
Supporting High Performance Molecular Dynamics in
Virtualized Clusters using IOMMU, SR-IOV, and GPUDirect

Andrew J. Younge1, John Paul Walters2, Stephen P. Crago2, Geoffrey C. Fox1

1 School of Informatics and Computing
Indiana Univerisity
Bloomington, IN 47408

{ajyounge,gcf}@indiana.edu

2 Information Sciences Institute
University of Southern California

Arlington, VA 22203
{jwalters,crago}@isi.edu

Abstract
Cloud Infrastructure-as-a-Service paradigms have recently
shown their utility for a vast array of computational prob-
lems, ranging from advanced web service architectures to
high throughput computing. However, many scientific com-
puting applications have been slow to adapt to virtualized
cloud frameworks. This is due to performance impacts of
virtualization technologies, coupled with the lack of ad-
vanced hardware support necessary for running many high
performance scientific applications at scale.

By using KVM virtual machines that leverage both
Nvidia GPUs and InfiniBand, we show that molecular dy-
namics simulations with LAMMPS and HOOMD run at
near-native speeds. This experiment also illustrates how vir-
tualized environments can support the latest parallel com-
puting paradigms, including both MPI+CUDA and new
GPUDirect RDMA functionality. Specific findings show ini-
tial promise in scaling of such applications to larger produc-
tion deployments targeting large scale computational work-
loads.

1. Introduction
At present, we inevitably stand at the intersection between
High Performance Computing (HPC) and clouds. Various
platform tools such as Hadoop and MapReduce, among oth-
ers, have already percolated into data intensive computing
within HPC [20]. In addition, there are efforts to support
traditional HPC-centric scientific computing applications in
virtualized cloud infrastructure. There are a multitude of rea-
sons for supporting parallel computation in the cloud[12], in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VEE ’15, March 14–15, 2015, Istanbul, Turkey..
Copyright c© 2015 ACM 978-1-4503-3450-1/15/03. . . $15.00.
http://dx.doi.org/10.1145/2731186.2731194

cluding features such as dynamic scalability, specialized op-
erating environments, simple management interfaces, fault
tolerance, and enhanced quality of service, to name a few.
There is a growing effort to support advanced scientific com-
puting using virtualized infrastructure which can be seen
by a variety of new efforts, including the Comet resource
whithin XSEDE at San Diego Supercomputer Center [25].

Nevertheless, there exists a past notion that virtualization
used in cloud infrastructure is inherently inefficient. His-
torically, cloud infrastructure has done little to provide the
necessary advanced hardware capabilities that have become
almost mandatory in supercomputers today, most notably
advanced GPUs and high-speed, low-latency interconnects.
Instead, cloud infrastructure providers have favored com-
modity homogeneous systems. The result of these notions
has hindered the use of virtualized environments for parallel
computation, where performance is paramount.

This is starting to change, however, as today’s cloud
providers seek improved performance at lower power. This
has resulted in a heterogeneous cloud. Amazon EC2 sup-
ports GPU accelerators in EC2 [5], and OpenStack sup-
ports heterogeneity using flavors [8]. These advancements
in cloud-level support for heterogeneity combined with bet-
ter support for high-performance virtualization makes the
use of cloud for HPC much more feasible for a wider range
of applications and platforms.

Still, performance remains a concern within virtualized
environments. To that end, a growing effort is currently
underway that looks to systematically identify and reduce
any overhead in virtualization technologies. While some of
the first efforts to investigate HPC applications on cloud
infrastructure like the DOE Magellan project [37] docu-
mented many shortcomings in performance, recent efforts
have proven to be largely successful [24, 38], though further
research is needed to address issues of scalability and I/O.

Thus, we see constantly diminishing overhead with virtu-
alization, not only with traditional cloud workloads [18] but
also with HPC workloads. While virtualization will almost
always include some additional overhead in relation to its

1

dynamic features, the eventual goal for supporting HPC in
virtualized environments is to minimize what overhead ex-
ists whenever possible. To advance the placement of HPC
applications on virtual machines, new efforts are emerging
which focus specifically on key hardware now commonplace
in supercomputers. By leveraging new virtualization tools
such as IOMMU device passthrough and SR-IOV, we can
now support such advanced hardware as the latest Nvidia
Tesla GPUs [36] as well as InfiniBand fabrics for high per-
formance networking and I/O [21, 26]. While previous ef-
forts have focused on single-node advancements, our contri-
bution in this paper is to show that real-world applications
can operate efficiently in multi-node clusters and cloud in-
frastructure.

The remainder of this paper is organized as follows. In
Section 2 we describe the background and related work nec-
essary for high performance virtualization. In Section 3, we
describe a heterogeneous cloud platform, based on Open-
Stack. This effort has been under development at USC/ISI
since 2011 [14]. We describe our work towards integrating
GPU and InfiniBand support into OpenStack, and we de-
scribe the heterogeneous scheduling additions that are neces-
sary to support not only attached accelerators, but any cloud
composed of heterogeneous elements.

In Sections 4 and 5 we describe the LAMMPS and
HOOMD benchmarks and our experimental setup. In Sec-
tion 6 we characterize the performance of LAMMPS and
HOOMD in a virtual infrastructure complete with both
Kepler GPUs and QDR InfiniBand. Both HOOMD and
LAMMPS are used extensively in some of the world’s
fastest supercomputers and represent example simulations
that HPC supports today. We show that these applications
are able to run at near-native speeds within a completely
virtualized environment. Furthermore, we demonstrate the
ability of such a virtualized environment to support cutting
edge technologies such as RDMA GPUDirect, illustrating
that the latest HPC technologies are also possible in a virtu-
alized environment. In Section 7, we provide a brief discus-
sion before concluding in Section 8.

2. Background and Related Work
Virtualization technologies and hypervisors have seen wide-
spread deployment in support of a vast array of applica-
tions. This ranges from public commercial cloud deploy-
ments such as Amazon EC2 [1], Microsoft Azure [19], and
Google’s Cloud Platform [6] to private deployments within
colocation facilities, corporate data centers, and even na-
tional scale cyberinfrastructure initiatives. All these look
to support various use cases and applications such as web
servers, ACID and BASE databases, online object storage,
and even distributed systems, to name a few.

The use of virtualization and hypervisors to support var-
ious HPC solutions has been studied with mixed results. In
[38], it is found that there is a great deal of variance be-

tween hypervisors when running various distributed mem-
ory and MPI applications, and that overall, KVM performed
well across an array of HPC benchmarks. Furthermore, some
applications may not may fit well into default virtualized en-
vironments, such as High Performance Linpack [24]. Other
studies have specifically looked at interconnect performance
in virtualization and found the best-case scenario to be lack-
ing [28], with up to 60% performance penalties with conven-
tional techniques.

Recently, various CPU architectures have added support
for I/O virtualization mechanisms in the CPU ISA through
the use of an I/O memory management unit (IOMMU). Of-
ten, this is referred to as PCI Passthrough, as it enabled de-
vices on the PCI-Express bus to be passed directly to a spe-
cific virtual machine (VM). Specific hardware implemen-
tations include Intel’s VT-d [29], AMD’s IOMMU [9] for
x86_64 architectures, and recently ARM System MMU [11].
All of these implementations effectively look to aid in the
usage of DMA-capable hardware to be used within a spe-
cific virtual machine. By using these features, a wide array
of hardware can be utilized directly within VMs and enable
fast and efficient computation and I/O capabilities.

2.1 GPU Passthrough
Nvidia GPUs comprise the single most common accelerator
in the Nov 2014 Top 500 List [15] and represent an increas-
ing shift towards accelerators for HPC applications. Histori-
cally, GPU usage in a virtualized environment has been diffi-
cult, especially for scientific computation. Various front-end
remote API implementations have been developed to pro-
vide CUDA and OpenCL libraries in VMs, which translate
library calls to a back-end or remote GPU. One common
use case of this is rCUDA [16], which provides a front-end
CUDA API within a VM or any compute node, and then
sends the calls via Ethernet or InfiniBand to a separate node
with 1 or more GPUs. While this method is valid, it has the
drawback of relying on the interconnect itself and the band-
width available, which can be especially problematic on an
Ethernet based network. Furthermore, as this method con-
sumes bandwidth, it can leave little remaining for MPI or
RDMA routines, thereby constructing a bottleneck for some
MPI+CUDA applications that depend on inter-process com-
munication. Another mechanism of using GPUs in VMs is
hypervisor based virtualization [33].

Recently efforts have been seen to support such GPU ac-
celerators within VMs using IOMMU technologies, with im-
plementations now available with KVM, Xen, and VMWare
[34–36, 39]. These efforts have shown that GPUs can
achieve up to 99% of their bare metal performance when
passed to a virtual machine using PCI Passthrough. While it
has been demonstrated that using PCI Passthrough results in
high performance across a range of hypervisors and GPUs,
the efforts have been limited to investigating single node
performance until now.

2

2.2 SR-IOV and InfiniBand
With almost all parallel HPC applications, the interconnect
fabric which enables fast and efficient communication be-
tween processors becomes a central requirement to achiev-
ing good performance. Specifically, a high bandwidth link is
needed for distributed processors to share large amounts of
data across the system. Furthermore, low latency becomes
equally important for ensuring quick delivery of small mes-
sage communications and resolving large collective barri-
ers within many parallelized codes. One such interconnect,
InfiniBand, has become the most common implementation
used within the Top500 list.

Supporting I/O interconnects in VMs has been aided by
Single Root I/O Virtualization (SR-IOV), whereby multiple
virtual PCI functions are created in hardware to represent a
single PCI device. These virtual functions (VFs) can then be
passed to a VM and used by the guest as if it had direct ac-
cess to that PCI device. SR-IOV allows for the virtualization
and multiplexing to be done within the hardware, effectively
providing higher performance and greater control than soft-
ware solutions.

SR-IOV has been used in conjunction with Ethernet de-
vices to provide high performance 10Gb TCP/IP connectiv-
ity within VMs [23], offering near-native bandwidth and ad-
vanced QoS features not easily obtained through emulated
Ethernet offerings. Currently Amazon EC2 offers a high per-
formance VM solution utilizing SR-IOV enabled 10Gb Eth-
ernet adapters. While SR-IOV enabled 10Gb Ethernet solu-
tions offers a big forward in performance, Ethernet still does
not offer the high bandwidth or low latency typically found
with InfiniBand solutions.

Recently SR-IOV support for InfiniBand has been added
by Mellanox in the ConnectX series adapters. Initial evalu-
ation of SR-IOV InfiniBand within KVM VMs has demon-
stration point-to-point bandwidth to be near-native, but with
up to 30% latency overhead for very small messages [21,
30]. However, even with the noted overhead, this still sig-
nifies up to an order of magnitude difference in latency be-
tween InfiniBand and Ethernet with VMs. Furthermore, ad-
vanced configuration of SR-IOV enabled InfiniBand fabric
is taking shape, with recent research showing up to a 30%
reduction in the latency overhead [26]. However, real appli-
cation performance has not yet been well understood until
now.

2.3 GPUDirect
NVIDIA’s GPUDirect technology was introduced to reduce
the overhead of data movement across GPUs [2, 32]. Cur-
rently, there exists three distinct versions of GPUDirect.
GPUDirect v1 adds accelerated communication with net-
work and storage devices through the use of a single CPU
buffer, and GPUDirect v2 provides peer-to-peer communica-
tion between discrete GPUs on a single node. GPUDirect v3,
the most recent version and what is used in this manuscript,

provides support for direct RDMA between GPUs across an
InfiniBand interconnect for Kepler-class GPUs. This allevi-
ates the need for staging data to/from host memory in or-
der to transmit data via InfiniBand between GPUs on sep-
arate nodes. GPUDirect relies on three key technologies:
CUDA 5 (and up), a CUDA-enabled MPI implementation,
and a Kepler-class GPU (RDMA only). Both MVAPICH
and OpenMPI support GPUDirect. Support for RDMA over
GPUDirect is enabled by the MPI library, given supported
hardware, and does not depend on specific application-level
changes to a user’s code. However, an application needs to
be written to target GPUDirect. In this paper, we demon-
strate scaling a MD simulation to 4 nodes connected via
QDR InfiniBand and show that GPUDirect RDMA improves
both scalability and overall performance by approximately
9% at no cost to the end user.

3. A Cloud for High Performance Computing
With support for GPU Passthrough, SR-IOV, and GPUDi-
rect, we have the building blocks for a high performance,
heterogeneous cloud. In addition, other common accelera-
tors (e.g. Xeon Phi [4]) have similarly been demonstrated
in virtualized environments. We envision a heterogeneous
cloud that supports both high speed networking and accel-
erators for tightly coupled applications.

To this end we developed a heterogeneous cloud based on
OpenStack [7]. In our previous work, we demonstrated the
ability to rapidly provision GPU, bare metal, and other het-
erogeneous resources within a single cloud [14]. Building
on this effort we have added support for GPU passthrough
to OpenStack as well as prototyped SR-IOV support for
ConnectX-2 and ConnectX-3 Infiniband devices. Mellanox
has since added an OpenStack InfiniBand networking plugin
for OpenStack’s Neutron service [3]. While OpenStack sup-
ports services for networking (Neutron), compute (Nova),
identity (Keystone), storage (Cinder, Swift), and others, our
work focuses entirely on the compute service.

Scheduling is implemented at two levels: the cloud-level
and the node-level. In our earlier work, we have developed
a cloud-level heterogeneous scheduler for OpenStack that
allows scheduling based on architectures and resources [14].
In this model, the cloud-level scheduler dispatches jobs to
nodes based on resource requirements (e.g. Kepler GPU) and
node-level resource availability.

At the node, a second level of scheduling occurs to ensure
that resources are tracked and not over-committed. Unlike
traditional cloud paradigms, devices passed into VMs can-
not be over-committed. We treat devices, whether GPUs or
InfiniBand virtual functions, as schedulable resources. Thus,
it is the responsibility of the individual node to track re-
sources committed and report availability to the cloud-level
scheduler. For reporting, we augment OpenStack’s existing
reporting mechanism to provide a low overhead solution.

3

4. Benchmarks
We selected two molecular dynamics (MD) applications for
evaluation in this study: LAMMPS and HOOMD [10, 27].
These MD simulations are chosen to represent a subset of
advanced parallel computation for a number of fundamental
reasons:

• MD simulations provide a practical representation of N-
Body simulations, which are one of the major computa-
tional Dwarfs [13] in parallel and distributed computing.

• MD simulations are one of the most widely deployed
applications on large scale supercomputers today.

• Many MD simulations have a hybrid MPI+CUDA pro-
gramming model, which has become commonplace in
HPC as the use of accelerators increase.

As such, we look to LAMMPS and HOOMD to provide
a real-world example for running cutting-edge parallel pro-
grams on virtualized infrastructure. While these applications
by no means represent all parallel scientific computing ef-
forts (as justified by the 13 Dwarfs defined in [13]), we hope
these MD simulators offer a more pragmatic viewpoint than
traditional synthetic HPC benchmarks such as High Perfor-
mance Linpack.

LAMMPS The Large-scale Atomic/Molecular Parallel
Simulator is a well-understood highly parallel molecular
dynamics simulator. It supports both CPU and GPU-based
workloads. Unlike many simulators, both MD and other-
wise, LAMMPS is heterogeneous. It will use both GPUs
and multicore CPUs concurrently. For this study, this het-
erogeneous functionality introduces additional load on the
host, allowing LAMMPS to utilize all available cores on
a given system. Networking in LAMMPS is accomplished
using a typical MPI model. That is, data is copied from
the GPU back to the host and sent over the InfiniBand fab-
ric. LAMMPS does not include GPUDirect support, and no
RDMA is used for these experiments.

HOOMD-blue The Highly Optimized Object-oriented
Many-particle Dynamics – Blue Edition is a particle dynam-
ics simulator capable of scaling into the thousands of GPUs.
HOOMD supports executing on both CPUs and GPUs. Un-
like LAMMPS, HOOMD is homogeneous and does not sup-
port mixing of GPUs and CPUs. HOOMD supports GPUDi-
rect using a CUDA-enabled MPI. In this paper we focus on
HOOMD’s support for GPUDirect and show its benefits for
increasing cluster sizes.

5. Experimental Setup
Using two molecular dynamics tools, LAMMPS[27] and
HOOMD [10], we demonstrate a high performance sys-
tem. That is, we combine PCI passthrough for Nvidia
Kepler-class GPUs with QDR Infiniband SR-IOV and show
that high performance molecular dynamics simulations are

achievable within a virtualized environment. For the first
time, we also demonstrate Nvidia GPUDirect technology
within such a virtual environment. Thus, we look to not only
illustrate that virtual machines provide a flexible high per-
formance infrastructure for scaling scientific workloads, in-
cluding MD simulations, but also that the latest HPC features
and programming environments are available and efficient in
this same model.

5.1 Node configuration
To support the use of Nvidia GPUs and InfiniBand within a
VM, specific host configuration is needed. This node config-
uration is illustrated in Figure 1. While our implementation
is specific to the KVM hypervisor, this setup represents a
design that can be hypervisor agnostic.

Each node in the testbed uses CentOS 6.4 with a 3.13
upstream Linux kernel for the host OS, along with the latest
KVM hypervisor, QEMU 2.1, and the vfio driver. Each guest
VM runs CentOS 6.4 with a stock 2.6.32-358.23.2 kernel. A
Kepler GPU is passed through using PCI Passthrough and
directly initiated within the VM via the Nvidia 331.20 driver
and CUDA release 5.5. While this specific implementation
used only a single GPU, it is also possible to include as many
GPUs as one can fit within the PCI Express bus if desired.
As the GPU is used by the VM, an on-board VGA device
was used by the host and a standard Cirrus VGA was em-
ulated in the guest OS. OFED version 2.1-1.0.0 drivers are
used with Mellanox ConnectX-3 VPI adapter with firmware
2.31.5050. The host driver initiates 4 VFs, one of which is
passed through to the VM where the default OFED mlnx_ib
drivers are loaded.

Figure 1. Node PCI Passthrough of GPUs and InfiniBand

5.2 Cluster Configuration
Our test environment is composed of 4 servers each with a
single Nvidia Kepler-class GPU. Two servers are equipped
with K20 GPUs, while the other two servers are equipped
with K40 GPUs, demonstrating the potential for a more
heterogeneous deployment. Each server is composed of 2

4

Intel Xeon E5-2670 CPUs, 48GB of DDR3 memory, and
Mellanox ConnectX-3 QDR InfiniBand. CPU sockets and
memory are split evenly between the two NUMA nodes on
each system. All InfiniBand adapters use a single Voltaire
4036 QDR switch with a software subnet manager for IPoIB
functionality.

For these experiments, both the GPUs and InfiniBand
adapters are attached to NUMA node 1 and both the guest
VMs and the base system utilized identical software stacks.
Each guest was allocated 20 GB of RAM and a full socket
of 8 cores, and pinned to NUMA node 1 to ensure optimal
hardware usage. For a fair and effective comparison, we also
use a native environment without any virtualization. This na-
tive environment employs the same hardware configuration,
and like the Guest OS runs CentOS 6.4 with the stock 2.6.32-
358.23.2 kernel.

6. Results
In this section, we discuss the performance of both the
LAMMPS and HOOMD molecular dynamics simulation
tools when running within a virtualized environment. Each
application set was run 10 times, with the results averaged
accordingly.

6.1 LAMMPS

Figure 2. LAMMPS LJ Performance

Figure 2 shows one of the most common LAMMPS al-
gorithms used - the Lennard-Jones potential (LJ). This al-
gorithm is deployed in two main configurations - a 1:1 core
to GPU mapping and a 8:1 core to GPU mapping, labeled
in Figures 2 and 3 as 4c/4g and 32c/4g, respectively. With
the LAMMPS GPU implementation, a delicate balance be-
tween GPUs and CPUs is required to find the optimal ratio
for fastest computation, however here we just look at the
two most obvious choices. With small problem sizes, the
1:1 mapping outperforms the more complex core deploy-
ment, as the problem does not require the additional com-
plexity provided with a multi-core solution. As expected the

Figure 3. LAMMPS RHODO Performance

multi-core configuration quickly offers better performance
for larger problem sizes, achieving roughly twice the perfor-
mance with all 32 available cores. This is largely due to the
availability of all 8 cores to keep the GPU fully utilized.

The important factor for this manuscript is the relative
performance of the virtualized environment. From the re-
sults, it is clear the VM solution performs very well com-
pared to the best-case native deployment. For the multi-
core configuration across all problem sizes, the virtualized
deployment averaged 98.5% efficiency compared to native.
The single core per GPU deployment reported better-than
native performance at 100% native. This is likely due to
caching effects, but further investigation is needed to fully
identify this occurrence.

Another common LAMMPS algorithm, the Rhodopsin
protein in solvated lipid bilayer benchmark (Rhodo), was
also run with results given in Figure 3. As with the LJ
runs, we see the multi-core to GPU configuration resulting
in higher computational performance for the larger problem
sizes compared to the single core per GPU configuration, as
expected.

Again, the overhead of the virtualized configuration re-
mains low across all configurations and problem sizes, with
an average 96.4% efficiency compared to native. We also
see the gap in performance decrease as the problem size in-
creases, with the 512k problem size yielding 99.3% of native
performance. This finding leads us to extrapolate that a vir-
tualized MPI+CUDA implementation could scale to a larger
computational resource with similar success.

6.2 HOOMD
In Figure 4 we show the performance of a Lennard-Jones liq-
uid simulation with 256K particles running under HOOMD.
HOOMD includes support for CUDA-aware MPI imple-
mentations via GPUDirect. The MVAPICH 2.0 GDR im-
plementation enables a further optimization by supporting
RDMA for GPUDirect. From Figure 4 we can see that
HOOMD simulations, both with and without GPUDirect,

5

perform very near-native. The GPUDirect results at 4 nodes
achieve 98.5% of the base system’s performance. The non-
GPUDirect results achieve 98.4% efficiency at 4 nodes.
These results indicate the virtualized HPC environment is
able to support such complex workloads. While the effective
testbed size is relatively small, it indicates that such work-
loads may scale equally well to hundreds or thousands of
nodes. The advantage of using GPUDirect RDMA is also
evident in Figure 4, with a 9% performance boost realized
for both virtualized and non-virtualized experiments.

Figure 4. HOOMD LJ Performance with 256k Simulation

7. Discussion
From the results, we see the potential for running HPC ap-
plications in a virtualized environment using GPUs and In-
finiBand interconnect fabric. Across all LAMMPS runs, we
found only a 1.9% overhead between the KVM virtualized
environment and native. For HOOMD, we found a similar
1.5% overhead, both with and without GPU Direct. These
results go against conventional wisdom that HPC workloads
perform poorly in VMs. In fact, we show two N-Body type
simulations programmed in an MPI+CUDA implementation
perform at roughly near-native performance in tuned KVM
virtual machines.

With HOOMD, we see how GPUDirect RDMA shows
a clear advantage over the non-GPUDirect implementation,
achieving a 9% performance boost in both the native and vir-
tualized experiments. While GPUDirect’s performance im-
pact has been well evaluated previously [2], it is the author’s
belief that this manuscript represents the first time GPUDi-
rect has has been utilized in a virtualized environment.

Another interesting finding of running LAMMPS in a
virtualized environment is that as workload increases from
a single node to 32 cores, the overhead does not increase.
These results lend credence to the notion that this solution
would also work for a much larger deployment, assuming
system jitter can be minimized [31]. Specifically, it would be
possible to expand such computational problems to a larger

deployment in FutureGrid [17], Chameleon Cloud [22], or
even the planned NSF Comet machine at SDSC, scheduled
to provide up to 2 Petaflops of computational power. Effec-
tively, these results provide evidence that a majority of HPC
computations can be supported in virtualized environment
with minimal overhead.

8. Conclusion
With the advent of cloud infrastructure, the ability to run
large-scale parallel scientific applications has become possi-
ble although limited due to both performance and hardware
availability concerns. In this work we show that advanced
HPC-oriented hardware such as the latest Nvidia GPUs and
InfiniBand fabric are now available within a virtualized in-
frastructure. Our results find MPI + CUDA applications,
such as molecular dynamics simulations, run at near-native
performance compared to traditional non-virtualized HPC
infrastructure, with just an averaged 1.9% and 1.5% over-
head for LAMMPS and HOOMD, respectively. Moving for-
ward, we show the utility of GPUDirect RDMA for the first
time in a cloud environment with HOOMD. Effectively, we
look to pave the way for large-scale virtualized cloud Infras-
tructure to support a wide array of advanced scientific com-
putation commonly found running on many supercomputers
today. Our efforts leverage these technologies and provide
them in an open source Infrastructure-as-a-Service frame-
work using OpenStack.

Acknowledgments
This work was developed with support from the National
Science Foundation (NSF) under grant #0910812 to Indi-
ana University and with support from the Office of Naval
Research under grant #N00014-14-1-0035 to USC/ISI. An-
drew J. Younge also acknowledges support from The Per-
sistent Systems Fellowship of the School of Informatics and
Computing at Indiana University.

References
[1] Amazon elastic compute cloud (Amazon EC2). Website,

August 2010. URL http://aws.amazon.com/ec2/.

[2] NVIDIA GPUDirect. Website, November 2014. URL
https://developer.nvidia.com/gpudirect.

[3] Mellanox Neutron Plugin. Website, November 2014.
URL https://wiki.openstack.org/wiki/
Mellanox-Neutron.

[4] Getting Xen working for Intel(R) Xeon Phi(tm) Co-
processor. Website, November 2014. URL https:
//software.intel.com/en-us/articles/
getting-xen-working-for-intelr-xeon-
phitm-coprocessor.

[5] AWS high performance computing. Website, November 2014.
URL http://aws.amazon.com/hpc/.

[6] Google Cloud Platform. Website, November 2014. URL
https://cloud.google.com/.

6

[7] OpenStack cloud software. Website, November 2014. URL
http://openstack.org.

[8] OpenStack flavors. Website, November 2014. URL
http://docs.openstack.org/openstack-
ops/content/flavors.html.

[9] AMD Corporation. AMD I/O virtualization technology
(IOMMU) specification. Technical report, AMD Corporation,
2009.

[10] J. Anderson, A. Keys, C. Phillips, T. Dac Nguyen, and
S. Glotzer. HOOMD-blue, general-purpose many-body dy-
namics on the GPU. In APS Meeting Abstracts, volume 1,
page 18008, 2010.

[11] ARM Limited. ARM system memory management unit archi-
tecture specification. Technical report, ARM Limited, 2013.

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia. A view of cloud computing. Commun. ACM, 53
(4):50–58, Apr. 2010. ISSN 0001-0782.

[13] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, et al. The landscape of parallel computing
research: A view from Berkeley. Technical report, Technical
Report UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, 2006.

[14] S. Crago, K. Dunn, P. Eads, L. Hochstein, D.-I. Kang,
M. Kang, D. Modium, K. Singh, J. Suh, and J. P. Walters. Het-
erogeneous cloud computing. In Cluster Computing (CLUS-
TER), 2011 IEEE International Conference on, pages 378–
385. IEEE, 2011.

[15] J. Dongarra, H. Meuer, and E. Strohmaier. Top 500 supercom-
puters. Website, November 2014. URL http://top500.
org/.

[16] J. Duato, A. J. Pena, F. Silla, J. C. Fernández, R. Mayo, and
E. S. Quintana-Orti. Enabling CUDA acceleration within vir-
tual machines using rCUDA. In High Performance Computing
(HiPC), 2011 18th International Conference on, pages 1–10.
IEEE, 2011.

[17] G. Fox, G. von Laszewski, J. Diaz, K. Keahey, J. Fortes,
R. Figueiredo, S. Smallen, W. Smith, and A. Grimshaw. Fu-
tureGrid—a reconfigurable testbed for Cloud, HPC and Grid
computing. Contemporary High Performance Computing:
From Petascale toward Exascale, Computational Science.
Chapman and Hall/CRC, 2013.

[18] N. Huber, M. von Quast, M. Hauck, and S. Kounev. Eval-
uating and modeling virtualization performance overhead for
cloud environments. In CLOSER, pages 563–573, 2011.

[19] R. Jennings. Cloud Computing with the Windows Azure Plat-
form. John Wiley & Sons, 2010.

[20] S. Jha, J. Qiu, A. Luckow, P. K. Mantha, and G. C. Fox. A tale
of two data-intensive paradigms: Applications, abstractions,
and architectures. In Proceedings of the 3rd International
Congress on Big Data, 2014.

[21] J. Jose, M. Li, X. Lu, K. C. Kandalla, M. D. Arnold, and
D. K. Panda. SR-IOV support for virtualization on InfiniBand
clusters: Early experience. In Cluster, Cloud and Grid Com-

puting (CCGrid), 2013 13th IEEE/ACM International Sympo-
sium on, pages 385–392. IEEE, 2013.

[22] K. Keahey, J. Mambretti, D. K. Panda, P. Rad, W. Smith, and
D. Stanzione. NSF Chameleon cloud. Website, November
2014. URL http://www.chameleoncloud.org/.

[23] J. Liu. Evaluating standard-based self-virtualizing devices: A
performance study on 10 GbE NICs with SR-IOV support. In
Parallel Distributed Processing (IPDPS), 2010 IEEE Interna-
tional Symposium on, pages 1–12, April 2010.

[24] P. Luszczek, E. Meek, S. Moore, D. Terpstra, V. M. Weaver,
and J. Dongarra. Evaluation of the HPC challenge bench-
marks in virtualized environments. In Proceedings of the 2011
International Conference on Parallel Processing - Volume
2, Euro-Par’11, pages 436–445, Berlin, Heidelberg, 2012.
Springer-Verlag.

[25] R. L. Moore, C. Baru, D. Baxter, G. C. Fox, A. Majumdar,
P. Papadopoulos, W. Pfeiffer, R. S. Sinkovits, S. Strande,
M. Tatineni, et al. Gateways to discovery: Cyberinfrastructure
for the long tail of science. In Proceedings of the 2014 Annual
Conference on Extreme Science and Engineering Discovery
Environment, page 39. ACM, 2014.

[26] M. Musleh, V. Pai, J. P. Walters, A. J. Younge, and S. P. Crago.
Bridging the virtualization performance gap for HPC using
SR-IOV for InfiniBand. In Proceedings of the 7th IEEE In-
ternational Conference on Cloud Computing (CLOUD 2014),
Anchorage, AK, 2014. IEEE.

[27] S. Plimpton, P. Crozier, and A. Thompson. LAMMPS-large-
scale atomic/molecular massively parallel simulator. Sandia
National Laboratories, 2007.

[28] L. Ramakrishnan, R. S. Canon, K. Muriki, I. Sakrejda, and
N. J. Wright. Evaluating interconnect and virtualization per-
formance for high performance computing. SIGMETRICS
Perform. Eval. Rev., 40(2):55–60, Oct. 2012. ISSN 0163-
5999.

[29] M. Righini. Enabling Intel R© virtualization technology fea-
tures and benefits. Technical report, Intel Corporation, 2010.

[30] T. P. P. D. L. Ruivo, G. B. Altayo, G. Garzoglio, S. Timm,
H. Kim, S.-Y. Noh, and I. Raicu. Exploring InfiniBand hard-
ware virtualization in OpenNebula towards efficient high-
performance computing. In CCGRID, pages 943–948, 2014.

[31] S. Seelam, L. Fong, A. Tantawi, J. Lewars, J. Divirgilio, and
K. Gildea. Extreme scale computing: Modeling the impact of
system noise in multicore clustered systems. In Parallel Dis-
tributed Processing (IPDPS), 2010 IEEE International Sym-
posium on, pages 1–12, April 2010. .

[32] G. Shainer, A. Ayoub, P. Lui, T. Liu, M. Kagan, C. R. Trott,
G. Scantlen, and P. S. Crozier. The development of Mel-
lanox/NVIDIA GPUDirect over InfiniBand—a new model for
GPU to GPU communications. Computer Science-Research
and Development, 26(3-4):267–273, 2011.

[33] Y. Suzuki, S. Kato, H. Yamada, and K. Kono. GPUvm: why
not virtualizing GPUs at the hypervisor? In Proceedings of
the 2014 USENIX conference on USENIX Annual Technical
Conference, pages 109–120. USENIX Association, 2014.

[34] K. Tian, Y. Dong, and D. Cowperthwaite. A full GPU virtual-
ization solution with mediated pass-through. In Proc. USENIX

7

ATC, 2014.

[35] L. Vu, H. Sivaraman, and R. Bidarkar. GPU virtualization for
high performance general purpose computing on the ESX hy-
pervisor. In Proceedings of the High Performance Computing
Symposium, HPC ’14, pages 2:1–2:8, San Diego, CA, USA,
2014. Society for Computer Simulation International.

[36] J. P. Walters, A. J. Younge, D.-I. Kang, K.-T. Yao, M. Kang,
S. P. Crago, and G. C. Fox. GPU-Passthrough performance:
A comparison of KVM, Xen, VMWare ESXi, and LXC
for CUDA and OpenCL applications. In Proceedings of
the 7th IEEE International Conference on Cloud Computing
(CLOUD 2014), Anchorage, AK, 2014. IEEE.

[37] K. Yelick, S. Coghlan, B. Draney, R. S. Canon, et al. The
Magellan report on cloud computing for science. Technical
report, US Department of Energy, 2011.

[38] A. J. Younge, R. Henschel, J. T. Brown, G. von Laszewski,
J. Qiu, and G. C. Fox. Analysis of Virtualization Technologies
for High Performance Computing Environments. In Proceed-
ings of the 4th International Conference on Cloud Computing
(CLOUD 2011), Washington, DC, 2011. IEEE.

[39] A. J. Younge, J. P. Walters, S. Crago, and G. C. Fox. Eval-
uating GPU passthrough in Xen for high performance cloud
computing. In High-Performance Grid and Cloud Computing
Workshop at the 28th IEEE International Parallel and Dis-
tributed Processing Symposium, Pheonix, AZ, 05 2014. IEEE.

8

