

i

An Asynchronous Collaboration and

Content Management Framework with

High-Performance P2P-based Data Transfer

Capability for Scientific Computing

Ali Kaplan

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
 Doctor of Philosophy

 in the Department of Computer Science,
Indiana University

July 2007

ii

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

Doctoral Committee

Prof. Geoffrey C. Fox (Principal Advisor)

Prof. Dennis Gannon

Prof.

Prof.

 28, 2008

iii

© 2008 Ali Kaplan

All Rights Reserved

iv

Acknowledgements

v

Abstract

vi

Table of Contents

Chapter 1 ‐ Introduction ... 1

1.1 Motivation ... 4

1.2 Use Cases .. 5

1.3 Research Issues .. 6

1.4 Contributions ... 7

1.5 Organization of the Thesis ... 9

Chapter 2 ‐ Literature Survey .. 12

2.1 Introduction ... 12

2.2 Overview ... 14

2.3 System-level Data Movement Techniques .. 16

2.4 Application-level Data Movement Techniques ... 17

2.4.1 TCP -based Data Movement Techniques ... 17

2.4.1.1 GridFTP ... 18

2.4.1.2 GridHTTP .. 22

2.4.1.3 bbFTP .. 22

2.4.1.4 The BaBar Copy Program (bbcp) ... 23

2.4.2 UDP -based Data Movement Techniques ... 23

2.4.2.1 Simple Available Bandwidth Utilization Library (SABUL) .. 24

2.4.2.2 UDP-based Data Transfer Protocol (UDT) .. 24

2.4.2.3 Fast Object –Based data transfer System (FOBS) .. 25

2.4.2.4 Reliable Blast UDP (RBUDP) ... 26

2.4.2.5 Tsunami ... 26

vii

2.4.2.6 UFTP ... 27

2.5 Peer-to-Peer based Data Movement Techniques ... 27

2.5.1 BitTorrent ... 30

2.6 Network-level Data Transfer Techniques .. 34

2.7 Discussion ... 37

Chapter 3 ‐ The GridTorrent Framework Architecture ... 39

3.1 The Overview of the GridTorrent Framework .. 39

3.2 Main Components of the GridTorrent Framework .. 42

3.3 Summary ... 46

Chapter 4 ‐ The GridTorrent Framework Client Architecture 48

4.1 Introduction ... 48

4.2 Overview of the GridTorrent Framework Client Architecture .. 50

4.3 Torrent Data Sharing Logic ... 52

4.4 Core Modules Layer .. 53

4.4.1 Data Transfer Modules ... 53

4.4.2 Management Modules .. 55

4.4.2.1 Task Manager .. 56

4.4.2.2 WS-Tracker Client ... 56

4.5 Security Manager ... 58

4.6 Task Generation and Exchange ... 59

4.6.1 Tasks ... 60

4.6.1.1 Task List Request Task .. 63

4.6.1.2 Share Content Request Task .. 64

4.6.1.3 Share Content Response Task .. 65

4.6.1.4 Download Content Request Task ... 66

4.6.1.5 Download Content Response Task .. 67

viii

4.6.1.6 Access Control List Request Task ... 68

4.6.1.7 Access Control List Response Task ... 69

4.6.1.8 Update Status Task: (UPT) .. 70

4.7 Summary ... 71

Chapter 5 ‐ Asynchronous Collaboration and Content Management Architecture ... 72

5.1 Introduction ... 72

5.2 The concept of Asynchronous Collaboration and Content Management 73

5.2.1 Definition of term “Asynchronous Collaboration” ... 73

5.2.2 Definition of term “Content” and “Content Management” .. 74

5.2.3 Requirements .. 74

5.3 Related Work ... 75

5.4 Access Control Schemes ... 81

5.5 The Collaboration and Content Management .. 83

5.5.1 Objects of the System ... 85

5.5.2 Services of the System .. 87

5.5.3 Collaboration Management Module ... 90

5.5.4 Access Control Mechanism of CCM .. 92

5.5.5 Content Management Module .. 93

5.6 Summary ... 94

Chapter 6 ‐ WS-Tracker Architecture .. 95

6.1 Introduction ... 95

6.2 Web Service .. 97

6.3 WS-Tracker Service .. 100

6.3.1 Multiple Trackers ... 102

6.3.2 Fault Tolerance ... 103

ix

6.3.3 Security ... 105

6.4 Summary ... 106

Chapter 7 ‐ Security Modules and Issues of GridTorrent Framework 107

7.1 Introduction ... 107

7.2 The Grid Security Infrastructure (GSI) ... 109

7.2.1 History of the GSI ... 109

7.2.2 Overview of the Grid Security Infrastructure ... 111

7.2.3 GT4 WS Security .. 112

7.2.4 GT4 Pre-WS Security ... 113

7.3 The GridTorrent Framework Security Infrastructure .. 114

7.3.1 Security at Collaboration and Content Manager (CCM) .. 116

7.3.2 Security at WS-Tracker Service ... 119

7.3.3 Security between GTF Clients .. 120

7.4 Dealing with Various Attack Scenarios ... 122

7.4.1 Man-in-the-middle Attacks ... 122

7.4.2 Replay Attacks .. 123

7.4.3 Denial of Service Attacks ... 123

7.4.4 Non-Repudiation .. 124

7.5 Summary ... 124

Chapter 8 ‐ Performance Evaluation ... 125

8.1 Introduction ... 125

8.2 PTCP Architecture ... 128

8.3 LAN Test ... 129

8.3.1 Scenario I: Testbed ... 130

x

8.3.2 Scenario I: LAN Test Result... 132

8.4 Continental WAN Test .. 133

8.4.1 Scenario II: GridTorrent Framework Client with One Socket.................................. 134

8.4.2 Scenario II: Test Result .. 136

8.4.3 Scenario III: GridTorrent Framework Client with Four Sockets 138

8.4.4 Scenario III: Test Result ... 139

8.5 Multi-nodes ... 141

8.6 Overhead ... 145

8.7 Summary ... 146

Chapter 9 ‐ Conclusions and Future Work ... 147

9.1 Conclusion ... 147

9.2 Summary of Answers for Research Questions .. 148

9.2.1 How can we build a peer-to-peer data transfer mechanism which utilizes SOA for

scientific community? Which one of available peer-to-peer system is best for this purpose

and what type of modifications and new features are needed to be added to it? 149

9.2.2 How can we provide a medium that allows participants to manage, share, discover,

and download their contents and integrate it with data transfer mechanism? 149

9.2.3 Is the data transfer mechanism scalable? .. 150

9.2.4 How is the performance of data transfer mechanism and it is acceptable? 151

9.2.5 What is the overhead of this system and is it reasonable? .. 151

9.2.6 How can we make it enough secure for scientific community as security is not a

concern in peer-to-peer to networks for non-scientific community? 152

9.3 Future Work .. 154

Chapter 10 ‐ Bibliography .. 156

xi

List of Tables

Table 4-1 Tasks Overview ... 60

Table 4-2 Presentation of Task List Request Task in XML format 64

Table 4-3 Illustration of Share Content Request Task in the XML message 64

Table 4-4 Representation of Share Content Response Task in the form 66

Table 4-5 An example of Download Content Request Task in XML format 66

Table 4-6 Illustration of Download Content Response Task in the XML 67

Table 4-7 Presentation of Torrent Data Task in XML format 67

Table 4-8 Representation of Torrent No Data Task in the form of XML 68

Table 4-9 Illustration of Access Control List Request Task in the XML 68

Table 4-10 An example of Access Control List Response Task in XML 70

Table 4-11 Presentation of Update Status Task in XML format............................. 70

Table 5-1 Partial List of Sakai 2.5 Tools .. 79

Table 5-2 Overview of objects used in the Collaboration and Content 86

Table 5-3 Summary of services used in the Collaboration and Content 88

Table 5-4 Access levels offered by the Collaboration and Content 92

Table 7-1 Comparison of transport-level and message-level security 113

Table 7-2 Summary of security issues between GTF components 122

Table 8-1 Server and client machines’ descriptions and their locations 127

Table 8-2 Performance characteristics of PTCP and GridTorrent 132

xii

Table 8-3 Performance characteristics of PTCP and GridTorrent. 136

Table 8-4 Performance characteristics of PTCP and GridTorrent. 140

Table 8-5 Transmission sequence matrix of PTCP ... 144

Table 8-6 Transmission sequence matrix of GridTorrent 145

xiii

List of Figures

Figure 3-1 GridTorrent Framework is composed of a client 44

Figure 4-1 Client/Server model ... 50

Figure 4-2 Peer-to-peer model .. 51

Figure 4-3 GridTorrent Framework Client Architecture .. 52

Figure 4-4 Simulation Architecture ... 54

Figure 4-5 Representation of XML schema of Task ... 61

Figure 4-6 Activity diagram of GTF’s tasks .. 62

Figure 4-7 Processes workflow of share content request task 65

Figure 4-8 Access Control List (ACL) request task's processes 69

Figure 4-9 Update status task (UST) is one of the important 71

Figure 5-1 The interaction of Collaboration and Content Manager 84

Figure 5-2 Anatomy of the Collaboration and Content Management module 85

Figure 5-3 Possible roles and rights in the Collaboration and Content 91

Figure 6-1 The flow of information between a user and GTF Peer 100

Figure 6-2 Message flow between GTF peers via WS-Tracker Service 102

Figure 7-1 GT4 security protocols .. 112

Figure 7-2 All possible interaction among components of GTF. 115

Figure 7-3 Establishing security credentials at Collaboration and Content. 117

Figure 7-4 Security Credentials obtaining process between GTF and GSI. 121

Figure 8-1 A parallel TCP socket architecture ... 128

Figure 8-2 Client and server configuration for PTCP test case 130

xiv

Figure 8-3 GridTorrent test case configuration for LAN test 131

Figure 8-4 Achieved average data transfer rate of PTCP 133

Figure 8-5 Client and server layout for PTCP test case ... 134

Figure 8-6 GridTorrent test case topology for wide area network test 135

Figure 8-7 Overall data transmission performance for PTCP 137

Figure 8-8 Client and server network layout for PTCP test case 138

Figure 8-9 GridTorrent test case topology for WAN test 139

Figure 8-10 Achieved average data transfer rate of PTCP. 141

Figure 8-11 Multiple nodes reprenstation for GridTorrent and PTCP 143

xv

Chapter 1

Introduction

“There is nothing permanent except change.” –Heraclitus of Ephesus. This is

very true for nearly seventy years of history of the computing systems and

computational science. When the first modern computers emerged in 1940, computer

systems were so large and expensive that they had a roomful size and only a few very

big companies and institutions were able to afford them. These computer systems

operated independently and did not communicate with each other. In fact, there was no

reason to connect them at that time.

Throughout the 1950s, computers used vacuum tubes as their electronic

components. Transistor-based electronics were used to replace vacuum tube electronics

in the 1960s. In the 1950s and early 1960s, one prevalent computer networking method

was built on the central mainframe method in which terminals were connected to their

central mainframe via long leased lines.

 A groundbreaking technology, integrated circuit (IC) technology, and creation of

microprocessors were introduced in the 1970s. IC technology and microprocessor

Introduction

2

architecture resulted in manufacture of smaller, faster, more reliable and cheaper

computers. Modern computers based on ICs are millions to billions of times more

capable but a fraction the space and price. Another important advancement of the late

1960s and early 1970s was the development several packet switched networking

solutions to address the network interoperability problems.

By the 1980s, computers became so affordable, small and simple that regular

people were able to afford to buy computers for their personal purposes and used at

their homes. Nowadays, computers are ubiquities. For example, embedded computers

are used in machines ranging from spaceship to industrial robots, digital cameras,

children’s toys, and wristwatch. Following the introduction of privately run Internet

Service Providers in the 1980s, the Internet became prevalent which led to invention of

high speed computer networks with multitude of connected machines.

In last seventy years, the advancement in computers and computer networks not

only changed their size, speed, reliability and price but also shifted their main usage

paradigm from computational-intensive to data-intensive [1]. New scientific devices

such as large-scale observatories and state of the art microscopes generate massive

volumes of datasets. The Internet and computational Grid [2-5] make all these archives

accessible to anyone anywhere, allowing the replication, creation, and recreation of

more data [6]. People interested in to analyze the data sets are geographically dispersed

as well.

The scientific disciplines with the above characteristic are as diverse as high-

energy physics and bioinformatics. To illustrate, petabytes of data generated by the

Large Hadron Collider (LHC) experiment at CERN are required to be distributed

Introduction

3

worldwide. Another example is that The Pacific Northwest National Laboratory is

building new Confocal microscopes with enhanced capabilities. High resolution video

of the subject samples, which are typically protein molecules, are provided by these

microscopes of which typical use of is multidisciplinary, requiring the data stream to

be multicast to multiple scientists at multiple remote institutions. Within 6 months, 625

Mbps of data rates are expected per microscope. In addition to the microscopes, there

is a proteomics simulation program that will be generating 5 petabytes per year, 5 years

from now [7].

Consequently, bulk data transferring and management have become one of the

immensely popular research fields in computational science. Particularly, for WAN

type of computer networks, a lot of work and solutions have been proposed. At the

beginning, some of these works had only concentrated on data transmission aspect [8].

Solutions for data catalog and management drew researchers’ attention later. However,

proposed systems with regard to data catalog and management were employed for only

the data location discovery and they may not be functioning as collaboration

framework.

 This dissertation is motivated by understanding the need for a Peer-to-Peer

based High Performance Data Transfer Framework that effectively combines “Data

management and collaboration services” and “SOA principles”; evaluating the

system design parameters in terms of simplicity, scalability, security, performance, and

platform independency; and evaluating how these factors influence the overall

infrastructure.

Introduction

4

1.1 Motivation

The number of the Internet users greatly increased with the dramatic expansion

of the Internet over the past few years. As a consequence, the high-performance

networks with low-cost, powerful computational machines were proposed, which led to

the creation of new distributed computing infrastructure termed Computational and

Data Grid, which is the base of large-scale distributed computing systems by

interconnecting geographically distributed computational resources via very high-

performance networks [9]. High performance data transfer technique with

collaboration and data management is required for handling widely geographically

dispersed data resources; however, existing solutions have shown limitations since

most of their systems and unpublished protocols are incompatible with each other and

they are platform dependent solutions [8].

Firstly, existing solutions were built on the client-server architecture that makes

them vulnerable to its disadvantages such as central server failure and bottleneck

problem under heavy load. In addition, most of the existing solutions focus on the

problems of aggressive high performance data transfer rate and do not take into

consideration of collaboration and optimum use of resources seriously. Moreover, some

of these techniques are data type centric solutions, which hinders them to employ

systems with different data type. With the ability of handling any data type, data

transfer techniques based on peer-to-peer network might be remedy to this situation by

making feasible effective resources (e.g.. network, CPU, storage) usage by exploiting

unutilized resources; however, very few efforts have yet been devoted to harness fully

peer-to-peer network

Introduction

5

Secondly, existing data management systems are separate and heavy systems

and they are tightly-coupled to their underlying data transfer mechanisms.

Administrator tasks which requires a great deal of the knowledge have been mainly

been performed by people. There is a need for simple, lightweight data management

frameworks with the minimum administrator tasks’ requirements.

Thirdly, existing data management systems lacks collaboration feature. As the

large datasets are generated and users of them dynamically distributed, sharing,

discovering, and transferring of these datasets are become more problematical. To this

end, we see a greater need for a collaboration framework that is very valuable and

needed for geographically dispersed scientific communities to escalate scientific

research output.

Finally, as it is evident that Service Oriented Architecture (SOA) [10] and its

current implementation, Web services [11], will have profound impact on the next

generation of distributed systems, it would be great opportunity to investigate

challenges and benefits of exploiting SOA in a high performance bulk data transfer

service.

1.2 Use Cases

Organizations have resources (e.g. CPU power, network bandwidth capacity, disk

performance) with widely varying characteristics. These characteristics determine the

requirements for data management and transferring. We give a description of two

sample use cases that are explanatory of the applicability of our proposed system.

Replication: Replication is the process of copying data from one location to

another so as to ensure consistency between redundant resources to improve reliability,

Introduction

6

fault-tolerance, or accessibility. Data transfer techniques based on peer-to-peer network

architecture would convert machines which download data from master-source into

active sources and enable to utilize their unused resources, particularly their network

bandwidth capacity.

Data sharing in systems with varying CPU power and network capacity: Not

all organizations have opportunity to have the super-powerful machines and very high-

performance networks, yet they still desired to share their research results with

geographically distributed participants. In fact, aggregation of average personal

computer CPU power yields an astonishing computational power. Seti@home [12-14]

and Genome@home [14-16] are the well-know projects tapped into this power.

Similarly, aggregating parallel data streams in modest high-performance network

produce very high performance data transfer capability. Almost all high-performance

data transfer techniques utilize parallel data streaming in order to boost their

performance. However, a peer-to-peer system, Bittorrent, has outperformed GridFTP,

the de facto data transfer mechanism in many scientific community, in network areas

where only limited bandwidth is available [17]. Thus, our lightweight system might

perform well both on very high-performance networks and networks with limited

bandwidth and can be deployed on any type of platform.

1.3 Research Issues

In this thesis, we describe the architecture design and implementation of a peer-

to-peer based high performance data transfer technique with data management and

collaboration framework. We have thoroughly analyzed the system to determine how

the system would respond and have presented benchmarks on different number of

Introduction

7

download clients. A major goal of this thesis is to provide a simple, lightweight data

transfer framework from which any size of scientific community would benefit.

We now summarize the research issues we plan to address in this dissertation:

1. How can we build a peer-to-peer data transfer mechanism which utilizes SOA

for scientific community? Which one of available peer-to-peer system is best

for this purpose and what type of modifications and new features are needed

to be added to it?

2. How can we provide a medium that allows participants to manage, share,

discover, and download their contents and integrate it with data transfer

mechanism?

3. Is the data transfer mechanism scalable?

4. How is the performance of data transfer mechanism and it is acceptable?

5. What is the overhead of this system and is it reasonable?

6. Security is not a concern in peer-to-peer to networks for non-scientific

community. How can we make it enough secure for scientific community?

1.4 Contributions

In this thesis, the expected contributions can be summarized as following. We

will identify a novel system for Collaboration Framework for scientific community. We

will also define the minimum set of requirements to build Collaboration Framework

dedicated to share and cooperate on users’ data with given access control rights. We

will identify the additional features needed to be added into selected best practice of

peer-to-peer systems.

Introduction

8

Existing data transfer techniques focus on the problems of aggressive high

performance data transfer rate and do not take into consideration of collaboration and

optimum use of resources.

There are some systems used for the data location discovery and they may not

be functioning as collaboration framework. We are going to look into for determining

the features for collaboration framework for science environment.

Available high performance oriented data transfer techniques for scientific

computing are broadly categorized FTP and HTTP based techniques. GridFTP [8] is an

example of FTP based data transfer means. Due to implementation in C, it is not

portable and is deployable only Unix/Linux installed machines. However, GridHTTP

[18] is implemented by adding new features like authentication and authorization to

HTTP. There are some other techniques; however, they use GridFTP as underlying data

transfer mechanism.

Peer to peer network structure providing optimal usage of resources is another

data transfer way. It is utilized as a data transfer method for non-scientific community

to share mainly video, mp3, and games files. We can also investigate existing peer to

peer systems and try to find which of them are more suitable and in addition which

features are needed to be implemented and added to selected peer to peer system to

meet the requirements of scientific data transfer.

In designing our architecture, we have identified following requirements to build

a Collaborative Framework with High Performance Oriented Data Transfer Technique

for Scientific Computing. First, the architecture should have a medium to let users to

publish and subscribe to their contents. Second, the architecture should allow users to

Introduction

9

create a group or friend list in which they can add other user. Third, the system should

enable users to set access control rights to a specific content for a specific user or

groups due to great sensitivity attribute of scientific data. In order to provide a

Collaboration Framework satisfying the requirements stated above, there are several

issues that we will study and research in building our architecture.

1.5 Organization of the Thesis

This thesis entails nine chapters. In the next chapter, we present briefly related

work information on this area, for instance, GridFTP, RFT, and prominent peer-to-peer

technologies. We will also give the overview of BitTorrent algorithm because it

inspired us to implement our data transferring mechanism.

In chapter three, we give an overview of the overall architecture and explain

shortly the main components of the system to provide a clear understanding of whole

system.

In chapter four, we present the architecture of the first major component of the

GTF, the GTF Client. The GTF Client is responsible for actual data sharing and

transferring tasks. It has modular and layered structure so that it can be enhanced and

maintained easily. Each of it modules and layers are discussed in detail in this chapter.

The details of Collaboration and Content Manager Module which is of

paramount importance to data sharing and participant cooperation are given in chapter

five. Users can publish –make their contents available to other users- their contents and

subscribe –content download process- to available contents through CCM. Similar to

the GTF Client structure, it has modular structure. At the beginning of the chapter, the

Introduction

10

big picture of architecture is presented to demonstrate the general idea and principles.

Its modules and layers are explored in the remainder of the chapter.

The WS-Tracker is very essential part of the GTF and at the center of the whole

system. It is major role is to orchestrate communications taking places among the GTF

Clients through sending and receiving meta-data. Since our WS-Tracker is designed to

serve in scientific community, it needs to satisfy their conditions such as security and,

access. As a result, it is very different and more advanced than BitTorrent’s regular

Tracker. Its architectural details and differences between them are explained in chapter

six.

In chapter seven, we present the security issues and its implementation in the

GTF. There are different security requirements at different communications happening

between above-mentioned components. It is very difficult to deploy all the security

protocols, inasmuch as it is availability of myriads of choices. Consequently, we had to

choose some of them. We selected the Grid Security Infrastructure (GSI) not only the

Grid community fits our targeted user profile, but also it is the largest scientific

community in the world. It is a proven and common standard and its participants are

exceptionally diverse and geographically dispersed. At the beginning of chapter seven,

we give short and historical overview of the GSI. How the GSI and other security

schemas are utilized in the GTF components are explained in the remainder of the

chapter.

We introduce our prototype test results in chapter eight and provide detailed

analysis for them. The tests were conducted in two types of computer networks: (1)

LAN; (2) WAN. We have three different sets of scenarios. These tests and different

Introduction

11

scenarios help us determine where the system is performing well and very useful and

what the limits of the system in terms of the maximum number of data seeders and

clients that can be supported without a significant loss in performance.

Finally in chapter nine, a very brief précis of thesis with the overall lessons

learned from our study are provided and answers are given to the research questions

identified in chapter one. At the end of this chapter, we provide concluding remarks,

the contribution of this thesis and outline future research directions.

Literature Survey

12

Chapter 2

Literature Survey

2.1 Introduction

A basic computer system consists of three fundamental services: data

processing, data storing, and data transferring. Although all of these services are of

equal importance, data transferring is the most appealing, functional and active one

among three of them since it renders the data meaningful and useful by moving it from

one place to another. The distance between the source and the destination of the data

which will be transferred ranges from few millimicrons to a few terrameters [19];

hence, application fields of data transferring are much more diverse than that of others.

It is natural that each system has widely varying characteristics with respect to

data and conveyance of data such as size, importance, and security of data and medium

Literature Survey

13

of transmission; therefore, these characteristics require different methods and apparatus

for the data transmission. For instance, the size of data at Level1 cache is only few KB

and data loss probability is nearly impossible while transferring data from Level1 cache

to central processing unit (CPU). The transmission time only takes few CPU cycles.

On the other hand, transferring data from one computer to another one on wide area

network may take seconds to hours or maybe days depending on the size of data,

capacity of bandwidth, and physical distance between source and destination.

Another extreme example is data transmission from Voyager 1[19] to Earth.

The Voyager 1 spacecraft, launched on September 5, 1977, is a robotic space probe that

was sent for an expedition to Jupiter, Saturn, Uranus, Neptune and the outer solar

system and beyond. It is over 16 billion kilometers from the Sun as of May 9, 2008. It

returns its data through the Deep Space Network (DNS) with X band transmitter that

provides downlink telemetry at 160 bit/s normally and 1.4 kbit/s for playback of high-

rate plasma wave data. It is expected that Voyager 1 will continue to return valuable

data until at least 2025 [19-21].

Another important example of data transfer technique is utilized in wide-area-

network (WAN) environments and being part of this thesis subject as well. This type of

data transfer has been gaining great importance because of the dramatic expansion of

the Internet in recent years, availability of low-cost high-performance powerful

computational engines, production of huge amount of data –either raw or processed– by

scientific gadgets, and interconnection of geographically distributed computational

resources via very high-performance networks [22]. These factors have given rise to

development of a new set of technologies termed Computational Grid [22]. The

Literature Survey

14

appearance of Computational Grid resulted in dramatic increase in state-of-the-art high

performance distributed applications.

For high volume data transfer in WAN type of computer networks, a lot of work

and solutions have been proposed. At the beginning, some of these works had only

concentrated on data transmission aspect [8]. Solutions for data catalog and

management drew researchers’ attention later. However, those systems the results of

studies in the area of data catalog and management are utilized for only the data

location discovery and they may not be functioning as collaboration framework.

Although some of these existing data transfer techniques may be considered

successful, most of their systems and unpublished protocols are incompatible with each

other and they are dispersed solutions [8]. Moreover, they focus on the problems of

aggressive high performance data transfer rate and do not take into consideration of

collaboration and optimum use of resources seriously. In addition, they failed to

harness fully newly emerged technology such as peer-to-peer network. As a result,

there is still a need for new solutions to address above requirements.

The objective of this thesis is to leverage data transferring mechanism in

distributed systems for achieving fast and economical data transmission by exploiting

peer-to-peer protocol -BitTorrent algorithm- and providing collaboration framework. In

this chapter, we present an overview of the various strategies relevant to our work.

2.2 Overview

Data-intensive applications have gained widespread attentions and become

more prevalent with the infrastructure provided by computational grid, and in

consequence there is a growing need for the efficient management and transfer of

Literature Survey

15

information, in terabyte-scale or even petabyte-scale, in wide-area computing

environments [23].

There are many aspects that can be used to categorize data transfer techniques;

the place where they operate, the characteristics of their communication over an IP

structure (e.g., point-to-point, multicast, peercasting), their design architecture (e.g.,

client/server, peer-to-peer), and the characteristics of data that they used for to name a

few. Since the operating place is the relatively broader and the most accepted

perspective, we, as well, categorized them with respect to their operating places.

Data transferring techniques can be deployed at network-level, system-level, or

application-level. The data movement technologies at network-level, as the name

implies, are network-based solutions and they are categorized into NAS and SAN [24].

There are certain similarities between system-level and application-level data transfer

techniques; both of them involve endeavors in order to overcome the limitations of

Transmission Control Protocol (TCP) [25]. However, they adopt different approaches

to cope with the limitations of TCP. The system-level solutions usually include

modifications to the operating systems of the machine, of the network apparatus, or of

both [25]. These techniques sometimes require development of new versions of TCP

such as Selective Acknowledgment TCP [26], High Speed TCP [27], and Scalable TCP

[28]. In order to accomplish some of those modifications, the privilege of system’s

super user is required.

Unlike application-level solutions, both network and system-level solutions can

yield very good performance. In exchange, they usually require substantial costly

upgrades/updates of the networking structure, and considerable system-level

Literature Survey

16

modifications. In spite of their better performance, they suffer from the distance

limitations and high network cost.

Application-level techniques, on the other hand, attempt to overcome the

limitations of high bandwidth delay product networks by using software based

techniques such as exploiting parallel streams, increasing TCP window size when it

possible, or employing rate-based control algorithms [25]. Application-level solutions

are based on either TCP (Transmission Control Protocol) or UDP (User Datagram

Protocol) [25]. They have much broader use because they do not require any system or

network level modifications or upgrades to deploy them.

After our extensive survey of the data movement techniques, we must

acknowledge that there has been a tremendous amount of research with regard to the

development of application level data transfer protocols; thus, it is impossible to cover

all types of data transfer techniques and solutions in spite of our best efforts.

2.3 System-level Data Movement Techniques

The system-level solutions usually include modifications to the operating systems

of the machine, of the network apparatus, or of both [25]. Group Transport Protocol for

Lambda-Grids (GTP) [29] is a good example of system-level data delivery techniques.

The development team of GTP focused on achieving high performance in complex

network structures in lambda-grids [29]. Multicast data delivery and shifting the rate

and congestion control to end-points were their motivations to develop receiver-driven

transport protocol [29]. Even though, it is a software package, operating on TCP and

UDP, it is specific for Lambda Grids and requires very high speed dedicated links. A

Lambda-Grid is a set of distributed resources directly connected with Dense

Literature Survey

17

Wavelength Division Multiplexing (DWDM) links [29]. DWDM is a technology that

multiplexes multiple optical carrier signals on a single optical fiber by using different

wavelengths of laser light.

2.4 Application-level Data Movement Techniques

Having communication links cover a large geographic area subjects the wide-area

networks (WAN) to very high round-trip latencies. It is because of this that they are

often termed high Bandwidth Delay Product (BDP) network [25]. TCP is the most

widely used protocol in the Internet and de facto data transmission protocol on any type

of computer networks including WAN for reliable data movement. However, it

substantially underutilizes network bandwidth over high-speed connections with long

delays because TCP employs its window size as the congestion control techniques [29]

in order to impose a limit on the amount of data it will send before it waits for an

acknowledgement [25]. This is because traditional TCP and its variants were developed

for shared networks where the bandwidth on internal links is a critical and limited

resource. Hence, as stated in [29], accomplishing high performance data transfer in

high BDP networks is a long-standing research challenge for point-to-point data

transfer.

2.4.1 TCP -based Data Movement Techniques

All TCP-based data transfer techniques use TCP connections to overcome

TCP’s window size problems by using parallel streams. In this method, an aggregated

congestion window is acquired so as to be able to fully utilize the available capacity

Literature Survey

18

provided by the high BDP network. In other words, the larger congestion window size,

the higher the throughput [30].

As the classic File Transfer Protocol [31] (FTP) is the most common protocol

used for bulk data transfer on the Internet [32]. It is a well-understood IETF standard

and widely implemented protocol, and it supports dynamic discovery of the extensions

[22]. Most TCP-based Data transfer techniques, therefore, are the derivations of the

classic File Transfer Protocol (FTP); for instance, GridFTP [32] and bbFTP [33]. The

Secure Copy Protocol [34] (SCP) is another data transfer tool provided by Unix/Linux

based operating systems. The Babar Copy Program [35] (bbcp) is an example of data

movement technique implemented based on the peer-to-peer architecture.

2.4.1.1 GridFTP

GridFTP is a common data transfer and access protocol that extends the standard FTP

protocol. The standard FTP protocol does not meet the key features necessary to Grid

applications such as advanced security support, third-party control of data transfer and

striped data transfer. In order to make GridFTP a high-performance, secure, reliable

data transfer protocol [32, 36, 37], the GridFTP development team has defined new

extensions to enhance the standard FTP by providing new features. The GridFTP

protocol includes the following features that are new extensions to the standard FTP:

 Grid Security Infrastructure (GSI) and Kerberos support: Security is one of

the crucial features required in Grid computing when transferring or managing

files. To meet the security requirements, GridFTP implemented the GSS API

extensions defined in RFC 2228 (FTP Security Extensions) [8, 32, 38] in order

Literature Survey

19

to support GSI and Kerberos authentication, with user controlled setting of

various levels of data integrity and/or confidentiality[36, 39].

 Automatic negotiation of TCP buffer (window sizes): The performance of

data transfer in wide area networks can be improved significantly by using

optimal settings for TCP window sizes. However, manually setting TCP

window size is not an easy operation since it requires super user privileges to

perform it. Therefore, in order to support both manual setting and automatic

negotiation of TCP buffer sizes for large files and for large sets of small files,

GridFTP extends the standard FTP command set and data channel protocol [36].

 Third-party control of data transfer: Authenticated third-party control of data

transfers between storage servers is requisite in order to manage large datasets

for distributed communities easily. By adding GSSAPI (Generic Security

Services Authentication Programming Interface) security to the existing third-

party control of data transfer, a user or an application at one site can initiate,

monitor and control a data transfer operation between storage servers [22, 36].

 Parallel data transfer: Aggregating bandwidth by using multiple TCP streams

in parallel (even between the same source and destination) improves high

performance data transfer in high BDP networks [36]. Through FTP command

extensions and data channel extensions, GridFTP supports parallel data transfer

not only from a single server but also from multiple servers as well [40].

 Striped data transfer: Besides using multiple TCP streams in parallel, striping

or interleaving data across multiple servers may be used to provide further

bandwidth improvements, as in a DPSS network disk cache or a stripped file

Literature Survey

20

system [36]. Striped transfers allows portions of the data to come from different

servers. In other words, striped data transfer permit having multiple network

endpoints at the source, destination, or both when the same file is transferred

among them.

 Partial file transfer: Transferring portions of files rather than complete files

could be beneficial for some applications: for instance, high-energy physics

analyses that require access to relatively small subsets of massive, object

oriented physics database files [36]. GridFTP supports the capability by

specifying the byte position in the file to begin the transfer [36].

 Support for reliable and restartable data transfer: Due to distributed nature

of Grid computing, reliable transfer and fault tolerant features are of great

importance for many applications that manage data. Fault recovery methods are

needed to handle failures such as transient network and server outages. GridFTP

exploits these features and extends them to cover the new data channel protocol

[36].

Although GridFTP has many good features and impressive data transfer

performance, in our opinion, it still suffers from some drawbacks that stemmed from

the nature of the standard FTP and TCP. GridFTP team has been devising and adding

new features or systems on top of the GridFTP to circumvent these problems. For

instance, Reliable File Transfer [41-43] (RFT) was developed to provide reliability in

the face of local failure. When the client loses its state, transfer process has to restart

[22]. In addition to RFT, Globus-url-copy [44] and UberFTP clients are other well-

know clients of GridFTP. TeraGrid Copy [45] (TGCP), designed for taking full

Literature Survey

21

advantage of a 10 or 30 Gb/s network link for an individual file transfer, is a wrapper

over globus-url-copy and RFT in order to provide a SCP-style GridFTP interface to

users [45]. The Replica Location Service (RLS) [46, 47] is design for creating and

managing multiple copies of files by providing a framework for tracking the physical

locations of data has been replicated. At its simplest, RLS maps logical names to

physical names, and it is intended to be used in conjunction with other components like

RFT service, GridFTP, the Metadata Catalog Service, and reliable replication and

workflow management services [48].

Another problem is the performance of GridFTP servers which suffers

drastically if the dataset is large but consists of many small files (smaller than 100 MB),

known as the “lots of small files (LOSF)”. This poor performance is because of the

command/response semantics of the RFC959 FTP protocol. It is similar to

acknowledgement process of TCP. If a client has multiple files to receive, it waits to

initiate another request until it receives “226 Transfer Complete” acknowledgement

message. To solve the LOSF problem, they use pipelining approaches by forcing the

client to make next request instead of waiting for the 226 Transfer Complete”

acknowledgement message [49]. According to test result in [49], pipelining improves

the throughput of LOSF transfers considerably.

GridFTP has attempted to circumvent TCP problems by incorporating UDP

based solutions and diving a TCP connections into a set of shorter connections into

their latest version [49].

Literature Survey

22

2.4.1.2 GridHTTP

GridHTTP [18] is a protocol, defined within the GridSite [50] framework that

supports bulk data transfers via unencrypted HTTP connection, but first requires

authentication of the clients via HTTPS. The aim of this protocol is to allow large

(gigabyte) files to be transferred at optimal speeds while still maintaining some level of

security. The problem of authentication over HTTP (usually achieved via usernames

and passwords) is avoided by using the certificate handling capabilities of the GridSite

software as well as the access control list functionality. Clients must connect to a web

server over HTTPS and set the value of the “Upgrade” header in the request to

“GridHTTP/1.0” in order to retrieve a file using the GridHTTP protocol [18].

2.4.1.3 bbFTP

bbFTP [33] is an open source file transfer software which implement its own

transfer protocol optimizing for large files (larger than 2 GB). Similar to GridFTP,

bbFTP is built upon the standard FTP protocol and uses parallel TCP streams [51]. The

main strength of bbFTP is the ability to use SSH and certificate based authentication,

data compression on-the-fly, and customizable time-outs [52]. Due to being more

secure and attempting to optimize network bandwidth usage, it is preferable over than

traditional FTP [53].

There are other FTP based solutions such as SafeTP [54, 55], which is

developed at the University of California at Berkeley to provide a secure method for

file transfer between Unix/Windows clients and secure FTP server [54], but their main

concerns is to provide secure data transfer rather than high-performance data transfer.

Literature Survey

23

2.4.1.4 The BaBar Copy Program (bbcp)

The Babar Copy Program [35], successor of Secure Fast Copy (sfcp), is another

high-performance data transfer program and it was purely built upon the peer-to-peer

architecture, in contrast to many other solutions. It is because of the bbcp’s peer-to-peer

architecture that it is well suited to environments where information flow is equal. The

important features of bbcp are that carrying with a very low administrative overhead,

using SSH [35] for authentication, providing an elegant and simple model. Similar to

previous solutions, it exploits multiple TCP stream in parallel in order to accelerate the

movement of data [35].

2.4.2 UDP -based Data Movement Techniques

To improve the bandwidth throughput in wide-area networks, the other

alternative approach is UDP-based application-level solutions. UDP is a connection-

less unreliable messaging protocol, whereas TCP is a connection-oriented reliable data

streaming protocol[56]. Unreliability is a major drawback for data transfer. Therefore,

UDP-based application-level solutions implement congestion control algorithm and

reliability control mechanism at application layer that is fifth layer and above the

transport layer, consisted of TCP and UDP, in the layered Internet architecture [56].

SABUL[57], UDT[56], FOBS [9], RBUDP [58], Tsunami [59, 60], UFTP [61], and

FRTP [62] are ongoing works using rate-based UDP for high performance data transfer

to overcome inefficiency of TCP [56]. Since some of these UDP-based solutions are

derivations of existing ones, we only present main or important UDP-based solutions

here.

Literature Survey

24

2.4.2.1 Simple Available Bandwidth Utilization Library (SABUL)

SABUL is an application-level a rate-based protocol designed for data-intensive

applications over high BDP networks to transport data reliably [22, 57]. Although

SABUL uses UDP as data transfer channel and TCP as a control channel, it can coexist

with TCP since it was not designed to replace TCP [57]. As stated by Gu and Grossman

[57], it is designed for reliability, high performance, fairness and stability. In addition,

since SABUL has implemented as an open source library, it can be easily deployed

without requiring any significant modifications to network stacks of an operating

system or to the existing network infrastructure [57]. Experimental studies, As claimed

in [57], have demonstrated that SABUL can efficiently use available bandwidth in links

with high BDP.

Fixed Rate Transport Protocol (FRTP) is a modified version of SABUL for end-

to-end circuits [62]. SABUL was designed for packet-switched networks according to

[62]; thus, it has poor performance on circuit-switched networks since congestion

control service is not needed when the circuit is provisioned successfully due to fact

that resource reservation and congestion is handled during the circuit setup [62].

Congestion control mechanism, on the other hand, adjusts data sending rates during the

data transmission in packet-switched networks [62]. Therefore, eliminating problems of

SABUL stemmed from end-to-end circuit is the main motivation behind the FRTP.

2.4.2.2 UDP-based Data Transfer Protocol (UDT)

The UDT protocol, a UDP-based protocol and designed to effectively utilize

high-speed wide area optical networks, is an application-level high performance bulk

data transfer protocol [56]. In order to attain high throughput data transfer with low

Literature Survey

25

data loss, UDT combines rate-based, window-based and delay-based congestion control

mechanisms[25, 56]. It is more TCP friendly than other rate-based schemes due to its

slow start and AIMD control schemes for flow control [25].

Notwithstanding the fact that it is the successor of SABUL, it is a re-

implementation from scratch with a new protocol design [56]. The main reason for

redesigning it, as stated by Gu and Grossman [56], is the use of TCP as an control

message channel for the simplicity of design and implementation in SABUL because

TCP’s own reliability and congestion control mechanism can result in unnecessary

delay of control information in other protocols with their own reliability and congestion

control mechanism. Therefore, UDT uses UDP protocol for both data and control

packet transmission.

Similar to SABUL, it does not require any changes to network stacks of an

operating system or to the existing network infrastructure and it is released as free

software [22]. In addition, it permits applications to send data of any size by removing

the concept of sending data block by block over UDP [56]. Moreover, it can be

employed above other packet-switched network layer in such a way that it can be

deployed as a transport layer protocol by using IP directly [22, 63].

2.4.2.3 Fast Object –Based data transfer System (FOBS)

FOBS [9] is an application-level, UDP-based, highly efficient large scale data

transmission system designed for the high-bandwidth, high-delay network environment

typical of computational Grids [64]. Similar to many other UDP-based solutions, it

utilizes UDP protocol for actual data transfer and TCP protocol for control information

exchange. It uses, however, two TCP channels to transfer control information between

Literature Survey

26

sender and receiver; one channel for ENDOFSEGMENT/DONE/FEEDBACK/ACK

packets and one for COMPLETEDPKT/WRITECOMPLETEDPKT packets [9].

Developing multiple congestion control mechanisms with the ability to dynamically

switch between mechanisms to adapt to changes in the state of the end-to-end system is

the uniqueness of FOBS [64].

2.4.2.4 Reliable Blast UDP (RBUDP)

The Reliable Blast UDP (RBUDP) is an aggressive bulk data transfer scheme

designed for extremely high bandwidth, Quality-of-Service enabled networks, such as

optically switched networks [58]. In order to fully leverage the underlying high-

bandwidth network structure for pure data delivery, it not only purges slow-start and

congestion control mechanisms of TCP, but also aggregates acknowledgements [58].

Similar to SABUL, hosts exchange data packets via UDP, and control packets via TCP

[25].

2.4.2.5 Tsunami

Tsunami is a reliable file transfer protocol intended for faster transfer of large

files over the uncongested high-bandwidth, high-delay networks [59]. As stated by

Ansari [65], the architecture of Tsunami follows a classic client server model typical of

conventional FTP. Tsunami, similar to FTP, uses a control channel to authenticate and

negotiate the connection and a data session to transfer data [65]. Tsunami contrasts with

FTP in regard to the use of UDP as data transfer channel. In order to regulate the data

transfer rate, it uses the delay time between packets instead of the TCP’s sliding

window algorithm [60]. In addition, it implements negative acknowledgements to

Literature Survey

27

notify the sender for lost packages as opposed to TCP’s sending the acknowledgement

of received data [59].

2.4.2.6 UFTP

UFTP, utilizing a protocol based on Starburst MFTP, is a UDP-based multicast

file transfer program [61]. It is designed for efficient and reliable bulk data transfer to

multiple receivers concurrently [52]. This is useful for distributing large files to a large

number of receivers [61]. Mattmann et al [52] commented that although UFTP is

particularly effective for data dissemination over a satellite link with two way

communication or high-delay Wide Area Networks (WANs) where the reliability and

congestion mechanisms of TCP cause underuse of throughput capabilities of the

available network, it suffers the disadvantage of having extremely poor reliability with

the fault rate a function of the total dataset volume.

2.5 Peer-to-Peer based Data Movement Techniques

Peer-to-peer (P2P) has become one of the most widely argued term in

information technology [66]. Due to wide application areas of P2P systems, it could be

considered as a set of protocols, an IT architecture, decentralized design model, or a

business model [67]. Therefore, there is a great deal of number of different definitions

of P2P.

 According to Androutsellis-Theotokis and Spinellis [14], completely distributed

systems composed of completely equivalent nodes in terms of functionality and tasks

they perform is the most meticulous definition of “pure peer-to-peer” system. In other

words, there is no discernable client or server role in a P2P architecture, although two

Literature Survey

28

nodes communicate with each other [35, 67] using appropriate information and

communication systems and are able to spontaneously collaborate without necessarily

needing central coordination. However, there are some systems which employ the

concept of super-nodes, function as mini-servers, such as Kazaa [14, 68], which are

widely accepted as peer-to-peer systems. The definition of P2P given by [14] is

broader enough to encompass all type of peer-to-peer systems:

Peer-to-peer systems are distributed systems consisting of interconnected

nodes able to self organize into network topologies with the purpose of sharing

resources such as content, CPU cycles, storage and bandwidth, capable of

adapting to failures and accommodating transient populations of nodes while

maintaining acceptable connectivity and performance, without requiring the

intermediation or support of a global centralized server or authority.

Even though, the client/server model appears more prevalent architecture than

peer-to-peer model for today’s Internet, the peer-to-peer architecture, at the outset, is

the foundation that the original Internet was essentially built upon [69]. It has, however,

changed into increasingly client/server model when the millions of clients

communicating with a relatively privileged set of servers [69]. Yet there are, still a

good deal number of peer-to-peer applications employed in the Internet.

In order to classify peer-to-peer systems, there are many distinguishing

characteristics such as their network structure, the degree of network centralization,

their purpose, their methods for distributed object location and routing, etc. We should

note here that Androutsellis-Theotokis and Spinellis have made a very detailed study

about peer-to-peer systems in [14] and analysis of peer-to-peer systems according to

Literature Survey

29

their purpose of use is an adaptation and simplification of the one presented in their

work. As to their use, they categorized peer-to-peer systems into five groups; (1)

communication and collaboration, (2) distributed computation, (3) Internet service

supporter, (4) database systems, and (5) content distribution.

1. Communication and Collaboration: Peer-to-peer systems of this category

provide the infrastructure for assisting direct, generally real-time,

communication and collaboration between peer computers. The foremost

applications in this category are chat and instant messaging applications, such

as Chat/IRC, Instant Messaging (AOL, ICQ, Yahoo, MSN, Google Talk), and

Jabber [14, 70].

2. Distributed Computation: The main purpose of systems in this category is

to exploit the available peer computer’s resources, for instance, processing

power (CPU cycles) [14]. Seti@home [12-14] and Genome@home [14-16]

are the well-know projects in this category. Since the main purpose of the

Grid Computing [2-5] is to enable the large-scale coordinated used and

sharing of geographically dispersed resources, it can be, to some extent,

considered a system in this category.

3. Internet Service Support: This category includes systems that support wide

assortment of Internet services. Such applications as peer-to-peer multicast

systems [14, 71, 72], Internet indirection infrastructures [14, 73], and security

applications are used to leverage IP independent multicast routing and to

provide protection against of denial of service or virus attacks [14, 74-76]

respectively.

Literature Survey

30

4. Database Systems: Distributed database systems are one of the most

attractive research fields for peer-to-peer applications. The Local Relational

Model (RLM) [14, 77] proposes translations rules and semantic dependencies

between the set of all data stored in peer-to-peer network. PIER [14, 78] is a

distributed query engine built on top of a peer-to-peer overlay network

topology.

5. Content Distribution: This category includes most of the existing peer

-to-peer systems. They are intended to share of digital media and other data

between users [14]. Peer-to-peer systems designed for content distribution

range from simple direct file-sharing applications to more complex systems.

The sophisticated peer-to-peer content sharing systems provides services of

publishing, organizing, indexing, searching, updating, and retrieving data

with security and efficiency [14]. There are a great number of systems and

infrastructures fall into this category. Examples of such systems include the

Napster [79], Publius [80], Gnutella (RIP) [81], Kazaa [68], Freenet [82],

MojoNation (RIP), Past [83], Chord [84], FreeHaven [85], BitTorrent[86]

and JXTA[87].

2.5.1 BitTorrent

All of these peer-to-peer systems are widely used applications, but the last

technique, BitTorrent, deserves more attention because it has been gaining in popularity

and gathering momentum since its first appearance. Before explaining the rationales

behind its success, we present a brief overview of what BitTorrent is.

Literature Survey

31

BitTorrent is a peer-to-peer file sharing protocol like FTP in client/server

paradigm. According to [88], “The key philosophy of BitTorrent is that users should

upload (transmit outbound) at the same time they are downloading (receiving inbound.)

In this manner, network bandwidth is utilized as efficiently as possible. BitTorrent is

designed to work better as the number of people interested in a certain file increases, in

contrast to other file transfer protocols”.

Despite its peer-to-peer nature, there is still a central server (called a tracker)

which is only responsible for coordination of peers connections without having any

knowledge of the content of the files being distributed. This feature enable tracker to

support a large number of users with relatively limited tracker bandwidth [88].

The peer that has a complete copy of certain content and serves it is called seed.

When the seed wants to share its file, the first process that the seed performs is to create

a small static metadata file (it ends in .torrent and called torrent file) which contains

information about the file that is to be shared and the location of the tracker. Then the

seeder uploads this metadata file to tracker. This torrent file is vital for BitTorrent as all

peers need to acquire it to start the download process. A peer is the opposite of the

seed. In other word, it does not have the complete file; therefore, it demands pieces of

the file from the seed and other peers [86, 88]. A file is split into fixed-size pieces that

are all the same size except for the last one. The length of pieces and its corresponding

SHA1 hash are described in the torrent file. However, a peer requests a block (a portion

of data and two or more blocks made up a whole piece) from a peer.

The main reason behind wide acceptance of BitTorrent is that it defines a peer-

to-peer content distribution protocol with very high data transfer speeds rather than

Literature Survey

32

offering another peer-to-peer application for end-users to share their contents such as

movie and mp3 files. In addition, it not only separates content distribution medium

from content discovery and access services, for instance, indexing and searching, but

also ensures integrity of the file content and prevents free-riding [89-91], which is a

major problem from which many peer-to-peer applications suffer. It uses an embedded

set of incentive mechanisms, such as SHA1 hash and tit-for-tat-ish algorithm, in order

to compel the participating peers to contribute. These features promote it to suitable

candidate for frameworks which provide storage service, for instance, Amazon Simple

Storage Service [92].

Notwithstanding BitTorrent’s great features, it has a need for modification and

improvement in order to be used as a data distribution medium in scientific community.

The first reason is that the tracker, in BitTorrent, [88] is a basic HTTP/HTTPS service

that responds to HTTP GET requests. Since HTTP is ubiquitous protocol in the

Internet, it is conceivable that using HTTP protocol may be of great advantage to it.

However, it is unsuitable for an environment that is very dynamic and requires complex

services (explained in next sections) to coordinate participating nodes, and

communications taking place not just between the GridTorrent Framework peers, but

even between the users and their GridTorrent Framework peers.

In BitTorrent, the communication happening between peers and tracker is

passive communication; in other words, the tracker only delivers a list of available

seeders and peers of a requested file, and collects statistics of uploading and

downloading processes from the peers. File downloading process is the only required

responsibility of a general BitTorrent peer and each downloading task is independent

Literature Survey

33

from each other. After the initial communication, peer can continue its downloading

process without the help of its tracker.

The second important reason is the dissimilarity between the characteristics of

the users in scientific community and standard peer-to-peer community. In regular

peer-to-peer community, there is no competition between users. In other words, there

is one type of user, a passive user, and any user can access any data as long as he or she

gets the torrent file. However, in the scientific community, due to expertise or research

agenda and competition between institutions, only authorized users are permitted to

access to pre-determined data sets with some access rights. While the passive user type

in BitTorrent, the users in scientific community area very active and some of them

cooperate on some files as a group. This creates diverse users’ and groups’ profile in

scientific community.

The third reason is stemmed from the importance of data and its access. As the

current design of BitTorrent, by itself, does not provide a search facility to find files by

name or by other keywords; a user must find the initial torrent file by other means, such

as a web search. On the other hand, searching, finding, and accessing to desired data

are of paramount importance in scientific community, hence a reliable search service

must be offered to scientific users. Therefore, even though there is a need to integrate

BitTorrent into a content and collaboration framework with a search facility to use

BitTorrent in scientific community, a mechanism involving regulation for content

access with pre-defined rights and security is vital for a data sharing system in scientific

community.

Literature Survey

34

To summarize, BitTorrent is especially useful for large, popular files; however,

it cannot directly be implemented in the grid environment because of its limitations

like, data security, requirement of separate software, lack of flexibility with centralized

tracking and the lack of partial usage. On the other hand, it was designed to separate

file transfer mechanism from search and network maintenance components, which

enables to implement each of them as an independent service from other components,

and which renders it as one of the ideal data transfer mechanisms for scientific

communities, for example, Grid computing, if the above missing features are provided

and integrated with the tracker.

2.6 Network-level Data Transfer Techniques

The network-level solutions (i.e. NAS and SAN [24]) are low-level data transfer

techniques designed to handle large data transfers. Systems such as WAN file systems

and data storage systems are either built on top of network-level solutions or use them

as data transfer layer. The prominent examples of SAN-based WAN file systems are

GFS 5 (Sistina), Stornext (ADIC), SAN-FS (IBM), QFS (SUN), CXFS (SGI).

Examples of data storage systems include the Storage Resource Broker (SRB) [93], the

Distributed-Parallel Storage System (DPSS) [94], High Performance Storage System

(HPSS) [95], and Hierarchical Data Format 5 (HDF5) [96]. Even though those systems

are classified as data storage systems, most of them usually entail data management

systems to handle the large volumes of data.

In traditional approach, in order to allow the end users and higher applications to

access and modify the data stored in local storage devices, a local file system is used as

mediator between them and disk subsystems. Nevertheless, this approach is not very

Literature Survey

35

scalable and results in reliability and bottleneck problem. To circumvent this limitation,

network-attached storage systems have been devised. In this paradigm, the system is

composed of dedicated preconfigured file servers and network attached storage devices.

Both Storage Area Network (SAN) and Network Attached Storage (NAS) provide

network-based solutions. There are similarities between SAN and NAS, but there are

differences as well.

NAS describes a complete file-level storage system designed to be attached to a

traditional network such Ethernet and TCP/IP. NAS does not allow direct access to

individual storage. Clients uses higher-level protocols (i.e. Network File System (NFS),

Common Internet File System (CIFS), File Transfer Protocol (FTP), and Secure CoPy

(SCP)) built on top of TCP/IP.

On the other hand, a SAN is a type of local area network (LAN) network to

which storage devices are attached, and is designed to handle large data transfers. In

contrast to NAS file-level access and TCP/IP support, SAN traditionally utilize low-

level network protocols and supports high-speed block-level access to the storage

devices. A SAN commonly uses Fibre Channel interconnection technology which

provides better performance. In most cases, a NAS system is less expensive to purchase

and less complex to operate than a SAN system.

Wide Area Network (WAN) File systems are high-performance scalable file

management solutions that provide shared, fast, reliable data access from a single

computer to hundreds of systems [97]. Despite the better performance of WAN file

systems, they are very expensive systems since they serve the data over SAN which

requires expensive FC-interfaces and SAN-switches.

Literature Survey

36

Storage Resource Broker (SRB) is a middleware software system developed by

the San Diego Supercomputer Center (SDSC). It depends on other lower-level systems,

for instance, archives, files systems, networks, a DBMS for the metadata catalog, etc ,

but, like other grid technologies, it can be integrated with higher-level software [93].

The main focus of the SRB is to provide a uniform client interface to heterogeneous

data collections by connecting these repositories, and to provide metadata for use in

discovering and locating data within the storage system [32]. Although it uses

Sreplicate and Scp with parallel I/O to improve performance, it utilizes other data

transfer techniques such as GridFTP, DPSS, and SAN/ NAS[24, 98] by integration of

HPSS [95].

The Distributed-Parallel Storage System (DPSS), originally developed as part

of the DARPA funded MAGIC Testbed, is a scalable, high-performance, distributed-

parallel data storage system [94]. It is defined, according to its website [94], as “a data

block server, which provides high-performance data handling and architecture for

building high-performance storage systems from low-cost commodity hardware

components. This technology has been quite successful in providing an economical,

high-performance, widely distributed, and highly scalable architecture for caching large

amounts of data that can potentially be used by many different users.” Similar to the

SRB, the DPSS uses parallel data transfer streams or striping across multiple servers to

improve performance [8], and its team is currently working on integrating the DPSS

into SRB and Globus [94].

High Performance Storage System (HPSS) is highly flexible and scalable

hierarchical storage management software developed to manage petabytes of data on

Literature Survey

37

disk and robotic tape libraries [95]. In order to create a single virtual file system by

aggregating the capacity and performance of many computers, disks, and tape drives,

HPSS uses cluster, LAN and/or SAN technology [95]. This approach enables HPSS to

eliminate the limitations resulting from total storage capacity, file sizes, data rates, and

number of objects stored. A variety of user and file system interfaces such as VFS,

FTP, PFTP, GridFTP, Samba, NFS, client API, local file mover and third party SAN

(SAN3P) are supported by HPSS [95].

Hierarchical Data Format 5 (HDF5) is defined by the HDF group as

“technology suite is designed to organize, store, discover, access, analyze, share, and

preserve diverse, complex data in continuously evolving heterogeneous computing and

storage environments” [96]. Unlike above-mentioned technologies, it focuses on the

structure of data and provides interfaces that enables client to access structured data

from a variety of underling storage systems [8, 32].

2.7 Discussion

All of the systems we have discussed above have advantages and disadvantages.

Network-level solutions deliver enhanced storage capacity and offer much greater

performance than application or system level solutions, but they are still prohibitively

expensive propositions for most organizations. In addition, despite their very high

technologies and low-level protocols, they are in need of integration with application-

level solutions (GridFTP) in order to be compatible with existing systems.

Although system-level data transfer techniques can provide better performance

than application-level solutions, they usually require modifications to the operating

systems of the machine or network infrastructure, which hinders the prevailing usage of

Literature Survey

38

them. Application-level solutions can provide high-performance data transfer, yet they

do not utilize network bandwidth as efficiently as possible since they only use receiving

inbound –not transmit outbound. Moreover, they suffer from the drawbacks of data

transferring protocols (FTP) based on client/server paradigm.

Peer-to-peer solutions could propose solutions that use available systems’

resources including network bandwidth as efficiently as possible; nevertheless, only

few of them are suitable file distribution for scientific community and lack of key

features essential to scientific community such as security support, access right

management, and collaboration framework.

 The work discussed in this thesis harnesses the advantages of peer-to-peer

system to leverage the available resources of participating entities including network

bandwidth efficiently by implementing features that are not supported by the selected

peer-to-peer system (BitTorrent). Besides, as our proposed system is an application-

level solution, it is so flexible and lightweight application that it can be deployed on

any of existing operating systems and network infrastructures or can coexist with other

data transfer techniques or data management frameworks. Furthermore, unlike other

data transfer techniques, because of the architecture of our proposed model, it provides

a simple and lightweight data management system that functions as collaboration

framework as well.

The GridTorrent Framework Architecture

39

Chapter 3

The GridTorrent Framework

Architecture

3.1 The Overview of the GridTorrent Framework

The GridTorrent Framework (GTF) we have studied and implemented is a software

system that provides high performance, secure data transferring and data sharing

medium and collaborative environment with capability of efficient and optimum use of

available resources of underlying system. Although, with the secure collaboration and

content management environment, scientific community is the primary target users of

the GTF, it can be deployed in and utilized by any communities that would get benefit

from optimal and productive data transferring mechanism with the collaboration

framework component.

The GridTorrent Framework Architecture

40

The main characteristics of applications in the scientific communities as

mentioned in chapter one and two have been evolved from computational behavior to

informational behavior. As a result of that, unprecedented data volumes has been

generated by computers, conducted experiments, and scientific instruments and gadgets

ranging from tiny microscopes to enormous earth and space telescopes such as The

Robert C. Byrd Green Bank Telescope (GBT) Lovell telescope at Green Bank [99],

West Virginia, USA and NASA’s Hubble space telescope[100].

Besides the very large size of the produced data, participators are not only the

members of the same institutions, organizations, universities or laboratories, but also

scattered all around the world. Consequently, delivering data to geographically

dispersed organizations over the wide area networks and managing it are of paramount

importance, and it is proven that data management is the one of the hardest jobs to do in

the distributed computing environment [101]. As explained in chapter two, there are

many studies and works to address data management and transferring. There are several

reasons for myriad of researches in this field:

 Each organization decides their data management schema, data transferring

protocol, security policy, and data format that are suitable to characteristics and

constraints, e.g. time, money, etc., of researches that they conduct, features of

available resources such as human experience, technologies, and equipments.

Those variant requirements may result non-uniform data format. However,

when there is a collaboration between institutions, they attempt to standardize to

tools, i.e. data management schema, data transferring protocols, the data format,

which are going to be used among them.

The GridTorrent Framework Architecture

41

 There is none perfect data management and transferring solution for all cases.

Each study tries to solve the above-mentioned varying requirements, either by

focusing on the most important issue or applying different techniques

considered as better approach. Sometimes, emerging technologies either in

software or hardware areas imposes substantial modifications on current

systems in order to enhance the performance of the existing system or upgrade

it, or exploit the available technologies. For instance, after Web Service

appearance, the Grid community has adopted itself to conform to Web Service

standards in order to harness the power of it. Another example is that Reliable

File Transfer [42, 43, 101] that is [102]devised to address the shortcomings of

GridFTP [49] by utilizing Web Service [43] features. For this reason, it is very

inevitable to have many and diverse systems in this area.

In spite of the availability of a great number of systems, we consider that there

are still some issues which have not been settled permanently –which is not possible,

and new technologies which have been exploited to the full. It would better to say

optimum use of underlying system’s resources by exploiting peer-to-peer technologies

such as BitTorrent has not been experimented thoroughly in our opinion.

Consequently, current systems are still lack of some important features from which

scientific community benefited greatly. In this chapter, we describe our approach which

not only provides above-mentioned missing features but also conforms to Web Service

standards.

The GridTorrent Framework Architecture

42

3.2 Main Components of the GridTorrent Framework

The GridTorrent entails three major components because of distributed and

collaborative requirements of scientific applications;

1. The GridTorrent Framework Client (GTFC) which provides the services

required to data sharing among the peers,

2. The WS-Tracker is responsible for coordination between the GTFCs,

3. The Collaboration and Content Manager (CCM) which enables users to publish,

subscribe, and manage their contents.

Each of these components consists of several internal services for different

purposes ranging from security to different data transfer protocols. We discuss the

details of these components in the following chapters; in this section, we just give a

brief overview of the architecture of the whole system and basic information about the

interactions between components.

Since each component depends on another component in order to perform

correctly and successfully, every part of the GTF is as important as one another. Figure

3-1 presents the overall architecture of and interactions between GridTorrent

components.

A user is a real person who is interested in sharing and managing his/her

contents through the CCM, initiates the GTFC so that the actual data transferring

process can start. While there is no restriction imposed upon choosing the users’

accesses to their GTFCs, they access the CCM through HTTP protocol similar to

regular web site’s access. A user is permitted to own and manage more than one GTFC

if it is necessary.

The GridTorrent Framework Architecture

43

The first component is the GridTorrent Client which is software that runs on

users’ computers and provides services to support transferring data among interested

peers, imposing security constraints, and delivering fresh information to WS-Tracker in

order to help its coordinator task among the peers. Owing to variety of available

network configuration and diverse characteristics of data sharing process and the GTF’s

components, the GTFC uses several protocols. In addition to above reasons, using

different data transfer protocol might sometimes improve the performance or provide

better system resources usage. Therefore, the GTFC, which has modular transport layer

architecture and in our prototype, uses two data transfer protocols: (1) TCP, (2) PTCP.

The GridTorrent Framework Architecture

44

Figure 3-1 GridTorrent Framework is composed of a client, a Web Service
Tracker, and a Collaboration and Content Manager. Each component
communicates with another one via different protocols such as HTTP,
TCP, and PTCP

As it is illustrated in Figure 3-1, whereas it communicates with other GTFCs via TCP

and PTCP for data transfer, it interacts with the WS-Tracker as a traditional Web

Service client and request and response SOAP messages over HTTP are exchanged

with the WS-Tracker in order to update its current information. Details of the GTFC are

discussed in Chapter 4.

The WS-Tracker is the second component of the GTF and a Web Service

version of a regular BitTorrent tracker with added several vital features. A regular

The GridTorrent Framework Architecture

45

tracker is a simple HTTP/HTTPS service [88] which responds to HTTP GET requests

and it is impossible to include additional features such as access control list feature

which is generally vital and required for scientific data sharing. Additionally, because

of the nature of Web Service feature, new functionalities and services can be deployed

easily on WS-Tracker through WSDL interface which makes the WS-Tracker very

adaptable for newly emerging cases and special requirements. As a result, we

developed a Web Service version of tracker in our design. We explain its design in

details in Chapter 6.

Although other network protocols can be utilized for exchanging SOAP

messages, the WS-Tracker uses only HTTP in prototype version. Security issues are

addressed by integrating the Grid Security Infrastructure [103] and it is discussed in

chapter 7.

Users’ contents sharing settings are stored in to a database through the CCM.

We use MySQL [47] database server for this purpose. The WS-Tracker retrieves the

stored information from MySQL through JDBC connections as in shown in Figure 3-1.

The last unit is the Collaboration and Content Manager which is accessed by

users via HTTP. It consists of several JSP based interfaces leveraging newly emerged

AJAX [104] techniques, and is composed of two sub major components: Collaboration

Manager and Content Manager. As their names denotes, Collaboration Manager

provides a collaborative substratum to registered users to by permitting them to create

their friend lists. This list is used to inform all the users in it when a new content is

published by the owner of the list.

The GridTorrent Framework Architecture

46

The Content Manager offers services which permit users to do search on

available contents, publish their contents, and subscribe to contents which are allowed

them to download. All required information to achieve above services is stored into

MySQL database, accessed by WS-Tracker Service as well, via JDBC connections.

In Chapter 5, details of both Collaboration and Content Managers are discussed

in greater detail.

After reviewing briefly each component, we can summarize interactions

between components. Users are the initiators of the whole system. They register to the

CCM and start their GTFCs. Additionally; they share their contents and collaborate

with each other through the CCM.

The CCM stores users’ information to database server using JDBC connections.

The same information are retrieved and delivered to the GTFS by the WS-Tracker

Service via same database access protocol –JDBC.

The GTFCs start either a downloading or uploading process corresponding to

messages delivered by the WS-Tracker Service. In addition data sharing task, it uploads

its current statistical information into the WS-Tracker Service to help carry out its

coordinator job successfully.

3.3 Summary

In this chapter, we have presented an overview of our GridTorrent Framework

architecture. The GTF architecture consists of three major components in order to meet

requirements of data sharing process of scientific community. We adopt open peer-to-

peer standard for data sharing task and Web Service standards for implementing the

coordinator of peers, WS-Tracker Service, so that new and complex features could be

The GridTorrent Framework Architecture

47

deployed easily without modifying the whole architecture. We also summarize briefly

each component and their functionalities and the protocols used between them.

The GridTorrent Framework Client Architecture

48

Chapter 4

The GridTorrent Framework Client

Architecture

4.1 Introduction

In the previous chapters we explained the motivation and rationale for

GridTorrent Framework Architecture which offers a framework for high performance

data transferring and sharing primarily for scientific communities, and provided a high

level overview and description of our design decisions and overall approach.

In this chapter, we extend more details about low level and architectural design

decisions of the GridTorrent Framework Client which is responsible for real data

sharing and transferring processes between the peers. In addition, we present a

thorough description of key components and their implementation.

The GridTorrent Framework Client Architecture

49

Available techniques for data transferring are classified into two categories:

client/server and peer-to-peer. In the former model, client initiates data transferring

process and server delivers the requested data to client. As it is shown in Figure 4-1,

this model could support a heterogeneous collection of clients which span a very wide

spectrum that includes desktops, PDAs and other handheld devices, appliances, and

other networked resources when the client service is kept very light service. However,

this model has couple of disadvantages under a certain scenario nevertheless. For

example, if there is more than one client and all of them are interested in the same data,

the server must provide the demanded data to all demanding clients. In other words,

none of the active clients involves themselves in any part of data transferring processes

except the one taking place between the server and itself. As a result, first disadvantage

of client/server model might cause a severe data access bottleneck because of a

considerable demand for a particular data at the server that hosts the demanded data.

Second drawback is the result of the bottleneck problem and that all the available

computing power of, I/O and network bandwidth resources of the clients stand idle

during the data transferring process unless there are other jobs keep them busy.

In the second data transfer model, similar to client/server model, a client

commences data transferring process. However, peer-to-peer model allows each peer to

serve both as a client and a server at the same time by uniformly dividing all

responsibilities among all participants. Therefore, a downloading peer (client) can

deliver the downloaded segment of the downloading data to another peer (client) as a

server. This model might address above-mentioned disadvantages caused by

client/server model. Although, similar to client/server model as shown in Figure 4-2, it

The GridTorrent Framework Client Architecture

50

Figure 4-1 Client/Server model

is possible that to support highly diverse collection of peers with different hardware

features, it is very unpractical to use very tiny gadgets with limited memory and low

computing power since each peer has to function both as a client and a server

simultaneously.

As a result of this, we have developed a novel data transfer layer which uses

peer-to-peer data sharing algorithm of BitTorrent [86, 88] with the underlying TCP and

PTCP [105] as data delivery protocols in our current prototype.

4.2 Overview of the GridTorrent Framework Client Architecture

To motivation behind our work is to provide a lightweight data

transfer/management middleware that has simple, extensible, easily modifiable

The GridTorrent Framework Client Architecture

51

architecture, as well can effortlessly be deployable in large numbers of distributed

nodes and that requires the least amount of possible central control or management

Figure 4-2 Peer-to-peer model

tasks. For this purpose, we have chosen layered architecture for the GTFC design by

taking advantage of peer-to-peer infrastructure and service oriented architecture. The

layered architecture of and the components of the GTFC are illustrated in Figure 4-3.

These layers are: security layer, core services layer, and data sharing algorithm layer.

The services provided by these layers are described in next sections of this chapter.

 Each layer is built on top of another layer and uses the services offered by the

lower layers or adjacent modules. To provide services pertinent to security, the GTFC’s

layered architecture is based on Grid Interface which consists of Java CoG Kit and Java

WS Security middleware as shown in the figure.

The GridTorrent Framework Client Architecture

52

Figure 4-3 GridTorrent Framework Client Architecture

The components of the GTFC can be organized in a layered architecture as in

shown in the figure. These modules are: (1) Torrent Data Sharing Logic, (2) Task

Manager, (3) WS-Tracker Client, (4) Data Transfer Modules, and (5) Security

Manager.

4.3 Torrent Data Sharing Logic

Data Sharing Algorithm layer is responsible for execution of and monitoring of

rules and specifications which are required for fair, efficient and high performance

peer-to-peer data transfer and defined by BitTorrent protocol. The services provided by

Data Sharing Algorithm layer are as follows:

 Service of creating a .torrent metafile for a given file or directory

structure to be desired to share or download, i.e. content.

 Service of generating a bitfield map for a given content

The GridTorrent Framework Client Architecture

53

 Service of allocating memory and disk space required for them.

 Service of handling current peer connections for data transfer.

 Service of gathering statistical information about the uploading and

downloading process of each file.

 Service of reporting statistical information to Task Manager in order to

deliver it to WS-Tracker service.

It provides a data listener for each of the shared contents at each node. Before

starting the actual data transfer process, it checks every incoming connection’s IP and

port information with the ACL Registration Table (ACLRETAB) whether they have

access right for the requested content. If their IP and port information is not registered

to ACLRETAB, they are rejected immediately by closing their incoming socket. As

shown in Figure 4-4, Data Sharing Algorithm layer interacts with Data Transfer

Modules, Task Manager and Security Manager.

4.4 Core Modules Layer

This layer consists of two modules: Data Transfer Modules and Management

Modules. Likewise, each of these modules comprises subcomponents as depicted in the

figure.

4.4.1 Data Transfer Modules

Data transport is a very important task for data-intensive applications in

scientific disciplines such as High Energy Physics, Astronomy, Earthquake

Engineering, and Climate Modeling. Massive datasets must be transferred in the

shortest possible amount of time to a community of hundreds or thousands researches

The GridTorrent Framework Client Architecture

54

Figure 4-4 Simulation Architecture

geographically distributed so as to enable the accomplishment of satisfactory

performance [23].

Although TCP is the most widely used transport protocol and is the de facto

protocol of the Internet, because of its window based congestion control mechanism, it

prevents [30] full-scale usage of high bandwidth-delay product. In order to overcome

this problem, researches have continually worked to improve TCP and conceived

several application level solutions. The latter approach emerges as a favorite solution

because it supports for easy development and seamless integration with legacy systems,

whereas the former one suffers from deployment difficulties [56].

Using parallel TCP is the most common technique that is used in PSockets [51]

and GridFTP [40]. Using multiple TCP streams may increase the usage of network

The GridTorrent Framework Client Architecture

55

bandwidth, but it is performance depend on many factors, such as the number of

parallel streams and the buffer sizes of each flow [106].

Another approach is using rate-based UDP to overcome TCP’s inefficiency.

Some of ongoing works in this area are SABUL [57], FOBS [9], RBUP [58], FRTP

[62], and UDT [106]. In spite of the fact that the UDP is a very simple protocol,

providing reliable data streaming service to applications is an important advantage of

TCP over UDP.

Data Transfer Modules is accountable for sending and receiving actual data

to/from other peers. As illustrated in the figure, it only interacts with Data Sharing

Algorithm layer.

Even though we are planning to use UDP based data transfer protocols in the

future, in our current prototype, Data Transfer Modules consists of services which use

the Internet protocol TCP/IP to transfer data between physical locations. In order to

enable our GTFC transfer data on any network and utilize the network more efficiently,

we both employed both a single TCP flow and parallel TCP flows. In spite of the fact

that Data Transfer Modules is depicted as an independent entity in the architecture

figure, because of its job description it has very close relation with Torrent Data

Sharing Algorithm Layer. GTFC uses two channels: data channel and security channel.

The former is used solely for the purpose of data transfer in high bandwidth. The latter

is for the security purpose and encrypted.

4.4.2 Management Modules

The Management Modules consists of sub-modules which provide services and

tools that support the tasks management, monitoring of usage and availability statistical

The GridTorrent Framework Client Architecture

56

information such as percentage of upload and download information, and

communication with the WS-Tracker.

4.4.2.1 Task Manager

Task Manager is the first module in the GTFC to be executed when the user run

the GTFC. After initializing the GTFC settings, it generates a unique ID, Unique Grid

Torrent ID (UGTID). UGTID is essential for each of GTCs because it is used to

identify each GTC during the data sharing and communication processes. Following

UGTID creation, GTC stores it into an ID file for future utilization. The user has to

register other required information with this UGTID by retrieving it from the ID file

into Collaboration and Content Manager (CCM).

Other important responsibility of Task Manager is to execute a task included in

task list delivered by WS-Tracker service. Upon task list arrival, it parses the list and

then, according to description of task, executes the appropriate services to perform a

task or starts a proper module and passes it to that module to be handled.

It acts as central control unit of the GTFC and interacts all the modules except

Data Transfer Modules as shown in Figure 4-4. In order to create a scheduled request

needing to be passed to WS-Tracker client and to be delivered WS-Tracker service

eventually, it has a time-based scheduling service as well.

4.4.2.2 WS-Tracker Client

WS-Tracker client behaves as a communication substrate between Task

manager and WS-Tracker service. The relation between Task manager and WS-Tracker

service is loosely coupled relation. This loose coupling feature enabled us to implement

The GridTorrent Framework Client Architecture

57

the management part of GTF as in service-oriented architecture (SOA). SOA is defined

as following on a web page dedicated to service-oriented architecture and Web services

[107].

A service-oriented architecture is essentially a collection of services.

These services communicate with each other. The communication can involve

either simple data passing or it could involve two or more services coordinating

some activity. Some means of connecting services to each other is needed.

In other words, the service is the basic building block of SOA, and according to

the same web page [107], a service is defined as “a function that is well-defined, self-

contained, and does not depend on the context or state of other services.”

 Although, currently, the technology of Web services can be used to implement

a service-oriented architecture, SOA is not a new idea and DCOM or Object Request

Brokers (ORBs) might be considered as prior service-oriented architecture

implementations [107].

Similar to SOA, each task of the GTF is regarded as a service so all tasks in the

system are implemented as traditional web services. Thus, WS-Tracker Client

communicates with WS-Tracker service as a traditional Web service client, request and

response SOAP messages are transported over HTTP.

WS-Tracker service URL information is a vital piece of data since WS-Tracker

Client communicates with the given WS-Tracker service during the whole data sharing

process. Thus, in order to start a connection with WS-Tracker service, WS-Tracker's

service URL information has to be notified GTFC by the user. This notification can be

done in two ways; by updating GTFC's properties file either before, or after running it.

The GridTorrent Framework Client Architecture

58

If WS-Tracker's address information is updated after running it, GTC will receive it

after a certain time, since it checks its properties file periodically.

4.5 Security Manager

Security manager handles issues related to security, for instance exchanging

certificates, encrypting and decrypting of messages. For this purpose, The GTFC’s

layered architecture uses third party security components: Java CoG Kit and Java WS

Security middleware as shown in Figure 4-3. The former is used to provide

functionalities for MyProxy [108] security credentials. Since short-term connections are

the general characteristics of connections between peers, using MyProxy not only is a

ideal solution by delegating short-term credentials and providing a set of flexible

authentications and authorization mechanisms, but also enables us to integrate the

GTFC with many other systems, for it is used in many large grid data projects such as

the Enabling Grids for E-science (EGEE), FusionGrid, the Large Hadron Collider

(LHC) Computing Grid, Open Science Grid, and TeraGrid, just to name a few.

The latter, as its name denotes, is used between and the Management modules

and WS-Tracker service (Refer to Chapter 6) and ensures the secure conversation

between them. (Refer Chapter 7 for further details about MyProxy and Java WS

Security).

Security Manager communicates with other peers through security channel

which is independent of data channel, dedicated to exchange of security information

such as certificates and proxy certificates, and encrypted.

To authenticate incoming connections and their rights, the security manager

checks provided info by them against the ACL Registration Table (ACLRETAB).

The GridTorrent Framework Client Architecture

59

Content hash code, IP, port and UGTID are pieces of information for identity

verification process and the important fields of the (ACLRETAB). They are inserted

into the ACLRETAB after the parsing process of the ACL messages received in share

content request message or ACL message. Following a successful authentication and

authorization process, it provides a session key that needs to be delivered to data part to

prove itself authenticated to incoming connection.

4.6 Task Generation and Exchange

A real user has to start the GTFC before initiating the process of task

generation. After a successful registration, the user can login to Collaboration and

Content Manager (CCM) to commence the sharing procedure of a content that is

designated to be shared. First, a user inputs necessary data about the content into CCM.

Then, he or she needs to set access control rights of the selected content. CCM stores

this information and user's actions as future tasks into a database shared with CCM.

When WS-Tracker Client communicates with WS-Tracker service, it pulls out

the user’s actions from the database, converts each action into a task, and delivers those

tasks in a task list to the task manager through WS-Tracker Client components so that

they will be executed by the task manager module in the user's GTFC. Task list is a list

in XML format and contains only two types of task created by the user: share content

request and download content request. These tasks with the others will be explained in

details in the next section.

The GridTorrent Framework Client Architecture

60

4.6.1 Tasks

A task is just simple metadata. Even though we could name it as “message”,

since it triggers actions in the GTFC, we preferred to term it as “task”. It is exchanged

between the GTFC and WS-Tracker service in order to instruct them what to do to

carry out a specific action. It can be categorized into request, response, periodic, and

non-periodic. Table 4-1provides a listing of task types used within the GTF.

Table 4-1 Tasks Overview

No Task Name Creator Source Destination Category

1 Task List Request GTFC GTFC WS-Tracker request,
periodic

2 Share Content
Request

User WS-Tracker GTFC request,
nonperiodic

3 Share Content
Action

GTFC GTFC WS-Tracker Response,
nonperiodic

4 Download Content
Request

User WS-Tracker GTFC Request,
nonperiodic

5 Torrent Request GTFC GTFC WS-Tracker response,
periodic

6 ACL Request GTFC GTFC WS-Tracker request,
periodic

7 ACL User WS-Tracker GTFC response
8 Update Status GTFC GTFC WS-Tracker periodic

There are six types of task available: task list request, share content request,

share content action, download request, torrent request, ACL request, ACL and, lastly,

The GridTorrent Framework Client Architecture

61

Figure 4-5 Representation of XML schema of Task

The GridTorrent Framework Client Architecture

62

Figure 4-6 Activity diagram of GTF’s tasks

The GridTorrent Framework Client Architecture

63

update status task.

As To formulate the different task types we created XML schema as illustrated

in Figure 4-5. The Attributes of task are quite self-explanatory. As its name suggested,

id attribute stores a unique number generated by DB. Name attribute’s value can be one

of predefined task names and gtfc_id is used for UGTID (Unique GridTorrent ID). The

name, path and type attributes of file are used to identify the content in local file-

system. Type attribute’s value can only be either file or folder. File’s torrent element or

task’s torrent element is used to transfer binary data of the .torrent metafile content

from GTC to WS-Tracker. Upload and download elements of file are utilized to

provide statistical information to WS-Tracker about current transferring processes.

Finally, WS-Tracker returns a list of peers that have access rights to given content in

peer element of task.

Figure 4-6 shows all interactions between the GTF tasks. The tasks displayed as

in yellow boxes are periodical tasks that are executed repeatedly over a period of time.

Non-periodic tasks just carried out as reactions to certain tasks are displayed with the

green boxes as depicted in the figure.

4.6.1.1 Task List Request Task

The Task List Request Task falls into the category of request and periodical

task. It is the first task generated by the task manager to initiate the communication

between WS-Tracker client and WS-Tracker service. An example of Task List Request

task is shown in Table 4-2. It flows from the GTFC to WS-Tracker service with the

information of task id, task name, and UGTID. A list of task, which may contain some

tasks or be empty, will be returned to task manager as a response to it.

The GridTorrent Framework Client Architecture

64

Table 4-2 Presentation of Task List Request Task in XML format

<task id="56" name="TaskListREQ">
</task>

4.6.1.2 Share Content Request Task

The Share Content Request Task is categorized as a request task and generated

by the user when he/she publishes the content's metadata, file name, path, size, etc., for

example, into CCM. It is exchanged between WS-Tracker service and the WS-Tracker

client of source GTFC, that is, it has the whole content whose owner desires to share it,

and emanates from WS-Tracker service to WS-Tracker client. When a WS-Tracker

client contacts with the WS-Tracker service, it pulls available task lists from database

and delivers it to designated client.

Table 4-3 Illustration of Share Content Request Task in the XML message

<task id="59" name="ShareContentREQ">
 <file name="test1.data" path="c:\test-results" type="file">
 </file>
</task>

Apart from task id and name information, the file name, path and type are the

parameters transferred with this task as shown in Table 4-3.

Upon its arrival, after the message and task handling processes, Task Manager

starts a ConnectionListener object. Then, the ConnectionListener object locates the

content, desired to be shared, by using information delivered via ShareContentREQ

task and creates a .torrent metafile of the content and passes it to Task Manager in order

The GridTorrent Framework Client Architecture

65

to enable it to generate Share Content Response task (ShareContentRES Task) as

illustrated in Figure 4-7.

Figure 4-7 Processes workflow of share content request task and share
content action task

4.6.1.3 Share Content Response Task

The Share Content Response Task is GTC’s reaction to the ShareContentREQ

task when it is delivered to GTC by means of its WS-Tracker Client. GTC creates a

.torrent file, i.e. a metafile, for the requested the content. Then it passes this metafile to

WS-Tracker via its WS-Tracker Client. In other words, the Share Content Response

Task flows into WS-Tracker from GTC. WS-Tracker stores incoming metafile into

both memory and database. While the former is used for the performance purpose, the

The GridTorrent Framework Client Architecture

66

latter is employed for the persistency purpose. This task including the .torrent metafile,

then, is passed to WS-Tracker client. Finally, it constructs a SOAP message of the

Share Content Response Task and sends it to WS-Tracker service over HTTP.

Table 4-4 Representation of Share Content Response Task in the form of
XML message

<task id="63" name="ShareContentRES">
 <file name="test1.data" path="c:\test-results" type="file">
 <torrent>TORRENT BINARY DATA IS HERE</torrent>
 </file>
</task>

4.6.1.4 Download Content Request Task

Similar to the Share Content Request Task, the Download Request Task is a request

type of task and generated by the user when the user picks any content which is

available to the user and wants to download it. CCM stores this process into database as

a Download Request Task. The same as Share Content Request Task does, it originates

from WS-Tracker to WS-Tracker Client, and will be pulled from DB by WS-Tracker

and delivered to the client when it communicates with WS-Tracker.

Table 4-5 An example of Download Content Request Task in XML format

<task id="67" name="DownloadContentREQ">
 <file name="test1.data" path="c:\test-results" type="file" source="GID">
 </file>
</task>

The GridTorrent Framework Client Architecture

67

4.6.1.5 Download Content Response Task

The Download Content Response Task message generated by GTC is sent to

WS-Tracker in reply to the Download Request Task message. It demands WS-Tracker

to send .torrent metafile of the requested content. Upon receiving the Download

Content Response Task, WS-Tracker checks whether the requested .torrent metafile is

Table 4-6 Illustration of Download Content Response Task in the XML
message

<task id="70" name="DownloadContentRES">
 <file name="test1.data" path="c:\test-results" type="file" source="GID">
 </file>
</task>
available. It is important to emphasis that requested .torrent metafile may not be ready

for delivery when WS-Tracker receives Download Content Response Task message

inasmuch as GTF message exchange mechanism is based on loose coupling design. In

other words, the source of the content may send the .torrent metafile of the shared

content after downloader’s request. Consequently, WS-Tracker has two options to reply

incoming Download Content Response Task message.

 If .torrent metafile is accessible, then it delivers it to demanding client in the

following message format.

Table 4-7 Presentation of Torrent Data Task in XML format

<task id="71" name="torrentDATA">
 <torrent>
 TORRENT BINARY DATA IS HERE
 </torrent>
</task>

The GridTorrent Framework Client Architecture

68

When the WS-Client receives the .torrent metafile, it parses the metafile to

extract the encoded meta-data of the shared content. Next, it starts to actual data

download process by asking pieces from the sources and leeches.

 If it is not ready yet, then it sends “torrent Not Available” message to the client.

Table 4-8 Representation of Torrent No Data Task in the form of XML
message

<task id="71" name="torrentNODATA">
</task>

WS-Tracker Client will ask the same torrent file after some specified time, like

30 minutes. Until it obtains the metafile, it will ask for it periodically.

4.6.1.6 Access Control List Request Task

This message originates from WS-Tracker Client to WS-Tracker in order to

update access control list (ACL) of a shared content. Similar to Download Content

Request Task message, it is a periodical message. It demands to WS-Tracker to deliver

given shared content’s ACL. The processes workflow of Access Control List Task is

fully illustrated in Figure 4-8.

Table 4-9 Illustration of Access Control List Request Task in the XML
message

<task id="83" name="ACLREQ">
 <file name="test1.data" path="c:\test-results" type="file" source="GID">
 </file>
</task>

The GridTorrent Framework Client Architecture

69

Figure 4-8 Access Control List (ACL) request task's processes workflow

4.6.1.7 Access Control List Response Task

The Access Control List Task message is a reply message to the Access Control

List Request Task, and it emanates from WS-Tracker to WS-Tracker Client. It conveys

IDs of peers which have a right to download stated content or an empty list. The owner

of the content later approves or rejects incoming download connections associated with

respect to a given content by checking their provided GIDs against the GIDs

represented in this ACL response list.

The GridTorrent Framework Client Architecture

70

Table 4-10 An example of Access Control List Response Task in XML
format

<task id="89" name="ACLRES">
 <peer id="GID1">
 <peer id="GID2">
 <peer id="GID3">
 ……………..
 <peer id="GIDN">

</task>

4.6.1.8 Update Status Task: (UPT)

This message is used to collect Clients’ current statistical information, such as

upload, download percentage, etc. Even though, in current prototype, we only provide

upload and download information, new fields can effortlessly be added. It is a

periodical message and sent from WS-Tracker Client to WS-Tracker. The message

flow between various components and process workflow for the update status task is

illustrated in Figure 4-9.

Table 4-11 Presentation of Update Status Task in XML format

<task id="" name="UpdateStatusCMD">
 <file name="test1.data" path="c:\test-results" type="file" source="GID">
 <upload percentage="0.25"/>
 <download percentage="0.47"/>
 </file>
</task>

The GridTorrent Framework Client Architecture

71

Figure 4-9 Update status task (UST) is one of the important and periodic
task that is used to inform WS-Tracker service about current status of
the GTF clients

4.7 Summary

In this chapter, we explained the architecture of the GridTorrent framework and

motivations and design decisions behind it. Then, we presented a very detailed

description of its components: data sharing algorithm layer, data transfer module, core

modules responsible for management and task handling and processing, security

manager, and finally all tasks. In the next chapter, we are going to explain

Collaboration and Content Management which enables the GTF to provide a

collaborative environment.

Asynchronous Collaboration and Content Management Architecture

72

Chapter 5

Asynchronous Collaboration and

Content Management Architecture

5.1 Introduction

Bhartrihari, one of the ancient Indian philosophers (c. 450-510 CE?), says

“Knowledge grows when shared.” This is very true for science as well, when we

consider our contemporary knowledge and its output, i.e. technology, as the

accumulation of previous collaborative studies and works since the first appearance of

ancient thinkers.

In other words, the essence of science is analyzing, suggesting, and sharing

ideas, data; to put it simply, exchange and communication. Christopher Surridge, editor

of the Web-based journal, Public Library of Science On-Line Edition [109] (PLoS

Asynchronous Collaboration and Content Management Architecture

73

ONE), enunciates it clearly as saying “Science happens not just because of people

doing experiments, but because they're discussing those experiments,” according to

[110]. The collaborative projects can be as diverse as that it may be a work of two

scientists or of many universities and intuitions scattered around the world. Therefore,

there is a growing need for a framework which enables community groups, academics,

and scientists to develop collaborative research projects between them.

5.2 The concept of Asynchronous Collaboration and Content

Management

5.2.1 Definition of term “Asynchronous Collaboration”

Even though collaboration, content, and content management are the buzz-

words of the Web 2.0, they have broader definitions in computer environment;

therefore, we would like to clarify the use of terms content, content management and

asynchronous collaboration as used in this dissertation before we discuss the aspects of

asynchronous collaboration and content management. In addition, when we refer to

asynchronous collaboration feature of our prototype we use collaboration and

asynchronous collaboration interchangeably in the rest of this thesis since the

asynchronous collaboration is the only type of the collaboration employed in this thesis.

As collaboration has wider and prevalent usage in today’s computerized world,

it is perfectly correct to regard email, video teleconferencing, Internet chat or the World

Wide Web as collaboration. Therefore, collaboration can be defined “as the integration

of many technologies in to a single environment to facilitate information sharing and

information management” according to [111].

Asynchronous Collaboration and Content Management Architecture

74

The accesses of resources in collaborative systems are other aspect of

collaboration and they can be synchronous or asynchronous. In synchronous

collaborative systems –real-time collaboration, users work with others at the same

moment taking turns communicating ideas and controlling resources. On the other

hand, users does not required to be present to participate in asynchronous collaborative

systems which allow users to collaborate with other people at their convenience [111].

5.2.2 Definition of term “Content” and “Content Management”

The term of content is generally used to refer to various kinds of digital media

and electronic text such as computer files, image, audio and video files, electronic

documents, and Web contents.

Content management refers to create, edit, manage, search and publish digital

content. Although the content management term has similar meaning in our prototype,

we used the content term with a broader definition in order to include any type of

electronic data which is desired to be shared with other users by its owner and can be

distributable on computer networks without concerning and processing according to

what is stored in it.

5.2.3 Requirements

A framework designed for collaborative research projects, in our opinion, should

satisfy the following five important requirements.

 It should enable participants to share and exchange their ideas –a collaborative

substrate.

Asynchronous Collaboration and Content Management Architecture

75

 It should provide a basic content management service that allows users to publish

and manage their content and search, find and access any data available in the

system.

 It should be platform and scientific discipline independent, lightweight and simple

as possible it can be.

 It should be customizable and extensible so that organizations with different needs

could modify or add new features to it seamlessly.

 It should allow users to transfer their shared data from one location to another one

in a high-performance, reliable and efficient way.

5.3 Related Work

There are great deals of commercial and academic products available for

collaboration and content management. They are fall into three main categories: (1)

systems aimed to deal with great variety of content on a website, (2) systems designed

for handling distributed documents produced by office productivity programs (text

processing, spreadsheet, etc.) in addition to web content and (3) systems dedicated to

courseware management. Bittorrent, SharePoint [112] from Microsoft, Drupal [113]

and Sakai [114] from Indiana University are the prominent examples of their area.

Bittorrent provides high performance data transfer techniques but it lacks of

content management feature and does not meet requirements for scientific contents

such as security, and reliable and comprehensive search feature (Refer Section 2.5.1).

SharePoint was designed as the single portal and developed by Microsoft as an

enterprise-level application solution for organizations seeking to deploy for their

internet, intranet, and extranets with a consistent user experience [112]. It includes

Asynchronous Collaboration and Content Management Architecture

76

browser-based collaboration and document management platform. Microsoft’s

SharePoint consists of two products:

1. Windows SharePoint Service 3.0 (WSS)

2. Microsoft Office SharePoint Server 2007 (MOSS)

While WSS provides platform services such as collaboration, storage, security,

management, deployment, site model and APIs for extensibility, MOSS provides five

server applications content management, portal, search, business intelligence, and

business process management with shared services such as single sign-on (SOS), usage

reporting, user profile store, business data catalog services [115]. Although SharePoint

offers wide range of collaboration and document management functionalities, it is not

suitable for scientific community for several reasons. First of all, as SharePoint only

runs on Windows based OS using Microsoft SQL server, it is platform dependent and

integrated tightly with other Microsoft products and technologies, for example,

ASP.NET, ISS and SQL Server. Secondly, due to its license issue and being a

commercial product, it is an expensive solution and adding new capabilities entails

daunting challenges. In addition, SharePoint is built on ASP.NET; thus, customizations

are done via .NET framework. The third reason is that it is difficult to utilized

alternative data transfer mechanisms apart from HTTP and FTP. The final reason is that

it is designed to serve small size files by storing and locating files in a central site and

controlling them via central administration services, which makes SharePoint not

suitable for scientific community since they are entirely independent organizations.

Drupal is an open-source content management system implement in PHP.; it

allows an individual or a community of users to easily publish, manage and organize a

Asynchronous Collaboration and Content Management Architecture

77

great variety of content on a website. The uses of Drupal ranges from community

portal sites, news publishing, intranet/corporal web sites, to social networking sites and

art, music and multimedia sites [116]. According to [113] the Drupal core includes the

following services but not limited to:

1. Basic content management

2. User management

3. Session management

4. Localization

5. Templating

6. Syndication

7. Logging

In addition to core services, it has additional modules which enable Drupal to

offer more functionality such as E-commerce, adsense, forums and workgroups. For

scientific content and collaboration management, Drupal has several important

advantages over Microsoft’s SharePoint due to being open-source and platform

independent. However, it is impractical for scientific community because not only

some of its important features (e.g. e-commerce and adsense) are barren, but also most

of its functionalities were not designed to manage distributed large files belongs to

different organizations scattered across the world. In fact, the Drupal’s primer focus is

on managing small files related to websites and they reside on servers owned by a

single organization. Similar to Microsoft’s SharePoint, Drupal does not provide any

alternative data transfer technique as requested files are transferred directly by the web

server over HTTP as a static file and Drupal is not involved at all [113].

Asynchronous Collaboration and Content Management Architecture

78

The Sakai Collaboration and Learning Environment (CLS) is a free and open-

source Courseware Management System. The Sakai project began January 2004 when

four universities –Indiana University, Stanford University, the Massachusetts Institute

of Technology, and the University of Michigan- decided to replace their learning

systems by a common courseware management system developed together [114]. As it

is seen from some tools of Sakai listed in Table 5-1, the primary motivation behind the

Sakai project is to accomplish a framework with rich functionality that will support

pedagogies in all disciplines [114] and it does not provide a dedicated tools that

manages and transfer geographically distributed large files stored on divergent systems.

Currently, the Sakai CLE is used at over 160 educational institutions, in productions

settings ranging from 200 to 200,000 users [117].

Even though above-mentioned products have great features, as their services are

sophisticated and comprehensive and they were designed for being a management

framework instead of being a content management framework, they are heavyweight

process and require considerable system resources such as computational power and

memory; therefore, they alone are not suitable for scientific content management.

Furthermore, they provide services to manage only web content or they lack of high

performance data transfer capability by using simple HTTP or FTP as data transfer

mechanism. However, due to their rich functionality and modular structure or

sophisticated web content management systems such as portals, lightweight

frameworks designed to manages distributed files, for instance The GridTorrent

Asynchronous Collaboration and Content Management framework, can be integrated

with them seamlessly.

Asynchronous Collaboration and Content Management Architecture

79

In addition to enterprise level solutions, a great deal of effort has been expended

in studying this subject and many systems have been developed in order to satisfy the

growing need to provide collaborative environment in scientific community. In Grid

community, Replica Location Service (RLS) [48] can be considered as collaborative

tools in an aspect of finding where existing files are located in the Grid by providing a

framework for keeping track of one or more replicas in a Grid environment. GridFTP is

Table 5-1 Partial List of Sakai 2.5 Tools

A set of generic collaboration tools

of the core of Sakai.

The core tools can be augmented with

tools designed for a particular application

of Sakai.

Teaching Tools Portfolio Tools

Announcements

Drop Box

Email Archive

Resources

Chat Room

Forums

Threaded

Discussion

Message Center

Message of the

Day

Preferences

Presentation

Profile / Roster

Repository

Search

Schedule

Search

Web Content

WebDAV

Wiki

Site Setup

Assignments

Gradebook

Module Editor

QTI Authoring

QTI Assessment

Section Management

Syllabus

Forms

Evaluations

Glossary

Matrices

Layouts

Templates

Reports

Wizards

Asynchronous Collaboration and Content Management Architecture

80

News/RSS

another example of collaboration tool of Grid community used for high-performance

data transfer.

In addition to previous studies and works, emerging technologies offers new

tools suitable for scientific collaboration. For example, the technologies of Web 2.0

provide a new way of sharing and interacting to the end users by presenting user-

oriented social networks, wikis, blogs, and information-tagging devices. Moreover,

being not only more collegial than the traditional variety, but also considerably more

productive is another attractiveness of the Web 2.0 based collaboration. Although,

offered facilities are very important and it promotes the productivity, they address only

the first requirement and are used a small but growing number of researchers, yet their

efforts are still too scattered [110].

The OpenWetWare [118] project at MIT is another example of collaboration

project which harnessed Web 2.0. It is designed to collaborate on synthetic biology.

OpenWetWare, a collaborative Web site, is based on wiki that can be edited by anyone

who has access to it [110].

A great deal of studies and efforts in this area are solutions either that deal with

just some aspects of the collaboration issues instead of all aspects of them or, likewise

OpenWetWare, clearly fall into the category of discipline specific studies which is

almost impossible to use for another scientific discipline because of imposing data type

germane to particular discipline . Even though some of them are very successful at their

targeted field, they still suffer either from above-mentioned shortcomings or from not

Asynchronous Collaboration and Content Management Architecture

81

having been addressed some very important requites such as privacy and security

issues. For example, the privacy issues are hotly debates in scientific communities

whose members use the technologies of Web 2.0 [110].

As a result, bearing in mind the deficiencies of previous works, we developed a

system that is highly platform and scientific discipline independent and capable of

high-performance data transfer technique and provides services in order to enable users

to share, search, and find their contents in the system.

In the previous chapters we explained the motivation and rationale for the

GridTorrent Framework Client Architecture which is responsible for high performance

data sending and receiving with acceptable level of security.

In this chapter, we extend more details about low level and architectural design

decisions of the Collaboration and Content Management (CCM) component of the

GridTorrent framework which offers a collaborative environment. Users can share,

search, access, and manage their contents by the tools provided by the CCM. In

addition to explanation of high level overview of the CCM, we present a thorough

description of key components and their implementation.

5.4 Access Control Schemes

It is inevitable that distributed computer systems require at least one mechanism

to restrict system access to authorized users. As collaborative systems permit their users

to access other users’ resources, access control scheme is a vital requirement for

collaborative systems as well. In this section we examine existing access control

strategies for collaborative system.

Asynchronous Collaboration and Content Management Architecture

82

The simple access control mechanism is Access Control Matrix (ACM). In this

scheme, current allowed accesses of the subjects, which are active protective entities

such as users and processes, are controlled using a matrix which defines the access

rights of each subject associated with each object in a system [119, 120]. Access

Control Lists is the one of the implementation of access matrix model. Objects that

associate with subjects and rights lists of a set of pairs –subjects and rights- are stored.

Capability Lists is the another mechanism used to implement access matrix model. In

this implementation, subjects that associate objects and rights with lists of a set of pairs

-objects and rights- are stored.

In Role Based Access Control [119, 121-123](RBAC) model, access decisions

are based on the roles predefined in organizations. Access rights are grouped by role

name and subjects take on assigned roles. The access of system resources is authorized

according to subjects’ roles not their individual identity. Privilege and Role

Management Infrastructure Standard [124] (PERMIS) , an implementation of RBAC

model, is an authorization infrastructure based on the X.509 Attribute Certificate.

Whereas RBAC scheme is very effective for collaboration systems because of simple

administration and scalability issues, ACM scheme is efficient in flexibility and fine-

grained control issues.

As settings of ACM and RBAC based systems are relatively static, they are

suitable for asynchronous collaborative environments which require no or little real-

time interactions or access control settings. On the other hand, those systems lack to

coordinate concurrent activities and to manage synchronous resources in synchronous

collaborative systems. Floor control [125, 126] scheme developed “to manage joint or

Asynchronous Collaboration and Content Management Architecture

83

exclusive access to shared resources” [127] and to maintain shared state consistency in

synchronous collaborative environments such as conference and media session setup,

conference policy manipulation, and media control.

As users of the Collaboration and Content Management framework are not

required to collaborate with other users at the same moment, the CCM display more the

characteristics of asynchronous collaborative systems than that of synchronous

collaborative systems; thus, we used ACM and RBAC based access control models in

our prototype.

5.5 The Collaboration and Content Management

The CCM is a software application that provides a system capable of managing

users, providing services to the users to govern their contents and access rights of their

contents, building their collaborative team, and administering their teams. It has been

developed mainly using Java, JavaServer Pages and Java Beans technologies.

The human user is the sole actor of the CCM. He uses the services (Refer Section

5.2.2 for full list of services and detailed descriptions of them) offered by the system

either to build a cyber collaborative environment for his work or to benefit from

collaborative environment established beforehand. All actions of the users are recorded

into storage server. We used MySQL [47] database server for the data storing purpose.

MySQL is a high performance database library with Java bindings as well as for

many other languages. It has a simple architecture and provides simple data access and

management. Subsequently, some of these recorded actions are converted into a task

format (Refer Section 4.6.1) by the WS-Tracker service later. The components of the

Asynchronous Collaboration and Content Management Architecture

84

GridTorrent Framework and communications taking place among them are shown in

Figure 5-1.

The CCM consists of two main modules: Collaboration Management Module and

Content Management Module. Figure 5-2 illustrates the subcomponents of them.

TheCCM interacts with the user and the database. In the following section, we clearly

explicate objects and services that are used and offered by the system. Then, we explain

the Collaboration and Content Management modules in details.

Figure 5-1 The interaction of Collaboration and Content Manager with
other entities of the GridTorrent Framework

Asynchronous Collaboration and Content Management Architecture

85

5.5.1 Objects of the System

We refer to any entity that is either a subject of or an object of a service provided

by the CCM. Table 5-2 lists the major objects, their brief descriptions, and the services

interacted with them.

The term ‘a user’ is frequently used in many systems, but not in our system, for

an entity that can be either a machine or a human who uses the system. When we refer

to a user, this term includes only a human user who interacts with the CCM and can be

either a collaborative team administrator/member, or content publisher/subscriber, or

all of them.

Figure 5-2 Anatomy of the Collaboration and Content Management
module

A Collaborative Team is a group of users who are usually geographically

dispersed and share common interest for particular contents germane to their work or

project. It is composed of collaborative team members.

Asynchronous Collaboration and Content Management Architecture

86

Table 5-2 Overview of objects used in the Collaboration and Content
Manager

Object Name Description Services
User a human who interacts with

the CCM
registration, forming a
team, disbanding a
team, joining a team
request, leaving a team
request,
searching/browsing
contents,
publishing/downloading
contents

Collaborative Team a group of users usually
geographically dispersed and
share common interest for
particular subject

informing team
members about newly
published contents

Collaborative Team
Administrator

a user initially builds a
collaborative team and
manages it

approving/rejecting
requests, managing
team

Collaborative Team
Member

a user works on a project
relevant to or depends on
other team members projects

searching, publishing
contents, downloading
contents

Request a demand for joining a
particular team

-

Content meta-info of any
computerized data that can be
a single file or a directory
structure desired to be shared
among users

-

Publisher a user who owns contents and
shares them

publishing contents

Subscriber a user interested in other
users’ contents

downloading a contents

 Collaborative Team Member is a user who works on a project that is relevant to

or depends on other team members projects. Therefore, a team member either publishes

contents for the utilization of other team members or subscribes to contents published

by the other team members in order to use them in his work. For example, in replication

use case, both replica master and replica slaves are both team members; however, the

Asynchronous Collaboration and Content Management Architecture

87

former is a collaborative team administrator and a publisher, yet the latter is just a

collaborative team member and a subscriber.

A Collaborative Team Administrator is a user who initially builds a

collaborative team and manages it. The management process involves approving or

rejecting requests of group enrollment. A collaborative team administrator is a

collaborative team member as well.

A Request is a demand for being a member of a particular team. It is submitted by

a user who desires to join a team related to his subject and approved or rejected by the

administrator of that team.

Content is a meta-info of any computerized data that can be a single file or a

directory structure which is desired to be shared among users interested in it. It can be

shared among all users without any restriction, the members of a particular

collaborative team, or preselected users. To keep track of data and locations, with the

file name, a file info hash created by a GTF client in order to distinguish files is

mapped to the physical location where that file is stored. It needs to be clarified that the

content object in the CCM is a mere meta-info and does not contain any actual data at

all.

A Publisher is a user who owns contents and shares his contents with others. A

Subscriber is a user who is interested in the contents of other users’ and highly likely

willing to download their contents.

5.5.2 Services of the System

Services are the actions that may change the status of objects of the CCM

directly or indirectly. Services are initiated by either a user or another service. The

Asynchronous Collaboration and Content Management Architecture

88

major services, their brief descriptions, and the doers and subjects of those services are

listed in Table 5-3.

Table 5-3 Summary of services used in the Collaboration and Content
Manager

Service Name Subject Object Description
Registration User User Permitting a user to

enroll the CCM
Forming a team Collaborative

Team
Administrator

Collaborative
Team

Permitting a user to build
a collaborative team

Disbanding a team Collaborative
Team
Administrator

Collaborative
Team

Permitting a user to
remove a collaborative
team

Joining a team
request

User Collaborative
Team

Enabling a user to make a
joining request for
desired a team

Leaving a team
request

Collaborative
Team Member

Collaborative
Team

Enabling a user to make a
leaving request for
desired a team

Approving a
request

Collaborative
Team
Administrator

User Allowing a team
administrator to approve
joining a team request

Rejecting a
request

Collaborative
Team
Administrator

User Allowing a team
administrator to refuse
joining a team request

Team
management

Collaborative
Team
Administrator

Collaborative
Team

Allowing a team
administrator to assign
access control rights to
team members

Publishing
contents

User /
Collaborative
Team Member

Content /
Collaborative
Team

Enabling a user to share
his contents

Downloading
contents

User /
Collaborative
Team Member

Content /
Collaborative
Team

Enabling a user to
download contents

Searching contents User /
Collaborative
Team Member

Content /
Collaborative
Team

Enabling a user to find
contents

Browsing contents User /
Collaborative
Team Member

Content /
Collaborative
Team

Enabling a user to find
contents

Asynchronous Collaboration and Content Management Architecture

89

Registration service permits a user to enroll the CCM to access the features

provided by the CCM. It is a service used only once at the outset. First and last name of

the user, username, password, institution, and telephone number are the required

information at the registration stage. It is the responsibility of the user to select his

username and password. However, when he selects his username, he needs to comply

with the rule that the selected username has to be unique in the CCM, since they are

used for identifying users.

Forming a team is a service used by a user, called as a collaborative team

administrator, to build a collaborative team. The name of a team must be unique,

similar to username.

Disbanding a team service is the opposite of the forming a team service. It

enables the team administrator to delete the team from the system. When a user desires

to join or leave a particular team, he uses joining and leaving a team requests services.

The administrator of the team, which the user wants to sing for or leave, either grants or

refuses these requests by using approving or rejecting a request services. In addition to

approving and rejecting a request services, the team administrator uses team

management services to manage the team members and to assign access rights for

them.

Publishing contents service is utilized by any users who desire to share their

content. Browsing and searching contents services are used to find a specific content.

Finally, downloading contents services are employed to start actual data transferring

process between the GTF clients.

Asynchronous Collaboration and Content Management Architecture

90

5.5.3 Collaboration Management Module

Collaboration Management Module offers services that enable the end users to

establish their collaborative environment by forming their teams and managing their

teams and members of their teams. Collaboration Management module is composed of

Collaborative Team Manager (CTM) and Collaborative Team Member Manger

(CTMM) subcomponents as illustrated in Figure 5-2.

The CTMM offers services (Refer Section 5.2.2) to the users to build or remove a

collaborative team, and provides services to a collaborative team administrator to

govern its members. The CTMM component allows the users to form their

collaborative team member list without forming a group. An owner of contents can

choose individual users by name either from a list of all known users or a self-

maintained collaborative team member list. This unit is quite helpful for a small

collaborative team which consists of very few people working on a small size project.

After building a collaborative team, the process of a collaborative team

membership is started either by the collaborative team owner or by the user who makes

a request for a desired group. In both cases, team membership is activated after

acceptance of both sides. During the joining a team process, the collaborative team

administrator can assign a new member either an admin role or a user role. Figure 5-3

displays the possible roles and their hierarchy, and rights available for a new team

member. After deciding the role of the new member, the permissions to perform

publish or browse contents operation is assigned to user role.

Following the team membership approval, the new member can publish or

browse contents. If the right of publishing contents is granted, the member can publish

Asynchronous Collaboration and Content Management Architecture

91

his contents for the usage of whole team members. When a new content is published

into the team, the system will generate a Download Request Task (DRT) (Refer Section

4.6.1.4) on behalf of a team member if that user authorizes auto-download option.

Auto-download option is a particularly practical feature in the case of certain

collaborative projects, in which automated data replication on different physical

locations is required.

Figure 5-3 Possible roles and rights in the Collaboration and Content
Management Module

Team members with browsing contents right can only download contents

published to team. This feature is again very beneficial for read-only replication models

such as the master-slave type. In this models slave replicas should always be identical

to the master replica.

Asynchronous Collaboration and Content Management Architecture

92

Contrary to the process of a team membership application, the resignation of a

team membership is a one-sided activity because it does not require endorsements of

both sides. Either the group owner or the user can revoke it.

5.5.4 Access Control Mechanism of CCM

To prevent unauthorized content access, we used the simplified and modified

version of traditional role-based access control system. In our system, three roles are

available for a user: ordinary user, collaborative team administrator, and collaborative

team member. Collaborative administrator grants admin or user role for a new member

with publish or browse access right as illustrated in Figure 5-3.

Table 5-4 Access levels offered by the Collaboration and Content
Manager

Name Description
Public level access Contents with the public level access are visible to every

user. They can be downloaded by any user without any
restriction.
All users have public access level rights.

User level access Contents with the user level access are available for only
users selected by the owner of contents.
Content owners grant this right to user whoever they
selected.

Collaborative team
level access

Contents with the collaborative team level access are visible
to every member of the team. Team members can download
them without any restriction.
Only Collaborative Team Administrators approve team
level access to users.

As listed in Table 5-4, three types of access level are supported; public level,

collaborative team level, and user level access. While public access level permits users

to make their contents available for all users, collaborative team access level permits

Asynchronous Collaboration and Content Management Architecture

93

users to share their contents with only members of that team. In user level access,

content is offered to usages of users who are selected by the content publisher. The

Publisher Manager takes the public level access as the default access level, unless the

owner of the content sets something different.

In order to avert unauthorized content access, user and the content must be on

the same access level. One user can have more than one access level at the same time.

Public level access is given to every user after a successful registration process. For

example, any user can browse, search, and download any contents with the public level

access. When a user is included in the collaborative team member list of another user,

or joins a collaborative team, he is granted for user and collaborative team level access

respectively.

5.5.5 Content Management Module

The Content Manager module allows users to share their files with selected

access control rights by providing services of publishing, downloading, browsing, and

searching for contents. These services are explained in Section 5.2.2. As it is shown in

Figure 5-2, the Content Manager module is comprised of Publisher and Subscriber

Manager subcomponents.

Publisher Manager Module empowers user to distribute their collaborative

contents among other user. Every content must be published with an access level right;

thus, the procedure of assigning an access level for every content file is an imperative

operation.

Asynchronous Collaboration and Content Management Architecture

94

Subscriber Manager Module offers content access services; for instance,

browsing contents and searching contents services. These services enable users to

acquire to a particular content easily according to access level of contents.

5.6 Summary

In this chapter, we explained the architecture of the Collaboration and Content

Manager component which provides a collaborative framework where users can create

their collaborative team, share their contents, or download contents offered by other

team members or other users by using the services provided by the CCM. Then, we

provided very detailed description of its components: Collaboration Manager and

Content Manager. We also discussed our access control system which restricts content

access to authorized users. In the next chapter, we are going to describe the third major

component of the GTF; WS-Tracker Service which assists in the communication taking

place between the GTF clients.

WS-Tracker Architecture

95

Chapter 6

WS-Tracker Architecture

6.1 Introduction

In this chapter, we describe the architecture of the WS-Tracker Service and the

motivations and goals behind it and argue its benefits. Moreover, we provide more

details about low level and architectural design decisions, as well as a thorough

description of key components and their implementation.

As it was explained in previous chapters, the components of the GridTorrent

Framework form a simple distrusted system. Each of its components is independent

from each other, performs dissimilar purposes and being, hence they operate on a

different physically located machines. However, there is still a need for a component

that assists in the communication taking place between the GTF peers, and conveys the

WS-Tracker Architecture

96

information that is generated by the users through the Collaboration and Content

Manager to their GTF peers.

In order to satisfy the need for a coordinator component in our system, we

introduced WS-Tracker Service, a modified version of BitTorrent tracker with many

added features. Notwithstanding some basic similarities, there are quite differences

between them in regard to the functionalities of WS-Tracker Service.

The tracker, in BitTorrent [86, 88], is a basic HTTP/HTTPS service that

responds to HTTP GET requests. The main advantage of it is to use HTTP protocol,

since HTTP is ubiquitous protocol. However, it is not suitable for an environment that

is very dynamic and requires complex services (explained in next sections) to

coordinate participating nodes, and communications taking place not just between the

GridTorrent Framework peers, but even between the users and their GridTorrent

Framework peers.

In BitTorrent, the communication happening between peers and tracker is

passive communication; in other words, the tracker only delivers a list of available

seeders and peers of a requested file, and collects statistics of uploading and

downloading processes from the peers.

File downloading process is the only required responsibility of a general

BitTorrent peer (Refer Chapter 4 for further details about comparison of GridTorrent

Framework peer and BitTorrent peer) and each downloading task is independent from

each other. After the initial communication, peer can continue its downloading process

without the help of its tracker. However, in GridTorrent Framework, a tracker plays a

maestro role between the Collaboration and Content Manager and the clients of the

WS-Tracker Architecture

97

GridTorrent Framework, and among the clients of the GridTorrent Framework.

Therefore, a GridTorrent peer needs a tracker not only to download a file but also to

receive its future tasks assigned by its owner.

6.2 Web Service

We overcame the shortcoming of a BitTorrent’s tracker, which is a simple web

application, with the help of Web Service technology that enables us to extend or add

complex services for GTF tracker. The World Wide Web Consortium (W3C) defines a

Web Service as following [128]:

A Web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface described in

a machine-processable format (specifically WSDL). Other systems interact with

the Web service in a manner prescribed by its description using SOAP

messages, typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards.

In other words, it standardizes the interface, operations provided by Web-based

applications, discovery of the operations, and the message format exchanged for

delivering and receiving service. This standardization is being accomplished by using

Extensible Markup Language (XML), defining Simple Object Access Protocol

(SOAP), Web Services Description Language (WSDL), and Universal Description,

Discovery and Integration (UDDI), and using mainly Hypertext Transfer Protocol

(HTTP), although supporting a variety of Internet protocols, such as Simple Mail

Transfer Protocol (SMTP) and Multipurpose Internet Mail Extension (MIME). While

XML is a general-purpose specification developed by the W3C and, in Web Service

WS-Tracker Architecture

98

context, used to tag the data, SOAP is an XML-based messaging protocol and

universally used to transfer data. WSDL is an XML-formatted language used to

describe the services available and data types of exchanging messages. UDDI,

sponsored by OASIS, is a Web-based distributed directory and used for Web Services

registering themselves and discover each other [129, 130].

 Because of the standardization, Web Services have many advantages but two of

them are the most significant of them and deserve to be mentioned: being (1) loosely

coupled and (2) platform independent.

Loose coupling hides the implementation logic from the callers and puts an end

to the overhead through making requirements and few assumptions about each end of

the communication by sticking to provided service contract, i.e. programmatic

interface, instead of the underlying implementation details. Because it is

implementation of Service-oriented architecture (SOA) [131], it possible to build more

complex services using collection of simple services.

Using open standards that includes XML, SOAP, WDSL, UDDI, and HTTP and

easier to implement allow any two Web-based applications communicate with each

other without regard to their running hardware platforms and operating systems or

programming languages. It is also major difference between Web Services and its

competitors of object-model-specific protocols such as the industry standard Common

Object Request Broker Architecture [132] (CORBA) or Microsoft’s Distributed

Component Object Model [133] (DCOM) or Remote Method Invocation [134] (RMI)

or Internet Inter-Orb Protocol [135], and gives Web Services a better chance of being

WS-Tracker Architecture

99

widely implemented. For example, an application written in Java and running on

Microsoft Windows OS can talk with one written in C++ and running on UNIX.

Some of Web Services specifications have been developed or some of them are

still under development to extend Web Services capabilities in order to meet the newly

emerged requirements. These specifications have come from the W3C or OASIS or a

coalition of vendors such as Sun Microsystems, IBM, Microsoft, BEA Systems, Oracle,

and Tibco. Though there are many specifications associated with web services, we only

provide a list of important ones [136] with short description here:

 WS-Security defines how to use XML encryption and Signature in SOAP

message in order to provide end-to-end security. It is released by OASIS.

 WS-Reliability is specified by OASIS to address reliable messaging

requirements that are critical to some Web Services applications. .

 WS-Reliable Messaging is, similar to WS-Reliability, addressing the

reliability issues in Web Service Context and subsequent of WS-Reliability.

It is produced by OASIS.

 WS-Addressing is developed by W3C and a specification of transport

neutral mechanism to enable Web Services to communicate just using

addressing information.

 WS-Resource Framework provides a set of operations to implement

stateful Web Services. It is developed by OASIS with the major contribution

of Globus Alliance and IBM.

 WS-Distributed Management is a standard for managing and monitoring

the status of other services. It is approved as an OASIS standard.

WS-Tracker Architecture

100

6.3 WS-Tracker Service

WS-Tracker service is at the hub of the GridTorrent Framework’s

communications taking place between the CCM and the peers of GTF, and between the

peers. In order to provide services promised, it offers a set of operations implemented

based on Web Service technology using Java and Axis 1.4.

WS-Tracker ServiceGTF Client

Share/download
contents

Ask task list/send
result of task

execution

Database

Store/retrieve data

Store/retrieve
data

User
Content &

Collaboration
Manager

Figure 6-1 The flow of information between a user and GTF Peer through
Content and Collaboration Manager and WS-Tracker service

As it is illustrated in Figure 6-1, the user commences the flow of information

between a user and his GTF Peer. The user inputs information regarding to shared or

downloaded content through the CCM using operations offered by it. For example, a

WS-Tracker Architecture

101

user makes one of his/her content available for public usage by using publishing

contents’ service of the CCM. Then, the CCM saves this transaction into a database

server accessible both the CCM and WS-Tracker Service. The CCM also retrieves

information from the database server to display the status and statistical information of

the user’s tasks.

WS-Tracker Service obtains information from the database server to deliver

task messages (Refer Section 4.6 for type of task messages and handling them) created

by the users to corresponding peers. In order to increase performance of the task

delivery, we use task cache. To maintain the task cache highly updated, in addition to

peer request based database access, we provide a periodical database access taking

places in a certain interval of time.

When a GTF peer requests its task lists, WS-Tracker Service first checks the

task cache to see whether any task is available for it. If there is no task in the task cache

for requesting peer, then it sends a query to database about available tasks. According

to the database server response, it updates its task cache and also returns a task list to

the corresponding peers.

After receiving task list, a GTF peer begins to process each task delivered in the

list. Some of these tasks require additional interaction with either WS-Tracker Service

or the other peers. When a task is successfully received or completed, an

acknowledgement message is generated and sent back to WS-Tracker Service in order

to notify to it.

WS-Tracker Service provides a substrate where the clients exchange

information about each other. The interaction between a GTF peer and another peer is

WS-Tracker Architecture

102

initiated after receiving content downloading task message from WS-Tracker Service.

If both peer is successfully authenticate themselves and have authorization to requested

content, real data transferring process has been commenced. Figure 6-2 shows

overview of this information flow between peers.

Figure 6-2 Message flow between GTF peers via WS-Tracker Service

6.3.1 Multiple Trackers

The WS-Trackers are passive components utilized to exchange task messages

between users and their GTCs. In this sense, they are just mediums that do not store any

important data not recorded in DB. In addition, all GTCs keep their internal state data

in order to maintain their consistency. Moreover, the GTCs preserve their existing

connections and they do not need to interact with WS-Trackers except for statistical

WS-Tracker Architecture

103

information update which is not essential. Therefore, in summary, the only vital issue

that WS-Trackers are responsible for is to provide a steady connection between users

and their GridTorrent Clients. To achieve this goal, each GTC is provided with multiple

addresses of WS-Trackers services. If the WS-Tracker service fails for any reason,

GTCs connected with it receive timeout exception when they send their statistical

information about their current upload and download status to it. In this case, a GTC

select another WS-Tracker service from provided tracker service list and upload

internal state to the new one if the current one fails.

6.3.2 Fault Tolerance

The failure of WS-Tracker can be categorized into single instance failure and

multiple instances failure. By single instance failure, we meant that there is only one

WS-Tracker Service functioning in the whole system and it fails. Unlike single instance

failure, there are more than two instances serving to peers in the system and at least one

of them successfully functions when the others fail. In the latter failure case, when the

all trackers fail, it becomes similar to single instance failure case. In both cases, we

presumed that the shared database is replicated in order to eliminate the issues that arise

when it fails for any reason. In the same way, all the transactions that have taken place

between the users and the CCM are recovered from the database server easily since

they are recorded to database server immediately.

The recovery process of multiple instances failure is relatively simple, since

there is still at least one WS-Tracker Service serving to the GTF peers in the event of

failure of all other trackers. An inconsistency between the running WS-Tracker Service

runtime task list and active GTF peers runtime task list can be regarded as one major

WS-Tracker Architecture

104

possible problem. However, this can be resolved straightforwardly since the state

information on WS-Tracker Service runtime memory is regularly committed to

database server. In addition to that, each peer sends an acknowledgement message back

to WS-Tracker Service after a successful task receiving or completion process. A GTF

peer provides its failure recovery mechanism by regularly saving its runtime task list

into a file and using .torrent metafile to resolve any inconsistencies taking place when a

downloading process is interrupted.

When a new task list arrives and there is a discrepancy between the peer’s list

and the received one, it just ignores the incoming one and sends its last

acknowledgements to WS-Tracker Service. Thus, available WS-Tracker Service can

detect failure effortlessly in a relative short amount of time and update its runtime task

cache either with the help of this acknowledgement mechanism or with the help of

periodic database access.

For the case of single instance failure, although transactions of the users are

stored into database server, the GTF peers cannot obtain their latest task list from the

WS-Tracker Service since it is down. Our solution to this case is to start a new WS-

Tracker Service and to provide its service address to the GTF peers with the help of

their owners.

The recovery process is similar to multiple instance failure case as the new

tracker pulls data from the database server and creates its runtime task cache. If any

inconsistencies emerge when the new tracker delivers task lists to the peers, they are

resolved in a similar way explained in the recovery process of multiple instances failure

case.

WS-Tracker Architecture

105

6.3.3 Security

Apart from requesting unique GridTorrent Framework ID of peers in order to

deliver correct task list to inquiring peer, there is no security mechanism implemented

in WS-Tracker Service. The main motivations behind our decision in favor of insecure

tracker are:

 The performance issues

 the metadata characteristics of data delivered by WS-Tracker Service

The performance issues arise as the direct result of encryption and decryption of

a large of number of short messages in a short period of time. Apart from the UGTID of

peers, IP addresses of peers and, and .torrent metadata file, data from WS-Tracker

service contain no actual content data. As a result of this, even if they are captured by

an unauthorized user, they would be a piece of useless knowledge for him/her.

However, due to its distributed system characteristic, it is still susceptible to several

security threats such as but not limited to:

 Distributed Denial of service attacks (DDoS)

 Unauthorized users accessing resource

 Man in the middle attack that impersonates an entity

 Malicious users modifying messages (such as when a messages passes

over insecure intermediaries)

There is no quick and easy way to secure against a DDoS. A simple and best

solution is to secure computers from being hijacked [128].

WS-Tracker Architecture

106

In order to receive their task lists from WS-Tracker Service, the peers must

provide their UGTID generated randomly to WS-Tracker Service. Requiring their

UGTIDs as an identity verification tool renders peers’ task lists acquisition very

difficult for an unauthorized users. Even if he/she takes possession of the task list, that

list is still worthless since it does not contain any actual data or security information.

Furthermore, X.509 proxy certificates are used as proof of identity before

starting actual data transfer process. Thus, asking proxy certificate at each peer

eliminates any attacks result of false identity. Moreover, peers verify the hash code of

every chunk of downloaded data with the one provided by its .torrent before writing it

to file system. However, that torrent metafile can be used to validation process only if it

is authentic file. In other words, it is obtained from the genuine WS-Tracker Service.

6.4 Summary

In this chapter, we explained the architecture of the WS-Tracker Service that is

a Web Service and plays a maestro role between the Collaboration and Content

Manager and the clients of the GridTorrent Framework, and among the peers of the

GridTorrent Framework. Then, we provided our motivations and design decisions

behind it. We also described the information flow between the users and their

corresponding GTF peers, and between GTF peers. Fault tolerance and recovery, and

security are the main issues we discussed for the rest of this chapter. In the next

chapter, we are going to describe security issues in the GridTorrent Framework and

how we addressed them.

Security Modules and Issues of GridTorrent Framework

107

Chapter 7

Security Modules and Issues of

GridTorrent Framework

7.1 Introduction

The data shared between standard peer-to-peer community and scientific

community displays different characteristics. The first reason is the nature of data.

Whereas the data shared among standard peer-to-peer community is generally obtained

from other people’s works, like music or movie files, every scientific data is generated

in scientific community. In the former, users usually do no attach importance to data

integrity or authenticity. For instance, it is not very important that same movie file has

different versions as long as it is playable, because people use it for entertainment and

Security Modules and Issues of GridTorrent Framework

108

keep it private and do not built anything new on top it. On the other hand, every bit of

information is important in the latter case. For example, all information integrity and

authenticity in a numerical test result of a scientific experiment is of great importance

since new theories, experiment, or technologies are established on it. In addition,

despite the fact that the standard peer-to-peer community’s data can be shared either

modified or unmodified without getting the permission of the content owner –in fact

there is no rule about this, the scientific data is more sensitive and requires more

complicated sharing rules.

The second reason is base on the characteristics of users. In standard peer-to-

peer community, there is no competition between users. In other words, there is one

type of user, a passive user, and any user can access any data as long as he or she gets

the torrent file. However, in the scientific community, due to expertise or research

agenda and competition between institutions, only authorized users are permitted to

access to pre-determined data sets with some access rights. While the passive user type

in BitTorrent, the users in scientific community area are usually very active and some

of them cooperate on some files as a group. This creates diverse users’ and groups’

profile in scientific community.

The third reason is stemmed from the importance of data and its access. As the

current design of BitTorrent itself does not provide a search facility to find files by

name or by other keywords; a user must find the initial torrent file by other means, such

as a web search. On the other hand, searching, finding, and accessing to desired data

are of paramount importance in scientific community, hence a reliable search service

must be offered to scientific users. Therefore, even though there is a need for

Security Modules and Issues of GridTorrent Framework

109

integration of BitTorrent and content and collaboration framework with a search

facility to use BitTorrent in scientific community. As a result, a mechanism involves

regulation for content access with pre-defined rights and security is vital for a data

sharing system in scientific community.

To build a security infrastructure for GridTorrent Framework, we adopt the

most common scientific community standards –the Grid Security Infrastructure (GSI)

[103], to allow our data collaborative and sharing framework to be available to a larger

scientific community, and our services to be compatible with others.

In this section, first, we present an overview of the GSI. Then, we explain the

GTFSI and how we utilized the GSI in the GTF. We also elucidate our approach to

build the GridTorrent framework security infrastructure (GTFSI) and give detailed

descriptions of the services developed as part of this infrastructure.

7.2 The Grid Security Infrastructure (GSI)

7.2.1 History of the GSI

Security has been one of the widely studied fields in Grid community. Hence,

the GSI has a rich history to meet new emerging requirements and cooperate with the

arising technologies. While mainly message protection and authentication are supported

in version 1 in 1998, X.509 proxy certificates and Community Authorization Service

(CAS) [137] are introduced in version 2 in 2002. The CAS from Globus team functions

as a trusted third party server which is responsible for enforcement of access policies

within distributed virtual communities which govern access to a community’s resources

The CAS serves maintain information about Certificate Authorities, users, servers and

Security Modules and Issues of GridTorrent Framework

110

resources with access right lists granted to access resources to each users. When a user

issues a request to the CAS server in user’s community, the CAS server provides a

proxy credential with his or her capabilities to the user. Upon receiving the proxy

credential, the user access the resources using his or her CAS credential.

The Grid technology converged with the emerging Web service technology in

release 3, and that convergence gave birth to Open Grid Services Architecture (OGSA)

[3]. Finally, in the latest version –the 4 release, Web Services security specifications are

implemented. Extensible Access Control Markup Language (XACML) and Security

Assertion Markup Language (SAML) are the two important authorization related

standards [138] supported by current version of GSI [103, 139]. Of course, there are

several as well authorization systems supported by Grid Computing, such as Kerberos

[140], Akenti [141], PERMIS [124], Shibboleth [142] (GridShib [143, 144]), VOMS

[145].

The Shibboleth System developed by Internet2 outlines a proposed architecture

to address web single sign-on across or within organization boundaries. The

Shibboleth software implements SAML a product of the OASIS Security Services

Technical Committee. GridShib is the project which integrates the Shibboleth SAML-

based framework and Globus Toolkit’s PKI-based security infrastructure to provide

attribute-based authorization for distributed scientific communities. With the aid of

GridShib, a Globus Toolkit Service Provider can securely request user attributes from a

Shibboleth Identity Provider. To enable Grid Computing to support both Web Service

security standards and other authorization systems, Multipolicy Authorization

framework has been introduced recently [139].

Security Modules and Issues of GridTorrent Framework

111

7.2.2 Overview of the Grid Security Infrastructure

As Grid computing is concerned with the use of dynamic, diverse resources in

distributed “virtual organizations” [145], identifying the users or services

(authentication), providing secure communications, and who is permitted to perform

what actions (authorization) are the primary issues and challenges in the GSI according

to [146]. The GSI development team summarized the above concerns as three prime

motivations behind the GSI:

1. The necessity of secure communication between the elements of Grid community.

2. The necessity of supporting security across organizational boundaries to eliminate a

centrally-managed security system.

3. The necessity of supporting “single sign-on” for the Grid’s users.

To realize the above requirements, Public Key cryptography and the certificate,

namely standard X.509, are used as central concept in GSI authentication credentials

[137]. There are two type of certificates: (1) end entity certificates (EEC); (2) proxy

certificates. Whereas the former is used to identify persistent entities such as users and

servers, the latter is used to support the temporary delegation of privileges to other

entities [146]. Briefly, a GSI user or server has to obtain a public-private key pair and

an X.509 certificate from a trusted entity called a Certificate Authority (CA). As a

result, every service, server and user on the Grid is recognized by way of a certificate.

Inasmuch as the GSI merged with Web Services security standards in the 4

release above-mentioned in section 7.1.1.1 and has legacy systems, it supports both WS

and pre-WS authentication and authorization capabilities [146].

Security Modules and Issues of GridTorrent Framework

112

7.2.3 GT4 WS Security

GSI offers two levels of security: (1) message- level security; (2) transport-level

security. In addition to that, as depicted in Figure 7-1, GSI supports two message-level

protection protocols to realize the different purposes: (a) WS-Security-compliant

message-level security with X.509 credentials; (b) with usernames/passwords.

Figure 7-1 GT4 security protocols from [103]

Message-level security provides both protocols with the purpose of complying

with the WS-Security, the WS-SecureConversation specification, and the WS-

Interoperability Basic Security Profile. However, there are differences between these

protocols. Whereas GSI SecureConverversation delivers the full security constraints,

GSI Secure Message supports WS-I Base Security Profile, yet it is insecure. Even

though, the latter has relatively better performance than the former does, there is a poor

performance issue when their performances are compared to that of transport-level

schema. Partly an implementation issue and partly a specification issues are the leading

Security Modules and Issues of GridTorrent Framework

113

causes of this poor performance of message-level security [103]. As a result, GT4 uses

transport-level security by default due to its best performance.

The last schema, transport-level security, has one security schema providing

authentication via TLS with support for X.509 proxy certificates [103]. The differences

between these there protocols are highlighted in Table 7-1.

Table 7-1 Comparison of transport-level and message-level security from
[102]

 GSI SECURE
CONVERSATION

GSI SECURE
MESSAGE

GSI
TRANSPORT

Technology WS-
SecureConversation

WS-Security TLS

Privacy
(Encrypted)

YES YES YES

Integrity (Signed) YES YES YES

Anonymous
authentication

YES NO YES

Delegation YES NO NO

Performance GOOD (if sending
many messages)

GOOD (if sending
few messages)

BEST

7.2.4 GT4 Pre-WS Security

The pre-Web Service components use the same authentication mechanisms as

the Web Services components described here, but implement application-specific

protocols and message protection schemes that are beyond the scope of this document

[103].

Security Modules and Issues of GridTorrent Framework

114

7.3 The GridTorrent Framework Security Infrastructure

Taking into account the sensitivity of data generated at scientific communities,

security issues are of great importance in GTF. We need to address several security

issues, some of which are pertinent to content, and some of which are pertinent to

peers. Firstly, authenticity of shared contents and verification of their authenticity need

to be resolved because the genuineness of data is unessential in typical peer-to-peer file

sharing systems. Secondly, protection of the content has to be guaranteed. Thirdly,

identification of the participated peers has to be resolved. Finally, authorization of the

participated GTF peers for a specific shared content must be verified in order to avert

accesses of unauthorized peers as almost all content in peer-to-peer file sharing

networks violates copyright; thus, users always prefer to remain anonymous when they

access to any content in the peer-to-peer network.

We addressed these security issues in three places of GTF: (1) at Collaboration

and Content Manager (CCM); (2) between WS-Tracker and the GTF Peer; (3) among

GTF Peers. All possible interactions requiring security measures are displayed in

Error! Reference source not found.. In order to fully clarify what type of the security

services are needed at which interactions, we numbered all interactions that are

required to fulfill a complete cycle of a content publishing and downloading from one

to nine. We follow the time sequence of processes when we numbered them and used

apostrophe to show the concurrent interactions. For example, a process that is

numbered as 3 is taken place

Security Modules and Issues of GridTorrent Framework

115

Figure 7-2 All possible interaction among components of GTF require
security services.

Security Modules and Issues of GridTorrent Framework

116

before all processes labeled greater than 3 and after all processes labeled smaller than 3.

The processes tagged as 3 and 3’ indicate that they are independent of each other and

may occur concurrently. In the next sections, we explain them one by one.

Both a human user and a computer having been considered as an active system

user, we used the rules of etiquette or social protocols and information security so as to

perform security requirements.

A human user has direct involvement in the first stage and indirect involvement

in the second stage. The possible security problems at this stage that may emerge are

spurious content announcement or false meta-file generation. Content generation takes

place at stage one and is performed by a human user. It is assumed that every user

interacts with each other or GTF according to the rules of academic and social etiquette

as GTF is design mainly for scientific communities with the collaboration features. In

other words, when the content is published by a user, it is presupposed that either it is

consistent with its announcement, or other users have some mechanism to verify its

authenticity. Although the GTF Client software is responsible for generating meta-file

(.torrent file) of a shared content at stage two, its correctness depends on correctness of

content. In addition, it is possible to create false meta-file since the owner has complete

access to it to do that. As a result, the rules of etiquette were used to ensure security at

stage one and two.

7.3.1 Security at Collaboration and Content Manager (CCM)

After a successful registration process, users may publish or download contents

at step 3 and 3’ by interacting with CCM. Possible security threats at these steps may

be false identity and unauthorized access of information (Refer Section 5.5). Similar to

Security Modules and Issues of GridTorrent Framework

117

in stage one and two, the rules of academic and social etiquette were used in step 3 and

3’ to address those security threats. Or to put it another way, identity information

declared by users are assumed truthful information since users are being members of

respected institutions. Moreover, there should be some other communication

mechanisms, such as email and telephone number, to verify users’ proclaimed

information about their identities in order to eliminate possible false identity cases.

Figure 7-3 Establishing security credentials at Collaboration and Content
Manager Server.

Besides access control mechanism in CCM (Section 5.5.4), the information

provided by CCM has restricted access in order to prevent unauthorized access; that is

Security Modules and Issues of GridTorrent Framework

118

to say, it can only be viewed by authorized people on account of the implemented

secure login mechanism.

In CCM, similar to many computer operating systems, a user authenticates

himself by entering a user login id and a secret password known solely him and the

system. In addition to them, to relate the user and his GTF Client machine and to

identify each GTF Client during the data sharing and communication processes, a

unique ID is essential for each of GTF Clients and required. Hence, we provide a

mechanism in GTF to generate a unique Grid Torrent ID (UGTID). Following UGTID

creation, the GTF Client stores it into an ID file for future utilization. By retrieving it

from the ID file, the user registers this UGTID with the above-required information into

CCM as in presented in Figure 7-3.

We keep the security credentials of the user in database and they are never

displayed to public or system coaches in any way. The users are responsible to

remember the passwords. On the other hand, CCM administrators may assign new

passwords, or login ids, to users. After that, user himself can change the password but

not the login id. Login id is the unique set of the characters identifying user in the

system. This approach is very compatible with UNIX user authentication.

Another requirement is providing secure communication medium between the

user and CCM. Instead of implementing an encrypted data transfer protocol as our own,

we used a completely proven TLS (ref) technology to meet that requirement.

The interactions between users and CCM are recorded into a database server

through the communication at step 4 taking place between CCM and database server

Security Modules and Issues of GridTorrent Framework

119

via JDBC connections. It is protected with username and password level access

authorization.

7.3.2 Security at WS-Tracker Service

WS-Tracker service is at the hub of the GridTorrent Framework’s

communications taking place between the CCM and the peers of GTF, and between the

peers. As a consequence, several security issues for communications taking place at

step 5, 6 and 6’ in the figure must be taken into consideration. Authentication,

authorization and providing secure communications between the entities are the issues

that we must resolve.

A username/password level access authorization is used between WS-Tracker

Service and database server at step 5. This type of access is secure enough at our

prototype mode. However, adding secure communication layer is an unchallenging task

since many newer versions of database servers supports encrypted (secure) connections

between database clients and their servers using SSL protocol.

The communications taking place at steps 6 and 6’ are between GTF clients and

WS-Tracker service. Authentication and authorization are the main security concerns

for those steps. Requesting unique GridTorrent Framework ID of peer is the security

mechanism that is deployed for the purpose of both identifying inquiring peer

(authentication) and delivering correct task list (authorization) to it. At our prototype,

no secure communication is provided between GTF clients and WS-Tracker service

due to performance issues and the characteristics of the meta-data delivered by WS-

Tracker service (Refer 6.3.3).

Security Modules and Issues of GridTorrent Framework

120

7.3.3 Security between GTF Clients

A GTF client interacts with other GTF clients and WS-Tracker service. Similar

to security issues at WS-Tracker Service, identifying GTF clients (authentication),

deciding who is permitted to download/upload which content with what actions

(authorization), and providing secure communications between the entities are the

primary issues and challenges that we must face.

Handling the security issues between a GTF client and the WS-Tracker service

was explained in previous section.

 To address the above-mentioned security issues, we used the GSI WS-Security

schema between the GTF Clients. Accordingly, a user needs to obtain both public-

private key pair, and X.509 certificate. Nowadays because of availability of myriad

software tools to generate public-private key pair, it is an easy process. As a result, it is

user’s responsibility to generate their public-private key and initiate the X.509

certification request process as shown in Figure 7-4. Upon user’s X.509 certification

arrival, it satisfies all the preconditions for secure communications taking place among

the GTC Clients and WS-Tracker. Protection of those credentials is user’s

responsibility as well.

As it is illustrated in Figure 7-2, following the step 6 or 6’, the downloading

GTF client (Computer B) asks for and receives the metadata file (.torrent file) of actual

content since its owner scheduled that task at step 3 or 3’. Afterwards, it starts

establishing connections with other GTF clients whose address information is acquired

from the WS-Tracker. At step 8, certificate authentication is performed via

certification. Due to security reasons, using a temporary MyProxy [108] certificate

Security Modules and Issues of GridTorrent Framework

121

generated from permanent GSI certificate is more preferable method in Grid

community; hence, we adopted the same method. In short, basic steps of certificate

authentication can be explicated in the following way:

 Computer B sends MyProxy certificate to Computer A.

 Computer A uses the CA certificate in order to check that the Computer B’s

certification is valid.

 Computer A uses the Computer B’s MyProxy certificate in order to check

from its ACL file whether content access is allowed or not.

Figure 7-4 Security Credentials obtaining process between GTF and GSI
components.

If the Computer B has content download access, after authorization and

authentication processes, Computer A allows Computer B to start actual data

transferring process occurring at step 9. Finally, all downloaded actual data segments

Security Modules and Issues of GridTorrent Framework

122

are coalesced at step 9’ after downloading all pieces successfully (Refer Section 4.5).

We also summarized the major security concepts used in the GTF in Table 7-2.

Table 7-2 Summary of security issues between GTF components

Security Issues User The CCM The GT Client The GT Client

Authentication User uses username and

password are to access the

CCM.

Credential keys (MyProxy certificate)

Authorization Content owner decides

who is authorized to what

It enforces the authorization settings

provided by owner through the CCM

and the WS-Tracker service

Message

Integrity

SSL/TSL used during the

communication

Content data transferred without

encryption

7.4 Dealing with Various Attack Scenarios

 In this section we explain the various attack scenarios that we try to cope with.

As considering cryptographic attacks out of our research, we do not address it.

7.4.1 Man-in-the-middle Attacks

In Man-in-the-middle (MITM) attacks, an attacker intercepts and replaces

public keys of two communication parties with its own public key, which enables the

attacker to decrypt communications using his or her private key. The initial key

exchanges between the GridTorrent Clients (GTCs) are vulnerable to this kind of

Security Modules and Issues of GridTorrent Framework

123

attack. We address this by requiring that all initial communications with between the

GTCs be over SSL, which eliminates MITM attacks. MITM attacks are not a problem

for content sharing, since their credentials have already been exchanged over SSL and

content data can be encrypted and signed if it is necessary.

7.4.2 Replay Attacks

Replay attacks involve the attacker storing network packets and resending them at a

later time. SSL/TLS defeats this during initial communications between the GTCs.

Since each data chunk has its own SHA-1 hash code in its .torrent metafile, the

downloader can easily verify the incoming data integrity. If it is compromised, the GTC

just ignores it. Furthermore, if necessary, both parties can send the content data signed

with their credentials.

7.4.3 Denial of Service Attacks

In this type of attacks, the attacker may try to overload the system resources

(CPU and network cycles) by generating a large number of spurious content data

packet that are processed by the system. Since each peer needs to authenticate before

the actual data transmission, unauthorized entities would be rejected at GTCs that

receive them. The WS-Tracker service may be vulnerable to multiple bogus requests

originating from a malicious entity. This particular vulnerability may be addressed in

the implementation by rejecting socket connections from IP addresses that have made

multiple bogus attempts. By their nature, distributed systems generally tend to be less

susceptible to denial of service attacks.

Security Modules and Issues of GridTorrent Framework

124

7.4.4 Non-Repudiation

Non-repudiation is more of a system abuse than an attack. It can be taken place

in two ways. In the first one, a user may claim his or her username and password

hacked and abused by an attacker . The attacker is only able to change the user settings

in the CCM which is mere metadata and does not contain any useful content data. This

is defeated by SSL and mutual authentication in the transport layer during the

communication between the user and the CCM. If the user’s CCM account is stolen by

his or her mistake, then it becomes a legitimately stolen username/password and the

CCM system admin provides a new username/password to the user. Other abuse is that

the user publishes his/her malicious content through the CCM, and informs or allows

other people to download his/her content using facilities provided by the CCM and then

denies it. Again, the useful content data transferred only from users’ machine, so it is

impossible for an outside attacker to know what resides on users’ machine unless he or

she hacks them as well. Thus, the security of the users’ machines is the users

responsibility and out of our research.

7.5 Summary

 In this chapter, we explained the security infrastructure used in the GridTorrent

framework and motivations and design decisions behind it. Then, we presented a very

detailed description of interactions taking place between all components. Next, we

mentioned what type of security issues arises at which step and how we addressed

them.

Performance Evaluation

125

Chapter 8

Performance Evaluation

8.1 Introduction

It is a well-known fact that TCP’s window based congestion control mechanism

prevents [147] full-scale usage of high bandwidth-delay product. Hence, transferring

large data set across high-performance networks is suffering from limitations of the

current TCP implementation [147, 148] as it prevents the use of maximum bandwidth.

Thus, throughput efficiency is one of the major motivations of GridTorrent, which is

supposed to utilize the high bandwidth efficiently, that is, utilize as much bandwidth as

possible. GridTorrent accomplishes this goal by aggregating throughput of all

concurrent incoming TCP streams from distinct sources. As a matter of fact, using

parallel TCP implementations [30, 148] is one common solution utilized by numerous

bulk data transfer protocols in order to boost network throughput efficiency at the

application level.

Performance Evaluation

126

Although GridTorrent and parallel TCP have built on different architecture

paradigm peer-to-peer and client/server respectively, they share common goal: better

bandwidth utilization. However, unlike parallel TCP model, GridTorrent offers, due to

its peer-to-peer architecture, other great features such utilizing idle network,

computational and storage resources. In other words, in addition to extra features of

GridTorrent, if GridTorrent display better or same performance than/as parallel TCP,

there would be strong evidence for using GridTorrent for high-performance bulk data

transfer in scientific community. Therefore, it is of great importance to compare

GridTorrent performance results with that of parallel TCP. In the next section, we are

going to present briefly the architecture of our Java-based implemented PTCP [149,

150] data transfer mechanism.

For the sake of fairness, that is, to provide same testing environment for both

GridTorrent and PTCP, we used version of GridTorrent without security module, as

security component has to send and receive several packets in order to perform

handshake, authorization and authentication before starting the actual data transfer

process. That overhead could have an adverse impact on actual data transfer

performance.

In this chapter, we will investigate and discuss how well our GridTorrent

Framework’s data transfer mechanism architecture is performing. To observe influence

of the underlying networks over its performances, we have set three scenarios and

conducted their tests in LAN and WAN type of computer networks. Table 8-1 shows

technical features of machines used in different locations.

Performance Evaluation

127

Table 8-1 Server and client machines’ descriptions and their locations

Name Specifications Network Institution Location
A Intel(R) Quad-Core

Xeon(TM) 4x2.33GHz
CPU with 8GB of RAM on
Red Hat Enterprise Linux
4.0

Broadcom
NetXtreme II
BCM5708 1000
Base-T Ethernet

Indiana
University

Bloomington,
IN

B Sun Fire V880 8x1.2GHz
UltraSPARC III processors
with 16GB of RAM on
Solaris 9. It has 6x72GB
10K rpm internal HD

Gigabit
Ethernet and
10/100-BaseT
Ethernet

Indiana
University

Indianapolis,
IN

C Dual Pentium III 731MHz
CPU with 512MB of RAM
on GNU/Linux 2.6.20-
1.2316.fc5

Gigabit
Ethernet and
10/100-BaseT
Ethernet

Florida
State
University

Tallahassee,
FL

In each scenario, to compare the performances of PTCP and GridTorrent, we

used both PTCP and GridTorrent test cases. We chose 300 MB for file size because the

study [151] has shown that only more than 5% are larger than 1 GB and the mean file

size generated in scientific computation community is larger than 300MB.

To measure the practical maximum available bandwidth capacity of the

underlying network, we used Iperf, a tool to measure maximum TCP bandwidth,

allowing the tuning of various parameters and UDP characteristics. Iperf reports

bandwidth, delay jitter, datagram loss. To assess the maximum TCP bandwidth, we

tried several TCP window size along with the parallel stream number. In LAN and

WAN tests, TCP window size was set to maximum value allowed by the underlying

operating system. Note that since the operating systems are not same on test machines,

TCP window size used for LAN and WAN are not the same.

Performance Evaluation

128

8.2 PTCP Architecture

A Parallel TCP stream consists of three basic steps; splitting of data into sub

packets at the sender side, sending these sub packets over the network by using

multiple streams in parallel, and coalescing of received sub packets at the receiver side.

Using multiple parallel TCP streams gives high throughput by aggregating each socket

bandwidth, although the default socket buffer size is not set to value of the bandwidth-

delay product.

Figure 8-1 A parallel TCP socket architecture

Figure 8-1 depicts the architecture of the Java-based PTCP framework.

PTCPSocket derived from Java.net.Socket can handle multiple sockets’ input and

output streams. It is comprised of packet splitter, packet merger, senders, receivers, and

TCP sockets, and has two type of channels; communication and data channels. All

Performance Evaluation

129

control information and negotiations are sent over the communication channel which

stays open till the end of entire data transfer, and actual data are sent over the data

channels. For instance, the decision of how many parallel streams are used is

determined by the sender and is communicated with the receiver before initiating the

actual data transfer through the communication channel.

After the setting the number of parallel streams, the packet splitter divides user’s

data into smaller sub packets. These sub packets are then passed on by the senders to

the receivers while writing out these packets into data channels utilizing TCP sockets.

The number of senders and receivers has to be same as the number of parallel streams.

Receivers read packets from the data channels and pass them to the upper layer packet

merger at the receiver’s side. The Packet Merger merges smaller sub packets into one

packet. It combines the incoming packets by checking their packet number assigned by

the packet splitter. There is no need to check data integrity at the packet merger layer

again, since TCP uses a checksum computed over the whole packet to verify that the

protocol header and the data in each received packet have not been corrupted.

8.3 LAN Test

It was performed between two Indiana University’s machines nearly 50 miles

apart. Theoretical available bandwidth capacity is the maximum data transfer rate

which the underlying network interface card permits. Measured available bandwidth

capacity is assessed by using Iperf with the following parameters.

Theoretical Available Bandwidth: 1000 Mbps

Measured Available Bandwidth: 857 Mbps

Server side: Iperf -s -w 256k

Performance Evaluation

130

Client side: Iperf -c <hostname> -w 512k -P 50

8.3.1 Scenario I: Testbed

The purpose of this scenario is to evaluate the performances of PTCP and

GridTorrent in local area network. Therefore, both server and client machines reside on

Indiana University (IU) computer network and they are located nearly 50 miles away

from each other. For the performance test of PTCP, we used one client and one server.

The number of parallel TCP streams between server and client has been increased from

one to sixteen in increment of one stream in each step. Figure 8-2 demonstrates the

connections diagram of PTCP test case.

Server (A)Client (B)

Internet

PTCP Socket

Client (B):Machine B is used as a Client

Server (A): Machine A is used as a Server

Figure 8-2 Client and server configuration for PTCP test case. Server,
machine A, is located at Bloomington, IN, whereas client, machine B, is
at Indianapolis, IN.

The connections topology between GTF client and seeders are displayed in

Figure 8-3. Similar to PTCP test case, both seeders and client are on IU LAN. In

Performance Evaluation

131

GridTorrent test case, unlike PTCP test case, one typical Java socket has been used

between each seeder and the peer; however, the number of seeders is increased during

the testing. Test has been initiated into one seeder and the number of seeders was

increased by one in each step, up to sixteen.

Figure 8-3 GridTorrent test case configuration for LAN test. Unlike PTCP
test case configuration, regular single Java sockets are used for data
transfer in GridTorrent test case. However, server and client’s
configuration and location is same as that of PTCP test case.

Performance Evaluation

132

8.3.2 Scenario I: LAN Test Result

Table 8-2 shows average transmission rates between client/peer and

servers/sources in IU LAN. These numbers were obtained by transferring files of 300

MB. In LAN test, there is no significant improvement in bandwidth usage while using

multiple parallel streams [149, 150] because of today's very fast LAN connection.

Furthermore, transmission time is smaller than overhead time in LAN; thus, any

overhead process significant impact on data transmission rate, since the experimental

data transfer (80-100 Mbps) rate is much lower the theoretical (1000Mbps) and the

Table 8-2 Performance characteristics of PTCP and GridTorrent with
various parallel streams or sources on LAN

Streams
or

Sources

Mean Standard Deviation Standard Error

PTCP GridTorrent PTCP GridTorrent PTCP GridTorrent

1 90.24 80.53 8.07 9.10 2.55 2.88
2 97.61 81.43 1.28 11.97 0.41 3.79
3 77.13 88.34 9.48 7.94 3.00 2.51
4 79.18 85.95 6.45 6.90 2.04 2.18
5 80.44 79.53 11.18 12.93 3.54 4.09
6 94.81 86.26 4.11 8.05 1.30 2.55
7 84.60 86.59 10.01 6.98 3.17 2.21
8 78.54 83.51 9.69 8.97 3.07 2.84
9 85.22 75.27 8.32 10.07 2.63 3.19
10 90.60 84.01 5.41 9.46 1.71 2.99
11 84.30 87.27 8.81 9.22 2.79 2.91
12 75.14 84.47 10.06 9.47 3.18 3.00
13 76.71 90.81 10.15 7.92 3.21 2.51
14 76.27 86.49 12.37 7.96 3.91 2.52
15 86.90 84.73 7.51 9.87 2.38 3.12
16 74.94 80.06 13.22 8.68 4.18 2.74

Performance Evaluation

133

measured data transfer rate (857Mbps). As it is seen from Figure 8-4, the deterioration

does not have identifiable pattern when the number of parallel streams is increased. The

network instability, also, might cause that random fluctuation.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 2 4 6 8 10 12 14 16

Number of Streams/Sources

T
hr

ou
gh

pu
t (

M
bp

s)

PTCP GTorrent

Figure 8-4 Achieved average data transfer rate of PTCP and GridTorrent
with various parallel flows or sources on LAN type computer network (IU-
IU settings).

8.4 Continental WAN Test

In this test, to evaluate the performance of GridTorrent and PTCP on wide area

network, client/peer machine was located at Indiana University at Bloomington and

servers/seeders were situated at Florida State University at Tallahassee, and two

scenarios were tested.

Theoretical Available Bandwidth: 1000 Mbps

Performance Evaluation

134

Measured Available Bandwidth: 30.2 Mbps

Instead of 512kB buffer size used in LAN test; we set TCP window buffer size

to 256kB because of underlying network characteristic. We used Iperf with the

following options to measure the maximum available bandwidth capacity of the

underlying network,

For server side: Iperf -s -w 256k

For client side: Iperf -c <hostname> -w 256k -P 50

8.4.1 Scenario II: GridTorrent Framework Client with One Socket

The procedures used in this scenario are very similar to scenario I, except the

location of servers/seeders and client/peer machines. Similarly, a pair of client and

Figure 8-5 Client and server layout for PTCP test case. Parallel TCP
streams were used for data transfer. Server is located at Bloomington, IN,
whereas client is at Tallahassee, FL.

Performance Evaluation

135

server has been used for PTCP performance test, and the number of parallel TCP

stream was increased from one to sixteen streams in increment of one stream. Figure

8-5 illustrates the connections diagram of PTCP test case. The test configuration of

GridTorrent in this scenario, similar to PTCP, is same as that of GridTorrent in the

scenario I as depicted in Figure 8-6.

Figure 8-6 GridTorrent test case topology for wide area network test.
Unlike PTCP test case configuration, regular Java sockets are used for
data transfer in GridTorrent test case. However, server and client’s
configuration and location is same as that of PTCP test case.

Performance Evaluation

136

8.4.2 Scenario II: Test Result

The gains in terms of accomplished data transmission rate are substantial, when

the multiple parallel streams used in long-distance to transfer data. Test results were

agreed with the above premise Table 8-3 lists the achieved average data transmission

rate of PTCP and GridTorrent, as well as standard error and standard deviation. As seen

in Figure 8-7, bandwidth usage is significantly improved in both GTF and PTCP.

PTCP’s bandwidth utilization rate has risen steadily until fifteen streams. It has its peak

value of 118 Mbps. Just after the fifteenth stream, its data transfer rate starts falling.

Table 8-3 Performance characteristics of PTCP and GridTorrent with
various parallel streams or sources on WAN. In this scenario, single
regular Java socket is used between a GridTorrent peer and sources’
connections.

Streams
or

Sources

Mean Standard Deviation Standard Error

PTCP GridTorrent PTCP GridTorrent PTCP GridTorrent
1 10.57 13.58 0.24 0.63 0.07 0.20
2 19.87 26.29 1.08 1.54 0.34 0.49
3 25.19 37.34 1.09 1.91 0.34 0.60
4 30.94 49.08 1.50 2.45 0.48 0.77
5 51.93 53.27 2.25 2.98 0.71 0.94
6 62.07 64.59 3.60 2.09 1.14 0.66
7 71.66 73.55 3.77 3.60 1.19 1.14
8 78.31 82.85 2.53 3.80 0.80 1.20
9 86.76 87.50 4.01 3.72 1.27 1.17
10 96.76 98.61 4.77 4.25 1.51 1.35
11 101.64 104.50 3.08 6.16 0.98 1.95
12 108.83 112.91 4.69 6.40 1.48 2.02
13 108.12 117.60 3.86 3.74 1.22 1.18
14 114.06 104.23 7.02 4.31 2.22 1.36
15 117.99 101.68 4.70 4.28 1.49 1.35
16 112.42 99.94 3.91 4.46 1.24 1.41

Performance Evaluation

137

 GTF has displayed the same characteristic; instead of fifteenth stream, its GTF

has displayed the same characteristic; instead of fifteenth stream, its bandwidth usage

rate begins to decline right after thirteenth streams. GridTorrent was performing better

than PTCP when the number of parallel streams is less than five. Between the fifth and

thirteenth streams, it demonstrates that it has slightly better data transfer rate than that

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

0 2 4 6 8 10 12 14 16

Number of Streams/Sources

T
hr

ou
gh

pu
t (

M
bp

s)

PTCP GTorrent

Figure 8-7 Overall data transmission performance for PTCP and
GridTorrent on wide area network with various parallel flows or sources
and a fixed size file size. In this scenario, GridTorrent uses one socket in
each connection for every source.

of PTCP. Another interesting outcome is that the maximum achieved data transfer rate

we measured is almost four times higher than Iperf’s result because Iperf is used as a

standard network bandwidth measurement tool among computer users. Another

advantage of GTF is feature of load balancing. Whereas the whole data is sent from a

Performance Evaluation

138

single source in PTCP setup, the approximate amount of data sent from a single seeder

in GridTorrent setup is:

This feature will help to relieve the bottleneck problem of a single source under a great

many requests of data transmission.

8.4.3 Scenario III: GridTorrent Framework Client with Four Sockets

As we mentioned in Chapter 4, besides Java socket, other data transfer protocols

can be exploited in GridTorrent client. Although we used the same PTCP settings of the

scenario II as illustrated in. In order to investigate the performance of the combination

of multiple parallel TCP streams and Bittorrent algorithm in wide area network, instead

Figure 8-8 Client and server network layout for PTCP test case. PTCP
streams are used for data transfer.

Performance Evaluation

139

of one regular Java TCP socket, as it is seen in Figure 8-9, four parallel regular Java

TCP sockets were used between peer and seeders, and number of seeders has

commenced from one and increased from one to 16. The increment in number of

seeders in each step was one.

Figure 8-9 GridTorrent test case topology for WAN test. Four parallel TCP
sockets are used for data transfer.

8.4.4 Scenario III: Test Result

Table 8-4 lists the achieved average data transmission rate of PTCP and

GridTorrent, as well as standard error and standard deviation. PTCP test topology in

Performance Evaluation

140

Figure 8-5 and Figure 8-8 was same and conducted exactly as in previous scenario.

When we compared to test results of scenario II and scenario III, we seen that the test

results have been very promising. Using parallel TCP with Bittorrent algorithm

demonstrates much better bandwidth throughput than standalone GridTorrent and

PTCP. The maximum attained bandwidth is around 145 Mbps which is %23 higher

than PTCP’s result (118 Mbps). Figure 8-10 presents considerable increase in data

transfer rate when multiple parallel streams are used in GridTorrent. This result is

important, because there is no performance gain anymore after the 15th streams in

Table 8-4 Performance characteristics of PTCP and GridTorrent with
various parallel streams or sources on WAN. In this scenario, four parallel
streams are used between a GridTorrent peer and sources’ connections.

Streams
or

Sources

Mean Standard Deviation Standard Error

PTCP GridTorrent PTCP GridTorrent PTCP GridTorrent

1 10.57 47.04 0.24 1.31 0.07 0.41
2 19.87 67.17 1.08 3.86 0.34 1.22
3 25.19 93.82 1.09 4.71 0.34 1.49
4 30.94 101.60 1.50 2.90 0.48 0.92
5 51.93 107.83 2.25 4.74 0.71 1.50
6 62.07 110.41 3.60 4.54 1.14 1.44
7 71.66 116.28 3.77 4.03 1.19 1.27
8 78.31 124.09 2.53 5.89 0.80 1.86
9 86.76 141.87 4.01 4.21 1.27 1.33
10 96.76 144.09 4.77 3.57 1.51 1.13
11 101.64 141.97 3.08 6.04 0.98 1.91
12 108.83 145.15 4.69 5.46 1.48 1.73
13 108.12 143.37 3.86 6.72 1.22 2.12
14 114.06 142.97 7.02 5.66 2.22 1.79
15 117.99 142.10 4.70 7.34 1.49 2.32
16 112.42 141.08 3.91 7.40 1.24 2.34

Performance Evaluation

141

parallel streams of PTCP; in fact, it deteriorates the data transfer rate. However, we

could increase the number of parallel streams in GridTorrent up to 40 while without

having any decrease in the data transfer rate.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

0 2 4 6 8 10 12 14 16

Number of Streams/Sources

T
hr

ou
gh

pu
t (

M
bp

s)

PTCP GTorrent

Figure 8-10 Achieved average data transfer rate of PTCP and GridTorrent
with various parallel flows or sources on LAN type computer network (IU-
FSU settings). GridTorrent client uses four parallel TCP sockets in each
connection for every source.

8.5 Multi-nodes

The experimental studies on real networks described in discussed previous

sections show that GridTorrent displays better performance or at least similar

performance than PTCP on LAN and WAN. In addition, to some extent GridTorrent

can overcome the performance barrier which PTCP reaches after a certain number

Performance Evaluation

142

parallel streams by leveraging parallel streams on top of peer-to-peer connections. In

this section, we perform theoretical analysis of GridTorrent’s performance with

multiple-nodes with the following assumptions:

 Identical resources: All the machines have identical configurations and systems

resources such as computation power, memory and storage disk speed, and network

bandwidth capacity.

 Dedicated network resources: All network resources are dedicated to single data

transmission process at a time. The influences of other networks traffics are

ignored.

 Identical half-duplex connections: Each connection allows traffic either way, but

only one way at a time. Although, the connections of real networks are full-duplex

connections, we chosen this case for worst case scenario since peer-to-peer data

transfer performs better then PTCP on full-duplex connections.

One server/seeder and three clients (peers) is illustrated in Figure 8-11. Whereas

client machines can only download data from server in PTCP model, clients (peers) can

download from other clients as long as they have any data to offer in GridTorrent

model. For the simplicity, we assume that the size of file to be downloaded is 3xN Mb

since we have only three clients. We list the sequences matrices of data transmission

from server to client or client to client in PTC and GridTorrent in Table 8-5 and Table

8-6 respectively. Unlike PTCP clients, if two GridTorrent clients are idle and one of

them has data which is required by others, they can send data between them.

Performance Evaluation

143

Figure 8-11 Multiple nodes representation for GridTorrent and PTCP

Performance Evaluation

144

As it is seen in Table 8-5 and Table 8-6, Client1 completes its downloading at

the end of 3rd second, Client2 finishes at the end of 6th second and Client3 receives last

segment of data from the server at the end of the 9th second. However, the overall

downloading completion time for all clients takes only 5 seconds in GridTorrent data

transmission since idle clients helping each other whenever they can. As a result of this

simulation, when the number of participating nodes increases, GridTorrent can exhibit

better performance than other data transfer techniques which use parallel TCP since the

data transmission rate of GridTorrent is better or not worse than that of parallel TCP on

real networks, for instance WAN.

Table 8-5 Transmission sequence matrix of PTCP

Time

(sec)

S-C1 S-C2 S-C3 C1 C2 C3

1 N1 N1

2 N2 N1,N2

3 N3 N1,N2,N3

4 N1 N1

5 N2 N1,N2

6 N3 N1,N2,N3

7 N1 N1

8 N2 N1,N2

9 N3 N1,N2,N3

Performance Evaluation

145

Table 8-6 Transmission sequence matrix of GridTorrent

Time

(sec)

S-

C1

S-

C2

S-

C3

C1-

C2

C2-

C3

C1-

C3

C1 C2 C3

1 N1 N1

2 N2 N1 N1 N2 N1

3 N3 N1 N1 N1,N2 N1,N3

4 N2 N2 N1,N2 N1,N2 N1,N2,N3

5 N3 N3 N1,N2,N3 N1,N2,N3

8.6 Overhead

Both parallel TCP and GridTorrent have overhand due to nature of multiple

parallel connections. Data splitting and coalescing taking place for the entire data

transfer are common overhead processes in both PTCP and GridTorrent. In addition to

that, GridTorrent has to fragment files into chuck when the interested file has been

created. It is a one-time process, in contrast to data splitting and merging processes.

The overhead of PTCP’s communication channel can be compared to the

overhead of GridTorrent’s WS-Tracker client. It varies between 300 to 600

milliseconds. Another overhead of GridTorrent is that control messages exchanged

between peers to ensure Bittorrent protocol rules strictly enforced to all participating

peers. Our testing results demonstrated that the total size of overhead messages is

between 148KB to 169 KB. This overhead can be ignored when it is compared to file

size of 300 MB.

Performance Evaluation

146

8.7 Summary

In this chapter, we evaluated and compared GridTorrent’s performance with that

of PTCP both on LAN and WAN. The tests indicate that both GridTorrent and PTCP

do not provide any performance gain on LAN type of computer networks. However, on

WAN, the performance of GTF is better or not worse than that of parallel TCP. This

outcome is important since parallel streaming is used in many scientific computing data

transfer tools such as GridFTP. Additionally, using Java socket and parallel TCP

indicates that GTF can exploit other high performance data transfer protocols like

GridFTP or UDT in traditional low BDP environments at the same time.

Conclusions and Future Work

147

Chapter 9

Conclusions and Future Work

9.1 Conclusion

In this thesis, we have presented a novel approach for collaboration framework

with high performance data transmission capability for scientific community. Contrary

to many existing data transfer solutions, based on client-server paradigm (i.e. FTP,

HTTP or other type of client-server solutions), we have chosen peer-to-peer paradigm

for data transfer mechanism that enable us to employ a service-oriented architecture

and make our framework extensible with Web services features.

A proof of concept implementation on data management and collaboration was

demonstrated. Unlike other heavyweight, platform dependent and cumbersome data

Conclusions and Future Work

148

catalog and management solutions whose administration tasks require a great deal of

the knowledge systems, our prototype of CCM is lightweight, platform independent

and it requires minimum system resources, and management and maintenance

overhead. In addition, it provides all the basic and major facilities such as search,

browse, publish and share capabilities in a simple structure.

Furthermore, on the contrary to existing data movement approaches,

GridTorrent client uses data transfer technique built on peer-to-peer architecture, which

has two contributions:

1. Performance improvement

2. Efficient utilization of available system resources

Our test results showed that GridTorrent can be faster than or as fast as data movement

solutions using parallel TCP streams to improve data transfer speed. Although

improving the performance is generally considered the major achievement, we believe

that reducing or eliminating waste of available system resources is as important

contribution as performance improvement, especially when efficiency and sparingness

are becoming a critical issue for every resources of world.

Finally, as WS-Tracker is built on Web service architecture, it brings flexibility,

extensibility, and scalability to GridTorrent framework. This feature allows

GridTorrent framework to be customizable with regard dynamic needs or emerging

requirements.

9.2 Summary of Answers for Research Questions

Here we summarize the answers for the research questions presented in this

thesis.

Conclusions and Future Work

149

9.2.1 How can we build a peer-to-peer data transfer mechanism which

utilizes SOA for scientific community? Which one of available

peer-to-peer system is best for this purpose and what type of

modifications and new features are needed to be added to it?

There are two distinct types of peer-to-peer system architecture. First type of

peer-to-peer system architecture is established on non-modular structure in which they

integrate all the facilities such as file searching and peer discovery into one system.

Second type of peer-to-peer system architecture is built on modular pattern by

establishing a clear borderline between data transport algorithm and other required

services (e.g. peer discovery and file search services). The former leads a complicated

system which is less modular and customizable. Further, it is very difficult to utilize

facilities provided by SOA. On the other hand, the latter enable us not only to harness

the benefits of SOA, but also to modify services not pertinent to data transfer algorithm

according to our needs. This step was very important since our choice will have impact

on all the aspects of our design. Therefore, as BitTorrent was the best candidate that

falls into second category, we have chosen it as base peer-to-peer data transfer layer.

9.2.2 How can we provide a medium that allows participants to

manage, share, discover, and download their contents and

integrate it with data transfer mechanism?

As explained in the previous question, there needs to be a system with modular

structure. In BitTorrent, there is no built-in framework which provides content

management, sharing, discovery services. However, it provides a simple tracking

component used for initial the communication between peers. We developed a separate

Conclusions and Future Work

150

component aimed to perform services related to the content management and then we

converted the basic tracker into a Web service based tracker which capacitates us to add

or remove new services. With the help of WS-Tracker Service, we integrated the

separated content management module into data transfer layer by permitting them to

communicate each other.

9.2.3 Is the data transfer mechanism scalable?

There are two places involved in data transfer process: WS-Tracker Service and

GridTorrent client. Since WS-Tracker Service is built on Web service technology and

does not participate actual data transfer operation at all, it should not suffer from

scalability issues or it has the same problems that a regular Web service provider

encounters.

As explained in chapter 4, due to its peer-to-peer nature, GridTorrent client

hosting data transfer layer is a basic server with the simultaneous upload and download

capability. From, this aspect, therefore, it can be considered as a regular data server

such as an FTP server. However, unlike standard FTP server, the downloaders of a

GridTorrent client differ from that of FTP server in three respects: downloading data

size, bandwidth usage, and session duration. If, therefore, there are any scalability

issues, since scalability of the system is by design, they stemmed from characteristics

of the data not the design of GridTorrent. An FTP server, for example, may throttle

download size to a certain degree in order to increase the number of downloaders.

However, unlike an FTP server, the GridTorrent aims to scientific community which

generates very large set of data set and is designed to maximize bandwidth usage as

reducing data transmission time is the main concern not the number of simultaneous

Conclusions and Future Work

151

downloaders. In addition, BitTorrent has proven than it is very scalable and successful

data transfer protocol, it was deployed as peer-to-peer file transfer protocol by many

commercial enterprises such as Amazon and Warner Brothers.

9.2.4 How is the performance of data transfer mechanism and it is

acceptable?

In chapter 8, we evaluated and compared GridTorrent’s performance with that

of PTCP both on LAN and WAN. The tests indicate that both GridTorrent and PTCP

do not provide any performance gain on LAN type of computer networks. However, on

WAN, the performance of GTF is better or not worse than that of parallel TCP. This

outcome is important since parallel streaming is used in many scientific computing data

transfer tools such as GridFTP. Additionally, using Java socket and parallel TCP

indicates that GTF can exploit other high performance data transfer protocols like

GridFTP or UDT in traditional low BDP environments at the same time.

9.2.5 What is the overhead of this system and is it reasonable?

As explained in chapter 8, our testing results demonstrated that the total size of

overhead messages resulted from the communications between the GridTorrent client

and WS-Tracker Service is between 148KB to 169 KB. Furthermore, the duration of

communications are very short and they do not have any adverse effect on performance

even though they takes place during the downloading activity. Therefore, the overhead

can be acceptable. Indeed, the overhead size can be ignored when it is compared to file

size of 300 MB.

Conclusions and Future Work

152

9.2.6 How can we make it enough secure for scientific community as

security is not a concern in peer-to-peer to networks for non-

scientific community?

Similar to content management component, BitTorrent does not provide any

security mechanism for authentication and authorization. Therefore, we designed and

implemented a security framework with access control list capability (ACL) to meet the

moderate security requirements and integrated it with GridTorrent framework. TLS is

utilized at Asynchronous Collaboration and Content Management module. There is no

security implementation between GridTorrent client and WS-Tracker Service as data

exchanged between them has no critical information. ACL is deployed at GridTorrent

clients to ensure only allowed clients download the particular content. The unique

GridTorrent ID over TLS communication is used for authentication and authorization

processes.

9.3 Contributions

Neither high-performance nor peer-to-peer data transfer techniques are not new

technologies. They have been around more than couple of decades; however, since

techniques used for transferring bulk data in high-speed wide area networks are usually

built on FTP or HTTP, utilizing peer-to-peer file transferring protocol for scientific

community and integrating it with a framework which enables collaboration and

content management is a new approach. This approach has several contributions. The

foremost important one is that harnessing power of peer-to-peer file sharing in wide

area networks by utilizing unused system resources, particularly network resources.

Conclusions and Future Work

153

As GridTorrent has many good features because of its design and underlying

peer-to-peer file sharing protocol, it provides many useful and vital services from out-

of-box. These features are offered as separate services or products in other widely used

high-performance data transfer techniques such as GridTorrent. Checking available

disk space before starting download process, reliable file transfer, third party data

transfer, for example, are some of those features.

Another contribution is being data structure, system and platform independent.

This feature enable our work to be deployable any existing system without changing its

data format as an underlying data transfer layer. For instance, one of the goal of the

THREDDS (Thematic Realtime Environmental Distributed Data Services) project is to

simplify the discovery and use of scientific data between data providers and data users.

In this project, data has to be in particular format and are delivered via HTTP. As our

work is data format neutral, it can be deployed both as discovery server and as data

transfer layer in its existing system.

In addition, GridTorrent components are lightweight processes so that they are

easily deployable and can require less system resources contrast to other high-

performance data transfer solutions. This is important as there are many scientific

communities with diverse resource capacity can use GridTorrent without modifying

their hardware structure.

Finally, Web service based WS-Tracker Service not only exploits benefits of

SOA, but also makes it adaptable to future requirement change by allowing to add a

new service or to remove an existing one a seamless process.

Conclusions and Future Work

154

9.4 Limitations and Future Research Direction

9.4.1 Data Transfer Component

Data transfer algorithm built on BitTorrent algorithm has demonstrated that it

performs well both on LAN and WAN even though the basic BitTorrent algorithm was

implemented in our prototype. However, there has been great deal of research and

effort on BitTorrent in order to eliminate its overhead and improve its performance.

Future work can further investigate the BitTorrent algorithm to deliver a higher level of

performance.

Due to performance issues stemmed from very large data, data is sent over

unsecured socket connection in our prototype. If a secure data transmission is required,

investigating secure data transfer with acceptable/without performance loss would be

good research topic.

9.4.2 WS-Tracker Service

As WS-Tracker Service exploits benefits of SOA, adding a new service or

removing an existing one would be a seamless process. The security framework of

GridTorrent framework was designed for moderate security requirements; we have not

implemented any security structure for the WS-Tracker Service. However, in particular

circumstances where secure communication is necessary, a suitable one among

available WS-Security products can be implemented as future work.

9.4.3 Asynchronous Collaboration and Content Management

The design concepts of the Asynchronous Collaboration and Content

Management are to keep it simple, to make it customizable, and to make it lightweight

Conclusions and Future Work

155

framework. Therefore, only basic features are provided. Adding synchronous more and

sophisticated collaboration tools, advanced search techniques are left for future work.

Bibliography

156

Bibliography

1. Bell, G., J. Gray, and A. Szalay, Petascale Computational Systems. Computer,

2006. 39(1): p. 110-112.

2. Foster, I. and C. Kesselman, The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufiuiann, San Francisco, CA. Vol. 211. 1999.

3. Foster, I., et al., The Physiology of the Grid: An Open Grid Services

Architecture for Distributed Systems Integration, June 2002. Open Grid Service

Infrastructure WG, Global Grid Forum, 2002.

4. Foster, I., et al., A Security Architecture for Computational Grids, in

Proceedings of the 5th ACM conference on Computer and communications

security. 1998, ACM: San Francisco, California, United States.

5. Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal of Supercomputer

Applications, 2001. 15(3): p. 200–222.

6. Graham, S.L., M. Snir, and C.A. Patterson, Getting Up To Speed: The Future Of

Supercomputing. 2005: National Academy Press.

7. Adams, P., et al., Science-Driven Network Requirements for ESnet. 2006,

LBNL--61832, Ernest Orlando Lawrence Berkeley NationalLaboratory,

Berkeley, CA (US).

Bibliography

157

8. Allcock, W., GridFTP Protocol Specification (Global Grid Forum

Recommendation GFD.20). 2003.

9. Dickens, P., FOBS: A Lightweight Communication Protocol for Grid

Computing. Lecture Notes in Computer Science, 2003: p. 938-946.

10. Booth, D., et al., Web Services Architecture. W3C Working Group Note, 2004.

11: p. 2005-1.

11. Channabasavaiah, K., K. Holley, and E. Tuggle, Migrating to a Service-

oriented Architecture. IBM White Paper, 2004.

12. Werthimer, D., et al. A New Major SETI Project Based on Project Serendip

Data and 100,000 Personal Computers. in Proceedings of the Fifth

International Conference on Bioastronomy. 1997.

13. The seti@home project web site. Accessed on-line 2008; Available from:

http://setiathome.berkeley.edu.

14. Androutsellis-Theotokis, S. and D. Spinellis, A Survey of Peer-to-Peer Content

Distribution Technologies. ACM Computing Surveys, 2004. 36(4): p. 335-371.

15. Larson, S.M., C. Snow, and V. Pande, Modern Methods in Computational

Biology. 2003, Horizon Press.

16. The genome@home project web site. Accessed on-line 2008; Available from:

http://genomeathome.stanford.edu/.

17. Zissimos, A., et al., GridTorrent: Optimizing data transfers in the Grid with

collaborative sharing. 11th Panhellenic Conference on Informatics (Patras,

Greece, May 2007). PCI2007, 2007.

Bibliography

158

18. McNab, A., S. Kaushal, and Y. Li, Web servers for bulk file transfer and

storage in CHEP 06 Computing in High Energy and Nuclear Physics

(Distributed Event production and processing). 2006: Mumbai, India.

19. Voyager, The Interstellar Mission:. 2008; Available from:

http://voyager.jpl.nasa.gov/.

20. Voyager I. Available from: http://en.wikipedia.org/wiki/Voyager_1.

21. Voyager Program. Available from:

http://en.wikipedia.org/wiki/Voyager_program.

22. Zhu, Y., et al., Mechanisms for High Volume Data Transfer in Grids. 2007.

23. Allcock, B., et al., Data Management and Transfer in High Performance

Computational Grid Environments. Parallel Computing, 2002. 28(5): p. 749-

771.

24. Gibson, G. and R. Van Meter, Network Attached Storage Architecture.

Communications of the ACM, 2000. 43(11): p. 37-45.

25. Anglano, C. and M. Canonico, A Comparative Evaluation of High-Performance

File Transfer Systems for Data-Intensive Grid Applications, in Proceedings of

the 13th IEEE International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises. 2004, IEEE Computer Society.

26. Mathis, M., et al., RFC2018: TCP Selective Acknowledgement Options. RFC

Editor United States, 1996.

27. Floyd, S., RFC3649: HighSpeed TCP for Large Congestion Windows. Internet

RFCs, 2003.

Bibliography

159

28. Kelly, T. Scalable TCP: Improving Performance in High Speed Wide Area

Networks. in of First International Workshop on Protocols for Fast Long-

Distance Networks. 2003. CERN, Geneva, Switzerland.

29. Wu, R.X. and A.A. Chien. GTP: Group Transport Protocol for Lambda-Grids.

in Cluster Computing and the Grid, 2004. CCGrid 2004. IEEE International

Symposium on. 2004.

30. Zhang, Y., E. Yan, and S. Dao, A Measurement of TCP over Long-Delay

Network. Proceedings of 6th Int’l Conference on Telecommunication Systems,

Modelling, and Analysis, 1998.

31. Postel, J. and J. Reynolds, File Transfer Protocol (FTP), in RFC Editor United

States. 1985, STD 9, RFC 959, October 1985.

32. Allcock, W.E., GridFTP: Protocol Extensions to FTP for the Grid. 2003.

33. bbFTP --Large files transfer protocol 2005; Available from:

http://doc.in2p3.fr/bbftp/index.html.

34. Secure Copy-. 2007; Available from: http://en.wikipedia.org/wiki/Secure_copy.

35. Hanushevsky, A., Peer-to-Peer Computing for Secure High Performance Data

Copying, in Computing in High Energy Phyasics. 2001: Beijing.

36. Allcock, W., et al. The Globus Striped GridFTP Framework and Server. 2005.

37. Allcock, B., et al., Secure, Efficient Data Transport and Replica Management

for High-Performance Data-Intensive Computing. IEEE Mass Storage

Conference, 2001. 20.

38. Horowitz, M. and S. Lunt, FTP Security Extensions, in RFC Editor United

States. 1997.

Bibliography

160

39. What is GridFTP ? . 2004; Available from: http://it-dep-fio-ds.web.cern.ch/it-

dep-fio-ds/Documentation/gridftp.asp.

40. Globus Alliance, GridFTP: Universal Data Transfer for the Grid, in Globus

Project White Paper, University of Chicago. 2000.

41. Globus Alliance. Reliable File Transfer Service (RFT). 2007; Available from:

http://www.globus.org/toolkit/docs/4.2/4.2.0/data/rft/.

42. Madduri, R., C. Hood, and W. Allcock. Reliable File Transfer in Grid

Environments. in Local Computer Networks, 2002. Proceedings. LCN 2002.

27th Annual IEEE Conference on. 2002.

43. Allcock, W.E., I. Foster, and R. Madduri, Reliable Data Transport: A Critical

Service for the Grid, in Building Service Based Grids Workshop, Global Grid

Forum. 2004.

44. Globus Alliance. globus-url-copy Documentation. 2007; Available from:

http://www.globus.org/toolkit/docs/4.0/data/gridftp/rn01re01.html

45. Globus Alliance. Moving Data Fast on the TeraGrid. 2007; Available from:

http://www.globus.org/solutions/tgcp/.

46. Ripeanu, M. and I. Foster, A Decentralized, Adaptive Replica Location

Mechanism, in Proceedings of the 11th IEEE International Symposium on High

Performance Distributed Computing. 2002, IEEE Computer Society.

47. MySQL. 2007; Available from: http://www.mysql.com/.

48. Globus Alliance. Replica Location Service (RLS). 2007; Available from:

http://www.globus.org/toolkit/docs/4.2/4.2.0/data/rls/.

Bibliography

161

49. Bresnahan, J., et al. Globus GridFTP: What's New in 2007. in Proceedings of

the First International Conference on Networks for Grid Applications (GridNets

2007). 2007.

50. GridSite Team. Grid Security for the Web, Web platforms for Grids. 2008;

Available from: http://www.gridsite.org/.

51. Sivakumar, H., S. Bailey, and R.L. Grossman, PSockets: The Case for

Application-level Network Striping for Data Intensive Applications using High

Speed Wide Area Networks. Proceedings of the 2000 ACM/IEEE conference on

Supercomputing (CDROM), 2000.

52. Mattmann, C.A., et al. A Classification and Evaluation of Data Movement

Technologies for the Delivery of Highly Voluminous Scientific Data Products.

in Proceedings of the NASA/IEEE Conference on Mass Storage Systems and

Technologies College Park. 2006. Maryland, USA.

53. Web Maintenance Team of cc.jlab.org. Off-Site File Transfer Facilities. 2008;

Available from: http://cc.jlab.org/docs/services/offsite/off-site-data-

transfers.html.

54. Bonachea, D. and S. McPeak, SafeTP: Transparently Securing FTP Network

Services. Computer, 2001.

55. Bonachea, D. and S. McPeak. SafeTP: Secure FTP Transparently. 2008;

Available from: http://safetp.cs.berkeley.edu/.

56. Gu, Y. and R. Grossman, UDT: UDP-based data transfer for high-speed wide

area networks. Computer Networks, 2007. 51(7): p. 1777-1799.

Bibliography

162

57. Gu, Y. and R. Grossman, SABUL: A Transport Protocol for Grid Computing.

Journal of Grid Computing, 2003. 1(4): p. 377-386.

58. He, E., et al. Reliable Blast UDP: Predictable High Performance Bulk Data

Transfer. in Cluster Computing, 2002. Proceedings. 2002 IEEE International

Conference on. 2002.

59. Meiss, M., Tsunami: A High-Speed Rate-Controlled Protocol for File Transfer.

2002, Indiana University.

60. Wallace, S. Tsunami File Transfer Protocol. in Proceedings of First Int.

Workshop on Protocols for Fast Long-Distance Networks. 2003. CERN,

Geneva, Switzerland.

61. Bush, D. UFTP - UDP Based FTP with Multicast. 2001 July 29, 2008;

Available from: http://www.tcnj.edu/~bush/uftp.html.

62. Zheng, X., A.P. Mudambi, and M. Veeraraghavan, FRTP: Fixed rate transport

protocol-a modified version of sabul for end-to-end circuits. Proceedings of the

1 stInternational Workshop on Provisioning and Transport for Hybrid Networks

(PATHNETS), in conjunction with the 1 stInternational Conference on

Broadband Networks, 2004.

63. Gu, Y., et al., Using UDP for Reliable Data Transfer over High Bandwidth-

Delay Product Networks. Laboratory for Advanced Computing, University of

Illinois at Chicage, 2003.

64. Dickens, P.M. and V. Kannan, Application-Level Congestion Control

Mechanisms for Large Scale Data Transfers Across Computational Grids. the

Bibliography

163

Proceedings of The International Conference on High Performance Distributed

Computing and Applications, 2003.

65. Ansari, S. Tsunami—A Study. Available from: http://www-

iepm.slac.stanford.edu/bw/Tsunami.htm.

66. Schoder, D., K. Fischbach, and C. Schmitt, Core Concepts in Peer-to-Peer

Networking, in Peer-to-Peer Computing: The Evolution of a Disruptive

Technology, R. Subramanian and B.D. Goodman, Editors. 2005, Idea Group

Publishing. p. 300 pages.

67. Schoder, D. and K. Fischbach, Peer-to-Peer Prospects. Communications of the

ACM, 2003. 46(2): p. 27-29.

68. The Kazaa web site. Accessed on-line 2008; Available from:

http://www.kazaa.com/.

69. Oram, A., Peer-to-Peer: Harnessing the Power of Disruptive Technologies.

First ed. 2001: O'Reilly & Associates, Inc. 432.

70. The Jabber web site. Accessed on-line 2008; Available from:

http://www.jabber.org.

71. Van Renesse, R., et al. Heterogeneity-Aware Peer-to-Peer Multicast. in

Proceedings of the 17th International Symposium on Distributed Computing

(DISC2003). 2003.

72. Castro, M., et al., Scribe: A Large-Scale and Decentralized Application-Level

Multicast Infrastructure. Selected Areas in Communications, IEEE Journal on,

2002. 20(8): p. 1489-1499.

Bibliography

164

73. Stoica, I., et al., Internet Indirection Infrastructure. IEEE/ACM Trans. Netw.,

2004. 12(2): p. 205-218.

74. Janakiraman, R., M. Waldvogel, and Q. Zhang, Indra: A Peer-to-Peer

Approach to Network Intrusion Detection and Prevention, in Proceedings of the

Twelfth International Workshop on Enabling Technologies: Infrastructure for

Collaborative Enterprises. 2003, IEEE Computer Society. p. 226.

75. Keromytis, A.D., V. Misra, and D. Rubenstein, SOS: Secure Overlay Services,

in Proceedings of the 2002 conference on Applications, technologies,

architectures, and protocols for computer communications. 2002, ACM:

Pittsburgh, Pennsylvania, USA. p. 61-72.

76. Vlachos, V., S. Androutsellis-Theotokis, and D. Spinellis, Security Applications

of Peer-to-Peer Networks. Computer Networks: The International Journal of

Computer and Telecommunications Networking, 2004. 45(2): p. 195-205.

77. Bernstein, P., et al. Data Management for Peer-to-Peer Computing: A Vision. in

Proceedings of the Fifth International Workshop on the Web and Databases.

2002.

78. Huebsch, R., et al., Querying the Internet with PIER, in Proceedings of the 29th

International Conference on Very Large Data Bases. 2003, VLDB Endowment:

Berlin, Germany. p. 321-332.

79. The Napster web site. Accessed on-line 2008; Available from:

http://www.napster.com.

80. Waldman, M., A.D. Rubin, and L.F. Cranor, Publius: A Robust, Tamper-

Evident, Censorship-Resistant Web Publishing System, in Proceedings of the

Bibliography

165

9th Conference on USENIX Security Symposium. 2000, USENIX Association:

Denver, Colorado. p. 5-5.

81. Ripeanu, M. Peer-to-Peer Architecture Case Study: Gnutella network. in

Proceedings of First International Conference on Peer-to-Peer Computing.

2001.

82. Clarke, I., et al. Freenet: A Distributed Anonymous Information Storage and

Retrieval System in Designing Privacy Enhancing Technologies. in Proceedings

of ICSI Workshop on Design Issues in Anonymity and Unobservability. 2000.

83. Druschel, P. and A. Rowstron. PAST: A Large-Scale, Persistent Peer-to-Peer

Storage Utility. in Hot Topics in Operating Systems, 2001. Proceedings of the

Eighth Workshop on. 2001.

84. Stoica, I., et al., Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet

Applications. Networking, IEEE/ACM Transactions on, 2003. 11(1): p. 17-32.

85. Dingledine, R., M. Freedman, and D. Molnar. The Free Haven Project:

Distributed Anonymous Storage Service. in Proceedings of the Workshop on

Design Issues in Anonymity and Unobservability. 2000.

86. Cohen, B. Bittorrent. 2007 [cited 2007]; Available from:

http://www.bittorrent.org/index.html.

87. The JXTA project web site. Accessed on-line 2008; Available from:

https://jxta.dev.java.net/.

88. Brian, D. Brian's BitTorrent FAQ and Guide. Accessed on-line 2008; Available

from: http://dessent.net/btfaq/.

Bibliography

166

89. Adar, E. and B. Huberman, Free Riding on Gnutella. First Monday, 2000.

5(10): p. 2-13.

90. Ramaswamy, L. and L. Ling. Free Riding: A New Challenge to Peer-to-Peer

File Sharing Systems. in System Sciences, 2003. Proceedings of the 36th Annual

Hawaii International Conference on. 2003.

91. Feldman, M., et al., Free-Riding and Whitewashing in Peer-to-Peer Systems.

Selected Areas in Communications, IEEE Journal on, 2006. 24(5): p. 1010-

1019.

92. Amazon Simple Storage Service (Amazon S3):. Accessed on-line 2008;

Available from: http://aws.amazon.com/s3/.

93. SRB- "The Storage Resource Broker". Available from:

http://www.sdsc.edu/srb/index.php/Main_Page.

94. Tierney, B.L., et al. A Network-Aware Distributed Storage Cache for Data

Intensive Environments. in Proceedings of The Eighth International Symposium

on High Performance Distributed Computing 1999.

95. Watson, R.W., et al. The Parallel I/O Architecture of the High-Performance

Storage System (HPSS). in Proceedings of the Fourteenth IEEE Symposium on

Mass Storage Systems (MSS'95). 1995.

96. HDF5- "Hierarchical Data Format 5". Available from:

http://www.hdfgroup.org/.

97. Barkes, J., et al., GPFS: A Parallel File System. IBM Redbook SG: p. 24-5165.

98. Tate, J., F. Lucchese, and R. Moore, Introduction to Storage Area Networks.

2006: IBM Corp.

Bibliography

167

99. Green Bank Telescope. 2008 [cited 2008 March]; Available from:

http://en.wikipedia.org/wiki/Green_Bank_Telescope.

100. Hubble Space Telescope. 2008 [cited 2008 March]; Available from:

http://en.wikipedia.org/wiki/Hubble_Space_Telescope.

101. Stewart, G.A. and G. McCance. Grid Data Management: Reliable File Transfer

Services' Performance. in Computing in High Energy and Nuclear Physics

(CHEP'06). 2006. Mumbai, India.

102. Sotomayor, B. The Globus Toolkit 4 Programmer's Tutorial. 2005; Available

from: http://gdp.globus.org/gt4-tutorial/.

103. Welch, V., Globus Toolkit Version 4 Grid Security Infrastructure: A Standards

Perspective. 2005.

104. Mahemoff, M., Ajax Design Patterns. 2006: O'Reilly Media, Inc.

105. Kaplan, A., G.C. Fox, and G. von Laszewski, GridTorrent Framework: A High-

performance Data Transfer and Data Sharing Framework for Scientific

Computing, in GCE07 Workshop. 2007: Reno Nevada.

106. Gu, Y., UDT: A High Performance Data Transport Protocol. 2005, University

of Illinois.

107. Service-oriented architecture (SOA) definition. 2007; Available from:

http://www.service-architecture.com/web-services/articles/service-

oriented_architecture_soa_definition.html.

108. Novotny, J., S. Tuecke, and V. Welch, An Online Credential Repository for the

Grid: MyProxy, in Proceedings of the 10th IEEE International Symposium on

High Performance Distributed Computing. 2001, IEEE Computer Society.

Bibliography

168

109. Plos One: Publishing science, accelerating research. 2008; Available from:

http://www.plosone.org/.

110. Waldrop, M.M. Science 2.0 -- Is Open Access Science the Future? . April,

2008; Available from: http://www.sciam.com/article.cfm?id=science-2-point-0.

111. Rizzo, T., Programming Microsoft Outlook and Microsoft Exchange. 1999:

Microsoft Press Redmond, Wash.

112. Antonovich, M., Office and SharePoint 2007 User's Guide: Integrating

SharePoint with Excel, Outlook, Access and Word. 2008: Apress.

113. Vandyk, J. and M. Westgate, Pro Drupal Development. 2007: Apress.

114. Farmer, J. and I. Dolphin, Sakai: eLearning and More, in EUNIS 2005-

Leadership and Strategy in a Cyber-Infrastructure World. 2005: Manchester,

UK.

115. Gilster, R., Microsoft® Office SharePoint® Server 2007: A Beginner's Guide

(Beginner's Guide (Osborne Mcgraw Hill)). 2007.

116. Mercer, D., Building Powerful and Robust Websites with Drupal 6: Build your

own professional blog, forum, portal or community website with Drupal 6.

2008: Packt Publishing.

117. Sakai Project. 2008; Available from: http://sakaiproject.org.

118. OpenWetWare. 2008; Available from: http://openwetware.org/.

119. Lampson, B., Protection. ACM SIGOPS Operating Systems Review, 1974.

8(1): p. 18-24.

120. Bishop, M., Introduction to Computer Security. 2004: Addison-Wesley

Professional.

Bibliography

169

121. Ferraiolo, D.F., R.D. Kuhn, and R. Chandramouli, Role-Based Access Control,

Second Edition. 2007: Artech House, Inc.

122. Ferraiolo, D., J. Cugini, and D. Kuhn. Role-Based Access Control (RBAC):

Features and Motivations. in Proceedings of the Eleventh Annual Computer

Security Applications Conference. 1995.

123. Sandhu, R.S., et al., Role-Based Access Control Models. Computer, 1996.

29(2): p. 38-47.

124. Chadwick, D.W. and A. Otenko, The PERMIS X. 509 role based privilege

management infrastructure. Future Generation Computer Systems, 2003. 19(2):

p. 277-289.

125. Dommel, H. and J. Garcia-Luna-Aceves. Design Issues for Floor Control

Protocols. in Proceedings of SPIE Multimedia and Networking. 1995: SPIE.

126. Dommel, H. and J. Garcia-Luna-Aceves, Floor control for multimedia

conferencing and collaboration. Multimedia Systems, 1997. 5(1): p. 23-38.

127. Koskelainen, P., et al., Requirements for Floor Control Protocols, in RFC

Editor United States. 2006, RFC 4376, February 2006.

128. W3C World Wide Web Consortium. 2008; Available from: http://www.w3.org/.

129. Bellwood, T., L. Clement, and C. von Riegen, UDDI Version 3.0. 1: UDDI

Spec Technical Committee Specification. 2003.

130. Curbera, F., et al., Unraveling the Web Services Web: An Introduction to SOAP,

WSDL, and UDDI. IEEE Internet Computing, 2002. 6(2): p. 86-93.

131. Erl, T., Service-Oriented Architecture: A Field Guide to Integrating XML and

Web Services. 2004: Prentice Hall PTR Upper Saddle River, NJ, USA.

Bibliography

170

132. Corba: A Guide to Common Object Request Broker Architecture, ed. R. Ben-

Natan. 1995: McGraw-Hill, Inc. 353.

133. Redmond, F., Dcom: Microsoft Distributed Component Object Model with

Cdrom. 1997: IDG Books Worldwide, Inc. Foster City, CA, USA.

134. Sun Microsystems, Java Remote Method Invocation Specification. Sun

Microsystems, Palo Alto, CA, 1997. 30: p. 31.

135. Kirtland, M., A Platform for Web Services. Microsoft Developer Network,

2001.

136. List of Web Service Specifications. 2008; Available from:

http://en.wikipedia.org/wiki/List_of_Web_service_specifications.

137. Pearlman, L., et al., A Community Authorization Service for Group

Collaboration, in Proceedings of the 3rd International Workshop on Policies

for Distributed Systems and Networks (POLICY'02). 2002, IEEE Computer

Society.

138. Naedele, M., Standards for XML and Web services security. Computer, 2003.

36(4): p. 96-98.

139. Lang, B., et al., A Multipolicy Authorization Framework for Grid Security. Proc.

Fifth IEEE Symposium on Network Computing and Application, 2006.

140. Neuman, B.C. and T. Ts'o, Kerberos: An Authentication Service for Computer

Networks. Communications Magazine, IEEE, 1994. 32(9): p. 33-38.

141. Thompson, M.R., A. Essiari, and S. Mudumbai, Certificate-based authorization

policy in a PKI environment. ACM Transactions on Information and System

Security (TISSEC), 2003. 6(4): p. 566-588.

Bibliography

171

142. Shibboleth. Available from: http://shibboleth.internet2.edu/.

143. Welch, V., et al., Attributes, Anonymity, and Access: Shibboleth and Globus

Integration to Facilitate Grid Collaboration. 4th Annual PKI R&D Workshop,

2005.

144. Barton, T., et al. Identity Federation and Attribute-based Authorization through

the Globus Toolkit, Shibboleth, Gridshib, and MyProxy. in Proceedings of 5th

Annual PKI R&D Workshop. 2006.

145. Alfieri, R., et al., VOMS, an Authorization System for Virtual Organizations.

European Across Grids Conference, 2003. 2970: p. 33–40.

146. Globus Alliance. The Globus Project.]; Available from:

http://www.globus.org/.

147. Katabi, D., M. Handley, and C. Rohrs, Internet Congestion Control for Future

High Bandwidth-Delay Product Environments. Dina Katabi, Mark Handley, and

Charles Rohrs, Internet Congestion Control for Future High Bandwidth-Delay

Product Environments. ACM Sigcomm 2002, August 2002. URL

http://ana.lcs.mit.edu/dina/XCP/. 2002.

148. Floyd, S., et al., Equation-based congestion control for unicast applications.

Proceedings of the conference on Applications, Technologies, Architectures,

and Protocols for Computer Communication, 2000: p. 43-56.

149. Lim, S.B., et al., GridFTP and Parallel TCP Support in NaradaBrokering.

Distributed And Parallel Computing: 6th International Conference on

Algorithms and Architectures for Parallel Processing, ICA3PP, Melbourne,

Australia, October 2-3, 2005: Proceedings, 2005.

Bibliography

172

150. Burnap, P., Bulut, H., Pallickara, S., Fox, G., Walker, D., A. Kaplan, B. Yildiz,

and Nacar, M. A. Worldwide Messaging Support for High Performance Real-

time Collaboration. in The UK e-Science All Hands Meeting. 2005. Nottingham,

UK.

151. Al-Kiswany, S., et al., Are P2P Data-Dissemination Techniques Viable in

Today's Data-Intensive Scientific Collaborations? Lecture Notes in Computer

Science, 2007. 4641: p. 404.

