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We describe IoTCloud, a platform to connect smart devices to cloud services for real time data processing and control. A device
connected to IoTCloud can communicate with real time data analysis frameworks deployed in the cloud via messaging. The
platform design is scalable in connecting devices as well as transferring and processing data.With IoTCloud, a user can develop real
time data processing algorithms in an abstract framework without concern for the underlying details of how the data is distributed
and transferred. For this platform, we primarily consider real time robotics applications such as autonomous robot navigation,
where there are strict requirements on processing latency and demand for scalable processing. To demonstrate the effectiveness of
the system, a robotic application is developed on top of the framework. The system and the robotics application characteristics are
measured to show that data processing in central servers is feasible for real time sensor applications.

1. Introduction
1

The availability of internet connections and low manufac-
turing costs have led to a boom in smart objects, devices
with a tripartite construction consisting of a CPU, memory
storage, and a wireless connection. These smart objects
(or devices) are equipped with sensors that produce data
and actuators capable of receiving commands. Such devices
have proliferated in all fields and their use is expected to
grow exponentially in the future. For these devices, central
data processing has been shown to be advantageous due to
numerous factors, including the ability to easily draw from
vast stores of information, efficient allocation of computing
resources, and a proclivity for parallelization. Because of these
factors, many devices may benefit from processing only some
data locally and offloading the remainder to central servers.
Among the aforementioned devices, and increasingly present
in modern life, are robots. Such examples as the iRobot
Roomba, a robot that can clean the floor, present affordable,
automated aids for daily living. Additionally, Amazon and
Google are researching and developing platforms for deliv-
ering consumer products using drones. Most of these robots
have limited onboard processing power but still generate

large amounts of data. Cloud-based analysis of data from
such robots creates many challenges due to strict latency
requirements and high volumes of data production.

To process data derived from numerous smart devices,
we need scalable data processing platforms. Cloud is an
ideal computational platform for hosting data processing
applications for smart devices because of its efficiency and
agility. Cloud computing [1] refers to both applications
delivered as services over the Internet and the hardware
and system software in the datacenters that provide those
services. Cloud computing enables computing as a utility and
is gradually becoming the standard for computation, allowing
the systems and users to use Platform as a Service (PaaS),
Infrastructure as a Service (IaaS), and Software as a Service
(SaaS).The computational nodes are provisioned, configured,
and reconfigured dynamically in the cloud and can take the
form of virtual machines or physical machines. Furthermore,
sensor-based applications can benefit from in-house private
cloud environments hosted within organizations or from
public clouds hosted by large companies.

In order to process data generated by smart devices in
a cloud environment, the data must be transmitted from
the devices to the cloud in an efficient and scalable manner.
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The communication between cloud applications and the
devices is essentially based on events, which suggests that the
traditional request/response approach is not appropriate. For
example, when using requests and responses, a device requir-
ing real time control has to poll the applications continuously,
which increases the latency and network traffic. Transmission
of events is well supported by publish-subscribe messaging
[2] where a publisher makes information available to sub-
scribers in an asynchronous fashion. Over time, publish-
subscribe messaging has emerged as a distributed integration
paradigm for deployment of scalable and loosely coupled
systems. Subscribers have the ability to express their interest
in an event or pattern of events and are subsequently notified
of any event generated by a publisher which matches their
registered interest. An event is asynchronously propagated
to all subscribers that registered interest. Publish-subscribe
messaging decouples the message producers and consumers
in the dimensions of time, space, and synchronization. The
decoupling favors the scalability of the message producing
and consuming systems. Because of these features, publish-
subscribe messaging is potentially a good fit for connecting
smart devices to cloud applications.

Two widely used schemes of pub-sub systems are topic-
based and content-based. In topic-based systems, the mes-
sages are published to topics which are identified by key-
words. The consumers subscribe to and receive messages
coming to these topics. In content-based systems, the con-
sumers subscribe to messages based on the properties of the
messages. This means the content of each message has to
be examined at the middleware to select a consumer among
possibly a large set of consumers. Because of the simple
design of most topic-based middleware, they tend to scale
well compared to content-based brokers and introduce less
overhead.

We can assume that, for all our devices, data is sent to a
cloud as a stream of events. It is important to process the data
as a stream before storing it to achieve real time processing
guarantees. Parallel processing of events coming from a single
source can help to reduce the latency in most applications.
The ability to connect large numbers of devices creates a need
for a scalable infrastructure to process the data. Distributed
event processing engines (DSPEs) [3–6] are a good fit for
such requirements. A DSPE abstracts out the event delivery,
propagation, and processing semantics and greatly simplifies
the real time algorithm development. They also act as a
messaging fabric that distributes data for batch processing
and archival purposes to other data sinks like databases and
file systems after some preprocessing of the data.

We envision a cloud-based data-intensive computing
architecture where stream-based real time analysis and batch
analysis are combined together to form a rich infrastructure
for sensor applications. We propose Cloud DIKW- (Data,
Information, Knowledge, and Wisdom-) based architecture
for sensor data analysis in the cloud. The high level DIKW
view of the system is shown in Figure 1. With DIKW
architecture, the data enters the processing pipeline through
the DSPE layer. Both stream analysis and batch analysis
are combined to continuously evolve the data models to

transition from raw data to decisions.The storage layer acts as
the glue between the batch analysis and the stream analysis.

By combining the above requirements, we have developed
our IoTCloud platform, which is a distributed software
platform capable of connecting devices to the cloud services.
IoTCloud uses topic-based publish-subscribe messaging to
transfer data between the devices and the cloud services and a
DSPE to process the data in the cloud.The platform supports
two publish-subscribe brokers with different semantics that
are suitable for different applications. We have developed
a robotic application that runs through a private in-house
cloud to demonstrate how to use the system and measured
the characteristics of the system. Doing so demonstrates that
we can achieve real time processing of sensor data in a cloud
environment in a scalable manner. The main contribution of
our work is to explore scalable cloud-based real time data
processing for sensor applications.

Section 2 of the paper describes the related work in this
area. Section 3 explains the architecture of the framework and
Section 4 highlights the robotics application we have devel-
oped. In Section 5, we present a series of experiments done
to evaluate the system and discuss the resulting observations.
Finally, in Sections 6 and 7, we end with conclusions and
future work.

2. Related Work

Hassan et al. [7] presented a content-based publish/subscribe
framework for connecting sensor data to cloud services. 2
Content-based pub-sub allows greater flexibility for the appli-
cation designers than topic-based systems. But content-based
setups usually involve higher overhead because the brokers
have to inspectmessage content. Furthermore, content-based
pub-sub brokers are neither popular nor widely available as
products.

Mires [8], TinySIP [9], and DV/DRP [10] are all pub-
lish/subscribe messaging middleware for Wireless Sensor
Networks (WSNs). They address the different issues in con-
necting WSNs and communicating with sensors. MQTT-
S [11] is an open topic-based pub-sub protocol defined
for transferring data from sensors. The protocol enables
data transfer between sensors and traditional networks. In
our work, we assume that sensor data is available to be
transported to cloud services and we handle the transfer of
gathered data from devices to cloud services. For example,
a device connected to our system can send data via a
dedicated communication channel, public Internet, and so
forth. Also, many devices can be connected in WSNs using
the above-mentioned protocols or messaging systems after
which our platform can transfer this data to cloud services
for processing.

Reference architectures for integrating sensors and cloud
services have been discussed in the literature [12, 13]. Both
works explore the general architecture that can be used to
connect sensors to cloud services and the potential issues.
In our work, we provide a framework that can be used to
send sensor data from devices to the cloud as well as showing
how to process the data within a generic framework. We also
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Figure 1: DIKW view of the system.

discuss how to transfer data and process it in a scalable way,
topics that are not fully addressed in the above papers. A
detailed survey of some of the existing work done on cloud
robotics has been summarized in [14]. Our framework can
be used as a generic platform for developing cloud robotics
applications such as collective robot learning, robot swarms,
and robot perception based on image processing.

3. IoTCloud Architecture

A system view of the architecture is shown in Figure 2. Our
architecture consists of three main layers:

(1) Gateway layer.
(2) Publish-subscribe messaging layer.
(3) Cloud-based big data processing layer.

We consider a device as a set of sensors and actuators. Users
develop a driver that can communicate with the device and
deploy it in a gateway. This driver does not always have to
directly connect to the device. For example, it can connect
via a TCP connection or through a message broker. The
data generated by the driver application is sent to the cloud-
processing layer using publish-subscribe messaging brokers.
The cloud-processing layer processes the data and sends
control messages via the message brokers back to the driver,
which converts the information to a format that suits the
device and communicates this back to it. The platform is
implemented in Java programming language.

3.1. Gateway. Drivers are deployed in gateways responsible
for managing drivers. There can be multiple gateways in
the system and each has a unique ID. A gateway master3
controls the gateways by issuing commands that include
deploy/undeploy and start/stop drivers. A gateway is con-
nected to multiple message brokers, which can be in a cluster
configuration. By default, the platform supports RabbitMQ
[15], ActiveMQ, and Kafka [16] message brokers. Gateways
manage the connections to the brokers and handle the load
balancing of the device data to the brokers. They update the

master about the drivers deployed in it and the status of the
gateways. The master then stores the state information in a
ZooKeeper [17] cluster. 4

3.2. Driver. Thedriver is the data bridge between a device and
the cloud applications. It serves to convert data coming from
the device into a format that the cloud applications expect and
vice versa. A driver has a name and a set of communication
channels. When a driver is deployed, the running instance
gets an instance ID. This is used for controlling the driver
after the deployment. The same driver can be deployed
multiple times and each of the instances receives a unique ID.
One driver can have multiple communication channels each
with a unique name. A communication channel connects
the driver to publish-subscribe messaging brokers. When a
driver is deployed, its information is saved in ZooKeeper.The
default structure of driver information in ZooKeeper is

/iot/sensors/[driver name]/
[driver instance id]/[channel name]

A ZooKeeper node (ZNode) with the driver instance ID
contains information about the driver such as its status
and metadata. ZNodes with a channel name contain infor-
mation about the channels. The framework allows shared
and exclusive channels to be created. An exclusive channel
can give faster communication between the drivers and the
cloud processing. But in large-scale deployment of drivers, an
exclusive channel can result in a large number of resources
in the brokers. Some applications do not have strict latency
requirements and can use shared channels, thus consuming
less system resources.

3.3. Brokers. The platform specifically focuses on topic- 5

6

7

based publish-subscribe brokers rather than content-based
models. We chose topic-based brokers for several reasons: (1)
stable, open-source topic-based brokers are easily available;
(2) topic-based brokers are simple to use and configure; (3)
the overhead introduced by the broker is minimal compared
to content-based versions. For this project, the most impor-
tant factors are 1 and 3, because our applications require low



4 Journal of Sensors

zk.servers: ["server1:2181"]

zk.root: "/iot/sensors"

topology.name: "wordcount"

spouts:

kinect receive:

broker: "rabbitmq"

driver: "turtle"

channel: "kinect"

fields: ["frame", "driverID", "time"]

bolts:

count send:

broker: "rabbitmq"

driver: "turtle"

channel: "control"

fields: ["control", "driverID", "time"]

Algorithm 1: Topology endpoint configuration.
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Figure 2: IoTCloud architecture.

latency and topic-based brokers are the ones readily available
for use. The messaging layer needs to preserve the message
ordering, preventing multiple consumers from consuming
messages off the same driver.

There are many open-source brokers available that fulfill
our needs for the messaging infrastructure. Such brokers
include ActiveMQ [18], RabbitMQ [15], Kafka [16, 19] Kestrel,
and HonertMQ. From these, ActiveMQ, RabbitMQ, and

Kafka are widely used topic-based publish-subscribe brokers.
The preliminary studies show that ActiveMQ and RabbitMQ
have identical functionalities for our purposes but the latter
is capable of handling more load with less overhead. The
Kafka broker has very good clustering capabilities and can
handle parallel consumer reads for the same topic. For these
reasons, we decided to support both RabbitMQ and Kafka in
our platform.

Each communication channel created in a driver is
connected with a topic created in the message broker. The
framework supports twomappings of channels to topics, thus
creating two types of channels. In the first type, each channel
is mapped to a unique queue in the broker. We call this type
exclusive channels. In the other type, a set of channels shares
the same topic in the broker and is called a shared channel. At
the moment, we use a very simple rule to map the channels
to a shared queue. We map the same channel from multiple
instances of a driver deployed in one gateway to a single topic:

For shared channels, number of topics =

number of gateways.
For exclusive channels, number of topics =

number of driver instances.

For a shared channel, the corresponding topic name
is of the format “gateway id.driver name.queue name”.
For an exclusive channel, it is “gate-
way id.driver name.driver id.queue name”.

RabbitMQ.RabbitMQ is amessage broker primarily support-
ingAdvancedMessageQueuing Protocol (AMQP) [20]. Even
though the core of RabbitMQ is designed to support AMQP,
the broker has been extended to support other message
protocols like STOMP, MQTT, and so forth. RabbitMQ is
written in Erlang programing language and supports low
latency high throughput messaging. It has a rich API and
architecture for developing consumers and publishers; plus
topics are easy to create and manage using its APIs. These
topics are lightweight and can be created without much
burden to the broker. We allow both shared channels and
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exclusive channels to be created for RabbitMQ.Themetadata
of a message is sent using RabbitMQ message headers and
includes sensor ID, gateway ID, and custom properties.

Kafka. Kafka is a publish-subscribe message broker backed
by a commit log. The messages sent by the producers8
are appended to a commit log and the consumers read
the messages from this. Kafka implements its own message
protocol and does not support standard protocols like AMQP
or MQTT. At the core of Kafka messaging is the concept of a
topic. A topic is divided into multiple partitions and a mes-
sage is sent to a single partition. In our platform, the partition
for a message is chosen using a key accompanying a message.
Thus, messages with the same key go to the same partition.
Consumers consume messages from partitions. Partitions of
a single topic can spread across a cluster of Kafka servers.
Furthermore, a single partition is replicated in a Kafka cluster
for reliability. Kafka guarantees ordering of messages in a
partition and does not guarantee ordering across partitions.
Because a topic consists of multiple partitions, consumers
can read from the same topic in parallel without affecting
the message ordering for a single message key. In IoTCloud
platform, we use the driver ID as the key for a message.

IoTCloud needs to sendmetadata with amessage, such as
the driver ID, site ID, and custom properties. Because Kafka
only supports byte messages without any headers, we use a
Thrift- [21] based message format to send metadata about
the message. Use of driver ID as the key ensures that the
messages belonging to a single driver instance will always be
in one partition. We use at most one consumer per partition
to ensure the message ordering for a driver. Because Kafka
topics can be partitioned, wewill have parallel read-and-write
capabilities for shared channels. Because of this, the platform
only supports shared channels for Kafka.

3.4. Cloud Processing. As the primary cloud-processing
framework, we use Apache Storm [6], which is an open-
source DSPE. There are many DSPEs available but we chose
Storm because of its scalability, performance, excellent devel-
opment community support, and its ability to use scripting
languages to write applications. Storm can be used to process
the data and send responses back immediately, or it can
do some preprocessing of the data and store it for later
processing by batch engines such as Apache Hadoop. The
applications we have developed do not use batch processing
at themoment, sowe have not incorporated such engines into
the platform yet. But our architecture permits integration of
engines like Hadoop. We use FutureGrid [22] as our cloud
platform for deploying the Storm Cluster since it has an
OpenStack installation and we can provision VM images
using the OpenStack tools.

Apache Storm. Storm is a distributed stream processing
engine designed to process large amounts of streaming data
in a scalable and efficient way. Data processing applications
are written as Storm topologies. A topology defines a DAG
structure for processing the streaming data coming from the
devices as an unbounded stream of tuples. The DAG consists
of a set of spouts and bolts written to process the data. The

tuples of the streamflow through the nodes (spouts and bolts)
of the DAG. Spouts and bolts are primarily written in Java
but other programming languages like Python and Ruby are
permitted. Data enters a topology through spouts and the
processing happens in bolts. The components in the DAG
are connected to each other using stream (tuple) groupings.
Pub-sub is a common pattern for ingesting data into a Storm
topology. A bolt can consume the connected input streams,
do some processing on the tuples, and generate and emit new
tuples to the output streams. Usually, the last bolts in the
topology DAG write the results to a DB or send the results to
remote nodes using pub-submessaging.The spouts and bolts
of a topology can be run in parallel in different computation
nodes.

To ease the development of Storm topologies in our
platform, we allow the external communication points of
a Storm topology to be defined in a configuration file.
Algorithm 1 is one such example. The topology has two
external communication channels. A “kinect receive” spout
gets the input data from devices and a “count send” bolt
sends output information back to the devices. We can
use the above configuration to build the outer layer of a
topology automatically. The algorithm has to be written by
the application developer.

We can run many instances of any of the components in
a Storm topology in parallel. For example, to read data in
parallel frommany devices, we can spawn several instances of
the kinect receive spout in different nodes. This can be done
for any bolt in the topology as well. The parallelism can be
changed at runtime as well. This allows the system to scale
with the addition of drivers.

3.5. Discovery. Because Storm is a distributed processing
framework, it requires coordination among the processing
units. For example, when a communication channel is created
in the broker for a device, the parallel units responsible
for communicating with that channel should pick a leader
because multiple units reading from the same channel can
lead to data duplication and out of order processing, which
is not desirable for most applications. Also, the distributed
processing units should be able to detect when the drivers
come online and go offline. To adapt to such a distributed
dynamic processing environment, we need discovery and
coordination. Apache ZooKeeper [17] can achieve both.
When drivers come online, the information about them
is saved in ZooKeeper. The discovery component discov-
ers and connects this information to the cloud processors
dynamically at runtime. This allows the processing layers to
automatically distribute the load and adjust accordingly to the
changes in the data producer side.

When a topology deploys its external communication
components (spouts and bolts), it does not know about the
physical addresses of the topics or how many topics it has
to listen to. So, at the very beginning, the topology does not
have any activemessage listeners or senders.The topology has
information about the ZooKeeper and the drivers that it is
interested in. It uses this information to dynamically discover
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the topics that it has to listen to and add those consumers and
producers to the topology at runtime.

3.6. Processing Parallelism. The processing parallelism at the
endpoints of the topology is bound to the message brokers
and how we can distribute the topics across the brokers.
For processing bolts at the middle, maximum parallelism
is not bounded and depends on the application. A Storm
topology gets its messages through the spouts. The same
spout can run multiple instances in parallel to read the
messages coming from multiple devices connected to the
system. A spout always reads the messages from a single
channel of a device. If a processing algorithm requires input
from multiple channels, the topology must have multiple
spouts. A running instance of a spout can connect tomultiple
topics to read the messages, but all these topics must be
connected to a channel with the same name and driver.When
a spout needs to read from multiple topics, the topology
distributes the topics equally among the running instances of
the spout dynamically at runtime. The message flow through
the Storm topology happens primarily using the driver IDs.
The bolts that are communicating with the brokers know
about all the topics in the system and they can send amessage
to an appropriate topic using the driver ID.

RabbitMQ. There is a limit to the number of parallel spouts
that we can run due to the number of topics created per
channel. The following gives an upper bound on how many
spouts we can run when RabbitMQ brokers are used:

Shared channels: number of parallel spouts ≤

number of gateways.
Exclusive channels: number of parallel spouts ≤
number of channels.

In general, we cannot do parallel reads from a topic due
to the ordering constraints. Figure 3 shows how exclusive
channels created by a driver named sensor 01 are connected
to the Storm topology. Here, the Storm topology runs only
one instance for each spout reading from channel 01 and
channel 02. Because we have 8 channels in 4 instances of the
drivers, we need 8 topics in the broker. Since we only have 2
spouts and 2 bolts in the topology, each spout is connected
to 2 topics and each bolt is communicating with 2 topics.
Figure 4 shows the same scenario with shared channels. In
this case, we only have 4 topics because the two drivers
deployed in the same gateway are using the same topics.

Kafka. Kafka topics are more heavyweight than RabbitMQ.
For every topic in the system, Kafka has to create log files and
index files in the file system for its partitions. If the replication
is enabled for fault tolerance, these files have to be replicated
in the Kafka cluster. Kafka also supports parallel reads for a
single topic. Because of these reasons, we only support shared
channels for Kafka, where the number of spouts possible
depends on the number of partitions for a topic:

number of parellel spouts

≤ number of gateways × partitions per topic.
(1)
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Figure 3: RabbitMQ exclusive channels and Storm.

Figure 5 shows topics distribution with Kafka for the same
scenario as in Figure 3. In Figure 5, each Kafka topic has 2
partitions and we have 4 topics because the channels are
shared. Read-and-write parallelism in this case is equal to
the exclusive channel scenario with RabbitMQ (Figure 4)
since each topic has two partitions. But in practical scenarios,
we will have fewer partitions than devices connected per
gateway. This will make the parallelism greater than the
shared channels with RabbitMQ but less than the exclusive
channels.

4. TurtleBot Follower Application

In order to explore possible configurations for the IoTCloud 9
framework, we used Microsoft Kinect [23] and TurtleBot
[24]. Microsoft Kinect consists of an IR camera, an RGB
camera, an IR emitter, and several auxiliary features. Our
project was not concerned with the details of the hardware
but complete discussions of the Kinect specifications and
method of depth calculation are available. Currently, there
are numerous open-source projects and academic studies
utilizing Kinect due to the sensor’s affordability and host of
applications. In addition, a well-documented robot incor-
porating Kinect is already available: TurtleBot by Willow
Garage. For these reasons, they were chosen as a subject for
the development of a sensor to cloud-processing framework.

In our application, TurtleBot follows a large target in front
of it by trying to maintain a constant distance to the target.
Compressed depth images of the Kinect camera are sent to
the cloud and the processing topology calculates command
messages, in the form of velocity vectors, in order tomaintain
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a set distance from the large object in front of TurtleBot.These
command messages are sent back to TurtleBot using its ROS
[25] API. TurtleBot then actuates these vectors to move.

4.1. Reading Depth Frames from Kinect. The initial step in
developing our application utilizing the Kinect depth camera
was finding a driver to read in the Kinect data stream.
TurtleBot is operated with ROS, the open-source robotics
operating system, which has an available Kinect driver. The
ROS Kinect driver is built on OpenKinect’s libfreenect [26]
driver, so, in order to avoid any unnecessary overhead,
libfreenect was used. Libfreenect is an open-source Kinect
driver that provides a Java interface to both the IR and the
RGB cameras. Methods are provided to start a depth stream
and handle frames. Libfreenect was originally implemented
in C++, although a Java JNA wrapper is now available.

4.2. Compression. During the course of the project, several
compression schemes were tested. In the early stages, this
included the LZ4, Snappy [27], and JZlib Java compres-
sion libraries. Snappy achieved less compression but was
faster than the other two. Ultimately, we chose a two-
stage compression process using the Mehrotra et al. [28]
inversion technique as the first stage and Snappy as the
second. The Mehrotra et al. [28] inversion technique takes
advantage of the error endemic to the depth camera. The
depth camera’s accuracy decreases proportional to the inverse
of the squared depth. Hence, multiple values may be encoded
to the same number without any loss in fidelity [28]. By using
this inversion technique, every two-byte disparity can be
compressed to one byte. It is worth noting, however, that the

inversion algorithm takes distance as an input, not disparity.
Mehrotra et al. achieved a startling 5ms compression time
for their whole 3-step process with little optimization. For
the sake of expediency, our project used an existing Java
compression library (Snappy) rather than the Mehrotra et al.
RLE/Golomb-Rice compression.

The last major decision left was whether to implement the
prediction strategymentioned inMehrotra et al.This strategy
takes advantage of the heterogeneous nature of the depth of
objects. This translates into long runs of values in the depth
data. The prediction strategy is simple and converts any run
into a run of 0s. For an RLE, this will have a clear advantage,
but when tested with Snappy the gain was negligible and thus
not worth the added computation. Ultimately, we were able
to achieve a compression ratio of 10 : 1 in a time of 10ms.
This compares favorably to the 7 : 1 ratio in 5ms reached by
Mehrotra et al. The data compression happens in the laptop
computer insideTurtleBot. After compression, the data is sent
to a driver application that runs in an IoTCloud gateway.This
gateway relays the information to the cloud.

4.3. Calculation of Velocity. The Storm topology for this
application consists of 3 processing units arranged one after
the other. First spout receives the compressed Kinect frames;
next bolt uncompresses this data and calculates the velocity
vector required by TurtleBot tomove.The algorithm running
in this bolt calculates a point cloud of TurtleBot’s field of
view using an approximation technique mentioned in [29].
Then, it uses the point cloud to calculate an average point,
the centroid, of a hypothetical box in front of TurtleBot. Shifts
in the centroid are calculated and command messages, in the
form of vectors, are generated. Last bolt sends these vectors
to TurtleBot.

All the literature indicates that the Kinect should stream
each depth frame as 307,200 11-bit disparity values, 2047 being
sent to indicate an unreadable point. But upon inspection
of received disparity values, the highest value observed was
1024. When this value was treated as the unreadable flag, the
depth map displayed appeared normal. Depth shadows were
rendered correctly along with the minimum and maximum
readable distances.The code was then adjusted to expect only
10-bit disparity values, after which everything functioned
normally. The full range of the Kinect, 80 cm–400 cm, can
be encoded with only 10-bit values. It is unclear whether
the 10-bit values are a result of Java libfreenect wrapper or
faulty code, but our programs are fully functional and the
issuewas left unresolved. An explanation of this phenomenon
would no doubt prove beneficial and may be a point of latter
investigation.

4.4. Controlling TurtleBot. The driver running in the gateway
receives the velocity vectors from the application in the cloud.
It then converts these vectors to a format that the ROS API
of TurtleBot accepts. Ultimately, the ROS API is used by the
driver to control TurtleBot. We use a Java version of ROS
available for interfacing with ROS, which is primarily written
in Python.
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5. Results and Discussion

We mainly focused on the latency and the scalability of
the system. A series of experiments were conducted to
measure latency and how well the system performs under
deployment of multiple sensors. We used FutureGrid as
our cloud platform and deployed the setup on FutureGrid
OpenStack medium flavors. An instance of medium flavor
has 2 VCPUs, 4GB of memory, and 40GB of hard disk. We

ran StormNimbus and ZooKeeper on 1 node, gateway servers
on 2 nodes, Storm supervisors on 3 nodes, and brokers on
2 nodes. Altogether, our setup contained 8 virtual machines
with moderate configurations.

To test the latency of the system, we deployed 4 driver
applications on the two gateways that produce data at a
constant rate. This data was relayed through the two brokers
and injected into a Storm topology, which passed the data
back to the gateways. The topology was running 4 spout
instances in parallel to get the data and 4 bolts in parallel
to send the data out. The round-trip latency was measured
at the gateways for each message. This setup was repeated
for different message sizes and message rates. We went up
to 100 messages per second and increased the messages size
up to 1MB. Each driver sent 200 messages and we recorded
the average across all the drivers. We tested the system with
RabbitMQ and Kafka brokers. For measuring the scalability,
we progressively increased the number of drivers deployed in
the gateways and observed howmany devices can be handled
by the system.

TurtleBot application is an application deployed on
FutureGrid. We observed that TurtleBot was able to follow a
human in front of it when this application was deployed. We
tested TurtleBot application through the Indiana University
computer network and measured the latency observed.

5.1. Latency. Figure 7 shows the latency observed when
running the tests through a RabbitMQ server. Up to 200KB
messages, the latency was at a considerably lower value for all
the message rates we tested. At 300KB messages, the latency
started to grow rapidly after a message rate of 50 was reached.
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Figure 8 shows the average latency observed with the
Kafka broker. We noticed some drastically high latency
values, and when the size of the messages increases beyond
40K, these variations became frequent. The frequency of
these values increased the average latency considerably. The
increase in latency can be attributed to the fact that Kafka
brokers are designed to be run in machines with high disk
I/O rates and our tests were done on computation nodes that
do not have very good I/O performance. There are other
performance results of Kafka that were done on high disk
I/O nodes that show some large variations in latency as well
[30]. Despite variations in latency, on average the system
was running with a considerably low latency using Kafka.
In our setup, Kafka broker latency began to increase much
more quickly than RabbitMQ brokers. We have reported
these issues to the Kafka development community. Kafka is
a relatively new project under development and we believe its
development community is working on fixing these issues in
future versions.10

5.2. Jitter. For most real time applications, uniformity of
the latency over time is very important. Figure 9 shows
the latency variation in observed latencies for a particular
message size and rate with RabbitMQ broker. The variation
was also minimal for message sizes up to 200KB. After that,
there was a large variation in the latency. The Kafka latency
variation is very high compared to RabbitMQ broker and we
are not including those results here.

5.3. Scalability. In the test we did for observing the scalability
of the system,we deployed 1000mock drivers in two gateways
andmeasured the latency.These drivers can generate 100-byte
messages at a rate of 5 messages per second. We used low
values for bothmessage rate andmessage size so thatwe could
make sure the system did not slow down due to the large
amount of data produced. Figure 10 shows the latency with
RabbitMQ. Latency observed was marginally higher than the
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Figure 9: Latency standard deviation with different message sizes
and message rates for RabbitMQ.The different lines are for different
message sizes in bytes.

previous test we did with 4 drivers, but it was consistent up to
1000 drivers and stayed within reasonable range.The increase
in latency can be attributed to increased use of resources. At
1000 sensors, the latency started to increase. Because this test
was done in shared channel mode, only 2 spouts were actively
reading from the 2 queues created.

We performed the same test with the Kafka broker.
Because we partitioned each topic into 4, all 4 spouts were
actively reading from the topics. This is the advantage of
having a Kafka-like distributed broker. The latency observed
is shown in Figure 11. As expected, there were large variations
observed. We tried to remove these big numbers and draw
the graph to see how they affect the average latency. Figure 11
shows graphswith values> 200 removed.We can observe that
the average latency is at a considerable low range after these
very high values are removed.
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All the tests were done for the best case scenario in
terms of latency of Storm-based analysis. A real application
would involve much more complex processing and a compli-
cated DAG structure for data processing. Those processing
latencies will add to the overall latency in real applications.
Also in our tests we sent and received the same message
through the cloud. In real applications, messages generated
after the processing are usuallyminimal compared to the data
messages, so we expect a reduction in latency as well.

5.4. TurtleBot. Because of the latency requirements, we11

12 used the RabbitMQ broker for TurtleBot application. Turtle-
Bot was functioning properly under the latencies we have
observed. Figure 12 shows the latency values we observed for
1500 Kinect frames. The average latency fluctuated between
35ms and 25ms. TurtleBot was sending messages of size
60KB in a 20-message/sec rate.The best case latency without
any processing for such messages is around 10ms. The
network latency and the processing add another 25ms to
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Figure 12: Latency observed in TurtleBot application.

the latency. The processing includes both compression and
decompression time of Kinect frames. There were some
outliers that went to values such as 50ms. These were
not frequent but can be seen occurring with some high
probability.We could not recognize any patterns in such high
latency observations; some explanations for these increases
might be network congestion, Java garbage collection, and
other users employing the same network and resources in
FutureGrid. We observed average latency of 33.26 millisec-
onds and standard deviation of 2.91.

6. Conclusions

In this paper, we introduced a scalable, distributed architec-
ture for connecting devices to cloud services and processing
data in real time. Further, we discussed a robotics application
built on top of this framework. We investigated how to scale
the system with topic-based publish-subscribe messaging
brokers and a distributed stream processing engine in the
cloud. We measured the performance characteristics of the
system and showed that we can achieve low latencies with
moderate hardware in the cloud. Also, the results indicate
we can scale the architecture to hundreds of connected
devices. Because of the low latencies, RabbitMQ broker
is suitable for applications with real time requirements.
Applications involving massive amounts of devices without
strict latency requirements can benefit from the scalability
of Kafka brokers. The results also indicate that reasonably
uniform behavior in message processing latencies can be
maintained, which is an important factor for modeling most
problems.

7. Future Work

As our platform evolves, we would like to extend our
system to Cloud DIKW applications, which involve both
real time analysis and batch analysis. A primary concern
for real time applications is the recovery from faults. A
robot guided by a cloud application should work amidst
application level failures and middleware level failures. We
would like to explore different fault tolerance techniques for
making our platform more robust. The discovery of devices
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is coarse-grained at the moment and we hope to enable finer-
grained discovery of devices at the cloud-processing layer.
For example, selecting devices that meet specific criteria like
geographical locations for processing is important for some
applications. We observed that there are variations in the
latency observed in our applications. In some applications,
it is required to contain the processing latency with hard
limits. It will be interesting to look at methods for enabling
such guarantees for our applications. Simultaneously, we are
working to build new robotics applications based on our
platform.
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