
Enabling High Performance Computing in Cloud
Infrastructure using Virtualized GPUs

Andrew J. Younge*†

ajyounge@indiana.edu
John Paul Walters†

jwalters@isi.edu
Steve Crago†

crago@isi.edu
Geoffrey C. Fox*

gcf@indiana.edu
*Indiana University †Information Sciences Institute
2719 E 10th Street University of Southern California

Bloomington, IN 47408 3811 Fairfax Drive
Arlington, VA 22203

ABSTRACT
With the advent of virtualization and Infrastructure-as-a-Service
(IaaS), the broader scientific computing community is considering
the use of clouds for their technical computing needs. This is due to
the relative scalability, ease of use, advanced user environment cus-
tomization abilities clouds provide, as well as many novel comput-
ing paradigms available for data-intensive applications. However,
there is still a notable gap that exists between the performance of
IaaS when compared to typical high performance computing (HPC)
resources, limiting the applicability of IaaS for many potential sci-
entific users.

Most recently, general-purpose graphics processing units(GPGPUs
or GPUs) have become commonplace within high performance su-
percomputers. We propose to bridge the gap between supercom-
puting and Clouds by providing GPU-enabled virtual machines.
Specifically, the Xen hypervisor is utilized to leverage specialized
hardware-assisted I/O virtualization tools in order to provide ad-
vanced HPC-centric Nvidia GPUs directly in guest VMs. We eval-
uate this work by measuring the performance of two Nvidia Tesla
GPUs and comparing to bare-metal hardware. Results show this
method of leveraging GPUs within virtual machines is a viable use
case for many scientific computing workflows, and could help sup-
port high performance cloud infrastructure in the near future.

Keywords
High Performance Computing, Cloud Computing, GPU, Virtual-
ization

1. INTRODUCTION
Cloud computing [2] has recently established itself as a prominent
paradigm within the realm of Distributed Systems [31] in a very
short period of time. Clouds are an internet-based solution that pro-
vide computational and data models for utilizing resources, which
can be accessed directly by users on demand in a uniquely scalable
way. Cloud computing functions by providing a layer of abstrac-
tion on top of base hardware to enable a new set of features that

are otherwise intangible or intractable. These benefits and features
include Scalability, a guaranteed Quality of Service (QoS), cost ef-
fectiveness, and direct user customization via a simplified user in-
terface [34].

While the origin of cloud computing is based in industry through
solutions such as Amazon’s EC2 [1], Google’s MapReduce [9], and
Microsoft’s Azure [3], the paradigm has since become integrated
in all areas of science and technology. Most notably, there is an
increasing effort within the High Performance Computing (HPC)
community to leverage the utility of clouds for advanced scien-
tific computing to solve a number of challenges still standing in
the field. This can be clearly seen in large-scale efforts such as
the FutureGrid project [32], the Magellan project [35], and through
various other Infrastructure-as-aService projects including Open-
Stack [26], Nimbus [19], and Eucalyptus [24].

Within HPC, there has also been a notable movement toward dedi-
cated accelerator cards such as general purpose graphical process-
ing units (GPGPUs, or GPUs) to enhance scientific computation
problems by an upwards of two orders of magnitude. This is ac-
complished through dedicated programming environments, com-
pilers, and libraries such as CUDA [25] from Nvidia as well as
the OpenCL effort [30]. When combining GPUs in an otherwise
typical HPC environment or supercomputer, major gains in perfor-
mance and computational ability have been reported in numerous
fields [5, 22], ranging from Astrophysics to Bioinformatics. Fur-
thermore, these gains in computational power have also reportedly
come at an increased performance-per-watt [16], a metric that is
increasingly important to the HPC community as we move closer
to exascale computing [21] where power consumption is quickly
becoming the primary constraint.

With the advent of both clouds and GPUs within the field of sci-
entific computing, there is an immediate and ever-growing need to
provide heterogeneous resources, most immediately GPUs, within
a cloud environment in the same scalable, on-demand, and user-
centric way that many cloud users are already accustomed to [6].
While this task alone is nontrivial, it is further complicated by the
high demand for performance within HPC. As such, it is perfor-
mance that is paramount to the success of deploying GPUs within
cloud environments, and thus is the central focus of this work.

This manuscript is organized as follows. First, in Section 2, we
discuss the related research and options are currently available for
providing GPUs within a virtualized cloud environment. In Sec-
tion 3, we discuss the methodology behind our proposed solution

and the details of implementation. In Section 4 we outline the eval-
uation of our solution using two different Nvidia Tesla GPUs and
compare to the best-case native application in Section 5. Then, we
discuss the implications of these results in Section 6 and consider
the applicability of each method within a production cloud system.
Finally, we conclude with our findings and suggest directions for
future research.

2. VIRTUAL GPU DIRECTIONS
Recently, GPU programming has been a primary focus for nu-
merous scientific computing applications. Significant progress has
been accomplished in many different workloads, both in science
and engineering, based on parallel abilities of GPUs for floating
point operations and very high on-GPU memory bandwidth. This
hardware, coupled with CUDA and OpenCL programming frame-
works, has lead to an explosion of new GPU-specific applications
that outperform even the fastest multicore counterparts by an order
of magnitude [27]. In addition, further research will leverage the
per-node performance of GPU accelerators with the high speed,
low latency interconnects commonly utilized in supercomputers
and clusters in order to create a hybrid GPU + MPI class of ap-
plications that seek scalability to many GPUs simultaneously [20].

Since the establishment of cloud computing in industry, research
groups have been evaluating its applicability to science [13]. His-
torically, HPC and Grids have been on similar but distinct paths
within distributed systems, and have concentrated on performance,
scalability, and solving complex, tightly coupled problems within
science. This has lead to the development of supercomputers with
many thousands of cores, high speed, low latency interconnects,
and sometimes also coprocessors and FPGAs [4, 7]. Only recently
have these systems been evaluated from a cloud perspective [35].
An overreaching goal exists to provide HPC Infrastructure as its
own service (HPCaaS) [28], aiming to comprehend and limit the
overhead of virtualization, and reducing the bottlenecks classically
found in CPU, memory, and I/O operations within hypervisors [18,
36]. Furthermore, the transition from HPC to cloud computing be-
comes more complicated when we consider adding GPUs to the
equation.

GPU availability within a cloud is a new concept that has sparked
a large amount of interest within the community. The first suc-
cessfully deployment of GPUs within a Cloud environment was
the Amazon EC2 GPU offering. A collaboration between Nvidia
and Citrix also exists to provide cloud-based gaming solutions to
users using the new Kepler GPU architecture [33], although this is
currently not targeted towards HPC applications.

The task of virtualizing a GPU accelerator for use in a virtualized
cloud environment is one that presents a myriad of challenges. This
is due to the complicated nature of virtualizing drivers, libraries,
and the heterogeneous offerings of GPUs from multiple vendors.
Currently, two possible techniques exist to fill the gap in providing
GPUs in a cloud infrastructure: back-end I/O virtualization, which
this manuscript focuses on, and Front-end remote API invocation.

2.1 Front-end Remote API invocation
One method for using GPUs within a virtualized Cloud environ-
ment is through front-end library abstractions, the most common
of which is remote API invocation. Also known as API remoting
or API interception, it represents a technique where API calls are
intercepted and forwarded to a remote host where the actual compu-
tation occurs. The results are then returned to the front-end process

that spawned the invocation, potentially within a virtual machine.
The goal of this method is to provide an emulated device library
where the actual computation is offloaded to another resource on a
local network.

Front-end remote APIs for GPUs have been implemented by a num-
ber of different technologies for different uses. To solve the prob-
lem of graphics processing in VMs, VMWare [23] has developed a
device-emulation approach that emulates the Direct3D and OpenGL
calls to leverage the host OS graphics processing capabilities to
provide a 3D environment within a VM. API interception through
the use of wrapper binaries has also been implemented by technolo-
gies such as Chromium [17], and Blink. However these graphics
processing front-end solutions are not suitable for general purpose
scientific computing, as they do not expose interfaces that CUDA
or OpenCL can use.

Currently, efforts are being made to provide a front-end remote
API invocation solutions for the CUDA programming architecture.
vCUDA [29] was the first of such technologies to enable transpar-
ent access of GPUs within VMs by API call interception and redi-
rection of the CUDA API. vCUDA substitutes the CUDA runtime
library and supports a transmission mod using XMLRPC, as well
as a share mode built on VMRPC, a dedicated remote procedure
call architecture for VMM platforms. The share model generally
resulting in better performance, especially as the volume of data
increases, although there may be limitations in VMM interoper-
ability.

Like vCUDA, gVirtuS uses API interception to enable transpar-
ent CUDA, OpenCL, and OpenGL support for Xen, KVM, and
VMWare virtual machines [14]. gVirtuS uses a front-end/back-end
model to provide a VMM-independent abstraction layer to GPUs.
Data transport from gVirtuS’ front-end to the back-end is accom-
plished through a combination of shared memory, sockets, or other
hypervisor-specific APIs. gVirtuS’ primary disadvantage is in its
decreased performance in host-to-device and device-to-host data
movement due to overhead of data copies to and from its shared
memory buffers.

rCUDA [11, 12], a recent popular remote CUDA framework, also
provides remote API invocation to enable VMs to access remote
GPU hardware by using a sockets based implementation for high-
speed near-native performance of CUDA based applications. rCUDA
recently added support for using InfiniBand’s high speed, low la-
tency network to increase performance for CUDA applications with
large data volume requirements. rCUDA version 4.1 also sup-
ports the CUDA runtime API version 5.0, which supports peer de-
vice memory access and unified addressing. One drawback of this
method is that rCUDA cannot implement the undocumented and
hidden functions within the runtime framework, and therefore does
not support CUDA C extensions. While rCUDA provides some
support tools, native execution of CUDA programs is not possible
and programs need to be recompiled or rewritten to use rCUDA.
Furthermore, like gVirtuS and many other solutions, performance
between host-to-device data movement is only as fast as the under-
lying interconnect, and in the best case with native RDMA Infini-
Band, is roughly half as fast as native PCI Express usage.

3. DESIGN AND IMPLEMENTATION
Another approach to using a GPU in a virtualized environment is to
provide a VM with direct access to the GPU itself, instead of rely-
ing on a remote API. Our solution in this manuscript focuses on this

approach. Devices on a host’s PCI-express bus are virtualized us-
ing directed I/O virtualization technologies recently implemented
by chip manufacturers, and then direct access is relinquished upon
request to a guest VM. This can be accomplished using the VT-
d and IOMMU instruction sets form Intel and AMD, respectively.
This mechanism, typically called PCI passthrough, implements a
memory management unit (MMU) to handle direct memory access
(DMA) coordination and interrupt remapping directly to the guest
VM, thus bypassing the host entirely. With host involvement be-
ing nearly non-existent, near-native performance of the PCI device
within the guest VM can be achieved, which is an important char-
acteristic for using a GPU within a cloud infrastructure.

PCI Passthrough itself is a standard technique for many other I/O
systems such as storage or network controllers. However, GPUs
(even from the same vendor) have additional legacy VGA com-
patibility issues and non-standard low-level interface DMA inter-
actions that make direct PCI Passthrough difficult. As such, most
common hypervisors such as KVM or VirtualBox do not provide
support for GPU PCI Passthrough. VMWare has started use of a
vDGA system for hardware GPU utilization, however it remains in
tech preview and only documentation for Windows VMs is present
[23]. In our experimentation, we have found that the Xen hypervi-
sor is an ideal virtualization solution for providing PCI Passthrough
of GPU devices due to its open nature, extensive support, and high
degree of reconfigurability.

Today’s GPUs can provide a variety of frameworks for applica-
tion programmers to use. Two common solutions mainly used,
CUDA and OpenCL. CUDA, or the Compute Unified Device Ar-
chitecture, is framework for creating and running parallel appli-
cations on Nvidia GPUs. OpenCL provides a more generic and
open framework for parallel computation on CPUs and GPUs, and
is available for a number of Nvidia, AMD, and Intel based GPUs
and CPUs. While OpenCL provides a more mobust and portalbe
solution, most HPC applications utilizing GPUs are based on the
faster CUDA framework. As such, we focus only on Nvidia based
CUDA-capable GPUs as they can offer the best support for a wide
array of programs, although this work is not strictly limited to
Nvidia GPUs.

To enable PCI Passthrough, a very specific host environment must
be implemented. In this work we utilize the Xen 4.2.2 hypervisor
on Centos 6.4 and a custom 3.4.50-8 Linux kernel with Dom0 Xen
support. Within the Xen hypervisor, GPU devices are seized upon
boot and assigned to the xen-pciback kernel module. This process
blocks the host devices form loading the Nvidia or nouveau drivers,
keeping the GPUs uninitialized.

Xen, like other hypervisors, provides a standard method of pass-
ing through PCI devices to guest VMs upon creation. When as-
signing a GPU to a new VM, Xen loads a specific VGA BIOS to
properly initialize the device enabling DMA and interrupts to be as-
signed to the guest VM. Xen also relinquishes control of the GPU
via the xen-pciback module. From there, the Linux Nvidia drivers
are loaded and the device is able to be used as expected within the
guest. Upon VM termination, the xen-pciback module re-seizes the
GPU and the devices can be re-assigned to new VMs in the future.

This mechanism of PCI-passthrough for GPUs can be implemented
using multiple devices per host, as illustrated in Figure 1. Here, we
see how the device’s connection to the VM totally bypasses the
Dom0 host as well ass the Xen VMM, and managed by VT-d or

 VMM
 (Hypervisor)

ETH0 GPU1GPU0 GPU2

DomN VMDom2 VMDom1 VM

Dom0

GPUvethGPUvethGPUveth

BR0

CPU &
DRAM

OpenStack
Compute

CUDA
Task

CUDA
Task

CUDA
Task

VT-D / IOMMU

PCI Express

. . .

Figure 1: GPU PCI Passthrough within the Xen Hypervisor

IOMMU for accessing the PCI-Express bus which the GPUs uti-
lize. This is in contrast almost all other virtual device usage, where
hardware is emulated by the host and shared accross all guests. This
is the common usage for Ethernet controllers and input devices to
enable users to interact with VMs as they would with native hosts.

The potential downside of this method is there can be a 1:1 or 1:N
mapping of VMs to GPUs only. A M:1 mapping where multiple
VMs use a GPU is not possible. However, almost all scientific ap-
plications environments using GPUs generally do not share GPUs
between processes or other nodes, as doing so would cause unpre-
dictable and serious performance degradation. As such, this GPU
isolation within a VM can be considered an advantage, especially
when IaaS VM scheduling mechanisms can proactively schedule
heterogeneous hardware.

3.1 Feature Comparison
This proposed solution has a number of advantages compared to
front-end API implementations. First, it allows for an operating
environment that most closely relates to native bare-metal usage of
GPUS. Essentially, a VM provides a nearly identical infrastructure
to clusters and supercomputers with integrated GPUs. This low-
ers the learning curve for many researchers, and even enables re-
searchers to potentially use other tools within a VM that might not
be supported within a supercomputer or cluster. Unlike with re-
mote API implementations, users don’t need to decompile or mod-
ify their code, as the GPUs are essentially local to the computa-
tion. Further comparing to remote API implementations, using PCI
passthrough within a VM allows users to leverage any GPU frame-
work available, either OpenCL to CUDA, and any higher level pro-
gramming frameworks such as Matlab or Python.

Through the use of advanced scheduling techniques within Cloud
infrastructure, we can also take advantage of pci-passthrough im-
plementation for efficiency purposes. Users could request VMs
with GPUs which get scheduled for creation on machines that pro-
vide such resources, but can also request normal VMs as well. The
scheduler can correctly map VM requirement requests to hetero-
geneous hardware. This enables large scale resources to support a
wide array of scientific computing applications without the added
cost of putting GPUs in all compute nodes.

4. EXPERIMENTAL SETUP
In this manuscript back-end GPU PCI Passthrough to virtual ma-
chines using the Xen hypervisor is described. While we can con-
firm this method as working though multiple Tesla based GPUs,
proper evaluation of the performance of our method needs to be
properly considered. As such, we run an array of benchmarks
that evaluate the performance of our method compared to the same
hardware running native bare-metal GPU code without any virtual-
ization. As our method could be scaled up to many cloud compute
nodes, we focus our tests on single-node performance to best un-
derstand low level overhead.

To evaluate our design, two different machines were used to rep-
resent present and upcoming Nvidia GPUs. The first system at In-
diana University consists of dual-socket Intel Xeon X5660 6-core
CPUs at 2.8Ghz with 192GB DDR3 RAM, 8TB RAID5 array, and
two Nvidia Tesla "Fermi" C2075 GPUs. The system at USC/ISI
uses a similar dual-socket Intel Xeon E5-2670 8-core CPUs at 2.6Ghz
with 48GB DDR3 RAM, 3 600GB SAS disk drives, but with a
prototype Nvidia Tesla "Kepler" K20m GPU supplied by Nvidia.
These machines represent the present Fermi series GPUs along
with the recently release Kepler series GPUs, providing a well-
rounded experimental environment. Native systems were standard
RHEL 6.4 with a stock 2.6.32-279 Linux kernel, whereas Xen host
systems were still loaded with RHEL6.4 but with a custom 3.4.53-8
Linux kernel and Xen 4.2.22. Guest VMs were also RHEL6.4 with
N-1 processors and 24GB of memory and 1 GPU passed through
in HVM full virtualization mode. Using both IU and USC/ISI ma-
chine configurations both in native and VM modes represent the 4
test cases for our work.

In order to evaluate the performance, the SHOC Benchmark suite
[8] was used to extensively evaluate performance across each test
case. This was compiled using the NVCC compiler in CUDA5
driver and library, along with OpenMPI 1.4.2 and GCC 4.4. Each
benchmark was run a total of 20 times, with the results given as
an average of all runs along with 95% confidence intervals as error
bars.

5. RESULTS
Results of all benchmarks are compressed into three subsections;
Flops, device bandwidth and pci bus performance. Each represents
a different level of evaluation for GPU-neabled VMs compared to
bare-metal native GPU usage.

5.1 Flops
Flops, or floating point operations per second, are a common mea-
sure of computational performance, especially within scientific com-
puting. The Top 500 list [10] has been the relative gold stan-
dard for evaluating supercomputing performance for more than two
decades. With the advent of GPUs in some of the fastest supercom-
puters today, including the exact same GPUs ued in our experimen-
tation, understanding virtualized performance relative to this metric
is imperative to its relative sucess.

Figure 2 describes raw peak FLOPs available using each GPU in
both native and virtualized modes. First, we the obvious advantage
of using the Kepler series GPUs over Fermi, with peak single pre-
cision speeds tripling in each case. Even for double precision flops,
there is rougly a doubling of performance with the new GPUs. For
our research, however, its most interesting that there between a 0
and 2.9% overhead when using our GPU VMs compare to normal.
Furthermore, the K20m-enabled VM was still able to provide over

3 Teraflops within a single node, a notable computational feat for
any single node.

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

maxspflops	 maxdpflops	

G
FL
O
PS
	

Benchmark	

Max	 FLOPS	

C2075	 Na2ve	

C2075	 VM	

K20m	 Na2ve	

K20m	 VM	

Figure 2: GPU Floating Point Operations per Second

Next, we investigate Figure 3 which exams less synthetic bench-
marks of Fast Fourier Transform (FFT), and the traditionally HPC-
centric Matrix Multiplication implementations. For all benchmarks
that do not take into account the PCI-express bus transfer time,
we again see notable speed-ups when using the Kepler GPUs. In-
terestingly, we do see some performance impact when using both
GPU-enabled VMs compared to native. This performance decrease
ranges significantly, from 0% in some cases to over 30% with single
precision FFT using the K20m, with most of the FFT benchmarks
seeing some overhead. The Matrix Multiplication based bench-
marks performed relatively well with both Tesla GPUs, seeing a
0.1% to 7.4% performance impact, with the average overehead of
just 2.9% compared to the native implementation.

0	

100	

200	

300	

400	

500	

600	

700	

*
_sp
	

*
_sp
_p
cie
	

i*
_sp
	

i*
_sp
_p
cie
	 	

*
_d
p	

*
_d
p_
pc
ie	

i*
_d
p	

i*
_d
p_
pc
ie	

sge
mm

_n
	 	

sge
mm

_t	

sge
mm

_n
_p
cie
	

sge
mm

t
pc
ie	

dg
em
m_
n	 	

dg
em
m_
t	 	

dg
em
m_
t_p
cie
	 	 	

G
FL
O
PS
	

Benchmark	

C2075	 Na9ve	

C2075	 VM	

K20m	 Na9ve	

K20m	 VM	

Fast	 Fourier	 Transform	 and	 Matrix-‐Matrix	 Mul=plica=on	

Figure 3: GPU Fast Fourier Transform and Matrix Multiplica-
tion

Other FLOP-based benchmarks emulate higher level applications.
Stencil represents a 9-point stencil operation applied to a 2D data
set, and the S3dD benchmark is a computationally-intensive kernel
from the S3D turbulent combustion simulation program [15]. From
the results in Figure 4, we notice the Fermi series GPU-enabled
VMs perform roughly at near-native performance across all runs.
The Kepler VMs see slightly more overhead when compared to
native performance, but overhead is at most 5.8% for the Stencil

benchmark, and still outperforms a Kepler series native GPU.

0	

10	

20	

30	

40	

50	

60	

70	

80	

stencil	 	 stencil_dp	 	 s3d	 s3d_pcie	 	 s3d_dp	 s3d_dp_pcie	 	

G
FL
O
PS
	

Benchmark	

Stencil	 2D	 and	 S3D	

C2075	 Na8ve	

C2075	 VM	

K20m	 Na8ve	

K20m	 VM	

Figure 4: GPU Stencil and S3d

5.2 Device Speed
While floating point operations allow for the proposed solution to
relate to many traditional HPC applications, they are just one facet
of GPU performance within scientific computing. Device speed,
measured in both raw bandwidth and additional 3rd part bench-
marks, provide a new perspective towards evaluating our solution.
Figure 5 illustrates device level memory access of various GPU
device memory. With both Nvidia GPUs, we see our solution of
virtualizing by and large has very little to no impact on the perfor-
mance of inter-device memory bandwidth. While MD, Reduction
and Scan benchmarks in Figure 6 have some variance accross runs,
generally there is minimal or no significant performance impact
working within our GPU-enabled VM.

0	

200	

400	

600	

800	

1000	

1200	

gmem_readbw	 gmem_writebw	 lmem_readbw	 lmem_writebw	 tex_readbw	

G
B/
s	

Benchmark	

Device	 Memory	 Bandwidth	

C2075	 Na9ve	

C2075	 VM	

K20m	 Na9ve	

K20m	 VM	

Figure 5: GPU Device Bandwidth

5.3 PCI Express Bus
Upon evaluating our solution for using GPUs in Clouds, its appar-
ent that the PCI express bus was subject to the greatest potential
for overhead. This is because the VT-d and IOMMU chip instruc-
tion sets interface directly with the PCI bus to provide operational
and security related mechanisms for each PCI device, thereby en-
suring proper function in a multi-guest environment. As such, its
imperative to investigate any and all overhead at the PCI Express
bus.

0	

50	

100	

150	

200	

250	

md_sp_bw	 	 md_dp_bw	 reduc1on	 reduc1on_dp	 scan	 scan_dp	

Sp
ee
d	
(G
B/
s)
	

Benchmark	

Molecular	 Dynamics,	 Reduc<on,	 Scan	

C2075	 Na1ve	

C2075	 VM	

K20m	 Na1ve	

K20m	 VM	

Figure 6: GPU Molecular Dynamics, Reduction, and Scan

Figure 7 looks at maximum PCI bus speeds for each experimen-
tal implementation. While we can generally see the newer Ke-
pler’s better utilize the PCI-Express 2.0 bus lanes, both cards are
approaching the maximum available bandwidth provided by PCI
Express. More interestingly, we see a consistent but very small
overhead in our implementation. In the Fermi chipsets, we see
roughly 5.6% overall impact in the bus speeds between native and
VM operations. With the newer Kepler series GPUs, that overhead
is significantly decreased to just .2% for combined download and
readback.

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

8.0	

bspeed_download	 bspeed_readback	

Sp
ee
d	
(G
B/
s)
	

Benchmark	

Bus	 Speed	

C2075	 Na<ve	

C2075	 VM	

K20m	 Na<ve	

K20m	 VM	

Figure 7: GPU PCI Express Bus Speed

6. DISCUSSION
This manuscript sets forth a new solution for providing advanced
general purpose GPUs within Cloud computing infrastructure, pri-
marily targeted towards advanced scientific computing. Our solu-
tion employs direct passthrough of a PCI-based GPUs directly to a
guest virtual machine running on the Xen hypervisor. Evaluating
the results in the previous section, a number of things become clear.

First, we can see that there is a small but notable overhead in using
PCI Passthrough of GPUs within VMs, compared to native bare-
metal usage, which represents the best possible use case. As with
all abstraction layers, some overhead is usually inevitable as a nec-
essary trade-off to added feature sets and improved usability. With
GPUs in VMs the same is true. For all SHOC benchmarks tested,

the performance impact for using a Kepler series K20m is still sig-
nificantly less than the just cost of using the previous generation
Fermi series C2075 GPU natively. While performance varies de-
pending on application, there is largely a constant yet small over-
head at the PCI Express bus, as well as the benchmark’s natural
performance impact of running within a VM itself. It is the au-
thor’s hypothesis that the small overhead will largely go unnoticed
by most mid-level scientific computing applications.

Our method also has the ability to perform better than other front-
end API solutions applicable within VMs, such as gVirtus or rCUDA.
While not tested directly, previous research has shown that such so-
lutions have a much larger overhead compared to bare-metal use.
For instance with rCUDA’s optimal configuration using QDR In-
finiBand, the maximum theoretical bus speed is 40Gbs. This is con-
siderably less the roughly 54.4Gps real-world performance mea-
sured between host-to-device transfers with our GPU-enabled Ke-
pler VMs.

7. CONCLUSION AND FUTURE WORK
The ability to use GPUs within virtual machines represents a leap
forward for supporting advanced scientific computing within Cloud
infrastructure. Our method of direct PCI-Passthrough of Nvidia
GPUs using the Xen hypervisor offers a clean, reproducible so-
lution that can be implemented within many Infrastructure-as-a-
Service (IaaS) deployments. Performance measurements indicate
that the overhead of virtualizing a GPU within Xen is minimal com-
pared to the best-case native use, with the average performance
degradation of just 2.8% for Fermi GPUs and 4.9% for Kepler
GPUs.

Current and future work with this technology revolves around en-
abling GPU-based PCI Passthrough within the OpenStack nova
IaaS framework. This will enable research laboratories and insti-
tutions to create new private Cloud offerings that have the ability
to support a plethora of new scientific computing. Furthermore,
we hope to integrate this work with advanced interconnects and
other heterogeneous hardware to provide a parallel high perfor-
mance cloud infrastructure.

Acknowledgment
This document was developed with support from the National Sci-
ence Foundation (NSF) under Grant No. 0910812 to Indiana Uni-
versity for “FutureGrid: An Experimental, High Performance Grid
Test-bed” Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the NSF. Andrew J. Younge also
greatly acknowledges support from The Persistent Systems Fellow-
ship of the School of Informatics and Computing at Indiana Uni-
versity.

8. REFERENCES
[1] Amazon. Elastic Compute Cloud.
[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the clouds: A berkeley view of cloud
computing. Technical report, University of California at
Berkeley, February 2009.

[3] Windows azure platform. [Online].
http://www.microsoft.com/azure/.

[4] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang,
S. Pakin, and J. C. Sancho. Entering the petaflop era: the

architecture and performance of roadrunner. In Proceedings
of the 2008 ACM/IEEE conference on Supercomputing,
page 1. IEEE Press, 2008.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and
K. Skadron. A performance study of general-purpose
applications on graphics processors using cuda. Journal of
Parallel and Distributed Computing, 68(10):1370 – 1380,
2008. K-means implementation on CUDA with 72x speedup.
Compares to 4-threaded CPU version with 30x speedup.

[6] S. Crago, K. Dunn, P. Eads, L. Hochstein, D.-I. Kang,
M. Kang, D. Modium, K. Singh, J. Suh, and J. P. Walters.
Heterogeneous cloud computing. In Cluster Computing
(CLUSTER), 2011 IEEE International Conference on, pages
378–385. IEEE, 2011.

[7] S. Craven and P. Athanas. Examining the viability of fpga
supercomputing. EURASIP Journal on Embedded systems,
2007(1):13–13, 2007.

[8] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter. The scalable
heterogeneous computing (shoc) benchmark suite. In
Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, pages 63–74.
ACM, 2010.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51(1):107–113,
2008.

[10] J. Dongarra, H. Meuer, and E. Strohmaier. Top 500
supercomputers. website, November 2013.

[11] J. Duato, A. J. Pena, F. Silla, J. C. Fernández, R. Mayo, and
E. S. Quintana-Orti. Enabling cuda acceleration within
virtual machines using rcuda. In High Performance
Computing (HiPC), 2011 18th International Conference on,
pages 1–10. IEEE, 2011.

[12] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S.
Quintana-Orti. rcuda: Reducing the number of gpu-based
accelerators in high performance clusters. In High
Performance Computing and Simulation (HPCS), 2010
International Conference on, pages 224–231. IEEE, 2010.

[13] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud Computing and
Grid Computing 360-Degree Compared. In Grid Computing
Environments Workshop, 2008. GCE’08, pages 1–10, 2008.

[14] G. Giunta, R. Montella, G. Agrillo, and G. Coviello. A gpgpu
transparent virtualization component for high performance
computing clouds. In P. DâĂŹAmbra, M. Guarracino, and
D. Talia, editors, Euro-Par 2010 - Parallel Processing,
volume 6271 of Lecture Notes in Computer Science, pages
379–391. Springer Berlin Heidelberg, 2010.

[15] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen.
Direct numerical simulation of turbulent combustion:
fundamental insights towards predictive models. In Journal
of Physics: Conference Series, volume 16, page 65. IOP
Publishing, 2005.

[16] S. Hong and H. Kim. An integrated gpu power and
performance model. In ACM SIGARCH Computer
Architecture News, volume 38, pages 280–289. ACM, 2010.

[17] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D.
Kirchner, and J. T. Klosowski. Chromium: a
stream-processing framework for interactive rendering on
clusters. In ACM Transactions on Graphics (TOG),
volume 21, pages 693–702. ACM, 2002.

[18] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon,
S. Cholia, J. Shalf, H. Wasserman, and N. Wright.

http://www.microsoft.com/azure/

Performance Analysis of High Performance Computing
Applications on the Amazon Web Services Cloud. In 2nd
IEEE International Conference on Cloud Computing
Technology and Science, pages 159–168. IEEE, 2010.

[19] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual
workspaces: Achieving quality of service and quality of life
in the grid. Scientific Programming Journal, 13(4):265–276,
2005.

[20] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman,
G. W. Arnold, J. E. Stone, J. C. Phillips, and W.-m. Hwu.
Gpu clusters for high-performance computing. In Cluster
Computing and Workshops, 2009. CLUSTER’09. IEEE
International Conference on, pages 1–8. IEEE, 2009.

[21] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson,
W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, et al.
Exascale computing study: Technology challenges in
achieving exascale systems. 2008.

[22] Z. Liu and W. Ma. Exploiting computing power on graphics
processing unit. volume 2, pages 1062–1065, Dec. 2008.

[23] S. Long. Virtual machine graphics acceleration deployment
guide. Technical report, VMWare, 2013.

[24] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,
S. Soman, L. Youseff, and D. Zagorodnov. The eucalyptus
open-source cloud-computing system. In Proceedings of
Cloud Computing and Its Applications, October 2008.

[25] C. Nvidia. Programming guide, 2008.
[26] L. OpenStack. Openstack compute administration manual,

2013.
[27] J. Sanders and E. Kandrot. CUDA by example: an

introduction to general-purpose GPU programming.
Addison-Wesley Professional, 2010.

[28] G. Shainer, T. Liu, J. Layton, and J. Mora. Scheduling
strategies for hpc as a service (hpcaas). In Cluster Computing
and Workshops, 2009. CLUSTER’09. IEEE International
Conference on, pages 1–6. IEEE, 2009.

[29] L. Shi, H. Chen, J. Sun, and K. Li. vcuda: Gpu-accelerated
high-performance computing in virtual machines.
Computers, IEEE Transactions on, 61(6):804–816, 2012.

[30] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel
programming standard for heterogeneous computing
systems. Computing in science & engineering, 12(3):66,
2010.

[31] A. S. Tanenbaum and M. Van Steen. Distributed systems,
volume 2. Prentice Hall, 2002.

[32] G. von Laszewski, G. C. Fox, F. Wang, A. J. Younge,
A. Kulshrestha, G. G. Pike, W. Smith, J. Vockler, R. J.
Figueiredo, J. Fortes, et al. Design of the futuregrid
experiment management framework. In Gateway Computing
Environments Workshop (GCE), 2010, pages 1–10. IEEE,
2010.

[33] W. Wade. How nvidia and citrix are driving the future of
virtualized visual computing. [Online]. http://blogs.
nvidia.com/blog/2013/05/22/synergy/.

[34] L. Wang, G. von Laszewski, A. J. Younge, X. He, M. Kunze,
and J. Tao. Cloud Computing: a Perspective Study. New
Generation Computing, 28:63–69, Mar 2010.

[35] K. Yelick, S. Coghlan, B. Draney, and R. S. Canon. The
Magellan Report on Cloud Computing for Science.
Technical report, U.S. Department of Energy Office of
Science Office of Advanced Scientific Computing Research
(ASCR), Dec. 2011.

[36] A. J. Younge, R. Henschel, J. T. Brown, G. von Laszewski,
J. Qiu, and G. C. Fox. Analysis of Virtualization
Technologies for High Performance Computing
Environments. In Proceedings of the 4th International
Conference on Cloud Computing (CLOUD 2011),
Washington, DC, July 2011. IEEE.

http://blogs.nvidia.com/blog/2013/05/22/synergy/
http://blogs.nvidia.com/blog/2013/05/22/synergy/

	Introduction
	Virtual GPU Directions
	Front-end Remote API invocation

	Design and Implementation
	Feature Comparison

	Experimental Setup
	Results
	Flops
	Device Speed
	PCI Express Bus

	Discussion
	Conclusion and Future Work
	References

