
Optimizing Docker Container Images using
Common Library Packages

Hyungro Lee and Geoffrey C. Fox
School of Informatics and Computing

Indiana University
Bloomington, IN 47408

Email: lee212@indiana.edu

Abstract—With advent of Docker containers, an application
deployment using container images gains popularity over scien-
tific communities and major cloud providers to ease building
environments. While there are needs to create container images
efficiently on a stackable union filesystem and provide dependency
information to track Common Vulnerability and Exposure (CVE).
This paper demonstrates new approaches of building container
images using Common Library Packages (CLP) with surveyed
data. As a result, building application environments with CLP-
enabled container images uses less storage compared to current
Dockerfile scripts and dependency information is visible in detail
for further developments.

Keywords—Automation, Containers, DevOps, CVE, Dependen-
cies

I. INTRODUCTION

Deployment for modern applications require frequent
changes for new features and security updates with a different
set of libraries on various platforms such as IaaS, PaaS, SaaS
or FaaS. DevOps tools and containers are widely used to
complete application deployments with scripts but there are
problems to reuse and share scripts when a large number of
software packages and libraries are combined to build com-
puting environments for applications. For example, Ansible
Galaxy - a public repository, provides scripts (called roles)
over ten thousands and Docker Hub has at least 14 thousands
container images but most of them are individualized and
common libraries and tools are barely shared. This might
be acceptable if a system runs only one or two applications
without multi tenants but most systems in production need to
consider how to run applications efficiently. DevOps provides
an automation of a software deployment and a continuous
integration yet building identical environments for applications
is not ensured unless all required repositories to install are pre-
served. System administrator and application developer need to
review scripts carefully otherwise deployments may encounter
a failure at a later time due to dependency hell and unexpected
changes from a software repository. Container technology i.e.
Docker permits a repeatable build of a application environment
using snapshot images i.e. container images but redundant
images with unnecessary layers are observed because of a
stacked file system. In this paper, we introduce two approaches
about building Common Library Packages (CLP) in containers
therefore building application environments is optimized and
contents are visible in detail for further developments.

Reproducibility is ensured with container images which
are stored in a stackable union filesystem and ”off the shelf”

software deployment is offered through scripts e.g. Docker-
file to automate and share building an equivalent software
environment across various platforms. Each command line
of scripts creates a directory (called image layer) to store
results of commands separately and container instance runs
an application on a root filesystem which is merged by these
image layers while a writable layer is added on top and other
layers beneath it are kept as readable only, known as copy-
on-write. The problem is that system-wide shared libraries
and tools are placed on an isolated directory and it prevents
building environments efficiently over multiple versions of
software and among various applications which use same
libraries and tools. We use collections of HPC-ABDS (Apache
Big Data Stack) [1] and github API to present surveyed
data in different fields about automated software deployments.
In this case, we collected public Dockerfiles and container
images from Docker Hub and github.com and analyzed tool
dependencies using Debian package information.

II. BACKGROUND

A. Software Deployment for dynamic computing environments

Software development has evolved with rich libraries
and building a new computing environment (or execution
environment) requires set of packages to be successfully
installed with minimal efforts. The environment preparation
on different infrastructure and platforms is a challenging task
because each preparation have individual instructions which
build a similar environment, not identical environment. Tra-
ditional method of software deployment is using shell scripts
to define installation steps with a system package manager
command such as apt, yum, dpkg, dnf and make but it is not
suitable to deal with large number of packages actively updated
and added to community in a universal way. Python Package
Index (PyPI) has almost 95,490 packages (as of 12/26/2016)
with 40+ daily new packages and github.com where most
software packages, libraries and tools are stored has 5,776,767
repositories available with about 20,000 daily added reposi-
tories. DevOps tools i.e. Configuration management software
supports automated installation with repeatable executions
and better error handling compared to bash scripts but there
is no industry standards for script formats and executions.
Puppet, Ansible, Chef, CFEngine and Salt provide community
contributed repositories to automate software installation, for
example, Ansible Galaxy has 11353 roles available, Chef
Supermarket has 3,261 cookbooks available although there
are duplicated and inoperative scripts for software installation



and configuration. Building dynamic computing environments
on virtual environments is driven by these DevOps tools and
container technologies during last a few years due to its
simplicity, openness, and shareability. Note that this effort is
mainly inspired by the previous research activities [2], [3], [4],
[5], [1], [6].

B. DevOps - Ansible

In the DevOps phase, configuration management tool i.e.
Ansible automates software deployment to provide fast de-
livery process between development and operations [7]. In-
structions to manage systems and deploy software are written
in scripts although different formats i.e. YAML, JSON, and
Ruby DSL and various terminologies i.e. recipes, manifests,
and playbooks are used. Puppet and Chef are configuration
management tools written in Ruby and these tools manage
software on target machines regarding to installation, execu-
tion in a different state e.g. running, stopping or restarting,
and configuration through the client/server mode (also called
master/agent). Ansible is also recognized as a configuration
management tool but more focusing on software deployment
using SSH and no necessity of agents on target machines. With
the experience from the class projects at Indiana University
and NIST projects [8], a few challenging tasks are identified
in DevOps tools, a) offering standard specification of scripts to
ease script development with different tools, and b) integrating
container technologies towards microservices.

C. Scripts and Templates

Building compute environments needs to ensure repro-
ducibility and constant deployment over time [9], [10]. Most
applications these days run with dependencies and setting up
compute environments for these applications require to install
exact version of software and configure systems with same
options. Ansible is a DevOps tool and one of the main features
is software deployment using a structured format, YAML
syntax. Writing Ansible code is to describe action items in
achieving desired end state, typically through an independent
single unit. Ansible offers self-contained abstractions, named
Roles, by assembling necessary variables, files and tasks in a
single directory and an individual assignment (e.g., installing
software A, configuring system B) is described as a role.
Compute environments are usually supplied with several soft-
ware packages and libraries and selectively combined roles
conduct a software deployment where new systems require
environments with needed software packages and libraries
installed and configured. Although the comprehensive roles
have instructions stacked with tasks to successfully finish a
software deployment with dependencies, the execution of ap-
plications still need to be verified. In consequence, to preserve
an identical results from the re-execution of applications, it is
necessary to determine whether environments are fit for the
original applications.

D. Containers with Dockerfile

Container technology has brought a lightweight virtualiza-
tion with a Linux kernel support to enable a portable and
reproducible environment across laptops and HPC systems.
Container runtime toolkit such as Docker [11], rkt [12] and

LXD [13] has been offered since 2014 which uses an im-
age file to initiate a container including necessary software
packages and libraries without an hypervisor which creates
an isolated environment using a virtual instance but with an
isolated namespace on a same host operating system using
the Linux kernel features such as namespaces, cgroups, sec-
comp, chroot and apparmor. Recent research [14] shows that
containers outperform traditional virtual machine deployments
yet running containers on HPC systems is still an undeveloped
area. Shifter [15] and Singularity [16] have introduced to
support containers on HPC with a portability and MPI support
along with docker images. These efforts will be beneficial to
scientific applications to conduct CPU or GPU intensive com-
putations with easy access of container images. For example, a
neuroimaging pipelines, BIDS Apps [17], is applied to HPCs
using Singularity with existing 20 BIDS application images
and Apache Spark on HPC Cray systems [18] is demonstrated
by National Energy Research Scientific Computing Center
(NERSC) using shifter with a performance data of big data
benchmark. Both researches indicate that scientific and big
data workloads are supported by container technologies on
HPC systems for reproducibility and portability.

Listing 1: Dockerfile Example

FROM ubuntu : 1 4 . 0 4

MAINTAINER Hyungro Lee <l e e212@ind i ana . edu>

RUN apt−g e t u p d a t e && apt−g e t i n s t a l l −y \\
b u i l d−e s s e n t i a l wget g i t

. . .

Dockerfile (See Listing 1) uses a custom template to describe
installation steps of building docker images in a bash like
simple format. There are certain directives to indicate particu-
lar objective of the commands, for example, FROM indicates
a base image to use and RUN indicates actual commands
to run. When an image is being generated, each directive
of Dockerfile creates a single directory to store execution
results of commands and a final image created by Dockerfile
has meta-data to merge these directories in a unified logical
view. The tag for an image is a reference for stacked image
layers. For example in Listing 1, ubuntu:14.04 is tag to import
stacked image layers of building Ubuntu 14.04 distribution and
the following directives i.e. MAINTAINER and RUN, will be
stacked in a new branch. This allows to share most common
image layers with a tag among other containers e.g. linux
distribution.

E. Environment Setup

Preparing environment means that installing all necessary
software, changing settings and configuring variables to make
your application executable on target machines. Container
technology simplifies these tasks using a container image
which provide a repeatable and pre-configured environment
for your application therefore you can spend more time on
an application development rather than software installation
and configuration to ensure proper deployments. One of the
challenges we found from container technologies is managing
dependencies of application libraries. Container users who
want to run applications with particular libraries have to find a



Fig. 1: Debian Package Relations between Dependencies,
Reverse Dependencies and Package Sizes (itself and including
dependencies) for Popular Docker Images

proper container images or to create an individual image with
required libraries and tools, otherwise jobs for an application
will fail. One possible solution for this problem is offering
a common library package for an application. We noticed
that there is a common list of libraries for particular type
of applications based on the survey from Docker images and
Dockerfile scripts. The idea is to offer curated environments
for domain-specific applications using the surveyed list of
libraries from community. For example, libraries for linear
algebra calculation i.e. liblapack-dev and libopenblas-dev are
commonly used for applications in analytics layer of HPC-
ABDS according to the Table I. Additional package installation
might be required if suggested list of dependencies does not
satisfy all requirement of an application.

F. Package Dependencies

Software packages have many dependencies especially if
packages are large and complex. Reverse dependencies re-
veal which package will break and cause conflicts if current
package is removed or changed. Figure 1 shows that one of
examples how packages are related to others based on the
survey of popular docker files from Debian packages.

G. Infrastructure Provisioning

III. RESULTS

IV. RELATED WORK

V. CONCLUSION

TBD

ACKNOWLEDGMENT

The authors would like to thank...

(a) Dependencies

(b) Reverse Dependencies

Fig. 2: Debian Package Dependencies for HPC-ABDS Layers

REFERENCES

[1] G. C. Fox, J. Qiu, S. Kamburugamuve, S. Jha, and A. Luckow, “Hpc-
abds high performance computing enhanced apache big data stack,” in
Cluster, Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM
International Symposium on. IEEE, 2015, pp. 1057–1066.

[2] G. Fox, J. Qiu, S. Jha, S. Ekanayake, and S. Kamburugamuve, “Big
data, simulations and hpc convergence,” in Workshop on Big Data
Benchmarks. Springer, 2015, pp. 3–17.

[3] G. Fox, J. Qiu, and S. Jha, “High performance high functionality big
data software stack,” 2014.

[4] J. Qiu, S. Jha, A. Luckow, and G. C. Fox, “Towards hpc-abds: an initial
high-performance big data stack,” Building Robust Big Data Ecosystem
ISO/IEC JTC 1 Study Group on Big Data, pp. 18–21, 2014.

[5] G. Fox and W. Chang, “Big data use cases and requirements,” in 1st
Big Data Interoperability Framework Workshop: Building Robust Big
Data Ecosystem ISO/IEC JTC 1 Study Group on Big Data. Citeseer,
2014, pp. 18–21.

[6] G. Fox, J. Qiu, S. Jha, S. Ekanayake, and S. Kamburugamuve, “White
paper: Big data, simulations and hpc convergence,” in BDEC Frankfurt
workshop. June, vol. 16, 2016.

[7] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” IEEE
Software, vol. 33, no. 3, pp. 94–100, 2016.

[8] B. Abdul-Wahid, H. Lee, G. von Laszewski, and G. Fox, “Scripting
deployment of nist use cases,” 2017.

[9] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon,
C. Goble, M. Livny, L. Moreau, and J. Myers, “Examining the chal-
lenges of scientific workflows,” Computer, vol. 40, no. 12, 2007.

[10] A. Goodman, A. Pepe, A. W. Blocker, C. L. Borgman, K. Cranmer,
M. Crosas, R. Di Stefano, Y. Gil, P. Groth, M. Hedstrom et al.,
“Ten simple rules for the care and feeding of scientific data,” PLoS
computational biology, vol. 10, no. 4, p. e1003542, 2014.

[11] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[12] “Coreos/rkt: a container engine for linux designed to be composable,
secure, and built on standard,” https://github.com/coreos/rkt, 2016,
[Online; accessed 09-November-2016].

[13] “Ubuntu lxd: a pure-container hypervisor,” https://github.com/lxc/lxd,
2016, [Online; accessed 09-November-2016].

[14] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,” in



Name PCT1 PCT2 PCT3 PCT4 Description Section CT1 CT2 Dependencies Size Important
software-properties-
common

0.01 0.06 0.02 0.03 manage the repositories that
you install software from
(common)

admin 8 4 python3-dbus, python-apt-common,
python3-software-properties, gir1.2-
glib-2.0, ca-certificates, python3:any,
python3-gi, python3

9418 (630404) optional

build-essential 0.14 0.16 0.03 0.05 Informational list of build-
essential packages

devel 5 32 dpkg-dev, libc6-dev, gcc, g++, make 4758 (2705548) optional

g++ 0.15 0.06 0.02 0.01 GNU C++ compiler devel 4 57 cpp, gcc, g++-5, gcc-5 1506 (22034848) optional
gcc 0.03 0.05 0.02 0.01 GNU C compiler devel 2 57 cpp, gcc-5 5204 (6735366) optional
groovy - - 0.01 - Agile dynamic language for

the Java Virtual Machine
universe/devel 14 10 libbsf-java, libservlet2.5-java, antlr,

libxstream-java, libcommons-logging-
java, libjline-java, libasm3-java, libjansi-
java, libregexp-java, libmockobjects-
java, junit4, default-jre-headless, ivy,
libcommons-cli-java

9729202 (3257906) optional

libatlas-base-dev - 0.06 - - Automatically Tuned Linear
Algebra Software, generic
static

universe/devel 2 8 libatlas-dev, libatlas3-base 3337570 (2690424) optional

liblapack-dev - 0.03 - - Library of linear algebra rou-
tines 3 - static version

devel 2 22 liblapack3, libblas-dev 1874498 (2000176) optional

ruby - 0.01 0.01 0.01 Interpreter of object-oriented
scripting language Ruby (de-
fault version)

interpreters 1 987 ruby2.1 6026 (73880) optional

maven - - 0.02 0.01 Java software project manage-
ment and comprehension tool

universe/java 2 5 default-jre, libmaven3-core-java 17300 (1441844) optional

libffi-dev - 0.03 - 0.01 Foreign Function Interface li-
brary (development files)

libdevel 2 11 libffi6, dpkg 162456 (2101914) extra

libssl-dev 0.12 0.07 0.01 0.03 Secure Sockets Layer toolkit -
development files

libdevel 2 70 libssl1.0.0, zlib1g-dev 1347070 (1258956) optional

net-tools 0.01 0.02 0.03 0.05 NET-3 networking toolkit net 1 51 libc6 174894 (4788234) important
chrpath - - - 0.05 Tool to edit the rpath in ELF

binaries
utils 1 0 libc6 12932 (4788234) optional

git 0.33 0.21 0.06 0.07 fast, scalable, distributed revi-
sion control system

vcs 8 75 perl-modules, liberror-perl, libpcre3,
libcurl3-gnutls, git-man, zlib1g, libc6,
libexpat1

2951026 (8563378) optional

nodejs 0.01 0.04 - 0.02 evented I/O for V8 javascript universe/web 6 287 libssl1.0.0, libc6, libstdc++6, zlib1g,
libv8-3.14.5, libc-ares2

683742 (7551922) extra

TABLE I: Most Common Debian Packages from Dockerfile Survey Samples
(PCT1: Percentage by General Software, PCT2: Percentage by Analytics Layer, PCT3: Percentage by Data processing Layer,

PCT4: Nosql Layer, CT1: Count of Dependencies, CT2: Count of Reverse Dependencies)

Fig. 3: Nginx Debian Package Dependencies

Fig. 4: Comparison of Container Images for Nginx Version
Changes

(Current: Built by Official Dockerfiles, New: Built by
Common Library Packages)

Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium On. IEEE, 2015, pp. 171–172.

[15] D. M. Jacobsen and R. S. Canon, “Contain this, unleashing docker for
hpc,” Proceedings of the Cray User Group, 2015.

[16] G. M. Kurtzer, “Singularity 2.1.2 - Linux application and
environment containers for science,” Aug. 2016. [Online]. Available:

Fig. 5: Union File System Tree

https://doi.org/10.5281/zenodo.60736

[17] K. J. Gorgolewski, F. Alfaro-Almagro, T. Auer, P. Bellec, M. Capota,
M. M. Chakravarty, N. W. Churchill, R. C. Craddock, G. A. Devenyi,
A. Eklund et al., “Bids apps: Improving ease of use, accessibility and
reproducibility of neuroimaging data analysis methods,” bioRxiv, p.
079145, 2016.

[18] N. Chaimov, A. Malony, S. Canon, C. Iancu, K. Z. Ibrahim, and
J. Srinivasan, “Scaling spark on hpc systems,” in Proceedings of the
25th ACM International Symposium on High-Performance Parallel and



Fig. 6: Common Library Packages by submodules

Fig. 7: Common Library Packages by merge

Distributed Computing. ACM, 2016, pp. 97–110.

Fig. 8: Dockerfile Workflow

Fig. 9: Example of Security Vulnerabilities for Ubuntu 16.04
based on Libraries


