
A Scalable Approach for the Secure and Authorized Tracking of the Availability
of Entities in Distributed Systems

Shrideep Pallickara, Jaliya Ekanayake and Geoffrey Fox

Indiana University
Community Grids Lab

Bloomington, IN 47404 USA
{spallick, jekanaya, gcf}@indiana.edu

Abstract

As the scale and proliferation of distributed
applications continues to increase a need often arises to
track the availability of entities that comprise the
distributed system. An entity that is part of such a
distributed system could be a resource, a service that
provides a set of exposed capabilities, an application or a
user. In this paper we present a transport-independent
scheme for tracking the availability of entities in
distributed systems. The scheme enforces the authorized
generation and consumption of traces (encapsulating
entity availability). The scheme also facilitates the secure
distribution of traces while coping with some classes of
denial of service attacks.

1. Introduction

Over the past decade we have witnessed the
proliferation of distributed applications. This is fuelled in
part by advances in networking technology combined
with the advent of cheaper and ever more powerful
devices. An entity that is part of such a distributed system
could be a resource, a service that provides a set of
exposed capabilities, an application or a user.

Interactions, such as control messages, protocol
handshakes, actions and data interchange, between
entities that are part of a distributed system are predicated
on their availability. For example, an application may be
interested in the availability of a resource at all times.
Similarly, a user would be interested in the availability of
a given service. Entities thus need to be aware of each
other’s availability at regular intervals. In several cases
remedial actions are taken in response to the failure/
unavailability of given entity.

1-4244-0910-1/07/$20.00 © 2007 IEEE.

Before we proceed further, an explanation of the terms
used in this paper is in order. An entity whose availability
is being probed is referred to as a traced entity. The
entities initiating a probe are referred to as trackers. The
process of probing, and subsequently becoming aware of,
the availability of an entity is referred to as tracing. The
different states corresponding to a traced entity is referred
to as its traces.

There are two approaches to tracking the availability of
entities – push and pull. In the push model the traced
entity issues messages to the trackers at regular intervals.
Receipt of such messages at the trackers signifies the
availability of the entity; the lack of receipt indicates
potential problems. A tracker may deem a traced entity to
have failed if it does not receive such messages for a
prolonged duration of time. In the pull model the trackers
ping the traced entity at regular intervals. Responses, or
the lack thereof, from the traced entity form the basis for
determining whether a traced entity is available or not. In
the push model the complexity at the traced entity is
higher since it needs to send messages to every tracker at
regular intervals. In the pull model, on the other hand, the
complexity at the tracker is higher since it needs to keep
track of every traced entity.

In the simplest scheme, every entity would issue
messages at regular intervals when they are present within
the system. If there are N entities within the system, with
each of them issuing one message at regular intervals,
every entity within the system receives (N-1) messages. If
every entity issues one such message per second, there
would be Nx(N-1) messages within the system every
second. As the scale of the system increases, the
complexity and costs associated with this approach
increases, and the limits of this approach become apparent
since every entity within the system would be inundated
with messages.

There are three other critical issues that need to be
addressed in these settings. First, in large distributed
systems the transport protocols over which entities initiate

communications is large. If an entity is required to cope
with this in its message exchanges with other entities, the
complexity at a given entity increases substantially.
Second, only authorized entities should be part of the
tracing process. The third issue is that of security. Here,
message exchanges would need to be secured so that the
information contained therein is not used to launch denial
of service attacks.

In this paper, we present our solution to this problem.
The characteristics of this solution are enumerated below.
1. Number of Messages: Messages are issued only if

there are entities interested in tracking an entity.
Additionally, tracking entities may register only for
change notifications; here, traces will be issued only
if there is a change in the status of the traced entity.

2. Transport Independent: Entities do not have to deal
with the complexity of the underlying transports.

3. Authorization: Only authorized entities would be
allowed to track an entity.

4. Security: Message exchanges, related to availability,
are secured cryptographically. Only entities in
possession of the appropriate security keys can
decipher the message contents.

5. Denial of Service attacks: The scheme also copes
with a few types of denial of service attacks.

The remainder of this paper is organized as follows. In
section 2 we provide an overview of the publish/subscribe
systems and the NaradaBrokering system which is based
on this paradigm. In section 3 we outline our tracking.
Sections 4 and 5 deal with the authorization and security
issues related to this scheme. In section 6 we present our
performance benchmarks. Section 7 surveys the related
work in the area. Finally, in section 8 we outline our
conclusions and future work.

2. NaradaBrokering Overview

We have implemented our scheme in the context of the
NaradaBrokering substrate [1-3], which is based on the
publish/subscribe paradigm (discussed in section 2.1). In
NaradaBrokering this middleware is itself, a distributed
infrastructure comprising a set of cooperating router
nodes known as brokers. A broker performs the routing
function by routing content along to other brokers within
the broker network. Producers and consumers don’t
interact directly with each other. Entities are connected to
one of the brokers within the broker network, an entity
uses this broker, which it is connected to, to funnel
messages to the broker network and from thereon to other
registered consumers of that message. All messages
contain topic information within them; this topic
information forms the basis of routing of messages. When
a broker receives a message from a producer, it checks to
see the message should be routed to any of the consumers
that are connected to it; this broker will then proceed to

route the message to other brokers within the network that
have consumers interested in consuming this message.

2.1 Publish/Subscribe Systems

The publish/subscribe paradigm is a powerful one, in
which there is a clear decoupling of the message producer
and consumer roles that interacting entities/services might
have. The routing of messages from the publisher to the
subscriber is within the purview of the message oriented
middleware (MoM), which is responsible for routing the
right content from the producer to the right consumers. In
publish/subscribe systems a subscriber registers its
interest in messages by subscribing to topics. In its
simplest form these topics are typically “/” separated
Strings, for example StockQuotes/Companies/Adobe.
When a publisher issues messages on a specific topic the
middleware substrate routes the messages to all, and only
those, subscribers that have registered interest in the topic.

2.2 The Topic Discovery Scheme

Interactions between entities in publish/subscribe systems
are predicated on the knowledge of the topic that will be
used for communications; the publisher will publish over
this topic while the subscriber registers a subscription to
this topic. The topic discovery and creation scheme [2] in
NaradaBrokering facilitates the creation, advertisement
and authorized discovery of topics by entities within the
system. The discovery process is a distributed process and
is resilient to failures that might take place within the
system. Topic creators can advertise their topics and can
also enforce constraints related to the discovery of these
topics. Specifically, a topic creator may require the
presentation of appropriate credentials (a X.501 security
certificate) prior to being able to discover a topic. This
discovery scheme provides a solution for issues such as
1. Provenance –- The system can verify easily the

owner of a certain topic.
2. Secure discovery –- A topic owner can restrict the

discovery of a topic only to authorized entities or
those that possess the valid credentials.

These capabilities are provided by specialized nodes –
Topic Discovery Nodes (TDNs) – within the system.
Since a given topic advertisement will be stored at
multiple TDN nodes, this scheme sustains the loss of
TDN nodes due to failures or downtimes. Additional
details regarding this scheme can be found in Ref [2].

3. The Tracing Scheme

In our scheme we use a combination of the push and pull
styles described in section 1.0. In addition to the traced
entity and the trackers that are involved in the tracing
there is an additional component: the broker which the

traced entity is connected to. This broker is responsible
for polling – the pull part – the traced entity at regular
intervals and for generating – the push part – traces for
the traced entity.

We leverage the pub/sub style of communications in
the exchange of traces between the entities: trace
information is encapsulated in messages that have topic
information associated with them. This trace information
includes information related to the traced entity’s state,
state transitions, network metrics and usage statistics. Not
all trackers would be interested in all the traces related to
a traced entity. The number, frequency and volume of
traces received at a tracker vary with the type of trace
information that it is interested in. To facilitate greater
selectivity in the trace information at any given tracker,
traces related to an entity are issued over different topics.
Thus a tracker may register to receive all traces or only
state transitions related to a traced entity.

We impose restrictions on who is authorized to
discover topics related to trace information. Furthermore,
we also impose restrictions on the actions, either publish
or subscribe, that are allowed over these topics. Messages
encapsulate trace information need to also unambiguously
establish the source of the trace and the authorization to
issue this trace information. We also incorporate
strategies to cryptographically secure individual traces
and the secure distribution of keys to decipher the
encrypted contents.

3.1 Trace topic

In our scheme an entity will be traced only if it
specifically issues a request for this. There is a sequence
of actions that need to be taken by an entity before it can
be traced. An entity must first create a topic
corresponding to its availability tracing. To do this, the
entity must create a topic creation request which is sent to
the TDN which is responsible for the generation of the
trace-topic. This topic creation request includes four key
components. First, the entity includes its credentials – a
X.509 certificate – that is used by the TDN to establish
provenance for the trace topic that it would create.

Second, the entity specifies the descriptor to be
associated with the topic. During topic discovery, the
queries are evaluated against the topic descriptors
associated with topics stored at the TDN. The topic
discovery scheme provides support for variety of query
formats, for purposes of simplicity to enable discovery of
trace topics, a traced entity specifies the topic descriptor
for the trace topic to be Availability/Traces/Entity-ID.
Where Entity-ID corresponds to the identifier associated
with the entity in question. This topic descriptor also
ensures that trackers can construct appropriate discovery
queries to discover the trace topic simply by utilizing the
Entity-ID of the traced entity.

Third, a traced entity must also specify discovery
restrictions that should be associated with the trace topic.
These discovery restrictions specify who is authorized to
discover the trace topic associated with the entity’s
availability. Discovery requests initiated by entities that
have not been authorized to discover a given topic will be
ignored by the TDN.

Finally, the topic creation request also specifies the
lifetime associated with the trace topic. Lifetimes enable
an entity to control the validity duration of the trace topic.

Upon receipt of this topic creation request containing
the credentials, the topic descriptor, the discovery
restrictions, and the topic lifetime the TDN generates a
UUID which is trace topic associated with the entity. The
UUID is a 128-bit identifier that is guaranteed to be
unique in space and time. Generation of the UUID is done
at the TDN so that no entity is able to claim some other
entity’s topic as its own. The TDN then proceeds to create
a cryptographically signed topic advertisement that
includes the newly created topic, along with the
credentials, descriptors, discovery restrictions and
lifetime. This advertisement establishes the ownership of
the topic. This advertisement is stored at the various
TDNs and is also routed back to the traced entity.

The TDN guarantees that discovery requests, targeted
at discovering the trace topic associated with an entity,
will not be satisfied unless these requests demonstrate
possession of valid credentials that are conformant with
the discovery restrictions specified in the original topic
creation request.

Leveraging the Trace Topic. This trace topic is then
used to construct derivative topics related to tracing the
entity in question. The derivate topics are a combination
of a static prefixes and suffixes that are combined with a
given trace topic; an example of a derived topic is
Constrained_Publish/Broker/Traces/TraceTopic/Cha
ngeNotifications. These derivative topics are used to
publish different types of trace information corresponding
to the traced entity. Furthermore, in some cases actions
(such as publishing) on a given derived topic still require
the traced entity’s authorization: this is typically
delegated by the traced entity through the creation of
cryptographic security token that demonstrates the
delegation. Having multiple derived topics is also
beneficial since it allows trackers to be selective about the
trace information that they are interested in.

Constrained Topics. These are the equivalent of systems
topics. The structure of the constrained topic reveals the
constraints associated with the topic. These constraints
correspond to limits on performed actions, proof of
authorization for performing the action, security and
propagation of these actions. The structure of a
constrained topic is the following:

/Constrained/{Event Type}/{Constrainer}/
{Allowed Actions }/{Distribution}/{Other “/”
separated Suffixes}

We now include a discussion of each of these elements
{Constrained}: This elements takes only one value:
Constrained. This keyword at the very beginning of a
topic structure identifies that topic as a constrained topic.
{Event Type}: This element identifies the content of
messages issued over this topic, default value: RealTime
{Constrainer}: This element identifies either the Broker
(default) or the entity (in which case, the Entity-ID would
be specified) that is allowed to perform the actions
outlined in the {Allowed Actions} element.
{Allowed Actions}: This element describes the actions
that can ONLY be performed by the constrainer. The
values that this element can take include Publish,
Subscribe or PublishSubscribe [default]. In the case of a
PublishOnly constraint, entities are allowed to subscribe
to messages issued over this topic. In the case of
SubscribeOnly constraint, no entities are allowed to
subscribe to the topic. Finally, in the case of
PublishSubscribe no entities are authorized to perform
any actions over the corresponding constrained topic:
typically brokers would exchange administrative
messages using such constrained topics.
{Distribution}: This element imposes restrictions
pertaining to the distribution of allowed actions over this
topic. The two values this element can take are Suppress
and Disseminate (default). In the case of
Publish_Only actions combined with Suppress
distributions, messages issued by the constrainer are not
distributed to other brokers within the broker network.
Similarly, in the case of a Subscribe_Only action
combined with Suppress distribution, the constrainer’s
subscriptions are not propagated within the broker
network.

An example of a constrained topic is
/Constrained/Traces/Broker/Subscribe_Only/Limite
d/Trace-Topic. In cases, where the elements do not
appear in the constrained topic structure, default values
for that element are assumed: thus
/Constrained/Traces/Broker/PublishSubscribe/
Limited and /Constrained/Traces/Limited are
equivalent topics.

3.2 Registration of the traced entity

In the section we describe the steps taken by an entity
interested in being traced to initiate the tracing process.
Once an entity is ready to be traced, it creates the
corresponding trace topic as specified in the previous
section. The entity then proceeds to securely discover a
valid broker within the broker network using the broker
discovery scheme described in Ref [3]. The entity then
needs to register with a broker and specify an interest in

being traced. This trace registration message is issued
over the following constrained topic
/Constrained/Traces/Broker/Subscribe-
Only/Registration/. In this registration message the
traced entity includes the following:
1. Its identifier and credentials.
2. The trace topic advertisement, which establishes the

trace topic provenance
3. The request identifier associated with the message.

This is used to correlate any response that would be
received for this message.

4. The entity also demonstrates possession of its
credentials (and tamper evidence) by signing the
message. The signing is done by computing the
checksum for the message and encrypting this
message digest with its private key.

Upon receipt of this message, the broker
cryptographically verifies the message contents. First, the
broker checks for proof of possession of the
corresponding private key; here, we should be able to
access decrypt the message signature with the entity’s
public key. If the decryption process is successful, we
have access to the message digest. We then check the
message digest for tamper-evidence; this is done by
checking to see if the checksums/digest of the message
content matches the one that was retrieved. If there is any
error in the verification process, an error message is
returned back to the entity.

If the verification process is successful, the broker then
proceeds to generate a session identifier, and issue a
successful registration response. This response includes:

• The request identifier contained in the original
message.

• The newly generated session identifier.
The response message is encrypted with a randomly
generated secret key, and this secret key is encrypted
using the entity’s public key. This way, only the entity in
question is able to decipher the contents of the message.

The broker also proceeds to subscribe to the following
topic. /Constrained/Traces/Broker/Subscribe-Only/
Limited/Trace-Topic/SessionId. Upon receipt of the
response message at the traced entity, the entity proceeds
to subscribe to the following constrained topic
/Constrained/Traces/Entity-ID/Subscribe-Only/
Trace-Topic/SessionId.

3.3 Broker operations

The broker is responsible for failure detection of the
traced entity and reporting the status of the traced entity to
the trackers. The traces reported by the broker to the
trackers, and summarized in Table 1, include:

• Constant updates on the continued availability of a
traced resource

• Information about individual pings initiated by a
broker

• Change in the status of a traced entity
• State transition information about a traced entity
• Information pertaining to network usage and the

load at a given traced entity
Messages issued by a traced entity to the tracing

broker are published over
/Constrained/Traces/Broker/ Subscribe-
Only/Limited/TraceTopic/SessionId, while messages
issued by a tracking broker to the traced entity are issued
over /Constrained/Traces/Entity-ID/ Subscribe-
Only/Trace-Topic/SessionId.

Trace type Description
INITIALIZING,
RECOVERING, READY or
SHUTDOWN

This is the state information
reported by a traced entity
to a broker.

FAILURE_SUSPICION,
FAILED, DISCONNECT

Broker generated traces
about an entity’s failure
detection

GUAGE_INTEREST Trace to gauge interest
among trackers in tracing an
entity

JOIN,
REVERTING_TO_
 SILENT_MODE

Trace issued when an entity
has requested tracing, and
when it has decided to
disable tracing.

ALLS_WELL Heartbeats issued at regular
intervals indicating that an
entity is still active

LOAD_INFORMATION Indicates the load
information at an entity:
CPU Info, Memory Usage
and Workload

NETWORK_METRICS Metrics about the network
realm in which an entity
operates: Loss rates, transit
delay and bandwidth

Table 1: Traces reported by a broker to the
trackers

Pings, Ping Responses and Network Metrics. A broker
issues pings at regular intervals to the traced entity. Upon
receipt of this ping message, the traced entity is expected
to issue a ping response back to the broker. The ping
message issued by a broker contains a monotonically
increasing message number and the timestamp (at the
broker) at which it was issued. A ping response associated
with a ping must include both the message number and
timestamp contained in the original ping. The message
number allows a broker to keep track of message losses
and out-of-order delivery, while the timestamp allows the
broker to compute network latencies.

Determining Failure at a Traced Entity. For every
traced entity, a broker maintains information about the
previous pings that it had issued. This includes

information about when the traced entity was last pinged,
and the response times (and loss rates) associated with the
last 10 pings. An entity is pinged based on whether the
ping interval has elapsed. Depending on the history of the
past pings and the duration for which a traced entity has
been active, this ping interval is varied. If consecutive
pings do not have responses associated with them, the
ping interval is reduced to hasten the failure detection of
the entity.

If a ping response is not received for a set of
successive pings issued at the established ping intervals, a
FAILURE SUSPICION trace is reported to the trackers.
Lack of responses, from a failure suspected traced entity,
for additional pings issued is taken as a sign that the
traced entity has failed, and a FAILED trace is issued to
the trackers.

State Information from a Traced Entity. A given entity
could be in one several states during its presence within
the system. These states include INITIALIZING,
RECOVERING, READY or SHUTDOWN. A traced entity
notifies the broker whenever the state transitions occur,
which in turn reports this to the trackers.

Load Information and Network metrics. A traced
entity can also issue reports about changes in the load
utilization on the machine that is hosting it. The load
metrics reported can include changes in both memory and
CPU utilization. Depending on the distributed application
in question, knowledge of such information can enable
trackers to arrive at better decisions while determining the
entity to leverage in distributed settings.

Trackers may also be interested in tracing network
realm in which the entity operates. Since all interactions
from an entity are funneled by the broker that it is
connected to, the behavior of the link connecting the
broker and the traced entity is extremely important. The
nature of the pings and the corresponding responses allow
a broker to determine the loss rates, latency and out-of-
order delivery rates over the link.

Publishing Trace Information. To enable trackers
greater selectivity in the trace information that it chooses
to receive, the tracing broker publishes traces on different
constrained topics (summarized in Table 2). Furthermore,
as we discuss in section 3.5, these traces are issued only if
there are trackers interested in receiving these traces.

The first time a traced entity registers with a broker,
the broker issues a JOIN trace on
/Constrained/Traces/Broker/Publish-Only/Trace-
topic/ChangeNotifications. Other traces published on
this topic include FAILURE_SUSPICION, FAILED,
DISCONNECT and REVERTING_TO_SILENT_MODE.

Upon receipt of Ping responses from a traced entity, a
broker issues the ALLS_WELL trace on the following

topic: /Constrained/Traces/Broker/ Publish-
Only/Trace-topic/AllUpdates. It is expected that the
number of entities interested in receiving these traces
would be quite small.

State transition information reported by a traced entity,
are reported by the broker on the following topic:
/Constrained/Traces/Broker/ Publish-Only/Trace-
topic/StateTransitions. Load and network metrics
associated with a traced entity are issued over
/Constrained/Traces/Broker/Publish-Only/Trace-
topic/Load and /Constrained/Traces/Broker/
Publish-Only/ Trace-topic/NetworkMetrics
respectively.

Trace type Topic Information
INITIALIZING,
RECOVERING,
READY or
SHUTDOWN

/Constrained/Traces/Broker/
Publish-Only/Trace-
topic/StateTransitions

FAILURE_SUSPICION
FAILED,
DISCONNECT

/Constrained/Traces/Broker/
Publish-Only/Trace-
topic/ChangeNotifications

GUAGE_INTEREST /Traces/Trace-topic/Request-
Response

JOIN,
REVERTING_TO_SILE
NT_MODE

/Constrained/Traces/Broker/
Publish-Only/Trace-
topic/ChangeNotifications

ALLS_WELL /Constrained/Traces/Broker/
Publish-Only/Trace-
topic/AllUpdates.

LOAD_INFORMATIO
N

/Constrained/Traces/Broker/
Publish-Only/Trace-
topic/Load

NETWORK_METRICS /Constrained/Traces/Broker/
Publish-Only/ Trace-
topic/NetworkMetrics

Table 2: Topics associated with various traces

3.4 Registering to receive traces

Trackers interested in received traces, corresponding to
an entity, must first discover the trace topic that has been
registered by that entity. A tracker needs to include its
credentials in the discovery request; the discovery query
has the form /Liveness/Entity-ID, where Entity-ID
corresponds to the entity identifier. If the tracker is not
authorized to discover the trace topic no response would
be received for this query, and the tracker cannot proceed.

If this discovery request is successful, the tracker can
proceed to subscribe to the appropriate constrained topics
over which different types of trace info is published.

3.5 When to publish the traces

In our scheme, traces are issued by a broker only if
there are entities that are interested in receiving traces
corresponding to a traced entity. To determine if there are

any such trackers, the tracing broker issues a
GUAGE_INTEREST message on
/Constrained/Traces/Broker/Publish-Only/Trace-
topic/ Interest. Trackers interested in tracing the entity
respond by outlining their interests in any combination of
change notifications, all-updates, state transitions, load
information or network metrics. This response is
published over /Constrained/Traces/Broker/
Subscribe-Only/Trace-topic/Interest

4. Authorization

In this section we discuss issues related to
authorization in our framework; specifically, we outline
how actions related to the tracing process are restricted. In
our authorization scheme we cover the generation,
consumption and the routing of these trace messages.

4.1 Subscribing to trace information

Information about traces related to an entity are
published on topics comprised of static information, and
the trace topic previously registered by the entity. Since
the trace topic is based on a randomly generated 128-bit
UUID it is extremely difficult to determine or “guess” this
information. Thus, it is very difficult for unauthorized
trackers to receive trace information about an entity.
Since the broker network routes trace messages only to
those trackers that previously registered an interest in
them, the traces are received only by authorized trackers.

4.2 Individual trace messages

As discussed in section 3.2 an entity needs to
demonstrating possession of valid credentials during
registration. These credentials are used by a broker to
check the validity of other trace messages initiated by the
entity. Since our scheme is independent of the underlying
transport, we require individual trace messages initiated
by a traced entity to demonstrate possession of
credentials. For every trace message (including ping
responses) initiated at a traced entity, this entity
cryptographically signs the trace message. This allows the
broker, with which it interacts, to verify both the source of
the message as well as whether the message has been
tampered with.

4.3 Publishing trace information

Trace information are published on constrained topics
of the form /Constrained/Traces/Broker/Publish-
Only/. Publishing over these topics is within the purview
of the brokers: no entity can publish over these topics.
Furthermore, the broker generating these trace messages
needs to demonstrate that it is indeed authorized by the
traced entity to do so.

A given traced entity needs to explicitly authorize a
broker to publish its trace information. To do this, after
the entity completes the registration process, the entity
also generates an asymmetric key pair. The entity then
proceeds to generate an authorization token that includes:
1. Trace-topic information
2. The randomly generate public key.
3. The rights associated with the traces (either publish

or subscribe). For a broker, this is set to publish.
4. The duration for which these rights are valid. A

traced entity will typically keep this duration short
enough to correspond to its expected presence within
the system. An entity can generate a new token, once
a token is closer to expiration.

The entity then proceeds to sign this token to provide
tamper-evidence and to enable verification of the creator
of this token. The entity’s signature is also part of this
authorization token.

One reason why we use randomly generated key-pairs
within the token is to ensure that no other broker within
the network is aware of the broker that a given traced
entity is connected to. Inclusion of the broker’s credential
within the token can possibly compromise this info.

All trace messages generated by a broker needs to
include the token. Messages received at broker, from a
neighboring broker, are discarded if they do not posses
this authorization token. A broker will also verify the
validity of the token. The broker will check to see if the
token was signed by the owner of the trace topic, check to
see if the token has expired (Use of NTP timestamp
ensures that timestamps are within 30-100 milliseconds of
each other). If the validity check fails, the message is
discarded and not routed within the network.

5. Security

In this section, we describe the security related aspects
of our approach. Our discussion pertains to ensuring the
confidentiality of trace messages and coping with denial
of service attacks. We do not address (and consider it out
of our research scope) cryptographic attacks.

5.1 Ensuring confidentiality

An entity may choose to ensure that its traces are
cryptographically secured. This section deals with the
case where an entity needs to secure its traces. Here, the
entity is first responsible for the generation of a secret
symmetric key that will be used for encrypting the traces.
The entity then securely routes this secret key, along with
information about the encryption algorithm and padding
scheme, to the broker that it is connected to.

When the broker issues a gauge interest request, it also
sets a flag indicating that the traces will be secured. The
broker also needs to include its authorization token within

this request. Interested trackers, after confirming the
validity of the security token, then respond to this gauge
interest request by including their credentials and the
topic over which it expects responses. The broker then
proceeds to publish a secure payload over the topic
contained in the response.

To create this secure payload, the broker first creates a
message containing the secret trace key, the encryption
algorithm and the padding scheme that will be used. The
broker uses a combination of the tracker’s credential and
a randomly generated secret key to secure the payload
(this is described in section 4.3). Only the tracker in
possession of the private key associated with its
credentials can decipher the contents of the message and
retrieve the secret trace key.

All trace messages, published by the broker, are
encrypted using the secret trace key. Only the trackers in
possession of the trace key can decipher the contents of
the trace messages.

5.2 Denial of Service attacks

In some cases, an attacker may wish to spurious trace
information about an entity. However, since trace
information is published over constrained topics, and
since the routing brokers expect these published traces to
also include valid authorization tokens, brokers will not
route such spurious traces. In the case of multiple bogus
attempts by a malicious entity, the broker will terminate
communications with such an entity.

In some cases, a malicious entity may wish to launch a
denial of service attack directly on a traced entity. Except
the broker that a given traced entity is connected to, no
other entity within the system is aware of the actual
physical location of a given traced entity. All
communications with a traced entity are based on
communications over topics that include the 128-bit
UUID contained in its trace topic. Since discovery of this
trace topic is itself restricted to the authorized entities,
launching attacks is quite difficult. In the unlikely event
that this trace topic was compromised, a trace entity can
register another trace topic.

6. Performance Benchmarks

We have measured several aspects of our tracking
framework, so that the reader has a precise idea of the
costs involved. In all our benchmarks that are reported in
this section, all processes executed within version 1.4.2 of
Sun’s Hotspot™ JVM, and the cryptography package
used was BouncyCastle (http://www.bouncycastle.org)
v1.3. All machines (4 CPU Xeon, 2.4GHz, 2GB
RAM) involved in the benchmarks had Linux as the OS,
and were hosted on a 100 Mbps LAN.

6.1 Costs for Tracking with multiple hops

In our benchmarks (topology depicted in Figure 1) we
have measured costs involved in tracking entities that are
2, 3 and 4 hops away from the trackers. The intermediate
brokers were all hosted on different machines. In all
cases, to obviate the need for clock synchronizations, the
traced entity and the measuring tracker (which reports the
results) were hosted on the same machine though they
were all connected to different brokers.

Figure 1: Benchmark Topology
Table 3 summarizes the costs involved in our scheme.

We performed our benchmarks under different conditions.
First, we did measurements where all communications
within the system we based either on TCP or UDP. For
each transport, we also measured the costs involved in the
tracing scheme when individual traces have messages
authorization information (and assorted processing) and
cases where the trace messages have authorization
information and are also secured. In our experiments for
the purposes of signing we used 1024-bit RSA with 160-
bit SHA-1 and PKCS#1Padding. For symmetric
encryptions and decryptions we used 192-bit AES keys.

Operation Mean Standard

Deviation
Standard
Error

Trace Routing Overhead for different hops (TCP)
Authorization Only
2 hops 72.68 4.14 0.41
3 hops 79.45 4.08 0.41
4 hops 86.4 4.9 0.49
5 hops 93.99 4.33 0.43
6 hops 100.81 4.36 0.44
Trace Routing Overhead for different hops (TCP)
Authorization & Security
2 hops 90.29 4.41 0.44
3 hops 98.12 5.63 0.56
4 hops 105.06 6.17 0.62
5 hops 110.89 7.38 0.74
6 hops 116.21 4.3 0.43
Trace Routing Overhead for different hops (UDP)
Authorization Only
2 hops 70.24 3.45 0.34

3 hops 76.47 3.95 0.4
4 hops 84.02 4 0.4
5 hops 89.78 3.69 0.37
6 hops 96.79 4.61 0.46
Trace Routing Overhead for different hops (UDP)
Authorization & Security
2 hops 88.86 4.52 0.45
3 hops 95.19 5.59 0.56
4 hops 101.76 5.13 0.51
5 hops 107.99 5.81 0.58
6 hops 114.33 4.53 0.45
Security and Authorization Overheads
Token
Generation and
Signing

27.19 2.99 0.3

Verifying
Authorization
Token

2.01 1.04 0.1

Encrypting
Trace Message

0.25 0.73 0.07

Decrypting
Trace Message

1.15 0.68 0.07

Sign Trace
Message

24.51 1.81 0.18

Verify Signature
in Trace
Message

6.83 1.81 0.18

Sign Encrypted
Trace Message

24 1.37 0.14

Verify Signature
in Encrypted
Trace Message

5.31 1.09 0.11

Key Distribution Overhead
2-hops 81.53 36.59 8.18
3-hops 114.16 39.29 8.79
4-hops 140.79 40.12 8.97
Table 3: Summary of costs involved in the
tracking framework: All results in milliseconds.

Figure 2: Trace Routing Overhead vs. Hops

Figure 2 depicts the costs involved in the tracing

process. Communications over UDP have lower latencies
than communications over TCP. Also, when trace
message routing based on authorization and security is
more expensive than the scheme which involves only

authorization since the encryption/decryption costs are not
encountered in the latter scheme.

In NaradaBrokering the per-hop communications
latency is around 1-2 milliseconds in cluster settings.
Additional hops do not significantly increase the routing
overhead. Most of the costs for routing of traces are a
result of the overheads related to cryptographic operations
(also outlined in the table) pertaining to authorization and
security related processing.

6.2 Tracing while increasing trackers

We also measured the overheads related to increasing
the number of trackers. We did this based on the topology
depicted in Figure 3. Here we increased the number of
trackers gradually by introducing 10 trackers at a time.
The groups of 10 trackers were hosted on different
machines.

Broker Broker

Traced
Entity 10

Trackers

10
Trackers

10
Trackers

10
Trackers

10
Trackers

Figure 3: Topology for measuring effect of
increasing number of trackers

Figure 4: Trace Time vs. Trackers (UDP Based)

Figure 4 summarizes our results; as can be seen the
trace time increases very slowly with an increase in the
number of trackers. This demonstrates the capability the
system to track entities without overloading the brokers.

6.3 Reduction of Signing Costs

In our scheme when a traced entity exchanges
messages with its hosting broker, all messages initiated by
the traced entity are signed. The broker then constructs
the appropriate trace messages with the valid
authorization tokens and proceeds to sign the message. To
reduce the costs associated with signing of trace messages
we introduced an optimization where we eliminate the
signing of messages issued by the traced entity to its
hosting broker. The traced entity generates a secret
symmetric key, and proceeds to securely exchange this
key with its host broker. Instead of signing every trace
message that it generates, the entity simply encrypts it
with its symmetric key. Since only the entity and the
broker are in possession of this secret key the broker
accepts messages encrypted with this key as having
originated by the entity in question. One of the reasons
why we did this is that the encryption/decryption costs are
cheaper than the corresponding signing/verification cost.
Our results in Figure 5 depict the results of using this
optimization. As can be seen the authorization
enhancement has reduced the tracing costs involved.

Figure 5: Trace Time vs. Number of Hops
with Authorization Enhancement (UDP)

6.4 Increasing the Number of Traced Entities

To measure the overhead introduced by increasing the
number of traced entities, we performed an additional
experiment. The setup involved 1 broker, and 30 trackers;
while keeping the number of trackers constant, we
increased the number of traced entities. The results,
reported in Table 4, are for the case where there are 10, 20
and 30 entities being traced actively.

To cope with clock skews and to avoid
synchronization problems, we had the traced entities and
the trackers reside on the same machine. However, this
configuration also results in lowering the performance
figures since the security operations related to the

generation of trace messages are compute intensive. Since
these operations are performed by every traced entity for
every trace that is generated, this impacted the overall
performance in the experimental setup. We expect the
performance to be significantly better in practical settings.

Number of

Traced
Entities

Mean Standard
Deviation

Standard
Error

10 75.64 19.79 0.42
20 85.43 30.53 0.44
30 118.77 54.98 0.67

Table 4: Trace routing overhead
(milliseconds) by increasing number of
traced entities (TCP based)

7. Related Work

The Network Weather System (NWS) [4] collects end-
to-end throughput and latency information and uses that
information to forecast future performance. Metrics are
collected by sensors, which are organized as a hierarchy
of sensor sets called cliques in order to prevent contention
and also to provide scalability. In addition to network
metrics, collected over the TCP/IP transport protocol,
NWS also accumulates CPU and available non-paged
memory information from various nodes. Remos [5]
provides a query based interface for applications to obtain
information about their execution environment including
network state. Remos maintains both static and
dynamically changing information and is based on SNMP
measurements on the network router nodes.

Vogels, in Ref [6] provides an excellent overview of
the need for failure detection in large distributed systems.
Issues related to failure detection and improving the
failure detection through the use of process checkpoints
and process Upcalls are also outlined.

Renesse, Minsky and Hayden described the first gossip
based failure detection service in Ref [7]. In gossip
systems, a give node gossips (and passes information) to a
set of randomly selected nodes. Gossip system tends to
scale well and have no single point of failures. However,
systems based on gossip schemes need to address the
consistency issue which results from uneven propagation
of the gossips. The GEMS (Gossip Enabled Monitoring
Service) [8] system provides a scaleable resource
monitoring service. Nodes within the GEMS system
gossip with each other about information related to
resource monitoring. The approach taken here is that of a
layered gossip scheme, where nodes are organized into
gossip trees. Since gossiping can sometimes lead to
uneven spread of failure information, the system relies on
consensus: a majority is needed for deeming a failure.

Log-Based Receiver-reliable Multicast (LBRM) [9]
protocol describes a scheme to provide scalable and

timely dissemination of state updates, that satisfy the
needs of multicast sources within Distributed Interactive
Simulations. The variable heart-beat scheme in LBRM
clusters heartbeat transmissions in the time period after a
data-transmission rather than evenly distributing these
heartbeats during idle times when data is not being
transmitted.

8. Conclusions

A scaleable and secure tracking scheme is important in
several loosely-couple distributed systems. In this paper
we described our scheme for tracking the availability of
entities in distributed systems in a secure and authorized
fashion. This work leveraged the publish/subscribe
paradigm to achieve this. Our experiments confirm the
suitability of this scheme.

Acknowledgements

This research is supported by grants from the National
Science Foundation’s Division of Earth Sciences project
number EAR-0446610, and the National Science
Foundation's Information and Intelligent Systems
Division project number IIS-0536947.

References

[1] S. Pallickara and G. Fox. NaradaBrokering: A Middleware
Framework and Architecture for Enabling Durable Peer-to-
Peer Grids. Proceedings of the ACM/IFIP/USENIX
Middleware Conference Middleware-2003. pp 41-61.

[2] S. Pallickara, G. Fox and H. Gadgil. On the Creation &
Discovery of Topics in Distributed Publish/Subscribe
Systems. Proc. of IEEE/ACM GRID 2005. Seattle, WA.

[3] S.Pallickara, H. Gadgil and G. Fox. On the Discovery of
Brokers in Distributed Messaging Infrastructures.
Proceedings of the IEEE Cluster 2005 Conference. Boston.

[4] R. Wolski. Forecasting network performance to support
dynamic scheduling using the network weather service.
Proceedings of the 6th IEEE Symp. On High Performance
Distributed Computing, 1997.

[5] B. Lowecamp et al. A resource query interface for network-
aware applications. In Proc. 7th IEEE Symp. On High
Performance Distributed Computing, 1998.

[6] Werner Vogels: World wide failures. ACM SIGOPS
European Workshop 1996: 115-120

[7] R. Van Renesse, R. Minsky, and M. Hayden, “A Gossip-
style Failure Detection Service,” Proc. of the IFIP
Conference on Distributed Systems Platforms and Open
Distributed Processing Middleware, 1998, pp 55-70.

[8] R. Subramaniyan et al, GEMS: Gossip-Enabled Monitoring
Service for Scalable Heterogeneous Distributed Systems,
Cluster Computing, Vol. 9, No. 1, Jan. 2006, pp. 101-120.

[9] Holbrook, H., Singhai, S. and Cheriton, D., Log-Based
Receiver-Reliable Multicast for Distributed Interactive
Simulation, Proc. of ACM SIGCOMM'95, September 1995

