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Abstract
This report is a research survey of deep learning models for spatiotem-

poral analysis for Earthquake pattern mining and prediction in Southern
California. Geoscience and seismology have utilized the most advanced
technologies and equipment to monitor seismic events globally from the
past few decades. With the enormous amount of data, modern GPU-
powered deep learning presents a promising approach to analyze data
and discover patterns. In recent years, there are plenty of successful deep
learning models for picking seismic waves. However, forecasting extreme
earthquakes, which can cause disasters, is still an underdeveloped topic
in history. Relevant research in spatiotemporal dynamics mining and
forecasting has revealed some successful predictions, a crucial topic in
many scientific research fields. Most studies of them have many successful
applications of using deep neural networks. In Geology and Earth sci-
ence studies, earthquake prediction is one of the world’s most challenging
problems, about which cutting-edge deep learning technologies may help
discover some valuable patterns. In this report, we illustrate two deep
learning modeling approaches, namely EQNet and EQPred, which utilize
data feature fusion and model fusion to mine spatiotemporal patterns from
data to nowcast extreme earthquakes by discovering visual dynamics in
regional coarse-grained spatial grids over time. In these modeling approach,
we use synthetic deep learning neural networks with domain knowledge in
geoscience and seismology to exploit earthquake patterns for prediction
using convolutional long short-term memory neural networks and other spa-
tiotemporal applicable networks. Our experiments show preliminary but
promising corelation between location prediction and magnitude prediction
for earthquakes in Southern California. Ablation studies and visualization
validate the effectiveness of the proposed modeling method.
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1 Introduction
Spatial and temporal attributes have played an essential role in addressing
scientific issues mathematically and statistically with large volumes of data in
real problems. A worldwide team of scientists studied the published datasets from
The WorldPop project (www.worldpop.org) for discovering the spatiotemporal
pattern of population in China from 1990 to 2010 [1]. For modern Geoscience,
spatiotemporal modeling has been studied for a long time. Authors of this
book [2] summarized some initial efforts by utilizing spatiotemporal features for
scientific interpretation and prediction. However, the model complexity and size
of datasets were very limited.

Tradition machine learning algorithms like the support vector machine (SVM)
and decision trees perform well on small datasets. Optimization methods such
as stochastic gradient descent (SGD) enable the deep learning algorithms can be
trained in small batches for extensive data without sacrificing model performance.
Over the past few decades, large volumes of data have been collected by the
seismological community. This drives high demand for seismology data processing
and analysis, providing opportunities to predict future dynamics from history.
Spatiotemporal forecasting is an important topic in many scientific research
fields, in which there are a plethora of successful applications. Recent studies
using deep neural networks have shown various successful applications, including
car traffic forecasting [3], ride-hailing forecasting [4], rain/weather forecasting [5].

Over the past few decades, large volumes of data have been collected by the
seismological community. This drives high demand for seismology data processing
and analysis, which also provides opportunities to predict future dynamics from
history. Spatiotemporal forecasting is an important topic in many scientific
research fields, in which there are a plethora of successful applications. Recent
studies using deep neural networks have shown various successful applications,
including car traffic forecasting [3], ride-hailing forecasting [4], rain/weather
forecasting [6], etc.

Earthquake forecasting is a worldwide challenging problem due to stochastic
physics processing. Scientists around the world have built an enormous number of
detectors for picking up earthquake signals. It is a general belief that earthquakes
are predictable under some assumption that quakes are formed underneath the
Earth are accumulated stresses in a gradual process over a long time. In this
case, it would be possible to predict earthquake shocks for future activities of
quakes by learning patterns from historical seismic events.

Conventionally, earthquakes are located through a process of detecting signals,
picking up arrival time, and estimating epicenters of events using a velocity
model. Efforts have been made to filter P-waves and S-waves from the original
waveform signals of earthquakes and seismic noise [7]. In this project, our goal
is to utilize the preprocessed seismic signals forming epicenters (location labels)
to forecast the probabilities of the next earthquakes in an area. Earthquake
forecasting consist of three major tasks in machine learning. The first task is to
predict when the next seismic event will happen in a specific region. The second
task is to predict whether or not the next seismic event will come. The third

3



(a)

(c)

(b)

(d)

Figure 1: Dataset overview of earthquakes in Southern California. (a) Earthquake
events mapped on Maps. (b) Earthquake events mapped on satellite images. (c)
Fault lines plotted on Earth surface. (d) Heat map of events in a grid view.

task is to predict the level of magnitude of the upcoming seismic events so that
a major shock can be predicted.

Deep learning neural networks have presented a widely successful approach to
capture spatial-temporal dependencies of problems to achieve accurate forecasting
results. Convolutional neural networks have achieved convinced success in
computer vision, image object recognition, etc [8]. Here we test the hypothesis
that earthquake patterns can be perceived by learning historical seismic events.
However, epicenters’ prediction is learned from annotated seismograms. Due to
the uncertainties of earthquakes, even the ground truth labels that are annotated
by domain experts may be biased. Locations and magnitude of epicenters are
maybe adjusted after the seismic event happened a long while. In summary,
we cover two major endeavors in predicting earthquakes patterns for a selected
region in Southern California.

• Both projects transform the single contiguous time series tablet dataset
into sequences of images over time in different level of frequencies.

• EQNet fuses data features by building high dimensional properties of
input to train a convolutional recurrent neural network model for future
prediction.

• EQPred builds a predictive architecture by fusing two neural network
models, in which one model learns the latent variables from normal quakes
and another model learns to predict extreme large quakes from these latent
variables.
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2 EQNet: Feature Fusion for Nowcasting
2.1 Introduction
Spatial temporal forecasting is an important topic in many scientific research
fields. Recent studies of using deep neural networks for spatiotemporal forecasting
have been taking advances in many domain science areas, such as neuroscience,
rain fall and transportation. Li et al [3] and Ma et al [9] have modeled spatio and
temporal dependencies with convolutional neural networks for traffic forecasting.

The goal of spatiotemporal forecasting is to predict what and when the
next event will happen. This is a task that includes two orthogonal sub-tasks:
forecasting its spatio dependencies and temporal dependencies. However, this is
a nontrivial task due t the high dimension features of time series sequences and
building models that can work well for some scientific problems can also be very
vague [10].

In this write-up, we summarize and discuss some critical techniques in Deep
Learning and how they are applied to model spatial temporal problems. These
techniques include a series of neural networks such as convolutional networks,
recurrent neural networks and encoder decoder architectures. In this project,
we propose to model the earthquake prediction in terms of spatiotemporal
dependences in Southern California. In summary:

• We study the earthquake dataset for the Southern California and recon-
struct the time series events into a sequence of 2D images.

• We model the spatiotemporal dependencies of earthquakes in Southern
California with Convolutional Long Short Term Memory deep neural
networks and show some preliminary results.

2.2 Earthquake Feature Fusion for Prediction
In this project, we convert the catalog dataset into a time series of images with
the size 60x40 by enriching the properties of each pixel in images. We train and
evaluate a model that can predict various of properties.

2.2.1 Dataset Statistics

All the following experiments are conducted using the same training data and
test data from 1950 to 2019 in the Southern California, where the longitude is
from -120 to -140, and the latitude is from 32 to 36. We divide this area into a
grid with 60x40 cells, so that each cell can represent multiple properties. The
total number of valid days in this dataset is 25567.

2.2.2 Features and Task Settings

We set the predictive goal of the training tasks as multiple variables including
the properties of magnitudes in a year, 5 years, etc. So we enrich both the
training and testing data to match our task settings in the model. The feature
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Table 1: Basic statistics of the input and output features

Properties Count
(NaN) Min Max Mean STD

1 Magnitude 317736 0.000 6.400000 0.007577 0.114197
2 Log-Energy 317747 0.000 7.500379 0.008219 0.124390
3 Fourth-root of Energy 318109 0.000 649.594092 0.025375 0.524219
6 Energy-weighted Depth 317501 -2.122 105.600000 0.041278 0.668506
4 Multiplicity 318109 0.000 956.000000 0.009926 0.478297

properties are listed in Table 1. The selected area is split into a 60x40 grid. In
each cell of the grid, 1 Magnitude means average magnitude within this cell
and 2 Log-Energy means the log energy define as (10M )3/2. 3 Fourth-root of
Energymeans the fourth root of the sum energy. 4 Multiplicity represents the
number of shocks happened in this cell. And 5 Average Depth is the average
of depth over all shocks in this cell. 6 Energy-weighted Depth is the energy
weighed depth.

2.3 Method: Neural Network Models
In this section, we firstly formalize the earthquake prediction as a spatiotemporal
forecasting problem in terms of its spatial and temporal dependencies. And then,
we describe how the spatial and temporal dependencies can be modeled by using
CNN-LSTM neural networks.

Earthquake hypocenter locations are a series of events that happened as a
time sequence when different body wave phases. It is well known that these data
are nonlinear functional of the compressional or shear wave velocity structure and
the coordinates of the source in space-time [11]. Figure 2 shows all hypocenters
are plotted in maps.

2.3.1 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) draw many successful applications in
recent years and it becomes the state-of-the-art in image related approach in
deep learning. In 2015, Berkeley [12] revealed that fully convolutional networks
for semantic segmentation adopting AlexNet [13], VGGNet [14], and Google
Net [15] can improve training and simplify the state-of-art training and inference
for image classification.

CNN has also enabled its capability to efficiently deal with spatially-correlated
problems via locally-connected convolution layers [16] Geo locations of hypocen-
ters in the earthquake dataset can be represented in graph models, in which
the distance can be measured as an Euclidean distance based on longitudes and
latitudes of hypocenters in 2D maps.
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2.3.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory Neural Networks (LSTM) is a type of recurrent neural
networks (RNN) in which prior knowledge can be reused [17, 18, 19]. LSTM
is capable of learning long term dependencies by remembering information for
long periods of time. We propose to use LSTM to model temporal dependence
of earthquakes in time-series sequence to sequence prediction.

2.3.3 Convolutional LSTM (ConvLSTM)

Convolutional LSTM is an extension of fully-connected LSTM (FC-LSTM) [10],
which has convolutional LSTM and can be used to build trainable models for
forecasting problems. It has been successfully adopted to predict actions affect
object in a real world environment. [20] Compare to FC-LSTM, CNN-LSTM is
able to handle spatiotemporal sequences. Internally, spatiotemporal sequence
can be transformed from a sequence of 2D matrices, which is a 3D tensor in
computing. CNN-LSTM learns the temporal state to state transitions while
keeping the spatial information via convolutions. The following equations show
how the CNN-LSTM cell does the computation:

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi)
ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf )
Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)
ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ◦ Ct + bo)
Ht = ot ◦ tanh(Ct)

(1)

, in which ∗ represents the convolution product, ◦ represents the element-wise
product, X is the input, C is the cell output, H represents hidden states of cells,
and i, f, o are gates within cells.

2.4 Experiments and Evaluation
2.4.1 Model Implemenation and Dataset Preprocessing

The earthquake dataset is a tablet formatted dataset in which each record is an
earthquake hypocenter with a timestamp, a GEO location, a magnitude, and
depth. In this study, we focus on the prediction of what time and location the
next big earthquake will happen and the depth is ignored in this case. The
dataset contains all earthquake events in Southern California ranging from 1990
to 2019 year. Figure 1 shows all events plotted in 2D maps, in which hot spots
are areas where earthquakes frequently happened or big earthquakes happened
in history.

We divide the Southern California (Longitude: -120~-140, Latitude: 32~36)
into a grid with 40×60 cells, each of which has 1 degree of longitude and latitude.
Firstly, it is easy to group events into years. Then, let x, y denote the longitude
and latitude location of an event. All events are accumulated in corresponding
cell where x, y fall into. The value of each cell is the mean of magnitudes of all
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Figure 2: Dataset overview of earthquakes in Southern California

events within the cell. As a result, each year is represented by a 2D image-like
matrix (40× 60).

2.4.2 Empirical Study

We build a neural network model with CNN-LSTM layers as shown in Figure 3a,
in which there are 3 layers of CNN-LSTM connecting with 3 layers of Batch
Normalization, and 3D convolution layer being used as the final layer.

There are two aspects in the consideration of this model:

• In a period of time sequence, a sequence of k 2D matrices are the input:
t1, t2, . . . , tk, and the output is another sequence:t2, t3, . . . , tk+1. In this
way, the tk+1 is the predicted result.

• In Southern California, the model can be trained and predict the roughly
location of the next hypocenter of earthquake with magnitude in the
predicted 2D matrix. For example, if the input is Xt at t time, the output
from the model is Xt+1 at t+ 1 time. The predicted magnitude of GEO
location at x, y in Southern California can be found in Xt+1[y][x].

2.4.3 Performance Evaluation

We train the model for 500 epochs. The training loss history is shown in Figure 3b.
The ground truth data and predicted data for 2017 and 2018 are compared in
Figure 4, in which magnitudes are normalized within range of 0 to 1 and darker
cells represent higher magnitude.

To quantify the prediction, we simply calculate the coefficient of determination
(R2) scores between between ground truth and prediction for 2017 and 2018.
Table 2 shows the R2 scores of the comparison between ground truth and
prediction under different thresholds. Here the R2 is defined as ȳ = 1

n

∑n
i=1 yi,

SStot =
∑

i(yi − ȳ)2,SSreg =
∑

i(fi − ȳ)2,R2 = 1 − SSres
SStot

, in which yi is the
ground truth and fi is the predicted data. Thresholds are used because we focus
on events with big magnitudes and filter events with small magnitudes, which
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Figure 3: Experimental neural network model applied for earthquake prediction
in Southern California

are tend to be just noise. According our experiments, the R2 scores are 0.69,
0.71 for 2017, 2018 year respectively when the threshold is 0.25. The R2 scores
are 0.91, 0.93 for 2017, 2018 year respectively when the threshold is 0.3.

2.5 Summary
In this project, we discuss how we can model spatial temporal forecasting prob-
lems using deep neural networks and we propose a model to address this problem.
In experiments, we demonstrate some preliminary results of using CNN,LSTM,
and ConvLSTM to predict earthquakes in Southern California. According our
experiments, we show some promising results when proper thresholds are chosen
to filter out noisy. Future works could include tuning parameters of this model
and compare the performance with other models.

3 EQPred: Model Fusion for Extreme Event
3.1 Introduction
In this project, we propose joint modeling of using a self supervised autoencoder
and temporal convolutional (TCN) neural networks for earthquake prediction
by modeling spatiotemporal dependencies in Southern California. Additionally,
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Table 2: R2 score evaluation for predictions

Year Threshold R2 score
2017 0.25 0.69
2017 0.3 0.91
2018 0.25 0.71
2018 0.3 0.93

Figure 4: Ground truth vs. prediction of earthquakes in Southern California

EQPred comprehensively improves the autoencoder and TCN by incorporating
skip connections and local temporal attention mechanisms. Compared to conven-
tional recurrent neural networks or a single model, our joint modeling presents
some advantages in predicting major shocks in the area of study. In summary:

• We study the earthquake dataset for Southern California and reconstruct
the time series events into a sequence of 2D images.

• We model the spatiotemporal dependencies of earthquakes in Southern
California with an improved autoencoder and TCN neural networks and
show some preliminary but promising results for forecasting events.

3.2 Modeling Approach
The proposed prediction model consists of two major components, an autoencoder
which learns the latent space distribution from the image like view of the
earthquakes and a prediction network which learns to predict the likelihood of
the next main shock happening within the same area.
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Figure 5: EQPred: overview of earthquake prediction networks.

3.2.1 Data Considerations

The earthquake catalog is a tablet formatted dataset. In this project, we focus
on time and geo location shocks. The dataset contains all earthquake events
in Southern California ranging from the year 1990 to 2019. Figure 1 shows
all events plotted in 2D maps, in which hot spots are areas where earthquakes
frequently happened or big earthquakes happened in history.

3.2.2 Energy-based data models

Seismometers record seismic events from calibrating vibrations of waves. Mag-
nitude in the dataset represents measured amplitude as measured seismogram.
While they are discrete data points, accumulating all magnitudes by summing
them up by averaging makes the temporal information loss, and deemphasizes
large earthquakes. In contrast to magnitude, earthquakes release energy can
help mitigate this issue by two folds: 1) accumulated energy value in a region
can represent the energy released by the stress of Earth over time; 2) energy
data model naturally highlights large events since the energy of large events
can be an order of magnitude higher than that of small events. The formula of
converting earthquake magnitude to energy is defined as

E = (10M)3/2 (2)

in which the magnitude 0 ≤M ∈ R ≤ 10. 1

3.2.3 Location-aware data weaving

As a time-series prediction task, the earthquake catalog contains locations and
magnitudes, which could be used as target properties. However, it could be more
nature to reorganize the 1D time-series dataset into a 2D sequence dataset by
dividing a map region into small boxes according to longitudes and latitudes and

1Earthquake magnitude can be even negative for very small events that are negligible. This
scale is also open-ended, but events with magnitudes greater than 10 are clipped to 10.
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aggregating the released energy within a small box per specific time frequency.
So each element of the sequence becomes a summation of all energy released at
the location (i, j): Xt

i,j =
∑

((10M)3/2), i ∈ [0,M) and j ∈ [0, N) , which means
Xt has a shape M ×N for M boxes along the latitude and N boxes along the
longitude.

3.2.4 AutoEncoder for Effective Spatial Modeling

Main shocks with large magnitudes are rare in terms of statistics and nature
physics. In addition, earthquakes are full of stochastic processing, resulting in
seismic signals are very noisy. To predict the future main shocks, we first model
the spatial patterns within the southern California area.

We use an autoencoder to recognize the spatial pattern changes under normal
circumstances and abnormal circumstances. Compared to variational autoen-
coders (VAE), we do not assume Gaussian distribution or any other kinds of
distributions for the latent space. In addition, the reconstructed results from
VAE are tended to be more noisy. We also make some experiments for full
comparison in Section 3.3. This is a semi-supervised process of pre-training a
model that learns the representation of earthquake images. We train this model
by using the following equation.

L(Xnormal, g(f(Xnormal)) + Ω(h,Xnormal) (3)

, where Xnormal are images of earthquakes with magnitudes less than a threshold,
f is an encoder function, g is an decoder function, and Ω is a function that
regularizes or penalizes the cost.

3.2.5 Spatial modeling

After the seismic events are parsed and transformed to image-like sequences in
Section 3.2.1, we can utilize the spatial dependencies between pixels. Convolu-
tional operations are common image feature extraction means. Pixel relationship
can be easily mapped to geology locations of events.

3.2.6 Skip connections

We incorporate skip connections in the AutoEncoder architecture. Skip connec-
tions are forward shortcuts in networks. They symmetrically connect layers from
the encoder and decoder as shown in Figure 5. This strategy allows long skip
connections to pass features from the encoder path to the decoder path directly,
which can recover spatial information lost due to downsampling, according
to [21].

3.2.7 Bottleneck layer

The bottleneck layer in the AutoEncoder is deliberately set to a small vector of a
size k feature map. This design is effective for two reasons. Firstly, it regularize
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the model from overfitting all samples. Secondly, a small feature map can better
differentiate the abnormal cases from normal cases.

3.2.8 TCN Model for Effective Temporal Modeling

In this work, the goal of forecasting earthquakes is to predict the future probability
of a major shock happening in Southern California. This can be done in a
prediction network, which is fed in the information gained from the AutoEncoder.
A long short-term memory (LSTM) model can predict well on this task. However,
in EQPred we incorporate an enhanced TCN (Figure 5), which can outperform
LSTM. This situation is similar in predicting other physics related fields of
study. For example, TCN is used to predict climate changes [22]. This is further
analyzed in the following sub sections.

Conditional Temporal Convolution Temporal convolution neural networks
are used to improve the temporal locality prediction over time. Temporal
convolutional layers are layers containing causal convolution with varied dilation
rate in 1D convolutional layers [23, 24]. A typical configuration of temporal
convolution layers is set the dilation rate corresponding to the i-th of layers, for
example 2i.

p(y|θ) =
T∏

t=1
p(yt+1|y1, . . . , yt, θ) (4)

Local Temporal Attention A localized attention process to enhance temporal
information passing is inspired by self-attention structure from Transformer [25],
and Hao et al. work for sequence modeling [26]. The process incorporates
functions f , g, and h to calculate d dimensional vector of keys K, queries Q, and
values V respectively. Then, we calculate the weight matrix byW = K·Q√

d
. Finally,

we apply a softmax function to the lower triangle of W to get a normalized
attention weight Wattention = softmax(W ) and the final out of this layer can
be calculated via this attention weighted summary:

∑T
t=1 Wattention · yt.

3.2.9 Smooth joint Nash–Sutcliffe efficiency: NSE

Nash–Sutcliffe model efficiency coefficient (NSE) is a commonly used metric to
evaluate a predictive model. NSE is widely used to evaluate predictive skills in
scientific studies, such as hydrology [27]. The value range of NSE is (−∞, 1).
NSE can become negative when the mean error in the predictive model is larger
than one standard deviation of the variability. Its equation is defined as follows.

NSE = 1−
∑T

t=0(ŷt − yt)∑T
t=0(yt − ȳ)

(5)
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(a) Mag >= 0 (b) Mag >= 2.5

(c) Mag >= 3.5 (d) Mag >= 4.5

Figure 6: Dataset overview: (a) 444, 589 events with magnitude ≥ 0.0, (b) 24, 822
events with magnitude ≥ 2.5, (c) 2, 489 events with magnitude ≥ 3.5, (d) 237
events with magnitude ≥ 4.5

3.3 Experiments and Evaluation
3.3.1 Dataset augmentation and preprocessing

The earthquake dataset is a tablet formatted dataset in which each record is
an earthquake epicenter with a timestamp, a GEO location, a magnitude, and
depth. We preprocess the catalog according to the analysis in Section 3.2.1.

We divide the Southern California (Longitude: -120~-140, Latitude: 32~36)
into a grid with 60 × 40 cells, each of which has 0.1 degree of longitude and
latitude for about 11.1km (1 degree in kilometers is about 111km). Firstly, it is
easy to group events into daily intervals. Then, let x, y denote the longitude
and latitude location of an event. All events are accumulated in corresponding
cell where x, y fall into. The value of each cell is the mean of magnitudes of all
events within the cell. As a result, each day is represented by a 2D image-like
60× 40 matrix.

3.3.2 Experimental setup

Our EQPred model and other baseline models are implemented with TensorFlow
in Python. All experiments are conducted on a machine with 8 NVidia K80
GPUs. All models, include EQPred and baseline models are trained using Adam
or SGD optimizers with a fine-tuned learning rate and mean squared error as
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Table 3: EQPred AutoEncoder vs. VAE.

Model MSE Accuracy Variance
EQPred 0.148 0.968 1.432
VAE [28] 0.157 0.971 1.986

Table 4: Varying the latent space dimension.

Latent space dimension MSE Accuracy
16 0.148 0.968
64 0.140 0.968
128 0.138 0.972
1024 0.137 0.984

training loss. All model weights are check-pointed and we select the best model
weights for testing. Events with magnitudes ≥ 4.5 are labeled as extreme major
shocks.

3.3.3 Experimental Results

In these set of experiments, we aim to demonstrate the performance of EQPred
compared to a series of baseline models. Firstly, we show the performance
differences between autoencoder in EQPred and a VAE. Then, we compare the
prediction network with a LSTM. Finally, we illustrate the comprehensive results
from using EQPred comparing with a series of methods.

3.3.4 AutoEncoder

As we mention an autoencoder is used in EQPred in Section 3.2 as opposed to a
variational autoencoder, we compare the results of using EQPred autoencoder
with a common VAE. The performance results are summarized in Table 3. Even
though VAE can achieve almost the same performance in terms of accuracy, it
has higher mean squared loss and variance for the final output. Higher MAE
loss and variance affect the performance of the prediction network.

3.3.5 Prediction

We analyze the TCN in EQPred in Section 3.2 comparing with a LSTM model.
For this time series forecasting, the prediction network in EQPred can outperform
the LSTM network. Due to the stochastic nature of shocks, the output series
from the autoencoder is denoised by the LOESS smoothing method [29]. We
summarize the experimental results in Table 5.
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Table 5: Results comparison between EQPred and baseline models. Some models
adopt the same architecture of using an autoencoder and a prediction network.
These models are named with a ‘+’ sign.

Models MAE Precision Recall F-1 F-0.2 NSE
MLP - 0.2631 0.2845 0.2096 0.2494 -1.4739
LSTM - 0.4596 0.5186 0.3801 0.4058 -0.2059
Conv2D-FC - 0.4589 0.3963 0.4340 0.4394 -0.1867
Conv2D-LSTM - 0.4299 0.4069 0.4217 0.4243 -0.4022
ConvLSTM2D-FC - 0.4633 0.3289 0.3763 0.3801 -0.1714
MLP+MLP 0.2570 0.7525 0.6338 0.6652 0.7113 0.6778
MLP+LSTM 0.1637 0.8420 0.7085 0.7599 0.8021 0.7890
MLP+Conv1D 0.1484 0.8571 0.9351 0.8029 0.8342 0.8133
Conv2d+MLP 0.1484 0.8577 0.7944 0.7887 0.8098 0.8108
Conv2D+LSTM 0.1410 0.8640 0.8776 0.8609 0.8683 0.8222
Conv2D+Conv1D 0.0588 0.9420 0.9115 0.8998 0.8688 0.9293
EQPred 0.0483 0.9563 0.9016 0.9251 0.9341 0.9323

Table 6: Ablation study by removing core components in EQPred.

Models F-1 NSE
W/O skip connections 0.9001 0.9233
W/O local temporal attention 0.9247 0.9289
EQPred 0.9251 0.9323

3.3.6 Comprehensive Analysis

In this set of experiments, we list several commonly used models for predicting the
future main shocks. The results are summarized in Table 5. In this table, MLP
represents a three-layer of fully connected neural networks. LSTM represents
a two-layer of stateful LSTM neural networks. Conv2D, Conv1D represent a
neural network consisting of one 2D convolutional and one 1D convolutional
layer, respectively. From this table, we illustrate EQPred can outperform a
single model significantly and other combination of models for this task.

3.3.7 EQPred Ablation Study

In the following two sets of experiments, we demonstrate the two major techniques
that can improve the autoencoder and the prediction network: skip connections
and local temporal attention. In the first set, we remove the skip connections
in the autoencoder and keep the remaining parts the same. In the second set,
we remove the local temporal attention in the prediction network and use the
same autoencoder as the EQPred. Table 6 shows the results of these two sets of
experiments.
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Figure 7: EQPred prediction.

3.3.8 Discussion and Empirical Study

We build joint models as shown in Figure 5, in which the autoencoder can learn
the spatial pattern and the predictor can forecast future event. Figure 7 shows a
prediction example. Given an input sequence window, the predictor can output
a future sequence window, from which a major shock can be detected. There are
two aspects in the consideration of this model: 1) During the training period, a
sequence of T 2D matrices are the input: Xt1 , Xt2 , . . . , XtT

, and the output is
another sequence:yt2 , yt3 , . . . , ytT +1 . In this way, the ytT +1 is the predicted result.
This means that the model can be trained on rolling basis as the data stream
in. 2) In Southern California, the model can be trained and predict a novelty
score which represents the probability of the next major shock. For example, if
the input is Xt at t time, the output from the model is Xt+1 at t+ 1 time. The
predicted probability of this area can be told from yt+1.

3.4 Summary
In this project, we propose EQPred, a joint modeling approach that mines the
spatial and temporal dynamics from the dataset and predict extreme event by
using learned latent variables. We dissect the problem settings for forecasting
earthquakes, discuss how we model spatial temporal forecasting problems using
deep neural networks. In contrast to 11 different approaches in the experiments,
we demonstrate the effectiveness of EQPred to predict extreme cases in Southern
California. According the metrics from our experiments, we show some promising
when proper thresholds are chosen to filter out noisy.
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4 Conclusions
In this report, we propose two modeling approaches for earthquakes analysis,
namely EQNet and EQPred. EQNet augments data by aggregating multiple
features to form a time series of images, and EQPred combines two models so
that one mines the spatial and temporal dynamics from the dataset and another
predicts extreme event by using learned latent variables. We dissect the problem
settings for forecasting earthquakes, discuss how we model spatial temporal
forecasting problems using deep neural networks.

Even though we have study a few modeling approach and find our the most
effective one, the domain knowledge is still required from Geoscience experts.
In future, we plan to verify this approach in wider areas and we also consider
other physics quantities like seismicity, electric field, magnetic field, deformation
which are highly possible correlated to earthquake events.

Code and data availability

The earthquake raw event dataset used in the paper is available to download
from the USGS website at https://www.usgs.gov/. Model codes and parsed
datasets used in the paper will be published upon acceptance of this manuscript.
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