whie) the program summar-
izes the current solutions and then patiently waits for a single character to
be entered at the keyboard. Possibiites are:

) Generate another solution - type ¥



b)  List current solutions on screen, printer or a file - type L
©) Gweup-typeE
@) Restart-type R
) Plot-type P

As in problem 1 1, these characters must not be followed by ENTER We
now deseribe the options R or P in more detail

Atter typing R. one is prompted again - f you type R yet again the pro-
gram grudgingly deletes all its good work and we start again. If you type 0,
thus admits a user error and one is back at the previous command line If
you type N, the previous solutions are not deleted but one 1s prompted for
new parameters. This allows one to buld up and later plot together, solu-
tions with diflerent values of a2 Thereby, one could address problem 5 1 on
page 211 of Bennett 76

Alter typing P. one’s actions are very sumilar to those already dis
cussed in 1. The program helps you choose the plot ranges by displaying
the mimmum and maxmum values of tme, height and velocity over all
solutions Note that the plot can display velocities or heights versus me
The choice 15 made by the user selecting which solutions to plot  Bach
Solution contaims either velocity (v) or helght (¥). To generate both vand y
for & particular set of parameters, one must treat this as two solutions gen

erated as above by typing ¥.

The plot can display upto four solutions and these are selected by

replies to the requests



where these are four curves produced 1n plot program. Reply with either a
solution number or 1 (to 1gnore this curve)
Use the Zoom option to display better the small diferences between

the various solutions

E: Notes on Numerical Analysis: Integration of Ordinary Differentiation
Equations.

The standard theory of the numerical solution of ordinary (1. one
independent variable - 1n our case, tume 1) diferential equations, refers to

first order equations which can be written - as in Burden 76 -
dysdt = f(ty) )

We convert the second order equation coming from Newton's laws into
the two first order equations given in Section C, equation (%) The standard
algorithms apply equally well to one or & system (i e. more than one) of irst
order equations Trus theory 1s deseribed fully 1n Chapter 5 of Burden 76
The algorithms called "e”, “rk2" and “rks" in ONEDIN1 BAS implement the
fomalism given in algorithm 5.1, equation (5.3a) and algorithm 5.2 of Bur-

den 76 respectvely. The essential idea is already present in Euler's method

(1) by the forward

(S48 = 1OV = £ (Ey(e) @



JEr0) =100 + 85y () @

Clearly applying (3) recursively allows one Lo step t by 6 at each stage
and so integrate from f, to any final t There 1s nothing sacred about the
exact step size ¢, and the program uses equal steps & upto the last stage
‘which always uses a smaller step than 6. Thus smaller step value 1s triial to
caleulate if one 1s integrating over a fixed t range, tytty but requires the.
techmiques discussed 1n G if we have to obtan a partcular y range,
wsysy

We know that the error in using (2) is of order 8 (written 0(6)) and we
have already discovered 1n Lesson 11 that there are more accurate
representations of the derivative than the forward difference (2) In fact
the central diference, defined 1n 1 . has an error of order 8% The mothod

called ri2, or the modified Euler method, has an error of order 6% which it

y using the central

e Runge-Kutta label 15 applied to the class of methods that achieve
hugher order approximations to the {average) derivative between tand t + 6
by calculating the functions at t values intermediate between the iitial and
final ¢ value of each step. The method labelled rks is relatively simple to
implement and has an error of 0(8¢)

Another class of methods - none of which are implemented in the

example - obtain a higher order approxmation by combining more than two
grid point velues e g the values of y and dy/dt at L L -6, 1-2 .. Thus class
of method (multistep) 1s discussed in Section 5 6 of Burden 76 1 has the

disadvantage that it cannot be used 1o start the integration e g when tak-

ing the 1niial step trom t, o £, +4, one does not have the necessary values



corresponding to &, for the mulustep methods Typically one
starts the multistep methods with a few Runge-Kutta steps to generate the
Imtial few grid pornt values The advantage of the multistep methods over
the Runge-Kutta 15 that the latter “wastes’ the intermediate caleulation
steps whereas the multistep obtains its accuracy by using values that have
aiready been caleulated

Section J of s lesson discusses & sophisticated Runge-Kutta algo-
nthm implemented 1n FORTRAN.

F: Notes on Numerical Analysis: Interpolation

Interpolation 15 used extensively in scientiic calculations. There are
two distinct classes of apphications: irst to the interpolating of experimen-
tal data and second to the interpolating of theoretical (or “exact’)
numbers. The two cases use different techniques because one must usually
be concerned with the measurement errors in the data for the first case
and 5o used method typified by the ¥ it Assuming the rounding (and
integration) errors are negligible, we can assume that the numbers coming
trom  theoretical caleulation are exact.

Suppose we have & function f(t) and & collection of values (4.£,) &t N
tmes £, _£(x-1) e wish to find the value of £t) at some general position t
which 15 mot 1n general equal to one of the & In our case, ¢, are the gnd

pomnts used in the integration Le. 42 Aswe

explained. the set {£,} are in our application, essentially equspaced and

although this could be useful i the computer program, thus f

ture is not
important for the general discussion of interpolation strategy. Note that
the only reason we use interpolation at allis to speed up the calculation.

We could, in fact, caleulate ¥(1) or y(t) for any t by integrating the



o
differential equation However. we choose Lo use the integrator o caleulate
(1) and y{1) at a set of {closely - spaced) points and use interpolation to
find the functions away from the grid points This techruque also makes the
program more modular Namely. interpolation can be implemented for any
table () and does not need to be changed for tables that come from
@fferent sources

The simplest problem 15 Lnear interpolation Given (4./,) and
(1fuur) we write down the straight line (liear function) going through

these two points 1n the (t.0) plane. This s

The strategy used in ONEDIM: BAS, 15 to assume - as 1s automatic in our

case - that the set {t,§ are strictly increasing
tctycty <ty @

Then gven any value . we search the list to find the pair £, £, Such

that
Letct @

Having bracketed the target . we apply the lmear form (1) This tech-
Dique. although simple, has proved to be generaly useful in  wde variety of
problems In implementing it one must decide what to do i L < £ or L >
- when extrapalation s necessary This i particularly unreliable and the
user should not use thus simple method i signficant. extrapolation wil be

necessary.



10-

Lagrange's method generalizes (1) Lo find an n'th order polynomial
that agrees with (n + 1) points of the set (6.f,) Again 1t can be mple-
mented by first searching for the n nearest gnd points to the target . In
practice. high order polynomial nterpolations are not used because they
are potentially unreliable physicall this is because such polynomuals have
lots of wiggles and devations of the fitted data from the polynomial can
manfest el as uncontrolled wiggles - especially near the end of the
fiting region Lower order fits may not be very accurate but also they do
ot go wrong in ridiculous and unpredictable ways - a straight line doesn't
wiggle! So usually one finds that the best approximation of a function over
an interval 1s not a single vry high order polynomial but a set of low order
polynomials The cuble spline 15 & compromse that 18 often a good

‘approach combining accuracy with reliabiity

G: Notes on Numerical Analysis: Solution of Equations in One Variable
This 1s discussed in Chapter 2 of Burden 76 and Section 21.6 of Reller

81, In general we wish to solve

10 &)

where in our case [(t) = y() - y. The case we have 1s particularly easy for

tworeasons

(&) Remember that we integrate at successive Us with interval 6 until we
ind & value £ wih the corresponding (i) > yy. Choose the frst U

value that satsfies this so that ¥(t

~8) <y Thus we have
obtained two values t and £ such that
) <0

) >0



and 50 we know thal the sclution t; satisfies £, <&, <15

Thus allows one to use the bisection method currently implemented in
ONEDIV: BAS
(b) We know the derwatuve () This makes Newton's method particularly

easy to apply

Bisection Method

In s one successiwely halves the error n ¢ by celculating the value
of f0) at the midpoint L = 1/2(t4 + £5). One replaces the rarge Loty by
either £4+1/2(t4 + ta) or 1/2(t4 + tz) +tp. The advantage of tis method
15 that 1t 1 foo proof - one s bound to converge to & zero offt) lts disad

vantage 1s that i 1s compariuvely siow
Newton's Method
Thus 15 based on Taylor series expansion
TO= 1)+ 110 ¢ -t @

which gves an estimate.

1t

b=ty = S/ 1 (k) @

Again we apply (3) iteratively. This converges faster because the error
squares each tme (being proportional to (ty~ts)") However. the faster
convergence has & price  Namely. you may get completely the wrong
answer! This disaster will occur it /(1) changes sign between ¢y and t;

s long as one 1s near enough the desired solution ¢; {and the dervative is
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well behaved). these problems wil not arise and the method wil converge.

jon of Newton's method; one needs to check end

In a proper implements
see 1t 15 converging. If it s, Newton's method wil give the correct answer.
1 the method diverges. one should switch to a more conservative but slower.

method Like the bisection technique. Although this detail wil probably not

be umportant in thus course, 1t g

s such attention to pathological e
that it marks the difference between an academic implementation of an
algonithm and the practical version that can be used routinely n scientifi
work

The reader is innted to improve ths section by the construction of real
examples with fgures to iustrate graphically the main points (e g cases

which succeed fail with Newton's method)

H: Suggested Problems
(a) As sel up. ONEDIM BAS can (essentially) solve problems 1 and 2 on

page 211 of Bennett 76 Work through the:

two problems and modily

the program to address problems 3-> 7.

(6) Head Section 5.6 o Eisberg 81 Use the progeam to reproduce g 519
nd 520 Address problems 5-43 o 548 of Eisberg 81

(c) Examine the effectveness of our ODE integrators by tackling problems
634 to 638 of Roller 81, Exercise set 52, 53, and 54 of Burden 76
a1s0 contaun many such examples

(¢) Change the problem to simulate one dimensional motion of a rocket as
discussed on pages 186-190 of Bisberg 81 Address problems 549 to5-
59 of Eusberg 81 A sumilar discussion il be found in Section 9.6 and

problems 934 to 38 of Roller 81



)

Run the program with a = 0 Note that the Runge-Kutta technique
fives exact answers at the grid points whereas Buler’s method doesn't
Why 15 this? To show ths effectvely run with t range 0o : and 6 = 05
In (e). note that the display program joins gnd paint values with
straight ines and so the Runge-Kutta display is not exact  Improve the
Interpolation routine to correct this

The velocity v(t) wil eventually reach the esymptotic value VA /d:
Calculete this n the program and display this asymptotic ine on plots
of vversus ume

Break the program into two parts - caleulation and display - which

by wrting a fle (which conteins VALT, VALY ete). Run
the calculation part with either the BASIC or C compiler What 15 the
speed up compared to the inerpreter? Use the 8067 - agam what 13
the specd up

Conunuung (1), wrte the calculation program to use exther display pro-
gram bult in o ONEDIM BAS or our standard Physics 20 plt package
Improve the numerical integrator section to include options that allow
other methods such as hgher order Runge-Kutta or predictor correc-
tor technuques discussed n Chapter 5 of Burden 76

Improve the interpolation section to allow higher order approwms

tions (see () Investigate the accuracy of the interpolation as &
function of the interpolation order. Is a hugher order (Lagrange) inter-
polation always better than a lower order? Diflerence plots (See Sec-
tion 11 problems) wil be helptul here Take the cubic spline (p 107,

Burden 76) as an example of a lower order interpolation



(m) Investigate other techniques for solving the equation f(t) = ¥y (¢.8. the

Newton-Raphson method described in Section G is attractive as dern
tuves are known) needed when integrating to a definte height rather
than a definte line

Study for the bult in ntegrators or new ones, both the error in a single

g

step and the total error on completion of the ntegration. Characterize
the success of the integration by two numbers, the average error and
the maximum error (in y for t,stst;). Find these as a function of §
and integration techmque.

(6) Change the program to calculate y = y(t) for a particle fallng trom
(5% to (x7.47) on an arbitrary path y(x) with y(5,) = % ¥ (57)=y
Compare transit imes for vanous paths What is the mummum time.
Make an arcade game where the player specifes y(x) nteractvely by.
for instance, gving the instantaneous drection and distance to be
travelled What is minimum tme if one travels from (2, 3,) to (2. 4y)
Dot by an arbitrary smooth curve but as n arcade game by a, possibly
fixed, number N ofstraight line segments. Find the munimum time as

function of N

Improve the discussion in Sections E. F. G by producing appropriate
figures (stored as tables on a disk fle and plotted by our standard
package) and llustrative examples

(@) 15 single presicion floating point suicient
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I: Bxact Solution of the Drag Problem

Thus 15 given on page 197 of Eisberg 81 for the special case when inutial

posiion and velocity are zero
Consider the differential equation

v=g-n"

Trus uses notation of Eisberg B1. Bennett 76 uses ag for g, azfor 7

set

Then (1) becomes (. now means d/d 7)

i-e

‘which can be integrated once to give

|.,.ix=_‘§H 2o

20 = logl(1 + &)/

wthg= att=0

Exponentiating both sides of (5) and manipulating gives

ar
Crrr et
which integrates to give

£~ ¢ = loglcosh( + ¢)/ coshe ]

@

@

0}

®

®

®
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mih g =

We now have the final solution
7y = %) = log[cosh((y9)* t + ¢)/ coshe ] ®)
7 = (9)tanh((79)7 + )

withv, = (/9)Fdy/atl,

2 = logl(1 + %)/ (1 - )

(9) 15 valid as long as v, <1

Hu, > 1 then
7 =) = log{sh((29)"% + ¢/ sinhe] 0
70 = (9)eoth((79)3 + )

(6) and (10) are wovalid i , < O as then (1) 1s invalid. One needs to

integrate § = g +7y% when y < 0. One can, of course, use smiar tech-

whenv, 1s < 0. We leave

J: A Sophisticated Runge-Kutta Algorithm

The INSL corporation supplies & wide range of sophisticated scientific
routines for  variety of computers. Currently they do not support the IBM
PC due to the lack of DOUBLE PRECISION and COMPLEX statements 1n the

uppl PCIMSL A
experument with ther software n this course.
The directory DVERK contains their Runge-Kutta routine and working

test routines for two examples The algorithm used by DVERK is a more



17-
sophusticated version of that described in Section 55 of Burden 76 The
‘method includes an error estimate for each step which allows one to reduce
the step size 1 the estimated error i too large

We include the INSL description of their routine.



IMSL ROUTINE NAME

PURPOSE

usAGE

ARGUMENTS N
FoN
x
¥
xexD
oL

- DVERK

- DIFFERENTIAL EQUATION SOLVER -
KUTTA-VERNER FLFTH AND SIXTH ORDER METHOD

- CALL DVERK (N,FCN,X,¥,XEND,TOL,IND,C,NW, W, IER)

- NUMBER OF EQUATIONS. (INPUT)
- NAE OF SUBROUTINE OR TVALUATING FUNCTIONS.

A, SUBROUTINE ITSELF MUST ALSO BE PROVIDED
BY THE USER AND IT SHOULD BE OF THE
LLOK:

'SUBROUTINE FCN (N, X, Y, YPRIME)
REAL Y (N) . YPRINE (K]

FON_SHOULD EVALUATE PRI . TPRINE (1)
GIVEN N,X, AND Y(1),...,¥(N]. YPRIME(I)
THE FIRST DERIVATIVE'OF ¥(1) WiTH

HUST NOT BE ALTERED BY FCH

- INDEPENDENT VARIABLE. (INPUT AND OUTPUT)
0N INUT, X SUPPLIES THE INITIAL VALU

S -

- VALUE OF X AT WHICH SOLUTION IS DESIRED.
(INPUT)
XEND MAY BE LESS THAN THE INITIAL VALUE OF

- TOLERANCE FOR ERROR CONTROL. (INPUT)
ROUTINE ATTEMPTS TO CONTROL A NORM

OF THE LOCAL ERROR IN SUCH A WAY TAT TuE
GLOBNL ERROR 15 PROPORTIONAL 10 70
MAKING TOL S) 'S ACCURACY AND

UORE THAR ONE RON, WITh DIFFERENT VALUES
OF TOL, CAN BE USED IN AN ATTEMPT TO
ESTIMATE THE GLOBAL ERROR.

IN THE DEFAULT CASE (IND=l), THE GLOBAL
ERROR IS

AssE0))

) /MAX (1,ABS (¥ (K)))

YT(K) IS THE TRUE SOLUTION, AND

DVERK-1



DVERK-2

o

¥ I THE COMPUTED SOLUTION AT XEND,
FOR K

CTRER ARG CONTROL OPTIONS ARE AVAILADLE.
SEE _THE DESCRIPTION OF PARAMETERS IND AND

B
- INDICATOR. (INPUT AND OUTS

PUT)

O INITIAL ENTRY IND MUST BE SET EQUAL TO
EITHER 1 OR

IND =

v oRvsts au DEPAULT OPTIONS TO B
USED AND ELIMINATES THE
SPECIFIC VALUES IN THE o IOATIONS

'S OPTIONS TO BE SELECTED. IN
Tuls CASE, THE FIRST 3 COMPONENTS OF C
KUST BE TNITIALIZED 70 SELECT OPTIONS AS
DESCRIBED BELO)
= SUBROUTINE WiLL NORMALLY RETURN WIT
\WING REPLACED THE INITIAL wu.u:s
OF X AND ¥ VITH, RESPECTIVELY,
APPROXIMATION 10
THE SUBROUTINE CAN BE CALLED upzuzuu um«
NEW VALUES OF XEND WITHOUT CHANGIN(
OF T PARAMETERS .
THREE ERROR RETURNS ARE ALSo PoSSIBLE, Iv
WHIC D ¥ WILL BE THE MO

Tt e suBRou N wAs

JOR MORE DETAILS, SEE THE DOCOMENT

BVTAR AGVANCES THE INDEPENDENT VARIABLE

X ONE STEP AT A TIME UNTIL XEND IS

REACKED | THE SOLOTION 1s COMPUTED AT
KeHTRIAL ALONG WITA AN ERROR

Eernae 2T,

ESOAL To Dol (SUcCESSFUL Sraf); e srze

IS ACCEPTED AND X IS ADVANCED TO XTRIAL.



e

IF EST IS GREATER THAN TOL (FAILURE)

RE D. HMAG = ABS (HTRIAL) IS NEVER
ALLOWED TO EXCEED HMAX NOR IS T

70 BECOME SMALLER N FIRST
TRIAL STEP IS HSTART. DI

c \TION, A COUNTER (C(23))

N 1) STEP FAILS

opTIONS. xr 'A's: SUBROUTINE Is ENTERED WITH
IND=: PIRST 9 componE:
COMERICATIONS  JecToR MisT | u mx'muz:a
BY THE USER. NORMALLY TH:
FIRST SETTIN( 70,2280, AND TaEN
THOSE CORRESPONDING TO PARTICULAR OPTIONS
RE MADE NON-!

- ERROR CONTROL INDICATOR.
THE SUBROUTINE ATTEMPTS TO CONTROL A NORM

o IN SUCH A WAY TEAT THE
PROPORTIONAL TO

THE DEFINITION OF GLOBAL ERROR FOR THE

DEFAULT CASE (IND=1) 1S GIVEN

DESCRIPTION OF TER TOL. DEFATLT
IGHTS ARE 1/MAX(1,ABS(Y(K))). WHEN IND

IS USED, THE WEIGHTS ARE DET

AC G TO THE VALUE OF C(1)

IF C(1)=1 THE WEIGHT:

s
XBSOLUTE ERROR CONTRCL)

IF C(1)=2 THE WEIGHTS ARE 1/ABS (Y (X))
FOR Ke1,2,...,N.
Rl n.Rol conTROL)

IF C(1)=3 THE WEIGE

/mmsqcrzn B8 (YK

F

IF C(1)=4 THE WEIGHTS
1

o
1P c(1)=s
Foi N
THE DIMENSION OF C
JOST BE GREMER THAX OR POUAL 70
N+30 AND C(31), €(3 (§+30)
03T BE TITIALIZED B HEE OSER.

DVERK-3



FOR ML OTHER VALUES oF C(1), INCLUDING
C(1)=0 THE DEFAULT VALUES Of
THE WEIONES ARE TAKEN TO BE
1/MAX (1,ABS (¥ (X)) )
FOR K=1,
€(2) - FLOOR VALUE. USED WHEN THE INDICATOR C(1)
HAS THE VALUE 3.

€(3) - HMIN SPECIFICATION. IF NOT ZERO, THE SUB-

cw
cs
cte)
s
’, IF_C(6).NE.0 AND C(5) 0.0, EMAX 1§ TAXEN
70 BE'ABS (C(6)) .
IF C(6).EQ.0 AND C(5).NE.O, HMAX 1S TAKEN
70 BE'2/ABS (C(5)) .
1 C6).20.0 AD C(3).20.0, muaX 15 GIVEN
A DEFAULT VALUE O
CO) - MAXINUN WOMBER OF FUNCTION EVALUATIONS. 5

NOT ZERO, AN ERROR RETURN WITH IND =
OTL BE CADSED WHEN THE NUMBER OF FONGTION

EV) ).
C(8) - INTERRUPT NUMBER 1 . IF NOT 2ERO, THE SUB-
ROUTINE W: BT THE

NEAR)

AND
WILL RESUME CALCULATION AT THE POINT OF
INTERRUPTION IF RE-ENTERED WITH IND = 4.

DVERK-4



C(9) - INTERRUPT NUMBER 2. IF NOT ZERO, THE SUB-
ROUTINE WILL INTERRUPT THE CALCULATIONS
APTE}

- 1TH IND =
IND MAY BE CHANGED BY THE USER IN ORDER TO
ANCE OF A STEP (BY CKANGING IND
FROM 6 THAT WO RWISE BE
CTED, OR VICE
M4 - ROK DIMENSION OF THE

MATRIX W EXACTLY AS
SPECIFIED IN THE DIMENSION STATEMENT
IN THE CALLING PROGRAM. (INPUT)
Nw MUST BE GREATER THAN OR EQUAL TO N.
w - WORKSPACE KATRIX.
FIRST DIKENSION OF W MUST BE i AND THE
BE GREATER THAX OR EQU
¥ JUST RENATN DNCRANGED BETVEEN Succeservi

ONE_OF THE SOLUTION COMPONENTS
, 15 2ERO.
PRECISION/HARDWARE - SINGLE AND DOUBLE/H32
- SINGLE/H36,H48,B60
REQD. IMSL ROUTINES - UERTST,UGETIO
NOTATION - INTORNTION oN SPECIAL NOTATION D
CONVENTIONS 1S AVAILABLE IN THE MANU
VRODUCTION OR THRGOGH. THEL ROUTINE UHNELP
REMARKS 1. IN A TYPICAL SITUATION, DVE!

1T
T0 EAMINE COMPONENTS OF THE COMMONICATIONS VECTOR
C. A SUMMARY

June, 1982 DVERK-S



PRESCRIBED AT THE OPTION OF THE USER

(1) ERROR CONTROL INDICATOR
(2) FLOOR VALUE
(3) EMIN SPECIFICATION

(7) MAXINOM NUMBE
(8) INTERRUPT NUMBER 1
(3) INTERRUPT NUMBER 2

DETERMINED BY THE PROGRAM

(10) xRz (RELATIVE RovEDOFT IRtOR Bon:
() DAARY (VERY SWALL MACHINE NUNBER)
uz) ¥EIGHTED NoR OF

13)

et
(15) scaLe
(16) DX
(7) xm
as) &
(9) st
(20) przvious xevp

(21) FLAG FOR Xi

(33) ¥ousen oF svecessru s

(33) MnSER O StecEseIve FarioRes
(24) NUMBER OF FCN EVALUATIONS

gs

RIAL
RIAL

73
5

IF C(1) = 4 OR 5, €(31),C(32),...,C(N+30) ARE FLOOR

IT APPEARS IN IMENSION STATEMENT E CALLING
PROGRAM. IF ONLY ONE SYSTEM OF PQUATIONS IS BE:
SOLVED, 'NW NOJ EAVE T .

7 BOWEVER RE ONE SYSTEM 15 BEING BANDLE

ol

THE OTHER, TEE VALUE Of
DIMENSION OF W IN THE CALLING PROGRAM] £ AS
TARGE RS THE NAXIMIN VALCE OF THE INDIVIDGAL N VALVES.
Agorithe
finds approximations to the solution of a systen of
sations of the fors y ot (c.y) vith uuun) on-
5

Sgned to be sary to teing par b
d only provide plxm:te:; to a.-::un e prosien
s Son

the g a2d then select any one of several options
Ancxmng ﬂ“hnnt kints of error contro

permit
B ione (ang perhaps bake mosificacions) dering intersedisce
DVERK attempts to keep the global error proportional to a tolerance

DVERK-6



specified by th The proporcionality dapands on the kin
eFror control that is used & e 41t iirential equation and
the range of integration.

DVERK is efficient for non-stiff systems where derivative evaluations
aze ot expanaive and whers dolueions are ot sequized st » large

unber of finely spaced points (i be the c ith
Graphical ontput).  See the Chapter D prelude for general guidelines.

The subroutine is based on a code & 4 by T. E. Bull, W. H.
Enzight; and K. ckaon.© T uses Runge-Futts formuias of biders 5
S T et ers Geveloped by 3. M. verner:

See references:

1. T. E. Hull, W. H. Enright, and K. R. Jackso ex's Guide for
Dizhk = R Subtoutine for Bolving Non-Seitt GDE:sts Th Ner 100:
Department of Computer Science, University of Toronto, October,
1976,

2. K. R. Jackson, W. H. Enright, and T. E. Hull, A Theoretical

Criterion for Comparing Runge-Kutta Formulas TR101®, January, 1977.

This example fllustrates the basic wage (all default options) of
DVERK. A table of solution values for x = 1.0,2.0,...,10.0 is obtained
for the predator-prey proble

v =y ey vy =1
: 1 : ax=o0
vy = vyt

1 Y23

INTEGER N, IND,NW,
REAZ ¥iz), R G, 9, x, 7oL, Km0
FoNL

DVER (N, PCL, X, ¥, KEND, T0L, .., W, I2R)
IF (IND.LT.0.0R. IER.GT.0) GO TO
c ¥(1) and ¥(2) are :\xx!n( solution values at X.
c Insert write statement he:
10 CONTINUE

s70P.
20 CONTINUE

DVERR-7



anan

Handle IND.LT.0 or 1ER.GT.O
Itens that may help didgnose the problen should be

utpot here
INDTTOLI N, ¥ (1), .. X (N) XEND, and C(1), ... C(24).

stop

SUBROUTINE  FCNL (N, X, Y, YPRINE)

INTEGER

¥ (N), YPRIME (N) ,X
ME(1) = 2.00¥(1)%(1.0-¥(2))
TRE (D) = ¥ (raraioe)

END

output:

IER = 0
x Yy ¥(2)
1. 0.08 1.46
2! 0.09 olss
3 0.29 0.25
4 1l45 019
5. 4los 14
6. 0l18 2126
7. 0.07 0l91
EN 015 0.37
9. 0l6s 0l1s
10 3015 0.35

Example 2

This example shows how IND = 2 is used to select specific options, while
using default values for others. The differential equation

Y=y . y=latx=o,
is sclved for x = .1,.2,...,1.0, using the absolute erzor contrcl option
[Tt

INTEGER N, IND,NW,IE:
REAL VERa w5 X, 7o N
EXTERNAL FCN2

o

=1
B =1
X =0.0
¥ =100
T0L = 0.0005
-2
ect all default options, first
D0 5 1=1,9
5c) =000
Then specify C(11+1.0 to select the sbaclute error
control opti
cq) =1.0
10 K=1,10

XEND = FLOAT (K) *0.
XD DvERK (8, FONS K, ¥, 08D, TOL, THD, W, M, TER)
IF(IND.LT.0.OR.IER.GT.0) GO TO

DVERK-8



c
10

anon

20

COoNTINUE
s
coNTINUE

sTop
BD
SUBROUTINE

REAL
YPRIME(1) = ¥(1
RETURN

D

output:

1ER = 0
x
Y
2
3
4
5
6
]
8
s
10

(1) in tne curzent sclution value at X. Insert write
statement he:

Handle IND.LT.0 or IER.GT
Ttems hat may belp lignone the problen should be
output h

TN 0L, MK, E (1) .. ¥ (M), XEND, and C(1), ... ,C(20).

FCN2(N, X, ¥, YPRIME)

YO PRI ()X

DVERK-3



K ONEDIMI PROGRAM STRUCTURE:

() LINES 100250 Defines funcions used by exacl sofution for ful unde:
drag

(2) Lines €0200  Defines arrays used by plot part of program

(3) Lines 230290 Defines arrays used by specific {non-plot) part of pro-
gram

() Lines 320790 Reads in data

(5) Lines 82000 Calls subroutine {:0) to calculate requested solution and

Stores results in the arrays VALT and VALY We have

NTRYZ solutions and for 0 < 1 < NTRY? -

-
are stored n VALT 1) to VALT 1% = n - *) where 1© =

BEGA() and n = NUMENTZ) VALY(?) to VALY(: =

alues (KEEPYVS()
)

¥ or v tvelocity) values

6) Lines 1002090 Summarizes curren soluticns

{7) Lines 1720320 Requests next action and sete i up

() Lines :370-1680  Wries current solutions on a fle Note code will oy
write as single table solutions which have the same set of
Lvalues

(6) Lines :730:3630  Produces plots on colour momtor This uses subroutine
(12) to interpolate in the table VALT, VALY produced in

step (5)



(10) Lines 3820-1590.

(21) Lines 49405380

(12) Lines 54905690

(29) Lines 58705950

Is code that controls caleulatians It
) Calls basic ODE integrators {11) to advance solution
one step.nt Thus contral section loops over U steps.

b) Calculates exact solutien if known If ot known. an

“exact" solution request 1s replaced by an ODE call
ith the “rks” (4th order Runge-Kutta) option.

) I integrating over a specified y range, the control
section calls the bisection algorithm (13) to converge on
the desired y value

s  subroutine to ntegrate (a set of) ODE's one step in

according to "€", “rkz” or "rks” slgonthm. See Secuon
E

I a subroutine to interpolate in & table using algorithm
described n Section P This subroutine s caled by plot
pert of program

Contans a subroutine implementing bisection algorthm

described n Section G

Note that each subroutine 15 preceded by comments describing function of

code and meaning of Iput and output variables



onevIML BAS

ntial equations

10 REM The numerical solution of ordinary diffe
20 REM Unite are MS
30 REM

0 REM
S0 REM BEGIN setup section
&0

70 CLEAR

80 Ren

90 REM Some useful Functions

100 DEF FNCOSH(X) =. 58 (EXF (1) +EXP (X))
110 DEF FNSINH (X = 54 (EXP (0 ~EXF (X))

120 REM
130 REM Arrays for plot labels
130 DIn YLABEL (1)
170 DiM TLAEEL (10

160 DIM MESS:

170 pIn n{ss]'/(‘

i
192 DIn MESE™:
200 TN MESSE:,

1623:D1n MESSA% (162)
€162):DIM MESSEY(162)

sax o
253 pn mwwm R ——
1N NHDIFF
A

©L"Euler* "Runge rutts Znd order-
READ NMDIFF® (I%) tNEXT 1%
DVEDU(1)

Runge hutta 4tk order”

ZIN anput section

Te-iE o
i
rvaiEa1s

"M nere | lists F plots K restarts £ ends”
1,1

o EE Define prosien with data from beyboard
ANDRAGS.797
P [Use unite of Metres and Secanda”
16265 Tren NODRAGH=1 LS NoDRAG=o
P YPHYI,

imal T valuen Trity2160T0 584
Fm0THRUT "Final ¥ veluerivEHYZ
SE" TNFUT Yo V7, ODC Optien, Tstepsize’;VVOFT®,OFTS,DELTA
=en REn
&nc FEN interpret and chech optian

THEN YVOFTSR
= THEN YVOPTS= "y




"RK2" THEN 1DO%=2
HEN 1DO%=3

TRY:
28 Sty 1) 60to 780
730 FRINT "Too many options. Either plot 1ist or restart”
78 WTRYIaNTRV-T
750 G
7en mowrxmmm.mz
773 DEL (NTRY?) =DEL
Ton FEEPYVe (NTRVE) SYuOF
757 VEEPAD (NTRYY) ~AZDRAG
ane FEM
810 FEM Sot up tables
870 GOSUE 2450
A= REn
B30 FEM Save calculated values
£SO BEGY (HTRY.) =USEZ
HUMENT . (NTRY?L) =NSTER X

€
J¥ uSe =200 Teen GOT0 920
290 FETNT "Too many values (2000 15 limat)
oo u=E":BE\3-/(N\‘Rv‘/)

of ¢ values and y values

TENPT(3%) THEN MINT=TENPT (33)

THEN VALY (USE') =TEMPY (3%) ELSE VALY (USEZ) =TEMFY (3%)
%) THEN

KCif Sunuaraze entries

FEINT "lic: * 1% © Option: " NMDIFFS(INTOFTZ(I%)) * Delta: " DEL(I%)
Y or V option:® KEEPYVE(I%) " Aldrag:® KEEFA(I%)

OF Fe='r THEN GOTO 1200
IF 16="E" OR + $="e" THEN GOTO 3240

InT rm-l restart(r) New(n) Did(e) parameters”
“ruen coto 1210
O 1a-2ne THEN GOTO 470

OF 13 0 S50
OF 1asvor Tien ot 1390

OF Ts="t" THEN PRINT * T ranges® TPHY1;TEHYZIFRINT “Inatial y,dy/dts”

YFHY 13 YPHYZEFRINT “Inataal €,0y/dts

v

N



oy nen nestar ntegration uptiue
1290 SCREEN 0, 01CLS: LOCATE 28,1
1300 FRINT “M'more L lists P plots R restarts E end

1350 R BEGIN output section: firat on a file, then on screen

1360 REM Produce output in form for plot package

1370 Nowse-1

1380 FRINT "Use scrni for L 1pti: for printer”

1770 PRINT o any disk GiTe name(s) "
FILES

xnt- DPEM FILEs FOR OUTPUT AS %1

en dimcover wnich entries to output togetner
182 NowoNOw 1
135 ie TvorTen

" THEN GOTO 1300
210 NTRYZ

DEL (NOWZ) THEN GOTO 1510
To 1520

1
1517 NENDT-T
130 RNt FIits  Contains entries

NOWZ " to " NENDY

REY Lict entries nowi to nendi witn sane ¢ 1abels
TO_ NUMENT: (NoW
4 VALT .NOW) §

LAY

FECIN section to produce screen plots

3774 FEINT "Note that Flot uses Linear Interpolation”
1730 FPINT "Evcn, thovgh some ODE ol vers are migher order”
1780 BRINT nge etored”, MINT,MAXT

.
T trisls neastyve mumbers ag
T 2 TYRYEs INOT

se
1815 THI
AR IF T1 TZ THEN  THINSTD
R8n THAY-TS

THEN THAX=T1




REM Set te.t strings holding labels for later use

SCREEN 1,0
LocATS
17 »E:wvﬂl'vnve/u- oy THEN PRINT “y" ELSE PRINT “v
90 GET (6,00~ (7,7), VUi

Locae 1

EET (0,017, 7), TLABEL
11

BT 1010485 (T2-T1)
1otk (2w

LsEvIEw
FER Start Piot by deciding on i Limits
TP useviEwi-l THEN ViEw (O o»-uss 150)
TEW:=2 THEN VIEW(140,0)- (318, 190)
N OVIEW (0,0)-(319,190)

€F o1
TEND-DT) THEN GOTO 2320

40716070 2270

MAXs.001 ST

€
(i Venpb THEN GoTo 2390

(1,1)-(158.150) 11
N VIEW b0 1) (218, 1o
IF USEVIEW:-3 THEN VIEW (0,M- (319,

s




2610 WINDOW (TBEG, YBEG) - (TEND, VEND)
2620 1F TONE=TTWO' THEN GOTO 2700
2630 VBEGSCREEN=PHAF (YBEG, 1)

2640 Y1SCREEN=PMAF (YONE, 1)

2650 1F <9 THEN
N> ELSE

zsen Pt 2 rwss.m«n L VUSE), TLABEL, P

2670 FOR riuoss001 STER oT
2635 LINE (T, YONE) - (T, YONE <. 554 (VTHO-VONE) 1,2
2690 NEX:

2700 1F YONE=YTWO THEN GOTO 2930
2710 TEEGSCREEN-rHAF (TBEG, O)

2720 TIBCREEN-FAF ¢

2730 SCREEN- TBEGSCREEN ¢ 9 THEN TUSE=TBEG ELSE TUSE=TONE-9% (TONE-TEEG) / (Tis
Reen Teesacheen,

737 PUT_(TUSE, .51 (YBEGUVEND) ), YLABEL, PET

DV TO_(YTWOY.001) STEF DY
TOUE v (ToNE 04 (TTHOTONE) 110, 2

arts & small routine te plot a line

5 © THEN RETURN
T7oIF TiIEES THEN TELSTI ELse Tei-Tee
e 1  THEt TPzt
1

AT (i msu TE1=VALT (1%)
VALT (1%) THEN TP2=VALT (1%

1TRVIZ

ITRVE= TRV

1T FOSGUAF7=A THEW PUT (150,61, MESSG%, FSET
p

* FEN Get command fron heyboard



=1 EY
+IF  Tew ooto st
P o THEN SoTo 1730

set screen nicely
Cre:SeREkn oy orwTD T B01END

I mEn Set up oo

1EW (160,1)-(318,190),,1 ELSE VIEW
VIEW:=3 ELSE USEVIEWZ=2
=25 IF FULLZ THEN COL%e1 ELSE COL%=21

211 Locare 2o
a2 Lom factor®sZ
I .o001 THEN GOTO 3410
e

(T=TF 1VOT: GOSUE 5400
VTV TuTERr

r TELG=TFIVOT- (TE1VOT-TBEGO) /2

TEDepIveT- (TENDo. TEIVOT /2

VEFGSYE 1VOT- (VP IVO 7

CENE P GTS (VEUROVF TOT )

EEH BCGIN physice section

1 thas subroutine jnteriacen to o€ uolyers that stap ene umt in ¢

BEN INPUT a3 adeinc 135 8 pointer to sclution technt
« RER

FEM L me emrtial value of ¢

KM y

en for aysat

REM 4anal value of ¢/y depending
Ren whether tyopts sa "t" or "y" respectively

REn OUTFUT 14 rstep’ the nusber of t values generated (1snusber of steps)
: L. nstepty polds ¢ values
o wEn Sempy 1. neteris nelds v velues

o ncawmwr VPHYL L DACVDERYL S TER 01
OL= 21 VEDI (9) = VAC: YEOU (1) =
1 THEN GOTO Z850

vTac
sevic

pAc
THEN GOTO 4370



FEM Section for tyopt$="t” or for tyopts="y" and y - yphyZ
o IF TAC 1-TTRYE THEN RETURN

i= 400 THEN PRINT "Too many integration steps”: RETURN
T 1O TrINE THEN STEPZoUSTRI L TAL BLSE STEREOUNDEL T

ki
FEM A small subroutine to calculate yac at tacestepequ
FEN TAC 1t replaced by 1ts new value TACSSTEPEQU

FEM by either analytic method or by ste

b of differential equation
I 100X <0 THEK GOTO 4260

25 REM prace aneiytic form ner
avallable place 1da%e3 and continue

GoTO 4120
. 59A0DRAGH ¢ 2
DAC-YDERY'1 +ACDRAGH (TAC+STEFEOU)
GOTO 4203
acen mrm
FEM Eiact solution with oreg anly valid 14 imtisl derivative

FOH posity
i vberun o ruEu mnv.x,.snvu aze0
217 TauscaLE-sor
E Ber1 4 4oDRAG TAUSCALE
7AES (11 -VZERD)

IHHSCIERDY ) /AZDRAG
DFAE,

F e
Fav

5=y

= 407 THEW PRINT "Too ntegration steps”: RETURN
FHV= THEN STEFEQU=DELTAIGOTO 3950

rch for correct value

REN Desired v value bract eted.
" TOLSECT-.o14BELTA

FEECT TN ¢ (NSTEPU-1) -vPHYE
FSECT2=TENF Y (NSTEPZ) -YFHYZ
SECT1=TEMPT (NSTEP%-1
: TRECTL TENFT (NSTER )

T

FLit Subroutane called by routine used to solve y(t)=yphyZ



EQu=Tac
cosuE aci0
CTovAC-VPHY2

User supplied routine that ie called by ODE scivers
353 REn For 1oauin0 1o menuio1 set darivatives of y e wt ¢
REM in dyequ (0. .nequi-i

REM neau¥ y variables in yequ(0..nequi-1)

En

2 R
2680 REM in this c qui=2 and
455° REM for iequi=O yequ is y and
yeau is dy/dt

1F
DVEDU( T AeDRAD-AZDRABS YEDU (1) $ABS (VEGU(1))

o nvEmHn-annkhE
ORI

i

£n
EEM BEGIN numerical analysis section
Az rem
4810 EEM Male 1 step in numerical solution of an ODE using the
4820 FEN method sele
-1 Euler
= 2ng. urdnr Runge futte called Hodities Culer aethod
Faires and Re,
e lokte (5205 BurdensFaire ol
be t value in tequ and ¢ step In stepe
1) where anput nequl holds humber

£
¢ tenurstepequ

e for yequ and dyeau earlier

= rather simple method
T 1pon 1 Then 6oTo S0

) +STEPEQUIDVEQU (IEOU)

1 1 order Runge Kut
I iRl a1 S zon  HSEQY (501, YSAVEDU (201

HEN FUDEOU=1! ELSE FUDEQU=.S
FOR 1EQUZ=0 TO NEOU%~1

¥SAVEDU (1EOUY) =VEOU (TET

V1£Qu IEQL: 0UTDYEQU (1EQU:

VERU (JECU™) = VECU(1EU) +FUDECUR iecucieaun
vzcu-vsmsnu‘wxwtyErsau

cosur ae

R

TITH RN Dud crder Funge butte
HEN BT 5250

A FOR TFOU"
i1 ~VSAUEDU (120U +. 58 (STEPEOURDYEDU (TECUZ) 4 1EQU(1EQU))

YT 1ECw

Roto ger




TEnu-TsAvsn
iEGU.1 2600 380U, veAvEQY

¥ | Intecpulate for various y values g3
=10 TER LT Gant as ¢ Value to be anterpelated at
a2 try (=0 to ntryi)
by user to nonsense value
maren tetore first call to this routine
FCH DUTFUT 12 snterpolated ; value in anterp
e

5
TINTOLD THEN GOTO 5512
BEG: (ITRVID) +BEGINT:- 1

TO HUMENTZ (ITRYE
G010 a1t

ALT (LLINTZ) )/ (VALT (IZINTZ) ~VALT (11IKTZ) )
‘ALY (11INT) § (1-FUDINT) +VALY (I2INT%) SFUDINT

FEN Brsectson technsaue for selving #6220 given on page Z2(aigorsthn
FEM of Burder Faires and Reyn

Hine accuracy requires for selution whach 20
9 function value in fs
e mon mumber. of 1t stions.
S each iteration and so one can easily guess
ary)

« @
FEM The User must ensure thet fsect] and fsect? have oppesite sign
Frn

BEM fanei, vser must supply  function to calculate ¢(t)

PPN This routane must return § #sect give t an tsect.




870
sag0
5890

CTSECTE:

TSECT=. 5% (TSECT14TSECT2)
aszo

GosUE

an.

17 FSECT

coTo se80

00 I FSECT=0 THEN RETURN
910 1F ABS(TSECT2-TSECT1) < 2!TOLSECT THEN RETURN
5920 CTSECTZ=CTSECTZs:

cTseCTZ

< MAXSECTZ THEN PRINT "Too many iterations in bisection algorit

13FSECT * 0 THEN TSECTI=TSECT ELSE TSECTZTSECT



Numpeavt, Ba>

10 REM This 1llustrates Numerical Differentiation
20 REM change fy and fndivy to get other examples
e

R
o e

=0 REM BEGIN setup section
&0 oL

5o GEn

82 FEM Set up functions to define functions and derivativ
7 FEM Cantral Dersvatives G.act for o Ousdrat
109 DEF FNY(T)=0.9 (T
119 DEF FNDIVY (T3 =9 an

tangy to work with call to fny in it directly so

165 DEF FHCENTDLYY (1)< (FNY (T+De-5) -FAYCT-DH.51) /D

189 REM £ .
120 o u.\psumv.uastumv
MESS17% (322, MESS2% (322)
[Pt e———

Din nesesr

RFM
2an REH BEGIN user section

WIDTH B0:CLS

290 FRINT "D halves delta F plots R restarts E ends®
300 Locate 1,1

REW Define probien witn data from b eyboard
INPUT "Tzero Delta"s TZERO, DELTA

of deravati ves

5RO REM BEGIN section to produce screen plots
590 REM

&0 scom o.oruIoT 40tcLe

610 INPUT “Piot T r. 2

20 INPUT "Plot v rangenivivz
&30 REM




THINeT2

THEN THAX=T1

THEN VIN=Y2

THEN (hAx=Y1

(202727 TLABEL

Cd-real Fini dot-forward dasn-central®
9)-(319,7) ,MESSO%

880 FRINT “F Flips Full - Half Size®
890 GET (0,0)-(319,7),MESS1%

900 CLS:LOCATE 1,1

910 PRINT "E ends R restarts Z zooms F plots
920 GET (0,0)-(319,7), MESSZL

940 DT=.101KABS (T2-T1)
950 D=, 101 PABS (v2-Y1)
60 :

Start Plot
ol 1F USEVIENTeL THEN ViE (0,0~ (138, 170)

N TO THAX+.001 STEP
or (7. Tewp-om) "Tven coto 1130

1140 TF TONE = TTWO THEN DT=.Z2#DT:GOTO 1080
1150 VONE=VEND: YTWO=YEEG

TEP DY
YEND-DY) THEN GOTO 1200

1212 IF YONE =YTWO THEN DV=.2¥DY:GOTO 1150
1550 17 USEVIEWAS THEN COLYA1 ELGE CoLroy

A —

1260 CLS
1270 LOCATE 1,c0L;
1280 PRINT “Thwe

1290 GET (9, 0 vessan




L D= (198,190), .1
1F USEV: N VIEW(16he 13~ (3181903 11
hsu i* usguxsum THEN ViEw (5288

e

tann
1317 [EM PLOT CURVES: SET UP WINDOW 10 SCALE CORRECTLY

1360 17 1SCREEN) 5 THEN 7 1SCREE
M) ELSE YUSE=YONS

1470 PUT (. :x'YSEG»YEum JUSE)  TLABEL PET

1380 FOR T-TONE+DT W0+, 501) STEP DT

1390 LINE | (T-vONE) - (T, YONE - 554 (Y THD-YOMEY ) .

1500 NE;

THEN GOTO 1712
1520 vasmcnszn-mammzs kN
1530 T1SCREEN=FMAP (TON

1619 COLY%=1:5TYLEX=0HFFFF s TTRY %0
1670 COSUR 1670
1639 5oTO 1780

163
1650 FEM Here starts a small routine to plot a line
1660 REM

1670 1F ITRYZ 0 THEN RETURN
168% IF T1 TEEG THEN TF1=T1 ELSE TP1=TEEG
2 ELSE TP2=TEND

iy xmswuc
X ErAe——,

1780 CnL/.-).SY\LEA SHFFFF: TRV Y1
1790 GOSUB 1
1800 CoL*=

3t 1TRYZ=2

-
181 GOSUB_ 1670
1820 COLL=D: STYLER-AHFFO0s TTRYZSS
1530 Gosus

1820 REM

16% REN Froduce Hessages at botton of gragh
1860 VIEW (0,192) - (319,199)

1870

-

IE PoSsuAF-0 THEN FUT (0,01 MESSO%, PSET
1930 IF POSSWAPY=1 THEN PUT (0. 0) . MES




195 1 FOSBWARG=3 THEN RUT (00 ) MESS3%, PBET
1760 I FOSSWAFY=3 THEN FUT (160,) ,MESSA%, PSET

HEN FUT (160,0),MESS6%, PSET
FORC 1= T 20001NEXT

15 Ren cet comnand rom 1 eyboard
2020 4 $nTr EY

THEN GOTO 2380

ﬂw ReR En up e reen nicely
CREEN 0y 0rWIDTH 805END

2150 17 NOT FULLL THEN VIEW (160,1)-(318,190),,1 ELSE VIEW

2160 TF FULLY THEN USEVIEWZ=3 ELSE USE

2170 IF FULLE THEN COLi=1 ELGE €Ol

Z1an

2155 Coeare =.coux
Zoom factor

18551 Then soro 2190

80 TTRY%=0: TINT=TPIVOT:GOSUB 2470
2290 VPIVOT-T
4 TREG=TFIVOT-(TFIVOT~TBEGO) /2
2310 TEND=TRIVOT+ (TENDO-TPIVOT) /Z
2720 YREG=YPIVOT- (YPIVOT-VBEGD) /2
VOT+ (YENDO-YPIVOT) /Z

nge between Full and Half screen

300 FoLLiney FoLy

=90 VIEWICLS

2400 IF FULLY THEN USEVIEW.=3 ELSE USEVIEWZ=1
TF NOT FULLY THEN GOTO 930

010 101

2480 VALFN=FNY (TZERD:

2350 TR TRt THEN, SNTERP-FNTANGY (TINT, TZERO, DerunEeL) s ETURY
5500 IF ITRYZ%=2 THEN INTERP=FNTANGY (TINT,TZERO, DERVFOR) : RETURN
215 IF ITRVASS THEN INTERP-FNTANGY (TINT. T7ERG, DERVCENT) sRETURN




