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Abstract
Spatiotemporal pattern prediction is one of the emerging topics in

Deep Learning applications. In this report, we recall some technical
background in studies about spatiotemporal pattern prediction and review
some essential academic works of literature in related fields. We also
categorize research works by their application domains and highlight the
applications on addressing scientific problems.

1 Introduction
Spatial and temporal attributes have played an essential role in addressing
scientific issues mathematically and statistically with large volumes of data
in real problems. Authors of this book [1] summarized some initial efforts by
utilizing spatiotemporal features for scientific interpretation and prediction.

Most recently, it is a prevailing method to make predictions by modeling
the spatiotemporal dynamics for domain science problems. This popularity is
because large volumes of data are increasingly collected in the vast majority of
domains including, social science, epidemiology, transportation, and geoscience.

In this writeup, we review some technical background for spatiotemporal
research, especially in deep learning models in Section 2. Then, we summary
some prior research related to spatial temporal modeling in Section 3.

2 Background Technique Review
2.1 Convolutional Neural Networks
Convolutional operations on time series data can be used to predict patterns of
object movement. Karatzoglouet al. build models for GPS location signals for
tracking human movement patterns [2].

Traffic forecasting is one of the most popular applications in spatial temporal
forecasting. The challenges of traffic forecasting are related to varying traffic
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patterns and spatial dependencies of traffic networks. Cui et al. proposed a
model named Graph Convolutional Long Short-Term Memory Neural Network
(TGC-LSTM), which modeled traffic between roadways and forecast traffic state
of the road networks [3]. In this paper, the modeling task is to learn a function
that can predict the traffic pattern at T + 1 time based on a series of history
signals from time 1 to T . In this paper, the k-top of the neighborhood and
a free-flow reachable are modeled as graph nodes and edges. To apply some
node traffic-specific restrictions on nodes’ extracted features, a customized loss
function is defined with a L1-norm and L2-norm functions.

2.2 Graph Representation with Neural Networks
Compared to traditional convolutional neural networks (CNN), graph-based
convolutional networks (GCN) are becoming a powerful tool to model problems.
GCN is especially useful for applications where data are formed in non-Euclidean
geometry systems and are represented in graphs in which dependencies of nodes
are complex. Action recognition is one type of spatial temporal problems in
which a sequence of body actions can be modeled in a spatial temporal graph.
Yan et al. proposed a Spatial Temporal Graph Convolutional Networks (ST-
GCN) to model dynamic skeletons [4]. In this paper, a graph is formed as nodes
defined in body joints and edges based on bones or natural connections in human
bodies. A spatial temporal graph is a skeleton sequence of body actions. This
is a classification problem in which the output of the model is categorized as a
type of movement such as running or jumping.

Geo-based service demand prediction is another type of spatial temporal
problems. Spatial temporal graph is popular to be used to predict ride-hailing
demand. Geng et al. proposed a multi-graph convolutional model for ride-hailing
demand forecasting [5]. In this paper, the input of the model is a sequence
of ride-demand history maps from t − (T + 1) time to t time as the input
(Xt−T+1, Xt−T+2, . . . , Xt), and the output of the model consists of a predicted
demand map at t+1 time Xt+1. The problem is modeled as multigraphs, each
of which has its separated correlation weights. The input data is aggregated on
maps partitioned into grids of 1km x 1km squared regions.

2.3 Recurrent Neural Networks
Recurrent neural networks (RNN) and its successful model type—Long short-
term memory (LSTM) was designed and developed to learn information overtime
via recurrent neural networks [6].

2.3.1 Long Short-Term Memory

LSTM has a wide range of applications to capture temporal dependencies.
Combining with convolutional neural network layers, this type of neural network is
capable of learning patterns for spatial temporal problems. This method is widely
used in air pollution forecasting[7] and prediction of complex physical systems [8].
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Typically, in this method, the one-dimensional convolution operation is used to
extract features of input along time series to capture spatial dependencies, and
N layers of LSTM concatenated in the networks are used to capture temporal
dependencies.

Convolutional LSTM (ConvLSTM) as a special type of LSTM replaces the
conventional matrix multiplication with the convolutional multiplication for 2D
input [9]. The ConvLSTM was originally designed to capture spatiotemporal
dynamics.

2.3.2 Gated Recurrent Unit

Similar to LSTM, gated recurrent unit (GRU) is another type of RNN, which
draw great attention since its development [10]. GRU was firstly proposed by[11],
which has a similar structure to the LSTM unit without a separate memory cell.
According to [10], it is hard to conclude which type of RNN can perform better
in general between LSTM and GRU.

Li et al. proposed a neural network model adopting GRU for car traffic
spatial temporal forecasting [12]. In this paper, the learning task is to learn a
function that maps from a sequence of T history time signals to a sequence of
T time signals. Their solution is a synthetic method consisting of 1) a spatial
dependency modeling using random walks on graph and diffusion convolution,
and 2) a temporal dependency modeling using GRU.

2.3.3 Hierarchical Recurrent Neural Network

A hierarchical recurrent neural network is a general form of stacking RNN layers,
which was developed to capture long term dependency [13]. Stacking LSTM
is a particular form of hierarchical recurrent neural network. The hierarchical
recurrent neural network can address issues of modeling spatial temporal dy-
namics. In 2015, Du et al. proposed to use hierarchical RNN for human action
recognition [14]. This problem is almost the same as defined in Yan’s paper [4].
Compared to Yan’s paper, in Du’s paper, a human skeleton is decomposed into
five parts: two arms, two legs, and one trunk. Each skeleton part is fed into each
bidirectional recurrent network (BRNN). To model the spatial dynamics, such as
arm-trunk or leg-trunk correlations, they combine the trunk subnet with each of
the other four subnet of BRNN. In the implementation, LSTM unit is adopted
in the recurrent layer. The final output is categorized as one type of all actions.

2.4 Encoder-Decoder Architecture
2.4.1 Restricted Boltzmann Machines (RBM)

Hinton proposed the RBM model, an energy-based model consisting of only two
layers in a network. One layer is called visible node layer, and another is called
hidden node layer. This model is trained using the contrastive divergence, which
is the difference between two Kullback-Liebler divergences [15].
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2.4.2 Autoencoder and Variational autoencoder

Autoencoder is one of the typical models that follow the encoder-decoder archi-
tecture, in which an encoder produces latent variables and the decoder takes the
output of an encoder as input. According to [16], the autoencoder can learn low
dimensional features that are similar to the results of the PCA algorithm. The
process can be expressed in a simply math formula: x = g(f(x)), in which f is
the encode function and g is the decode function.

Variational autoencoder (VAE) extends the idea of the encoding-decoding
process with latent variables to using variational distributions. Some previous
work presented its applications for images [17, 18]. VAE is basically a Bayes’
process of generating data from a prior distribution as follows: pθ(z|x) =
pθ(x|z)pθ(z)/pθ(x). Compared to the Monte Carlo EM algorithm, VAE is more
efficient in handling large datasets.

2.4.3 RNN Autoencoder

Sequence to sequence translation using an RNN-based Encoder-Decoder archi-
tecture was proved to be a powerful tool used in linguistic grammar analysis and
machine translation in around 2014 [11, 19]. According to Cho et al.’s papers, in
a typical RNN encoder-decoder, an encoder is an RNN that reads a sequence of
symbols and produces a summary sequence, then the summary sequence is fed
into another RNN decoder. An aforementioned paper that predicts traffic[12] also
adopts the encoder-decoder architecture with GRU. Google’s attention-based
transformer mechanisms is also a type of encoder-decoder networks without
RNN or CNN [20, 21].

2.5 Parallel Time Steps and Attention Mechanism
2.5.1 WaveNet and Temporal Convolutional Network

One of the major efforts to model time steps during recent years is to enable the
model trainable in parallel. The very first representative is the WaveNet [22],
which was proposed by a Google Mind team. It is designed to be a generative
model for audio and text based on the PixelCNN architecture [23]. WaveNet
models the joint probability of x as a product of conditional probabilities from
all previous states: p(x) =

∏T
t=1 p(xt|x1, x2, . . . , xt−1). To model temporal

dynamics, WaveNet uses dilated convolutions passing information layer by layer.
Temporal convolutional network (TCN) was introduced from a few work,

including [24, 25, 26]. Temporal convolutional network inherits the dilated
convolutional from conditional WaveNets, in which a conditional distribution
is modeled from: p(x|h) =

∏T
t=1 p(xt|x1, x2, . . . , xt−1, h). TCN is an efficient

model respected to the time domain due to its parallel model structures and is
suitable for regression-type problems.
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Table 1: Spatiotemporal application domains

Domains Related work
Scientific [7], [30], [9], [31], [32], [33], [34],

[35], [36], [37], [38]
Transportation and traffic [2], [3], [12] [5], [39]
Multimedia and online service [29] [4], [27], [22], [23], [14]
Natural language processing [40], [20], [21], [11] [19]

2.5.2 Attention and Transformer model(s)

Attention in neural network models is a mechanism that weights the input states
to the output states rather than using a fixed-sized feature vector. Attention
mechanism was originally proposed to improve the decoder in an Encoder-
Decoder architecture [27]. The original transformer model extends this attention
mechanism to encoder-decoder stacks in multiple heads [20]. The successor of
Transformer, BERT [21] is a framework for pre-training and tuning the most
important parameters from a Transformer network, such as Transformer blocks,
hidden sizes, and self-attention heads.

2.6 Generative Adversarial Network (GAN)
A generative adversarial network (GAN) is a new set of generative models [28].
A typical GAN consists of two major neural networks: a generator G and a
discriminator D. It simulates a two-player game for G and D, where G tries to
fool D, and D tries to tell the truth. GAN is getting popular in research about
spatiotemporal topics. Zhu et al. [29] proposed a GAN model for detecting
spatiotemporal events, in which both the generator and discriminator are built
with one LSTM layer.

3 Spatiotemporal Research Work Review
Four subjects are related to this project: 1) predicting locations with machine
learning techniques; 2) spatiotemporal modeling in a broad range of applications;
3) advanced dynamic pattern mining and prediction in visual applications; 4)
extreme event prediction in other areas of research.

3.1 Convolutional Methods in Predicting Epicenters
Estimating and predicting the epicenters of earthquakes has a long history.
Geophysics, Geology, and Seismology have developed various tools and analytical
functions to predict epicenters from datasets. In 1997, Bakun and Wentworth
suggested using Modified Mercalli intensity datasets for Southern California
earthquakes to bound the epicenter regions and magnitudes [33]. In 1998, Pulinets
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proposed predicting epicenters of strong earthquakes with the help of satellite-
sounding systems. Scientists from Greece had illustrated a successful project
which predicted the prominent aspects of earthquakes using seismic electric
signals [34]. Recently, Guangmeng et al. attempted to predict earthquakes with
satellite cloud images and revealed some possibilities of predicting earthquakes
using geophysics data [35]. Zakaria et al. presented their work of predicting
epicenters by monitoring precursors, such as crustal deformation anomalies and
thermal anomalies, with remote sensing techniques [36]. These studies either
used only too little data or too simple analytical models. In this project, we
cover a date range from 1950 to 2019 and transform the dataset into a dense
series of images. Rundle et al. adopt the same data processing approach from
us [37].

3.2 Spatiotemporal Dynamics and Generative Models
Due to large volumes of data and advanced models been developed, spatiotem-
poral dynamics modeling is increasingly popular in many domains. Cui et al.
proposed to use graph convolutional long short-term memory neural networks to
predict traffic via capturing spatial dynamics from the car traffic patterns [3].
Li et al. utilized a seq2seq neural network architecture to capture spatial and
temporal dependencies for traffic forecasting by incorporating a diffusion filter
in convolutional recurrent layers [12]. FUNNEL was a project proposed by Mat-
subara [38]. It was designed to use an analytical model and a fitting algorithm
for discovering spatial-temporal patterns of epidemiological data.

3.3 Visual Pattern Prediction
Lotter et al. presented a model to predict video frames with deep predictive
coding networks [41], which was based on the ConvLSTM2D network module
with specific top-down states updating algorithm. [32] is another example in
predicting video frames. The authors of this work presented the effectiveness of
modeling object motion via predicting future object pixels. For example, a ball
moves, and a block falls. These models are successful for predicting contiguous
and dense image frames. By contrast, the earthquake data are very sparse, and
the extreme shocks are rare in terms of probability.

3.4 Extreme rare event prediction
Laptev et al. [39] proposed their modeling to predict rare trip demands for
ride-hailing service. In that paper, they built an end-to-end architecture using
joint modeling by combining LSTM autoencoder and LSTM predictor networks.
They showed their forecasting capability on a Uber’s public dataset. Geng et al.
[5] proposed another model to forecast the ride-hailing demand using graph-based
recurrent neural networks, in which graphs are defined by road networks with
Euclidean and non-Euclidean distances. Zhu et al. [29] proposed a GAN based
model for detecting streaming spatiotemporal events.
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4 Conclusion
In summary, we present some reviews and summaries about the technical back-
ground in deep learning for spatiotemporal research. Some applications are
widely adopted for video/image and text/speech. However, the deep learning
neural networks are also applicable for addressing scientific problems where the
inner principles for pattern recognition and prediction are shared across.
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