
Lecture Notes in Computer Science 8384

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7407

Roman Wyrzykowski • Jack Dongarra
Konrad Karczewski • Jerzy Waśniewski (Eds.)

Parallel Processing
and Applied Mathematics

10th International Conference, PPAM 2013
Warsaw, Poland, September 8–11, 2013
Revised Selected Papers, Part I

123

Editors
Roman Wyrzykowski
Konrad Karczewski
Institute of Computer and

Information Science
Czestochowa University of Technology
Czestochowa
Poland

Jack Dongarra
Department of Computer Science
University of Tennessee
Knoxville, TN
USA

Jerzy Waśniewski
Informatics and Mathematical Modelling
Technical University of Denmark
Kongens Lyngby
Denmark

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-642-55223-6 ISBN 978-3-642-55224-3 (eBook)
DOI 10.1007/978-3-642-55224-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014937670

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

� Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume comprises the proceedings of the 10th International Conference on
Parallel Processing and Applied Mathematics, PPAM 2013, which was held in
Warsaw, Poland, September 8–11, 2013. The jubilee PPAM conference was organized
by the Department of Computer and Information Science of the Czestochowa Uni-
versity of Technology, under the patronage of the Committee of Informatics of the
Polish Academy of Sciences, in cooperation with the Polish-Japanese Institute of
Information Technology. The main organizer was Roman Wyrzykowski.

PPAM is a biennial conference. Nine previous events have been held in different
places in Poland since 1994. The proceedings of the last six conferences have been
published by Springer-Verlag in the Lecture Notes in Computer Science series
(Nałęczów, 2001, vol. 2328; Częstochowa, 2003, vol. 3019; Poznań, 2005, vol. 3911;
Gdańsk, 2007, vol. 4967; Wrocław, 2009, vols. 6067 and 6068; Toruń, 2011, vols.
7203 and 7204).

The PPAM conferences have become an international forum for exchanging ideas
between researchers involved in parallel and distributed computing, including theory
and applications, as well as applied and computational mathematics. The focus of
PPAM 2013 was on models, algorithms, and software tools that facilitate efficient and
convenient utilization of modern parallel and distributed computing architectures, as
well as on large-scale applications.

This meeting gathered the largest number of participants in the history of PPAM
conferences – more than 230 participants from 32 countries. A strict refereeing pro-
cess resulted in the acceptance of 143 contributed presentations, while approximately
44 % of the submissions were rejected. Regular tracks of the conference covered such
important fields of parallel/distributed/cloud computing and applied mathematics as:

– Numerical algorithms and parallel scientific computing
– Parallel non-numerical algorithms
– Tools and environments for parallel/distributed/cloud computing
– Applications of parallel computing
– Applied mathematics, evolutionary computing, and metaheuristics

The plenary and invited talks were presented by:

– Fran Berman from the Rensselaer Polytechnic Institute (USA)
– Ewa Deelman from the University of Southern California (USA)
– Jack Dongarra from the University of Tennessee and Oak Ridge National Labo-

ratory (USA), and University of Manchester (UK)
– Geoffrey Ch. Fox from Indiana University (USA)
– Laura Grigori from Inria (France)
– Fred Gustavson from the IBM T.J. Watson Research Center (USA)
– Georg Hager from the University of Erlangen-Nuremberg (Germany)
– Alexey Lastovetsky from the University College Dublin (Ireland)

– Miron Livny from the University of Wisconsin (USA)
– Piotr Luszczek from the University of Tennessee (USA)
– Rizos Sakellariou from the University of Manchester (UK)
– James Sexton from the IBM T.J. Watson Research Center (USA)
– Leonel Sousa from the Technical University of Lisbon (Portugal)
– Denis Trystram from the Grenoble Institute of Technology (France)
– Jeffrey Vetter from the Oak Ridge National Laboratory and Georgia Institute of

Technology (USA)
– Richard W. Vuduc from the Georgia Institute of Technology (USA)
– Robert Wisniewski from Intel (USA)

Important and integral parts of the PPAM 2013 conference were the workshops:

– Minisympsium on GPU Computing organized by José R. Herrero from the
Universitat Politecnica de Catalunya (Spain), Enrique S. Quintana-Ortí from the
Universidad Jaime I (Spain), and Robert Strzodka from NVIDIA

– Special Session on Multicore Systems organized by Ozcan Ozturk from Bilkent
University (Turkey), and Suleyman Tosun from Ankara University (Turkey)

– Workshop on Numerical Algorithms on Hybrid Architectures organized by Prze-
mysław Stpiczyński from the Maria Curie Skłodowska University (Poland), and
Jerzy Waśniewski from the Technical University of Denmark

– Workshop on Models, Algorithms and Methodologies for Hierarchical Parallelism
in New HPC Systems organized by Giulliano Laccetti and Marco Lapegna from the
University of Naples Federico II (Italy), and Raffaele Montella from the University
of Naples Parthenope (Italy)

– Workshop on Power and Energy Aspects of Computation organized by Richard W.
Vuduc from the Georgia Institute of Technology (USA), Piotr Luszczek from the
University of Tennessee (USA), and Leonel Sousa from the Technical University of
Lisbon (Portugal)

– Workshop on Scheduling for Parallel Computing, SPC 2013, organized by Maciej
Drozdowski from Poznań University of Technology (Poland)

– The 5th Workshop on Language-Based Parallel Programming Models, WLPP 2013,
organized by Ami Marowka from the Bar-Ilan University (Israel)

– The 4th Workshop on Performance Evaluation of Parallel Applications on Large-
Scale Systems organized by Jan Kwiatkowski from Wrocław University of Tech-
nology (Poland)

– Workshop on Parallel Computational Biology, PBC 2013, organized by David A.
Bader from the Georgia Institute of Technology (USA), Jarosław _Zola from Rutgers
University (USA), and Bertil Schmidt from the University of Mainz (Germany)

– Minisymposium on Applications of Parallel Computations in Industry and Engi-
neering organized by Raimondas Čiegis from Vilnius Gediminas Technical Uni-
versity (Lithuania), and Julius Žilinskas from Vilnius University (Lithuania)

– Minisymposium on HPC Applications in Physical Sciences organized by Grzegorz
Kamieniarz and Wojciech Florek from A. Mickiewicz University in Poznań
(Poland)

VI Preface

– Minisymposium on Applied High-Performance Numerical Algorithms in PDEs
organized by Piotr Krzy _zanowski and Leszek Marcinkowski from Warsaw Uni-
versity (Poland), and Talal Rahman from Bergen University College (Norway)

– Minisymposium on High-Performance Computing Interval Methods organized by
Bartłomiej J. Kubica from Warsaw University of Technology (Poland)

– Workshop on Complex Colective Systems organized by Paweł Topa and Jarosław
Wąs from AGH University of Science and Technology in Kraków (Poland)

The PPAM 2013 meeting began with five tutorials:

– Scientific Computing on GPUs, by Dominik Göddeke from the University of
Dortmund (Germany), and Robert Strzodka from NVIDIA

– Design and Implementation of Parallel Algorithms for Highly Heterogeneous HPC
Platforms, by Alexey Lastovetsky from University College Dublin (Ireland)

– Node Level Performance Engineering, by Georg Hager from the University of
Erlangen-Nuremberg (Germany)

– Delivering the OpenCl Performance Promise: Creating and Optimizing OpenCl
Applications with the Intel OpenCl SDK, by Maxim Shevtsov from Intel (Russia)

– A History of A Central Result of Linear Algebra and the Role of that Gauss,
Cholesky and Others Played in Its Development, by Fred Gustavson from the IBM
T.J. Watson Research Center (USA)

The PPAM Best Poster Award is granted to the best poster on display at the PPAM
conferences, and was established at PPAM 2009. This award is bestowed by the
Program Committee members to the presenting author(s) of the best poster. The
selection criteria are based on the scientific content, and on the quality of the poster
presentation. The PPAM 2013 winners were Lars Karlsson, and Carl Christian K.
Mikkelsen from Umea University, who presented the poster ‘‘Improving Perfect
Parallelism.’’ The Special Award was bestowed to Lukasz Szustak, and Krzysztof
Rojek from the Częstochowa University of Technology, and Pawel Gepner from Intel,
who presented the poster ‘‘Using Intel Xeon Phi to Accelerate Computation in
MPDATA Algorithm.’’

A new topic was introduced at PPAM 2013: Power and Energy Aspects of Com-
putation (PEAC). Recent advances in computer hardware rendered the issues related
to power and energy consumption as the driving metric for the design of computa-
tional platforms for years to come. Power-conscious designs, including multicore
CPUs and various accelerators, dominate large supercomputing installations as well as
large industrial complexes devoted to cloud computing and the big data analytics. At
stake are serious financial and environmental impacts, which the large-scale com-
puting community has to now consider and embark on careful re-engineering of
software to fit the demanding power caps and tight energy budgets.

The workshop presented research into new ways of addressing these pressing issues
of energy preservation, power consumption, and heat dissipation while attaining the
best possible performance levels at the scale demanded by modern scientific
challenges.

Preface VII

The PEAC Workshop, as well as the conference as a whole, featured a number of
invited and contributed talks covering a diverse array of recent advances, including:

– Cache-aware roofline model for monitoring performance and power in connection
with application characterization (by L. Sousa et al.)

– Resource scheduling and allocation schemes based on stochastic models (by M.
Oxley et al.)

– A comprehensive study of iterative solvers on a large variety of computing plat-
forms including modern CPUs, accelerators, and embedded computers (by Enrique
S. Quintana-Ortí et al.)

– Energy and power consumption trends in HPC (by P. Luszczek)
– Sensitivity of graph metrics to missing data and the benefits they have for overall

energy consumption (by A. Zakrzewska et al.)
– Cache energy models and their analytical properties in the context of embedded

devices (by K. de Vogeleer et al.)
– Predictive models for execution time, energy consumption, and power draw of

algorithms (by R. Vuduc)

The organizers are indebted to the PPAM 2013 sponsors, whose support was vital to
the success of the conference. The main sponsor was the Intel Corporation. The other
sponsors were: IBM Corporation, Hewlett-Packard Company, Rogue Wave Software,
and AMD. We thank to all the members of the international Program Committee and
additional reviewers for their diligent work in refereeing the submitted papers. Finally,
we thank all of the local organizers from the Częstochowa University of Technology,
and the Polish-Japanese Institute of Information Technology in Warsaw, who helped
us to run the event very smoothly. We are especially indebted to Gra _zyna Kołak-
owska, Urszula Kroczewska, Łukasz Kuczyński, Adam Tomaś, and Marcin Woźniak
from the Częstochowa University of Technology; and to Jerzy P. Nowacki, Marek
Tudruj, Jan Jedliński, and Adam Smyk from the Polish-Japanese Institute of Infor-
mation Technology.

We hope that this volume will be useful to you. We would like everyone who reads
it to feel invited to the next conference, PPAM 2015, which will be held September
6–9, 2015, in Kraków, the old capital of Poland.

January 2014 Roman Wyrzykowski
Jack Dongarra

Konrad Karczewski
Jerzy Waśniewski

VIII Preface

Organization

Program Committee

Jan Węglarz Poznań University of Technology, Poland
(Honorary Chair)

Roman Wyrzykowski Częstochowa University of Technology, Poland
(Program Committee Chair)

Ewa Deelman University of Southern California, USA
(Program Committee Vice-Chair)

Francisco Almeida Universidad de La Laguna, Spain
Pedro Alonso Universidad Politecnica de Valencia, Spain
Peter Arbenz ETH, Zurich, Switzerland
Piotr Bała Nicolaus Copernicus University, Poland
David A. Bader Georgia Institute of Technology, USA
Michael Bader TU München, Germany
Włodzimierz Bielecki West Pomeranian University of Technology,

Poland
Paolo Bientinesi RWTH Aachen, Germany
Radim Blaheta Institute of Geonics, Czech Academy of Sciences
Jacek Bła _zewicz Poznań University of Technology, Poland
Adam Bokota Częstochowa University of Technology, Poland
Pascal Bouvry University of Luxembourg
Tadeusz Burczyński Silesia University of Technology, Poland
Jerzy Brzeziński Poznań University of Technology, Poland
Marian Bubak AGH Kraków, Poland, and University of

Amsterdam, The Netherlands
Christopher Carothers Rensselaer Polytechnic Institute, USA
Jesus Carretero Universidad Carlos III de Madrid, Spain
Raimondas Čiegis Vilnius Gediminas Technical University,

Lithuania
Andrea Clematis IMATI-CNR, Italy
Jose Cunha University Nova of Lisbon, Portugal
Zbigniew Czech Silesia University of Technology, Poland
Jack Dongarra University of Tennessee and ORNL, USA,

and University of Manchester, UK
Maciej Drozdowski Poznań University of Technology, Poland
Erik Elmroth Umea University, Sweden
Mariusz Flasiński Jagiellonian University, Poland
Franz Franchetti Carnegie Mellon University, USA
Tomas Fryza Brno University of Technology, Czech Republic
Pawel Gepner Intel Corporation

Domingo Gimenez University of Murcia, Spain
Mathieu Giraud LIFL and Inria, France
Jacek Gondzio University of Edinburgh, UK
Andrzej Gościński Deakin University, Australia
Laura Grigori Inria, France
Adam Grzech Wroclaw University of Technology, Poland
Inge Gutheil Forschungszentrum Juelich, Germany
Georg Hager University of Erlangen-Nuremberg, Germany
José R. Herrero Universitat Politecnica de Catalunya, Barcelona,

Spain
Ladislav Hluchy Slovak Academy of Sciences, Slovakia
Florin Isaila Universidad Carlos III de Madrid, Spain
Ondrej Jakl Institute of Geonics, Czech Academy of Sciences
Emmanuel Jeannot Inria, France
Bo Kågström Umea University, Sweden
Alexey Kalinov Cadence Design System, Russia
Aneta Karaivanova Bulgarian Academy of Sciences, Sofia
Eleni Karatza Aristotle University of Thessaloniki, Greece
Ayse Kiper Middle East Technical University, Turkey
Jacek Kitowski Institute of Computer Science, AGH, Poland
Jozef Korbicz University of Zielona Góra, Poland
Stanislaw Kozielski Silesia University of Technology, Poland
Dieter Kranzlmueller Ludwig Maximillian University, Munich, and

Leibniz Supercomputing Centre, Germany
Henryk Krawczyk Gdańsk University of Technology, Poland
Piotr Krzy _zanowski University of Warsaw, Poland
Mirosław Kurkowski Częstochowa University of Technology, Poland
Krzysztof Kurowski PSNC, Poznań, Poland
Jan Kwiatkowski Wrocław University of Technology, Poland
Jakub Kurzak University of Tennessee, USA
Giulliano Laccetti University of Naples Federico II, Italy
Marco Lapegna University of Naples Federico II, Italy
Alexey Lastovetsky University College Dublin, Ireland
Joao Lourenco University Nova of Lisbon, Portugal
Hatem Ltaief KAUST, Saudi Arabia
Emilio Luque Universitat Autonoma de Barcelona, Spain
Vyacheslav I. Maksimov Ural Branch, Russian Academy of Sciences
Victor E. Malyshkin Siberian Branch, Russian Academy of Sciences
Pierre Manneback University of Mons, Belgium
Tomas Margalef Universitat Autonoma de Barcelona, Spain
Svetozar Margenov Bulgarian Academy of Sciences, Sofia
Ami Marowka Bar-Ilan University, Israel
Norbert Meyer PSNC, Poznań, Poland
Jarek Nabrzyski University of Notre Dame, USA
Raymond Namyst University of Bordeaux and Inria, France
Maya G. Neytcheva Uppsala University, Sweden

X Organization

Gabriel Oksa Slovak Academy of Sciences, Bratislava
Ozcan Ozturk Bilkent University, Turkey
Tomasz Olas Częstochowa University of Technology, Poland
Marcin Paprzycki IBS PAN and SWPS, Warsaw, Poland
Dana Petcu West University of Timisoara, Romania
Enrique S. Quintana-Ortí Universidad Jaime I, Spain
Jean-Marc Pierson Paul Sabatier University, France
Thomas Rauber University of Bayreuth, Germany
Paul Renaud-Goud Inria, France
Jacek Rokicki Warsaw University of Technology, Poland
Gudula Runger Chemnitz University of Technology, Germany
Leszek Rutkowski Częstochowa University of Technology, Poland
Robert Schaefer Institute of Computer Science, AGH, Poland
Olaf Schenk Università della Svizzera Italiana, Switzerland
Stanislav Sedukhin University of Aizu, Japan
Franciszek Seredyński Cardinal Stefan Wyszyński University in Warsaw,

Poland
Happy Sithole Centre for High Performance Computing,

South Africa
Jurij Silc Jozef Stefan Institute, Slovenia
Karolj Skala Ruder Boskovic Institute, Croatia
Peter M.A. Sloot University of Amsterdam, The Netherlands
Leonel Sousa Technical University of Lisbon, Portugal
Radek Stompor Université Paris Diderot and CNRS, France
Przemysław Stpiczyński Maria Curie Skłodowska University, Poland
Maciej Stroiński PSNC, Poznań, Poland
Ireneusz Szcześniak Częstochowa University of Technology, Poland
Boleslaw Szymanski Rensselaer Polytechnic Institute, USA
Domenico Talia University of Calabria, Italy
Christian Terboven RWTH Aachen, Germany
Andrei Tchernykh CICESE Research Center, Ensenada, Mexico
Suleyman Tosun Ankara University, Turkey
Roman Trobec Jozef Stefan Institute, Slovenia
Denis Trystram Grenoble Institute of Technology, France
Marek Tudruj Polish Academy of Sciences and Polish-Japanese

Institute of Information Technology, Warsaw,
Poland

Bora Uçar Ecole Normale Superieure de Lyon, France
Marian Vajtersic Salzburg University, Austria
Jerzy Waśniewski Technical University of Denmark
Bogdan Wiszniewski Gdańsk University of Technology, Poland
Andrzej Wyszogrodzki IMGW, Warsaw, Poland
Ramin Yahyapour University of Göttingen/GWDG, Germany
Jianping Zhu Cleveland State University, USA
Julius Žilinskas Vilnius University, Lithuania
Jarosław _Zola Rutgers University, USA

Organization XI

Contents – Part I

Algebra and Geometry Combined Explains How the Mind Does Math 1
Fred G. Gustavson

Numerical Algorithms and Parallel Scientific Computing

Exploiting Data Sparsity in Parallel Matrix Powers Computations 15
Nicholas Knight, Erin Carson, and James Demmel

Performance of Dense Eigensolvers on BlueGene/Q 26
Inge Gutheil, Jan Felix Münchhalfen, and Johannes Grotendorst

Experiences with a Lanczos Eigensolver in High-Precision Arithmetic 36
Alexander Alperovich, Alex Druinsky, and Sivan Toledo

Adaptive Load Balancing for Massively Parallel Multi-Level Monte
Carlo Solvers . 47

Jonas Šukys

Parallel One–Sided Jacobi SVD Algorithm with Variable Blocking Factor 57
Martin Bečka and Gabriel Okša

An Identity Parareal Method for Temporal Parallel Computations 67
Toshiya Takami and Daiki Fukudome

Improving Perfect Parallelism . 76
Lars Karlsson, Carl Christian Kjelgaard Mikkelsen, and Bo Kågström

Methods for High-Throughput Computation of Elementary Functions 86
Marat Dukhan and Richard Vuduc

Engineering Nonlinear Pseudorandom Number Generators. 96
Samuel Neves and Filipe Araujo

Extending the Generalized Fermat Prime Number Search Beyond One Million
Digits Using GPUs . 106

Iain Bethune and Michael Goetz

Iterative Solution of Singular Systems with Applications 114
Radim Blaheta, Ondřej Jakl, and Jiří Starý

Statistical Estimates for the Conditioning of Linear Least Squares Problems. . . 124
Marc Baboulin, Serge Gratton, Rémi Lacroix, and Alan J. Laub

Numerical Treatment of a Cross-Diffusion Model of Biofilm
Exposure to Antimicrobials . 134

Kazi Rahman and Hermann J. Eberl

Performance Analysis for Stencil-Based 3D MPDATA Algorithm
on GPU Architecture. 145

Krzysztof Rojek, Lukasz Szustak, and Roman Wyrzykowski

Elliptic Solver Performance Evaluation on Modern Hardware Architectures. . . 155
Milosz Ciznicki, Piotr Kopta, Michal Kulczewski, Krzysztof Kurowski,
and Pawel Gepner

Parallel Geometric Multigrid Preconditioner for 3D FEM in NuscaS
Software Package . 166

Tomasz Olas

Scalable Parallel Generation of Very Large Sparse Benchmark Matrices 178
Daniel Langr, Ivan Šimeček, Pavel Tvrdík, and Tomáš Dytrych

Parallel Non-Numerical Algorithms

Co-operation Schemes for the Parallel Memetic Algorithm 191
Jakub Nalepa, Miroslaw Blocho, and Zbigniew J. Czech

Scalable and Efficient Parallel Selection . 202
Christian Siebert

Optimal Diffusion for Load Balancing in Heterogeneous Networks 214
Katerina A. Dimitrakopoulou and Nikolaos M. Missirlis

Parallel Bounded Model Checking of Security Protocols 224
Mirosław Kurkowski, Olga Siedlecka-Lamch, Sabina Szymoniak,
and Henryk Piech

Tools and Environments for Parallel/Distributed/Cloud Computing

Development of Domain-Specific Solutions Within the Polish Infrastructure
for Advanced Scientific Research . 237

J. Kitowski, K. Wiatr, P. Bała, M. Borcz, A. Czy_zewski, Ł. Dutka,
R. Kluszczyński, J. Kotus, P. Kustra, N. Meyer, A. Milenin, Z. Mosurska,
R. Pająk, Ł. Rauch, M. Sterzel, D. Stokłosa, and T. Szepieniec

Cost Optimization of Execution of Multi-level Deadline-Constrained
Scientific Workflows on Clouds . 251

Maciej Malawski, Kamil Figiela, Marian Bubak, Ewa Deelman,
and Jarek Nabrzyski

XIV Contents – Part I

Parallel Computations in the Volunteer–Based Comcute System 261
Paweł Czarnul, Jarosław Kuchta, and Mariusz Matuszek

Secure Storage and Processing of Confidential Data on Public Clouds 272
Jan Meizner, Marian Bubak, Maciej Malawski, and Piotr Nowakowski

Efficient Service Delivery in Complex Heterogeneous and Distributed
Environment. 283

Mariusz Fras and Jan Kwiatkowski

Domain-Driven Visual Query Formulation over RDF Data Sets 293
Bartosz Balis, Tomasz Grabiec, and Marian Bubak

Distributed Program Execution Control Based on Application Global
States Monitoring in PEGASUS DA Framework . 302

Damian Kopański, Łukasz Maśko, Eryk Laskowski, Adam Smyk,
Janusz Borkowski, and Marek Tudruj

Application of Parallel Computing

New Scalable SIMD-Based Ray Caster Implementation for Virtual Machining. . . 317
Alexander Leutgeb, Torsten Welsch, and Michael Hava

Parallelization of Permuting XML Compressors . 327
Tyler Corbin, Tomasz Müldner, and Jan Krzysztof Miziołek

Parallel Processing Model for Syntactic Pattern Recognition-Based Electrical
Load Forecast. 338

Mariusz Flasiński, Janusz Jurek, and Tomasz Peszek

Parallel Event–Driven Simulation Based on Application Global
State Monitoring. 348

Łukasz Maśko and Marek Tudruj

Applied Mathematics, Evolutionary Computing and Metaheuristics

It’s Not a Bug, It’s a Feature: Wait-Free Asynchronous Cellular Genetic
Algorithm . 361

Frédéric Pinel, Bernabé Dorronsoro, Pascal Bouvry, and Samee U. Khan

Genetic Programming in Automatic Discovery of Relationships in Computer
System Monitoring Data . 371

Wlodzimierz Funika and Pawel Koperek

Genetic Algorithms Execution Control Under a Global Application State
Monitoring Infrastructure . 381

Adam Smyk and Marek Tudruj

Contents – Part I XV

Evolutionary Algorithms for Abstract Planning . 392
Jaroslaw Skaruz, Artur Niewiadomski, and Wojciech Penczek

Solution of the Inverse Continuous Casting Problem with the Aid
of Modified Harmony Search Algorithm . 402

Edyta Hetmaniok, Damian Słota, and Adam Zielonka

Influence of a Topology of a Spring Network on its Ability to Learn
Mechanical Behaviour . 412

Maja Czoków and Jacek Miękisz

Comparing Images Based on Histograms of Local Interest Points. 423
Tomasz Nowak, Marcin Gabryel, Marcin Korytkowski, and Rafał Scherer

Improved Digital Image Segmentation Based on Stereo Vision and Mean
Shift Algorithm . 433

Rafał Grycuk, Marcin Gabryel, Marcin Korytkowski, Jakub Romanowski,
and Rafał Scherer

Minisymposium on GPU Computing

Evaluation of Autoparallelization Toolkits for Commodity GPUs 447
David Williams, Valeriu Codreanu, Po Yang, Baoquan Liu, Feng Dong,
Burhan Yasar, Babak Mahdian, Alessandro Chiarini, Xia Zhao,
and Jos B.T.M. Roerdink

Real-Time Multiview Human Body Tracking Using GPU-Accelerated PSO. . . 458
Boguslaw Rymut and Bogdan Kwolek

Implementation of a Heterogeneous Image Reconstruction System for
Clinical Magnetic Resonance . 469

Grzegorz Tomasz Kowalik, Jennifer Anne Steeden, David Atkinson,
Andrew Taylor, and Vivek Muthurangu

X-Ray Laser Imaging of Biomolecules Using Multiple GPUs 480
Stefan Engblom and Jing Liu

Out-of-Core Solution of Eigenproblems for Macromolecular Simulations . . . 490
José I. Aliaga, Davor Davidović, and Enrique S. Quintana-Ortí

Using GPUs for Parallel Stencil Computations in Relativistic
Hydrodynamic Simulation . 500

Sebastian Cygert, Daniel Kikoła, Joanna Porter-Sobieraj,
Jan Sikorski, and Marcin Słodkowski

XVI Contents – Part I

Special Session on Multicore Systems

PDNOC: An Efficient Partially Diagonal Network-on-Chip Design 513
Thomas Canhao Xu, Ville Leppänen, Pasi Liljeberg, Juha Plosila,
and Hannu Tenhunen

Adaptive Fork-Heuristics for Software Thread-Level Speculation 523
Zhen Cao and Clark Verbrugge

Inexact Sparse Matrix Vector Multiplication in Krylov Subspace Methods:
An Application-Oriented Reduction Method. 534

Ahmad Mansour and Jürgen Götze

The Regular Expression Matching Algorithm for the Energy Efficient
Reconfigurable SoC . 545

Paweł Russek and Kazimierz Wiatr

Workshop on Numerical Algorithms on Hybrid Architectures

Performance Evaluation of Sparse Matrix Multiplication Kernels on
Intel Xeon Phi . 559

Erik Saule, Kamer Kaya, and Ümit V. C�atalyürek

Portable HPC Programming on Intel Many-Integrated-Core Hardware with
MAGMA Port to Xeon Phi . 571

Jack Dongarra, Mark Gates, Azzam Haidar, Yulu Jia, Khairul Kabir,
Piotr Luszczek, and Stanimire Tomov

Using Intel Xeon Phi Coprocessor to Accelerate Computations in
MPDATA Algorithm. 582

Lukasz Szustak, Krzysztof Rojek, and Pawel Gepner

Accelerating a Massively Parallel Numerical Simulation in Electromagnetism
Using a Cluster of GPUs . 593

Cédric Augonnet, David Goudin, Agnès Pujols, and Muriel Sesques

Multidimensional Monte Carlo Integration on Clusters with Hybrid
GPU-Accelerated Nodes . 603

Dominik Szałkowski and Przemysław Stpiczyński

Efficient Execution of Erasure Codes on AMD APU Architecture 613
Roman Wyrzykowski, Marcin Woźniak, and Lukasz Kuczyński

AVX Acceleration of DD Arithmetic Between a Sparse Matrix and Vector . . . 622
Toshiaki Hishinuma, Akihiro Fujii, Teruo Tanaka, and Hidehiko Hasegawa

Contents – Part I XVII

Using Quadruple Precision Arithmetic to Accelerate Krylov Subspace
Methods on GPUs. 632

Daichi Mukunoki and Daisuke Takahashi

Effectiveness of Sparse Data Structure for Double-Double and
Quad-Double Arithmetics . 643

Tsubasa Saito, Satoko Kikkawa, Emiko Ishiwata, and Hidehiko Hasegawa

Efficient Heuristic Adaptive Quadrature on GPUs: Design and Evaluation 652
Daniel Thuerck, Sven Widmer, Arjan Kuijper, and Michael Goesele

An Efficient Representation on GPU for Transition Rate Matrices for
Markov Chains . 663

Jarosław Bylina, Beata Bylina, and Marek Karwacki

Eigen-G: GPU-Based Eigenvalue Solver for Real-Symmetric Dense Matrices . . . 673
Toshiyuki Imamura, Susumu Yamada, and Masahiko Machida

A Square Block Format for Symmetric Band Matrices 683
Fred G. Gustavson, José R. Herrero, and Enric Morancho

Workshop on Models, Algorithms, and Methodologies for Hierarchical
Parallelism in New HPC Systems

Transparent Application Acceleration by Intelligent Scheduling of Shared
Library Calls on Heterogeneous Systems . 693

João Colaço, Adrian Matoga, Aleksandar Ilic, Nuno Roma, Pedro Tomás,
and Ricardo Chaves

A Study on Adaptive Algorithms for Numerical Quadrature on Heterogeneous
GPU and Multicore Based Systems. 704

Giuliano Laccetti, Marco Lapegna, Valeria Mele, and Diego Romano

Improving Parallel I/O Performance Using Multithreaded Two-Phase I/O
with Processor Affinity Management. 714

Yuichi Tsujita, Kazumi Yoshinaga, Atsushi Hori, Mikiko Sato,
Mitaro Namiki, and Yutaka Ishikawa

Storage Management Systems for Organizationally Distributed Environments
PLGrid PLUS Case Study . 724

Renata Słota, Łukasz Dutka, Michał Wrzeszcz, Bartosz Kryza,
Darin Nikolow, Dariusz Król, and Jacek Kitowski

The High Performance Internet of Things: Using GVirtuS to Share High-End
GPUs with ARM Based Cluster Computing Nodes 734

Giuliano Laccetti, Raffaele Montella, Carlo Palmieri,
and Valentina Pelliccia

XVIII Contents – Part I

Workshop on Power and Energy Aspects of Computation

Monitoring Performance and Power for Application Characterization
with the Cache-Aware Roofline Model . 747

Diogo Antão, Luís Taniça, Aleksandar Ilic, Frederico Pratas,
Pedro Tomás, and Leonel Sousa

Energy and Deadline Constrained Robust Stochastic Static Resource Allocation. . . 761
Mark A. Oxley, Sudeep Pasricha, Howard Jay Siegel,
and Anthony A. Maciejewski

Performance and Energy Analysis of the Iterative Solution of Sparse Linear
Systems on Multicore and Manycore Architectures 772

José I. Aliaga, Hartwig Anzt, Maribel Castillo, Juan C. Fernández,
Germán León, Joaquín Pérez, and Enrique S. Quintana-Ortí

Measuring the Sensitivity of Graph Metrics to Missing Data 783
Anita Zakrzewska and David A. Bader

The Energy/Frequency Convexity Rule: Modeling and Experimental
Validation on Mobile Devices . 793

Karel De Vogeleer, Gerard Memmi, Pierre Jouvelot, and Fabien Coelho

Author Index . 805

Contents – Part I XIX

Contents – Part II

Workshop on Scheduling for Parallel Computing (SPC 2013)

Scheduling Bag-of-Tasks Applications to Optimize Computation
Time and Cost . 3

Anastasia Grekioti and Natalia V. Shakhlevich

Scheduling Moldable Tasks with Precedence Constraints and Arbitrary
Speedup Functions on Multiprocessors . 13

Sascha Hunold

OStrich: Fair Scheduling for Multiple Submissions 26
Joseph Emeras, Vinicius Pinheiro, Krzysztof Rzadca, and Denis Trystram

Fair Share Is Not Enough: Measuring Fairness in Scheduling
with Cooperative Game Theory . 38

Piotr Skowron and Krzysztof Rzadca

Setting up Clusters of Computing Units to Process Several Data Streams
Efficiently . 49

Daniel Millot and Christian Parrot

The 5th Workshop on Language-Based Parallel Programming Models
(WLPP 2013)

Towards Standardization of Measuring the Usability of Parallel Languages . . . 65
Ami Marowka

Experiences with Implementing Task Pools in Chapel and X10 75
Claudia Fohry and Jens Breitbart

Parampl: A Simple Approach for Parallel Execution of AMPL Programs . . . 86
Artur Olszak and Andrzej Karbowski

Prototyping Framework for Parallel Numerical Computations 95
Ondřej Meca, Stanislav Böhm, Marek Běhálek, and Martin Šurkovský

Algorithms for In-Place Matrix Transposition. 105
Fred G. Gustavson and David W. Walker

FooPar: A Functional Object Oriented Parallel Framework in Scala 118
Felix Palludan Hargreaves and Daniel Merkle

Effects of Segmented Finite Difference Time Domain on GPU 130
Jose Juan Mijares Chan, Gagan Battoo, Parimala Thulasiraman,
and Ruppa K. Thulasiram

Optimization of an OpenCL-Based Multi-swarm PSO Algorithm on an APU. . . 140
Wayne Franz, Parimala Thulasiraman, and Ruppa K. Thulasiram

Core Allocation Policies on Multicore Platforms to Accelerate Forest
Fire Spread Predictions . 151

Tomàs Artés, Andrés Cencerrado, Ana Cortés, and Tomàs Margalef

The 4th Workshop on Performance Evaluation of Parallel Applications
on Large-Scale Systems

The Effect of Parallelization on a Tetrahedral Mesh Optimization Method 163
Domingo Benitez, Eduardo Rodríguez, José M. Escobar,
and Rafael Montenegro

Analysis of Partitioning Models and Metrics in Parallel Sparse
Matrix-Vector Multiplication . 174

Kamer Kaya, Bora Uçar, and Ümit V. Catalyürek

Achieving Memory Scalability in the GYSELA Code to Fit Exascale
Constraints . 185

Fabien Rozar, Guillaume Latu, and Jean Roman

Probabilistic Analysis of Barrier Eliminating Method Applied
to Load-Imbalanced Parallel Application . 196

Naoki Yonezawa, Ken’ichi Katou, Issei Kino, and Koichi Wada

Multi-GPU Parallel Memetic Algorithm for Capacitated Vehicle Routing
Problem. 207

Mieczysław Wodecki, Wojciech Bo_zejko, Michał Karpiński,
and Maciej Pacut

Parallel Applications Performance Evaluation Using the Concept
of Granularity. 215

Jan Kwiatkowski

Workshop on Parallel Computational Biology (PBC 2013)

Resolving Load Balancing Issues in BWA on NUMA Multicore
Architectures . 227

Charlotte Herzeel, Thomas J. Ashby, Pascal Costanza,
and Wolfgang De Meuter

K-mulus: Strategies for BLAST in the Cloud . 237
Christopher M. Hill, Carl H. Albach, Sebastian G. Angel, and Mihai Pop

XXII Contents – Part II

Faster GPU-Accelerated Smith-Waterman Algorithm with Alignment
Backtracking for Short DNA Sequences . 247

Yongchao Liu and Bertil Schmidt

Accelerating String Matching on MIC Architecture for Motif Extraction. . . . 258
Solon P. Pissis, Christian Goll, Pavlos Pavlidis, and Alexandros Stamatakis

A Parallel, Distributed-Memory Framework for Comparative
Motif Discovery . 268

Dieter De Witte, Michiel Van Bel, Pieter Audenaert, Piet Demeester,
Bart Dhoedt, Klaas Vandepoele, and Jan Fostier

Parallel Seed-Based Approach to Protein Structure Similarity Detection 278
Guillaume Chapuis, Mathilde Le Boudic - Jamin, Rumen Andonov,
Hristo Djidjev, and Dominique Lavenier

Minisymposium on Applications of Parallel Computation
in Industry and Engineering

A Parallel Solver for the Time-Periodic Navier–Stokes Equations 291
Peter Arbenz, Daniel Hupp, and Dominik Obrist

Parallel Numerical Algorithms for Simulation of Rectangular Waveguides
by Using GPU . 301

Raimondas Čiegis, Andrej Bugajev, Žilvinas Kancleris, and Gediminas Šlekas

OpenACC Parallelisation for Diffusion Problems, Applied
to Temperature Distribution on a Honeycomb Around the Bee Brood:
A Worked Example Using BiCGSTAB . 311

Hermann J. Eberl and Rangarajan Sudarsan

Application of CUDA for Acceleration of Calculations in Boundary Value
Problems Solving Using PIES . 322

Andrzej Kuzelewski, Eugeniusz Zieniuk, and Agnieszka Boltuc

Modeling and Simulations of Beam Stabilization in Edge-Emitting
Broad Area Semiconductor Devices . 332

Mindaugas Radziunas and Raimondas Čiegis

Concurrent Nomadic and Bundle Search: A Class of Parallel Algorithms
for Local Optimization . 343

Costas Voglis, Dimitrios G. Papageorgiou, and Isaac E. Lagaris

Parallel Multi-objective Memetic Algorithm for Competitive Facility
Location . 354

Algirdas Lančinskas and Julius Žilinskas

Contents – Part II XXIII

Parallelization of Encryption Algorithm Based on Chaos System
and Neural Networks. 364

Dariusz Burak

Minisymposium on HPC Applications in Physical Sciences

Simulations of the Adsorption Behavior of Dendrimers 377
Jarosław S. Kłos and Jens U. Sommer

An Optimized Lattice Boltzmann Code for BlueGene/Q 385
Marcello Pivanti, Filippo Mantovani, Sebastiano Fabio Schifano,
Raffaele Tripiccione, and Luca Zenesini

A Parallel and Scalable Iterative Solver for Sequences of Dense
Eigenproblems Arising in FLAPW . 395

Mario Berljafa and Edoardo Di Napoli

Sequential Monte Carlo in Bayesian Assessment of Contaminant Source
Localization Based on the Sensors Concentration Measurements 407

Anna Wawrzynczak, Piotr Kopka, and Mieczyslaw Borysiewicz

Effective Parallelization of Quantum Simulations: Nanomagnetic
Molecular Rings . 418

Piotr Kozłowski, Grzegorz Musiał, Michał Antkowiak, and Dante Gatteschi

DFT Study of the Cr8 Molecular Magnet Within Chain-Model
Approximations . 428

Valerio Bellini, Daria M. Tomecka, Bartosz Brzostowski,
Michał Wojciechowski, Filippo Troiani, Franca Manghi, and Marco Affronte

Non-perturbative Methods in Phenomenological Simulations
of Ring-Shape Molecular Nanomagnets . 438

Piotr Kozłowski, Grzegorz Musiał, Monika Haglauer, Wojciech Florek,
Michał Antkowiak, Filippo Esposito, and Dante Gatteschi

Non-uniform Quantum Spin Chains: Simulations of Static
and Dynamic Properties. 448

Artur Barasiński, Bartosz Brzostowski, Ryszard Matysiak, Paweł Sobczak,
and Dariusz Woźniak

Minisymposium on Applied High Performance Numerical Algorithms in PDEs

A Domain Decomposition Method for Discretization of Multiscale Elliptic
Problems by Discontinuous Galerkin Method . 461

Maksymilian Dryja

XXIV Contents – Part II

Parallel Preconditioner for the Finite Volume Element Discretization
of Elliptic Problems . 469

Leszek Marcinkowski and Talal Rahman

Preconditioning Iterative Substructuring Methods Using Inexact Local Solvers . . . 479
Piotr Krzyzanowski

Additive Schwarz Method for Nonsymmetric Local Discontinuous
Galerkin Discretization of Elliptic Problem . 489

Filip Z. Klawe

Fast Numerical Method for 2D Initial-Boundary Value Problems
for the Boltzmann Equation . 499

Alexei Heintz and Piotr Kowalczyk

Simulating Phase Transition Dynamics on Non-trivial Domains 510
Łukasz Bolikowski and Maria Gokieli

Variable Block Multilevel Iterative Solution of General Sparse Linear
Systems . 520

Bruno Carpentieri, Jia Liao, and Masha Sosonkina

An Automatic Way of Finding Robust Elimination Trees for a Multi-frontal
Sparse Solver for Radical 2D Hierarchical Meshes 531

Hassan AbouEisha, Piotr Gurgul, Anna Paszyńska, Maciek Paszyński,
Krzysztof Kuźnik, and Mikhail Moshkov

Parallel Efficiency of an Adaptive, Dynamically Balanced Flow Solver 541
Stanislaw Gepner, Jerzy Majewski, and Jacek Rokicki

Modification of the Newton’s Method for the Simulations of Gallium
Nitride Semiconductor Devices. 551

Konrad Sakowski, Leszek Marcinkowski, and Stanislaw Krukowski

Numerical Realization of the One-Dimensional Model of Burning Methanol . . . 561
Krzysztof Moszyński

Minisymposium on High Performance Computing Interval Methods

A Shaving Method for Interval Linear Systems of Equations 573
Milan Hladík and Jaroslav Horáček

Finding Enclosures for Linear Systems Using Interval Matrix Multiplication
in CUDA . 582

Alexander Dallmann, Philip-Daniel Beck, and Jürgen Wolff von Gudenberg

Contents – Part II XXV

GPU Acceleration of Metaheuristics Solving Large Scale Parametric
Interval Algebraic Systems . 591

Jerzy Duda and Iwona Skalna

Parallel Approach to Monte Carlo Simulation for Option Price Sensitivities
Using the Adjoint and Interval Analysis . 600

Grzegorz Kozikowski and Bartłomiej Jacek Kubica

Subsquares Approach – A Simple Scheme for Solving Overdetermined
Interval Linear Systems . 613

Jaroslav Horáček and Milan Hladík

Using Quadratic Approximations in an Interval Method for Solving
Underdetermined and Well-Determined Nonlinear Systems 623

Bartłomiej Jacek Kubica

The Definition of Interval-Valued Intuitionistic Fuzzy Sets
in the Framework of Dempster-Shafer Theory . 634

Ludmila Dymova and Pavel Sevastjanov

Interval Finite Difference Method for Solving the Problem of Bioheat
Transfer Between Blood Vessel and Tissue . 644

Malgorzata A. Jankowska

Workshop on Complex Collective Systems

Bridging the Gap: From Cellular Automata to Differential Equation Models
for Pedestrian Dynamics . 659

Felix Dietrich, Gerta Köster, Michael Seitz, and Isabella von Sivers

Cellular Model of Pedestrian Dynamics with Adaptive Time Span 669
Marek Bukáček, Pavel Hrabák, and Milan Krbálek

The Use of GPGPU in Continuous and Discrete Models of Crowd Dynamics. . . 679
Hubert Mróz, Jarosław Wąs, and Paweł Topa

Modeling Behavioral Traits of Employees in a Workplace with Cellular
Automata . 689

Petros Saravakos and Georgios Ch. Sirakoulis

Probabilistic Pharmaceutical Modelling: A Comparison Between
Synchronous and Asynchronous Cellular Automata. 699

Marija Bezbradica, Heather J. Ruskin, and Martin Crane

The Graph of Cellular Automata Applied for Modelling Tumour
Induced Angiogenesis . 711

Paweł Topa

XXVI Contents – Part II

Neighborhood Selection and Rules Identification for Cellular Automata:
A Rough Sets Approach . 721

Bartłomiej Płaczek

Coupling Lattice Boltzmann Gas and Level Set Method for Simulating
Free Surface Flow in GPU/CUDA Environment . 731

Tomir Kryza and Witold Dzwinel

Creation of Agent’s Vision of Social Network Through Episodic Memory 741
Michał Wrzeszcz and Jacek Kitowski

The Influence of Multi-agent Cooperation on the Efficiency
of Taxi Dispatching . 751

Michał Maciejewski and Kai Nagel

Basic Endogenous-Money Economy: An Agent-Based Approach 761
Ivan Blecic, Arnaldo Cecchini, and Giuseppe A. Trunfio

Author Index . 771

Contents – Part II XXVII

Algebra and Geometry Combined Explains
How the Mind Does Math

Fred G. Gustavson1,2(B)

1 IBM T.J. Watson Research Center, Ossining, USA
2 Ume̊a University, Ume̊a, Sweden

fg2935@gmail.com

Abstract. This paper updates my talk on Cache Blocking for Dense
Linear Algorithms since 1985 given at PPAM 11; see [11]. We again
apply Dimension Theory to matrices in the Fortran and C programming
languages. New Data Structures (NDS) for matrices are given. We use
the GCD algorithm to transpose a n by m matrix A in CMO order, stan-
dard layout, in-place. Algebra and Geometry are used to make this idea
concrete and practical; it is the reason for title of our paper: make a pic-
ture of any matrix by the GCD algorithm to convert it into direct sum of
square submatrices. The picture is Geometry and the GCD algorithm is
Algebra. Also, the in-place transposition of the GKK and TT algorithms
will be compared. Finally, the importance of using negative integers will
be used to give new results about subtraction and finding primitive roots
which also make a priori in-place transpose more efficient.

Keywords: New data structures (NDS) · In-place matrix transposi-
tion · Cache blocking · Dimension theory · Negative integers

1 Introduction

This paper updates research about NDS that were given at PPAM 11 [11] and
so we just overview [11] to make this paper cogent and self-contained. We claim
that partitioning matrices into disjoint submatices using NDS is very important
for DLA (Dense Linear Algebra). The standard matrix data layouts, column
and row major order, (CMO and RMO) are very unlikely to change. Hence,
submatrices must be reformatted so that moving them between memory and
caches allow them to benefit from the principles underlying cache blocking. In
this regard, the concluding summary of [11] said: We indicated [3,4] that DLAFA
(Factorization Algorithms) are mainly MM (Matrix Multiply) algorithms. The
standard API, A Programming Interface, for matrices and Level-3 BLAS use
arrays; see page 739 of [2]. All standard array layouts are one dimensional. It is
impossible to maintain locality of reference in a matrix or any higher than 1-D
object using a 1-D layout; see [19]. MM requires row and column operations and
thus requires MT (Matrix Transformation) to NDS. Our results on in-place MT
show that performance suffers greatly when one uses a 1-D layout. Using NDS

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 1–11, 2014.
DOI: 10.1007/978-3-642-55224-3 1, c© Springer-Verlag Berlin Heidelberg 2014

2 F.G. Gustavson

for matrices “approximates” a 2-D layout; thus, one can dramatically improve
in-place MT performance as well as DLAFA performance. Our message is that
DLAFA are mostly MM. MM requires MT and both require NDS. Thus, DLAFA
can and do perform well on multicore but only if one uses NDS.

An application of the Algorithms and Architecture Approach [4] describes a
“fundamental principle” of Linear Algebra called the “Principle of Linear Super-
position”. We use it to describe the factorization algorithms of DLA of a matrix
A in terms of its sub matrices Aij instead of its elements aij . These submatri-
ces must be laid out optimally on a given platform to ensure automatic cache
blocking! The LAPACK and ScaLAPACK libraries were also based on this fun-
damental principle. However, both of these libraries use standard data layouts for
matrices and the Level-3 BLAS to gain their performance on all platforms. This
decision worked until the introduction of Multi-Core, MC. Peak performance
for DLA factorization only occurs if all matrix operands are used multiple times
when they enter an L1 cache or core. This ensures that the initial cost of bring-
ing an operand into cache is then amortized by the ratio of O(n3) arithmetic
to O(n2) elements or nb flops1 per matrix element aij . Multiple reuse of all
operands only occurs if all matrix operands map well into the L1 caches. For
MC processors, an “L1 cache” is the data area of a core. For MC it is critical
to get submatrices to the cores as fast as possible. The standard programming
interface, called API, that hold matrices A that the BLAS and DLA libraries
use is the 2-D array of the Fortran and C programming languages. For this
API, submatrices Aij of A are not stored contiguously. Thus it is impossible to
move Aij to and from the memory hierarchy from and to the various cores in a
fast or optimal manner! This problem is corrected by using NDS to hold these
submatrices Aij . By using dimension theory [19] we shall indicate why this is
true.

For MC the disproportion between multiple CPU processing and memory
speed has become much higher. On a negative side, the API for BLAS-3 hurts
performance; it requires repeated matrix data reformatting from its API to NDS.
A new “BLAS-3” concept has emerged; it is to use NDS in concert with “BLAS-
3” kernels [1,4,16,17]. For MC, the broad idea of “cache blocking” is mandatory
as matrix elements must be fed to SPE’s or GPU’s as fast as possible. Also
important is the arrangement in memory of the submatrices Aij of A that are
to be processed. This then defines “cache blocking” on MC processors for DLA.

We describe three matrix layouts. First, we assume that the matrices are
stored in Rectangular Block (RB) format. RB format stores a M by N matrix A
as contiguous rectangular submatrices Aij of size MB by NB. Square Block (SB)
format is a special case of RB format when the rectangle is a square. A SB of
order NB is also a contiguous 1-D array of size NB2 and for most cache designs
a contiguous array whose size fits into the cache is mapped from its place in
memory into the cache by the identity mapping. RB format has a number of
other advantages. A major one is that it naturally partitions a matrix to be a
matrix of sub-matrices. This allows one to view matrix transposition of a M by
1 nb is the order of a square submatrix Aij of A that enters a core.

Algebra and Geometry Combined Explains How the Mind Does Math 3

N matrix A where M = mMB and N = nNB as a block transposition of a much
smaller m by n block matrix A. However, usually M and N are not multiples of
MB and NB. So, RB format as we define it here, would pad the rows and columns
of A so that M and N become multiples of some blocking factors MB and NB. We
think padding is an essential condition for this type of “cache blocking”.

The second format for storing matrices is the standard 2-D array format
of the Fortran and C programming languages. The third format is defined by
the GCD in-place transpose algorithm [6]. The two key ideas are “the GCD
algorithm is used to represent any CMO matrix A as a direct sum of square
submatices Ai” and “knowing any square matrix can be transposed in-place”.

Section 2 gives a discussion of Dimension Theory. It describes the “random
nature” of the memory layout of the standard API and thus shows why Fortran
and C arrays cannot be truly multi-dimensional. Section 3 describes the features
of In-Place Transformations between standard full layouts of matrices and the RB
or square block SB formats of NDS. The key algorithm is “vector transpose”: it
demonstrate a novel form of “cache blocking” where CMO A is reorganized to be
very efficient for DLA algorithms. Section 4 compares the in-place transposition
algorithms of TT [13,20] and GKK [10]. Section 5 describes GCD transpose and
Sect. 6 describes new results based on using negative integers.

2 Dimension Theory and Its Relation to Standard CM
and RM Arrays of Fortran and C

Fortran and C use 1-D layouts for their multi-dimensional arrays. Most library
software for DLA use the Fortran and C API for their matrices which are clearly
2-D. The Fundamental Theorem of Dimension Theory states that it is impossible
to preserve closeness of all points p in a neighborhood N of a D dimensional
object when one uses a d < D dimensional coordinate system to describe the
object; see pages 106 to 120 of [19]. We are concerned with a submatrix Aij which
is representing a N of a matrix A that is a 2-D object. The result says that it is
impossible to lay out matrix A in a 1-D fashion and maintain closeness of all of
the elements of Aij . The result warns us about moving Aij to and from cache
as cache represents a N of 2-D object A. Computer scientists use the phrase
“preserve data locality” when data is mapped from memory into a cache and we
note that when data Aij is contiguous in computer memory then its mapping
into cache is by the identity mapping. Clearly, this is the fastest way to move
data and it also preserves data locality in cache.

2.1 Submatrices Aij of A in Fortran and C and Their Generalization

Let A have m rows and n columns with LDA ≥ m. In Fortran the columns of
A are stored stride one and the row elements are stored LDA elements apart.
This is a 1-D layout. AT has n rows and m columns with LDAT ≥ n. Its rows
are stored stride one and its columns are laid out LDAT elements apart. Again,
this is a 1-D layout. Actually A and AT are the same object and this is how

4 F.G. Gustavson

we “view” A or AT . Clearly both A and AT contain the same information.
Now, everything we just said about A and AT applies equally well to every
submatrix Aij of A and its transpose AT

ij . However, copies of submatrices are
usually made during the processing of DLA algorithms when A is in standard
layout. To avoid this we generalize the layout of A to be RB format where each
scalar ai,j element of standard format becomes a rectangular or square subma-
trix A(I : I + MB− 1, J : J + NB− 1) of size MB rows and NB columns. All sub-
matrices are contiguous, meaning LDA = MB. Simple and non-simple layouts of
A(I : I + MB− 1, J : J + NB− 1) are used; see Sect. 2.1 of [5] and [7] for the mean-
ing of non-simple format. Today, these non-simple formats are called rb formats
standing for register block formats. The last block rows and columns of RB A
are called left-over blocks. These AIJ blocks reside in MB*NB locations of array
storage even though they require less storage to store. It is very important to pad
these left-over blocks; otherwise the theory behind in-place fast data movement
of RB A breaks down somewhat or becomes less efficient. With these changes one
can transpose or transform RB A submatrices both in-place and out-of-place.

2.2 Tutorial on the Essence of Dimension

We now return to our description of Dimension Theory. This is a deep math-
ematical subject and we think it sheds light on the subject of cache blocking.
Before going further let us study 2-D domains; e.g. a matrix or a City Map. The
concept to emerge is “closeness of all points in a neighborhood” of an arbitrary
domain point p. How does one describe an arbitrary neighborhood? Here is the
key question: when does a labeling of a domain satisfy the neighborhood prop-
erty of closeness? This notion can be made mathematically precise and correct
and so we can define dimension in a satisfactory manner.

Before answering we back up and try other labelings of domain points. Let
us try natural Numbers: 1, 2, 3, Fortran and C use this labeling to lay out
matrices A; e.g., in Fortran scalar element aij is located in computer memory
at word location i + (j - 1)*LDA past the beginning word of A. Notice that
some neighboring aij elements are widely separated with this single labeling;
e.g., in Fortran CM format row elements are widely separated in memory by
LDA elements. Is this true for all single labelings of 2-D objects? The answer is
yes. Next we need to measure distance. We give a metric for a neighborhood
that uses two coordinates. We use a one norm: let p = (u, v) and q = (x, y) be
two points. Then norm(p, q) = |u− x|+ |v − y|.

We are now ready to give the mathematical essence of dimension. Indexing
with single numbers, or simple enumeration is applicable only to those cases
where the objects have the character of a sequence. Simple, single indexing
must obey the neighborhood property and these objects are labeled one dimen-
sional. Now consider maps, matrices, etc. and note they cannot be labeled by a
simple sequential ordering as the “the neighborhood property will be violated”
(we have said this was so above). However, two simple sequences suffice. The
use of the one norm shows us why visually. Now we discuss some prior his-
tory about dimension and its resolution. There was an “erroneous prior notion”

Algebra and Geometry Combined Explains How the Mind Does Math 5

that a rectangle had more points than a line; and that a solid had more points
than a rectangle! Later, Cantor’s theory of infinities asserted that “All domains
have the same number of points”! Thus this “erroneous prior notion” needed to
be corrected. However, a difficult problem remained: “is it possible to label a
domain with two different labelings that both obey the neighborhood principle
of a higher to lower labeling”? The Fundamental Theorem of Dimension Theory
says the answer is no! In 1913 L. E. J. Brouwer stated and proved this theo-
rem which we now phrase in a slightly different manner. “It is not possible to
label a domain with two different labelings that both obey the neighborhood
principle”.

3 Converting Standard Format to RB Format In-Place
via Vector Transposition

In [8] we demonstrated in-place transposition for matrices stored in CM format.
In terms of speed they improved the existing state-of-the-art slightly. However,
they were very slow compared to out-of-place transpose algorithms. There is no
way to overcome this problem if one insists on storing A in a 1-D layout. Let M ×
N matrix A be laid out in CM format. In Fortran we have A(0:M-1,0:N-1). The
element aij is stored at offset k = i + jM or A[k] and the in-place permutation
P (k) has aij = A[k] ending up at offset k̄ = iN + j or at A[k̄]. Note that P (k)
also equals kN mod q where q = MN − 1 and so P (k) is governed by modular
arithmetic. Now modular arithmetic with parameters N and q also define different
pseudo-random number generators; see [15, Section 3.2.1.3]. It follows that in-
place transpose algorithms in Fortran and C will exhibit a random memory
access pattern and thus have very poor performance: each memory access will
likely miss in each level of the cache hierarchy. Cache miss penalties are huge
(in the hundreds of cycles) for MC processors. This number theory above and
dimension theory of Sect. 2, explaining poor performance, are conjectured to be
related.

3.1 Dense Linear Algebra Algorithms for MC Use RB or SB Format

We need a fast way to transform A, in a standard CM or RM format, to be in
RB format [9,10,14]. The idea is to move contiguous lines of data. The VIPX algo-
rithm of [9] maps in-place CM A residing in a Fortran array A(0:mMB-1,0:nNB-1)
to be RB A also residing in A. A column swath is an mMB by NB subarray of A; we
call it B(0:mMB-1,0:NB-1). The LDA’s of both these array are LDA = mMB.
Under the column swath vector mapping CM A becomes m size MB by NB
RB’s. Algorithm VIPX is embarrassingly parallel: it is applied n times on the
n column swaths of A to produce RB A. Section 3.2 describes the VIPX algo-
rithm. CM A and RB format A will occupy array A with LDA = mMB where
m = �M/MB�; see Sect. 2.1 where this layout padding was mentioned as being
important. In [10] we improved the speed of the VIPX algorithm by using a
number theory algorithm to find, a priori, the exact nature of the vector P
mapping.

6 F.G. Gustavson

3.2 The VIPX Vector Transpose Algorithm

We overview how one gets from standard CM format to RB format. Recall, from
Sect. 3.1, array B holds an m by NB submatrix C whose elements are column
vectors of length MB. Let CT also occupy array B. CT is a size NB by m matrix
of vectors of length MB. To see what is going on we give a small example. Let
m = 4, MB=2 and NB=3. Then C, as a scalar matrix of size mMB = 8 by NB = 3,
is also a m = 4 by NB = 3 matrix of vectors of length MB = 2 residing in array B.
Originally, the mNB = 12 vectors of C are stored in CM format in array B. After
in-place transposition these mnB = 12 vectors of C are stored in RM format
in array B. This means the original mNB = 12 vectors now occupy array B in
the permuted order M = 0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11. M is the list form of the
permutation vector transpose mapping of CMO C to RMO C or CMO CT . Also,
CT is identical to m = 4 RB’s of size MB by NB concatenated together.

For array A holding matrix A we do n parallel B→ BT operations for each of
the n concatenated subarrays B that make up the array A. After completion of
these n parallel computation steps we have transformed CM matrix A in array
A in-place to become the same matrix A but now A is represented in RB format
in array A. Thus, after vector in-place transpose we have “cache blocked” matrix
A! In conclusion, we hope the reader now clearly sees at a deeper level why NDS
significantly improves MC DLA algorithm performance. The transformation of
A in standard format to RB format by in-place vector transposition was orders
of magnitude faster than ordinary scalar in-place methods.

4 A Comparison of GKK and TT Transpose Algorithms

Both these algorithms are claimed to be in-place. TT uses min(m,n) extra stor-
age and has an operation count that is ≤ 24mn swaps plus O(mn) index oper-
ations. GKK uses a compact representation of the number of cycles, NC used by
the transposition or permutation mappingM of CMO A to RMO A. Its opera-
tions count is mn+NC moves plus the same number of index computations Also,
there is the apriori computation of the cycle structure of M. The GKK algo-
rithm has good parallel implementations and is organized to use vector and cache
blocking type operations as much as possible. Except for [13] there has been no
implementation of the TT algorithm. The paper [20] does not mention paral-
lelism. It does mention operations on “contiguous entries that could decrease
cache misses” on page 380. Also, on the bottom of page 383 and the top of page
384 there is explicit mention of moving contiguous entries of A. Otherwise, there
is no further mention of contiguous and or cache considerations.

4.1 Storage Amounts for GKK and TT Algorithms

The TT algorithm requires min(m,n) storage locations. The GKK algorithm
generates a compact representation of the cycle structure of M. Figure 2 of [10]
studied random matrices whose sizes m,n were between 2 and 100. 45 % of these

Algebra and Geometry Combined Explains How the Mind Does Math 7

matrices had less than 9 cycles in their M. This was a surprising result for us.
However, the storage cost to represent the cycle structure of any M was very
tiny. In Sect. 5 of [10] square matrices were considered and a order 19 example
was discussed as having 190 cycles! Not mentioned was the storage cost of this
structure which was a sparse matrix type row pointer and column index structure
to represent these 190 cycles. Only 4 row pointers and 12 column indices were
needed. This compares favorably with the TT amount or 19 locations. The TT
papers discusses matrices with n = mq whose size is |A| = mq+1. These matrices
have a maximum cycle length of size q + 1. They represent a generalization of
square matrices where q = 1. Such matrices represent a set worst cases for GKK
type algorithms. To give some idea what GKK does for this case we let m = 10
and choose q = 1, 2, 3, 4, 5. The GKK algorithm found the number of cycles to be
55, 340, 2530, 20008, 166870. However, the cycle representation storage for these
five matrices is 15, 46, 65, 289, 93. These latter values compare favorably with the
constant TT value of m = 10.

4.2 Vector Transpose and n × m A Matrices Where n = kmq

Both the TT and vector transpose, see Sect. 3, algorithms consider matrices A
where n = kmq. For TT, k < m. For vector transpose, k > 1 is arbitrary so q
can be one. In Sect. 3 these types of matrices give good performance. A user can
set the LDA of A so this condition always holds; see Sect. 1.2 of [10]. In Sect. 3
of [10] we discuss the case where m and n are not multiples of blocking factors
mb and nb. The TT authors handle this related issue by using their Lemmas 3
and 4. We close this section by noting that the cycle structure of A can vary
greatly when k > 1 versus k = 1 in the TT algorithm; we give two examples
where k = 1, 2: q = 2,m = 3 and q = 1,m = 29. In the first example, we
get 8 cycles of length 3 and 3 singleton cycles versus 1 cycle of length 52 and
2 singleton cycles; in the second example, we get 406 cycles of length 3 and
29 singleton cycles versus single cycles of length 1640 and 40 and 2 singleton
cycles.

4.3 A Clarifying Example with n = 673 and m = 384

The GKK algorithm can be used as subroutine of the TT algorithm: instead of
using TT just get the apriori amount of storage used by GKK. For this problem
it is 21 integers which gives a total of 30 cycle leaders. However, going further
with TT, A becomes a vertical partition of submatrices A1 of order 384 and
a 289 × 384 A2. At this point, TT just needs to find AT

2 in-place. Again, the
GKK storage amount for finding AT

2 is 12 integers giving a total of 70 cycles.
Now going still further with TT it naturally partitions A2 as order 289 A21

and 289 × 95 A22 submatrices. Wanted for finding AT
2 are A2T

1 and A2T
2 . Now

again checking GKK storage of A2T
2 one finds 13 integers for a total of 171

cycles. At this point our implementation of TT makes a recursive call on A22

to get a vertical partition of A22 into submatrix 285 × 95 A3 and 4 × 95 A4.
Now |A4| = 4 ∗ 95 ≤ m so A4 can be transposed out-of-place. Since A3 can be

8 F.G. Gustavson

also transposed in-place, it follows that this modification of the TT algorithm
is complete. In summary, we have shown that the very fast apriori feature of
GKK can be used by the TT algorithm. If its compact representation of the
number of cycles is too high; i.e., ≥ m then one can continue with the TT
algorithm.

5 A GCD Transpose Algorithm

In [6] the GCD Transpose algorithm did not represent CMO A as a direct sum,
or partitioning, of square matrices. We use Vector Transposition of Sect. 3 and
Lemma 4 of TT [13,20] to get a direct sum. Doing so makes this algorithm more
efficient; e.g. it is easily made parallel. Let CMO A be a m = r0 by n = r1,
with m > n, rectangular matrix. Assume that g = gcd(m,n) = 1. Otherwise,
m = Mg and n = Ng and A is an M by N matrix whose elements are order
g SB’s and gcd(M,N) = 1; i.e, the above GCD Transpose algorithm works for
all A. Note that this GCD algorithm has ri−1 = qiri + ri+1 for i = 1, . . . , k
and rk = 1. The GCD Transpose algorithm starts with A = A02 of size r0 by
r1 and produces submatrix A22 of size r2 by r3 with the rest of A as square
submatrices.

1. partition A vertically into q1r1 × r1 A1 and r2 × r1 A2 using Lemma 4
of [13]

2. fully process all of A1 (by transposing it) as follows:
(a) vector transpose A1 into q1 SB’s of order r1 if q1 > 1; see Sect. 3
(b) in-place transpose q1 SB’s of order r1.

3. process the r2×q2r2 A21 part of A2 leaving alone its r2×r3 A22 part. Note that
A21 is partitioned into q2 SB’s. So, in-place transpose these
q2 SB’s.

After this initial GCD Transpose step submatrix A22 needs further process-
ing; however, the remainder of A has been partitioned into SB’s. Thus, apply
the above Algorithm again on submatrix A22 producing r4×r5 CMO A42 which
needs further processing and now the remainder of A has been partitioned into
SB’s. So, by the principle of infinite descent, this process must terminate.

We use the example, in [6], of n = 673 × m = 384 A to clarify the above
GCD transpose algorithm. We have r0 = 673 and r1 = 384 and steps 1, 2 of
the GCD gives q1,2 = 1, 2 and r2,3 = 289, 95. q1r1 × r1 A1 and r2 × r1 A2

vertically partitions A in step 1. Step 2a is a no-operation and square matrix
A1 is transposed in Step 2b. A2 is naturally partitioned as A21 and A22 during
Step 1. In Step 3, square matrix A21 is transposed leaving matrix r2× r3 A22 as
input for the next stage of the algorithm. Now steps 3, 4 of GCD give q3,4 = 3, 23
and r4,5 = 4, 3. Then q3r3 × r3 A3 and r4 × r3 A4 vertically partitions A22 in
step 1. Step 2a does vector transpose on a q3×r3 “vector matrix” of VL = r3. One
gets q3 contiguous (partititioned) SB’s of order r3. All q3 SB’s are transposed
in Step 2b. A4 is naturally partitioned as A41 and A42 during Step 1. A41 is q4

contiguous SB’s of order r4! In Step 3, all q3 SB’s of A41 are transposed in-place.

Algebra and Geometry Combined Explains How the Mind Does Math 9

A42 is input for the next stage of the algorithm. Next steps 5, 6 of GCD give
q5,6 = 1, 3 and r6,7 = 1, 0. Thus, step 1 give the vertical partition A5 as a SB of
order 3 and A6 as 1 by 3. Step 2b is done and the algorithm ends.

6 The Power of Negative Integers

After negative integers are defined subtraction becomes A−B ≡ A+(-B) where,
for clarity, it is important to distinguish between between a negative sign and the
subtraction operator. In fact, subtraction “disappears” and it can be replaced
by ten’s complement addition, tc, as Lagrange [18] noted to French teachers of
grades K-12 in 1795. This idea does not eliminate carrying. However, a form of
duality exists between addition/subtraction and carrying/borrowing:
when carry occurs in addition replace it by non-borrow subtraction.
For example, 8+7 = 10+(7−2) = 15. When borrowing occurs in subtrac-
tion replace it by non-carry addition [12]; e.g, 13−4 = 3+6. In these exam-
ples 2 = tc(8) and 6 = tc(4). This duality result leads to learning simpler
addition and subtraction facts by omitting the harder facts [12].

By using negative digits in a base 10 representation of an integer one can
obtain the correct solution of any subtraction problem by just “doing” digit
by digit subtraction. Consider 613 − 204 = 4 1 -1 done by 6 − 2 = 4 in the
hundreds position 1 − 0 = 1 in the tens position and 3 − 4 = -1 in the ones
position. In general, any subtraction problem “breaks up” into only two
types of subproblems : 1 digit no borrow and k > 1 digit borrow
subproblems [12]. Now, -1, k−2 9′s, t where t = 10 is a k digit representation
of zero as 10k−1 = 9 × 10k−2 + · · · + 90 + 10. This representation of zero
added to the answer of any k > 1 digit borrow subproblem yields the
standard answer of this subproblem [12]. Take 3207 − 1228 = 2 0 -2 -1.
Clearly 2000 − 21 = 1979 is the correct answer and one sees that 2 − 1 = 1,
9 − 0 = 9, 9 − 2 = 7 and 10 − 1 = 9 gives k = 4 digit by digit subtractions
yielding 1979.

6.1 Finding Primitive Roots Using Smaller Integers

Doing arithmetic with smaller integers is preferable than using larger positive
integers. Gauss noticed that he could simplify his original proof of the Law of
Quadratic Reciprocity by using both positive and negative integers to represent
the integers modulo an odd prime p, i.e., ±1, . . . , (p−1)/2 instead of 1, . . . p−1.
He discovered Gauss’s Lemma using this idea. Now using the same idea, we
show how to find smaller primitive roots for odd primes of the form p = 4k− 1.
Take p = 7. The positive primitive roots of 7 are 3, 5. However, using ±1,±2,±3
these roots become −2, 3. A more striking example is p = 191. The smallest
positive primitive root is 19; using integers −2 is a primitive root. A new result
is that one of ±g(p−1)/2 	= 1; g is a potential primitive root for p. Thus the
GKK computation of [10] becomes more efficient as it can now more quickly
find primitive roots for prime powers .

10 F.G. Gustavson

References

1. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear
algorithms for MC architectures. Parallel Comput. 35(1), 38–53 (2009)

2. Gustavson, F.G.: Recursion leads to automatic variable blocking for dense linear-
algebra algorithms. IBM J. R. & D. 41(6), 737–755 (1997)

3. Gustavson, F.G.: New generalized data structures for matrices lead to a variety of
high-performance algorithms. In: Boisvert, R.F., Tang, P.T.P. (eds.) Proceedings
of the IFIP WG 2.5 Working Group on The Architecture of Scientific Software,
Ottawa, Canada, pp. 211–234. Kluwer Academic Publishers, Boston, October 2–4
2000

4. Gustavson, F.G.: High performance linear algebra algs. using new generalized data
structures for matrices. IBM J. R. & D. 47(1), 31–55 (2003)

5. Gustavson, F.G.: New generalized data structures for matrices lead to a variety of
high performance dense linear algebra algorithms. In: Dongarra, J., Madsen, K.,
Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp. 11–20. Springer, Heidelberg
(2006)

6. Gustavson, F.G., Gunnels, J.A.: Method and structure for cache aware transposi-
tion via rectangular subsections. U.S. Patent US20060161607 A1, Application No.
11/035,953, submitted 14 January 2005, published 20 July 2006

7. Gustavson, F.G., Gunnels, J.A., Sexton, J.C.: Minimal data copy for dense linear
algebra factorization. In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski, J.
(eds.) PARA 2006. LNCS, vol. 4699, pp. 540–549. Springer, Heidelberg (2007)

8. Gustavson, F.G., Swirszcz, T.: In-place transposition of rectangular matrices. In:
K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) PARA 2006. LNCS,
vol. 4699, pp. 560–569. Springer, Heidelberg (2007)

9. Gustavson, F.G.: The relevance of new data structure approaches for dense lin-
ear algebra in the new multicore/manycore environments. IBM Research report
RC24599, also, to appear in PARA’08 proceeding, 10 p. (2008)

10. Gustavson, F.G., Karlsson, L., K̊agström, B.: Parallel and cache-efficient in-place
matrix storage format conversion. ACM TOMS 38(3), Article 17, 1–32 (2012)

11. Gustavson, F.G.: Cache blocking for linear algebra algorithms. In: Wyrzykowski,
R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS,
vol. 7203, pp. 122–132. Springer, Heidelberg (2012)

12. Gustavson. F.G.: A subtraction algorithm based on adding C to both A and B.
Power Point Presentation, fg2935@gmail.com, 50 slides, 28 October 2013

13. Gustavson, F.G., Walker, D.W.: Algorithms for in-place matrix transposition. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013,
Part II. LNCS, vol. 8385, pp. 105–117. Springer, Heidelberg (2014)

14. Karlsson, L.: Blocked in-place transposition with application to storage format
conversion. Technical report UMINF 09.01. Department of Computing Science,
Ume̊a University, Ume̊a, Sweden. January 2009. ISSN 0348–0542

15. Kunth, D.: The Art of Computer Programming, 3rd edn., vol. 1, 2 & 3. Addison-
Wesley, Reading (1998)

16. Kurzak, J., Buttari, A., Dongarra, J.: Solving systems of linear equations on the
Cell processor using Cholesky factorization. IEEE Trans. Parallel Distrib. Syst.
19(9), 1175–1186 (2008)

17. Kurzak, J., Dongarra, J.: Implementation of mixed precision in solving mixed preci-
sion of linear equations on the Cell processor: Research Articles. Concurr. Comput.:
Pract. Exper. 19(10), 1371–1385 (2007)

Algebra and Geometry Combined Explains How the Mind Does Math 11

18. Lagrange, J.L.: Lectures On Elementary Mathematics, 156 p. Dover Publications,
New York (2008)

19. Tietze, H.: Three Dimensions-Higher Dimensions. Famous Problems of Mathemat-
ics, pp. 106–120. Graylock Press, Rochester (1965)

20. Tretyakov, A.A., Tyrtyshnikov, E.E.: Optimal in-place transposition of rectangular
matrices. J. Complex. 25, 377–384 (2009)

Numerical Algorithms and Parallel
Scientific Computing

Exploiting Data Sparsity in Parallel Matrix
Powers Computations

Nicholas Knight(B), Erin Carson, and James Demmel

University of California, Berkeley, USA
{knight,ecc2z,demmel}@cs.berkeley.edu

Abstract. We derive a new parallel communication-avoiding matrix
powers algorithm for matrices of the form A = D + USV H , where D is
sparse and USV H has low rank and is possibly dense. We demonstrate
that, with respect to the cost of computing k sparse matrix-vector multi-
plications, our algorithm asymptotically reduces the parallel latency by
a factor of O(k) for small additional bandwidth and computation costs.
Using problems from real-world applications, our performance model
predicts up to 13× speedups on petascale machines.

Keywords: Communication-avoiding · Matrix powers · Graph cover ·
Hierarchical matrices · Parallel algorithms

1 Introduction

The runtime of an algorithm can be modeled as a function of computation cost,
proportional to the number of arithmetic operations, and communication cost,
proportional to the amount of data movement. On modern computers, the time
to move one word of data is much greater than the time to complete one arith-
metic operation. Technology trends indicate that the performance gap between
communication and computation will only widen in future computers, resulting
in a paradigm shift in the design of high-performance algorithms: to achieve
efficiency, one must focus on communication-avoiding approaches.

We consider a simplified machine model, where a parallel machine consists of
p processors, each able to perform arithmetic operations on theirM words of local
memory. Processors communicate point-to-point messages of n ≤M contiguous
words, taking α+βn seconds on both sender and receiver, over a completely con-
nected network (no contention), and each processor can send or receive at most
one message at a time. For simplicity, we do not model overlapping communi-
cation and computation. Given an algorithm’s latency cost, number of messages
sent, bandwidth cost, number of words moved, and arithmetic (flop) cost, the
number of arithmetic operations performed, we estimate the runtime T (along
the critical path) on a parallel machine with latency α, reciprocal bandwidth β,
and arithmetic (flop) rate γ as

T = (#messages · α) + (#words moved · β) + (#flops · γ). (1)

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 15–25, 2014.
DOI: 10.1007/978-3-642-55224-3 2, c© Springer-Verlag Berlin Heidelberg 2014

16 N. Knight et al.

Computing k repeated sparse matrix-vector multiplications (SpMVs), or, a
matrix powers computation, with A ∈ C

n×n and x ∈ C
n×q, where typically

q � n, can be written as

Kk+1(A, x, {pj}kj=0) := [x(0), . . . , x(k)] := [p0(A)x, p1(A)x, . . . , pk(A)x], (2)

where pj is a degree-j polynomial. Due to a small ratio of arithmetic operations to
data movement, the performance of this computation is bound by communication
on modern computers. Matrix powers computations constitute a core kernel
in a variety of applications, including steepest descent algorithms and Krylov
subspace methods for linear systems and eigenvalue problems, including the
power method to compute PageRank.

Previous efforts have produced parallel communication-avoiding matrix pow-
ers algorithms to compute (2) that achieve an O(k) reduction in parallel latency
cost versus computing k repeated SpMVs for a set number of iterations [4,
11]. This improvement is only possible if A is well partitioned (to be defined
in Sect. 1.1). Although such advances show promising speedups for many prob-
lems, the requirement that A is well partitioned often excludes matrices with
dense components, even if those components have low rank (data sparsity). In
this work, we derive a new parallel communication-avoiding matrix powers algo-
rithm for matrices of the form A = D+USV H , where D is well partitioned and
USV H may not be well partitioned but has low rank. (Recall xH = xT denotes
the Hermitian transpose of x.) There are many practical situations where such
structures arise, including power-law graph analysis and circuit simulation. Hier-
archical (H-) matrices (e.g., [1]), common preconditioners for Krylov subspace
methods, also have this form. Our primary motivation is enabling preconditioned
communication-avoiding Krylov subspace methods, where the preconditioned
system has hierarchical semiseparable (HSS) structure. There is a wealth of lit-
erature related to communication-avoiding Krylov subspace methods; we direct
the reader to the thesis of Hoemmen for an overview [5, Sects. 1.5 and 1.6].

With respect to the cost of computing k SpMVs, our algorithm asymptot-
ically reduces parallel latency by a factor of O(k) with only small additional
bandwidth and computational costs. Using a detailed complexity analysis for an
example HSS matrix, our model predicts up to 13× speedups over the standard
algorithm on petascale machines. Our approach is based on the application of
a blocking covers technique [9] to communication-avoiding matrix powers algo-
rithms [4,10]. We briefly review these works below.

1.1 The Blocking Covers Technique

Hong and Kung [6] prove a lower bound on data movement for a sequential
matrix powers computation on a regular mesh. Given directed graph G = (V,E)
representing nonzeros of A, vertex v ∈ V , and constant τ ≥ 0, let the τ -
neighborhood of v, N (τ)(v), be the set of vertices in V such that u ∈ N (τ)(v)
implies there is a path of length at most τ from u to v; a τ -neighborhood-cover
of G is a sequence of subgraphs, G = {Gi = (Vi, Ei)}ki=1, such that ∀v ∈ V ,

Exploiting Data Sparsity in Parallel Matrix Powers Computations 17

∃Gi ∈ G for which N (τ)(v) ⊆ Vi [9]. If G has a τ -neighborhood cover with
O(|E|/M) subgraphs, each with O(M) edges where M is the size of the primary
memory, Hong and Kung’s method reduces data movement by a factor of τ over
computing (2) column-wise. A matrix that meets these constraints is also fre-
quently called well partitioned [4] (we use this terminology for the parallel case
as well).

Certain graphs with low diameter (e.g., multigrid graphs) may not have
τ -neighborhood covers that satisfy these memory constraints. Leiserson et al.
overcome this restriction by “removing” a set B ⊆ V of blocker vertices, cho-
sen such that the remaining graph V − B is well partitioned [9]. Let the τ -
neighborhood with respect to B be defined as N (τ)

B (v) = {u ∈ V : ∃ path
u → u1 → · · · → ut → v, where ui ∈ V − B for i ∈ {1, . . . , t < τ}}.
Then a (τ, r,M)-blocking cover of G is a pair (G,B), where B = {Bi}ki=1 is
a sequence of subsets of V such that: (1) ∀i ∈ {1, . . . , k},M/2 ≤ |Ei| ≤ M , (2)
∀i ∈ {1, . . . , k}, |Bi| ≤ r, (3)

∑k
i=1 |Ei| = O(|E|), and (4) ∀v ∈ V,∃Gi ∈ G such

that N (τ)
Bi

(v) ⊆ Vi [9]. Leiserson et al. present a 4 phase sequential matrix powers
algorithm that reduces the data movement by a factor of τ over the standard
method if the graph of A has a (τ, r,M)-blocking cover that meets certain crite-
ria. Our parallel algorithm is based on a similar approach. Our work generalizes
the blocking covers approach [9], both to the parallel case and to a larger class
of data-sparse matrix representations.

1.2 Parallel Matrix Powers Algorithms

Parallel variants of matrix powers, for both structured and general sparse
matrices, are presented in the thesis of Mohiyuddin [10], which summarizes and
elaborates upon previous work and implementations [4,11]. We review two of
these parallel matrix powers algorithms, referred to as PA0, the näıve algorithm
for computing (2) via k SpMV operations, and PA1, a communication-avoiding
variant. We assume the polynomials {pl}kl=0 in (2) satisfy a recurrence,

p0(z) := 1, pj+1(z) =
(

zpj(z)−
∑j

i=0
hi,jpi(z)

)

/hj+1,j , (3)

whose coefficients we store in an upper Hessenberg matrix

Hk :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

h0,0 h0,1 · · · h0,k−1

h1,0 h1,1 · · · h1,k−1

0 h2,1
. . . h2,k−1

...
. . .

. . .
...

0 0 · · · hk,k−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

Let nz(A) = {(i, j) : Aij treated as nonzero} represent the edges in the
directed graph of A, and let AI indicate the submatrix of A consisting of rows i ∈
I. For simplicity, we ignore cancellation, i.e., we assume nz(pj(A)) ⊆ nz(pj+1(A))
and every entry of x(j) is treated as nonzero for all j ≥ 0.

18 N. Knight et al.

We construct a directed graph G = (V, E) representing the dependencies in
computing x(j) := pj(A)x for every 0 ≤ j ≤ k. First, denoting row i of x(j) by
x

(j)
i , we define the n(k + 1) vertices V := {x(j)

i : 1 ≤ i ≤ n, 0 ≤ j ≤ k}. The
edge set E consists of k copies of nz(A), between each adjacent pair of the k+ 1
levels V(j) := {x(j)

i : 1 ≤ i ≤ n}, unioned with the edges due to the polynomial
recurrence, i.e.,

E :=
{(
x

(j+1)
i1

, x
(j)
i2

)
: 0≤j<k,

(i1,i2)∈nz(A)

}
∪
{(

x
(j+d′)
i , x

(j)
i

)
:

1≤d′≤d,
0≤j≤k−d′,

1≤i≤n

}

(5)

where Hk has d nonzero superdiagonals (including main diagonal).
Now we partition V ‘rowwise,’ that is, each x(j)

i is assigned a processor affinity
m ∈ {0, . . . , p − 1}, for 0 ≤ j ≤ k. Let Vm and V(j)

m restrict V and V(j) to their
elements with affinity m. Let R(S) denote the reachability set of S ⊆ V, i.e., the
set S and vertices reachable from S via paths in G; then, as with V, we define
the subsets R(j), Rm, and R(j)

m of R.
At the end of the computation, processor m has computed/stored the entries

Vm. Thus, for PA0, processor m must own A{i:x
(j)
i ∈Vm} and V(0)

m , and for PA1,

processor m must own A{i:x
(1)
i ∈R(Vm)} and R(0)(Vm). We assume that the rows

of A are distributed to processors offline, while the source vector x(0) must be
distributed at runtime (online).

With this notation, we present the parallel matrix powers algorithms PA0
(Algorithm 1) and PA1 (Algorithm 2), as pseudocode for processorm. The advan-
tage of PA1 over PA0 is that it may send fewer messages between processors:
whereas PA0 requires k rounds of messages, PA1 requires only one. If the num-
ber of other processors with whom processor m must communicate is within a
constant factor for both algorithms, PA1 obtains a Θ(k)-fold latency savings. In
general, however, PA1 incurs greater bandwidth, arithmetic, and storage costs,
as processors may perform redundant computations to avoid communication.
Furthermore, in practice, PA1 requires additional data structures to encode the
reachability sets; we assume these data structures are populated offline in a
preprocessing phase.

We refer the reader to the complexity analysis in Tables 2.3 and 2.4, perfor-
mance modeling in Sect. 2.6, and performance results in Sects. 2.10.3 and 2.11.3
of Mohiyuddin’s thesis [10], which demonstrate that this optimization can lead
to speedups in practice. For example, for a 9-point stencil on a n1/2-by-n1/2 mesh
with p processors, assuming k � (n/p)1/2 and the monomial basis (pj(z) = zj),
the number of arithmetic operations grows by a factor 1 + 2k(p/n)1/2, the num-
ber of messages decreases by a factor of k, and the number of words moved
grows by a factor of 1 + k(p/n)1/2 [10]. Therefore, since the additional costs are
lower order terms, we expect PA1 to give Θ(k) speedup when performance is
latency-bound. Our performance modeling has confirmed this results [7].

Exploiting Data Sparsity in Parallel Matrix Powers Computations 19

Algorithm 1. PA0. Code for proc. m.

1: for j = 1, . . . , k do

2: for all procs. � �= m do

3: Send x
(j−1)
i ∈ R(j−1)

m (V(j)
�

) to proc. �.

4: Recv. x
(j−1)
i ∈ R(j−1)

�
(V(j)

m) from proc. �.

5: end for

6: Compute x
(j)
i ∈ V(j)

m via (3).

7: end for

Algorithm 2. PA1. Code for proc. m.

1: for all procs. � �= m do

2: Send x
(0)
i ∈ R(0)

m (V(k)
�

) to proc. �.

3: Recv. x
(0)
i ∈ R(0)

�
(V(k)

m) from proc. �.

4: end for

5: for j = 1, . . . , k do

6: Compute x
(j)
i ∈ R(j)(Vm) via (3).

7: end for

2 Derivation of Parallel Blocking Covers

Recall that, given matrices A ∈ C
n×n and x ∈ C

n×q, and k ∈ N, our task is
to compute (2). If A is not well partitioned, PA0 must communicate at every
step, but now the cost of PA1 may be much worse: when k > 1, every processor
needs all rows of A and x(0); there is no parallelism in computing all but the last
SpMV. (Note when k = 1, PA1 degenerates to PA0.)

If, however, A can be split in the form D+USV H , where D is well partitioned
and USV H has low rank, we can use a generalization of the blocking covers
approach [9] to recover parallelism. In this case, D has a good cover and US can
be applied locally, but the application of V H incurs global communication. Thus,
the application of V H will correspond to the blocker vertices in our algorithm,
PA1-BC, which we now derive.

First, we recursively partition Hk :=
[
Hk−1 h(k−1)

01,k−1 hk,k−1

]

with H1 := [h0,0, h1,0]T ,

so h(0), . . . , h(k−1) forms the upper triangle of Hk; substituting z := A =: D +
USV H , the recurrence for x(j) = pj(A)x(0) is

x(j+1) =
(
Dx(j) − [x(0), . . . , x(j)](h(j) ⊗ Iq,q) + USV Hx(j)

)
/hj+1,j . (6)

We exploit the following identity, established by induction [7], to avoid perform-
ing V H · x(j) explicitly.

Lemma 1. Given the additive splitting z = z1 + z2, (3) can be rewritten as

pj(z) = pj(z1) +
∑j

i=1
pj−i+1

i−1 (z1)z2pj−i(z)/hj−i+1,j−i (7)

for j ≥ 0, where pi
j(z) is a degree-j polynomial related to pj(z) by reindexing the

coefficients hl,j := hl+i,j+i in (3).

Now substitute z := A = D+USV H =: z1 + z2 in (7), premultiply by SV H ,
and postmultiply by x(0), to obtain

SV Hx(j) = S

(

V Hpj(D)x(0) +
∑j

i=1
V Hpj−i+1

i−1 (D)U
SV Hx(j−i)

hj−i+1,j−i

)

. (8)

20 N. Knight et al.

Let Wi := V Hpi(D)U for 0 ≤ i ≤ k − 2, yi := V Hpi(D)x for 0 ≤ i ≤ k − 1, and
bj := SV Hx(j) for 0 ≤ i ≤ k − 1. We can write pj

i in terms of pi = p0
i via the

following result, established by induction [7].

Lemma 2. There exist coefficient vectors wj
i ∈ C

i+1 satisfying

[W0, . . . ,Wi](w
j
i ⊗ Ir,r) = V Hpj

i (D)U (9)

for 0 ≤ i ≤ k − 2, 1 ≤ j ≤ k − i− 1, that can be computed by wj
0 := 1 and

wj
l+1 :=

(
Hl+1w

j
l −

[[
wj

0

0l,1

]

,

[
wj

1

0l−1,1

]

, . . . ,

[
wj

l

0

]]

h
(j)
{j,...,j+l}

)
/hj+l+1,j+l. (10)

Using this result, we write (8) as

bj = S

(

yj + [W0, . . . ,Wj−1] ·
∑j

i=1

([
wj−i+1

i−1

0j−i,1

]

⊗ Ir,r
)

bj−i

hj−i+1,j−i

)

; (11)

however, in case Hk is Toeplitz, the summation simplifies to
[bT

j−1
hj,j−1

, . . . ,
bT
0

h1,0

]T ,

so we need not compute {wj
i }.

Ultimately we must evaluate (6), substituting bj for SV Hx(j). This can be
accomplished by applying PA1 to the following recurrence for pj(z, c), where
c := {c0, . . . , cj−1, . . .} := {Ub0, . . . , Ubj−1, . . .}:

p0(z, c) := 1, pj+1(z, c) :=
(

zpj(z)−
∑j

i=0
hi,jpi(z) + cj

)

/hj+1,j . (12)

Given the notation established, we construct PA1-BC (Algorithm 3). In terms
of the graph of D, G = (V, E), processor m must own

D{i:x
(1)
i ∈R(Vm)}, U{i:x

(1)
i ∈R(Vm)}, V{i:x

(j)
i ∈Vm}, and R(0)(Vm), (13)

in order to compute the entries x(j)
i ∈ Vm. In exact arithmetic, PA1-BC returns

the same output as PA0 and PA1. However, by exploiting the splitting A =
D+USV H , PA1-BC may avoid communication when A is not well partitioned.
Communication occurs in calls to PA1 (Lines 1 and 4), as well as in Allreduce
collectives (Lines 2 and 5). As computations in Lines 1, 2, and 3 do not depend
on the input x(0), they need only be computed once per matrix A = D+USV H ,
thus we assume their cost is incurred offline.

For the familiar reader, the sequential blocking covers algorithm [9] is a spe-
cial case of a sequential execution of Algorithm 3, using the monomial basis,
where U = [ei : i ∈ I] and SV H = AI , where ei is the i-th column of the iden-
tity and I ⊆ {1, . . . , n} are the indices of the blocker vertices. In Algorithm 3,
Lines {1, 2, 3}, {4, 5}, 6, and 7 correspond to the 4 phases of the sequential
blocking covers algorithm, respectively [9]. In the next section, we demonstrate
the benefit of our approach on a motivating example, matrix powers with HSS
matrix A.

Exploiting Data Sparsity in Parallel Matrix Powers Computations 21

Algorithm 3. PA1-BC. Code for proc. m.
1: Compute local rows of Kk−1(D, U, Hk−1) with PA1, premultiply by local columns of V H .
2: Compute [W0, . . . , Wk−2] by an Allreduce.

3: Compute wj
i for 0 ≤ i ≤ k − 2 and 1 ≤ j ≤ k − i − 1, via (10).

4: Compute local rows of Kk(D, x(0), Hk) with PA1, premultiply by local columns of V H .
5: Compute [y0, . . . , yk−1] by an Allreduce.
6: Compute [b0, . . . , bk−1] by (11).

7: Compute local rows of [x(0), . . . , x(k)] with PA1, modified for (12).

3 Hierarchical Semiseparable Matrix Example

Hierarchical (H-) matrices are amenable to the splitting A = D + UV H , where
D is block diagonal and UV H represents the off-diagonal blocks. Naturally, U
and V are quite sparse and it is important to exploit this sparsity in practice.
In the special case of HSS matrices, many columns of U and V are linearly
dependent, and we can exploit the matrix S in the splitting USV H to write U
and V as block diagonal matrices. We review the HSS notation and the algorithm
for computing v = Ax given by Chandrasekaran et al. [3, Sects. 2 and 3]. For
any 0 ≤ L ≤ �lg n, where lg = log2, we can write A hierarchically as a perfect
binary tree of depth L by recursively defining its diagonal blocks as A =: D0;1

and

D�−1;i =:
[
D�;2i−1 U�;2i−1B�;2i−1,2iV

H
�;2i

U�;2iB�;2i,2i−1V
H
�;2i−1 D�;2i

]

(14)

for 1 ≤ � ≤ L, 1 ≤ i ≤ 2�−1, where U0;1, V0;1 := [], and for � ≥ 2,

U�−1;i =:
[
U�;2i−1R�;2i−1

U�;2iR�;2i

]

, V�−1;i =:
[
V�;2i−1W�;2i−1

V�;2iW�;2i

]

; (15)

the subscript expression �; i denotes vertex i of the 2� vertices at level �.
The action of A on a matrix x, i.e., v := Ax, satisfies v0;1 = D0;1x0;1, and for

1 ≤ � ≤ L, 1 ≤ i ≤ 2�, satisfies v�;i = D�;ix�;i + U�;if�;i, with f1;1 = B1;1;2g1;2,
f1;2 = B1;2;1g1;1, and, for 1 ≤ � ≤ L− 1, 1 ≤ i ≤ 2�,

f�+1;2i−1 =
[
RT

�+1;2i−1

BT
�+1;2i−1,2i

]T [
f�;i

g�+1;2i

]

, f�+1;2i =
[

RT
�+1;2i

BT
�+1;2i,2i−1

]T [
f�;i

g�+1;2i−1

]

,

(16)

where, for 1 ≤ � ≤ L − 1, 1 ≤ i ≤ 2�, g�;i =
[
W�+1;2i−1

W�+1;2i

]H [
g�+1;2i−1

g�+1;2i

]

, and

gL;i = V H
L;ixL;i for 1 ≤ i ≤ 2L. For any HSS level �, we assemble the block

diagonal matrices

U� :=
⊕2�

i=1
U�;i, V :=

⊕2�

i=1
V�;i, D� :=

⊕2�

i=1
D�;i, (17)

22 N. Knight et al.

denoted here as direct sums of their diagonal blocks. We also define matrices
S�, representing the recurrences for f�;i and g�;i, satisfying v = Ax =: D�x +
U�S�V

H
� x. We now discuss parallelizing the computation v = Ax, to generalize

PA0 and PA1 to HSS matrices.

3.1 PA0 for HSS Matrices

We first discuss how to modify PA0 for HSS A, exploiting the v = Ax recurrences
for each 1 ≤ j ≤ k; we call the resulting algorithm PA0-HSS. For brevity, we
defer a detailed description [7]. PA0-HSS can be seen as an HSS specialization of
known approaches for distributed-memory H-matrix-vector multiplication [8].

We assume the HSS representation of A has perfect binary tree structure to
some level L > 2, and there are p ≥ 4 processors with p a power of 2. For each
processor m ∈ {0, 1, . . . , p− 1}, let Lm denote the smallest level � ≥ 1 such that
p/2� divides m. We also define the intermediate level 1 < Lp := lg(p) ≤ L of the
HSS tree; each Lm ≥ Lp, and equality is attained when m is odd.

First, on the upsweep, each processor locally computes V H
Lp
x (its subtree,

rooted at level Lp = lg(p)) and then performs Lp steps of parallel reduction,
until there are two processors active, and then a downsweep until level Lp, at
which point each processor is active, owns SLp

V H
Lp
x, and recurses into its local

subtree to finally compute its rows of v = DLx+ ULSLVLx. More precisely, we
assign processor m the computations f�;i and g�;i for

{
�, i : L≥�≥Lp

2�m/p+1≤i≤2�(m+1)/p

}
and for

{
�, i : Lp−1≥�≥Lm

i=2�m/p+1

}
(18)

and DL, UL, and VL are distributed contiguously block rowwise, so proces-
sor m stores blocks DLp;m+1, ULp;m+1, and VLp;m+1. The R�;i, W�;i, and B�;i

matrices are distributed so that they are available for the computations in the
upsweep/downsweep; memory requirements are listed in Table 1.

3.2 PA1 for HSS Matrices

The block-diagonal structure of D�, U�, and V� in (17) suggests an efficient
parallel implementation of PA1-BC, which we present as PA1-HSS (Algorithm 4).
However, now each processor must perform the entire upsweep/downsweep
between levels 1 and Lp locally. The additional cost shows up in our complexity
analysis (see Table 1) as a factor of p, compared to a factor of lg(p) in PA0-HSS;
we also illustrate this tradeoff in Sect. 4.

We assume the same data layout as PA0-HSS: each processor owns a diagonal
block of DLp

, ULp
, and VLp

, but only stores the smaller blocks of level L. We
assume each processor is able to apply SLp

. We rewrite (6) for the local rows,
and exploit the block diagonal structure of DLp

and ULp
, to write

x
(j+1)
Lp;m+1 =

(
DLp;m+1x

(j)
Lp;m+1 −[x(0)

Lp;m+1, . . . , x
(j)
Lp;m+1](h(j) ⊗ Iq,q)

+ULp;m+1(bj){mr+1,...,(m+1)r}
)
/hj+1,j .

(19)

Exploiting Data Sparsity in Parallel Matrix Powers Computations 23

Each processor locally computes all rows of bj = SLp
V H

Lp
x(j) = SLp

· z, where z
is the maximal parenthesized term in (11), using the HSS recurrences:

V H
Lp
x(j) = z =:

[
gT

Lp,1 · · · gT
Lp,p

]T �→ [
fT

Lp,1 · · · fT
Lp,p

]T
:= bj = SLp

V H
Lp
x(j). (20)

The rest of PA1-HSS is similar to PA1-BC, except Allgather operations replace
Allreduce operations in Lines 1 and 5 to exploit block structure of V H .

Algorithm 4. PA1-HSS (Blocking Covers). Code for proc. m.

1: Compute Kk−1(DLp;m+1, ULp;m+1, Hk−1), premultiply by V H
Lp;m+1.

2: Compute [W0, . . . , Wk−2] by an Allgather.

3: Compute wj
i for 0 ≤ i ≤ k − 2, and 1 ≤ j ≤ k − i − 1, via (10).

4: Compute Kk(DLp;m+1, x
(0)
Lp;m+1, Hk), premultiply by V H

Lp;m+1.

5: Compute [y0, . . . , yk−1] by an Allgather.
6: Compute [b0, . . . , bk−1] by (11), where S = SLp is applied by (20).

7: Compute local rows of [x(0), . . . , x(k)] according to (19).

3.3 Complexity Analysis

We gave a detailed complexity analysis of PA0-HSS and PA1-HSS in [7]; we sum-
marize the asymptotics (i.e., ignoring constant factors) in Table 1. We assume
A is given in HSS form, as described above, where all block matrices are dense.
For simplicity, we assume n and HSS-rank r are powers of 2 and leaf level
L = lg(n/r). Note that one could use faster Allgather algorithms (e.g., [2]) for
PA1-HSS to eliminate the factor of lg p in the number of words moved.

4 Performance Model

We model speedups of PA1-HSS over PA0-HSS on two machine models used
by Mohiyuddin [10] – ‘Peta,’ an 8100 processor petascale machine, and ‘Grid,’
125 terascale machines connected via the Internet. Peta has a flop rate γ =
2 ·10−11 s/flop, latency α = 10−5 s/message, and bandwidth β = 2 ·10−9 s/word,
and Grid has flop rate γ = 10−12 s/flop, latency α = 10−1 s/message, and
bandwidth β = 25 · 10−9 s/word. Complexity counts used can be found in [7].

Speedups of PA1-HSS over k invocations of PA0-HSS, for both Peta and
Grid, are shown in Fig. 1. We used parameters from the parallel HSS perfor-
mance tests of Wang et al. [13], where p = (4, 16, 64, 256, 1024, 4096), n =
(2.5, 5, 10, 20, 40, 80) · 103, r = (5, 5, 5, 5, 6, 7). Note that for Grid we only use
the first 3 triples (pi, ni, ri) since pmax = 125. We assume a three-term recur-
rence (Hk is tridiagonal), as these suffice in practice to obtain well-conditioned
polynomial bases, even for large k [12].

On Peta, we see O(k) speedups for smaller p and k, but as these quantities
increase, the expected speedup drops. This is due to the extra multiplicative
factor of p in the bandwidth cost and the extra additive factor of k3qp in the

24 N. Knight et al.

Table 1. Asymptotic complexity of PA0-HSS and PA1-HSS, ignoring constant factors.
‘Offline’ refers to Lines 1–3 and ‘Online’ refers to Lines 4–7 of PA1-HSS.

Algorithm Flops Words moved Messages Memory

PA0-HSS kqrn/p + kqr2 lg p kqr lg p k lg p (kq + r)n/p + r2 lg p

PA1-HSS
(offline) kr2n/p + k3 kr2p lg p lg p

(kq + r)n/p + k(q + r)rp
(online) kqrn/p + k(k + r)2qp kqrp lg p lg p

13.4
13.6
13.7
13.5
13.1
12.4
11.3
9.7
7.4
4.3
1.0

12.1
12.8
13.4
13.7
13.7
13.3
12.2
10.5
7.9
4.5
1.0

5.2
5.7
6.2
6.6
7.0
7.2
7.2
6.7
5.7
3.7
1.0

1.7
1.9
2.0
2.2
2.4
2.5
2.7
2.7
2.6
2.1
1.0

0.4
0.4
0.5
0.5
0.6
0.6
0.6
0.7
0.7
0.7
1.0

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.2
1.0

Problem

k

1 2 3 4 5 6

45

35

25

15

5 2

4

6

8

10

12
50.0
45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0
5.0
1.0

49.9
45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0
5.0
1.0

49.8
44.8
39.9
34.9
29.9
25.0
20.0
15.0
10.0
5.0
1.0

Problem
k

1 2 3

45

35

25

15

5
10

20

30

40

Fig. 1. Predicted PA1-HSS speedups on Peta (left) and Grid (right). Note that p and
n increase with problem number on x-axis.

flop cost of PA1-HSS. Since the relative latency cost is lower on Peta, the effect
of the extra terms becomes apparent for large k and p. On Grid, PA0-HSS is
extremely latency bound, so a Θ(k)-fold reduction in latency results in a Θ(k)×
faster algorithm. This is the best we can expect. Note that many details are
abstracted in these models, which are meant to give a rough idea of asymptotic
behavior. Realizing such speedups in practice remains future work.

5 Future Work and Conclusions

In this work, we derive a new parallel communication-avoiding matrix powers
algorithm for A = D + USV H , where D is well partitioned and USV H has low
rank but A may not be well partitioned. This allows speedups for a larger class
of problems than previous algorithms [4,10], which require well-partitioned A.
Our approach exploits low-rank properties of dense blocks, asymptotically reduc-
ing parallel latency cost. We demonstrate the generality of our parallel blocking
covers technique by applying it to matrices with hierarchical structure. Perfor-
mance models predict up to 13× speedups on petascale machines and up to 3k
speedups on extremely latency-bound machines, despite tradeoffs in arithmetic
and bandwidth cost. Future work includes a high-performance parallel imple-
mentation of our algorithm to verify predicted speedups, as well as integration
into preconditioned communication-avoiding Krylov solvers.

Exploiting Data Sparsity in Parallel Matrix Powers Computations 25

Acknowledgments. We acknowledge support from the US DOE (grants DE-SC000
4938, DE-SC0005136, DE-SC0010200, DE-SC0008700 and AC02-05CH11231) and
DARPA (grant HR0011-12-2-0016), as well as contributions from Intel, Oracle, and
MathWorks.

References

1. Bebendorf, M.: A means to efficiently solve elliptic boundary value problems. In:
Bart, T., Griebel, M., Keyes, D., Nieminen, R., Roose, D., Schlick, T. (eds.) Hier-
archical Matrices. LNCS, vol. 63, pp. 49–98. Springer, Heidelberg (2008)

2. Chan, E., Heimlich, M., Purkayastha, A., Van De Geijn, R.: Collective communi-
cation: theory, practice, and experience. Concurrency Comput.: Pract. Exper. 19,
1749–1783 (2007)

3. Chandrasekaran, S., Dewilde, P., Gu, M., Lyons, W., Pals, T.: A fast solver for
HSS representations via sparse matrices. SIAM J. Matrix Anal. Appl. 29, 67–81
(2006)

4. Demmel, J., Hoemmen, M., Mohiyuddin, M., Yelick, K.: Avoiding communication
in computing Krylov subspaces. Technical report UCB/EECS-2007-123, University
of California-Berkeley (2007)

5. Hoemmen, M.: Communication-avoiding Krylov subspace methods. Ph.D. thesis,
University of California-Berkeley (2010)

6. Hong, J., Kung, H.: I/O complexity: the red-blue pebble game. In: Proceedings
of the 13th ACM Symposium on Theory of Computing, pp. 326–333. ACM, New
York (1981)

7. Knight, N., Carson, E., Demmel, J.: Exploiting data sparsity in parallel
matrix powers computations. Technical report UCB/EECS-2013-47, University of
California-Berkeley (2013)

8. Kriemann, R.: Parallele Algorithmen für H-Matrizen. Ph.D. thesis, Christian-
Albrechts-Universität zu Kiel (2005)

9. Leiserson, C., Rao, S., Toledo, S.: Efficient out-of-core algorithms for linear relax-
ation using blocking covers. J. Comput. Syst. Sci. Int. 54, 332–344 (1997)

10. Mohiyuddin, M.: Tuning hardware and software for multiprocessors. Ph.D. thesis,
University of California-Berkeley (2012)

11. Mohiyuddin, M., Hoemmen, M., Demmel, J., Yelick, K.: Minimizing communica-
tion in sparse matrix solvers. In: Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage, and Analysis, pp. 36:1–36:12. ACM, New
York (2009)

12. Philippe, B., Reichel, L.: On the generation of Krylov subspace bases. Appl. Numer.
Math. 62, 1171–1186 (2012)

13. Wang, S., Li, X., Xia, J., Situ, Y., de Hoop, M.: Efficient scalable algorithms for
hierarchically semiseparable matrices. SIAM J. Sci. Comput. (2012, under review)

Performance of Dense Eigensolvers
on BlueGene/Q

Inge Gutheil1(B), Jan Felix Münchhalfen2, and Johannes Grotendorst1

1 Institute for Advanced Simulation, Jülich Supercomputing Centre,
Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

i.gutheil@fz-juelich.de

http://www.fz-juelich.de/ias/jsc
2 IT Center of RWTH Aachen University,
Seffenter Weg 23, 52704 Aachen, Germany

muenchhalfen@rz.rwth-aachen.de

http://www.rz.rwth-aachen.de

Abstract. Many scientific applications require the computation of
about 10–30 % of the eigenvalues and eigenvectors of large dense
symmetric or complex hermitian matrices. In this paper we will present
performance evaluation results of the eigensolvers of the three libraries
Elemental, ELPA, and ScaLAPACK on the BlueGene/Q architecture.
All libraries include solvers for the computation of only a part of the
spectrum. The most time-consuming part of the eigensolver is the reduc-
tion of the full eigenproblem to a tridiagonal one. Whereas Elemental
and ScaLAPACK only offer routines to directly reduce the full matrix
to a tridiagonal one, which only allows the use of BLAS 2 matrix-vector
operations and needs a lot of communication, ELPA also offers a two-
step reduction routine, first transforming the full matrix to banded form
and thereafter to tridiagonal form. This two-step reduction shortens the
reduction time significantly but at the cost of a higher complexity of the
back transformation step. We will show up to which part of the eigen-
spectrum the use of the two-step reduction pays off.

Keywords: Eigenvalue and eigenvector computation · Elemental · ELPA ·
ScaLAPACK · BlueGene/Q

1 Introduction

Many scientific applications in the fields of materials science and quantum chem-
istry require the computation of eigenvalues and eigenvectors of dense real sym-
metric or complex hermitian matrices. For example, in DFT (Density Functional
Theory) calculations on modern supercomputers [1], typical sizes of those matri-
ces are about 50000 × 50000 and 10–30 % of the eigenvalues and eigenvectors
have to be computed. As the computation of eigenvalues and eigenvectors is of
complexity N3 where N denotes the problem size, these computations require

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 26–35, 2014.
DOI: 10.1007/978-3-642-55224-3 3, c© Springer-Verlag Berlin Heidelberg 2014

Performance of Dense Eigensolvers on BlueGene/Q 27

highly parallel algorithms to speed up the computation on modern computers
with thousands of cores and the possibility to start even more threads than
cores.

The oldest parallel library for dense linear algebra which is still in use in
many applications is ScaLAPACK [2]. It is a pure MPI library requiring a
two-dimensional block cyclically distributed matrix as input. In the last years
two new libraries have been developed, Elemental [3], a complete C++
framework for dense linear algebra and ELPA [4] which is an add-on to ScaLA-
PACK for the solution of real symmetric and complex hermitian eigenprob-
lems. Both offer the choice to compute all or some of the eigenvalues and
eigenvectors.

Whereas ScaLAPACK and Elemental only offer the one-step reduction of a
full matrix to tridiagonal form, ELPA also includes a routine for two-step reduc-
tion, first to banded and then to tridiagonal form. This reduction allows the
use of highly optimized BLAS 3 matrix-matrix operations for the first step,
thus reducing significantly the execution time for the reduction, which still
is the bottleneck of all dense eigensolvers. The gain in the reduction phase
however goes with a loss in the back transformation phase, as the back trans-
formation now is also done in two steps. The complexity of the back transfor-
mation depends on the number of eigenvectors to be computed, thus the gain
in the reduction phase will pay off, if only a part of the eigenvectors are to be
computed.

2 The BlueGene/Q Architecture

The BlueGene/Q Architecture is built from IBM PowerPC A2 compute cards,
each card with 16 cores at 1.6 GHz and with 16 GB DDR3 Memory. Each core
has two 4-way SIMD units which each can deliver 4 results per cycle. 32 compute
cards form a node card, meaning each node card consists of 512 cores and has
a total amount of 512 GB of main memory. 16 node cards form a midplane, two
midplanes together with one or two I/O drawers form one rack. Thus each rack
consists of 16384 cores and has a peak performance of 0.2 Petaflops. Each core
allows 4-way hyperthreading, so up to 64 MPI processes or for example 16 MPI
processes with up to 4 threads (OpenMP or pthreads) per MPI-process can be
started on each compute card.

The BlueGene/Q called JUQUEEN [5] installed at Jülich Supercomputing
Centre in May 2012 now consists of 28 racks (7 rows 4 racks), which means
that the full machine has 28672 compute cards (458752 cores) and thus a peak
performance of 5.9 Petaflops.

3 Parallel Libraries Investigated

The first library for the solution of dense symmetric eigenvalue problems we
studied is ScaLAPACK. We used release 2.0.1, the current release 2.0.2 has not
changed in the eigensolver part. It is mainly written in FORTRAN 77 with a

28 I. Gutheil et al.

few C-routines hidden from the user. An add-on to ScaLAPACK for eigenvalue
problems is ELPA (EigensoLver for Petaflop Applications), written in Fortran
95. Both libraries use the same block-cyclic two-dimensional data distribution.
The user has to distribute the matrix according to that distribution and calls the
routines with the distributed matrix. ScaLAPACK only offers a pure MPI version
whereas in the development version of ELPA an OpenMP/MPI hybrid version is
available. ELPA does not use the BLACS for the computational routines but only
creates two MPI sub-communicators per process, one for the process row and
one for the process column of each MPI process. We used the ELPA development
version of November 2012.

A new library for linear algebra with dense matrices is the Elemental C++
framework which uses a two-dimensional data distribution with block size 1. The
version we used was 0.75. Elemental also offers a hybrid parallel version.

3.1 Routines Tested in the Libraries

All routines in all libraries under investigation follow the same three steps for the
computation of eigenvalues and eigenvectors of a real dense symmetric matrix:
Reduction to tridiagonal form via orthogonal transformations, solution of the
tridiagonal eigenvalue problem, back transformation of the eigenvectors of the
tridiagonal matrix to those of the original matrix.

ScaLAPACK 2.0.1 offers four different routines for the solution of the
dense symmetric eigenvalue problem. They differ in the reduction routine used
and, more important, in the way the tridiagonal eigenvalue problem is solved.
PDSYEV and PDSYEVD use the original version PDSYTRD of the reduc-
tion to tridiagonal form whereas PDSYEVX and PDSYEVR use a reduction
called PDSYNTRD which is usually faster than the original version due to
some improvements in communication costs. This reduction always uses a square
processor grid for the reduction phase. Even though data has to be redistrib-
uted in cases where the original process grid is not square, we found out that
this routine is faster than the old one [6]. PDSYEV uses the QR algorithm for
the computation of eigenvalues and eigenvectors of the tridiagonal matrix. This
method is rather slow although it can be parallelized well. It delivers all eigenval-
ues and eigenvectors and the eigenvectors are orthogonal to working precision.
We did not investigate that routine because it is too slow.

PDSYEVX is the most often used eigensolver routine in ScaLAPACK as it
was for a long time the only one allowing to compute only a part of the eigenspec-
trum. It uses bisection and inverse iteration for the computation of the eigen-
values and eigenvectors of the symmetric tridiagonal matrix. This method can
be easily parallelized and works well if the eigenvalues are well separated. The
input parameter ORFAC can be used to decide when eigenvalues are treated
as clustered and thus the eigenvectors have to be re-orthogonalized. The re-
orthogonalization of eigenvectors belonging to clustered eigenvalues is not par-
allelized and thus it can be very expensive both in terms of compute time and

Performance of Dense Eigensolvers on BlueGene/Q 29

in terms of memory requirements. For our measurements we set ORFAC =
1.0 ∗ 10−4.

PDSYEVD uses the divide-and-conquer-method for the tridiagonal eigen-
problem. It was up to version 1.8 the fastest routine if all eigenvalues and eigen-
vectors had to be computed. There is no version of this routine allowing to
compute only a part of the spectrum.

PDSYEVR is new in release 2.0.1 and uses the MRRR [7,8] algorithm for
the tridiagonal eigenproblem. This routine allows to compute only a part of the
eigenspectrum and is supposed to be faster than bisection and inverse iteration
if eigenvalues are clustered.

The ELPA library consists of two routines which differ in the way the full
eigenproblem is reduced to tridiagonal form and as a result of that in the back
transformation of eigenvectors. The routine ELPA1 uses the well-known one-step
reduction to tridiagonal form, similar to the old ScaLAPACK reduction routine,
ELPA2 uses a two-step reduction first to band and then to tridiagonal form and
a two-step back transformation [9,10]. Both routines use a modification of the
divide-and-conquer method for the solution of the tridiagonal eigenvalue problem
which allows to compute only a part of the eigenspectrum.

In the library Elemental there is only one routine for the solution of the
symmetric or hermitian eigenvalue problem, HermitianEig. For the reduction
to tridiagonal form there are two choices, one for general rectangular processor
grids and one that uses the largest square processor grid that fits to the number
of processors given. As with the ScaLAPACK reduction routines, the routine
using a square processor grid is faster than the other even if the original grid
is not square. This has been shown in [11]. For the solution of the tridiagonal
eigenproblem the MRRR algorithm is used in the implementation PMRRR by
M. Petschow [12]. In contrast to the other libraries the distribution block size
does not determine the algorithmic block size thus allowing to use different
algorithmic block sizes for different computation steps. We did not investigate
this possibility.

4 Measurements Done

As most applications on JUQUEEN should use at least one midplane with 512
compute cards and thus 8192 cores we tried to measure the performance of the
eigensolvers on a complete midplane and on one rack. Most of those measure-
ments were done in the pre-production phase of JUQUEEN, later on we only
had limited resources for tests. The up to 4-way multi-threading allows to start
up to 64 processes per compute card. We therefore tried to use one, two, or four
MPI processes per core to see, whether multithreading pays even with pure MPI.
In the pre-production phase of JUQUEEN we measured execution times for the
computation of the full eigenspectrum on one node card, one midplane, and one
rack with matrix sizes ranging from 5000 to 60000. Later on measurements on
one node card were done with matrix sizes from 6000 to 50000 by steps of 4000.

30 I. Gutheil et al.

For ScaLAPACK and ELPA block sizes were in the beginning chosen to be 32.
In private communication with Thomas Auckenthaler, one of the ELPA authors,
we learned that for ELPA smaller blocks should be better and so we used a block
size of 16 for ELPA [13] for the measurements of this article. Elemental had not
yet been ported to JUQUEEN in the pre-production phase, thus all measure-
ments were done with limited resources. We chose the default algorithmic block
size of 128 which was seen to be optimal on BlueGene/P and on a preliminary
BlueGene/Q hardware [11].

Only the ScaLAPACK measurements of the pre-production phase are still
used in this presentation. For ELPA we repeated the measurements with the
development version of November 2012 and block size 16. This version contains
a new routine for the two-step back transformation, which is optimized for the
BlueGene/Q vector instructions. The new optimized ELPA library turned out
to be much faster than the older version.

ELPA and Elemental both contain hybrid versions, but due to compiler prob-
lems we could not compare these versions to the pure MPI implementation.

For all measurements we used a test program that constructs a dense matrix
by transforming a diagonal matrix with known eigenvalues by a random House-
holder matrix and compares the computed eigenvalues to the given ones. We
always included tests for the correctness of the results and the orthogonality of
the computed eigenvectors, but the timing was only done for the routine inves-
tigated. All measurements of the partial spectrum were done only on one node
card.

5 Scaling Results up to One Rack of JUQUEEN

Figure 1 shows the results of the fastest routine for the full eigenspectrum of
each library on a node card of JUQUEEN using 16 (left) and 32 (right) MPI
processes per compute card. We measured the performance for matrices of sizes
between 1000 and 50000. Due to our checking of results and other additional
memory consumptions PDSYEVD could only be measured up to N = 34000,
PDSYEVR up to N = 29000 and PDSYEVX with ORFAC = 1.0 ∗ E−4 up to
N = 42000. All ScaLAPACK routines investigated performed similarly, there is
not much difference between 16 and 32 MPI processes per compute card except
for PDSYEVR, which for matrices of size up to 20000 is significantly slower with
32 processes per compute card than with 16 processes. Overall for matrices of
sizes up to 25000 the fastest ScaLAPACK routine was PDSYEVX, followed by
PDSYEVD for matrices smaller than 6000 and PDSYEVR for matrices larger
than 6000.

On a node card computing all eigenvalues and -vectors ELPA1 is faster than
ELPA2. Overall the performance of ELPA is better than ScaLAPACK’s and
Elemental’s performance. All routines show a small speedup if 32 MPI processes
per compute card are used.

On a midplane we could see that due to a bug in the communication that we
had already seen on BlueGene/P with 1024 MPI processes (see [11]) PDSYEVR

Performance of Dense Eigensolvers on BlueGene/Q 31

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 60
00

 14
00

0

 22
00

0

 30
00

0

 38
00

0

 46
00

0

tim
e(

se
c)

matrix dim.

ELPA1
ELPA2

elemental
PDSYEVD
PDSYEVX
PDSYEVR

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 60
00

 14
00

0

 22
00

0

 30
00

0

 38
00

0

 46
00

0

tim
e(

se
c)

matrix dim.

ELPA1
ELPA2

elemental
PDSYEVD
PDSYEVX
PDSYEVR

Fig. 1. Comparison of all routines of each library on a node card using 16 (left) and
32 (right) MPI processes per compute card.

took more than 900 s for the smallest matrix of size N = 6000 for 16 MPI
processes per compute card and thus could not be shown in the figures.
We did not further investigate PDSYEVR for the computation of the full
eigenspectrum.

Overall the ScaLAPACK routines could no longer compete with the new
libraries ELPA and Elemental, and PDSYEVX showed a very high variation
in execution times for large matrices as can be seen from Fig. 2. ScaLAPACK
and Elemental still showed a small speedup with 32 MPI processes per compute
card, whereas both ELPA routines became slower. On one rack ELPA2 again
was the fastest routine, ELPA1 and Elemental almost equal and ScaLAPACK
slower than the new routines.

For a matrix of size N = 50000 Elemental showed a speedup for one midplane
compared to a node card of about 8, ELPA1 of about 9, ELPA2 even 10. It is
the fastest routine on a midplane. The speedup of the ScaLAPACK routines
could not be measured as we could not run the programs with N = 50000. For
one rack there was a speedup compared to the fastest run on a midplane for
all routines except PDSYEVX, Elemental even got a speedup of more than two
compared to the run on a midplane with 16 MPI processes per compute card.
As the speedup is only slightly more than two, we think that it is due to the fact
that we did only one measurement per matrix size.

32 I. Gutheil et al.

0

 50

 100

 150

 200

 250

 300

 350

 1
80

00

 2
60

00

 3
40

00

 4
20

00

 5
00

00

 5
80

00

 6
60

00

tim
e(

se
c)

matrix dim
.

0

 50

 100

 150

 200

 250

 300

 350

 1
80

00

 2
60

00

 3
40

00

 4
20

00

 5
00

00

 5
80

00

 6
60

00

tim
e(

se
c)

matrix dim
.

ELPA1
ELPA2

Elemental
PDSYEVD
PDSYEVX

0

 50

 100

 150

 200

 250

 300

 350

 1
80

00

 2
60

00

 3
40

00

 4
20

00

 5
00

00

 5
80

00

 6
60

00
tim

e(
se

c)

matrix dim
.

Fig. 2. Comparison of all routines of each library on a midplane left: using 16 MPI
processes per compute card, middle: using 32 MPI processes per compute card and
right: on one rack using 16 MPI processes per compute card.

All new routines scale up to one rack of BlueGene/Q, for Elemental using 32
MPI processes per compute card is faster, for ELPA using only 16 processes per
compute card is faster. Thus we are indeed waiting for a hybrid parallelization
to see whether that allows to explore hyperthreading.

6 Results for Different Parts of the Spectrum

Figure 3 shows that even for the computation of the full eigenspectrum the rou-
tine with the two-step reduction is not much slower than the one with the one-
step reduction on a node card. The parts of the time for reduction and back
transformation almost change their roles. Thus it can be expected that if less
eigenvectors have to be transformed the time for the routine with the two-step
reduction will become much smaller.

As most applications require only a part of the eigenspectrum we also com-
pared the performance of the different libraries and routines for the computation
of 5 % and 45 % of the eigenvalues and eigenvectors. From Fig. 4 it can be seen
that for the computation of 45 % of the spectrum ELPA2 is almost twice as fast
as the other routines, for 5 % even more than three times as fast.

Performance of Dense Eigensolvers on BlueGene/Q 33

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 60
00

 14
00

0

 22
00

0

 30
00

0

 38
00

0

 46
00

0

tim
e(

se
c)

matrix dim.

total time
reduction time

tridiag solve time
back transform time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 60
00

 14
00

0

 22
00

0

 30
00

0

 38
00

0

 46
00

0

tim
e(

se
c)

matrix dim.

total time
reduction time

tridiag solve time
back transform time

Fig. 3. Comparison of ELPA1 (left) and ELPA2 (right) on one node card using 16 MPI
processes per compute card, computation of the full eigenspectrum

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 60
00

 14
00

0

 22
00

0

 30
00

0

 38
00

0

 46
00

0

tim
e(

se
c)

matrix dim.

ELPA1
ELPA2

elemental
PDSYEVX
PDSYEVR

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 60
00

 14
00

0

 22
00

0

 30
00

0

 38
00

0

 46
00

0

tim
e(

se
c)

matrix dim.

ELPA1
ELPA2

elemental
PDSYEVX
PDSYEVR

Fig. 4. Comparison of all routines if only 5 % (left) and 45 % (right) of the spectrum
is computed, one node card using 16 MPI processes per compute card

34 I. Gutheil et al.

7 Conclusions

For the computation of all eigenvalues and eigenvectors of a large full real
symmetric matrix the old ScaLAPACK routine PDSYEVX has big problems
with clustered eigenvalues. The new ELPA library solves this problem by using
the divide-and-conquer algorithm for the computation of the eigenvalues of the
tridiagonal matrix. On a BlueGene/Q both ELPA implementations are faster
than ScaLAPACK’s routine PDSYEVD. A better implementation of the BLACS
directly based on the basic communication layer or a vendor optimized ScaLA-
PACK could perhaps speed up ScaLAPACK. Without an optimized version of
ScaLAPACK and the overhead of BLACS above MPI we recommend not to use
ScaLAPACK for the computation of eigenvalues and eigenvectors of dense real
symmetric matrices on a BlueGene/Q.

An alternative to ELPA is the new library Elemental which uses the PMRRR
algorithm and is very flexible because the algorithmic block size can be chosen
without changing the data layout. Also, filling of the C++ class DistMatrix can
be easier than distributing a matrix in the block-cyclic two-dimensional way
ScaLAPACK and ELPA require.

For the computation of only a part of the spectrum (even more than 50 %)
the ELPA2 routine performs much better than all the other routines. It is in
fact the only one that is significantly faster if only a part of the spectrum is
needed compared to the full spectrum. This is mainly because for all other
routines the reduction phase is so dominant, that gains in the other parts of
the computation have almost no influence on the execution time. This means
that for computations where only some of the eigenvalues and -vectors have to
be computed, ELPA2 should be used if possible, especially, if the application
already was written to use ScaLAPACK and thus already has the matrix in the
way it is also needed for ELPA.

Acknowledgements. The authors thank Jack Poulson, the author of the Elemental
library and the ELPA team, especially Thomas Auckenthaler, for their immediate
responses to problem reports.

References

1. FLEUR: The Jülich FLAPW code family. Website (May 2013). http://www.flapw.
de

2. Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A., Stanley,
K., Walker, D., Whaley, R.: Scalapack: a portable linear algebra library for distrib-
uted memory computers-design issues and performance. Comput. Phys. Commun.
97(1–2), 1–15 (1996)

3. Poulson, J., Marker, B., van de Geijn, R.A., Hammond, J.R., Romero, N.A.: Ele-
mental: a new framework for distributed memory dense matrix computations. ACM
Trans. Math. Softw. 39(2), 13:1–13:24 (2013)

4. ELPA: Eigenvalue Solvers for Petaflop Applications home page. Website (May
2013). http://elpa.rzg.mpg.de

Performance of Dense Eigensolvers on BlueGene/Q 35

5. FZJ-JSC: IBM Blue Gene/Q - JUQUEEN home page. Website (May 2013). http://
www.fz-juelich.de/ias/jsc/juqueen

6. Gutheil, I.: Performance evaluation of scalapack eigensolver routines on two hpc
systems. In: 6th International Workshop on Parallel Matrix Algorithms and Appli-
cations (PMAA’10) (2010). http://juser.fz-juelich.de/record/10376

7. Dhillon, I., Parlett, B., Vömel, C.: The design and implementation of the MRRR
algorithm. ACM Trans. Math. Softw. (TOMS) 32(4), 533–560 (2006)

8. Dhillon, I.: A new O(n2) algorithm for the symmetric tridiagonal eigenvalue eigen-
vector problem. Ph.D. thesis, University of California, Berkeley (1997)

9. Auckenthaler, T., Blum, V., Bungartz, H.J., Huckle, T., Johanni, R., Krämer, L.,
Lang, B., Lederer, H., Willems, P.: Parallel solution of partial symmetric eigenvalue
problems from electronic structure calculations. Parallel Comput. 37(12), 783–794
(2011)

10. Auckenthaler, T., Bungartz, H.J., Huckle, T., Krämer, L., Lang, B., Willems, P.:
Developing algorithms and software for the parallel solution of the symmetric eigen-
value problem. J. Comput. Sci. 2(3), 272–278 (2011)

11. Gutheil, I., Berg, T., Grotendorst, J.: Performance analysis of parallel eigensolvers
of two libraries on BlueGene/p. J. Math. Syst. Sci. 2(4), 231–236 (2012)

12. Petschow, M., Peise, E., Bientinesi, P.: High-performance solvers for dense her-
mitian eigenproblems. SIAM J. Sci. Comput. (SISC) 35(1), C1–C22 (2013).
arXiv:1205.2107v2[cs.MS]

13. Münchhalfen, J.: Performance analysis and comparison of parallel eigensolvers
on blue gene architectures. Berichte des Forschungszentrums Jülich (4359) 65 p.
(2013). http://juser.fz-juelich.de/record/128657

Experiences with a Lanczos Eigensolver
in High-Precision Arithmetic

Alexander Alperovich1, Alex Druinsky2(B), and Sivan Toledo2

1 Microsoft, Haifa, Israel
2 Tel Aviv University, Tel Aviv, Israel

alexdrui@post.tau.ac.il

Abstract. We investigate the behavior of the Lanczos process when
it is used to find all the eigenvalues of large sparse symmetric matri-
ces. We study the convergence of classical Lanczos (i.e., without re-
orthogonalization) to the point where there is a cluster of Ritz values
around each eigenvalue of the input matrix A. At that point, convergence
to all the eigenvalues can be ascertained if A has no multiple eigenvalues.
To eliminate multiple eigenvalues, we disperse them by adding to A a
random matrix with a small norm; using high-precision arithmetic, we
can perturb the eigenvalues and still produce accurate double-precision
results. Our experiments indicate that the speed with which Ritz clusters
form depends on the local density of eigenvalues and on the unit roundoff,
which implies that we can accelerate convergence by using high-precision
arithmetic in computations involving the Lanczos iterates.

Keywords: Lanczos · Mixed-precision arithmetic · Ritz clusters

1 Introduction

Existing software libraries offer us several choices when we wish to compute the
eigenvalues of a sparse matrix. One option is to use a dense eigensolver, such as
one of those implemented in lapack [1], which compute all of the eigenvalues
at a cost of Θ(n3) arithmetic operations. This is a high cost for a sparse matrix.
Krylov-subspace eigensolvers, such as arpack [16], take advantage of sparsity,
but they only offer to compute small, user-selected subsets of the spectrum.
Other algorithms compute the whole spectrum, but they require the matrix to
have a special sparsity structure, such as the MRRR method for symmetric
tridiagonal matrices [7]. In this paper we explore the possibility of accomplish-
ing both goals simultaneously: computing all of the eigenvalues and also taking
advantage of sparsity, even when there is no specific sparsity structure.

The Lanczos process is a long-established and well-known eigensolver [15]
(see also [10,17,23,24,29]). It takes as input an n-by-n Hermitian matrix A and
produces a sequence of matrices T (m) and Q(m) such that

AQ(m) = Q(m)T (m) + r(m)e∗
m ,

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 36–46, 2014.
DOI: 10.1007/978-3-642-55224-3 4, c© Springer-Verlag Berlin Heidelberg 2014

Experiences with a Lanczos Eigensolver in High-Precision Arithmetic 37

where Q(m) is an n-by-m orthonormal matrix, T (m) is an m-by-m tridiagonal
matrix, em is the last unit vector of dimension m, and r(m) is some n-vector. The
sequences Q(m) and T (m) are nested: each iteration of the Lanczos process adds
one column to Q and a row and a column to T . The process is a short-recurrence
Krylov-subspace iteration; in each iteration, the algorithm multiplies one vector
by A and performs a small number of vector operations on vectors of size n.

In exact arithmetic, the residual vector r(m) vanishes after at most k itera-
tions, where k is the number of distinct eigenvalues of A. When r(m) vanishes,
T (m) is an orthonormal projection of A onto the column space of Q, and there-
fore every eigenvalue of T (m) is an eigenvalue of A. For all the starting vectors
except for a set of measure 0, r(m) vanishes after exactly k iterations and all the
eigenvalues of A appear in the spectrum of T (k).

Practitioners quickly discovered that the behavior of Lanczos in floating-point
arithmetic differs significantly from that predicted by the theoretical results. In
particular, the columns of Q quickly lose orthogonality, and r never vanishes in
practice. Researchers mostly explored two families of techniques for addressing
this difficulty. One set of techniques attempts to prevent the loss of orthogo-
nality in Q. This can be done using a full orthogonalization process or using
selective orthogonalization and related techniques [11,20,25,26]. The other set
of techniques [2,31] attempts to extract useful spectral information from the
process after a relatively small number of iterations; this rarely results in the
identification of all the eigenvalues, but it can result in useful approximations to
a subset of the eigenvalues that are important in a given application (e.g., the
smallest ones). These families of techniques are not mutually exclusive; many
Lanczos codes use both.

However, around 30 years ago a group of researchers explored the use of Lanc-
zos without sophisticated orthogonalization for finding all the eigenvalues of A
[3,9,19]; we refer to such methods as classical Lanczos methods. This line of
research was based on a deep numerical analysis of the Lanczos process that ulti-
mately showed that in floating point, the eigenvalues of T eventually approximate
all the eigenvalues of A [8]. (This fact was recognized years before it was actually
proved; see, for example, [3]). These researchers produced two Lanczos codes, both
in the 1980s. To the best of our knowledge none of the Lanczos codes that have
been published since 1985 have been classical Lanczos. Even though development
of new codes has slowed down, there has been intense ongoing theoretical interest
in classical Lanczos, resulting in a large body of results (see [17] and the numerous
references therein). Experimental studies have also been published [13].

Our goal in this paper is to present the challenges that are involved in devel-
oping a classical Lanczos eigensolver, to describe our ideas for addressing these
challenges, and to explore the feasibility of these ideas. A major tool in our
toolkit is high-precision arithmetic, which our experiments show can be used
to tackle hard matrices with tight clusters of eigenvalues and also to devise a
reliable termination criterion for the algorithm. Our computational cost of using
high-precision arithmetic is negligible because we need it only for forming the
matrix T and not for computing its eigenvalues.

38 A. Alperovich et al.

2 Background and Methodology

A key issue in Lanczos solvers, including ours, is deciding which Ritz value
(eigenvalue of T (m)) is an approximate eigenvalue of A. A growing body of work
suggests that non-trivial clusters of Ritz values are only found very close to
eigenvalues of A (see Wülling [32,33], Knizhnerman [14, Theorem 2], Strakoš
and Greenbaum [30], and Greenbaum [12]). That is, if we find two or more
eigenvalues of T (m) that are very close to each other, they normally indicate
the location of an eigenvalue of A; we call such Ritz values doubly-converged.
This phenomenon was already known to Cullum and Willoughby [3] and to
Parlett and Reid [19], but back then there were no provable bounds on the
location of eigenvalues relative to non-trivial Ritz clusters. We write that Ritz
clusters normally indicate eigenvalues because all the results in the literature are
conditioned on properties of the spectrum of A and/or T (m), which might not
hold. However, exceptions seem very rare and some conditions are easily tested
(in particular, conditions that only involve Ritz values).

If all the eigenvalues of A are simple, we can stop Lanczos once we have
n distinct Ritz clusters (doubly-converged eigenvalues). If there are multiple
eigenvalues, we need another strategy. The codes of Cullum and Willoughby [3]
and Parlett and Reid [19] used heuristics to decide when to stop. These heuristics
sometimes cause the algorithms to fail to find all the eigenvalues; these failures
are sometimes silent and sometimes explicit (reported to the user).

In order to address this problem, we use a conceptually simple solution that
we call dispersion. Instead of running Lanczos on A itself, we will run it on A+P ,
where P is a random symmetric matrix (from some appropriate distribution)
with a small norm ‖P‖2 ≤ δ. We choose P so that it is cheap to apply to vectors;
this results in Lanczos iterations that are about as cheap as those performed
on A alone. The perturbation P perturbs the eigenvalues, but only by δ or
less. Hopefully, A+P has no multiple eigenvalues; multiple eigenvalues of A are
transformed into clusters of close but distinct eigenvalues of A+P . The choice of
P determines how close the eigenvalues of A+P are; we do not have a complete
theory that guarantees good separation with high probability, but experiments
have shown that dispersion works well. We omit these experiments from this
paper, and focus instead on the convergence for a given operator (which the
reader can take to be A+P).

The size of the perturbation δ and machine precision εmachine must be tailored
according to the accuracy ε required by the user, using high-precision arithmetic
to reduce εmachine if necessary. The relation ε > δ > εmachine must hold with
sufficient safety margins so that the perturbation can simultaneously separate
multiple eigenvalues and preserve the required accuracy.

An alternative approach to obtaining the required accuracy is to use a first-
order correction. Here, we consider A as a matrix that we obtain from A+P by
adding the perturbation −P . To first order, the eigenvalues of A are equal to
μi−vT

i Pvi, where μi and vi are eigenpairs of A+P for i = 1, 2, . . . , n; for details,
see [29, pp. 45–48]. Computing the correction vT

i Pvi requires that we compute
the eigenvectors vi, which is accomplished by multiplying the n-by-m matrix of

Experiences with a Lanczos Eigensolver in High-Precision Arithmetic 39

iterates Q by the eigenvectors of T . This costs Θ(mn) arithmetic operations for
each vi and Θ(mn2) overall. Because m > n, this is at least as expensive as the
Θ(n3) cost of computing the eigenvalues of A directly using a dense eigensolver.
This cost is too high for sparse matrices and therefore we do not use first-order
corrections in this paper.

From a broader perspective, matrices with multiple eigenvalues are a sort of
singularity, a set of measure zero that causes algorithmic difficulty. The idea of
perturbing problems in order to avoid such singularities is well-established in
existing research [4,6,28].

To compute the eigenvalues of T in our experiments we used the lapack
subroutine dstemr and the mpack subroutine rsteqr. Both of these subrou-
tines are symmetric tridiagonal eigensolvers; dstemr implements the MRRR
algorithm and rsteqr the implicit QL or QR methods. The mpack library,
to which rsteqr belongs, is a collection of multiple-precision versions of blas
and lapack subroutines [18]. Although we only needed the eigenvalues of T to
double-precision accuracy, in some of our experiments we used higher precision,
which is why we used mpack.

3 Convergence on Real-World Matrices

Figure 1 explores the behavior of high-precision Lanczos on a large set of real-
world matrices. We ran our code on all 133 symmetric matrices of dimension
2500 or less from the University of Florida Sparse Matrix Collection [5] (we only
used matrices with numerical values; we omitted sparsity-pattern-only matrices).
We did not attempt to disperse multiple eigenvalues; instead, we compared the
eigenvalues computed by our code to those computed by lapack and counted
how many agree to within 10−9‖A‖ or better.1 This tells us when our code fails
to find isolated eigenvalues or entire clusters, but not whether it converges to all
the eigenvalues in a tight cluster.

The results show that Lanczos can compute all the eigenvalues of most of the
matrices after 16n iterations: of over 60 % of the matrices with 64-bit arithmetic,
and of more than 70 % with 128- and 256-bit arithmetics. After only 4n or
8n iterations, Lanczos can still compute all the eigenvalues of many matrices.
As we perform more iterations, Lanczos tends to resolve more eigenvalues in
sparse areas of the spectrum. The remaining non-converged eigenvalues tend to
be shadowed by their neighbors.

4 The Effects of Clusters of Eigenvalues

As we saw in Sect. 3, the key to fast convergence of the Lanczos iteration is
dealing with clusters of eigenvalues. One of the problems caused by clustering has
been discovered by Parlett et al. [21], who showed that a Ritz value can become

1 We used the lapack unsymmetric eigensolver dgeev to compute the eigenvalues.
Although the symmetric subroutine dsyev is more efficient, we did not use it here.

40 A. Alperovich et al.

4n 8n 16n
0%

20%

40%

60%

80%

100%

iterations

double−precision arithmetic

10−3 A
10−4 A
10−5 A
10−6 A
10−7 A
10−8 A
converged

4n 8n 16n
0%

20%

40%

60%

80%

100%

iterations

128−bit arithmetic

4n 8n 16n
0%

20%

40%

60%

80%

100%

iterations

256−bit arithmetic

Fig. 1. Convergence behavior on a set of 133 real-world matrices. The graphs show
the percentage of matrices that have converged to all the eigenvalues after 4n, 8n, and
16n iterations (in brown). The code did not attempt to find the multiplicity of each
eigenvalue. The graphs also show, for matrices that have not converged, the greatest
distance from a non-converged eigenvalue to its nearest neighbor. The graphs show
results for 64-, 128- and 256-bit arithmetic, clockwise from top left. The number of bits
refers to the accuracy of the arithmetic with which T was computed; its eigenvalues
were always computed in 64-bit arithmetic (Color figure online).

fixed between two nearby eigenvalues and hold there for a number of iterations
before finally migrating towards one of the eigenvalues (see also [22,27]). In this
section we study this phenomenon, called misconvergence, and we also show that
the problems caused by clustering go beyond misconvergence.

In our experiments we found that small clusters do not substantially affect
convergence outside the cluster. When we ran Lanczos on a synthetic matrix
whose eigenvalues were evenly spaced in the interval [−1, 1], and then added a
small cluster of 0.05n eigenvalues, we found that adding the cluster caused no
visible artifacts on the plot of the Ritz values produced by the iteration. However,
we found severe misconvergence within the cluster. Figure 2 shows that a Ritz
value that shows up in a cluster tends to wander around near and between
eigenvalues and then typically settles for a long time in-between eigenvalues. As
more Ritz values show up, a misconverged eigenvalue tends to shift closer to an

Experiences with a Lanczos Eigensolver in High-Precision Arithmetic 41

1 10,000 20,000 30,000 40,000

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10−12

1 2 3

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2 3

sp
ec

tru
m

 (w
ith

in
 th

e
cl

us
te

r)

iteration

Fig. 2. Evolution of Ritz values near a cluster. The cluster consists of 11 eigenvalues
10−12 apart, represented by black horizontal dashed lines. Blue dots represent Ritz
values. A circled numeral k shows the first time that there are k Ritz values near
an eigenvalue. Red circles around the numeral 2 show where double convergence first
occurs. Blue lines are formed by converged or misconverged Ritz values (Color figure
online).

eigenvalue, until it actually converges. If we inspect the eigenvalue at 5× 10−12,
for example (the topmost one), we see a misconverged Ritz value that shifts
between 3 or 4 stable locations before converging.

Additional Ritz values appear periodically near an eigenvalue. The most
important effect of clusters is on this periodicity. In a cluster, the periodicity
is longer; a Ritz value appears near a specific eigenvalue less often than near
non-clustered eigenvalues. This is shown in the left plot of Fig. 3. This phe-
nomenon causes Lanczos to converge more slowly in the presence of clusters. If
we examine the raw density of Ritz values, ignoring the distribution of eigen-
values, we see that the cluster attracts more Ritz values than intervals of the
same size elsewhere in the spectrum. This is shown in the right plot of Fig. 3.
This increased attraction is not sufficient, however, to compensate for the larger
number of eigenvalues in the interval, so convergence to all eigenvalues is still
adversely affected by the cluster.

42 A. Alperovich et al.

−1 −0.5 0 0.5 1
0

200

400

600

800

spectrum

nu
m

b
er

 o
f R

itz
 v

al
ue

s

distance = 10 −12

−1 −0.5 0 0.5 1
0

200

400

600

800

spectrum

nu
m

b
er

 o
f R

itz
 v

al
ue

s

distance = 10 −10

Fig. 3. The number of Ritz values within a distance of 10−12 (left) and 10−10 (right)
from each eigenvalue after 200n iterations. The matrix has order n = 200 and has a
cluster of 10 eigenvalues positioned in the center of the spectrum at regular distances
of 10−12. There are fewer Ritz values near each eigenvalue within the cluster than
elsewhere, yet there are more Ritz values in the cluster area than if there was a single
eigenvalue there.

5 The Effects of High-Precision Arithmetic on the
Lanczos Process

The distribution of Ritz values within a cluster is typically not uniform, just
like within the spectrum as a whole. When eigenvalues in the cluster are evenly
distributed, more Ritz values appear at the edges of the cluster than near its
center, as shown in Fig. 4. Even when there are on average 2 or 3 Ritz values per
eigenvalue in the cluster, we may be very far from convergence, because there
are not enough Ritz values near eigenvalues in the center of the cluster.

Increasing the precision of the floating-point arithmetic also increases the
attractive power of clusters upon Ritz values, as shown in Fig. 5. As we increase
the precision, the number of Ritz values in a cluster increases, speeding up the
convergence. This phenomenon was already observed by Edwards et al. [9], but
it does not appear that Lanczos codes have used this insight.

As the size of an eigenvalue cluster grows, its effect on convergence becomes
devastating, even in high precision. Figure 6 shows that as the size of a cluster
grows, the number of Ritz values in it increases, but not nearly fast enough to
obtain convergence on all eigenvalues. When the cluster is small, say contain-
ing 10 eigenvalues, there are more than 3 Ritz values per eigenvalue after 20n
iterations, even in 64-bit arithmetic (and more Ritz values in higher precision).
When the cluster contains 100 eigenvalues, there is not even a single Ritz value
per eigenvalue after 20n iterations; we cannot expect convergence in that many
iterations. Things get much worse as the cluster size continues to grow.

Experiences with a Lanczos Eigensolver in High-Precision Arithmetic 43

−2 −1 0 1 2
x 10−4

0

20

40

60

80

100

spectrum (within cluster)

nu
m

be
r o

f R
itz

 v
al

ue
s

double−precision arithmetic

−2 −1 0 1 2
x 10−4

0

20

40

60

80

100

spectrum (within cluster)

nu
m

be
r o

f R
itz

 v
al

ue
s

128−bit arithmetic

Fig. 4. A histogram of the Ritz values within a cluster of 5000 eigenvalues that are
spaced 10−7 apart after 20n = 20 ·7000 Lanczos iterations. Apart from the cluster, the
spectrum contains 2000 eigenvalues spaced evenly between −1 and 1. The histogram
on the left shows the results in 64-bit arithmetic and the results on the right in 128-bit.

−1 −0.5 0 0.5 1
0

200

400

600

800

spectrum

nu
m

b
er

 o
f R

itz
 v

al
ue

s

double−precision arithmetic

−1 −0.5 0 0.5 1
0

200

400

600

800

spectrum

nu
m

b
er

 o
f R

itz
 v

al
ue

s

128−bit arithmetic

−1 −0.5 0 0.5 1
0

200

400

600

800

spectrum

nu
m

b
er

 o
f R

itz
 v

al
ue

s

256−bit arithmetic

Fig. 5. The number of Ritz values within a distance of 10−9 of each eigenvalue after
200n iterations. The matrix has order n = 200 and has a cluster of 10 eigenvalues
positioned in the center of the spectrum at regular distances of 10−11. The iteration is
carried out using different levels of floating-point precision: IEEE-754 double precision
(64 bits; top left), 128-bit floating point (top right) and 256-bit floating point (bottom).

44 A. Alperovich et al.

1 10 100 1000 5000
10

1

10
2

10
3

10
4

cluster size

Ri

tz
 v

al
ue

s
w

ith
in

 th
e

cl
us

te
r

DD

QD

double

1 10 100 1000 5000
10

−2

10
−1

10
0

10
1

10
2

cluster size

Ri

tz
 v

al
ue

s
/ c

lu
st

er
 s

iz
e

double

DD

QD

Fig. 6. The number of Ritz values within a cluster of eigenvalues that are spaced 10−7

apart after 20n Lanczos iterations. Apart from the cluster, the spectrum contains 2000
eigenvalues spaced evenly between −1 and 1. In both graphs, the X axis shows the
number of eigenvalues in the cluster, ranging from 1 to 5000. (The dimension of the
matrices therefore ranged from 2000 to 7000). On the left, the Y axis shows the number
of Ritz values in the cluster. On the right, the Y axis shows the same number, but
divided by the size of the cluster. Both graphs show the results of computations in
64-bit arithmetic (double), 128-bit (DD), and 256-bit (QD).

6 Conclusions

Our experiments suggest several conclusions. The results indicate that Lanczos
can find all the eigenvalues of many real-world matrices. When it fails, con-
vergence is impaired by the existence of dense areas in the spectrum, which is
manifested by misconvergence, and more importantly by relatively low density
of Ritz values in such dense areas. High-precision arithmetic helps to neutralize
the effect of clustering, but the level of precision must be commensurate with
the severity of clustering. How can we find the correct level of precision? One
strategy is to start iterating in double precision and then repeatedly increase
the accuracy after completing each sequence of n iterative steps. At the limit we
have infinite accuracy and n additional steps are enough, although we expect a
moderate level of accuracy to be sufficient for most matrices. We do not know
how effective this strategy is in practice; this question is left for future work.

The slowdown in convergence due to clustering may make Lanczos imprac-
tical for problem matrices unless measures are taken to address this issue. Ini-
tial experimentation on small matrices suggests that randomized dispersion is
effective when the spectrum contains clusters but they are not too large, but
ineffective when clusters are very large (say an eigenvalue of multiplicity 3000 in
a matrix of dimension 10000).

These technical conclusions lead us to two higher-level observations. First,
classical Lanczos may be the only practical way of finding all the eigenvalues for
some matrices. If the Θ(n2) space required for dense methods is not available,
and if shift-invert operations are too expensive (e.g., matrices for which there
is no sparse factorization), and if the spectrum contains only mild clustering,

Experiences with a Lanczos Eigensolver in High-Precision Arithmetic 45

then classical Lanczos may be the method of choice. This motivates further
development of Lanczos codes and techniques.

We are used to resolving details at the scale of ε using floating-point arith-
metic with unit roundoff near ε (≈ 10−16 for 64-bit arithmetic). For symmetric
eigensolvers, resolving eigenvalues at this scale does not mean finding 16 sig-
nificant digits per eigenvalue; it merely means finding 16 digits relative to the
scale of the largest one. For ill-conditioned matrices, resolving eigenvalues to
that scale may not be excessive at all. Our second high-level observation is that
in Lanczos, resolving eigenvalues at the scale of ε may require arithmetic with
significantly smaller unit roundoff, perhaps 10−32 or 10−64, or even less. More
efficient implementations of high-precision floating-point arithmetic will enable
computational scientists to resolve details that are currently beyond reach, like
the eigenvalues of matrices with highly-clustered spectra.

Acknowledgments. We thank the referees for their valuable comments. The idea
of using first-order corrections that we discuss in Sect. 2 was proposed by one of the
referees.

This research was supported in part by grant 1045/09 from the Israel Science
Foundation (founded by the Israel Academy of Sciences and Humanities), and by grant
2010231 from the US–Israel Binational Science Foundation.

The first author was at Tel Aviv University while conducting this research.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., du
Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
Users’ Guide. SIAM, Philadelphia (1999)

2. Calvetti, D., Reichel, L., Sorensen, D.C.: An implicitly restarted Lanczos method
for large symmetric eigenvalue problems. Electron. Trans. Numer. Anal. 2, 1–21
(1994)

3. Cullum, J.K., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigen-
value Computations: Vol. 1 Theory. Birkhäuser, Basel (1985)

4. Davies, E.B.: Approximate diagonalization. SIAM J. Matrix Anal. Appl. 29, 1051–
1064 (2007)

5. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38, 1:1–1:25 (2011)

6. Dhillon, I.S., Parlett, B.N., Vömel, C.: Glued matrices and the MRRR algorithm.
SIAM J. Sci. Comput. 27, 496–510 (2005)

7. Dhillon, I.S., Parlett, B.N., Vömel, C.: The design and implementation of the
MRRR algorithm. ACM Trans. Math. Softw. 32, 533–560 (2006)

8. Druskin, V.L., Knizhnerman, L.A.: Error bounds in the simple Lanczos procedure
for computing functions of symmetric matrices and eigenvalues. USSR Comput.
Math. Math. Phys. 31(7), 20–30 (1991)

9. Edwards, J.T., Licciardello, D.C., Thouless, D.J.: Use of the Lanczos method for
finding complete sets of eigenvalues of large sparse symmetric matrices. J. Inst.
Math. Appl. 23, 277–283 (1979)

10. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Uni-
versity Press, Baltimore (1996)

46 A. Alperovich et al.

11. Grcar, J.F.: Analyses of the Lanczos algorithm and of the approximation problem
in Richardson’s method. Ph.D. thesis, University of Illinois at Urbana-Champaign
(1981)

12. Greenbaum, A.: Behavior of slightly perturbed Lanczos and conjugate-gradient
recurrences. Linear Algebra Appl. 113, 7–63 (1989)

13. Kalkreuter, T.: Study of Cullum’s and Willoughby’s Lanczos method for Wilson
fermions. Comput. Phys. Commun. 95, 1–16 (1996)

14. Knizhnerman, L.A.: The quality of approximations to a well-isolated eigenvalue,
and the arrangement of “Ritz numbers” in a simple Lanczos process. Comput.
Math. Math. Phys. 35(10), 1175–1187 (1995)

15. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. J. Res. Nat. Bur. Stand. 45(4), 255–282
(1950)

16. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide. SIAM, Philadel-
phia (1997)

17. Meurant, G.: The Lanczos and Conjugate Gradient Algorithms: From Theory to
Finite Precision Computations. SIAM, Philadelphia (2006)

18. Nakata, M.: The MPACK: multiple precision arithmetic BLAS and LAPACK.
http://mplapack.sourceforge.net/ (2010)

19. Parlett, B.N., Reid, J.K.: Tracking the progress of the Lanczos algorithm for large
symmetric eigenproblems. IMA J. Numer. Anal. 1, 135–155 (1981)

20. Parlett, B.N., Scott, D.S.: The Lanczos algorithm with selective orthogonalization.
Math. Comp. 33, 217–238 (1979)

21. Parlett, B.N., Simon, H., Stringer, L.M.: On estimating the largest eigenvalue with
the Lanczos algorithm. Math. Comp. 38, 153–165 (1982)

22. Parlett, B.: Misconvergence in the Lanczos algorithm. In: Cox, M., Hammarling, S.
(eds.) Reliable Numerical Computation, pp. 7–24. Clarendon Press, Oxford (1990)

23. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs
(1980)

24. Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd edn. SIAM,
Philadelphia (2011)

25. Simon, H.D.: Analysis of the symmetric Lanczos algorithm with reorthogonaliza-
tion methods. Linear Algebra Appl. 61, 101–131 (1984)

26. Simon, H.D.: The Lanczos algorithm with partial reorthogonalization. Math.
Comp. 42, 115–142 (1984)

27. van der Sluis, A., van der Vorst, H.A.: The convergence behavior of Ritz values in
the presence of close eigenvalues. Linear Algebra Appl. 88–89, 651–694 (1987)

28. Spielman, D.A., Teng, S.H.: Smoothed analysis: an attempt to explain the behavior
of algorithms in practice. Commun. ACM 52, 76–84 (2009)

29. Stewart, G.W.: Matrix Algorithms, Volume 2: Eigensystems. SIAM, Philadelphia
(2001)

30. Strakoš, Z., Greenbaum, A.: Open questions in the convergence analysis of the
Lanczos process for the real symmetric eigenvalue problem. IMA Preprint 934,
University of Minnesota (1992)

31. Wu, K., Simon, H.: Thick-restart Lanczos method for large symmetric eigenvalue
problems. SIAM J. Matrix Anal. Appl. 22, 602–616 (2000)

32. Wülling, W.: The stabilization of weights in the Lanczos and conjugate gradient
method. BIT Numer. Math. 45, 395–414 (2005)

33. Wülling, W.: On stabilization and convergence of clustered Ritz values in the
Lanczos method. SIAM J. Matrix Anal. Appl. 27, 891–908 (2006)

Adaptive Load Balancing for Massively Parallel
Multi-Level Monte Carlo Solvers

Jonas Šukys(B)

ETH Zürich, Zürich, Switzerland
jonas.sukys@sam.math.ethz.ch

Abstract. The Multi-Level Monte Carlo algorithm was shown to be
a robust solver for uncertainty quantification in the solutions of multi-
dimensional systems of stochastic conservation laws. For random fluxes
or random initial data with large variances, the time step of the explicit
time stepping scheme becomes random due to the random CFL stabil-
ity restriction. Such sample path dependent complexity of the underly-
ing deterministic solver renders our static load balancing of the MLMC
algorithm very inefficient. We introduce an adaptive load balancing pro-
cedure based on two key ingredients: (1) pre-computation of the time
step size for each draw of random inputs (realization), (2) distribution
of the samples using the greedy algorithm to “workers” with heteroge-
neous speeds of execution. Numerical experiments showing strong scaling
are presented.

Keywords: Uncertainty quantification · Conservation laws ·Multi-level
Monte Carlo · FVM · Load balancing · Greedy algorithms · Linear
scaling

1 Introduction

A number of problems in physics and engineering are modeled in terms of systems
of conservation laws, defined on the d-dimensional physical domains:

{
Ut(x, t) + div(F(U)) = S(x,U),

U(x, 0) = U0(x),
∀(x, t) ∈ R

d × R+. (1)

Here, U : R
d → R

m denotes the vector of conserved variables, F : R
m × R

m →
R

m×d is the collection of directional flux vectors and S : R
d × R

m → R
m is the

source term. The partial differential equation is augmented with initial data U0.
Examples for conservation laws include the shallow water equations of

oceanography, the Euler equations of gas dynamics, the Magnetohydrodynamics
(MHD) equations of plasma physics, the wave equation and others.

As the equations are non-linear, analytic solution formulas are only available
in very special situations. Consequently, numerical schemes such as finite volume
methods [4] are required for the study of systems of conservation laws.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 47–56, 2014.
DOI: 10.1007/978-3-642-55224-3 5, c© Springer-Verlag Berlin Heidelberg 2014

48 J. Šukys

Existing numerical methods for approximating (1) require initial data U0,
source S and flux function F as input. However, in most practical situations, it is
not possible to measure some of these inputs precisely; for wave equation, mate-
rial coefficients are often uncertain due to the scarcity of seismic measurements,
whereas fluid dynamics and surface wave propagation in shallow water equations
often lacks precision in initial data and source terms. Such uncertainty in inputs
propagates to the solution, leading to the stochastic system of conservation laws:

{
U(x, t, ω)t + div(F(U, ω)) = S(x, ω),

U(x, 0, ω) = U0(x, ω),
x ∈ R

d, t > 0, ∀ω ∈ Ω. (2)

where (Ω,F ,P) is a complete probability space, the initial data U0 and the
source term S are random fields [6,7], and the flux F is a Ω-uniformly Lipschitz
random function [6]. The solution is also realized as a random field; its statistical
moments (e.g. expectation E[U] and variance V[U]) are the quantities of interest.
Numerical methods for approximation of (2) include the stochastic Galerkin,
stochastic collocation (see references in [6]) and stochastic Finite Volume [5].
Currently these methods are not able to handle large number of uncertainty
sources, are intrusive and hard to parallelize. Alternatively, an estimate of E[U]
can be obtained by the Monte Carlo finite volume method (MC-FVM) [6], i.e.
by computing the sample mean (ensemble average) of M solutions Ui,n

T , each of
them approximated using FVM method [4] on a mesh T with mesh width Δx:

EM [Un
T] :=

1
M

M∑

i=1

Ui,n
T , M ∈ N. (3)

MC-FVM estimate EM [Un
T] was proven to converge with the rate−s/(d+1+2s),

where s denotes the convergence rate of the FVM solver [6–8]. Slow convergence
makes MC-FVM method computationally unfeasible if high accuracy is needed.

The multi-level Monte Carlo finite volume method (MLMC-FVM) was
recently proposed in [6,7]. The key idea behind MLMC-FVM is to simulta-
neously draw MC samples on a hierarchy of nested grids. There are four main
steps:
1. Nested meshes: Consider nested triangulations {T�}∞�=0 of the spatial

domain with corresponding mesh widths Δx� that satisfy Δx� = O(2−�Δx0).
An example of such hierarchy with the first 3 levels is provided in Fig. 1.

2. Sample: For each level of resolution � ∈ N0, we draw M� independent identi-
cally distributed (i.i.d) samples {Ui

0,�,S
i
�,F

i
�} with i = 1, 2, . . . ,M� from the

random fields U0,S,F and approximate Ui
0,� and Si

� by cell averages.
3. Solve: For each resolution level � and each realization {Ui

0,�,S
i
0,�,F

i
�}, the

underlying balance law (1) is solved by the finite volume method [4] with
mesh width Δx�; denote solutions by Ui,n

T�
at the time tn and mesh level �.

4. Estimate solution statistics: Fix the highest level L ∈ N0. Denoting the
MC estimator defined in (3) for the level � by EM�

, we approximate E[U] by

EL[U(·, tn)] :=
L∑

�=0

EM�
[Un

T�
−Un

T�−1
], (4)

Adaptive Load Balancing for Massively Parallel MLMC 49

Fig. 1. Example of the first three levels (L = 2) of the hierarchy of nested grids for the
two dimensional case. Example for the number of samples M� is provided according to
(5) for s = 1/2 with the number of samples on the finest mesh level set to ML = 2.

In order to equilibrate statistical and spatio-temporal discretization errors in
(4), the following number of samples on each mesh level � is needed [7,8]:

M� = ML22(L−�)s, ML ∈ N. (5)

Notice that most of MC samples are computed on the coarsest mesh level � = 0,
and only a small fixed number ML of samples is needed on the finest mesh � = L,
see Fig. 1. The error vs. work estimate for MLMC is given by [6,7],

error � (Work)−s/(d+1) log(Work). (6)

Estimate (6) shows that MLMC is superior to MC; in particular, at the relative
error level of 1 %, MLMC-FVM was two orders of magnitude faster [6–8].

MLMC-FVM is non-intrusive as any standard FVM solver can be used in
step 3. Furthermore, MLMC-FVM is amenable to efficient parallelization, which
is the main topic of this paper. In Sect. 2 the limits of the static load balancing are
discussed as a motivation for a novel adaptive load balancing, which is introduced
in Sect. 4. Parallel scaling and efficiency analysis is provided in Sect. 5.

2 Scalable Parallel Implementation of MLMC-FVM

We use 3 levels of parallelization: across mesh levels, across MC samples and
using domain decomposition (DDM) for FVM solver, see example in Fig. 2.

In [9] all required ingredients for parallelization were introduced and ana-
lyzed: parallel robust pseudo random number generation (WELL512a RNG was
used), numerically stable parallel “online” variance computation algorithms,
domain decomposition method within each FVM solver and static load
balancing, which distributes (at compile-time) computational work of multi-
ple concurrent solve steps evenly among the available cores using the a-priori

50 J. Šukys

Fig. 2. Parallelization over mesh levels, MC samples and using domain decomposition.

estimates on the computational work of any sample on a given mesh resolution
T . Static load balancing appeared to be very efficient for stochastic systems of
conservation laws (2) with deterministic fluxes F and stochastic initial data U0

with small variance V[U0], i.e. V[U0] � E[U0]. In particular, we have verified
strong scaling (fixed problem size while increasing the number of cores) of sta-
tic load balancing in the parallel (using MPI [10]) code ALSVID-UQ [1] up to
40 000 cores [9].

The goal of this paper is to design a novel adaptive load balancing (at run-
time) which would be efficient for a much broader range of stochastic systems
of conservation laws (2), for instance, where the flux function F is random.

3 Problem Setting and Estimates for Computational
Work

Static load balancing [9] uses two assumptions on the computational work WorkT
needed to solve (1) for a given sample of random input data on a given mesh T :

1. accurate relative (w.r.t. another mesh T ′) estimates for WorkT are available
2. for a fixed mesh T , estimate WorkT is almost the same for all realizations

3.1 Estimates for the Computational Work of the FVM Solver

Assuming a homogeneous computing environment (all cores have identical CPUs,
RAM, and equal bandwidth/latency to all other cores), accurate computational
work estimates were derived in [9]. For a given mesh T with mesh width Δx and
total number of cells N = #T , the required computational work for one time
step (numerical flux approximations) of one sample was computed to be

Workstep
T = Workstep(Δx) = O(N) = KΔx−d, (7)

where constant K depends on FVM that is used, but does not depend on mesh
widthΔx. In most explicit FVM schemes [4], lower order termsO(Δx−d+1) in (7)

Adaptive Load Balancing for Massively Parallel MLMC 51

are negligible, even on a very coarse mesh. To ensure the stability of the FVM
scheme, a CFL condition [4] is imposed on the time step size Δt := tn+1 − tn,

Δt =
CCFL

λ
Δx, 0 < CCFL ≤ 1, λ > 0, (8)

where the so-called CFL number CCFL does not depend on Δx and λ is the
absolute value of the maximal wave speed [4]. Hence, the computational work
Workdet

T for one complete deterministic solve using the FVM method on the
triangulation T with mesh width Δx is given by multiplying the work for one
step (7) by the total number of time steps Δt−1 for the time horizon T > 0,

Workdet
T = Workstep

T · T
Δt

= KΔx−dλ
T

CCFLΔx
=

KT

CCFL
λΔx−(d+1). (9)

For deterministic fluxes F and stochastic initial data U0 with small variance
V[U0], the maximum wave speed λ does not vary significantly among all MC
samples and hence the second property in Sect. 3 holds. For random flux F,
however, λ can strongly depend on the particular realization of F. As an example,
we consider acoustic wave equation in random heterogeneous medium.

3.2 Acoustic Wave Equation in Random Medium

Acoustic wave equation in random heterogeneous d-dimensional domain D ⊂ R
d

can be written in a form of a linear system of first order conservation laws [8],
{
pt(x, t, ω)−∇ · (c(x, ω)u(x, t, ω)) = 0,

ut(x, ω)−∇p(x, ω) = 0,
x ∈ D, t > 0, ω ∈ Ω, (10)

with deterministic initial data p(x, 0) ∈ C∞(D), u0(x, 0) ∈ (C∞(D))d and
random coefficient c ∈ L0(Ω,L∞(D)) with P[c(x, ω) > 0,∀x ∈ D] = 1. As the
system (10) is linear and random coefficient c is independent of t, the maximum
wave speed λ does not depend on u0, p0 or t, but explicitly depends [8] on c,

λ(ω) = max
x∈D

√
c(x, ω). (11)

Depending on c, the variance of λ(ω) can be very large. As an example, consider
domain D = [0, 3]2 and the wave speed c given by its Karhunen-Loève expansion,

log c(x, ω) = log c̄(x) +
∞∑

m∈N2
0\{0}

√
αmΨm(x)Ym(ω), (12)

with eigenvalues αm, eigenfunctions Ψm(x), and the mean field c̄(x) set to

αm = |m1 + m2|−2.5, Ψm(x) = sin(m1πx2) sin(m2πx1), c̄(x) ≡ 0.1,

and with independent standard normal random variables Ym ∼ N [0, 1]. Then,
c, c−1 /∈ L∞(Ω,L∞(D)), i.e. there is positive probability such that λ(ω) attains

52 J. Šukys

any arbitrary large or arbitrary small value. Nevertheless, according to Proposi-
tion 1 and Theorems 2 and 5 in [8], solutions to (10) with (12) are well-defined,
have finite statistical moments and can be approximated by the MLMC-FVM.

For such class of problems, the computational work (9) required for one
sample (draw) on a given mesh T is a random variable, proportional to λ(ω),

Workrand
T (ω) =

KT

CCFL
λ(ω)Δx−(d+1). (13)

Proceeding with our analysis, we consider the expected computational work,

E[WorkT] = E[Workrand
T (ω)] =

KT

CCFL
E[λ(ω)]Δx−(d+1), (14)

which is finite, as long as the expected value of maximal wave speed λ is finite.
The direct consequence of this is that the static load balancing from [9], at least
on average, is expected to scale. Furthermore, in [8], MLMC-FVM algorithm is
analyzed in the case of (13) and the resulting complexity of error vs. expected
amount of computational work is proven to be analogous to (6),

error � (E[Work])−s/(d+1) log(E[Work]). (15)

Note, that all systems (linear and non-linear) of conservation laws exhibit anal-
ogous phenomenon if the flux function F is random with large variance, see [6]
for more examples. Another class of problems is with non-linear fluxes (can be
deterministic), where λ depends not only on F but also on U (hence also on U0)
and potentially has large variance if U0 has large variance.

3.3 Limits of the Static Load Balancing

Despite the estimates (14) of average work, the efficiency of the balancing is
expected to drop significantly for a single run of the MLMC-FVM due to the
non-uniform λi

�. This can be clearly seen in Fig. 3, where the scaling analysis of
static load balancing in MLMC-FVM for the wave equation (10) with material
coefficient given by (12) is performed. As expected, the algorithm scales linearly
with the number of cores, but the efficiency is consistently low, where:

efficiency := 1− (total clock time of all MPI routines and idling)
(#cores)× (wall clock time)

. (16)

Labels “MLMC” and “MLMC2” indicate s = 1/2 and s = 1 in (5), respec-
tively. The runtime of all simulations is measured by MPI Wtime() routine [10].

Simulations were executed on Cray XE6 (see [11]) with 1496 AMD Interlagos
2 × 16-core 64-bit CPUs (2.1 GHz), 32 GB DDR3 memory per node, 10.4 GB/s
Gemini 3D torus interconnect with a theoretical peak performance of 402 TFlops.

To improve the efficiency of load balancing, sample-dependent computational
work estimates (13) need to be taken into account. To this end, we introduce an
adaptive load balancing, where samples are distributed during run-time, after
computing λ(ω) for each required realization, but before actually starting the
FVM time stepping of any sample (hence, it is not a dynamic balancing).

Adaptive Load Balancing for Massively Parallel MLMC 53

Fig. 3. Inefficient strong scaling of static load balancing in case of random maximum
wave speeds λ(ω) with large relative variance V[λ]/E[λ] resulting from (12).

4 Adaptive Load Balancing

We assume to have a “pool” G of cores (processing units), consisting of groups
Gm (of arbitrary size) of cores indexed by “multi level” m = L,L−1, . . . ,m0 ≥ 0,
which are themselves divided into equal groups Gs

m of cores indexed by “sampler”
s = 1, . . . , Pm. The number of cores in a given sampler Gs

m is independent on
s and denoted by Dm. An example of such pool with L = 5, m0 = 1, {Pm} =
{1, 1, 2, 4, 8}, {Dm} = {1, 1, 1, 1, 2} is depicted in Fig. 2. We assume, that any
of the MC samples from any mesh level � can be efficiently computed on any
sampler Gs

m in the pool, in serial or by using domain decomposition if Dm > 1.
By efficient computation we assume strong scaling of the domain decomposition.

4.1 Computation and Distribution of Loads

Define Loadi
� to be the normalized (constants are neglected) required compu-

tation time for the i-th difference of samples between mesh levels � and � − 1,

Loadi
� = λi

�

(
Δx

−(d+1)
� +Δx

−(d+1)
�−1

)
, � = 0, . . . , L, i = 1, . . . ,M�, (17)

where all λi
� are computed in parallel on all PL samplers G1

L, . . . ,GPL

L , each
consisting of DL cores, and then broadcast to every core. Computations of λi

� do
not need time stepping and hence are cheaper by a factor O(Δx�) compared to
the full FVM; required global communication is also small, of order O(22Ls|G|).

The goal of the load balancing is to distribute all samples with required com-
putational time Loadi

� to samplers Gs
m. Greedy algorithm for identical samplers

has been analyzed in [3] and was proven to be a 4/3-approximation, i.e. the
makespan (maximum run-time among all workers) is at most 4/3 times larger
than the optimal (minimal) makespan. If loads are not ordered, then greedy
algorithm is only a 2-approximation [3]. Here we present a generalization of the
greedy algorithm for samplers with heterogeneous speed of execution. The main
idea of the algorithm is the recursive assignment of the largest available Loadi

� to
the sampler Gs

m for which the total run-time Rs
m including Loadi

� is minimized.

54 J. Šukys

The pseudo code of the adaptive load balancing is provided as Algorithm 1,
where the notation Loadi

� ∈ Gs
m means that i-th difference of samples between

mesh resolution levels � and �− 1 is assigned to be computed on sampler Gs
m.

Algorithm 1. Greedy load balancing (with non-identical speeds of execution)
L = {Loadi

� : � = 0, . . . , L, i = 1, . . . , M�}
while L �= ∅ do

Loadi
� = max L

Gs
m = arg min

Gs
m

(
R(Gs

m) + Loadi
�/Dm

)
, R(Gs

m) =
∑

{Load/Dm : Load ∈ Gs
m}

Gs
m = Gs

m ∪ Loadi
�

L = L\Loadi
�

end while

Note, that if samplers have identical speeds of execution, i.e. Dm are all
equal, then the above Algorithm 1 reduces to the standard greedy algorithm.

If loads are not ordered (replace “maxL” by “any load from L”), then Algo-
rithm 1 is only a (1 + Dmax/Dmin)-approximation (analogous proof as in [3]).
Hence, if samplers Gs

m have very heterogeneous speeds of execution 1/Dm, Algo-
rithm 1 may provide a much longer makespan, compared to the optimal. How-
ever, if we assume that loads are ordered and are as heterogeneous as samplers,

Loadmax

Loadmin
:=

max�,i Loadi
�

min�,i Loadi
�

≥ Dmax

Dmin
, (18)

then Algorithm 1 is a 2-approximation. We present this result as a theorem.
Theorem 1. If (18) holds and the last load of the bottle-neck sampler is bounded
by (Dmin/Dmax) · Loadmax, then Algorithm 1 is a 2-approximation.

Proof. Let R(G∗) be the run-time of the bottle-neck sampler G∗ and Load∗ be
the last sample assigned to G∗. Then, according to distribution procedure,

R(G∗) ≤ R(Gs
m) + Load∗/Dm, ∀m = m0, . . . , L, s = 1, . . . , Pm.

Summing the above inequality over all samplers Gs
m, we obtain a bound

R(G∗)− 1
#{Gs

m}
∑

m,s

Load∗

Dm
≤ 1

#{Gs
m}

∑

m,s

R(Gs
m) ≤ Ro,

whereRo is the optimal timespan, which is certainly not smaller than the average
of all runtimes R(Gs

m). Next, we use (18) and Load∗ ≤ LoadmaxDmin/Dmax,

1
#{Gs

m}
∑

m,s

Load∗

Dm
≤ 1

#{Gs
m}

∑

m,s

Dmin

Dmax

Loadmax

Dmin
≤ Loadmax

Dmax
≤ Ro.

Combining both bounds, the desired inequality R(G∗) ≤ 2Ro is obtained. �
In case of MLMC-FVM, the assumption (18) is often satisfied, since loads Loadi

�

scale asymptotically as WorkT�
= O(2(d+1)�) due to (13), and the speeds of

executionDm using domain decomposition scale only as #Tm, i.e.Dm = O(2dm).

Adaptive Load Balancing for Massively Parallel MLMC 55

4.2 Implementation Remarks

Once the loads have been distributed to samplers Gs
m, the parallel execution

of FVM solves and the final assembly of the MLMC-FVM estimator remained
analogous as in [9], i.e. Message Passing Interface (MPI) was chosen, making
heavy use of the appropriate local MPI intra-communicators [10]. The new part
for the adaptive balancing is the parallel computation (and broadcast) of the
maximum wave speeds λi

�, which is problem-specific. For the wave equation (10),
λi

� were computed by computing random coefficients ci� and then using (11).
Note, that in the computation of loads (as well as the samples themselves), the
parallelization configuration (Dm, Pm) might need to be adapted to the required
mesh level �: due to memory limitations, samples on fine meshes use larger Dm,�

and fewer samplers Pm,�, and due to inefficiency of DDM, samples on coarse
meshes use smaller Dm,� and more samplers Pm,�, keeping Pm,� ·Dm,� = Pm ·Dm.

5 Efficiency and Linear Scaling in Numerical Simulations

To ensure a fair comparison, the adaptive load balancing algorithm was tested
on the same problem as the static load balancing, see (10) in Subsect. 3.3.

In Fig. 4 we verify strong scaling of our implementation. We observed scaling
to be maintained for up to almost 40 000 cores at high efficiency. Simulations
were executed on the same Cray XE6 (see [11]) architecture as in Subsect. 3.3.
We believe that our parallelization algorithm will scale linearly for a much larger
number of cores if the problem size is increased. The computational complexity
of the adaptive balancing (computation of loads and distribution of samples) is
O(2L·max(2s,d) + |G|22Ls), where both terms are dominated by full simulation.

For non-linear fluxes and random initial condition, knowledge of the input
data (at t = 0) might not be sufficient to accurately estimate λ(ω). In such cases
the performance of the adaptive load balancing might be sub-optimal; dynamic
load balancing could be used, possibly introducing a large overhead [2].

Fig. 4. Strong scaling of adaptive load balancing up to 40 000 cores. The efficiency is
nearly optimal and is much better if compared to the static load balancing in Fig. 3.

56 J. Šukys

6 Conclusion

MLMC-FVM algorithm is superior to standard MC algorithms for uncertainty
quantification in hyperbolic conservation laws, and yet, as most sampling algo-
rithms, it still scales linearly w.r.t. number of uncertainty sources. Due to its
non-intrusiveness, MLMC-FVM was efficiently parallelized for multi-core archi-
tectures. For systems with deterministic fluxes, static load balancing was already
available [9], which was shown to scale strongly and weakly on the high perfor-
mance cluster [11] in multiple space dimensions. For linear systems with random
fluxes, adaptive load balancing was introduced, which maintains the same scaling
properties, but, by design, is applicable to a much wider class of problems.

Acknowledgments. This work is performed under ETH interdisciplinary research
grant CH1-03 10-1 and CSCS production project grant ID S366.

References

1. ALSVID-UQ, v3.0. http://www.sam.math.ethz.ch/alsvid-uq
2. Dandamudi, S.P.: Sensitivity evaluation of dynamic load sharing in distributed

systems. IEEE Concurrency 6(3), 62–72 (1998)
3. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.

17(2), 416–429 (1969)
4. LeVeque, R.A.: Numerical Solution of Hyperbolic Conservation Laws. Cambridge

University Press, Cambridge (2005)
5. Mishra, S., Risebro, N.H., Schwab, C., Tokareva, S.: Multi-level Monte Carlo finite

volume methods for scalar conservation laws with random flux. Technical Report,
SAM, 2012. http://www.sam.math.ethz.ch/reports/2012/35

6. Mishra, S., Schwab, C., Šukys, J.: Multi-level monte carlo finite volume methods for
uncertainty quantification in nonlinear systems of balance laws. In: Bijl, H., Lucor,
D., Mishra, S., Schwab, C. (eds.) Uncertainty Quantification in Computational
Fluid Dynamics. Lecture Notes in Computational Science and Engineering, vol.
92, pp. 225–294. Springer, Zurich (2013)

7. Mishra, S., Schwab, C.: Sparse tensor multi-level monte carlo finite volume methods
for hyperbolic conservation laws with random initial data. Math. Comp. 280(81),
1979–2018 (2012)

8. Šukys, J., Schwab, C., Mishra, S.: Multi-level Monte Carlo finite difference and
finite volume methods for stochastic linear hyperbolic systems. In: Dick, J., et al.
(eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, vol. 65, pp. 649–666.
Springer, Berlin (2013) http://www.sam.math.ethz.ch/reports/2012/19

9. Šukys, J., Mishra, S., Schwab, C.: Static load balancing for multi-level Monte
Carlo finite volume solvers. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 245–254. Springer,
Heidelberg (2012)

10. MPI: A Message-Passing Interface Standard. Version 2.2, 2009. http://www.
mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

11. Rosa, Swiss National Supercomputing Center (CSCS), Lugano, www.cscs.ch

Parallel One–Sided Jacobi SVD Algorithm
with Variable Blocking Factor

Martin Bečka and Gabriel Okša(B)

Institute of Mathematics, Slovak Academy of Sciences, Bratislava, Slovak Republic
{Martin.Becka,Gabriel.Oksa}@savba.sk

Abstract. Parallel one-sided block-Jacobi algorithm for the matrix sin-
gular value decomposition (SVD) requires an efficient computation of
symmetric Gram matrices, their eigenvalue decompositions (EVDs) and
an update of matrix columns and right singular vectors by matrix mul-
tiplication. In our recent parallel implementation with p processors and
blocking factor � = 2p, these tasks are computed serially in each proces-
sor in a given parallel iteration step because each processor contains
exactly two block columns of an input matrix A. However, as shown in
our previous work, with increasing p (hence, with increasing blocking
factor) the number of parallel iteration steps needed for the convergence
of the whole algorithm increases linearly but faster than proportionally
to p, so that it is hard to achieve a good speedup. We propose to break
the tight relation � = 2p and to use a small blocking factor � = p/k for
some integer k that divides p, � even. The algorithm then works with
pairs of logical block columns that are distributed among processors so
that all computations inside a parallel iteration step are themselves par-
allel. We discuss the optimal data distribution for parallel subproblems
in the one-sided block-Jacobi algorithm and analyze its computational
and communication complexity. Experimental results with full matrices
of order 8192 show that our new algorithm with a small blocking fac-
tor is well scalable and can be 2–3 times faster than the ScaLAPACK
procedure PDGESVD.

Keywords: Singular value decomposition · Serial one–sided Jacobi algo-
rithm · Parallel one–sided block–Jacobi algorithm

1 Introduction

The one-sided block-Jacobi SVD algorithm is suited for the SVD computation
of a general, dense, complex matrix A of order m × n, m ≥ n. However, we
will restrict ourselves to real matrices with obvious modifications for the com-
plex case.

We start with the block-column partitioning of A in the form

A = [A1, A2, . . . , A�],

where the width of Ai is ni, 1 ≤ i ≤ �, so that n1 + n2 + · · ·+ n� = n.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 57–66, 2014.
DOI: 10.1007/978-3-642-55224-3 6, c© Springer-Verlag Berlin Heidelberg 2014

58 M. Bečka and G. Okša

The serial algorithm can be written as an iterative process:

A(0) = A, V (0) = In,

A(r+1) = A(r)U (r), V (r+1) = V (r)U (r), r ≥ 0. (1)

Here the n × n orthogonal matrix U (r) is the so-called block rotation, and the
purpose of matrix multiplication A(r)U (r) in (1) is to mutually orthogonalize
individual columns between block columns i and j of A(r). During the iterative
process (1), the block column pairs (i, j) are mutually orthogonalized according
some ordering, which defines the algorithm’s strategy. The most common cyclic
strategies are the row-cyclic one and the column-cyclic one, where the orderings
are given row-wise and column-wise, respectively, with regard to the upper tri-
angle of A. The first �(� − 1)/2 iterations constitute the first sweep. When the
first sweep is completed, the pairs (i, j) are repeated during the second sweep,
and so on, up to the convergence of the entire algorithm.

Notice that in (1) only the matrix of right singular vectors V (r) is iteratively
computed by orthogonal updates. If the process ends at iteration t, say, then A(t)

has mutually highly orthogonal columns. Their norms are the singular values of
A, and the normalized columns (with unit 2-norm) constitute the matrix of left
singular vectors.

Alternatively [7], the right singular vectors collected in V can be computed
a posteriori from the matrix equation

AV = A(t). (2)

This strategy spares the orthogonal updates of right singular vectors in each
parallel iteration step, but the original matrix A is needed.

A parallel version of the one-sided block-Jacobi SVD algorithm, implemented
on p processors, mutually orthogonalizes �/2 pairs of block columns in each par-
allel iteration step. The orthogonalization of block columns Ai and Aj is implic-
itly equivalent to the diagonalization of the auxiliary symmetric Gram matrix
G = (Ai, Aj)T (A,Aj), which can be computed by its eigenvalue decomposition
(EVD). This leads to the natural matrix data distribution with the blocking fac-
tor � = 2p where each processor contains two full block columns of width n/2p.
Consequently, the computations of the Gram matrix, the EVD and the update
of block columns are local with respect to processors.

To proceed in parallel computation, some parallel ordering is required that
defines p independent pairs of block columns of A which are simultaneously
mutually orthogonalized in a given parallel iteration step by computing p eigen-
value decompositions of p Gram matrices G. Up to now, some cyclic (static) par-
allel ordering has been used [1]. In [5], three new variants of so-called dynamic
ordering were proposed and tested that take into account the actual degree of
the mutual perpendicularity of any pair of block columns based on the estima-
tion of principal angles. Moreover, the design of global and local convergence
criteria was also analyzed in some detail. These new ideas led to the substantial
decrease of the number of parallel iteration steps needed for the convergence of

Parallel One–Sided Jacobi SVD Algorithm with Variable Blocking Factor 59

whole algorithm for a wide class of random matrices with various distributions
of singular values.

The basic variant of the above algorithm can be augmented by pre-processing
and post-processing steps similarly to the two-sided block-Jacobi SVD algorithm;
see [4,9]. Pre-processing consists of pivoted or un-pivoted QR factorization of
matrix A, followed by the un-pivoted LQ factorization of R-factor. The Jacobi
process is then applied to the lower triangular factor L. Notice that in this case
the a posteriori computation of right singular vectors in (2), which is imple-
mented in both variants of our Jacobi algorithm (see below), is very simple and
fast: the system matrix is lower triangular so that the appropriate columns of V
are computed locally using O(n) flops. In the post-processing step, the computed
left and right singular vectors are multiplied by orthogonal matrices that arise in
QR and LQ factorization. This type of pre-processing helps to concentrate the
Frobenius norm of Gram matrices near their main diagonal so that less iterations
are needed for inner EVDs of 2× 2 block subproblems.

In this paper we break the tight relationship � = 2p and wish to use a small
blocking factor � = p/k for some natural number k that divides p, � even. Each
processor contains one physical block column of size m × n/p, but the Jacobi
algorithm will use logical block columns, whereby one logical column consists of
k physical block columns, i.e., it is shared by k processors. This data distribution
requires to parallelize the computation of Gram matrices, the EVD, the update
of block columns and the computation of right singular vectors. Next section
contains the description of steps needed for such a parallelization.

2 Parallel Computation in a Parallel Iteration Step

As mentioned above, an input matrix A ∈ R
m×n is distributed among p proces-

sors with the processor grid 1 × p so that each processor contains one physical
block column of size m×n/p. For large p and fixed n, one can have many blocks
with a small width. In [2] it was shown that the number of parallel iteration steps
needed for the convergence increases linearly but faster than proportionally to
�. Hence, to decrease a parallel execution time of the whole algorithm, it can be
advantageous to work with a small blocking factor �. This is possible by using
logical block columns that consist of k physical block columns each, where the
“logical” blocking factor is � = p/k.

One subtask in the parallel one-sided Jacobi algorithm needs two logical block
columns, i.e., it requires a context of type 1 (CTXT1) with the processor grid
1 × 2k. Note that there are exactly �/2 subproblems in each parallel iteration
step. Inside each CTXT1, the cyclic data distribution is given by the processor
grid, i.e., the row block size mb = m and the column block size nb = n/p. At
the beginning of algorithm, all CTXT1s are constructed using subsequent block
columns of matrix A.

Next, one has to compute the Gram matrix inside each CTXT1, which can be
done using the ScaLAPACK procedure PDSYRK. However, it is well known that
the most efficient data distribution for parallel matrix-matrix products of type

60 M. Bečka and G. Okša

Y TY ∈ R
2k×2k as well as for the EVD is the two-dimensional one of type r×c =

2k with r ≈ c ≈ √2k; see [6]. Therefore, each CTXT1 is re-defined by using the
ScaLAPACK procedure PDGEMR2D into a context of type 2 (CTXT2), where the
corresponding processors are arranged into a grid r×c. The corresponding matrix
Y consisting of two logical block columns is cyclically re-distributed onto this
processor grid.

The CTXT2 is then used for a parallel EVD computation of the Gram matrix
and for a parallel update of block columns of A inside each subtask. Since Gram
matrices are symmetric, their EVDs are computed using the ScaLAPACK pro-
cedure PDSYEV. Updates of block columns can be computed using the procedure
PDGEMM. Data are then re-distributed to the original CTXT1 because this context
is more suited for the parallel computation of weights in the re-ordering step.

In [5], three variants of dynamic ordering for the one-sided Jacobi algorithm
were designed, implemented and tested, and variant 3 has been recommended
for general use. Let e ≡ (1, 1, . . . , 1)T ∈ R

k×1, and for each logical column block
Ai define its representative vector,

ci ≡ Ai e

‖e‖ , 1 ≤ i ≤ �. (3)

The choice of e ensures a uniform participation of all k one-dimensional sub-
spaces, which constitute span(Ai), in the definition of ci. For any pair of logical
block columns (Ai, Aj), the weight wij describes the mutual position of the whole
subspace span(Ai) with respect to the representative vector cj . Hence,

wij ≡ ‖AT
i cj‖ =

‖AT
i Aje‖
‖e‖ . (4)

It can be expected that this weight will estimate the mutual position of two
subspaces span(Ai) and span(Aj) quite precisely because the orientation of cj
with respect to the whole orthonormal basis of span(Ai) is taken into account.
Then the dynamic ordering chooses �/2 pairs of logical block columns that are
mutually inclined mostly (i.e., they have the largest values of wij), and these
pairs will be orthogonalized in next parallel iteration step. More details can be
found in [5].

In our implementation, the weight computation begins with computing the
representative vector for each logical block column, which can be easily done by
summing all matrix column vectors within each block column communicator.
Also the computation of �(� − 2)/2 weights in (4) is done in parallel and in a
perfectly balanced way. At the end, all processors contain all weights and can
compute the re-ordering in parallel. Note that choosing �/2 logical block columns
for the subsequent orthogonalization does not require any explicit Send/Receive
operation because only contexts are generated.

3 Computational and Communication Complexity

Supposing a perfect parallelization of each procedure, the number of flops for
individual subtasks (GRAM, EVD, MM = matrix-matrix multiplications,

Parallel One–Sided Jacobi SVD Algorithm with Variable Blocking Factor 61

WC = weight computation) in one parallel iteration step are summarized in
Table 1 for a square matrix of order n.

Table 1. Comparison of computational complexity per one iteration step

task � = 2p � = p/k

GRAM n3/(2p2) n3/(�p)
EVD c1n

3/p3 4c1n
3/(�2p)

MM 2c2n
3/p2 4c2n

3/(�p)
WC n2 n2�/(2p)

The values c1 and c2 are small constants; see [2]. Given p processors, it can
be seen that for fixed blocking factor � = 2p the computation of weights is not
parallelized at all, which is in contrast to the case of � = p/k. Since for � = p/k
one has 2 ≤ � ≤ p, the computational complexity of GRAM, EVD and MM is
worse than for fixed � = 2p.

Table 2 shows the comparison of an overall computational work needed in
one sweep defined as a sequence of � parallel iteration steps.

Table 2. Comparison of computational work per one sweep

task � = 2p � = p/k

GRAM n3/p n3/p
EVD 2c1n

3/p2 4c1n
3/(�p)

MM 4c2n
3/p 4c2n

3/p
WC n2� n2�2/(2p)

Whereas the computational work for GRAM and MM is equal in both cases,
the computation of EVD is cheaper in the case of fixed blocking factor. For fixed
p, this difference can be compensated by less parallel iteration steps needed for
the convergence of the whole Jacobi algorithm as can be expected for small
blocking factors � = p/k; see [2,3]. On the other hand, the computation of
weights for the dynamic ordering is much cheaper for � = p/k, especially for
small values of �.

With respect to the communication, each ScaLAPACK routine has its own
communication complexity that is not “visible” to the user. Here we can ana-
lyze the WC, which turns out to be the most important part of the overall
communication complexity. In the case of a cyclically distributed matrix, a rep-
resentative vector is computed using MPI REDUCE(�/p, n) (first parameter is a
number of processors, the second one is data size). Next, the representative vec-
tors are gathered in one matrix using MPI ALLGATHER(�, n) and broadcast by
MPI BCAST(�/p, n�). Inside each logical block, the weights are computed using

62 M. Bečka and G. Okša

MPI REDUCE(�/p, �/2) and gathered by MPI ALLGATHER(�, 3�/2). As discussed in
next section, the communication complexity of the WC and its efficient imple-
mentation is crucial for the performance of the Jacobi algorithm with � = 2p.

4 Numerical Experiments

The parallel one-sided block-Jacobi SVD algorithm with the un-pivoted QRLQ
pre-processing step (see [4]) was implemented on the Doppler Cluster at the
University of Salzburg, Austria. The Doppler Cluster consists of 32 nodes where
each node has 16 or 64 cores of type Opteron Series 6200, 2.2 GHz, and with 2–8
GB RAM per core. The parallel system is equipped with a variety of GPGPU
accelerator hardware and uses the QDR Infiniband / Mellanox interconnection
network.

We used up to six nodes in a stand-alone mode of computation, so that
measured execution times are quite reliable.

All computations were performed using the IEEE standard double precision
floating point arithmetic with the machine precision εM ≈ 2.22 × 10−16. The
number of processors p was p = 16, 32, 64 and 128 for random (normally dis-
tributed), real, square matrices of order n = 8192. The matrix condition number
κ was 101 (well conditioned matrix). Singular values were also distributed nor-
mally.

Various blocking factors of form � = p/k were used, where k is a natural
number. For � = 2, the smallest blocking factor possible, one computes the
EVD of the Gram matrix ATA in exactly one parallel iteration step and the
parallel execution time Tp is the minimal one, about three times less than for
other blocking factors. However, this approach is not recommended in general,
because the computation of the whole Gram matrix squares the singular values
(SVs) of A which can cause serious numerical problems in the case of very small
SVs. Hence, the cases with 2 < � ≤ p are more suitable from the numerical point
of view and only these blocking factors are discussed in detail in the following.

The local EVDs for � = 2p were computed by using the LAPACK procedure
DGESVJ (see [7,8]) that implements the serial one-sided Jacobi SVD method and
ensures the high relative accuracy also inside the 2×2 block subproblems. Since
Gram matrices are symmetric and positive semidefinite, their EVD is identical
with SVD. However, the procedure DGESVJ does not exploit the matrix symmetry
to decrease the number of arithmetic operations so that it is not optimal with
respect to the speed of computation and memory. For other blocking factors, the
ScaLAPACK procedure PDSYEV was used. Note that PDSYEV is based on matrix
tri-diagonalization so that the relative accuracy of computed eigenvalues can be
lost. However, the nowadays ScaLAPACK library does not contain the parallel
Jacobi procedure for the EVD of symmetric matrices.

For all processor grids, the block cyclic matrix distribution with mb = nb = 50
was used. In all cases, the global stopping criterion was

max
i,j

wij < n εM. (5)

Parallel One–Sided Jacobi SVD Algorithm with Variable Blocking Factor 63

Locally, two block columns were not mutually orthogonalized if

wij < n εM. (6)

The comparison of the scalability of our new algorithm with the variant using
� = 2p and the ScaLAPACK procedure PDGESVD with respect to the total parallel
execution time Tp is depicted in Fig. 1.

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

6000

number of processors p

to
ta

l p
ar

al
le

l e
xe

cu
tio

n
tim

e
[s

]

L=4
L=8
L=16
L=32
L=64
L=128
PDGESVD
L=2p

Fig. 1. Scalability for n = 8192 and κ = 101

For almost all blocking factors �, our new algorithm is well scalable with
only one exception for � = p = 128. For smaller number of processors (p ≤ 64),
our new variant is about 2–3 times faster than the ScaLAPACK procedure
PDGESVD; otherwise the both algorithms are practically identical w.r.t. Tp. How-
ever, our older variant with � = 2p is not scalable for a larger number of proces-
sors (p > 32). To get insight into its behavior, it is necessary to analyze the
performance of individual parallel tasks w.r.t. a number of processors. Such pro-
filing is depicted in Fig. 2.

As can be immediately seen, all computations are well scalable with excep-
tion of the WC, which does not scale at all (here GM denotes the Gram matrix
computation and V the a posteriori computation of right singular vectors). This
experimental fact is in accordance with the analysis of the communication com-
plexity performed at the end of previous section. Using � = 2p, many global
communication steps are in fact independent of p or increase with p. We suspect
that the communication complexity can be decreased by a reformulation of the
WC so that the procedures of type PBLAS 2 or PBLAS 3 will be used (the
current implementation uses PBLAS 1).

This communication bottleneck was eliminated to a large extent in our new
variant with a variable blocking factor �; see Fig. 3 for chosen � = 16. The good
scalability is in accordance with the theoretical communication complexity, since

64 M. Bečka and G. Okša

0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200

1400

number of processors p

pa
ra

lle
l e

xe
cu

tio
n

tim
e

[s
]

MM
EVD
WC
GM
QRLQ
V

Fig. 2. Profiling for � = 2p with respect to p

using a small, constant � means that global communication steps of the WC scale
as p−1 or are independent of p. Consequently, it only requires about 5–10 percent
of Tp except for p = 128. Clearly, using p = 128 processors for matrices of order
n = 8192 seems to be too much.

Regarding the accuracy of computation, we regularly computed three “qual-
ity indices” Q1, Q2 and Q3 that describe the relative error (with respect to the
Frobenius norm) in the orthogonality of left and right singular vectors, and in
the matrix assembled from the computed SVD triple, respectively:

Q1 =
‖UTU − I‖F√

n
, Q2 =

‖V TV − I‖F√
n

, Q3 =
‖A− UΣV T ‖F

‖A‖F .

For example, using p = � = 64, the achieved accuracy was Q1 ≈ 5×10−11, Q2 ≈
1 × 10−13 and Q3 ≈ 9 × 10−14. The relatively low level of orthogonality of U
is connected to an inaccurate computation of Gram matrices, especially of their
off-diagonal blocks, in later parallel iteration steps (when the block columns are
mutually “almost orthogonal”), and to the inherently low relative accuracy of the
ScaLAPACK procedure PDSYEV based on the tri-diagonalization of symmetric
matrices. In theory, the orthogonality of U could be improved using stronger
global and local convergence criteria in the right-hand side of (5) and (6). We
tested various approaches, e.g., using the value n/� instead of n, but then the
ScaLAPACK procedure PDSYEV did not converge for p, � ≥ 64. This problem
can be circumvented by avoiding the work with Gram matrices and computing
the inner SVD subproblems using parallel version of some Jacobi procedure.
However, at the moment, no such procedure is available in the ScaLAPACK
library.

Parallel One–Sided Jacobi SVD Algorithm with Variable Blocking Factor 65

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

number of processors p

pa
ra

lle
l e

xe
cu

tio
n

tim
e

[s
]

MM
EVD
WC
GM
QRLQ
V

Fig. 3. Profiling for � = 16 with respect to p

On the other hand, the level of orthogonality of the a posteriori computed
right singular vectors is excellent. This is a consequence of remarkable numerical
properties of the lower triangular factor L to which the Jacobi method is applied
after the preprocessing QRLQ step. As discussed in [7] in detail, when written
as L = Y1D1 = D2Y2, where D1 and D2 are diagonal scaling matrices containing
the Euclidean norms of columns and rows of L, respectively, both matrices Yi, i =
1, 2, are well-conditioned. Well-conditioning of Y1 means a high relative accuracy
of computed singular values and left singular vectors, whereas well-conditioning
of Y2 leads to a very accurate solution of the matrix system (2), i.e., to a high
relative accuracy of the a posteriori computed right singular vectors. Moreover,
in the case of � = 2p, the same is true for the serial Jacobi SVD procedure
DGESVJ in the computation of inner EVDs of symmetric Gram matrices, since
any such computation starts with a (pivoted) local QRLQ pre-processing step.

5 Conclusions

Traditionally, the Jacobi SVD/EVD method (both its one- and two-sided vari-
ants) is considered to be the slowest one. However, recent progress in the serial
one-sided Jacobi algorithm (see [7,8]) has shown that its speed is now compara-
ble to that of algorithms, which are based on a matrix bi- or tri-diagonalization.
Moreover, the Jacobi method computes all singular values and vectors with high
relative accuracy for a large class of matrices, which is not generally true for other
methods. Now we have shown that the same is true for the parallel one-sided
block Jacobi algorithm with a variable (small) blocking factor, so that its per-
formance is comparable to or significantly better than that of the ScaLAPACK

66 M. Bečka and G. Okša

procedure PDGESVD. The basic “building blocks” for a successful implementa-
tion are: (i) matrix pre-processing by the parallel QRLQ step, (ii) new parallel
dynamic ordering of subproblems and its efficient parallelization, and (iii) a pos-
teriori computation of right singular vectors.

To exploit fully the superb numerical properties of the parallel one-sided
block Jacobi method, including the inherently high level of orthogonality of
computed left singular vectors, it is desirable to avoid completely the computa-
tion of Gram matrices in inner SVD subproblems. Our idea is to use some sort of
“recursive” one-sided Jacobi algorithm in the future, because other parallel SVD
procedures, based on a matrix bidiagonalization, do not consistently converge
down to a small multiple of machine precision (say, 10εM).

Acknowledgment. Authors were supported by the VEGA grant no. 2/0003/11.

References

1. Bečka, M., Vajteršic, M.: Block-Jacobi SVD algorithms for distributed memory
systems: II. Meshes Parallel Algorithms Appl. 14, 37–56 (1999)

2. Bečka, M., Okša, G., Vajteršic, M.: Dynamic ordering for a parallel block-Jacobi
SVD algorithm. Parallel Comput. 28, 243–262 (2002)

3. Bečka, M., Okša, G.: On variable blocking factor in a parallel dynamic block-Jacobi
SVD algorithm. Parallel Comput. 28, 1153–1174 (2003)

4. Bečka, M., Okša, G., Vajteršic, M., Grigori, L.: On iterative QR pre-processing in
the parallel block-Jacobi SVD algorithm. Parallel Comput. 36, 297–307 (2010)

5. Bečka, M., Okša, G., Vajteršic, M.: New dynamic orderings for the parallel one-
sided block-Jacobi SVD algorithm. Parallel Process. Lett. (2013) (Sent for publi-
cation)

6. Blackford, L.S., et al.: ScaLAPACK Users’ Guide, 1st edn. SIAM, Philadelphia
(1997)

7. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm: I. SIAM J.
Matrix Anal. Appl. 29, 1322–1342 (2007)

8. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm: II. SIAM J.
Matrix Anal. Appl. 29, 1343–1362 (2007)

9. Okša, G., Vajteršic, M.: Efficient preprocessing in the parallel block-Jacobi SVD
algorithm. Parallel Comput. 31, 166–176 (2005)

An Identity Parareal Method
for Temporal Parallel Computations

Toshiya Takami1(B) and Daiki Fukudome2

1 Research Institute for Information Technology, Kyushu University,
6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

takami@cc.kyushu-u.ac.jp
2 Graduate School of Information Science and Electrical Engineering,
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Abstract. A new simplified definition of time-domain parallelism is
introduced for explicit time evolution calculations, and is implemented on
parallel machines with bucket-brigade type communications. By the use
of an identity operator instead of introducing an approximate solver, a
recurrence formula for the parareal-in-time algorithm is much simplified.
In spite of such a simple definition, it is applicable to many of explicit
time-evolution calculations. In addition, this approach overcomes several
drawbacks known in the original parareal-in-time method. In order to
implement this algorithm on parallel machines, a parallel bucket-brigade
interface is introduced, which reduces programming and tuning costs for
complicated space-time parallel programs.

Keywords: Parareal-in-time · Bucket-brigade communication · Strong
scaling · Massively parallel machine · Scientific computing

1 Introduction

The spatial domain decomposition technique is widely used in various scientific
computing problems with neighborhood collective communications [1] included
in the MPI 3.0 Standard [2] to resolve spatial dependencies between adjacent
regions. However, when the number of independent components in the spatial
direction is limited, it becomes difficult to carry out effective executions on mas-
sively parallel computers. Then, another direction for the domain decomposition,
e.g., the time axis, should be considered in order to achieve strong scaling even
in relatively small problems.

One of the famous methods to realize the time-domain decomposition is the
“parareal-in-time” algorithm [3], while various approaches have been done in
this field [4]. More than one decade from the first paper by J. Lions, et al. [3], a
large number of articles have been published in the fields of applied mathemat-
ics, physics, chemistry, parallel computing, etc. The parareal method is actually
applied to various dependent calculations from linear iterations [5] to large-scale

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 67–75, 2014.
DOI: 10.1007/978-3-642-55224-3 7, c© Springer-Verlag Berlin Heidelberg 2014

68 T. Takami and D. Fukudome

scientific time-evolution problems [6], and can be used to obtain further acceler-
ation over saturation in the spatial decomposition.

On the other hand, it is known that there are several drawbacks in this
algorithm: (1) definition of a tailor-made approximate solver to the original one
is necessary, and its performance affects convergence property and speed-up
ratio; (2) its parallel implementation is complicated when we introduce space
and time parallelism, simultaneously. In the present work, these shortcomings
are resolved through the use of an identity operator and a parallel bucket-brigade
communication interface. This article is organized as follows. A new definition
of the simplified parareal-in-time method is given in Sect. 2, and a new interface
for the parallel bucket-brigade communication is introduced in Sect. 3. In Sect. 4,
we present results of performance measurements by the space-time parallel code
developed on this interface.

2 The Identity Parareal Method

Suppose that xk = x(tk) is a dynamical variable defined by an explicit iterator
xk+1 = Fk(xk). In this case, sequential execution is required with respect to k,
since xk+1 depends directly on the previous result xk. When F (x) is an a-th
order solver, it allows the truncation error of the order δta+1 for the discrete
time representation δt = tk+1 − tk,

x(tk+1)− x(tk) = Fk(xk)− xk =
∂x

∂t
δt+ · · ·+O(δta+1) (1)

In the original parareal-in-time algorithm, with an approximate solverGk(xk),
an approximate sequence {x(r)

k } is calculated by the recurrence relation,

x
(r+1)
k+1 = Gk(x(r+1)

k) + Fk(x(r)
k)−Gk(x(r)

k), (2)

where {x(r)
k } converges to the exact sequence, {xk}, in a sufficiently large r. The

key to an efficient implementation is the definition of G(x). It must be a good
approximation of F (x) in order to achieve fast convergence, and is also expected
to be much faster than F (x) for sufficient speed-up in parallel computing. Since
these requirements are conflicting each other and are strongly dependent on the
property of the original solver F (x), it is difficult to give a general strategy to
introduce G(x). Thus, many analyses have been done on applicability of the
parareal-in-time algorithm to various scientific problems.

Our approach is somewhat different. We introduce an identity transformation
as the approximate solver G(x). Then, the recurrence formula for the parareal
iteration is simplified to

x
(r+1)
k+1 = x

(r+1)
k + Fk(x(r)

k)− x(r)
k , (3)

which is the simplest definition of the parareal-in-time method. We call this
implementation of the parareal-in-time method “identity parareal” (iParareal).

An Identity Parareal Method for Temporal Parallel Computations 69

In continuous problems, this procedure converges for sufficiently small δt and
sufficiently large r since the leading term of the time evolution is in proportion
to δt (see Eq. (1)). The problem is how effectively we can construct the time-
parallel scheme with a finite δt and r.

2.1 Convergence Analysis

Convergence properties and the remaining errors by the parareal-in-time algo-
rithm have already been analyzed in case that those integrators, Fk(x) and
Gk(x), are linear functions [5]. This analysis is also valid for the “iParareal”
method since G(x) is the simplest linear function, i.e., an identity.

When Fk is a linear operator, the exact state xk at k-th time step is calculated
by ordered operations of Fk to the initial value x0,

xk = FkFk−1 · · ·F1x0 = [I + (Fk − I)] · · · [I + (F1 − I)]x0. (4)

The last expression can be expanded as

xk =

⎡

⎣I +
k∑

j=1

(Fj − I) +
∑

j′>j′′
(Fj′ − I)(Fj′′ − I) + · · ·

⎤

⎦x0. (5)

An approximate sequence {x(r)
k } by the iParareal method is defined by ignoring

higher order terms in the right-hand-side, i.e., this is r-th perturbation with
respect to the operator F − I. Then, the remaining error after r-th iteration for
k-th time step is estimated by

∣
∣
∣xk − x(r)

k

∣
∣
∣

|x0| ≈ k!
(k − r)!r! [ρ(F − I)]r ≈

√
k

2π(k − r)r
[
ek

r
ρ(F − I)

]r

(6)

where ρ(A) represents the spectral radius of the operator A.
On the other hand, the truncation error by the original integrator F is kδta+1

at k-th time step. Thus, the errors by the iParareal, Eq. (6), should be compared
to this value.

2.2 Applications in Scientific Computing

There are various types of scientific calculations to be parallelized by the space-
time domain decomposition. In this work, we analyze an applicability of the
iParareal method to particle dynamics described by quantum and classical
mechanics. Its applicability to the other types of calculations such as fluid
dynamics [7–9], plasma physics [10], classical wave propagation [11,12], etc.,
should be analyzed elsewhere.

70 T. Takami and D. Fukudome

(a)

R
M

S
E

rr
or

 (A
ng

st
ro

m
)

Delta T (fs)

r=1

r=2 r=4
r=6

SI2

SI4

-14

-12

-10

-8

-6

-4

-2

10

10

10

10

10

10

10

0.1 0.3 1.0 3.0 10.0

(b)

R
M

S
E

rr
or

 (A
ng

st
ro

m
)

Delta T (fs)

r=1

r=2

r=4

r=6

SI2
SI4

-14

-12

-10

-8

-6

-4

-2

10

10

10

10

10

10

10

0.1 0.3 1.0 3.0 10.0

Fig. 1. Root mean square (RMS) errors of atom coordinates after 16 steps by iParareal
iterations r = 1 (closed square), 2 (triangle), 4 (circle), and 6 (open square) compared
with the standard 2nd-order symplectic integrator (SI2) and 4th-order SI (SI4). The
iParareal method is applied to (a) 2nd order SI, and (b) 4th order SI.

Quantum Mechanics. As many studies on the related systems [13] have been
done, the standard parareal method is applied to time evolutions in quantum
mechanics,

|ψ(t+ δt)〉 = exp
[
δt

i�
H(t)

]

|ψ(t)〉. (7)

The Hamiltonian, H(t), contains time-dependent external fields in optimal con-
trol problems [13]. Even if H(t) is time dependent, i.e., the system is not isolated,
we often represent the time evolution by unitary transformations. Then, we can
decompose the unitary operator into the form,

exp
[
δt

i�
H(t)

]

= I +
(

exp
[
δt

i�
H(t)

]

− I
)

. (8)

Thus, the time-evolution operator is approximated by an identity. This type of
successive multiplications of a unitary matrix has already been analyzed [5],
which guarantees that the iParareal implementation stably converges to the
exact result.

Classical Mechanics. Molecular dynamics (MD) simulations are widely used
to investigate to represent dynamic processes of microscopic systems, where an
extremely large number of time steps are calculated. For a large scale calculation
with more than 106 atoms, spatial domain decomposition is effectively used with
various approximate theories to reduce computational costs such as the particle
mesh Ewald summation, the fast multipole method, etc. For relatively small
systems, however, the effective use of the spatial parallel computation is limited.
Then, the time-domain parallelism for MD [14,15] is desired.

An Identity Parareal Method for Temporal Parallel Computations 71

Fig. 2. (a) Schematic picture of the bucket-brigade communications; (b) a parallel
configuration of the iParareal method with P = 3 and R = 2

The usual time evolution in MD is implemented by a second-order symplectic
integrator (SI) [16], which is traditionally known as the Velocity Verlet algorithm.
Here, we use an Ar cluster with 249 atoms as an example to demonstrate con-
vergence properties of the iParareal method. In Fig. 1(a) and (b), errors of the
iParareal implementation by the second and forth order SIs are shown for the
number of the iParareal iterations r = 1, 2, 4, and 6. It is realized that these
errors are bounded by ones of the original solvers imposed as dashed curves,
2nd order SI (SI2) and 4th order SI (SI4). Thus, the iParareal method converges
when we use the sufficient number of iterations corresponding to the order of
the original solver.

3 Bucket-Brigade Implementation of iParareal

There are several ways to implement the parareal-in-time method [17,18]. The
original algorithm consists of sequential and parallel parts, where the total per-
formance heavily depends on the sequential calculations distributed over multiple
resources. The iParareal implementation in Sect. 2 is defined by substituting an
identity operation for the coarse solver in the sequential part. Although this new
definition much simplified the sequential part, its performance is still sensitive
to configurations of communications. In this section, we define a new parallel
bucket-brigade interface to simplify the programming of the space-time parallel
code.

3.1 Bucket-Brigade Communication Interface

At first, we divide the iParareal iteration Eq. (3) into two equations,

y
(r+1)
k = Fk(x(r)

k)− x(r)
k , (9)

x
(r+1)
k+1 = x

(r+1)
k + y

(r+1)
k . (10)

72 T. Takami and D. Fukudome

While the first relation, Eq. (9), is calculated within each parallel resource inde-
pendently, the second part, Eq. (10), should be implemented with communi-
cations between adjacent resources. Note that it consists of communications
with neighbor processes but is globally dependent over the whole resources since
Eq. (10) should be executed sequentially in the order of k.

In order to represent the dependent part (10), we introduce a parallel bucket-
brigade communication interface. Consider the case of P -parallel resources in
the time domain and Q-parallel execution for the local calculations, Eq. (9).
Then, the dependent part, Eq. (10), consists of P -stage pipeline communications.
When computational data are divided into Q processes, Q parallel pipelines are
executed as Q-line parallel bucket brigades.

The interface for this communication pattern is,

int BB_Reduce(void* x, void* y, int n, Data type, Op op,
int src, int dst, int nrank, Comm comm);

where the data x with n elements is received from the group src, and the result
of op(x,y) is transferred to the group dst, where each group has nrank (= Q)
processes. In the present implementation, we assume that each parallel resource
has the same number of ranks (nrank).

3.2 Speed-Up Ratio

As shown in Fig. 2(b), we obtain K = P +R−1 time steps by R iterations of the
iParareal method with P parallel resources in time direction. Then, an expected
speed-up ratio is given by

SiParareal(P,R, Tf , Tc) =
(P +R− 1)Tf

(P − 1)Tc +R(Tf + 2Tc)
, (11)

where Tf is the computational time of Eq. (9), and (P − 1)Tc represents extra
costs for the bucket-brigade communications (Fig. 2(a)) which includes costs for
calculations of Eq. (10) and communication between resources.

4 Performance Measurement

We show several results of measurements on a Sandy Bridge cluster connected by
the InfiniBand FDR. We have 16 cores in each node, and a flat MPI configuration
is used for parallel computing. In the iParareal implementation, the dependent
part, Eq. (10), is written by the bucket-brigade communication. As an example,
parallel speed-ups in quantum time-evolutions is measured, where wave func-
tions are represented by complex vectors with 2048 elements and the time-step
computation, Eq. (7), is implemented by a matrix-vector multiplication.

In Table 1, we show measured values and speed-ups in several configurations
of parallel resources, where P represents the number of resources used in the time
direction, Q is the number of processes for the single time evolution, Eq. (7), and

An Identity Parareal Method for Temporal Parallel Computations 73

Table 1. Measured speed-up ratios by the iParareal method

Resources Parameters Time (ms) Temporal
P × Q nodes proc. P Q R K TQ TP×Q speed-up

4 × 8 2 32 4 8 4 7 3.48 14.43 1.69
8 × 8 4 64 8 8 4 11 3.48 15.15 2.53

16 × 8 8 128 16 8 4 19 3.48 16.11 4.10
4 × 16 4 64 4 16 4 7 1.95 8.87 1.54
8 × 16 8 128 8 16 4 11 1.95 10.05 2.13

16 × 16 16 256 16 16 4 19 1.95 11.71 3.16

(a)

P0

P2

P4

P6

P8

P10

P12

P14

Time (msec)
0.0 5.0 10.0 15.0

(b)

Sp
ee

d-
up

 R
at

io
 (S

)

of Temporal Parallel Resources (P)

4x8

8x8

16x8

4x16

8x16

16x16

0.0

1.0

2.0

3.0

4.0

5.0

0 5 10 15 20

Fig. 3. (a) Timeline of an iParallel execution, (b) speed-up by the iParareal method
compared with the theoretical limit of R = 4 and the linear speed-up (dashed line).

R is the number of iterations of the iParareal algorithm. The total number of
time-steps K is given by P +R− 1, and the total number of processes is P ×Q.
TQ is a duration of Eq. (9) executed by Q processes, and TP×Q is a total time
by P ×Q processes. The speed-up ratio in the time parallel method defined by

[Speed-up Ratio] ≡ TQ ×K
TP×Q

. (12)

is shown in the last column of the same table.
Figure 3(a) is a visualized example of a timeline of the case 16× 8 in Table 1.

Wide rectangles represent the part of local calculations and thin ones repre-
sent communications including unexpected waiting time. In Fig. 3(b), measured
speed-up ratios in Table 1 are shown with a theoretical limit of the speedup,

Sideal(P,R) =
P +R− 1

R
, (13)

which is obtained by ignoring the costs Tc for the bucket-brigade communication
and computations in Eq. (11).

74 T. Takami and D. Fukudome

5 Summary

In this contribution, we proposed a new implementation of the parareal-in-time
method, where an identity operation is used as the approximate solver G(x) in
the original algorithm Eq. (2). Although the convergence of the parareal iteration
becomes slower than the case with an efficient approximate solver G(x), it was
shown that this implementation is applicable to explicit time evolution problems.

We also introduced a new communication interface called a parallel bucket-
brigade pattern, which is used in the simple implementation of the parareal
method. Parallel performance was measured on a cluster machine and several
visualized examples were shown. While the current code is written by block-
ing communications in MPI, further improvements will be done with the non-
blocking implementation or neighbor collective operations [1].

Acknowledgments. This work is supported by JST, CREST.

References

1. Hoefler, T., Jumsdaine, A., Rehm, W.: Implementation and performance analy-
sis of non-blocking collective operations for MPI. In: Proceedings of SC07, IEEE
Computer Society (2007)

2. MPI 3.0 released at September 21, 2012: http://www.mpi-forum.org/
3. Lions, J.-L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s.

C. R. Acad. Sci. Ser. I Math. 332, 661–668 (2001)
4. Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-

integration method. SIAM J. Sci. Comput. 29, 556–578 (2007)
5. Takami, T., Nishida, A.: Parareal acceleration of matrix multiplication. Adv. Par-

allel Comput. 22, 437–444 (2012)
6. Speck, R., Ruprecht, D., Krause, R., Emmett, M., Minion, M., Winkel, M., Gibbon,

P.: A massively space-time parallel n-body solver. In: Proceedings of SC12, IEEE
Computer Society (2012)

7. Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators: theory
and feasibility studies for fluid, structure, and fluid, structure applications. Int.
J. Numer. Meth. Eng. 58, 1397–1434 (2003)

8. Fischer, P.F., Hecht, F., Maday, Y.: A parareal in time semi-implicit approximation
of the navier-stokes equations. In: Barth, T.J., Griebel, M., Keyes, D.E., Nieminen,
R.M., Roose, D., Schlick, T., Kornhuber, R., Hoppe, R., Périaux, J., Pironneau,
O., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and
Engineering. LNCSE, vol. 40, pp. 433–440. Springer, Heidelberg (2005)

9. Bal, G.: On the convergence and the stability of the parareal algorithm to solve
partial differential equations. In: Barth, T.J., Griebel, M., Keyes, D.E., Nieminen,
R.M., Roose, D., Schlick, T., Kornhuber, R., Hoppe, R., Périaux, J., Pironneau,
O., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and
Engineering. LNCSE, vol. 40, pp. 425–432. Springer, Heidelberg (2005)

10. Samaddar, D., Newman, D.E., Sánchez, R.: Parallelization in time of numerical
simulations of fully-developed plasma turbulence using the parareal algorithm. J.
Comput. Phys. 229, 6558–6573 (2010)

An Identity Parareal Method for Temporal Parallel Computations 75

11. Duarte, M., Massot, M., Descombes, S.: Parareal operator splitting techniques
for multi-scale reaction waves: numerical analysis and strategies. ESAIM: Math.
Model. Numer. Anal. 45, 825–852 (2011)

12. Ruprecht, D., Krause, R.: Explicit parallel-in-time integration of a linear acoustic-
advection system. Comput. Fluids 59, 72–83 (2012)

13. Maday, Y., Turinici, G.: Parallel in time algorithms for quantum control: parareal
time discretization scheme. Int. J. Quantum Chem. 93, 223–228 (2003)

14. Baffico, L., Bernard, S., Maday, Y., Turinici, G., Zérah, G.: Parallel-in-time
molecular-dynamics simulations. Phys. Rev. E 66, 057701 (2002)

15. Srinivasan, A., Chandra, N.: Latency tolerance through parallelization of time in
scientific applications. Parallel Comput. 31, 777–796 (2005)

16. Bal, G., Wu, Q.: Symplectic parareal. In: Langer, U., Discacciati, M., Keyes, D.E.,
Widlund, O.B., Zulehner, W. (eds.) Domain Decomposition Methods in Science
and Engnieering XVII. LNCSE, vol. 60, pp. 401–408. Springer, Heidelberg (2008)

17. Aubanel, E.: Scheduling of tasks in the parareal algorithm. Parallel Comput. 37,
172–182 (2011)

18. Elwasif, W.R., Foley, S.S., Bernholdt, D.E., Berry, L.A., Samaddar, D., Newman,
D.E., Sanchez, R.: A dependency-driven formulation of parareal: parallel-in-time
solution of PDEs as a many-task application. In: Proceedings of MTAGS’11, pp.
15–24 (2011)

Improving Perfect Parallelism

Lars Karlsson(B), Carl Christian Kjelgaard Mikkelsen, and Bo K̊agström

Department of Computing Science and HPC2N, Ume̊a University, Ume̊a, Sweden
{larsk,spock,bokg}@cs.umu.se

Abstract. We reconsider the familiar problem of executing a perfectly
parallel workload consisting of N independent tasks on a parallel com-
puter with P � N processors. We show that there are memory-bound
problems for which the runtime can be reduced by the forced paralleliza-
tion of individual tasks across a small number of cores. Specific examples
include solving differential equations, performing sparse matrix–vector
multiplications, and sorting integer keys.

Keywords: Perfectly parallel problem · Resource contention · Forced
parallelization

1 Introduction

Super-linear speedups are frequently observed when the number of cores is
increased to the point where the problem at hand fits in the union of the
caches [2]. A related—but different—effect is observed when multiple cores share
a cache but execute independent tasks. In such cases, the effective cache capacity
per task is increased by the forced parallelization of each individual task. To be
specific, if P cores share a cache of capacity C, then the effective cache capacity
per task is only C/P when the cores execute independent tasks. If, on the other
hand, they all collaborate to solve a single task, then the effective cache capacity
is restored to C.

A perfectly parallel workload is one which has already been decomposed into
a large number of independent tasks. Perfect parallelism can be found in many
applications, often when exploring a parameter space or a large database. On
a parallel computer with P identical and independent processors, any perfectly
parallel workload should obtain close to linear (perfect) speedup. The only real
issue is whether the load can be balanced or not. Here the key assumption is that
the processors are independent in the sense that they do not interfere with each
other by competing for shared resources. However, this assumption is violated
on a multicore processor where the cores typically share one or more levels of
cache as well as a memory bus.

The aim of this paper is to stress and provide experimental support for the
following conclusion: If resources are shared between cores, then it is frequently
possible to improve the execution time of a perfectly parallel workload by the
forced parallelization of each task over a small number of cores. We refer to

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 76–85, 2014.
DOI: 10.1007/978-3-642-55224-3 8, c© Springer-Verlag Berlin Heidelberg 2014

Improving Perfect Parallelism 77

this as a hybrid (parallel) scheme for executing perfectly parallel workloads in
contrast to a perfectly parallel scheme where each task remains sequential. We
want to emphasize that cache sharing is most detrimental for memory-bound
applications. There are compute-bound applications for which the performance
is almost completely insensitive to the cache size.

The rest of the paper is organized as follows. In Sect. 2, we describe the hard-
ware, Intel/AMD, used in our experiments. In Sect. 3, we introduce a number of
perfectly parallel workloads with varying characteristics in order to explore the
applicability of such hybrid schemes. Simultaneously, we present and analyze the
experimental results. Hybrid schemes are not universally applicable, but likely
candidates can be identified using the guidelines laid down in Sect. 4.

2 Test Systems

We have performed tests on two contemporary multicore systems with different
architectures. The Triolith system is based on Intel Xeon E5-2660 processors
with a base frequency of 2.2 GHz. The eight cores of a processor share a 20 MiB
L3 cache and a memory bus. Each core has a private 256 KiB L2 cache. The
Abisko system is based on AMD Opteron 6238 processors with a base frequency
of 2.6 GHz. The twelve cores of a processor are partitioned into two NUMA
domains consisting of six cores each. The six cores in a domain share a 6 MiB
L3 cache and a memory bus. There are three 2 MiB L2 caches per domain and
each cache is shared by a pair of cores.

In our experiments, we restrict ourselves to one NUMA domain, since cores
from different domains typically share little or no resources and can often be
viewed as independent. In particular, we use eight cores per processor on Triolith
and six cores per processor on Abisko.

3 Examples

We provide four examples of perfectly parallel workloads with varying charac-
teristics in order to shed light on the benefits and limitations of hybrid schemes.

The copy workload is an idealized workload in which memory is accessed
with unit stride and each task can be parallelized without overhead. It puts
high pressure on the shared bandwidth resources and thereby exposes negative
effects of sharing caches and memory buses. Conversely, it emphasizes how the
forced parallelization of each task alleviates some of the competition for shared
resources.

The power workload is a more realistic example consisting of repeated sparse
matrix–vector multiplications in the context of the power method for computing
a dominant eigenvector. The sparse matrix data is accessed contiguously, while
there is random access to the elements of the vector being multiplied. The forced
parallelization of the power method requires two synchronizations per iteration:
One for the matrix–vector multiplication and one for the normalization. It also
requires communication of the normalized vector.

78 L. Karlsson et al.

The Spike workload has unit stride accesses and memory is updated in-place.
The forced parallelization overhead in terms of redundant work is non-negligible.
Each core needs to synchronize with its nearest neighbors and the volume of
communication is minimal.

The radix sort workload is an example with quasi-random access to mem-
ory, strict synchronization requirements, and large communication volume. This
workload accesses memory in an inherently data-dependent way, which negates
the possibility of prefetching, and a large communication volume puts pressure
on the cache coherence protocol.

In the following, we use the term effective memory bandwidth to refer to the
number of bytes accessed at the source code level divided by the execution time.
We only count accesses to data structures whose sizes depend on the size of the
problem. This provides a useful tool to interpret results for a particular workload
and scheduling scheme but one should not use these figures to compare different
workloads and scheduling schemes. Traditionally, the term parallel speedup refers
to the ratio of the execution times of a sequential run and a parallel run. Since
the aim of this paper is to compare the performance of different parallelization
strategies, we instead emphasize the relative improvement of one strategy over
another, again by computing a ratio of execution times.

3.1 Memory Copy

In this workload, each task consists of copying data back and forth a fixed
number of times between two contiguous vectors. The individual tasks can be
parallelized without overhead. For a vector length of n, iteration count k, and
execution time T , the working set size is 8n bytes (32-bit integer elements) and
the effective memory bandwidth is 8kn/T bytes per second. In all experiments
presented here, k = 100.

Figure 1 (left) illustrates the effective memory bandwidths of the copy work-
load on Abisko (top) and Triolith (bottom) for various hybrid schemes as a
function of working set size. The curves are labeled by p× q, where p is the
number of thread groups and q is the number of threads per forcibly parallelized
task. In particular, sequential execution is denoted by 1× 1 and the perfectly
parallel scheme is denoted by p× 1.

First consider the sequential execution on Abisko (top left) labeled 1× 1.
The parallel speedup, that is, the ratio of the execution time for the 6× 1 per-
fectly parallel scheme and the 1× 1 sequential scheme ranges from 1.24 to 4.18,
rather than the expected value of 6. This indicates that a severe competition
for resources is taking place. There is a marked drop near the L2 cache capac-
ity (2 MiB) and a second drop near the sum of the L2 and L3 cache capacities
(2 + 6 = 8 MiB)1. Next consider the perfectly parallel scheme labeled 6× 1.
There are again two marked drops, but this time the first drop occurs already
near the 1 MiB line since the L2 cache is shared by two cores. Similarly, but
more dramatically, the second drop occurs already near the 2 MiB line as the
1 The L3 cache on Abisko is a non-inclusive victim cache, hence the addition.

Improving Perfect Parallelism 79

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

55

Working set size [MiB]

Ef
fe

ct
iv

e
m

em
or

y
ba

nd
w

id
th

 [G
iB

/s
]

1x1
6x1
3x2
2x3
1x6

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Working set size [MiB]

R
el

at
iv

e
im

pr
ov

em
en

t o
ve

r 6
x1 6x1/3x2

6x1/2x3
6x1/1x6

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

Working set size [MiB]

Ef
fe

ct
iv

e
m

em
or

y
ba

nd
w

id
th

 [G
iB

/s
]

1x1
8x1
4x2
2x4
1x8

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

Working set size [MiB]

R
el

at
iv

e
im

pr
ov

em
en

t o
ve

r 8
x1

8x1/4x2
8x1/2x4
8x1/1x8

Fig. 1. Results for the copy workload. Left: Effective memory bandwidths. Right:
Speedups relative to the perfectly parallel configuration. Top: The Abisko system.
Bottom: The Triolith system.

combined effective capacities of the L2 and L3 caches is only 2/2 + 6/6 = 2 MiB.
Finally, consider the opposite configuration 1× 6, where six cores work together
on one task. In addition to using the full capacity of the L3 cache, each task now
also has access to an aggregate L2 capacity of 3 · 2 = 6 MiB, which correlates
somewhat with the first drop, and the combined capacities of the L2 and L3
caches are 12 MiB, which correlates well with the second drop.

The results obtained on Triolith (bottom left) are similar except that there
is only one drop and the point where the working set size spills over into the
L3 cache is not observed. The drops correlate with the 20/8 = 2.5, 20/4 = 5,
20/2 = 10, and 20/1 = 20 MiB effective L3 cache capacities per task, although
the latter is not included in the figure. At this point we have no explanation for
the distinct spikes in the graphs.

Figure 1 (right) illustrates the relative improvement of the various hybrid
schemes over the perfectly parallel scheme. A relative improvement greater than
unity implies that the hybrid scheme is faster than the perfectly parallel scheme.
On Abisko the relative improvement peaks at 4.5 and on Triolith at 3.5.

80 L. Karlsson et al.

3.2 The Power Method

In this workload, we apply the power method, wk+1 = Axk and xk+1 = wk+1
‖wk+1‖2

,
to approximate the dominant eigenvector of every member of a large set of sparse
matrices. The matrices have a random sparsity pattern which is generated with
predetermined lower (1) and upper (13) bounds on the number of nonzero entries
per row. The total number of nonzeros is 7n, where n is the order of the matrix.

The forced parallelization of a single instance of the power method is achieved
by splitting the matrix into block rows and applying the matrix–vector multi-
plications in parallel. The matrix is stored in compressed sparse row format.

The working set size of the power method includes storage for one sparse
matrix and two vectors. The vectors require 8n bytes each (64-bit floating point
elements). To store the matrix, the row pointer array requires 4(n + 1) bytes,
the column index array requires 4 · 7n bytes, and the value array requires 8 · 7n
bytes. Hence, the working set size is 104n+ 4 bytes. For each matrix–vector
multiplication y ← Ax, there is one element access of x for each nonzero in A,
the vector y is accessed once, and A is accessed once. Hence, the effective memory
bandwidth for k iterations of the power method is k(152n+ 4)/T , where T is the
execution time2. In all our experiments, k = 20. The small cost of normalization
is not included in the calculation of the effective bandwidth.

Figure 2 illustrates the effective bandwidths (left) and speedups (right) on
Abisko (top) and Triolith (bottom). Notice that the speed deterioration is much
more gradual than in the copy workload on both systems. On Triolith, the initial
drastic drops correlate nicely with the working set size spilling over the L3 cache
capacity into main memory. However, a second, slower, drop appears with the
following possible explanation. As the working set size increases, so does the
probability that the required elements of x belong to different pages of memory
with a consequent increase in the effective memory latency due to TLB misses.
The results on Abisko are noteworthy. The curves are intertwined with a drop
after 2 MiB and again a second, slower, drop. In contrast to Triolith, the optimal
number of threads per task depends non-trivially on the working set size. The
maximum relative improvement on Abisko is 1.7 and on Triolith it is 2.4.

3.3 The Spike Algorithm

This workload consists of computing functions φj(x) = u(j)(x,L), where each
function u(j) is given implicitly as the solution of a heat equation

u
(j)
t = aj(x) · u(j)

xx (x, t), 0 < x < 1, 0 < t < L,

with a known initial condition and homogenous boundary conditions. This is
an example of a perfectly parallel parameter study. The goal could be to deter-
mine a material, i.e., a function a, such that a specific distribution of the heat is
2 Note that the effective memory bandwidth is a tool used to illustrate the time

measurements and does not reflect the memory bandwidth that is actually consumed
at the hardware level.

Improving Perfect Parallelism 81

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

1

2

3

4

5

6

7

8

9

10

Working set size [MiB]

Ef
fe

ct
iv

e
m

em
or

y
ba

nd
w

id
th

 [G
iB

/s
]

1x1
6x1
3x2
2x3
1x6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Working set size [MiB]

R
el

at
iv

e
im

pr
ov

em
en

t o
ve

r 6
x1

6x1/3x2
6x1/2x3
6x1/1x6

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

Working set size [MiB]

Ef
fe

ct
iv

e
m

em
or

y
ba

nd
w

id
th

 [G
iB

/s
]

1x1
8x1
4x2
2x4
1x8

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

Working set size [MiB]

R
el

at
iv

e
im

pr
ov

em
en

t o
ve

r 8
x1

8x1/4x2
8x1/2x4
8x1/1x8

Fig. 2. Results for the power workload. Left: Effective memory bandwidths. Right:
Speedups relative to the perfectly parallel configuration. Top: The Abisko system.
Bottom: The Triolith system.

obtained at time t = L. The individual equations are solved using the implicit
Euler method, a finite difference method which hinges on the solution of a
sequence of tridiagonal linear systems that are strictly diagonally dominant by
rows. Let n denote their dimension. The linear systems are solved sequentially
using Gaussian elimination without pivoting. After the initial factorization, the
solution is advanced in time by solving a sequence of systems using the factored
matrix. Each sequential solve (forward and backward substitution) requires only
5n arithmetic operations while accessing 7n matrix and vector elements.

For the forced parallellization we have used a new variant of the truncated
Spike algorithm [6]. Normally, the Spike algorithm requires 10n arithmetic oper-
ations for the solve phase and accesses 14n elements. However, it is possible to
reduce the number of accesses to 9n. The details will be presented in a future
paper. Here, we concentrate on the effects on the perfectly parallel workload.
Since the solve phase is memory bound, it is essential to reduce the memory
footprint rather than the number of arithmetic operations.

The working set sizes and effective memory bandwidths are different for the
sequential and parallel algorithms. The working set size is 4 · 8n = 32n bytes
(64-bit floating point elements) in the sequential case and 5 · 8n = 40n bytes

82 L. Karlsson et al.

in the parallel case, an increase of 25 %. The effective memory bandwidth for k
time steps and execution time T is 7 · 8nk/T = 56nk/T bytes per second in the
sequential case and 9 · 8nk/T = 72nk/T bytes per second in the parallel case. In
all our experiments, k = 100.

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

45

Working set size [MiB]

Ef
fe

ct
iv

e
m

em
or

y
ba

nd
w

id
th

 [G
iB

/s
]

1x1
6x1
3x2
2x3
1x6

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Working set size [MiB]

R
el

at
iv

e
im

pr
ov

em
en

t o
ve

r 6
x1

6x1/3x2
6x1/2x3
6x1/1x6

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

45

50

55

Working set size [MiB]

Ef
fe

ct
iv

e
m

em
or

y
ba

nd
w

id
th

 [G
iB

/s
]

1x1
8x1
4x2
2x4
1x8

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Working set size [MiB]

R
el

at
iv

e
im

pr
ov

em
en

t o
ve

r 8
x1

8x1/4x2
8x1/2x4
8x1/1x8

Fig. 3. Results for the Spike workload. Left: Effective memory bandwidths. Right:
Speedups relative to the perfectly parallel configuration. Top: The Abisko system.
Bottom: The Triolith system.

Since the sequential and parallel algorithms have different working set sizes
and bandwidths, one must be cautious when comparing the effective bandwidths
of a sequential (1× 1 and 8×1) and a hybrid (4× 2, 2×4, and 1× 8) scheme. In
the right side of Fig. 3, the relative improvements are plotted against the working
set size for the parallel runs.

As demonstrated in Fig. 3, the behaviour of the Spike workload is similar to
the copy workload except that the distinction between L2 and L3 on Abisko is
much less pronounced. On Triolith, there is only a marginal slow-down when
surpassing the effective L3 capacity in the perfectly parallel 8× 1 scheme. The
maximum relative improvement on Abisko is approximately 1.8 while on Triolith
the relative improvement is a more modest 1.2. It should be noted that these
improvements are obtained despite the fact that the parallel algorithm moves
more data and must communicate and synchronize.

Improving Perfect Parallelism 83

3.4 Radix Sort

In this workload, n 32-bit keys are sorted using a radix-16 sort. More specifically,
each key is viewed as an eight digit number in base 16 and the numbers are sorted
one hexadecimal digit at a time in phases starting with the least significant digit.
Each phase consists of three steps: First compute the frequency of each digit to
determine the size of each bucket, then find the starting position of each bucket
via a prefix sum of 16 integers, and finally map the elements into their buckets.

Our parallel algorithm mirrors the sequential one and partitions the input
array into blocks. The counting step is perfectly parallel. The prefix sum is
performed by one thread with barrier synchronization before and after. In the
permutation step, each thread is responsible for the permutation of its own block
of the input array and hence writes up to 16 contiguous blocks in the output
array. The permutation step is followed by a third barrier.

The working set size is 2 ·4n = 8n bytes since there are two arrays of length n
involved in each phase. The effective memory bandwidth is 8 · 3 · 4n/T = 96n/T
bytes per second since in each of the eight phases the input array is read twice
and the output is written once.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

Working set size [MiB]

Ef
fe

ct
iv

e
m

em
or

y
ba

nd
w

id
th

 [G
iB

/s
]

1x1
6x1
3x2
2x3
1x6

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Working set size [MiB]

R
el

at
iv

e
im

pr
ov

em
en

t o
ve

r 6
x1

6x1/3x2
6x1/2x3
6x1/1x6

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

Working set size [MiB]

Ef
fe

ct
iv

e
m

em
or

y
ba

nd
w

id
th

 [G
iB

/s
]

1x1
8x1
4x2
2x4
1x8

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

Working set size [MiB]

R
el

at
iv

e
im

pr
ov

em
en

t o
ve

r 8
x1

8x1/4x2
8x1/2x4
8x1/1x8

Fig. 4. Results for the radix sort workload. Left: Effective memory bandwidths. Right:
Speedups relative to the perfectly parallel configuration. Top: The Abisko system.
Bottom: Th Triolith system.

84 L. Karlsson et al.

Figure 4 displays the effective memory bandwidths and relative improvements
of the radix sort workload. One of its important characteristics is that the threads
read and write data written by other threads in the preceding phase. If the entire
working set fits in the aggregate L2 cache, then pressure is put on the cache
coherence protocol to transfer data between sibling L2 caches. As the working set
size increases, data is necessarily evicted from the L2 caches to a shared resource.
Later accesses to these data do not generate any cache coherence traffic. The
observations in the left half of Fig. 4 (left) suggest that communicating via the
cache coherence protocol is far more costly than accessing a shared higher level
resource. This correlates with the low performance observed for small working
set sizes on both systems (2× 3 and 1 × 6 on Abisko and all hybrid schemes
on Triolith) and also correlates with the high performance of the 3× 2 hybrid
scheme on Abisko since each pair of cooperating threads share the same L2
cache.

4 Guidelines

We propose the following guidelines to help users identify workloads that are
likely to benefit from forced parallelization: (i) establish that resource shar-
ing is an issue by running the perfectly parallel workload both sequentially
and in parallel. Sub-linear speedup indicates competition for shared resources;
(ii) ensure that the tasks exhibit data reuse since otherwise caching has no effect;
(iii) verify that the tasks can be parallelized with little parallel overhead as a
large overhead negates any gains obtained from the parallelization.

After the guidelines have been used to identify a likely candidate, the user
can start to analyze the independent tasks in detail using, e.g., the roofline
model [8] and profiling tools that measure hardware performance counters [1].
Scheduling tasks with the cache hierarchy in mind [4,5] has proven to be effective
on multicore-based systems and is one of many techniques that can be used when
forcibly parallelizing the tasks.

5 Conclusion

We have reconsidered the familiar problem of executing a single perfectly parallel
workload consisting of independent tasks on many multicore processors. We
argued that the presence of shared caches in multicores can have detrimental
effects on the performance. We have shown that a number of memory-bound
workloads can significantly benefit from the forced parallelization of individual
tasks across a few cores. If the applications are sufficiently compute-bound, then
it is unlikely that forced parallelization will yield any benefits.

The benefits of forced parallelization vary, both quantitatively and qualita-
tively, between different systems and workload characteristics, making it hard to
predict if a workload will benefit from a hybrid approach. We provided guidelines
that help identify likely candidates.

Improving Perfect Parallelism 85

Based on this work, we conclude that there is reason to reconsider the
parallelization strategy employed for perfectly parallel workloads. The relative
improvements we have observed over the perfectly parallel scheme are modest
but it is worth remembering that the absolute savings across a large number
of processors is still significant. Moreover, we observe that the development of
efficient multicore algorithms for relatively small problems remains relevant.

In the Grid scheduling community, people have considered the related prob-
lem of scheduling multiple workloads with different resource usage characteristics
(e.g., memory-bound and compute-bound workloads) in attempts to mitigate
resource contention [9].

It is possible to view the hybrid schemes as another example of the benefits of
M-tasks as used by Rauber and Rünger [7]. Recently, we successfully used forced
parallelization of small and otherwise insignificant tasks in order to improve the
scalability of en eigenvalue solver [3].

The source code used for the experiments is available upon request.

Acknowledgements. Financial support by the Swedish Research Council grant VR
A0581501 and eSSENCE, a strategic collaborative eScience programme. This research
was conducted using the resources of HPC2N and NSC.

References

1. Grant, R.E., Afsahi, A.: A comprehensive analysis of OpenMP applications on dual-
core Intel Xeon SMPs. In: IPDPS, pp. 1–8 (2007)

2. Gustafson, J.L.: Fixed time, tiered memory, and superlinear speedup. In: Proceed-
ings of the Fifth Distributed Memory Computing Conference (DMCC), pp. 1255–
1260 (1990)

3. Karlsson, L., K̊agström, B., Wadbro, E.: Fine-grained bulge-chasing kernels for
strongly scalable parallel QR algorithms. Parallel Comput. (2013, accepted)

4. Muddukrishna, A., Podobas, A., Brorsson, M., Vlassov, V.: Task scheduling on
manycore processors with home caches. In: Caragiannis, J., et al. (eds.) Euro-Par
Workshops 2012. LNCS, vol. 7640, pp. 357–367. Springer, Heidelberg (2013)

5. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Prins, J.F.: Scheduling task paral-
lelism on multi-socket multicore systems. In: Proceedings of ROSS’11, pp. 49–56.
ACM, New York (2011)

6. Polizzi, E., Sameh, A.H.: A parallel hybrid banded system solver: the SPIKE algo-
rithm. Parallel Comput. 32(2), 177–194 (2006)

7. Rauber, T., Rünger, G.: M-task-programming for heterogeneous systems and grid
environments. In: IPDPS (2005)

8. Williams, S.W.: Auto-tuning performance on multicore computers. Ph.D. thesis,
EECS Department, University of California, Berkeley (2008)

9. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing shared resource contention
in multicore processors via scheduling. SIGARCH Comput. Archit. News 38(1),
129–142 (2010)

Methods for High-Throughput Computation
of Elementary Functions

Marat Dukhan(B) and Richard Vuduc

School of Computational Science and Engineering,
College of Computing, Georgia Institute of Technology,

266 Ferst Drive NW, Atlanta, GA 30332, USA
mdukhan3@gatech.edu

Abstract. Computing elementary functions on large arrays is an essen-
tial part of many machine learning and signal processing algorithms.
Since the introduction of floating-point computations in mainstream
processors, table lookups, division, square root, and piecewise approx-
imations were essential components of elementary functions implemen-
tations. However, we suggest that these operations can not deliver high
throughput on modern processors, and argue that algorithms which rely
only on multiplication, addition, and integer operations would achieve
higher performance. We propose 4 design principles for high-throughput
elementary functions and suggest how to apply them to implementation
of log, exp, sin, and tan functions. We evaluate the performance and
accuracy of the new algorithms on three recent x86 microarchitectures
and demonstrate that they compare favorably to previously published
research and vendor-optimized libraries.

Keywords: Elementary functions · SIMD · Fused multiply-add

1 Introduction

In this paper we discuss the methods for high-throughput computation of elemen-
tary functions, namely exponent, logarithm, sine, and tangent. Due to extensive
use of elementary functions in mathematical models, they are widespread in a
number of application areas. Examples include non-parametric statistics [18],
information theory measures entropy and Kullback–Leibler divergence, and ran-
dom number generation for normal [2], Student-t [1], logistic [15],
exponential [15], and Cauchy [9] distributions.

This paper brings three contributions to the study of high-throughput ele-
mentary functions:

1. Design principles for portable high-throughput elementary func-
tions (Sect. 3): We argue why the methods traditionally used for elementary
functions might be suboptimal for a high-throughput implementation, and
propose four design principles to improve performance of high-throughput
elementary functions on modern processors.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 86–95, 2014.
DOI: 10.1007/978-3-642-55224-3 9, c© Springer-Verlag Berlin Heidelberg 2014

Methods for High-Throughput Computation of Elementary Functions 87

2. Elementary functions design using only hardware-efficient opera-
tions (Sects. 4, 5): We show that it is possible to implement elementary func-
tions without violating the four design principles.

3. Experimental evidence on the advantages of the four design prin-
ciples (Sects. 5, 6): We verify that following the proposed design principles
leads to higher-throughput elementary functions by comparing our implemen-
tation to 15 other implementations on 3 microarchitectures.

2 Background

Introduction of the IEEE754 floating-point standard and wide spread of hard-
ware floating-point implementations boosted research on elementary functions,
and by the first years of the 1990s the high-level design of elementary functions
was settled. A modern elementary function implementation has 3 steps [11,12]:

1. Range reduction where the argument of the function with potentially infi-
nite domain is transformed into a reduced argument from a finite, and usually
small, range where the function can be efficiently approximated.

2. Approximation where the value of elementary function is calculated using
a combination of polynomial, piecewise-polynomial, and rational approxima-
tion, table lookups, and other transformations.

3. Reconstruction where the value of the function at its initial argument is
reconstructed from its computed value on reduced argument.

Several methods, introduced between mid-80s to mid-90s, combined both
good accuracy and good performance, and became classical in this field: Gal’s
algorithm for accurate table-based approximations [8], P.T.P. Tang’s table-based
algorithms [17], and ATA method by Wong and Goto [19]. These methods used
tables of pre-computed values to save precious floating-point operations at the
time when floating-point performance of processors was poor.

Fig. 1. Evolution of performance of Intel
x86 desktop processors

However, as the floating-point
capabilities of processors evolved, the
advantages of table-based method
started to diminish. Newer proces-
sors brought pipelined floating-point
units, capable of starting an FP
operation every cycle, SIMD exten-
sions, and Fused Multiply-Add (FMA)
instructions. Figure 1 suggests that
while the throughput of FP opera-
tions increased by several times dur-
ing the last decades, performance of
table lookups did not match this rate
of improvements. This shift in hard-

ware capabilities created an opportunity to design high-throughput elementary
functions without table lookups. An earlier attempt to design table-free func-
tions is presented in SLEEF library [16]. The functions presented in this paper

88 M. Dukhan and R. Vuduc

differ from SLEEF in five aspects: we refrain from using divisions and square
roots, we use branch instructions to handle special cases, we hide the latency
in polynomial evaluations by computing a function on a batch of elements, we
use the state-of-the-art polynomial approximation method [3] which produces
substantially more accurate polynomials than Taylor series in [16], and we pre-
fer very high-degree polynomial approximations with minimal transformations
of the input arguments while [16] favors lower-degree polynomials with special
function-specific argument transformations to improve accuracy.

3 Design Principles

In this section we present the four principles for high-throughput design of ele-
mentary functions: avoid table lookups, use multiplication and addition instead
of division and square root, avoid unpredictable branches, and process elements
in batches to hide latency.

Table 1. Latency of GATHER oper-
ation, emulated via multiple simple
instructions, cycles per instruction

Operation 2x DP 4x DP
Processor GATHER GATHER
Piledriver 18 23
Nehalem 12.3 −
Ivy Bridge 9 14

Table-based methods became popu-
lar in elementary functions implemen-
tations because they allowed to design
highly accurate elementary function with-
out using extended precision floating-
point formats. However, we suggest that
they could be a poor building block for
a high-throughput implementation. First,
as demonstrated by Fig. 1 floating-point
operations deliver several times higher
throughput than table lookups. Secondly,

the latency of SIMD table lookup operations in prohibitively high. Most SIMD
instruction sets, such as SSE, AVX, and NEON, do not support GATHER oper-
ation, which loads data from memory using indices from SIMD register, and it
needs to be emulated with multiple instructions. Intel Haswell processors sup-
port GATHER instructions in hardware, but its does not improve the latency.
Table 1 indicates that GATHER latencies are too high to be hidden with soft-
ware pipelining or out-of-order execution. Thus, our first design principle is to
avoid table lookups in high-throughput elementary functions.

Table 2. Peak single-thread throughput of
floating-point operations per cycle [6]

Operation DP DP DP DP DP
Processor ADD MUL MAC DIV SQRT
Piledriver 4 4 4 4/18 4/29
Nehalem 2 2 2 2/22 2/32
Sandy Bridge 4 4 4 4/44 4/43

Even on modern hardware
not all floating-point operations
are equally efficient. While mul-
tiplication and addition opera-
tions are usually pipelined and
can execute every cycle, floating-
point division and square root
occupy the execution units for
many cycles, and a new oper-
ation can start only after the

Methods for High-Throughput Computation of Elementary Functions 89

previous has finished. Table 2 illustrates this fact, and suggests the second design
principle: division and square root operations should be avoided in ele-
mentary functions.

Piecewise approximations were important at the time when floating-point
operations required dozens of cycles to execute. This approach is still used
in LibM libraries, but doesn’t perform well on modern architectures: branch
instructions which depend on the input data tend to be unpredictable for proces-
sors while the cost of branch misprediction in the last 20 years followed an expo-
nential trend and increased from 4 DP FLOPs in the original Pentium (1993)
to 240 in Intel Haswell microarchitecture (2013). Therefore, we argue that algo-
rithms for elementary functions should avoid unpredictable branches,
and in particular piecewise approximations. However, we consider acceptable
to use branches for detection of special cases (such as infinite or NaN inputs)
because special inputs are rare and thus predictable.

Finally, modern processors are optimized for high throughput as opposed to
low latency. Often they can start two floating-point instructions per cycle, but it
takes several cycles for each instruction to complete. To maximize the efficiency
of floating-point units it is important to have multiple input elements, so that
each cycle processor can start computing new elements while previously started
instructions complete in background. Thus, we suggest that high-throughput
vector elementary functions should process elements in batches to
hide the latency of floating-point instructions as the last design principle.

4 Building Blocks for Elementary Functions

The analyses in Sect. 3 suggest that elementary functions should be composed
from addition and multiplication only. Previous studies in floating-point compu-
tations suggest several function approximations which satisfy this requirement.

4.1 Polynomial Approximation

One of the oldest methods to evaluate a function is to approximate is with a
polynomial f (x) =

∑n
i=0 cix

i and evaluate the polynomial at the point where we
want to evaluate the function. The computationally efficient method to evaluate
the polynomial is the Horner scheme, which can be illustrated with the formula

n∑

i=0

cix
i = c0 + x (c1 + x (c2 + . . .+ x(cn−1 + x · cn) . . .))

Computing the value of the polynomial starts with the value y ← cn, and on
each step k = 1 . . . n the value is updated as

y ← cn−k + x · y
After n steps y will have the value of the polynomial evaluated at point x. Each
step requires one addition and one multiplication which can be combined into
an FMA operation.

90 M. Dukhan and R. Vuduc

Finding a good approximating polynomial for a given function is not trivial.
In this paper we use the recently proposed method [3] for constructing optimal
polynomial approximations with floating-point coefficients.

4.2 Newton-Raphson Iterations

Newton-Raphson iterations [10,12] represent a high-throughput alternative to
hardware division operation. A Newton-Raphson iteration begins with an
approximation rn for a reciprocal of x and produces an improved, more accurate,
approximation rn+1. Each iteration approximately doubles the number of correct
bits in the approximation. If FMA instruction is available, a Newton-Raphson
iteration for reciprocal will compute εn = 1− rn · x and rn+1 = rn + εn · rn and
will converge to the true reciprocal with 0.5 ULP accuracy [10] for almost all
inputs. On processors without FMA instruction, one can use a simpler Newton-
Raphson iteration for a reciprocal: rn+1 = rn · (2− rn · x), but due to roundoff
errors it will converge only to about 1.5 ULP accuracy. The number of itera-
tions to convergence depends on the accuracy of the initial approximation r0.
SSE extension for x86 ISA provides a fast RCPPS instruction to compute an
initial approximation to reciprocal. If the initial value is computed with RCPPS
instruction, Newton-Raphson iterations converge in 2 − 3 iterations, depend-
ing on the accuracy of RCPPS instruction, which is implementation-dependent.
Newton-Raphson iterations were also suggested for computing square root and
reciprocal square root [10,12].

5 Implementation of High-Throughput LibM

Our design of elementary functions uses two code paths for each function: the
fast path correctly computes the function value for all but special cases, and
the special path correctly computes all cases, but executes more instructions
and thus has lower throughput. To check for special values we examine only
the high 32 bits of the input double-precision elements. Our algorithms rely on
availability of the following operations in the machine instruction set:

1. Floating-point addition and multiplication. Fused multiply-add support is not
required, but is beneficial for accuracy.

2. Simple integer and logical SIMD instructions which operate on the same
registers as floating-point instructions.

Below we describe the algorithms we developed for computing vector math-
ematical functions, and demonstrate the measured accuracy and performance
of the functions compared to other implementations. The labels GNU and Intel
correspond to GNU LibM and Intel LibM correspondingly. AMD and AMD/V
represents the scalar and vector version of AMD LibM 3.1, SLEEF, SLEEF/S,
and SLEEF/A — scalar, SSE, and AVX versions of the SLEEF 2.80 library.
MKL/HA and MKL/LA correspond to high-accuracy and low-accuracy ver-
sions in Intel MKL 11.1.0. IPPvm/HA and IPPvm/LA denote high-accuracy

Methods for High-Throughput Computation of Elementary Functions 91

and low-accuracy versions in Intel IPP 8.0.1. FDLibM and Cephes labels mark
results for FDLibM 5.3 and Cephes 2.7 libraries. The CRLibM label repre-
sents results for the latest (April 11, 2011) version of CRLibM library and
CRLibM/x87 marks its special version which internally uses double-extended
instructions of x87 FPU [5]. In cases where several implementations from the
same vendor demonstrate similar accuracy, we present only results with better
performance. We present results for three processors with different microarchitec-
tures: Intel Core i7 950 with Nehalem microarchitecture, Intel Xeon E5-2603 on
Sandy Bridge microarchitecture, and Piledriver-based AMD FX-6300. FDLibM,
CRLibM, Cephes, and SLEEF libraries were compiled with gcc-4.8.1 with all
performance optimizations (-O3) and architecture-specific optimizations for each
processor (-march=native).

5.1 Log Function

For the log function we decompose the argument into two parts:
√

2
2 ≤ t <√

2 and integer s such that log x = s · log 2 + log t. Then we approximate
log t on

[√
2

2 ,
√

2
)

with a 20-degree polynomial in (t− 1): log t = (t− 1) +
∑20

i=2 ci · (t− 1)i
. Finally, we reconstruct and reconstruct the value of log x as

log t + s · l2low + s · l2high where l2high is a floating-point representation of
log 2 with the 11 least significant bits zeroed out, and l2low is a floating-point
representation of (log 2− l2high) (Fig. 2).

Fig. 2. Performance and accuracy of log function implementations on [0.1, 10000.0].

5.2 Exp Function

For the range reduction in the exp function denote n = �x · log2e�, t = x − n ·
log (2) then − log(2)

2 ≤ t ≤ log(2)
2 , and ex = 2n · et. To save accuracy in comput-

ing the reduced argument t we use the Cody-Waite range reduction [4] (Fig. 3):

Fig. 3. Performance and accuracy of exp function implementations on [−707.0, 707.0].

92 M. Dukhan and R. Vuduc

t = x − n · l2hi − n · l2low, where l2hi is the floating-point representation of
log 2 with 11 zeroes in the lowest bits, and l2low is the floating-point represen-
tation of (log 2− l2hi). We approximate et on [− log(2)

2 ,≤ log(2)
2] by an 11-degree

polynomial and reconstruct the final value of exp x as

ex = 2n + 2n ·
(

t+
11∑

i=2

ci · ti
)

.

5.3 Trigonometric Functions

For trigonometric functions we perform range reduction over π
2 using Cody-

Waite range reduction algorithm [4] (Fig. 4). First, we compute n =
⌊
x · 2

π

⌉
, and

then we compute the reduced argument t = x− n · π
2 as

t = x− n · pio2hi − n · pio2me − n · pio2lo

Fig. 4. Performance and accuracy of sin function implementations on
[−10000.0, 10000.0].

where pio2hi + pio2me + pio2lo together approximate π
2 , the last 15 bits of the

pio2hi and pio2me are zeroed out, and the second subtraction is performed in
double-double arithmetics. The range reduction is reasonably accurate only if n
has at most 15 significant bits. Larger arguments are considered special cases
because table-based Payne-Hanek algorithm [14] is required to reduce them.
After the reduced arguments t and n are computed, the final values of sin, cos
and tan can be expressed in terms of sin t or cos t as suggested in [13]:

n mod 4 sin x cos x tan x

0 sin t cos t sin t/ cos t
1 cos t − sin t − cos t/ sin t
2 − sin t − cos t sin t/ cos t
3 − cos t sin t − cos t/ sin t

The range for t is symmetric relative to zero −π
4 ≤ t ≤ π

4 , which contributes
to efficiency of approximations. We approximate sin t on

[−π
4 ,

π
4

]
by a 13-

degree polynomial in
(
t, t3, t5, . . . , t13

)
and cos t by a 14-degree polynomial in(

1, t2, t4, . . . , t14
)
.

Methods for High-Throughput Computation of Elementary Functions 93

Fig. 5. Performance and accuracy
of tan function implementations on
[−1000.0, 1000.0].

In our implementation of tan we
conditionally swap the values for sine
and cosine of t depending on the value
of n, so only one division is needed.
We take advantage of the FMA
capability on Piledriver and replace
division with multiplication by the
reciprocal, with an additional correc-
tion with two FMA operations. The

reciprocal is computed using Newton-Raphson iterations with FMA. The mea-
sured accuracy of the tan function is same as if division was done via the hard-
ware instruction (Fig. 5).

5.4 Architecture-Specific Optimizations

We optimized the vector mathematical functions described above for three x86
microarchitectures. The functions were implemented in assembly, targeting dif-
ferent instruction sets: SSE4.2 on Nehalem, AVX on Sandy Bridge, and AVX
with FMA4 on Piledriver.

All functions compute elements in batches to hide the latency. For non-
trigonometric functions the batch size is 8 SIMD registers for Intel processors and
5 AVX registers for AMD Piledriver. Trigonometric functions process elements
in batches of 5 SIMD registers on all processors.

6 Performance and Accuracy Evaluation

We measured performance and accuracy on the intervals suggested by Intel VML
library reference. The plots in Sect. 5 specify the intervals for each elementary
function. We used two different probability distributions to generate input data.
For accuracy test we used a probability distribution which assigned equal prob-
ability to each floating-point number on the test interval. We choose this prob-
ability distribution because it maximizes coverage and is able to generate small
floating-point numbers. Since the density of floating-point numbers exponen-
tially increases near zero, it might generate small numbers more often, than in
typical use. Thus, for performance tests we used a conventional uniform distri-
bution over the same intervals. Accuracy and performance of all libraries were
measured on exactly the same input data.

The accuracy of elementary functions was tested on one million random
points, and compared against the 160-bit accurate values computed with MPFR
library [7]. The errors are reported in units-in-the-last-place (ULP). ULP is
the minimum difference between two nearby floating-point numbers; it can be
thought of as a change in the last bit of a result. It is a standard measure
or errors in floating-point computation: the theoretical minimum on the maxi-
mum error for elementary functions is 1

2 ULP, and most LibM libraries target
the maximum error below 1 ULP. In the experiments our elementary functions

94 M. Dukhan and R. Vuduc

demonstrated errors below 2 ULP for non-trigonometric functions and below 3
ULP for trigonometric functions. We suggest that this accuracy level is sufficient
for practical use and matches industry standards: Intel C++ and FORTRAN
compilers default to 4 ULP accuracy for vectorization of elementary functions.

We measured performance on 2000 random points and recorded the best
timings among 1000 measurements to filter out the effect of cache and TLB
misses and system interrupts. To minimize systematic error, we disabled Turbo
Boost, Hyper Threading, and power-saving capabilities of processors for the
length of the test.

7 Conclusion

In this paper we considered the effect the changes in hardware may have on
design of high-throughput elementary functions. We analysed which methods
for elementary functions are suitable for a high-throughput implementation,
and evaluated the hardware-friendly implementation on 3 different hardware
platforms. Our results suggest that hardware-friendly methods can successfully
compete with traditional elementary function designs in terms of performance,
and provide enough accuracy for practical use.

We aim to make the mathematical functions designed for this project avail-
able to researchers in applied areas through Yeppp! library (www.yeppp.info).
The functions considered in this paper are released in Yeppp! version 1.0.0.

To facilitate further research in this area we released the performance and
accuracy measurement tool used in this research as open source software.1

Acknowledgements. This work was supported in part by the National Science Foun-
dation (NSF) under NSF CAREER award number 0953100 and the U.S. Dept. of
Energy (DOE), Office of Science, Advanced Scientific Computing Research under award
DE-FC02-10ER26006/DE-SC0004915. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the authors and do not necessarily
reflect those of NSF or DOE.

References

1. Bailey, R.: Polar generation of random variates with the t-distribution. Math.
Comput. 62(206), 779–782 (1994)

2. Box, G., Muller, M.: A note on the generation of random normal deviates. Ann.
Math. Stat. 29(2), 610–611 (1958)

3. Brisebarre, N., Chevillard, S.: Efficient polynomial L∞-approximations. In: 18th
IEEE Symposium on Computer Arithmetic, 2007. ARITH’07. pp. 169–176. IEEE
(2007)

4. Cody, W., Waite, W.: Software Manual for the Elementary Functions. Prentice-
Hall, New Jersey (1980)

1 Repository is hosted on bitbucket.org/MDukhan/hysteria.

Methods for High-Throughput Computation of Elementary Functions 95

5. de Dinechin, F., Defour, D., Lauter, C., et al.: Fast correct rounding of elementary
functions in double precision using double-extended arithmetic (2004)

6. Fog, A.: Instruction tables: lists of instruction latencies, throughputs and micro-
operation breakdowns for Intel. AMD and VIA CPUs, Technical report (2012)

7. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a multi-
pleprecision binary floating-point library with correct rounding. ACM Trans. Math.
Softw. (TOMS) 33(2), 13 (2007)

8. Gal, S.: An accurate elementary mathematical library for the ieee floating point
standard. ACM Trans. Math. Softw. (TOMS) 17(1), 26–45 (1991)

9. Gentle, J.E.: Random Number Generation and Monte Carlo Methods. Springer,
New York (2003)

10. Markstein, P.: IA-64 and Elementary Functions: Speed and Precision. Prentice
Hall, New Jersey (2000)

11. Muller, J.-M.: Elementary Functions: Algorithms and Implementation. Birkhauser,
Boston (1997)

12. Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefevre, V.,
Melquiond, G., Revol, N., Stehle, D., Torres, S., Muller, J.-M., Brisebarre, N.,
Dinechin, F., Jeannerod, C.-P., Lefevre, V., Melquiond, G., Revol, N., Stehle, D.,
Torres, S.: Handbook of Floating-Point Arithmetic. Birkhauser, Boston (2010)

13. Ng, K.C.: Argument reduction for huge arguments: Good to the last bit (1992)
14. Payne, M., Hanek, R.: Radian reduction for trigonometric functions. ACM

SIGNUM Newsl. 18(1), 19–24 (1983)
15. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes: The Art

of Scientific Computing. Cambridge University Press, Cambridge (2007)
16. Shibata, N.: Efficient evaluation methods of elementary functions suitable for SIMD

computation. Comput. Sci.-Res. Dev. 25(1), 25–32 (2010)
17. Tang, P.: Table-lookup algorithms for elementary functions and their error analysis.

In: Proceedings of the 10th IEEE Symposium on Computer Arithmetic, 1991. pp.
232–236. IEEE (1991)

18. Williams, C.K.I., Rasmussen, C.E.: Gaussian Processes for Machine Learning, MIT
Press, Cambridge (2006)

19. Wong, W.-F., Goto, E.: Fast evaluation of the elementary functions in single pre-
cision. IEEE Trans. Comput. 44(3), 453–457 (1995)

Engineering Nonlinear
Pseudorandom Number Generators

Samuel Neves(B) and Filipe Araujo

CISUC, Department of Informatics Engineering,
University of Coimbra, Coimbra, Portugal

sneves@dei.uc.pt, filipius@uc.pt

Abstract. In the era of multi and many-core processors, computer simu-
lations increasingly require parallel, small and fast pseudorandom
number generation. Although linear generators lend themselves to a sim-
pler evaluation that ensures favorable properties like guaranteed period,
they may adversely affect the result of simulations or be quite large. Con-
versely, nonlinear generators may provide apparently random sequences,
but are either very slow or difficult to analyze regarding their period.

This is the case of our previous functions, Tyche and Tyche-i. Despite
being among the fastest in their class and having average periods of 2127,
they may contain smaller cycles of arbitrary size. To overcome this lim-
itation, in this paper we explore different forms of counters impacting
either the state or the speed of the generator. We also introduce two
number-theoretic generators that use 2 × 127 bits for periods of 2116

and 2125 and low to moderate computational costs. We experimentally
demonstrate the efficiency of our new generators and observe that they
exchange speed for period guarantees in a tradeoff that seems widespread
in state-of-the-art random number generators.

Keywords: Nonlinear pseudorandom generator · Elliptic curves ·
Elliptic curve linear congruential generator

1 Introduction

Pseudorandom number generators (PRNGs) attempt to generate sequences that
have similar properties to that of genuinely random sequences, while simultane-
ously being deterministic and reproducible. Most commonly-used generators are
based on number-theoretic constructions: linear congruential generators (LCGs)
work over the ring of integers modulo m, linear feedback shift registers from
the ring of polynomials modulo p, and so on. Working in such mathematical
structures makes it easier to reason about period, equidistribution, and other
desirable properties of PRNGs. However, they are often linear, which adversely
affects real-world simulation results, and speed, due to the required arithmetic.

Nonlinear generators can be divided in two main camps. On one hand, we
have the number-theoretic generators, which rely on number theory to demon-
strate their properties, such as period and distribution. On the other hand,

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 96–105, 2014.
DOI: 10.1007/978-3-642-55224-3 10, c© Springer-Verlag Berlin Heidelberg 2014

Engineering Nonlinear Pseudorandom Number Generators 97

there are the cryptography-based generators, which rely on the avalanche effect
of cryptographic primitives to mask any relationship from one state to the next.

Recently, non-number-theoretic, nonlinear generators have been proposed with
some success [20,24]. These often try to “mix” the bits of the PRNG’s state as best
as possible across iterations, thus obtaining quality random sequences. Despite
passing statistical tests, these generators tend to rely on heuristic assumptions,
making it impossible to guarantee their period or distribution properties.

Some generators, most notably the Mersenne Twister [17], use very large
states to thwart some of the drawbacks of their linearity. The SIMD-oriented
version of the Mersenne Twister [23] is indeed quite faster, but still uses a state
of similar size as the original MT, requiring hundreds of 128-bit words. Smaller-
state generators, like Xorshift [16], have small state but struggle to provide
adequate statistical quality [22].

Meanwhile, computer architecture is shifting. It is becoming harder to put
more transistors within the same chip area, and manufacturers are often forced
to choose between memory and execution units. For now, general-purpose chips,
such as x86-64 and ARM, tend to favor fast memory (cache), while special-
purpose chips (e.g., GPUs) lean toward more computational power. The current
trend appears to be towards more cores, and therefore one can expect less mem-
ory per running thread. Future PRNGs should therefore save memory and share
no state between threads, to avoid contention. By decreasing order of relevance,
modern PRNGs should have the following properties:

High Quality: Any proposed generator must pass stringent statistical tests,
such as TestU01’s “Big Crush” battery [13].

Large Period: While opinions vary about the minimum acceptable period, we
aim for a minimum of 2128.

Small State: The size of the state should not be significantly larger than the
binary logarithm of its period, which we assume to be roughly 2128.

Fast: The generator must be as quick as possible, because it is often in the
critical path of simulations.

Linearity enables design of fast generators with provable properties, such
as period, statistical distribution, and small state [14,26]. However, linear con-
gruential generators often possess a lattice structure that can skew the results
of a simulation [9,15]. To run away from linear generators’ drawbacks, we add
another requirement to a good generator: nonlinearity. This means that a gen-
erator should not be representable as an affine transformation in F2, Zn, or any
such ring. Since provable properties such as period often affect the speed of
PRNGs, in this paper we propose a number of different algorithms, including
elliptic curve generators, to explore the speed/period tradeoff. We believe that
our generators provide excellent state-of-the-art speeds for their properties.

Our contribution in this paper is twofold: firstly, we present two nonlinear
number-theoretic generators based on elliptic curves over a prime field. Secondly,
we introduce two new tweaks to the Tyche generator [20], representing two dif-
ferent tradeoffs between period guarantee and speed. We analyze and discuss
the results in Sect. 3.

98 S. Neves and F. Araujo

2 Small Nonlinear Generators

Generators based on number-theoretic structures are among the most common in
the literature, and include the linear congruential generator, the linear feedback
shift register and its many variants, the inversive congruential generator, Blum-
Blum-Shub [5], and others. Generally, generators in this category that are linear
are reasonably fast, while nonlinear ones tend to underperform and are less
commonly used in real applications.

The most general construction for a generator is of the form

Si = f(Si−1)
xi = g(Si)

The functions f and g are known as the transition and output functions. This
construction allows for much freedom in the design process, and encompasses
the vast majority of the existing generators. For example, in the common linear
congruential generator [14], f is the Si = aSi−1 + b mod m recurrence, while g is
usually a truncation of the current value. In this case, the computational effort is
skewed almost completely towards f . Conversely, a generator created from, e.g.,
a block cipher EK (e.g., AES-128) in counter mode [8] has Si = Si−1 + 1, and
xi = EK(Si). This case is computationally skewed towards the output function.

There are advantages and disadvantages on each of these extremes. It is easier
to find a simple function that achieves full period—for example f(x) = x + 1—
and use the output function to produce random-looking outputs, than it is to
find a random-looking transition function that also has large guaranteed period.
However, the latter case is often computationally better than the former; simple
functions often do not have good statistical properties, and the output function
has to do a large amount of work to achieve enough bit diffusion.

To achieve full period in the least possible space, the transition function
must be invertible, i.e., a permutation. Non-invertible functions have an expected
period of 2n/2 for n bits of state ; such functions therefore need 2n bits to achieve
2n period, which breaks our space-efficiency requirement. On the other hand,
there are not many restrictions on the output function.

2.1 Elliptic Curves

Elliptic curves have found many uses in cryptography [10,18], and are the current
leading candidate for public-key key-exchanges and digital signatures. The set
of solutions (x, y) to the Weierstrass equation over some field F

E(F) : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, x, y, ai ∈ F (1)

together with the “point at infinity” P∞ and an point addition operation + form
an Abelian group. The order of this group, #E, follows the famous Hasse bound:

#F + 1− 2
√

#F < #E(F) < #F + 1 + 2
√

#F (2)

Engineering Nonlinear Pseudorandom Number Generators 99

These two facts allow one to define a linear congruential-style generator of
the form

Pi = G + Pi−1 (3)

which will then have an order equal to that of the generator G. Apart from having
guaranteed period, such generators are also known to have desirable statistical
properties [6,11], have small state (i.e., one point), and can skip ahead quickly
by noticing that

Pn = nG + P0 (4)

where nG means repeated addition and can be done in O(log n) additions using
standard techniques. For a generator of this kind to be fast, two things are
required: (i) fast arithmetic over F ; (ii) fast point addition.

Despite all elliptic curves being representable in affine coordinates satisfy-
ing Eq. 1, several other representations exist that present certain performance
tradeoffs: Jacobian projective coordinates [7], Montgomery curves [19], Jacobi
quartics [7], Hessian curves [7], Edwards curves [4], Twisted Edwards curves [2],
and others1. Of these, there are two main representations that are of interest
to us, when it comes to cheap point addition: Montgomery curves and twisted
Edwards curves.

Algorithm 2.1. MontgomeryDouble(X,Z)

comment: K is Constant for a given curve

K ← (a2 + 2)/4
A← (X + Z)2

B ← (X − Z)2

C ← A−B
return (AB,C(B + KC))

Twisted Edwards curves have recently been used to break speed records in
elliptic curve scalar multiplication [3]. However, these curves require rather large
point representations (4 field elements) to achieve the best speeds, and even then
have relatively high addition and doubling costs. In comparison, Montgomery
curves only require two field elements but do not support full addition, instead
requiring differential addition to perform scalar multiplication. Point doubling
of Montgomery curves, listed in Algorithm 2.1, has the best operation count,
at 4 multiplications, 4 additions, and 1 multiplication by a constant. This fact
motivates our new generator mode, vaguely resembling the Blum-Blum-Shub [5]
generator:

Pi = Pi−1 + Pi−1 = 2Pi−1. (5)

1 Most known efficient formulas for various curves and point representations are found
in the Explicit-Formulas Database: http://hyperelliptic.org/EFD/index.html

100 S. Neves and F. Araujo

This new recurrence has two advantages: it only requires point doubling,
and requires less fixed constants by removing the need for G. This recurrence
computes the sequence 2P, 4P, . . . , 2iP and is therefore also possible to skip
ahead by computing

Pn = (2n mod ord(P0))P0 (6)

and the period of this sequence is given by ord(2) mod ord(P0). The order of
this generator is thus dependent not only on the number of points in the elliptic
curve, but also on the order of 2 in the ring of integers modulo the order of the
initial point.

2.2 The M127 Generator

Our first concrete proposal of a generator that achieves near 2128 period consists
of the following Montgomery curve over the integers modulo the Mersenne prime
2127 − 1:

y2 = x3 + 131074x2 + x. (7)

This curve has order 4·p1, p1 = 425352958651173079342024066491067747332.
The constant 131074 was chosen so that 32769 = (131074 + 2)/4 has Hamming
weight 2 and multiplication can be performed via one shift and one addition:
32769x = x� 15x.

Points are represented in the traditional Montgomery curve fashion (X,Z).
This representation only contains information about the X coordinate of a given
point; the Y coordinate is ignored, and thus points are in reality an equivalence
class of (X,Y) and (X,−Y). The (X,Z) representation avoids costly inversions
by storing X as a fraction, i.e., X = X/Z.

The underlying field, F2127−1, was chosen to minimize the cost of modular
reduction. Modular reduction by 2n − 1 is known to be achievable by the divi-
sionless expression

x mod (2n − 1) ≡ (x mod 2n + �x/2n�) mod (2n − 1). (8)

To select a starting point from a (say) 128-bit seed s, one can compute
P0 = s(2, 1). Note that (2, 1) has order p1, and thus there is no chance that an
unlucky seed will get stuck in a small order point forever. The only seed that
must be avoided is, of course, p1 itself, since this would result in the point-at-
infinity as the starting point.

This generator is appropriate for architectures where integer multiplication
is fast. There are 4 F2127−1 multiplications per iteration, each of which requires
4 64 × 64 → 128-bit multiplications. While there is plenty of exploitable paral-
lelism in both field and curve arithmetic to attenuate the effect of high-latency
multiplication instructions, it may not be enough.

2 The order of Montgomery curves is always a multiple of 4.

Engineering Nonlinear Pseudorandom Number Generators 101

2.3 The M31x4 Generator

The curve from the previous section relied on fast arithmetic over the under-
lying field. While this can be reasonably expected from large general purpose
processors, it is often the case that smaller or specialized processors are unable
to perform multiple-precision arithmetic very quickly. Furthermore, small inte-
ger multiplication has quadratic complexity, and for CPUs with small register
sizes that complexity grows quickly. For this reason we propose the following
generator, which only requires 32-bit arithmetic.

This generator uses not one, but 4 Montgomery curves in parallel over the
Mersenne prime 231 − 1:

y2 = x3 + vix
2 + x (9)

where v = {904572996, 1467357171, 1043599384, 1244578513}. The 4 curves have
orders of respectively 4·536871259, 4·536872363, 4·536872907, and 4·536873203.
At the end of each iteration, the generator outputs the combination of the x-
coordinates of the points:

g(x0, x1, x2, x3) = x0 ⊕ (x1 ≪ 7)⊕ (x2 ≪ 11)⊕ (x3 ≪ 29) (10)

where ⊕ means XOR and ≪ means rotation towards the most significant bits.
The 4 vi parameters were chosen to maximize the order of 2 in the respective

fields. This makes the overall period of this generator 536871258 · 536872362 ·
536872906 · 536873202 ≈ 2116.

This generator allows many different implementation approaches, and is
suitable for large CPUs (where it can be implemented using general purpose
instruction or SIMD) and GPUs alike.

2.4 Tweaking Tyche with a Counter

The Tyche generator [20] is a generator based on the ChaCha core permuta-
tion [1], which works in a mode similar to OFB mode in block ciphers. We refer
to [20] for the complete description of Tyche. While it shows great performance
across many architectures, due to its use of simple 32-bit instructions, it has
several drawbacks:

No Provable Period: Treating the core permutation MIX as a random permu-
tation allows us to estimate the expected period of a sequence to be roughly
2127. However, this says nothing about the actual cycle structure of Tyche,
and unlikely as it may be, there may be some hidden pitfalls in this generator.

No Random Access: While Tyche provides some higher level parallelism sup-
port by defining different stream starting points, it is impossible to jump
ahead inside a single stream. This may be inconvenient in some situations.

In this section we propose a tweak to Tyche [20], named Tyche-CTR-R, to
change the mode of operation of Tyche. Once the initial state is set up, the
least significant 64 bits are used as a counter incremented by the odd constant

102 S. Neves and F. Araujo

58717810085618958653, while the most significant 64 bits remain constant, serv-
ing as identifier (a nonce) of the current stream. Then, this state is processed
R times by the MIX function, and the least significant word is returned. Algo-
rithm 2.2 describes Tyche-CTR-R.

Algorithm 2.2. Tyche-CTR-R(a, b, c, d)

(b, a)← (a + 232b) + 5871781008561895865
(a′, b′, c′, d′)← (a, b, c, d)
for i← 0 to R
do (a′, b′, c′, d′)←MIX(a′, b′, c′, d′)

return (a′)

Our experiments have suggested that 5 rounds, i.e., Tyche-CTR-5, are suffi-
cient to achieve enough diffusion to pass known statistical tests. It is easy to see
that the period of Tyche-CTR-R is 264 and it is easy to jump ahead arbitrar-
ily within a stream, by adding an appropriate multiple of the constant used in
Algorithm 2.2. This also implies the generator is massively parallelizable. One
should notice that Tyche-CTR-5 provides 264 distinct streams with a guaranteed
period of 264, and still enables further tweaks to the lengths of the counter and
nonce.

2.5 Tyche as a Counter-Dependent Generator

The tweak presented in the previous section was fairly aggressive: instead of one
MIX call per iteration, we now require R ≥ 5 calls to achieve the same effect. This
is a massive slowdown, even though it does enable some desirable properties, and
the higher latency may be hidden by computing several values in parallel.

We propose in this section another tradeoff: a 232 guaranteed minimum
period, 2159 average period, and 160 bits of state. The approach we follow is
known as counter-dependent generators [25], and is pictured in Algorithm 2.3.

Algorithm 2.3. Tyche-CD-32(a, b, c, d, e)

e← e + (e2 ∨ 5) mod 232

(a, b, c, d)←MIX(a, b, c, d)
return (b + e)

3 Counters that add an odd constant different from 1 are often known as Weyl generators.

Engineering Nonlinear Pseudorandom Number Generators 103

Table 1. Timing and period information of Sect. 2 generators, a 128-bit LCG, and a
128-bit EC-RNG.

Generator State bits Cycles/Iteration Average period Min period Jump ahead

LCG-128 127 32 2127 − 1 2127 − 1 Yes
EC-LCG 3 × 127 238 ≈ 2127 ≈ 2127 Yes
XORWOW [21] 192 7 2192 − 232 2192 − 232 Yes
M127 2 × 127 96 ≈ 2125 ≈ 2125 Yes
M31x4 2 × 127 38 ≈ 2116 ≈ 2116 Yes
Tyche [20] 128 12 ≈ 2127 1 No
Tyche-i [20] 128 6 ≈ 2127 1 No
Tyche-CD-32 160 12 ≈ 2159 232 No
Tyche-CTR-5 128 44 264 264 Yes

Since this tweak does not enable random stream access, we opted to use the
T-function x + (x2∨5) (mod 2n), proven by Klimov and Shamir to be invertible
and single-cycled [12]. This function is executed in parallel with MIX, and is
not expected to significantly slow down the generator. Additionally, the greater
complexity of this function provides some more diffusion than a simpler counter.

3 Results and Discussion

The generators described in Sect. 2 have passed the TestU01 [13] “BigCrush”
battery of tests. Therefore, to evaluate their performance, we include timings
for a 128-bit LCG with modulus 2127 − 1 and multiplier 43, and an EC-LCG
using projective coordinates over a Weierstrass curve of prime order over the
same prime as M127, 2127 − 1. Additionally, we also compare the original Tyche
algorithm against the variants proposed in Sects. 2.4 and 2.5.

Table 1 shows the number of cycles per iteration of the aforementioned gen-
erators. The timings were obtained on an Intel Core-i7 2630QM “Sandy Bridge”
processor, with Turbo Boost and hyperthreading disabled.

It is apparent from Table 1 that M127, despite much optimization effort, is
quite far from the performance of a similar-period LCG. Nevertheless, it is more
than twice as fast as an EC-LCG of similar period, most of this stemming from
the faster Montgomery doubling operation. The speed of the M31x4 generator
is on the same order of magnitude as the LCG, due to the lack of large integer
arithmetic in favor of parallel small elliptic curves and a simple combiner.

One pattern that emerges is that the number-theoretic generators do
not seem to have significant advantages over the counter-based generator. The
counter-based generator Tyche-CTR-5 not only is faster than the nonlinear
number-theoretic generators, but also contains every feature found in the lat-
ter. Note that if storage space is not an issue, it is possible to, e.g., run 4 or 8
parallel instances of the Tyche-CTR in SIMD registers, resulting in a significant
speedup. This would be impossible in recursive generators.

Finally the Tyche-CD-32 generator strikes a balance between features and
speed. It is as fast as Tyche, hiding the extra instructions in between Tyche’s

104 S. Neves and F. Araujo

critical path, guarantees a reasonable minimum period of 232, and does not
require vectorization tricks to be extremely quick.

Ultimately, this is the tradeoff generators seem to make: linear generators can
be fast, small, and provably periodic, but suffer in statistical properties; nonlinear
generators can be fast and small, but their period will not be provable and
are purely sequential; nonlinear number theoretic generators will have provable
period, but will suffer in speed due to the heavy arithmetic.

Future work involves investigating additional number-theoretic constructs
to obtain faster generators; perhaps elliptic curves are not the optimal choice,
despite their popularity in cryptography.

Acknowledgments. This work has been supported by the project CMU-PT/
RNQ/0015/2009, TRONE — Trustworthy and Resilient Operations in a Network
Environment.

References

1. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC 2008:
The State of the Art of Stream Ciphers, January 2008

2. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, Ch.: Twisted edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008)

3. Bernstein, D.J., Lange, T.: Analysis and optimization of elliptic-curve single-scalar
multiplication. IACR Cryptology ePrint Archive 2007, 455 (2007)

4. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

5. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)

6. Chen, Z., Gomez, D., Pirsic, G.: On lattice profile of the elliptic curve linear con-
gruential generators. Period. Math. Hung. 68, 1–12 (2012)

7. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition
in formal groups and new primality and factorization tests. Adv. Appl. Math. 7(4),
385–434 (1986)

8. Dworkin, M.: Recommendation for block cipher modes of operation: methods and
techniques. Special Publication 800–38A, National Institute of Standards and Tech-
nology, Gaithersburg, MD 20899–8930 (2001)

9. Ferrenberg, A.M., Landau, D.P., Wong, Y.J.: Monte Carlo simulations: hidden
errors from “good” random number generators. Phys. Rev. Lett. 69, 3382–3384
(1992)

10. Lenstra, H.W. Jr.: Elliptic curves and number-theoretic algorithms. In: Gleason,
A.M. (ed.) Proceedings of the International Congress of Mathematicians, vol. 1,
pp. 99–120. American Mathematical Society, Providence (1987)

11. Hess, F., Shparlinski, I.E.: On the linear complexity and multidimensional distri-
bution of congruential generators over elliptic curves. Des. Codes Crypt. 35(1),
111–117 (2005). http://dx.doi.org/10.1007/s10623-003-6153-0

12. Klimov, A., Shamir, A.: Cryptographic applications of T-Functions. In: Matsui,
M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 248–261. Springer,
Heidelberg (2004)

Engineering Nonlinear Pseudorandom Number Generators 105

13. L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random
number generators. ACM Trans. Math. Softw. 33(4), 22 (2007)

14. Lehmer, D.: Mathematical methods in large-scale computing units. In: Proceedings
of the 2nd Symposium on Large-Scale Digital Calculating Machinery, pp. 141–146.
Harvard University Press, Cambridge, Massachusetts (1949)

15. Marsaglia, G.: Random numbers fall mainly in the planes. PNAS 61(1), 25–28
(1968). http://dx.doi.org/10.1073/pnas.61.1.25

16. Marsaglia, G.: Xorshift RNGs. J. Stat. Softw. 8(14), 1–6 (2003)
17. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1), 3–30 (1998)

18. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

19. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48, 243–264 (1987)

20. Neves, S., Araujo, F.: Fast and small nonlinear pseudorandom number genera-
tors for computer simulation. In: Dongarra, J., Karczewski, K., Waśniewski, J.,
Wyrzykowski, R. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 92–101. Springer,
Heidelberg (2012)

21. NVIDIA Corporation: CURAND Library (July 2013), http://docs.nvidia.com/
cuda/curand/

22. Panneton, F., L’ecuyer, P.: On the Xorshift random number generators. ACM
Trans. Model. Comput. Simul. 15(4), 346–361 (2005)

23. Saito, M., Matsumoto, M.: SIMD-oriented fast Mersenne Twister: a 128-bit pseudo-
random number generator. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte
Carlo and Quasi-Monte Carlo Methods 2006, pp. 607–622. Springer, Berlin (2008)

24. Salmon, J.K., Moraes, M.A., Dror, R.O., Shaw, D.E.: Parallel random numbers:
as easy as 1, 2, 3. In: Lathrop, S., Costa, J., Kramer, W. (eds.) SC, p. 16. ACM
(2011). http://doi.acm.org/10.1145/2063384.2063405

25. Shamir, A., Tsaban, B.: Guaranteeing the diversity of number generators. Inf.
Comput. 171(2), 350–363 (2002)

26. Tausworthe, R.C.: Random numbers generated by linear recurrence modulo two.
Math. Comput. 19, 201–209 (1965)

Extending the Generalized Fermat Prime
Number Search Beyond One Million Digits

Using GPUs

Iain Bethune1(B) and Michael Goetz2

1 EPCC, The University of Edinburgh, James Clerk Maxwell Building,
The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK

ibethune@epcc.ed.ac.uk

http://www.epcc.ed.ac.uk/~ibethune
2 PrimeGrid, Ardsley, New York, USA

mgoetz@primegrid.com

http://www.primegrid.com

Abstract. Great strides have been made in recent years in the search for
ever larger prime Generalized Fermat Numbers (GFN). We briefly review
the history of the GFN prime search, and describe new implementations
of the ‘Genefer’ software (now available as open source) using CUDA and
optimised CPU assembler which have underpinned this unprecedented
progress. The results of the ongoing search are used to extend Gallot and
Dubner’s published tables comparing the theoretical predictions with
actual distributions of primes, and we report on recent discoveries of
GFN primes with over one million digits.

Keywords: Generalized Fermat Numbers · Primality testing · Volun-
teer computing · Computational mathematics ·GPU computing · CUDA

1 Background

Computational number theory and in particular the search for large prime num-
bers has grown steadily in popularity over the last two decades. Led by projects
like the Great Internet Mersenne Prime Search (GIMPS), tens of thousands
of volunteers now contribute computer time in support of projects such as
“Seventeen or Bust” - attempting to solve the Sierpiński Problem [9] - and
searches for primes of particular types including Proth (k ·2n +1, k < 2n), Riesel
(k · 2n − 1, k < 2n), Cullen (n · 2n + 1) and Woodall (n · 2n − 1) primes. Many
of these prime searches are coordinated by the PrimeGrid [10] project, which
uses the Berkeley Open Infrastructure for Network Computing (BOINC) [1] to
allow client computers to download, process, and return work units consisting
of primality tests or sieving.

The Generalized Fermat Numbers (GFN) are defined as having the form
Fb,n = b2n

+ 1. Starting in 2000 Yves Gallot led a very active and well-organised

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 106–113, 2014.
DOI: 10.1007/978-3-642-55224-3 11, c© Springer-Verlag Berlin Heidelberg 2014

Extending the GFN Prime Search Beyond 1M Digits 107

distributed search for GFN primes using his ‘Proth’ and ‘Genefer’ programs.
Many GFN primes were found with over 100,000 digits and preliminary results
were published in a seminal paper by Gallot and Dubner [5] in 2002. However,
by 2004 the project drew to a gradual conclusion with the exception of a few
individual searchers.

In 2009 PrimeGrid restarted the GFN search beginning from where the pre-
vious effort left off, searching n ≥ 15. Due in part to increased CPU power, a
very large user base and improvements to Gallot’s software, exceptional progress
has been made to date, which we report hereafter.

2 Software for GFN Searching

2.1 PRP Testing

During the early years of the GFN search Gallot’s original C program ‘Gene-
fer’ was used to perform probable primality (PRP) tests on GFNs. An overview
of the implementation of the PRP test employed is described by Gallot and
Dubner [5] and details of FFT multiplication modulo Fermat numbers are given
by Crandall and Fagin [4]. The program was later modified by Gallot and David
Underbakke, rewriting the critical numerical routines (FFT and modular reduc-
tion) using Intel assembly language. One variant ‘Genefer80’ made use of the
Intel x87 instruction set, which allows use of the extended 80-bit precision of
the x87 Floating Point Unit compared to the standard 64-bit ‘double precision’
of the x86 FPU. By taking care to ensure all intermediate values are stored at
this higher precision, much larger values of b can be tested for a given n before
encountering round-off errors in the conversion from floating-point back into
integer representation. Although slightly slower than the C implementation, the
ability to test larger b values has been invaluable as the search for n ≤ 16 has now
passed the b limit of ‘Genefer’ (see Table 2 for the current search limits). Simi-
larly, ‘Genefx64’ uses the SSE2 vector instruction set, allowing modern CPUs to
compute the FFT at nearly twice the speed of ‘Genefer’ with similar accuracy.
Since all Intel 64-bit processors support SSE2, the original C implementation
is now essentially obsolete, only used by the few remaining 32-bit processors
participating in the search. The speeds and b limits of each of these variants are
compared in Table 1.

When PrimeGrid restarted the GFN prime search in 2009, the Genefer
applications were extended with a checkpoint/restart capability and integrated
with Mark Rodenkirch’s PRPNet software which coordinated the distribution
of PRP tests to client computers and the recording and reporting of results.
Initially, the ‘Genefer80’ and ‘Genefx64’ applications were only available for the
MS Windows platform, and testing began for n = 15, 16, 18, 19 (n = 17 con-
tinues to be searched independently by participants in the original GFN prime
search).

The authors’ contributions to the development of these programs began with
the porting of the ‘Genefer80’ and ‘Genefx64’ assembly codes from Intel-syntax

108 I. Bethune and M. Goetz

Table 1. b limits and performance (ms per multiplication) of Genefer variants for
selected n. Tests performed on Intel Core 2 Quad 2.4 GHz running Window 7 Pro
64 bit, with an Nvidia GTX460 1350 MHz (Driver 285.86).

Genefer80 Genefer Genefx64 GeneferCUDA
n b limit t (ms) b limit t (ms) b limit t (ms) b limit t (ms)

15 67,210,000 2.34 1,630,000 1.67 1,575,000 0.912 1,840,000 0.212
17 45,450,000 11.2 1,095,000 7.54 1,060,000 4.05 1,270,000 0.601
19 30,020,000 57.4 695,000 35.3 735,000 19.3 815,000 1.98
21 20,250,000 277 490,000 175 515,000 102 580,000 8.23
22 - - - - - - 480,000 16.5

to AT&T/GNU syntax, allowing these to be compiled using the GNU GCC Com-
piler and made available for Mac OS X and Linux platforms. At the same time,
an initial port of ‘Genefer’ was developed by Shoichiro Yamada using Nvidia’s
‘Compute Unified Device Architecture’ (CUDA) programming model, and sub-
sequently optimised and extended by the authors. For a comprehensive overview
of CUDA and Graphics Processing Units (GPUs), we refer the reader to Nickolls
et al. [8]. For our purposes it suffices to say that many modern computers con-
tains GPUs providing performance of 100 to 1000 GFLOPS (billion floating point
operations per second), compared with around 10 GFLOPS from a typical CPU
core. The FFT operation in ‘GeneferCUDA’ is performed by Nvidia’s CUFFT
library, and in order to minimise the cost of repeatedly transferring data to and
from the GPU, the remaining steps in the calculation loop have been ported to
CUDA kernels able to run on the GPU. As shown in Table 1 this results in signif-
icant speedups (4.3x faster than Genefx64 for n = 15, and 9.7x for n = 19). More
importantly, however, the advent of ‘GeneferCUDA’ has allowed larger values of n
to be tackled that would take prohibitively long on a CPU. For example, a typical
test at n = 22 that takes around a week on a GPU would take over 3 months on
a CPU! Testing of GFN for n = 22 has already begun, and results of the search
so far are reported in Sect. 3. The introduction of the CUDA code in the n = 19
search has increased the rate of progress so much that it we have also been able to
start searching the n = 20 range.

Most recently, in early 2012, the authors added support for BOINC directly
in our code, allowing the GFN prime search to be offered via the PrimeGrid
BOINC project rather than requiring participants to install the PRPNet client.
All the ‘Genefer’ variants have been unified into a single program, allowing a sin-
gle consistent interface independent of the actual calculation method employed.
In addition, this will make the development of any additional FFT implemen-
tations much easier, and will facilitate future maintainability of the software.
Finally, we have made our programs freely available in both source and binary
forms from https://www.assembla.com/spaces/genefer, which we believe is a
significant contribution to the community.

Extending the GFN Prime Search Beyond 1M Digits 109

Table 2. Contiguous search limits and largest known primes for each n.

n b limit (Sep 2013) Largest prime Date Decimal digits

15 6,961,316 1554729632768 + 1 Jul 2011 235,657
16 3,196,780 1950221265536 + 1 Jan 2005 477,763
17 1,166,000 1372930131072 + 1 Sep 2003 804,474
18 1,024,466 773620262144 + 1 Feb 2012 1,528,413
19 750,244 475856524288 + 1 Aug 2012 2,976,663
20 201,460 - - -
22 10,428 - - -

2.2 Sieving

Despite the excellent performance obtained with recent versions of ‘Genefer’, in
common with other prime searches to efficiently search a large range of candi-
dates (here the b values to be tested for each n in Fb,n) we employ a sieve to
remove candidates which have ‘small’ prime factors. The sieving algorithm used
was developed by Phil Carmody [3]. Deciding exactly when to stop sieving -
the depth of the sieve - is a function of the relative speed at which the sieving
program can find factors compared to the rate at which the primality testing
program can test the remaining candidates. Initially, we carried out sieving using
the ‘AthGFNSv’ program developed by Underbakke, Gallot and Carmody. How-
ever, in May 2012 a CUDA sieving program ‘GFNSvCUDA’ was implemented
by Anand Nair, which was dramatically faster than the existing CPU sieve. For
example, at n = 19, several years of sieving on CPUs had reached a depth of
3070P (i.e. trial factors up to 3.07× 1015 had been checked). Within the first 6
months of sieving on GPUs, a depth of 19100P has been reached (including a
re-check of the original 3070P), and the sieving effort stopped as it is now more
efficient to PRP test the remaining candidates directly.

3 Distribution of Large GFN Primes

To date, PrimeGrid is actively searching 15 ≤ n ≤ 22, with the exception of
n = 17 which is reserved by independent searchers. The n = 21 case is still in
the process of sieving, but good progress has been made in primality testing
the other n, which we summarise in Table 2. Note that for n = 15, 16, 17 the
largest known GFN prime is significantly beyond the current b reported. This
represents the fact that while every b below the reported values is known to have
been tested, individual searchers have tested small ranges far in advance of the
current organised search limit.

In their 2002 paper [5] Gallot and Dubner presented a method for calculating
the expected number of GFN primes for each n up to a particular limit of b.
They showed excellent agreement between the predicted and the actual numbers
of primes found for n ≤ 12, b ≤ 106 and n = 13, 14, b ≤ 104 based on the then
current search limits. We have calculated the expected numbers of GFN primes

110 I. Bethune and M. Goetz

Table 3. Comparison of predicted and actual number of GFN primes for 13 ≤ n ≤ 22
up to current search limits

b ≤ 105 b ≤ 106 Search limit
2n Est. Act. Err. Est. Act. Err. b Est. Act. Err.

8192 10 3 -2.2 81 74 -0.8 13,000,000 764 730 -1.2
16384 5 1 -1.7 38 33 -0.9 4,560,000 156 137 -1.5
32768 2 1 -0.5 14 16 0.6 6,961,000 84 91 0.8
65536 2 1 -0.5 13 14 0.2 3,196,000 35 38 0.5
131072 1 1 0.2 7 5 -0.6 1,166,000 8 7 -0.4
262144 0 2 2.2 4 7 1.5 1,024,000 4 7 1.5
524288 0 1 1.6 2 - - 750,000 2 4 2.0
1048576 0 - - 1 - - 201,460 0 0 0.0
...

...
...

...
...

4194304 0 - - 0 - - 10,428 0 0 0.0

for each n up to our new search limits using Gallot’s method and compared
with the actual numbers of primes found to date in Table 3. For ease of com-
parison with Gallot and Dubner’s tables, we also report the difference between
estimated and actual numbers of primes in terms of standard deviations. In addi-
tion to PrimeGrid’s database, the Largest Known Primes Database [2] was used
to provide data for smaller b and n values.

We observe that while most of the findings are broadly in line with the
predicted values (indeed, over 50 % of the errors are less than one standard
deviation), there appear to be significant excesses of GFN primes for n = 18, 19,
particularly for small b. Unfortunately, with the current b limits, the number
of primes is too low to assess the probability that the predicted distribution of
primes is correct via the Chi Squared Test. Nevertheless, it is still possible to
check the validity of the prediction, since if Gallot’s expression for the number of
GFN primes for given b, n was too small then we should see that more candidates
remain after sieving than expected.

Dubner and Keller [6] showed that a given prime p = k · 2n+1 + 1 divides
Fb,n with probability 2n/p (averaged over all b). Thus if we sieve R GFNs with
all potential divisors p < pmax, the number of expected candidates is

∏

p<pmax

(1− 2n

p
) ·R, p ≡ 1 mod 2n+1 (1)

Applying Mertens’ 3rd theorem [7] we have

∏

p<pmax

(1− 2n

p
) =

2Cn

eγ log(pmax)
(2)

Extending the GFN Prime Search Beyond 1M Digits 111

Table 4. Expected and actual candidates remaining after sieving to a depth of pmax

n pmax Candidates remaining
Expected Actual

18 2.510 · 1018 17,228,044 17,300,322
19 1.855 · 1019 16,577,985 16,546,522
20 1.985 · 1019 18,321,722 18,342,741
21 1.935 · 1019 20,355,000 20,378,158
22 2.120 · 1019 21,953,527 21,952,320

Table 5. GFN mega-primes found by PrimeGrid

GFN Digits Finder Date Software

475856524288 + 1 2,976,633 Masashi Kumagai Aug 2012 GeneferCUDA
356926524288 + 1 2,911,151 Tim McArdle Jul 2012 Genefx64
341112524288 + 1 2,900,832 Peyton Hayslette Jun 2012 GeneferCUDA
75898524288 + 1 2,558,647 Michael Goetz Nov 2011 GeneferCUDA
773620262144 + 1 1,543,643 Senji Yamashita Apr 2012 GeneferCUDA
676754262144 + 1 1,528,413 Carlos Loureiro Feb 2012 GeneferCUDA
525094262144 + 1 1,499,526 David Tomecko Jan 2012 GeneferCUDA
361658262144 + 1 1,457,075 Michel Johnson Nov 2011 GeneferCUDA
145310262144 + 1 1,353,265 Ricky L Hubbard Feb 2011 Genefx64
40734262144 + 1 1,208,473 Senji Yamashita Mar 2011 Genefx64
9 · 23497442 + 1* 1,052,836 Heinz Ming Oct 2012 LLR
81 · 23352924 + 1* 1,009,333 Micha�l Gasewicz Jan 2012 LLR

where

Cn =
∏

p�=2

(1− an(p)
p)

(1− 1
p)

, an(p) =

{
2n if p ≡ 1 mod 2n+1,

0 otherwise.
(3)

So sieving the GFNs Fb,n, b ∈ [2, Bmax] we expect the number of candidates
remaining to be

e−γCnBmax/ log(pmax) (4)

As shown in Table 4, we find excellent agreement between the expected and
actual number of candidates remaining after sieving. As a result, we assert that
the excess of primes for n = 18, 19 is no more than a statistical anomaly. Further
searching at these n, as well as n = 20, 21, 22 for which we currently have little
data, will be needed to confirm or refute this.

112 I. Bethune and M. Goetz

4 GFN Mega-Primes

As a result of the aforementioned extensions to the ‘Genefer’ program and wide
participation in the search since it was made available through the BOINC plat-
form we have made rapid progress to high b values, particularly for n ≥ 18 where
the CUDA implementation has been used. Consequently we have discovered a
number of GFN mega-primes (primes with over 1 million decimal digits), and
they are listed in Table 5. Note that the two primes marked with an asterisk
were found by PrimeGrid’s Proth prime search, rather than the GFN search,
but since they can be expressed as GFNs with n = 1 they are included for com-
pleteness. Prior to our search efforts, only one GFN mega-prime was known -
24518262144 + 1, with 1,150,678 digits - found in March 2008 by Stephen Scott,
searching independently.

5 Continuing the Search

The results reported above are only a snapshot in time from an ongoing, popular
prime search project. We intend to continue the search for large GFN primes
for all n ≥ 15, including n = 21 which is currently unsearched. Of particular
interest to many participants is the search at n = 22, where the current GFNs
being tested have decimal lengths of over 17.1 million digits, close to the size
of the largest known prime 257885161 − 1 (17.4 million digits). The b limit of
‘GeneferCUDA’ for n = 22 corresponds to GFNs of 23 million digits, meaning
that a prime found during this search has a chance of becoming the largest known
prime of any kind, a position that has been held solely by Mersenne primes since
the discovery of M756839 in 1992.

In order to support the ongoing search we will continue to develop ‘Genefer’
to take advantage of the latest computing hardware. In particular versions able
to take advantage of other non-Nvidia GPU hardware (for example using the
OpenCL library) and Intel’s Advanced Vector Extensions (AVX) may prove
invaluable in the search for a new world record GFN prime.

Acknowledgments. The first author acknowledges the support of NAIS, the Centre
for Numerical Algorithms and Intelligent Software (EPSRC grant EP/G036136/1).

We also wish to thank several people who have contributed to the GFN prime
search. First, we thank Yves Gallot for popularising the search, developing the initial
Genefer code upon which the entire project is based, and also for useful discussions
concerning the purported excess of primes at large n (see Sect. 3). Second, we thank
David Underbakke, Mark Rodenkirch, Ken Brazier, Shoichiro Yamada, Ronald Schnei-
der and Anand Nair, who have all contributed to the ongoing development of the PRP
testing and sieving software. Third, thanks go to the PrimeGrid team Rytis Slatkevi-
cius, Lennart Vogel and John Blazek without whom the search would not have reached
such a wide audience. Finally, we are grateful to all the ‘crunchers’ who have dedicated
their computer resources and made possible the ongoing success of the search.

Extending the GFN Prime Search Beyond 1M Digits 113

References

1. Anderson, D.: BOINC: a system for public-resource computing and storage. In:
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
GRID ’04, pp. 4–10. IEEE Computer Society, Washington. http://dx.doi.org/10.
1109/GRID.2004.14 (2004)

2. Caldwell, C.: The prime pages - the largest known primes database. http://primes.
utm.edu

3. Carmody, P.: GFN filters. http://fatphil.org/maths/GFN/maths.html
4. Crandall, R., Fagin, B.: Discrete weighted transforms and large-integer arithmetic.

Math. Comp. 62, 305–324 (1994)
5. Dubner, H., Gallot, Y.: Distribution of generalized Fermat prime numbers. Math.

Comp. 71, 825–832 (2002)
6. Dubner, H., Keller, W.: Factors of generalized Fermat numbers. Math. Comp. 64,

397–405 (1995)
7. Mertens, F.: Ein beitrag zur analytischen zahlentheorie. J. reine angew. Math 78,

46–62 (1874)
8. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with

CUDA. Queue 6(2), 40–53 (2008). http://doi.acm.org/10.1145.1365490.1365500
9. Sierpiński, W.: Sur un problème concernant les nombres k. 2n + 1. Elem. Math.

115, 73–74 (1960)
10. Slatkevicius, R., Vogel, L., Blazek, J.: PrimeGrid website. http://www.primegrid.

com

Iterative Solution of Singular Systems
with Applications

Radim Blaheta, Ondřej Jakl(B), and Jǐŕı Starý

IT4Innovations Department, Institute of Geonics AS CR, Ostrava, Czech Republic
{blaheta,jakl,stary}@ugn.cas.cz

Abstract. This paper deals with efficient solution of singular symmetric
positive semidefinite problems. Our motivation arises from the need to
solve special problems of geotechnics, e.g. to perform upscaling analysis of
geocomposites. In that and other applications we have to solve boundary
problems with pure Neumann boundary conditions. We show that the
stabilized PCG method with various preconditioners is a good choice for
systems resulting from the numerical solution of Neumann problems, or
more generally problems with a known small dimensional null space.

We make use of this scenario to compare parallel implementations of
the corresponding solvers, namely implementations in the in-house finite
element software GEM and implementations employing components of
the general Trilinos framework. The studies show that the solvers based
on GEM are highly competitive with its recognized counterpart.

Keywords: Singular system · Symmetric positive semidefinite prob-
lem · Stabilized preconditioned conjugate gradient method · GEM soft-
ware · Trilinos

1 Introduction

This contribution concerns the iterative solution of singular systems which arise
in many applications. Let us mention the following

– solution of PDE problems with pure Neumann boundary conditions (which
is our main aim), see [7]. Such problems have a specific role in numerical
upscaling, see [6],

– solution of Neumann type subproblems in domain decomposition techniques
as FETI, Neumann-Neumann, BDDC methods, see [12,15],

– analysis of Markov chain problems, computation of stochastic vector, see
e.g. [14],

– computer tomography and inverse problems.

2 Iterative Solution of Singular Symmetric Semidefinite
Systems

Let us focus on iterative solution of linear systems of the form

Au = b, (1)

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 114–123, 2014.
DOI: 10.1007/978-3-642-55224-3 12, c© Springer-Verlag Berlin Heidelberg 2014

Iterative Solution of Singular Systems with Applications 115

where A is a singular, symmetric, positive semidefinite n×n matrix, b ∈ Rn. For
u, v ∈ Rn denote 〈u, v〉 = uT v and ‖u‖ the Euclidean inner product and norm.
Due to symmetry of A, the range R(A) and the null space N(A) are mutually
orthogonal with respect to the Euclidean inner product and the vectors u ∈ Rn

can be uniquely decomposed as

u = uN + uR, where uN ∈ N(A)and uR ∈ R(A).

Let b = bN + bR, N(A) �= {0}, then the system (1) has infinitely many
generalized (least squares) solutions u,

‖Au− b‖ = min{‖Av − b‖, v ∈ Rn} (2)

among which there is a unique least squares solution u∗ with the minimal Euclid-
ean norm. Note that u∗ = A+b, where A+ is the Moore-Penrose pseudoinverse of
A, see [8,12]. If b ∈ R(A), i.e. the system (1) is consistent, then the generalized
solutions are standard solutions of (1).

Let us assume that (1) is solved iteratively with denoting the i-th iteration
ui,

ui ∈ u0 +Ki(A, r0) = u0 + span{r0, Ar0, . . . , Ai−1r0}, r0 = b−Au0, (3)

where Ki(A, r0) = span{r0, Ar0, . . . , Ai−1r0} is a Krylov space. Then

ui = u0 + qi−1(A)r0, where qi−1 is a polynomial of order ≤ i− 1. (4)

The convergence can be investigated through behaviour of ei = ui−u∗. If ei → 0
then the iterations converge to the minimal least squares solution u∗. If ei → w,
where w ∈ N(A), then the iterations converge to a (generalized) solution of A.

From (4), it follows that

ei = u0 − u∗ + qi−1(A)(bN +Au∗ −Au0) = pi(A)e0 + qi−1(0)bN , (5)

where pi(λ) = 1− λqi−1(λ).
If e0 = e0N + e0R then pi(A)e0N = u0

N and pi(A)e0R depends on values pi(λ) on
λ ∈ σ(A) \ {0}. The second term is zero for consistent problems, but otherwise
can be convergent if qi−1(0) = −p′

i(0) �= 0.
The simplest Richardson’s iteration ui+1 = ui + ωA(b − ui) fulfill (3), (4),

(5) with

pi(λ) = (1− ωλ)i, pi(0) = 1, qi−1(0) = −p′
i(0) = (i+ 1)ω.

Thus, the method converges (e0 → u0
N) for the consistent problems, but diverges

(the second terms gradually dominates) for the inconsistent case (bN �= 0).
To get convergence even for inconsistent case, the method needs a modifi-

cation. For example, we can use extrapolation of Richardson’s iterations [13].
For

ūi+1 = ui+1 − (i+ 1)(ui+1 − ui),

116 R. Blaheta et al.

we get

ūi+1 − u∗ = ui+1 − u∗ − (i+ 1)(ui+1 − ui)

= pi+1(A)e0 + (i+ 1)ω(bN +A(u∗ − ui))

= pi+1(A)e0 + (i+ 1)ωAei

= pi+1(A)e0 + (i+ 1)ωA(pi(A)e0 + iωbN))

= pi+1(A)e0 + (i+ 1)ω(pi(A)Ae0)).

This extrapolated method converges since pi(λ) ≤ qi for all λ ∈ σ(A) \ {0},
where q < 1 for a suitable ω.

It means that there are ways how to damp the divergence of the null space
component of the iterations. On the other hand, this divergence in the null
space component may not cause a problem in case that we are interested only
in quantities, which do not depend on the null space component, like gradients,
fluxes, strains and stresses.

A similar analysis can be done for other iterative methods applied to singular
systems, see e.g. [8]. For the conjugate gradient (CG) method, the convergence
can be proven in the consistent case, see e.g. [1]. But the inconsistence influences
both N(A) and R(A) components of the iterations, see [7,11] and below.

3 Solution of Neumann Problems

The solution of boundary value problems with pure Neumann boundary con-
ditions arises in different applications, see the other sections. If the solution of
the continuous Neumann problem exists, then global balance (consistency) con-
ditions like (7) are satisfied. On the contrary, these conditions guarantee the
existence of the (not unique) solution. For example ([7]), for the Neumann prob-
lem,

−div(∇u) = f in Ω and ∇u · n = g in ∂Ω (6)

the solution exits if and only if
∫

Ω

f dx+
∫

∂Ω

g dx = 0. (7)

In the case (6), (7), if u is a solution, then u + v is a solution for all v ∈ N =
span{1}, where 1 is a constant function in Ω. A finite element discretization
then should provide a consistent singular linear system (1) with the nullspace
N(A) = Nh provided by discretization of N . However, the computer arithmetic
and numerical integration errors may cause that the FEM system is inconsistent
and/or N(A) �= Nh.

Problems with inconsistency and singularity can be treated by using a priori
knowledge about N and Nh. For example, we are able to regularize the problem
by fixing some degrees of freedom and solving the problem RdofAR

T
dofu = Rdofb

instead of (1). Here, Rdof is the restriction operator omitting the fixed DOF’s.

Iterative Solution of Singular Systems with Applications 117

Such a technique is frequently used in engineering community, but without a
special care the modified system matrix RdofAR

T
dof can be very ill-conditioned

which is a serious drawback for the iterative solution.
Using the knowledge of N , other techniques use the projection P : Rn → Rh,

where Rh is the orthogonal complement of Nh. The projector can be constructed
as P = I−V (V TV)−1V T , where V is a matrix, whose columns create a basis of
Nh. Such projector can be applied within any iterative method, including PCG
(Fig. 1). In PCGstab1 algorithm, the projection P is used to project the right
hand side vectors or all residuals during the PCG iterative process. In PCGstab2,
the projection P is applied twice per iteration to project both residuals and
computed iterations. PCGstab2 is equivalent to the replacement of A by PAP
which also makes the system matrix singular. The fully stabilized PCGstab2 was
introduced e.g. in [9]. Note that g = G(r) denotes the action of preconditioner,
which can be also nonlinear (variable, flexible), see e.g. [3].

given u0

compute
r0 = Pa(b − Au0), g0 = PbG(r0), v0 = g0

for i = 0, 1, . . . until convergence do

wi = PcAPdvi

αi = ri, gi / wi, vi

ui+1 = ui + αiv
i

ri+1 = Pa(ri − αiw
i)

gi+1 = PbG(ri+1)
βi+1 = gi+1, ri+1 / gi, ri

vi+1 = gi+1 + βi+1v
i

end

1. Standard PCG:
Pa = Pb = Pc = Pd = I

2. PCGstab1:
Pa = P
Pb = Pc = Pd = I

3. PCGstab2:
Pa = Pb = P
Pd = Pc = I

or equivalently
Pa = Pb = I
Pc = Pd = P

Fig. 1. Stabilizations in the PCG algorithm.

Note that the application of the standard PCG to inconsistent systems is
problematic from two reasons. The inconsistent part of the right hand side enters
the N(A)-part of the iterations and can make them divergent, but the inconsis-
tent part also enters the formulas for α and β and spoils the R(A)-part of the
iterations, see [5,11].

4 Application in Upscaling

The elastic response of a representative volume Ω is characterized by homoge-
nized elasticity C or compliance S tensors (S = C−1). The compliance tensor
can be determined from the relation

S〈σ〉 = Sσ0 = 〈ε〉, (8)

118 R. Blaheta et al.

where 〈σ〉 and 〈ε〉 are volume averaged stresses and strains computed from the
Neumann problem

−div(σ) = 0, σ = Cmε, ε = (∇u+ (∇u)T)/2 in Ω, (9)
σn = σ0n on ∂Ω. (10)

Above, σ and ε denote stress and strain in the microstructure, Cm is the variable
local elasticity tensor, u and n denote the displacement and the unit normal,
respectively. The use of Neumann boundary conditions allows us to get a lower
bound for the upscaled elasticity tensor [6].

In the analysis of geocomposites (see [6]), the domain Ω is a cube with a
relatively complicated microstructure. The FEM mesh is constructed on the
basis of CT scans. Consequently using the GEM software [4], the domain is
discretized by linear tetrahedral finite elements. The arising singular system is
then solved by stabilized PCGstab1 method, which we have implemented in two
different frameworks and run using various preconditioners:

GEM-DD is a solver fully implemented in GEM software. It uses one-level addi-
tive Schwarz domain decomposition preconditioner with subdomain prob-
lems solved approximately by application of displacement decomposition
incomplete factorization described in [2]. The resulting preconditioner is
symmetric positive definite.

GEM-DD-CG solver differs in preconditioning, which is a two-level Schwarz
domain decomposition arising from the previous GEM-DD by additive
involvement of a coarse problem correction. The coarse problem is created
by a regular algebraic aggregation of mesh nodes. The aggregation factors
(numbers of the original nodes to be merged in into a single coarse mesh node
in each coordinate direction) may be different in each coordinate direction
and we have three DOF per aggregation. In this case, the coarse problem
is singular with a smaller null space containing only the rigid shifts. The
resulting preconditioner is again symmetric positive definite. In our imple-
mentation, the coarse problem is solved only approximately by inner (not
stabilized) CG method with a lower solution accuracy - relative residual
accuracy ε0 ≤ 10−1. Thus, we use a variable type of preconditioner.

Trisol ILU is solver based on the Trilinos framework and the linear system
is imported from GEM. The preconditioner is similar to GEM-DD, i.e. one-
level Schwarz with the minimal overlap and working on the same subdomains
as in GEM-DD are used. The subproblems are replaced by ILU without
displacement decomposition, using a drop tolerance and a fill limit.

Trisol ML-DD is also Trilinos based (in fact implemented in the same exe-
cutable as Trisol ILU), but the corresponding command line parameters
invoke multilevel-level V-cycle preconditioner exploiting smoothed aggrega-
tions with aggressive coarsening, see [10]. Six DOF translational plus rota-
tional are used per aggregation. ILU is applied as smoother at the finest
level, other smoothing is realised by symmetrized Gauss-Seidel. The coars-
est problem is solved by a direct solver.

Iterative Solution of Singular Systems with Applications 119

4.1 Benchmarks

The starting point of our upscaling analysis are the geocomposite samples of
75× 75× 75 mm in size. They represent a very complicated microstructure aris-
ing from injection of polyurethane resin into coal environment, with the aim e.g.
to reinforce coal pillars during mining. The samples are scanned by an X-ray
computer tomograph (CT) which produces a set of images (of the same reso-
lution) corresponding to cuts through the sample. Depending on the resolution
and number of cuts, we obtain rectangular and structured voxel representation
of various sizes. From the values provided by the CT scanner for each voxel we
derive material distribution in the sample. This material identification is one
of the trickiest points in the modelling procedure. For example, empty space in
the structure such as cavities or air bubbles can lead to a kind of singularity,
when some voxel regions weekly hang in the void space sharing only one cor-
ner or edge with the surroundings. From the data gained, numerical models are
created, employing standard linear tetrahedral finite elements.

For the subsequent demonstrations we chose benchmark models with para-
meters specified in the following Table 1.

Table 1. Benchmarks representing microstructures of two geocomposite samples.
Denotation, applied discretization meshes and sizes of resulting linear systems.

Benchmark Discretization Size in DOF Data size

GEOC-1 232 × 232 × 38 6 135 936 1.0 GB
GEOC-2s 257 × 257 × 257 50 923 779 8.5 GB
GEOC-2l 257 × 257 × 1025 203 100 675 33.5 GB

Note that the GEOC1 scan was obtained by courtesy of the Kumamoto
University GeoX CT Center, Japan, while the larger GEOC2 scan was performed
with a new CT scanner of the Institute of Geonics AS CR, Czech Republic.
In fact, in this case the CT scan was transformed to two meshes that differ
only in the number of nodes in the Z direction (GEOC-2s(mall),GEOC-2l(arge)
benchmarks).

4.2 Basic Performance Comparison

The smaller GEOC1 benchmark with about 6 million DOF served well to com-
pare the GEM and Trisol parallel PCG implementations on the solution of
the Neumann problem in elasticity. The stopping criterion was the same for
all numerical tests and defined as ‖r‖/‖b‖ ≤ ε = 10−5. For DD-CG, a coarse
problem with aggregation factors 6× 6× 3 and 67 200 DOF was applied.

The tests were performed on a 64-core NUMA multiprocessor called Enna:

– eight octa-core Intel Xeon E7–8837/2.66 GHz processors
– 256 GB of DDR2 RAM
– CentOS 6.3, Intel Cluster Studio XE 2013, Trilinos 11.4.1

120 R. Blaheta et al.

The following Table 2 summarizes the main runtime characteristics of the
GEOC1 benchmark obtained on the Enna multiprocessor.

Table 2. Iteration counts (# It), wall-clock time (in seconds) for the initial prepa-
ration of preconditioner (Tprep) and the solution time itself (Titer) are provided for
various numbers of subdomains (# Sd; always corresponding to the number of employed
processing units).

GEM Trisol
DD DD-CG ILU ML-DD

Sd # It Tprep Titer # It Tprep Titer # It Tprep Titer # It Tprep Titer

1 – – 345 666.0 1943.7 –
2 293 0.3 325.3 137 15.3 182.9 472 492.2 1442.6 53 1187.8 734.9
4 302 0.2 187.3 124 16.2 88.6 463 561.1 714.6 61 750.1 386.0
8 300 0.1 127.6 115 16.1 56.5 441 470.7 372.6 74 614.8 202.2
16 350 0.1 149.4 116 15.1 54.3 387 422.9 219.0 93 905.2 127.1

Those results indicate that the stabilization of PCG algorithm has the
expected positive effect on the convergence, because without stabilization the
solution converges up to a low residual tolerance about ε = 10−2 and then starts
to oscillate, see [5] for details.

In the iterative phase timed by Titer, GEM was up to four times faster than
Trisol in our tests, but Trisol showed better scalability. The involvement of the
grid problem speeds up the solution by factor of 1.5 – 3 in both cases.

Table 2 under time Tprep lists also the overhead needed for the initial prepa-
ration of the preconditioner (incomplete factorization on subdomains, creation
of a coarse problem, etc.). While in the case of GEM solvers Tprep is small in
comparison with the time required by the iterations Titer, it makes a signifi-
cant part of the Trisol solution and very often dominates over Titer. This makes
GEM’s solution faster by an order of magnitude.

A bit surprising decrease of the number of iterations reported in
Tables 2, 3, 4, especially for DD-CG, can be explained by the fact that smaller
subdomain problems are solved more accurately in our implementation.

4.3 Cluster Computations

Recently we gained access to a new supercomputer called Anselm, run by the
Czech National Supercomputing Center IT4Innovations. This multicomputer
(cluster architecture) comprises 207 compute nodes, among which we employed
those equipped with:

– two octa-core Intel E5–2665/2.4 GHz processors
– 64 GB of memory and 500 GB of local disk capacity
– Infiniband QDR interconnection, fully non-blocking, fat-tree
– Bullx Linux OS (Red Hat family), Intel Parallel Studio XE 2013

Iterative Solution of Singular Systems with Applications 121

This platform allowed us to extend the scalability studies, in which we made
use of the larger GEOC2 benchmark in both variants, cf. Table 1. Table 3 shows
the timings of GEM solvers (without and with coarse grid problem applied)
obtained for GEOC2s, i.e. a problem of more than 50 million DOF, where the
performance up to 64 processing elements on Enna and up to 128 process-
ing elements on Anselm could be compared. The stopping criterion was again
‖r‖/‖b‖ ≤ ε = 10−5 and the DD-CG solver made use of a coarse problem with
aggregation factors 9× 9× 9 (81 000 DOF).

Table 3. Timings of the GEOC2s benchmark achieved by the GEM solvers on the
multiprocessor Enna and cluster Anselm: Iteration counts (# It), wall-clock time (in
seconds) of the solution (Titer) and the corresponding performance ratio Anselm/Enna
(A/E) are provided for up to 128 subdomains (# Sd).

Enna Anselm
DD DD-CG DD DD-CG

Sd # It Titer # It Titer Titer A/E Titer A/E

2 914 8461.2 437 3523.1 5644.2 0.67 2785.4 0.79
4 1129 4973.3 428 1923.6 3526.2 0.59 1383.4 0.72
8 1421 2942.5 416 922.9 2422.6 0.82 725.7 0.79
16 1655 1994.6 376 415.8 1325.8 0.64 348.7 0.84
32 1847 1923.5 329 348.3 798.3 0.42 194.8 0.56
64 2149 3074.9 295 505.9 620.8 0.20 117.6 0.23
128 515.7 107.1

For greater number of subdomains systems with distributed memory scale
better, because multiprocessors in general suffer from the memory-processor
bandwidth contention: On Enna the scalability fades out at about 32 processing
elements, but the turning point on Anselm is around 128 elements.

In absolute figures, we were able to solve the benchmark 3–4 times faster on
Anselm than on Enna. The advantage of Anselm is to be derived partially from
the fact that its newer Intel Sandy Bridge CPU architecture as such outperforms
Enna’s Westmere one, in our application by 20–40 %, what can be estimated from
the tests using up to 8 cores, when the processors work in similar conditions.

In Table 3 we can also once again observe the benefit of the DD-CG app-
roach: The added coarse grid problem speeds up the original one-level domain
decomposition by a factor of 2.5–5.

4.4 The Largest Benchmark

The execution of the largest benchmark GEOC2l (about 200 million DOF) was
very demanding on resources, so the number of performed tests was rather low.
Based on the experience from GEOC2s we focused on the impact of the coarse
grid size. The main results are summarized in Table 4.

122 R. Blaheta et al.

Table 4. Timings of the GEOC2l benchmark achieved by the GEM-DD-CG solver
on the multiprocessor Enna and cluster Anselm: Iteration counts(# It) and wall-clock
time (in seconds) for the solution time (Titer) are provided now for different sizes of
CG problem involved in computations and for various numbers of subdomains (# Sd).

Enna Anselm
DD- 9 × 9 × 9 DD-9 ×9 × 18 DD- 9 × 9 × 27 DD- 9 × 9 × 27

Sd # It Titer # It Titer # It Titer # It Titer

4 751 13719.0 858 15737.6 997 18518.4 997 12671.4
8 690 6237.7 800 6960.8 917 8062.9 917 5803.9
16 585 2717.4 674 4010.6 777 4815.6 777 2576.6
32 585 2483.6 622 2923.8 708 3452.5 708 1157.5
64 627 3637.0 627 558.8
128 652 358.5
256 631 299.6
512 649 333.5

Most experiments were carried out on Enna, which is more convenient and
accessible for such purposes. Table 4 demonstrates the impact of the coarse grid
size on the time of the solution. We can observe that the “standard” aggrega-
tion factor 729 = 9 × 9 × 9 (providing a coarse grid of 310 500 DOF) leads to
shorter solution times than the “more aggressive” aggregations 1458 = 9×9×18
(156 600 DOF) and 2187 = 9×9×27 (105 300 DOF), which naturally have higher
number of iterations. However, the coarse problem is solved in parallel with the
subdomain problems and with increasing number of (smaller) subdomains this
static task develops to a bottleneck when not matching the decreasing amount of
computation on the subdomains any more. We could confirm this observation on
Anselm, where the best time in the Table 4 (299.6 s with 256 processing elements
and aggregation 9 × 9 × 27) was surpassed by an experiment with the coarser
aggregation 15× 15× 31: The overall best GEOC2l solution time of 249.8 s was
achieved after 910 iterations on # Sd=512 subdomains.

5 Conclusions

The first aim of this contribution was to demonstrate efficient parallel solution of
singular symmetric positive semidefinite problems. On several examples we could
examine that the stabilized preconditioned conjugate gradient approach is a good
choice for systems arising from the numerical solution of Neumann problems, or
more generally problems with a known small-dimensional null space. We could
also observe the great value of the coarse grid correction for the convergence.

The second objective was a comparative case study of software that imple-
ments this approach. We compared specialized solvers developed from scratch for
the finite element package GEM and solvers implemented from building blocks
of the Trilinos library to achieve the same functionality. We compared their
performance on practical problems of increasing size and on different parallel

Iterative Solution of Singular Systems with Applications 123

architectures and showed that on a modern cluster the iterations to solve a
singular system of more than 200 million DOF take about four minutes.

Acknowledgement. This work was supported by the European Regional Develop-
ment Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).
We would like to thank Dr. Erhan Turan from Mechran, Istanbul for fruitful discussions
and extended assistance in implementing methods in Trilinos.

References

1. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, New York
(1994)

2. Blaheta, R.: Displacement decomposition - incomplete factorization precondition-
ing techniques for linear elasticity problems. Numer. Linear Algebra Appl. 1, 107–
128 (1994)

3. Blaheta, R.: GPCG - generalized preconditioned CG method and its use with non-
linear and non-symmetric displacement decomposition preconditioners. Numer.
Linear Algebra Appl. 9, 527–550 (2002)

4. Blaheta, R., Jakl, O., Kohut, R., Starý, J.: GEM – a platform for advanced math-
ematical geosimulations. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Was-
niewski, J. (eds.) PPAM 2009, Part I. LNCS, vol. 6067, pp. 266–275. Springer,
Heidelberg (2010)

5. Blaheta, R., Jakl, O., Starý, J., Turan, E.: Parallel solvers for numerical upscaling.
In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 375–386.
Springer, Heidelberg (2013)

6. Blaheta, R., Kohut, R., Kolcun, A., Souček, K., Staš, L.: Micromechanics of geo-
composites: CT images and FEM simulations. In: Kwasniewski, M., Lydzba, D.
(eds.) Rock Mechanics for Resources, Energy and Environment, pp. 399–404. Tay-
lor & Francis Group, London (2013). ISBN 978-1-138-00080-3

7. Bochev, P., Lehoucq, R.B.: On the finite element solution of the pure Neumann
problem. SIAM Rev. 47, 50–66 (2005)

8. Eiermann, M., Marek, I., Niethammer, W.: On the solution of singular linear sys-
tems of algebraic equations by semiiterative methods. Numer. Math. 53, 265–283
(1988)

9. Farhat, C., Mandel, J., Roux, F.X.: Optimal convergence properties of the FETI
domain decomposition method. Comput. Methods Appl. Mech. Eng. 115, 367–388
(1994)

10. Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R.S., Sala, M.G.: ML 5.0 smoothed
aggregation user’s guide. Report SAND2006-2649, Sandia National Laboratories
(2006)

11. Kaasschieter, E.F.: Preconditioned conjugate gradients for solving singular sys-
tems. J. Comput. Appl. Math. 24, 265–275 (1988)

12. Kučera, R., Kozubek, T., Markopoulos, A., Machalová, J.: On the Moore-Penrose
inverse in solving saddle-point systems with singular diagonal blocks. Numer. Lin-
ear Algebra Appl. 19, 677–699 (2012)

13. Marchuk, G.I.: Methods of numerical mathematics. Springer, New York (1982).
Czech transl. Academia (1987)

14. Marek, I., Szyld, D.B.: Algebraic Schwarz methods for the numerical solution of
Markov chains. Linear Algebra Appl. 386, 67–81 (2004)

15. Toselli, A., Widdlund, O.: Domain Decomposition Methods - Algorithms and The-
ory. Springer, Heidelberg (2005)

Statistical Estimates for the Conditioning
of Linear Least Squares Problems

Marc Baboulin1(B), Serge Gratton2, Rémi Lacroix1, and Alan J. Laub3

1 Université Paris-Sud and Inria, Orsay, France
{marc.baboulin,remi.lacroix}@inria.fr

2 ENSEEIHT and CERFACS, Toulouse, France
serge.gratton@enseeiht.fr

3 University of California Los Angeles, Los Angeles, USA
laub@ats.ucla.edu

Abstract. In this paper we are interested in computing linear least
squares (LLS) condition numbers to measure the numerical sensitivity
of an LLS solution to perturbations in data. We propose a statistical
estimate for the normwise condition number of an LLS solution where
perturbations on data are mesured using the Frobenius norm for matrices
and the Euclidean norm for vectors. We also explain how condition num-
bers for the components of an LLS solution can be computed. We present
numerical experiments that compare the statistical condition estimates
with their corresponding exact values.

Keywords: Linear least squares · Condition number · Statistical con-
dition estimation · Componentwise conditioning

1 Introduction

We consider the overdetermined linear least squares (LLS) problem

min
x∈Rn

‖Ax− b‖2, (1)

with A ∈ R
m×n,m ≥ n and b ∈ R

m. We assume throughout this paper that A
has full column rank and as a result, Eq. (1) has a unique solution x = A+b where
A+ is the Moore-Penrose pseudoinverse of the matrix A, expressed by A+ =
(ATA)−1AT . We can find for instance in [7,13,19] a comprehensive survey of the
methods that can be used for solving efficiently and accurately LLS problems.

The condition number is a measure of the sensitivity of a mapping to per-
turbations. It was initially defined in [23] as the maximum amplification factor
between a small perturbation in the data and the resulting change in the prob-
lem solution. Namely, if the solution x of a given problem can be expressed as a
function g(y) of a data y, then if g is differentiable (which is the case for many

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 124–133, 2014.
DOI: 10.1007/978-3-642-55224-3 13, c© Springer-Verlag Berlin Heidelberg 2014

Statistical Estimates for the Conditioning of Linear Least Squares Problems 125

linear algebra problems), the absolute condition number of g at y can be defined
as (see e.g. [12])

κ(y) = max
z �=0

‖g′(y).z‖
‖z‖ . (2)

From this definition, κ(y) is a quantity that, for a given perturbation size on
the data y, allows us to predict to first order the perturbation size on the solu-
tion x. Associated with a backward error [26], condition numbers are useful
to assess the numerical quality of a computed solution. Indeed numerical algo-
rithms are always subject to errors although their sensitivity to errors may vary.
These errors can have various origins like for instance data uncertainty due to
instrumental measurements or rounding and truncation errors inherent to finite
precision arithmetic.

LLS can be very sensitive to perturbations in data and it is crucial to be
able to assess the quality of the solution in practical applications [4]. It was
shown in [14] that the 2-norm condition number cond(A) of the matrix A plays
a significant role in LLS sensitivity analysis. It was later proved in [25] that the
sensitivity of LLS problems is proportional to cond(A) when the residual vector
is small and to cond(A)2 otherwise. Then [12] provided a closed formula for the
condition number of LLS problems, using the Frobenius norm to measure the
perturbations of A. Since then many results on normwise LLS condition numbers
have been published (see e.g. [2,7,11,15,16]).

It was observed in [18] that normwise condition numbers can lead to a loss
of information since they consolidate all sensitivity information into a single
number. Indeed in some cases this sensitivity can vary significantly among the
different solution components (some examples for LLS are presented in [2,21]).
To overcome this issue, it was proposed the notion of “componentwise” condition
numbers or condition numbers for the solution components [9]. Note that this
approach must be distinguished from the componentwise metric also applied to
LLS for instance in [5,10]. This approach was generalized by the notion of partial
or subspace condition numbers which corresponds to conditioning of LTx with
L ∈ R

n×k, k ≤ n, proposed for instance in [2,6] for least squares and total least
squares, or [8] for linear systems. The motivation for computing the conditioning
of LTx can be found for instance in [2,3] for normwise LLS condition numbers.

Even though condition numbers provide interesting information about the
quality of the computed solution, they are expected to be calculated in an
acceptable time compared to the cost for the solution itself. Computing the
exact (subspace or not) condition number requires O(n3) flops when the LLS
solution x has been already computed (e.g., using a QR factorization) and can be
reused to compute the conditioning [2,3]. This cost is affordable when compared
to the cost for solving the problem (O(2mn2) flops when m� n). However sta-
tistical estimates can reduce this cost to O(n2) [17,20]. The theoretical quality of
the statistical estimates can be formally measured by the probability to give an
estimate in a certain range around the exact value. In this paper we summarize
closed formulas for the condition numbers of the LLS solution and of its com-
ponents, and we propose practical algorithms to compute statistical estimates

126 M. Baboulin et al.

of these quantities. In particular we derive a new expression for the statistical
estimate of the conditioning of x. We also present numerical experiments to
compare LLS conditioning with the corresponding statistical estimates.

Notations. The notation ‖·‖2 applied to a matrix (resp. a vector) refers to the
spectral norm (resp. the Euclidean norm) and ‖·‖F denotes the Frobenius norm
of a matrix. The matrix I is the identity matrix and ei is the ith canonical
vector. The uniform continuous distribution between a and b is abbreviated
U(a, b) and the normal distribution of mean μ and variance σ2 is abbreviated
N (μ, σ2). cond(A) denotes the 2-norm condition number of a matrix A, defined
as cond(A) = ‖A‖2‖A+‖2. The notation | · | applied to a matrix or a vector holds
componentwise.

2 Condition Estimation for Linear Least Squares

In Sect. 2.1 we are concerned in calculating the condition number of the LLS
solution x and in Sect. 2.2 we compute or estimate the conditioning of the com-
ponents of x. We suppose that the LLS problem has already been solved using
a QR factorization (the normal equations method is also possible but the con-
dition number is then proportional to cond(A)2 [7, p. 49]). Then the solution x,
the residual r = b− Ax, and the factor R ∈ R

n×n of the QR factorization of A
are readily available (we recall that the Cholesky factor of the normal equations
is, in exact arithmetic, equal to R up to some signs). We also make the assump-
tion that both A and b can be perturbed, these perturbations being measured

using the weighted product norm ‖(ΔA,Δb)‖F =
√
‖ΔA‖2F + ‖Δb‖22 where ΔA

and Δb are absolute perturbations of A and b. In addition to providing us with
simplified formulas, this product norm has the advantage, mentioned in [15], to
be appropriate for estimating the forward error obtained when the LLS problem
is solved via normal equations.

2.1 Conditioning of the Least Squares Solution

Exact formula. We can obtain from [3] a closed formula for the absolute condition
number of the LLS solution as

κLS = ‖R−1‖2
(‖R−1‖22‖r‖22 + ‖x‖22 + 1

) 1
2 , (3)

where x, r and R are exact quantities.
This equation requires mainly to compute the minimum singular value of the

matrix A (or R), which can be done using iterative procedures like the inverse
power iteration on R, or more expensively with the full SVD of R (O(n3) flops).
Note that ‖R−T ‖2 can be approximated by other matrix norms (see [19, p. 293]).

Statistical estimate. Similarly to [8] for linear systems, we can estimate the condi-
tion number of the LLS solution using the method called small-sample theory [20]
that provides statistical condition estimates for matrix functions.

Statistical Estimates for the Conditioning of Linear Least Squares Problems 127

Let us denote by x(A, b) the expression of x as a function of the data A and
b. Since A has full rank n, x(A, b) is continuously F-differentiable in a neighbor-
hood of (A, b). If x′(A, b) is the derivative of this function, then x′(A, b).(ΔA,Δb)
denotes the image of (ΔA,Δb) by the linear function x′(A, b). By Taylor’s the-
orem, the forward error Δx on the solution x(A, b) can be expressed as

Δx = x′(A, b).(ΔA,Δb) +O(‖(ΔA,Δb)‖2F). (4)

Following the definition given in Eq. (2), the condition number of x corre-
sponds to the operator norm of x′(A, b), which is a bound to first order on the
sensitivity of x at (A, b) and we have

‖Δx‖2 ≤ κLS ‖(ΔA,Δb)‖F .
We now use [20] to estimate ‖Δx‖2 by

ξ(q) =
ωq

ωn

√
|zT

1 Δx|2 + · · ·+ |zT
q Δx|2, (5)

where z1, · · · , zq are random orthogonal vectors selected uniformly and randomly
from the unit sphere in n dimensions, and ωq is the Wallis factor defined by

ω1 = 1,

ωq =
1 · 3 · 5 · · · (q − 2)
2 · 4 · 6 · · · (q − 1)

for q odd,

ωq =
2
π

2 · 4 · 6 · · · (q − 2)
1 · 3 · 5 · · · (q − 1)

for q even.

ωq can be approximated by
√

2
π(q− 1

2)
.

It comes from [20] that if for instance we have q = 2, then the probability
that ξ(q) lies within a factor α of ‖Δx‖2 is

Pr(
‖Δx‖2
α

≤ ξ(q) ≤ α ‖Δx‖2) ≈ 1− π

4α2
. (6)

For α = 10, we obtain a probability of 99.2 %.
For each i ∈ {1, · · · , q}, using Eq. (2) we have the first-order bound

|zT
i Δx| ≤ κi ‖(ΔA,Δb)‖F , (7)

where κi denotes the condition number of the function zT
i x(A, b). Then using (5)

and (7) we get

ξ(q) ≤ ωq

ωn

(
q∑

i=1

κ2
i

) 1
2

‖(ΔA,Δb)‖F .

ξ(q) being an estimate of ‖Δx‖2, we will use the quantity κ̄LS defined by

κ̄LS =
ωq

ωn

(
q∑

i=1

κi
2

) 1
2

(8)

as an estimate for κLS .

128 M. Baboulin et al.

We point out that κ̄LS is a scalar quantity that must be distinguished from
the estimate given in [21] which is a vector. Indeed the small-sample theory is
used here to derive an estimate of the condition number of x whereas it is used
in [21] to derive estimates of the condition numbers of the components of x
(see Sect. 2.2). Now we can derive Algorithm 1 that computes κ̄LS as expressed
in Eq. (8) and using the condition numbers of zT

i x. The vectors z1, · · · , zq are
obtained for instance via a QR factorization of a random matrix Z ∈ R

n×q. The
condition number of zT

i x can be computed using the expression given in [3]) as

κi =
(‖R−1R−T zi‖22‖r‖22 + ‖R−T zi‖22(‖x‖22 + 1)

) 1
2 . (9)

The accuracy of the estimate can be tweaked by modifying the number q of
considered random samples. The computation of κ̄LS requires computing the
QR factorization of an n × q matrix for O(nq2) flops. It also involves solving q
times two n × n triangular linear systems, each triangular system being solved
in O(n2) flops. The resulting computational cost is O(2qn2) flops (if n� q).

Algorithm 1. Statistical condition estimation for linear least squares solution
Require: q ≥ 1, the number of samples

Generate q vectors z1, z2, ..., zq ∈ R
n with entries in U(0, 1)

Orthonormalize the vectors zi using a QR factorization
for j = 1 to q do

Compute κj =
(‖R−1R−T zj‖2

2‖r‖2
2 + ‖R−T zi‖2

2(‖x‖2
2 + 1)

) 1
2

end for
Compute κ̄LS =

ωq

ωn

√∑q
j=1 κ2

j with ωq =
√

2

π(q− 1
2)

2.2 Componentwise Condition Estimates

In this section, we focus on calculating the condition number for each component
of the LLS solution x. The first one is based on the results from [3] and enables
us to compute the exact value of the condition numbers for the ith component
of x. The other is a statistical estimate from [21].

Exact formula. By considering in Eq. (9) the special case where zi = ei, we can
express in Eq. (10) the condition number of the component xi = eT

i x and then
calculate a vector κCW ∈ R

n with components κi being the exact condition
number for the ith component expressed by

κi =
(‖R−1R−T ei‖22‖r‖22 + ‖R−T ei‖22(‖x‖22 + 1)

) 1
2 . (10)

The computation of one κi requires two triangular solves (RT y = ei and Rz = y)
corresponding to 2n2 flops. When we want to compute all κi, it is more efficient
to solve RY = I and then compute Y Y T , which requires about 2n3/3 flops.

Statistical Estimates for the Conditioning of Linear Least Squares Problems 129

Statistical condition estimate. We can find in [21] three different algorithms to
compute statistical componentwise condition estimation for LLS problems. Algo-
rithm 2 corresponds to the algorithm that uses unstructured perturbations and
it can be compared with the exact value given in Eq. (10). Algorithm 2 com-
putes a vector κ̄CW = (κ̄1, · · · , κ̄n)T containing the statistical estimate of each
κi. Depending on the needed accuracy for the statistical estimation, the number
of random perturbations q ≥ 1 applied to the input data in Algorithm 2 can be
adjusted. This algorithm involves two n× n triangular solves with q right-hand
sides, which requires about qn2 flops.

Algorithm 2. Componentwise statistical condition estimate for linear least
squares
Require: q ≥ 1, the number of perturbations of input data

for j = 1 to q do
Generate Sj ∈ R

n×n, gj ∈ R
n and hj ∈ R

n with entries in N (0, 1)
Compute uj = R−1(gj − Sjx + ‖Ax − b‖2R

−T hj)
end for
Let p = m(n + 1) and compute vector κ̄CW =

∑q
i=1 |uj |
qωp

√
p

with ωq =
√

2

π(q− 1
2)

3 Numerical Experiments

In the following experiments, random LLS problems are generated using the
method given in [22] for generating LLS test problems with known solution x
and residual norm. Random problems are obtained using the quantities m, n, ρ,
l such that A ∈ R

m×n, ‖r‖2 = ρ and cond(A) = nl. The matrix A is generated
using

A = Y

(
D
0

)

ZT , Y = I − 2yyT , Z = I − 2zzT

where y ∈ R
m and z ∈ R

n are random unit vectors and D = n−ldiag(nl, (n −
1)l, (n− 2)l, · · · , 1). We have x = (1, 22, ..., n2)T , the residual vector is given by

r = Y

(
0
v

)

where v ∈ R
m−n is a random vector of norm ρ and the right-hand

side is given by b = Y

(
DZx
v

)

. In Sect. 3.1, we will consider LLS problems of

size m × n with m = 9984 and n = 2496. All the experiments were performed
using the library LAPACK 3.2 [1] from Netlib.

3.1 Accuracy of Statistical Estimates

Conditioning of LLS Solution. In this section we compare the statistical
estimate κLS obtained via Algorithm 1 with the exact condition number κLS

computed using Eq. (3). In our experiments, the statistical estimate is computed

130 M. Baboulin et al.

Table 1. Ratio between statistical and exact condition numbers (q = 2)

cond(A) n0 n
1
2 n1 n

3
2 n2 n

5
2 n3

‖r‖2 = 10−10 57.68 3.32 1.46 1.19 1.10 1.03 1.07
‖r‖2 = 10−5 57.68 3.33 1.45 1.18 1.07 1.09 1.05
‖r‖2 = 1 57.68 3.36 1.45 1.19 1.19 1.05 1.15
‖r‖2 = 105 57.68 3.33 1.24 1.04 1.05 1.05 1.02
‖r‖2 = 1010 57.68 1.44 1.07 1.09 1.00 1.01 1.07

using two samples (q = 2). For seven different values for cond(A) = nl (l ranging
from 0 to 3, n = 2496) and several values of ‖r‖2, we report in Table 1 the ratio
κ̄LS/κLS , which is the average of the ratios obtained for 100 random problems.

The results in Table 1 show the relevance of the statistical estimate presented
in Sect. 2.1. For l ≥ 1

2 the averaged estimated values never differ from the exact
value by more than one order of magnitude. We observe that when l tends to
0 (i.e., cond(A) gets close to 1) the estimate becomes less accurate. This can
be explained by the fact that the statistical estimate κLS is based on evaluat-
ing the Frobenius norm of the Jacobian matrix [17]. Actually some additional
experiments showed that κLS/κLS evolves exactly like

∥
∥R−1

∥
∥2

F
/
∥
∥R−1

∥
∥2

2
. In this

particular LLS problem we have
∥
∥R−1

∥
∥2

F
/
∥
∥R−1

∥
∥2

2
=

(
1 + (n/(n− 1))2l + (n/(n− 2))2l + · · ·+ n2l

)
/n2l

=
n∑

k=1

1
k2l

.

Then when l tends towards 0,
∥
∥R−1

∥
∥

F
/
∥
∥R−1

∥
∥

2
∼ √n, whereas this ratio gets

closer to 1 when l increases. This is consistent with the well-known inequality
1 ≤ ∥

∥R−1
∥
∥

F
/
∥
∥R−1

∥
∥

2
≤ √n. Note that the accuracy of the statistical estimate

does not vary with the residual norm.

Componentwise Condition Estimation. Figure 1 depicts the conditioning
for all LLS solution components, computed as κi/|xi| where κi is obtained
using Eq. (10). Figure 1(a) and (b) correspond to random LLS problems with
respectively cond(A) = 2.5 · 103 and cond(A) = 2.5 · 109. These figures show
the interest of the componentwise approach since the sensitivity to pertur-
bations of each solution component varies significantly (from 102 to 108 for
cond(A) = 2.5·103, and from 107 to 1016 for cond(A) = 2.5·109). The normalized
condition number of the solution computed using Eq. (3) is κLS/ ‖x‖2 = 2.5 ·103

for cond(A) = 2.5 · 103 and κLS/ ‖x‖2 = 4.5 · 1010 for cond(A) = 2.5 · 109, which
in both cases greatly overestimates or underestimates the conditioning of some
components. Note that the LLS sensitivity is here well measured by cond(A)
since ‖r‖2 is small compared to ‖A‖2 and ‖x‖2, as expected from [25] (otherwise
it would be measured by cond(A)2).

Statistical Estimates for the Conditioning of Linear Least Squares Problems 131

κLS/ x 2

κi/|xi|
C

on
di

tio
ni

ng

Components
1 500 1000 1500 2000 2496

102

103

104

105

106

107

108

109

(a) κi/|xi| (cond(A) = 2.5 · 103)

κLS/ x 2

κi/|xi|

C
on

di
tio

ni
ng

Components
1 500 1000 1500 2000 2496

106

107

108

109

1010

1011

1012

1013

1014

1015

1016

1017

1018

(b) κi/|xi| (cond(A) = 2.5 · 109)

Fig. 1. Componentwise condition numbers of LLS (problem size 9984 × 2496)

In Fig. 2 we represent for each solution component, the ratio between the
statistical condition estimate computed via Algorithm 2, considering two samples
(q = 2), and the exact value computed using Eq. (10). The ratio is computed
as an average on 100 random problems. We observe that this ratio is lower
than 1.2 for the case cond(A) = 2.5 · 103 (Fig. 2(a)) and close to 1 for the case
cond(A) = 2.5 · 109 (Fig. 2(b)), which also confirms that, similarly to κLS in
Sect. 3.1, the statistical condition estimate is more accurate for larger values of
cond(A).

R
at

io
:

st
at

is
tic

al
es

tim
at

e
/

ex
ac

t
va

lu
e

Components
1 500 1000 1500 2000 2496

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

(a) ratio κ̄i/κi (cond2(A) = 2.5 · 103)

R
at

io
:

st
at

is
tic

al
es

tim
at

e
/

ex
ac

t
va

lu
e

Components
1 500 1000 1500 2000 2496

0.9749

0.975

0.9751

0.9752

0.9753

0.9754

0.9755

0.9756

(b) ratio κ̄i/κi (cond2(A) = 2.5 · 109)

Fig. 2. Comparison between componentwise exact and statistical condition numbers

4 Conclusion

We illustrated how condition numbers of a full column rank LLS problem can
be easily computed using exact formulas or statistical estimates at an affordable

132 M. Baboulin et al.

flop count. Numerical experiments on random LLS problems showed that the
statistical estimates provide good accuracy by using only 2 random orthogonal
vectors. Subsequently to this work, new routines will be proposed in the pub-
lic domain libraries LAPACK and MAGMA [24] to compute exact values and
statistical estimates for LLS conditioning.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz,
J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)

2. Arioli, M., Baboulin, M., Gratton, S.: A partial condition number for linear least
squares problems. SIAM J. Matrix Anal. Appl. 29(2), 413–433 (2007)

3. Baboulin, M., Dongarra, J., Gratton, S., Langou, J.: Computing the conditioning
of the components of a linear least squares solution. Numer. Linear Algebra Appl.
16(7), 517–533 (2009)

4. Baboulin, M., Giraud, L., Gratton, S., Langou, J.: Parallel tools for solving incre-
mental dense least squares problems: application to space geodesy. J. Algorithms
Comput. Technol. 3(1), 117–133 (2009)

5. Baboulin, M., Gratton, S.: Using dual techniques to derive componentwise and
mixed condition numbers for a linear functional of a linear least squares solution.
BIT 49(1), 3–19 (2009)

6. Baboulin, M., Gratton, S.: A contribution to the conditioning of the total least
squares problem. SIAM J. Matrix Anal. Appl. 32(3), 685–699 (2011)

7. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia
(1996)

8. Cao, Y., Petzold, L.: A subspace error estimate for linear systems. SIAM J. Matrix
Anal. Appl. 24, 787–801 (2003)

9. Chandrasekaran, S., Ipsen, I.C.F.: On the sensitivity of solution components in
linear systems of equations. Numer. Linear Algebra Appl. 2, 271–286 (1995)

10. Cucker, F., Diao, H., Wei, Y.: On mixed and componentwise condition numbers for
Moore-Penrose inverse and linear least squares problems. Math. Comput. 76(258),
947–963 (2007)

11. Eldén, L.: Perturbation theory for the least squares problem with linear equality
constraints. SIAM J. Numer. Anal. 17, 338–350 (1980)

12. Geurts, A.J.: A contribution to the theory of condition. Numer. Math. 39, 85–96
(1982)

13. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press, Baltimore (1996)

14. Golub, G.H., Wilkinson, J.H.: Note on the iterative refinement of least squares
solution. Numer. Math. 9(2), 139–148 (1966)

15. Gratton, S.: On the condition number of linear least squares problems in a weighted
Frobenius norm. BIT 36, 523–530 (1996)

16. Grcar, J.F.: Adjoint formulas for condition numbers applied to linear and indefinite
least squares. Lawrence Berkeley National Laboratory Technical Report, LBNL-
55221 (2004)

17. Gudmundsson, T., Kenney, C.S., Laub, A.J.: Small-sample statistical estimates for
matrix norms. SIAM J. Matrix Anal. Appl. 16(3), 776–792 (1995)

Statistical Estimates for the Conditioning of Linear Least Squares Problems 133

18. Higham. N.J.: A survey of componentwise perturbation theory in numerical lin-
ear algebra. In: Gautschi, W. (ed.) Mathematics of Computation 1943–1993: A
Half Century of Computational Mathematics, Proceedings of Symposia in Applied
Mathematics, vol. 48, pp. 49–77. American Mathematical Society, Providence
(1994)

19. NJ, Higham: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia
(2002)

20. Kenney, C.S., Laub, A.J.: Small-sample statistical condition estimates for general
matrix functions. SIAM J. Sci. Comput. 15(1), 36–61 (1994)

21. Kenney, C.S., Laub, A.J., Reese, M.S.: Statistical condition estimation for linear
least squares. SIAM J. Matrix Anal. Appl. 19(4), 906–923 (1998)

22. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and
sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)

23. Rice, J.: A theory of condition. SIAM J. Numer. Anal. 3, 287–310 (1966)
24. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid

GPU accelerated manycore systems. Parallel Comput. 36(5&6), 232–240 (2010)
25. Wedin, P.-Å.: Perturbation theory for pseudo-inverses. BIT 13, 217–232 (1973)
26. Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Her Majesty’s Stationery

Office, London (1963)

Numerical Treatment of a Cross-Diffusion Model
of Biofilm Exposure to Antimicrobials

Kazi Rahman and Hermann J. Eberl(B)

University of Guelph, Guelph, ON N1G2W1, Canada
{krahman,heberl}@uoguelph.ca

Abstract. We present a numerical method for a highly nonlinear PDE
model of biofilm response to antibiotics with three nonlinear diffusion
effects: (i) porous medium degeneracy, (ii) super-diffusion singularity,
(iii) nonlinear cross-diffusion. The scheme is based on a Finite Volume
discretization in space and semi-implicit, non-local time integration. The
resulting discretized system is implemented in Fortran and parallelized
with OpenMP. The numerical method is validated in a simulation study.

Keywords: Biofilm · Cross-diffusion · Numerical method

1 Introduction

Bacterial biofilms are microbial layers on biotic and abiotic surfaces. Bacteria
attach to the surface and start producing extracellular polymeric substances
(EPS) in which they are themselves embedded and which protect them against
washout and antimicrobials. This protection makes biofilm eradication difficult
which causes major problems in the treatment of bacterial infection and in disin-
fection of medical and industrial surfaces [2]. The mathematical model of biofilm
exposure to biocides in our study is a highly nonlinear diffusion reaction system,
based on the prototype single-species biofilm model of [5]. In [6] this model was
extended to a model of biofilm response to biocides. This is extended in [14] by
including cross-diffusion effects describing mixing and separation of active and
inactive biomass in more detail. The model shows several non-standard diffu-
sion effects that make numerical treatment difficult: (i) porous medium degen-
eracy, (ii) super-diffusion singularity, (iii) nonlinear cross-diffusion. We propose
a numerical method based on a Finite Volume discretization in space and semi-
implicit, non-local time integration. This method is a cross-diffusion extension of
the method studied in [12,13] for models of the type [6], and is easy to parallelize.

2 Mathematical Model

The biofilm model is formulated in terms of the dependent variables volume
fractions occupied by active biomass X and by inert biomass Y , and the con-
centrations of nutrient C and biocide B. It reads

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 134–144, 2014.
DOI: 10.1007/978-3-642-55224-3 14, c© Springer-Verlag Berlin Heidelberg 2014

Numerical Treatment of a Cross-Diffusion Model of Biofilm Exposure 135

Xt = ∇ (D11(X,Y)∇X +D12(X,Y)∇Y) + μ
CX

κ1 + C
− ξ1X − ξ2 BX

κ2 +B
, (1)

Yt = ∇ (D21(X,Y)∇X +D22(X,Y)∇Y) + ξ2
BX

κ2 +B
, (2)

Ct = ∇ (DC(X + Y)∇C)− μX∞

Υ1

CX

κ1 + C
, (3)

Bt = ∇ (DB(X + Y)∇B)− ξ2X
∞

Υ2

BX

κ2 +B
. (4)

All parameters, are positive; see Table 1 for their definition. Growth of active
biomass is due to nutrient uptake. Biocide is degraded during inactivation of
active biomass. Spatial expansion of the biofilm is described by the interaction
of three nonlinear diffusion effects: (i) a porous medium degeneracy that ensures
that the biofilm does not expand as long as there is locally space available to
accommodate newly produced biomass, (ii) a super-diffusion singularity that
ensures that the maximum biomass density is obeyed, and (iii) cross-diffusion
that describes the mixing of both biomass fractions. Following [14], the biomass
diffusion coefficients are with M := X + Y given by

{
D11(X,Y) = Φ(M) +XΨ(M), D12(M) = XΨ(M),
D21(X,Y) = Y Ψ(M), D22(X,Y) = Φ(M) + Y Ψ(M), (5)

where the functions Φ and Ψ are defined using the density-dependent diffusion
coefficient D(M) of a single species biofilm model through

D(M) = δ
M4

(1−M)4
= Φ(M) +MΨ(M) (6)

Φ(M) =

(

1−
∫ M

0

D(m)dm

) ∫ M

0
D(m)dm
M

. (7)

The integral can be expressed in terms of elementary functions. The biofilm
phase proper is the region where M(t) > 0, the aqueous phase is the region
where X(t) = Y (t) = 0. Both regions are connected by a moving interface.
Diffusion of substrates B,C is slower in the biofilm than in the aqueous phase.
Linear interpolation between a fully compressed biofilm with M = 1 and the
aqueous phase with M = 0 gives

DB,C(M) = D0
B,C · (1 +M(ρC,B − 1)). (8)

For the biomass fractions we pose homogeneous Neumann conditions on ∂Ω.
For the dissolved substrates we pose Dirichlet conditions on some part of the
boundary, from where substrates and biocides are added, and homogeneous Neu-
mann conditions everywhere else. The initial data have compact support: Active
biomass is located in small pockets/colonies somewhere at the boundary, every-
where else X = 0 initially. We shall assume that initially no inert biomass is
in the system Y = 0. The initial data for the substrates are C = C0 > 0 and
B = B0 ≥ 0.

136 K. Rahman and H.J. Eberl

The special form of the biomass cross-diffusivities, in particular D12(0, ·) =
D21(·, 0) = 0 maintains non-negativity of X and Y . Adding (1) and (2) we
find that M = X + Y is bounded from above by the solution of the proto-
type single species biofilm model [5], implying with [7] that the solution of the
model might come close to its upper bound but never actually attains the super-
diffusion singularity, i.e. X + Y < 1, at least as long as the interface is sep-
arated from the boundary somewhere. A finite speed of interface propagation
follows with standard results on degenerate parabolic equations [17]. Neverthe-
less, regions with X+Y = 0 and X+Y ≈ 1 can be in very close proximity. While
the solutions are continuous, the biomass density gradients can blow up at the
interface [9].

3 Numerical Method

Each of the three non-Fickian diffusion effects (i), (ii), (iii) mentioned in the
Introduction has its own numerical challenges. To deal with (i) and (ii), a semi-
implicit numerical method has been developed in [4,12,13], which we extend
here to include (iii). A key property of the underlying method is that after semi-
implicit discretization it requires the repeated solution of linear systems with
at least weakly diagonally dominant M-matrices. Direct discretization of cross-
diffusion terms spoils this property. Instead, in the semi-implicit framework used
here, the cross-diffusion terms are treated as advection terms. We use upwinding
for its discretization, which preserves the M-matrix properties [8,11]. Beside it
being only first order, the main disadvantage commonly associated with this
method is that it can induce strong artificial numerical diffusion. In our model,
where the transition from the biofilm to the aqueous phase is described by a
steep interface, interface smearing due to numerical diffusion is an important
concern. However, due to the specific form of the diffusion coefficients, we have
close to the interface M � 1, thus Dij ≈ δM4, and therefore we can hope that
these effects are small.

Equations (1), (2) can be written as convection-diffusion-reaction equations

Xt = ∇ (D11(X,Y)∇X − wXX) +R1(C,B)X, (9)
Yt = ∇ (D22(X,Y)∇Y − wY Y) +R2(X), (10)

with “cross-diffusion velocities”

wX := −Ψ(X + Y)∇Y, wY := −Ψ(X + Y)∇X.

We first discretize in time, using a non-local (in time) representation of non-
linearities as suggested in [3,10] for ODE problems, then in space. We use the
shorthand notation for dependent variables and nonlinearities,

Xk := X(tk, ·), wk
X := −Ψ(Xk + Y k)∇Y k, Rk

1 := R1(Ck, Bk), etc.

Numerical Treatment of a Cross-Diffusion Model of Biofilm Exposure 137

Following [4,12,13] we obtain the semi-implicit time discretization of (9), (10)

Xk+1 −Xk

τk
= ∇ (

D11(Xk, Y k)∇Xk+1 − wk
XX

k+1
)

+Rk
1X

k+1 (11)

Y k+1 − Y k

τk
= ∇ (

D22(Xk, Y k)∇Y k+1 − wk
Y Y

k+1
)

+Rk
2 (12)

where τk := tk+1 − tk. For the spatial discretization, we use a Finite Volume
scheme on a regular grid of size n ×m for the rectangular domain L ×H. The
dependent variables are evaluated in the center of the grid cells and the diffusive
and convective fluxes at the grid cell edges. Thus, for i = 1, ..., n, j = 1, ...,m,
k = 0, 1, 2, ... with Δx := L/n = H/m.,

Xk
i,j ≈ X

(
tk, (i− 1/2)Δx, (j − 1/2)Δx

)
.

For the self-diffusive fluxes in (9) we use, as in [4,12,13], the standard second
order approximation. For the flux between cells (i, j) and (i+ 1, j) we have

Jk+1
i+1/2,j =

1
2

(
D(Xk

i+1,j , Y
k
i+1,j) +D(Xk

i,j , Y
k
i,j)

) Xk+1
i+1,j −Xk+1

i,j

Δx
,

and accordingly for the fluxes across the remaining edges of cell (i, j)

Jk+1
i−1/2,j =

1
2

(
D(Xk

i−1,j , Y
k
i−1,j) +D(Xk

i,j , Y
k
i,j)

) Xk+1
i,j −Xk+1

i−1,j

Δx
,

Jk+1
i,j+1/2 =

1
2

(
D(Xk

i,j+1, Y
k
i,j+1) +D(Xk

i,j , Y
k
i,j)

) Xk+1
i,j+1 −Xk+1

i,j

Δx
,

Jk+1
i,j−1/2 =

1
2

(
D(Xk

i,j−1, Y
k
i,j−1) +D(Xk

i,j , Y
k
i,j)

) Xk+1
i,j −Xk+1

i,j−1

Δx
.

New in the present model are the cross-diffusion terms, which we represented in
(9) as convective terms. At the edge between cells (i, j) and (i+1, j) the velocity
component u in x-direction of the velocity vector wX is calculated as

uk
i+1/2,j =

1
2

(
Ψ(Xk

i+1,j + Y k
i+1,j) + Ψ(Xk

i,j + Y k
i,j)

) Y k
i+1,j − Y k

i,j

Δx

and accordingly at the edge between cells (i− 1, j) and (i, j)

uk
i−1/2,j =

1
2

(
Ψ(Xk

i−1,j + Y k
i−1,j) + Ψ(Xk

i,j + Y k
i,j)

) Y k
i,j − Y k

i−1,j

Δx
.

At the edges between the cells (i, j) and (i, j + 1) and (i, j) and (i, j − 1), the
velocity components in y-direction of wX are

vk
i,j+1/2 =

1
2

(
Ψ(Xk

i,j+1 + Y k
i,j+1) + Ψ(Xk

i,j + Y k
i,j)

) Y k
i,j+1 − Y k

i,j

Δx
,

vk
i,j−1/2 =

1
2

(
Ψ(Xk

i,j−1 + Y k
i,j−1) + Ψ(Xk

i,j + Y k
i,j)

) Y k
i,j − Y k

i,j−1

Δx
.

138 K. Rahman and H.J. Eberl

Simple first order upwinding leads to the approximation of the cross-diffusion
flux F k

i1/2,j at the edge shared by the cells (i, j) and (i+ 1, j),

F k+1
i+1/2,j =

{
uk

i+1/2,jX
k+1
i,j if uk

i+1/2,j ≥ 0,
uk

i+1/2,jX
k+1
i+1,j if uk

i+1/2,j < 0,

and similarly at the remaining cell edges

F k+1
i−1/2,j =

{
uk

i−1/2,jX
k+1
i−1,j if uk

i−1/2,j ≥ 0,
uk

i−1/2,jX
k+1
i,j if uk

i−1/2,j < 0,

F k+1
i,j+1/2 =

{
vk

i,j+1/2X
k+1
i,j if vk

i,j+1/2 ≥ 0,
vk

i,j+1/2X
k+1
i,j+1 if vk

i,j+1/2 < 0,

F k+1
i,j−1/2 =

{
vk

i,j−1/2X
k+1
i,j−1 if vk

i,j−1/2 ≥ 0,
vk

i,j−1/2X
k+1
i if vk

i,j−1/2 < 0.

Putting all of the above together, we arrive for grid cells in the interior of the
domain, i.e. for cells with 1 < i < n, 1 < j < m at

Xk+1
i,j −Xk

i,j

τk
=
Jk+1

i+1/2,j − Jk+1
i−1/2,j

Δx
+
Jk+1

i,j+1/2 − Jk+1
i,j−1/2

Δx
(13)

−
(
F k+1

i+1/2,j − F k+1
i−1/2,j

Δx
+
F k+1

i,j+1/2 − F k+1
i,j−1/2

Δx

)

+Rk
1X

k+1
i,j

For grid cells that share at least one of their edges with a boundary of the domain,
this formula accesses non existing cells outside the domain. These are eliminated
in the usual manner. For example, for the homogeneous Neumann boundary
condition ∂nX=0 at x = 0, we eliminate Xk

0,j using 1
Δx (Xk

0,j − Xk
1,j) = 0.

Finally, we introduce the lexicographical grid ordering

π : {1, ..., n} × {1, ...,m} → {1, ..., nm}, (i, j) �→ (i− 1)m+ j

and the vector notation X = (X1, ...,Xnm)T with X k
π(i,j) = Xk

i,j . This allows us
to re-arrange and re-write (13) in the compact matrix vector form

(I − τkDk
X + τkFk

X − τkRk
X

)X k+1 = X k (14)

where I is the nm× nm identity matrix, the matrix Dk
X contains the contribu-

tions of self-diffusion, the matrix Fk
X contains the cross-diffusion contributions,

and the diagonal matrix Rk
X contains the reaction terms.

Remark 1. These matrices depend only on the dependent variables of the previ-
ous time-step and have the following properties, which can easily be verified by
straightforward calculations:

Numerical Treatment of a Cross-Diffusion Model of Biofilm Exposure 139

Dk
X is sparse with non-positive diagonal entries and non-negative off-diagonal

entries if the biomass densities Xk
i,j and Y k

i,j are non-negative and Xk
i,j +Y k

i,j < 1
Fk

X is sparse with non-negative diagonal entries and non-positive off-diagonal
entries if the biomass densities Xk

i,j and Y k
i,j are non-negative and Xk

i,j +Y k
i,j < 1.

We obtain for Y in a similar manner a linear system of the form
(I − τkDk

Y + τkFk
Y

)Yk+1 = Yk + rk, (15)

where vector rk contains the contributions of Rk
2 , and for C and B without

cross-diffusion the simpler

(I − τkDk
C − τkRk

C)Ck+1 = Ck + b1 (16)

(I − τkDk
B − τkRk

B)Bk+1 = Bk + b2 (17)

where vectors b1, b2 contain the contributions of the Dirichlet boundary condi-
tions. Note that the matrices D, F , R are different in (15)–(17) than in (14),
but have the same properties as stated above.

In the biological/physical context X and Y as volume fractions need to be
non-negative. In the continuous model (1), (2) this is ensured by the specific form
of the cross-diffusion terms with D12(0, ·) = D21(·, 0) = 0. That the numerical
method inherits this property shows the following result, which also implies the
absence of spurious oscillations at the steep biofilm/water interface, which are
often observed in numerical solutions of such interface propagation problems.

Proposition 1. If τk is small enough and X k ≥ 0, Yk ≥ 0, Ck ≥ 0, Bk ≥ 0,
X k + Yk < 1, then X k+1 ≥ 0, Yk+1 ≥ 0, Ck+1 ≥ 0, Bk+1 ≥ 0.

Proof. The matrices Dk are weakly diagonal dominant with non-positive diago-
nal entries and non-negative off-diagonal entries and the matrices Fk are diago-
nally dominant with non-negative diagonal entries and non-positive off-diagonal
entries. The diagonal matrices Rk in (16), (17) are non-negative. Thus the sys-
tem matrices of (15)–(17) are M-matrices for every choice τk > 0. The signs of
the entries of Rk

X in (14) depend on Ck and Bk. Let K be the maximum entry
of this matrix. Then for the system matrix of (14) to be an M-matrix it suffices
if τk < 1/K. Per hypothesis X k ≥ 0, Yk ≥ 0, Ck ≥ 0, Bk ≥ 0, and rk in (15),
b1,2 in (16), (17) are non-negative by definition. Since the inverse of M-matrices
are non-negative, it follows X k+1 ≥ 0,Yk+1 ≥ 0, Ck+1 ≥ 0 and Bk+1 ≥ 0. �	
Remark 2. K in the above proof is the characteristic time scale for biofilm
growth. Hence the constraint τ < 1/K is not critical for applications.

The numerical method requires in every time-step to solve the linear systems
(14)–(17). We use BiCGSTAB [16] from the free Fortran source code library
SPARSKIT [15], which we prepared for parallel execution on shared memory
computers using OpenMP [12]. This is the computationally most expensive part,
and the only part of the code that is parallelized. BiCGSTAB requires in each

140 K. Rahman and H.J. Eberl

iteration two matrix-vector products, four inner products with reduction, and a
number of vector additions and scalar-vector multiplications. We compiled and
tested the code with the Intel, Portland Group and GNU Fortran compilers on
a SGI ALTIX 450, a SGI ALTIXUV, a custom workstation and a Toshiba Tecra
Laptop. The simulations reported here were conducted on the ALTIXUV, where
the number of OpenMP threads was adjusted to grid size. The parallel behaviour
of the underlying method, using the same linear algebra routines, for a related
model was previously documented in [12].

4 A Typical Simulation and Grid Refinement

We test the numerical method in a case study. The parameters for biofilm growth
are taken from the Benchmark Problem 1 of [18], disinfection parameters are
adapted from [1]. They are summarized in Table 1.

Initially, three semi-spherical biofilm colonies are placed on the bottom bound-
ary, two of them centred, and a smaller one at the left corner. Substrate is added
from the top. After the biofilm reaches a given height, biocide is added from the
top. The simulation stops when the biofilm reaches a given size (area or height).
The results are shown in Fig. 1. Initially the biofilm grows due to steady substrate
supply. The colonies start expanding when the local biomass density approaches
the maximum cell densityM ≈ 1. Eventually the neighbouring colonies in the cen-
ter merge to form a single, larger colony. In the absence of biocides and inactive
biomass, the model behaves like the single-species/single-substrate biofilm model
of [5]. At t ≈ 6.9 biocides are added from the top and diffuse toward the biofilm.
Inactivation begins. Inert biomass is observed primarily in the outer layers. In the

Table 1. Default model parameters used in the simulations.

Parameter Symbol Value Unit

Domain length L 10−3 m
Domain height H 10−3 m
Bulk substrate concentration C∞ 30 gm−3

Bulk biocide concentration B∞ 10 gm−3

Maximum specific growth rate μ 6 d−1

Half saturation concentration for growth κ1 4 gm−3

Half saturation concentration for disinfection κ2 1 gm−3

Lysis rate ξ1 0.4 d−1

Maximum disinfection rate ξ2 48 d−1

Maximum biomass density X∞ 104 gm−3

Yield coefficient for growth Υ1 0.63 –
Yield coefficient for disinfection Υ2 1 –
Nutrient diffusion coefficient in water d0

C 1. · 10−4 M2d−1

Nutrient biofilm/water diffusivity ratio ρC 0.9 –
Biocide diffusion coefficient in water d0

B .8 · 10−4 M2d−1

Biocide biofilm/water diffusivity ratio ρB 0.25 –

Numerical Treatment of a Cross-Diffusion Model of Biofilm Exposure 141

t = 1.002 t = 5.002 t = 6.914

t = 10.914 t = 12.914 t = 16.884

Fig. 1. Simulation of biofilm growth and exposure to biocides. Shown is the biofilm
region X + Y > 0 for selected t. Biocide is added after the biofilm reaches a certain
size. The colour represents active biomass, relative to the overall biomass, Z = X

X+Y
.

inner layer new biomass continues to be produced. Despite the disinfection rate
being significantly larger than the growth rate, this leads to a further expansion of
the biofilm in the presence of biocide. Eventually the larger double colony merges
with the smaller colony. Throughout the disinfection period, a distinct gradient of
inactive biomass relative to the total biomass is observed, from the biofilm/water
interface inward. For the parameters used in this simulation, adding the biocide
does not prevent the biofilm from growing further or even lead to its decay. This
is due to rapid degradation of biocides in the outer layers of the biofilm during
inactivation and slow diffusion of biocides into the biofilm.

Due to the nonlinearities, theoretical convergence analysis is difficult. Instead
we conduct a computational study on grids of different resolutions, with n = m =
2k, k = 5, ..., 11. The setup is as in Fig. 1, but the colonies are initially bigger,
to shorten the phase where no expansion takes place and where cross-diffusion
effects do not play a role; see [4,13] for convergence studies of models without
cross-diffusion. In Fig. 2 we plot the time course of the following parameters of
interest: biofilm size, total active biomass, total inactive biomass, and minimum
substrate concentration. We observe grid size effects for the coarsest resolutions,
in particular for the measure of biofilm size and the total amount of inactive
biomass. Biofilm size is included here also as indicator for the convergence of the

142 K. Rahman and H.J. Eberl

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 1 2 3 4 5 6 7 8

bi
of

ilm
 s

iz
e

time

32 x 32
64 x 64

128 x 128
256 x 256
512 x 512

1024 x 1024
2048 x 2048

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 1 2 3 4 5 6 7 8

B
io

m
as

s
X

time

32 x 32
64 x 64

128 x 128
256 x 256
512 x 512

1024 x 1024
2048 x 2048

(a) (b)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 1 2 3 4 5 6 7 8

B
io

m
as

s
Y

time

32 x 32
64 x 64

128 x 128
256 x 256
512 x 512

1024 x 1024
2048 x 2048

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

m
in

im
um

 C
/C

bu
lk

time

(c) (d)

Fig. 2. Output parameters for various grid resolutions: (a) biofilm, (b) total active
biomass, (c) total inactive biomass, (c) minimum substrate concentration

biofilm interface. The location of the interface can be accurate at most with Δx
which explains the strong differences for the coarsest grids. Disinfection starts
when the biofilm reaches a given height. Hence, the onset of disinfection is also
closely linked to the accuracy of the interface location. Also here we see big
difference for the coarsest grids but note convergence as the grid is refined. Total
active biomass and minimum substrate concentration in the system agree well
for all grid resolution over the course of the simulation. For practical purposes,
a resolution with n = m = 256 appears as a good accuracy/cost trade-off. To
also account for spatial accuracy explicitly, we compute the difference of the
solutions of two subsequent grid resolutions for the last simulation time step, see
Table 2. We note a steady decrease in error when refining the grid, indicating
convergence of the method. To compute these data the simulation results had
to be interpolated between grids. They are subject to interpolation errors and
cannot be used to extract the convergence rate. Moreover, these data also are
sensitive to the interface location being accurate at most within Δx.

In each time step (14)–(17) are solved. The system matrices change with each
instance. Therefore, the number of BiCGSTAB iterations, and hence cost per
timestep, is variable over the duration of the simulation (data not shown).

Numerical Treatment of a Cross-Diffusion Model of Biofilm Exposure 143

Table 2. Results of the grid refinement study: least square norms for the differences of
solutions for grids with 2k × 2k and 2k−1 × 2k−1 cell resolution at the final time step.

k X Y C B

6 0.1690·10−2 0.2473·10−3 0.3817·10−3 0.2520·10−3

7 0.5110·10−3 0.9279·10−4 0.7629·10−4 0.5579·10−4

8 0.2361·10−3 0.4853·10−4 0.2730·10−4 0.2145·10−4

9 0.5970·10−4 0.1427·10−4 0.4607·10−5 0.3420·10−5

10 0.2669·10−4 0.6714·10−5 0.1749·10−5 0.1252·10−5

11 0.9344·10−5 0.2428·10−5 0.4369·10−6 0.3019·10−6

5 Conclusion

We present a numerical method for a highly nonlinear PDE model of biofilm
response to biocides with three nonlinear diffusion effects: (i) porous medium
degeneracy, (ii) super-diffusion singularity, (iii) nonlinear cross-diffusion. The
scheme extends a previous methods for problems with properties (i) and (ii). The
new cross-diffusion terms are treated formally as convective terms with density
dependent velocity. The method is based on a Finite Volume discretization in
space and semi-implicit, non-local time integration. It preserves positivity. In
simulations we showed its convergence with respect to grid refinement.

References

1. Chambless, J.D., Hunt, S.M., Stewart, P.S.: A three-dimensional computer model
of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl.
Env. Microbiol. 72, 2005–2013 (2006)

2. Costerton, J.W.: The Biofilm Primer. Springer, Heidelberg (2007)
3. Dimitrov, D.T., Kojouharov, H.V.: Dynamically consistent numerical methods for

general productive-destructive systems. J. Diff. Equs. Appls. 17(12), 1721–1736
(2011)

4. Eberl, H.J., Demaret, L.: A finite difference scheme for a degenerated diffusion
equation arising in microbial ecology. El. J. Diff. Equs. CS 15, 77–95 (2007)

5. Eberl, H.J., Parker, D.F., van Loosdrecht, M.C.M.: A new deterministic spatio-
temporal continuum model for biofilm development. J. Theor. Med. 3, 161–175
(2001)

6. Eberl, H.J., Sudarsan, R.: Exposure of biofilms to slow flow fields: the convective
contribution to growth and disinfection. J. Theor. Biol. 253, 788–807 (2008)

7. Efendiev, M.A., Zelik, S.V., Eberl, H.J.: Existence and longtime behavior of a
biofilm model. Comm. Pure Appl. Anal. 8, 509–531 (2009)

8. Hundsdorfer, W., Verweer, J.G.: Numerical Solution of Time-Dependent
Advection-Diffusion-Reaction Equations. Springer, Heidelberg (2003)

9. Jalbert, E., Eberl, H.J.: Numerical computation of sharp travelling wave solutions
of a simplified biofilm model. Comm. Nonlin. Sci. Num. Sim. (in press)

10. Mickens, R.E.: Nonstandard finite difference schemes. In: Mickens, R.E. (ed.)
Applications of Nonstandard Finite Difference Schemes, pp. 155–180. World Sci-
entific, Singapore (2000)

144 K. Rahman and H.J. Eberl

11. Morton, K.W.: Numerical Solution of Convection-Diffusion Problems. Chapman
and Hall, London (1996)

12. Muhammad, N., Eberl, H.J.: OpenMP parallelization of a Mickens time-integration
scheme for a mixed-culture biofilm model and its performance on multi-core
and multi-processor computers. In: Mewhort, D.J.K., Cann, N.M., Slater, G.W.,
Naughton, T.J. (eds.) HPCS 2009. LNCS, vol. 5976, pp. 180–195. Springer, Hei-
delberg (2010)

13. Muhammad, N., Eberl, H.J.: Model parameter uncertainties in a dual-species
biofilm competition model affect ecological output parameters much stronger than
morphological ones. Math. Biosci. 233, 1–18 (2011)

14. Rahman, K.A., Eberl, H.J.: Cross-diffusion in biofilms (in preparation)
15. Saad, Y.: SPARSKIT: a basic tool-kit for sparse matrix computations. http://

www-users.cs.umn.edu/saad/software/SPARSKIT/index.html (1994)
16. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadel-

phia (2003)
17. Samarskii, A.A., Mikhailov, A.P., Galaktionov, V.A., Kurdumov, S.P.: Blow-Up in

Quasilinear Parabolic Equations. DeGruyter, Berlin (1995)
18. Wanner, O., Eberl, H., Morgenorth, E., Noguera, D., Picioreanu, D., Rittmann, B.,

van Loosdrecht, M.: Mathematical Modelling of Biofilms. IWA Publishing, London
(2006)

Performance Analysis for Stencil-Based
3D MPDATA Algorithm on GPU Architecture

Krzysztof Rojek(B), Lukasz Szustak, and Roman Wyrzykowski

Czestochowa University of Technology, Dabrowskiego 73,
42-201 Czestochowa, Poland

{krojek,lszustak,roman}@icis.pcz.pl

Abstract. EULAG (Eulerian/semi-Lagrangian fluid solver) is an estab-
lished computational model for simulating thermo-fluid flows across a
wide range of scales and physical scenarios. The multidimensional pos-
itive defined advection transport algorithm (MPDATA) is among the
most time-consuming components of EULAG.

The main aim of our work is to design an efficient adaptation of the
MPDATA algorithm to the NVIDIA GPU Kepler architecture. We focus
on analysis of resources usage in the GPU platform and its influence on
performance results. In this paper, a performance model is proposed,
which ensures a comprehensive analysis of the resource consumption
including registers, shared, global and texture memories. The perfor-
mance model allows us to identify bottlenecks of the algorithm, and
shows directions of optimizations.

The group of the most common bottlenecks is considered in this work.
They include data transfers between host memory and GPU global mem-
ory, GPU global memory and shared memory, as well as latencies and
serialization of instructions, and GPU occupancy. We put the emphasis
on providing a fixed memory access pattern, padding, reducing divergent
branches and instructions latencies, as well as organizing computation
in the MPDATA algorithm in order to provide efficient shared memory
and register file reusing.

Keywords: GPGPU · CUDA · EULAG · Stencil · MPDATA ·
Geophysical flows · Parallel programming

1 Introduction

The multidimensional positive definite advection transport algorithm(MPDATA)
is among the most time-consuming calculations of the EULAG model [2,9]. In
our previous works [8,10,11] we proposed two decompositions of 2D MPDATA
computations, which provide adaptation to CPU and GPU architectures sepa-
rately. The achieved performance results showed the possibility of achieving high
performance both on CPU and GPU platforms.

In the paper [12], we developed a hybrid CPU-GPU version of 2D MPDATA,
to fully utilize all the available computing resources by spreading computations
across the entire machine. It is the starting point for our current work.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 145–154, 2014.
DOI: 10.1007/978-3-642-55224-3 15, c© Springer-Verlag Berlin Heidelberg 2014

146 K. Rojek et al.

In this paper, we focus on parallelization of the 3D MPDATA algorithm,
and analysis of resources usage in the GPU platform and its influence on the
performance. We detect the bottlenecks and develop the method of efficient
distribution of computation across CUDA kernels. Proposed method is based on
analysis of memory transactions between GPU global and shared memory.

2 Related Works

Reorganizing stencil calculations to take full advantage of memory hierarchies
has been the subject of much investigation over the years.

Modern processor architectures tends to be inherently unbalanced concerning
the relation of theoretical peak performance versus memory bandwidth. To reveal
performance constraints for MPDATA running on hybrid architectures, we will
follow the simple methodology presented in [4], where attainable performance is
estimated based on flop and byte ratio.

Memory optimizations for stencil computations have principally focused on
different decomposition strategies, like space and blocking techniques [3], that
attempt to exploit locality by performing operations on data blocks of a suitable
size before moving on to the next block.

The issue of adapting the EULAG model to GPU accelerators was discussed
in [5], where the PGI Accelerator compiler was used for the automatic par-
allelization of selected parts of EULAG on NVIDIA GPUs, including the 2D
MPDATA algorithm. However, disadvantage of this approach is relaying entirely
on the automatic parallelization, without any efforts to guide the parallelization
process taking into account characteristics of target architectures.

In the paper [6], a 3.5D-blocking algorithm that performs 2.5D-spatial block-
ing of the input grid into on-chip memory for GPUs was discussed. We also
employ 2.5D blocking technique to increase data locality, but we propose alter-
native solution for memory-bounded kernels, which is based on minimizing the
number of global memory transactions, rather than applying 3.5D-blocking.

The quite large set of techniques of CUDA optimizations including data
parallelism, threads deployment and the GPU memory hierarchy was discussed
in [1]. In this work, the authors manually evaluated the best configurations of 2D
stencil computations. We offer model-based solution, which automatic configures
the code, making our solution more portable.

3 Kepler NVIDIA Architecture

The NVIDIA GTX TITAN GPU [7] is based on the Kepler architecture, and
includes 14 streaming multiprocessors (SMX), each consisting of 64 double pre-
cision units (DP units) with 48 KB of shared memory and 16 KB of L1 cache.
It gives a total number of 896 DP units with the clock rate of 870 MHz. It pro-
vides the peak performance of 1.5 TFlop/s in a double precision. This graphics
accelerator card includes 6 GB of global memory with the peak bandwidth of
288 GB/s. All the accesses to the global memory go through the L2 cache of size

Performance Analysis for Stencil-Based 3D MPDATA Algorithm 147

1.5 MB. This GPU supports two modes of access to data: 32-bit access mode and
64-bit access mode. The number of load/store unit per SMX is 32, so it gives a
possibility to load/store 256 bits per clock cycle per SMX.

4 3D MPDATA Overview

Our research includes Multidimensional Positive Definite Advection Transport
Algorithm (MPDATA), which is one of the main part of the EULAG geophysical
model EULAG (EUlerian/semi-LAGrangian) can be used to simulate: weather
prediction; ocean currents; areas of turbulence; urban flows; gravity wave dynam-
ics; micrometeorology; cloud microphysics and dynamics.

The MPDATA algorithm belongs to the group of nonoscillatory forward in
time algorithms [9]. The 3D MPDATA is based on the first-order-accurate advec-
tion equation:

∂Ψ

∂t
= − ∂

∂x
(uΨ)− ∂

∂y
(vΨ)− ∂

∂z
(wΨ), (1)

where x, y and z are space coordinates, t is time, u, v, w = const are flow
velocities, and Ψ is a nonnegative scalar field. Equation (1) is approximated
according to the donor-cell scheme, which for the (n + 1)-th time step (n =
0, 1, 2, . . .) gives the following equation:

Ψ∗
i,j,k = Ψn

i,j,k − [F (Ψn
i,j,k, Ψ

n
i+1,j,k, Ui+1/2,j,k)− F (Ψn

i−1,j,k, Ψ
n
i,j,k, Ui−1/2,j,k)]

− [F (Ψn
i,j,k, Ψ

n
i,j+1,k, Vi,j+1/2,k)− F (Ψn

i,j−1,k, Ψ
n
i,j,k, Vi,j−1/2,k)]

− [F (Ψn
i,j,k, Ψ

n
i,j,k+1,Wi,j,k+1/2)− F (Ψn

i,j,k−1, Ψ
n
i,j,k,Wi,j,k−1/2)].

(2)

Here the function F is defined in terms of the local Courant number U :

F (ΨL, ΨR, U) ≡ [U]+ΨL + [U]−ΨR, (3)

U ≡ uδt

δx
; [U]+ ≡ 0, 5(U + |U |); [U]− ≡ 0, 5(U − |U |). (4)

The same definition is true for the local Courant numbers V and W .
The first-order-accurate advection equation can be approximated to the

second-order in δx, δy and δt, defining the advection-diffusion equation. Such
transformation is widely described in literature. For the full description of the
main important aspects of the second order equation of MPDATA, the reader is
referred to [9].

The 3D MPDATA algorithm consists of 17 stencils that are processed by
CUDA kernels on the GPU. Figure 1 shows the mechanism of kernel processing.
We employ widely used method of 2.5D blocking [6], where two dimensional
CUDA blocks are responsible for computing XY planes of matrices. The loop
inside kernel is used to traverse the grid in the Z dimension. Since, the MPDATA
algorithm requires to store 3 XY planes at the same time, we use queue of planes
placed in registers and shared memory, which firstly copies data from GPU global
memory to registers, and then moves data between registers and shared memory.
This method allows us to increases data locality significantly.

148 K. Rojek et al.

Fig. 1. Kernel processing

5 Analysis of 3D MPDATA with NVIDIA Visual Profiler

The starting point of our considerations is when the 17 stencils are distributed
across 6 CUDA kernels. Our analysis begins with detection of bottlenecks of the
algorithm. We examine the following potential bottlenecks:

– data transfers between GPU global memory and host memory;
– instructions latency (stall analysis);
– arithmetic, logic, and shared memory operations;
– configuration of the algorithm taking into account size of CUDA block and

GPU occupancy.

Our approach is based on the stream processing [12] (Fig. 2) where each
stream is responsible for computing a sequence of 3 instructions including: data
transfer from host to GPU that occurs only once (before computations); execu-
tion the sequence of 6 kernels; data transfer from GPU to host memory (occurs
after every time step). Since all streams are processed independently, the compu-
tation and data transfers can be overlapped. Table 1 shows the time consump-
tion analysis of MPDATA for the 100 time steps and grid of size 392. Three
streams are used in the simulation. The HTOD abbreviation means the data
transfer from host to device, while the DTOH means data transfer in the opposite
direction.

Based on this analysis, the data transfer takes relatively short time (about
18 % of all execution time). Stream processing decreases execution time by about
0.9 s, which is 2 times more than time of data transfer. We can simply con-
clude here, that data transfer between host and GPU is not a bottleneck of the
MPDATA algorithm.

Now we focus on the analysis of computations. Our research include the most
complex part of the MPDATA algorithm. Based on the NVIDIA Visual Profiler,

Performance Analysis for Stencil-Based 3D MPDATA Algorithm 149

Fig. 2. Utilization of GPU resources by MPDATA

Table 1. Time consumption analysis of the 3D MPDATA algorithm

Operation Time [s] Ratio

HTOD 0.023 0.008
DTOH 0.453 0.172
Computation 3.051 1.16
Final time 2.631 1

we estimate two the most time consuming kernels, which are called kernels B and
C. These kernels take about 57 % of the execution time. Each of this kernel has
5 input and 3 output matrices and is responsible for computing 3 stencils with
37 flops per each. The flop/B ratio for each kernel is 37 ∗ 3/((5 + 3) ∗ 8) = 1.73.
However, the minimum flop/B ratio required by NVIDIA GTX TITAN to achieve
maximum performance is 5.2 [7]. The another conclusion is that the kernels are
strongly memory-bounded!

The next analysis is devoted to the stall reasons analysis. Figure 3 shows the
main reason of stalls for kernels B and C including execution dependency, data
request, texture memory operations, synchronization, and instruction fetching.
Based on the analysis, stalls are mostly caused by the execution dependency

Fig. 3. Analysis of stall reasons for kernels B and C

150 K. Rojek et al.

(about 33 %). Such kind of stalls limits GPU utilization and results from the
complex structure of the MPDATA algorithm. The execution dependencies can
be hidden by increasing GPU occupancy. However, the kernels B and C use
about 47 KB of shared memory for each CUDA block, executing only 768 active
threads per SMX. It means, that the GPU occupancy is only 37.5 % for the both
kernels. So the final conclusion is that the GPU utilization is limited by shared
memory usage!

6 Performance Analysis Based on GPU Global Memory
Transactions

We propose a performance analysis based on GPU global memory transactions.
Such analysis is particularly helpful, when algorithm is memory-bounded. In our
approach, the following scenarios are considered:

– distribution of computation across 2 kernels;
– compression of computation within 1 kernel.

The compression of computation increases hardware requirements for CUDA
blocks, and decreases the GPU occupancy. Hence, the second scenario allows
us to execute at most 512 active threads per SMX. It means, that the GPU
occupancy is even lower than for the first scenario, and it is only 25 %.

At the beginning of our analysis we need to estimate the cost of access to
matrix for each scenario. We assume, that CUDA block is of size g1×g2, matrices
are processed according with Fig. 1, halo areas are of size 1, and are placed from
the four sides of CUDA block (Fig. 4). The number of elements, that need to be
transferred from GPU global memory to shared memory or register files is given
by the following formula:

Sel = g1 ∗ g2 + 2 ∗ g2 + 2 ∗ g1. (5)

Taking into account 64-bits access mode, which can be simply enabled on
Kepler NVIDIA architecture by calling cudaDeviceSetSharedMemConfig()

Fig. 4. XY plane of CUDA block with its halo areas

Performance Analysis for Stencil-Based 3D MPDATA Algorithm 151

routine with cudaSharedMemBankSizeEightByte parameter, we can estimate
the number of required transactions to transfer a single CUDA block:

Str = g1 ∗ top(g2/32) + 2 ∗ top(g2/32) + 2 ∗ g1, (6)

where top(x) returns rounded up value of x. In this approach, addresses of ver-
tical halo areas are not coalesced.

Table 2 shows the cost of access to matrix for the first scenario. In this analy-
sis, the plane is of size 392×256. Transactions overhead is ratio between required
number of transactions to transfer matrix and the naive number of transactions
required to transfer matrix assuming unlimited size of shared memory (without
halo area). The naive number of transactions for plane of size 392× 256 is 3136.
Based on our analysis, the minimum number of transactions for the first sce-
nario is 3136 ∗ 185.2 % = 5808. This analysis also allows us to estimate the most
suitable size of CUDA block, which is 6× 128.

Table 2. Analysis of GPU global memory transactions: first scenario

g1 g2 Blocks per Transactions Transactions Transactions
plane per block per plane overhead [%]

6 128 132 44 5808 185.2
5 128 158 38 6004 191.45
3 256 131 46 6026 192.16
4 128 196 32 6272 200
8 96 147 46 6762 215.63
3 128 262 26 6812 217.22
12 64 132 52 6864 218.88
7 96 168 41 6888 219.64

A similar analysis is made for the second scenario and the results of this
analysis are shown in Table 3. The best configuration of CUDA block is 4× 64,
while the transactions overhead is 250 %.

Finally, we estimate the cost of access to all matrices for the both scenarios.
Figure 5 shows flow diagram for kernels B and C. There are 5 input matrices
for the kernel B and 6 input matrices for the kernel C. Additionally, there are
2 output matrices per each kernel. Transactions overhead for each matrix is
185.2 %, so the total cost of access to all matrices is (5+6+2+2)∗1.852 = 27.78.
The flow diagram for the second scenario is shown in Fig. 6. Here we have 5

input and 3 output matrices. Transactions overhead is 250 %. So, the total cost
of access to all matrices is (5 + 3) ∗ 2.5 = 20.

Table 4 shows the summary of MPDATA analysis, taking into account con-
sidered scenarios. Based on our analysis, it is expected to achieve about 1.39
speedup using the second scenario over the first scenario. So the conclusion is
that, we should compress kernels B and C into a single kernel.

152 K. Rojek et al.

Table 3. Analysis of GPU global memory transactions: second scenario

g1 g2 Blocks per Transactions Transactions Transactions
plane per block per plane overhead [%]

4 64 392 20 7840 250
2 128 392 20 7840 250
3 64 524 16 8384 267.35
2 96 588 16 9408 300
2 64 784 12 9408 300
8 32 392 26 10192 325
1 256 392 26 10192 325
7 32 448 23 10304 328.57

Fig. 5. Flow diagram for kernels B and C

Fig. 6. Flow diagram for BC kernel

Table 4. Summary of MPDATA analysis

Kernels B and C Kernel BC Ratio

Occupancy 37.50 % 25.00 % 1.5
Access overhead 185.20 % 250.00 % 0.74
of matrices 15 8 1.85
Total cost of access 27.78 20 1.39

7 Performance Results

Table 5 presents performance results for both scenarios. In our tests we used a
single NVIDIA GTX TITAN GPU with Intel Core i7–3770 CPU. The MPDATA
algorithm was tested for the grid of size 392×256×64. The achieved results are
far from the peak performance due to the complexity of the algorithm, strong
instructions and data dependencies, and shared memory size limitations.

Performance Analysis for Stencil-Based 3D MPDATA Algorithm 153

Table 5. Performance results for both scenarios

Kernel Mflops per Time per Performance Speedup
scenario scenario [ms] [Gflop/s]

B and C 963.4 15.47 62.29 1
BC 847.8 10.47 80.95 1.48

Our method of stencils distribution across CUDA kernels allows for increas-
ing the MPDATA performance by about 1.48 times. Such a speedup is a little
higher than we expected due to the fact that compression of kernels brings some
additional advantages, which were not taken into account in our analysis. The
main reason of a higher speedup is possibility of applying the common subex-
pression elimination to reduce the number of MPDATA instructions. It allows
us to reduce the number of operation from 963.4 Mflops to 847.8 Mflops.

8 Conclusions and Future Work

The proposed methods allow for estimating “the best” number of kernels, as
well as easy selection of CUDA block size for each kernel. The compression of
stencils into kernels and improvement of GPU occupancy are mutual excluded.
However, the analysis of GPU global memory transactions allows us to find the
compromise between these two kinds of optimizations. Moreover, the compres-
sion of kernels permits for decreasing the amount of computation. The proposed
approach to kernel processing with queues of data placed in registers and shared
memory increases the data locality significantly. The performance of kernels in
our approach is limited by the number of memory transactions and latency
of arithmetic operations. The GPU utilization is mostly limited by the size of
shared memory.

Our parallelization of the EULAG model is still under development. The
future work will focus on expansion of the implementation across a cluster of
CPU-GPU nodes. The particular attention will be paid to implementation of
MPDATA using OpenCL in order to ensure the code portability across different
devices, as well as development of autotunig mechanisms aiming at providing
performance portability.

Acknowledgments. This work was partly supported by the Polish National Science
Centre under grant no. UMO-2011/03/B/ST6/03500.

References

1. Cecilia, J.M., Garćıa, J.M., Ujaldón, M.: Cuda 2D stencil computations for the
Jacobi method. In: Jónasson, K. (ed.) PARA 2010, Part I. LNCS, vol. 7133, pp.
173–183. Springer, Heidelberg (2012)

154 K. Rojek et al.

2. Ciznicki, M., Kopta, P., Kulczewski, M., Kurowski, K., Gepner, P.: Elliptic solver
performance evaluation on modern hardware architectures. In: Wyrzykowski, R.,
Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2013, Part I. LNCS,
vol. 8384, pp. 155–165. Springer, Heidelberg (2014)

3. de la Cruz, R., Araya-Polo, M., Cela, J.M.: Introducing the semi-stencil algorithm.
In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM
2009, Part I. LNCS, vol. 6067, pp. 496–506. Springer, Heidelberg (2010)

4. Hager, A., Wellein, G.: Introduction to High Performance Computing for Science
and Engineers. CRC Press, Boca Raton (2011)

5. Kurowski, K., Kulczewski, M., Dobski, M.: Parallel and GPU based strategies for
selected CFD and climate modeling models. Environ. Sci. Eng. 3, 735–747 (2011)

6. Nguyen, A., Satish, N., Chhugani, J., Changkyu, K., Dubey, P.: 3.5-D blocking opti-
mization for stencil computations on modern CPUs and GPUs. In: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–13 (2010)

7. NVIDIA Kepler Compute Architecture. http://www.nvidia.com/object/
nvidia-kepler.html

8. Rojek, K., Szustak, L.: Parallelization of EULAG model on multicore architec-
tures with GPU accelerators. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 391–400. Springer,
Heidelberg (2012)

9. Smolarkiewicz, P.: Multidimensional positive definite advection transport algo-
rithm: an overview. Int. J. Numer. Meth. Fluids 50, 1123–1144 (2006)

10. Szustak, L., Rojek, K., Gepner, P.: Using Intel Xeon Phi coprocessor to accel-
erate computations in MPDATA algorithm. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Wasniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp.
582–592. Springer, Heidelberg (2014)

11. Wyrzykowski, R., Rojek, K., Szustak, L.: Using Blue Gene/P and GPUs to acceler-
ate computations in the EULAG model. In: Lirkov, I., Margenov, S., Waśniewski,
J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 670–677. Springer, Heidelberg (2012)

12. Wyrzykowski, R., Szustak, L., Rojek, K., Tomas, A.: Towards efficient decomposi-
tion and parallelization of MPDATA on hybrid CPU-GPU cluster. In: LSSC 2013.
LNCS (in print)

Elliptic Solver Performance Evaluation
on Modern Hardware Architectures

Milosz Ciznicki1(B), Piotr Kopta1, Michal Kulczewski1(B),
Krzysztof Kurowski1, and Pawel Gepner2

1 Poznan Supercomputing and Networking Center, Noskowskiego 10 Street,
61-704 Poznan, Poland

{miloszc,michal.kulczewski}@man.poznan.pl
2 Intel Corporation, Pipers Way, Swindon, Wiltshire SN3 1RJ, UK

Abstract. The recent advent of novel multi- and many-core architec-
tures forces application programmers to deal with hardware-specific
implementation details and to be familiar with software optimisation
techniques to benefit from new high-performance computing machines.
An extra care must be taken for communication-intensive algorithms,
which may be a bottleneck for forthcoming era of exascale comput-
ing. This paper aims to present performance evaluation of preliminary
adaptation techniques to hybrid MPI+OpenMP parallelisation schemes
we provided into the EULAG code. Various techniques are discussed,
and the results will lead us toward efficient algorithms and methods to
scale communication-intensive elliptic solver with preconditioner, includ-
ing GPU architectures to be provided later in the future.

Keywords: Elliptic solver · Preconditioning · EULAG · High perfor-
mance computing · Petascale computing · Hybrid parallelisation · Intel
Xeon Phi

1 Introduction

The recent advent of novel multi- and many-core architectures, such as GPU
and hybrid models, offer notable advantages over traditional supercomputers [1].
However, application programmers have to deal with hardware-specific imple-
mentation details and must be familiar with software optimisation techniques
to benefit from new high-performance computing machines. It is therefore of
great importance to develop expertise in methods and algorithms for porting
and adapting the existing and prospective modelling software to these new, yet
already established machines [2,3].

Elliptic solvers of an elastic models are usually based on standard iterative
algorithms for solving linear systems, e.g. CG, GMRES or GCRK. Numerous
reports on porting them to modern architectures are available [4]. However,
in an anelastic solver for geophysical flows fast-acting physical processes may
enter the elliptic problem implicitly. Furthermore, formulation of the boundary

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 155–165, 2014.
DOI: 10.1007/978-3-642-55224-3 16, c© Springer-Verlag Berlin Heidelberg 2014

156 M. Ciznicki et.al

conditions is not trivial and therefore it is not feasible to use standard iterative
solvers from linear algebra packages. For simulating physical experiments with
a high degree of anisotropy, additional preconditioning is necessary to improve
matrix conditioning. Such preconditioned for anisotropic geometries often relies
on the direct inversion using the Thomas algorithm. A comprehensive study
on implementations of tridiagonal solvers on GPU found that it is possible to
implement solvers which perform exceptionally well in the range of grid nodes [5].

EULAG [6], an elastic model for simulating low Mach number flows under
gravity, developed in the National Center for Research, is widely used in an
international community and has a rich portfolio of applications. It features non-
oscillatory forward-in-time (NFT) numerics, which are original and unique. It
also employs preconditioned, nonsymmetric, generalised conjugate-residual type
“Krylov” scheme [7–10] to solve an elliptic boundary value problem - reported to
be among the most effective methods for solving difficult elliptic problems [11].
Based on variational principles, Krylov solvers provide a hierarchical framework,
which assures an asymptotic convergence rate in inverse proportion to the square
root of the condition number of the linear operator, resulting from the numerical
formulation of the model. The hierarchical design of Krylov solvers relies on the
operator preconditioning, the goal of which is to accelerate the convergence of
the main solver beyond the theoretically optimal limit.

Our research is to provide novel methods to adapt scientific code to novel
hardware architectures, taking EULAG as an example. As a result, a prototype
parallel formulation of the elliptic solver on modern architectures will become
available. In this paper we focus on performance evaluation of preliminary adap-
tion techniques to hybrid MPI+OpenMP parallelisation schemes we provided
into the EULAG code. We discuss various techniques, along with results taken
from various modern hardware architectures. The results will lead us toward effi-
cient algorithms and methods to scale elliptic solver along with preconditioner,
including GPU architectures, to be provided later in the future.

The remainder of the paper is organised as follows. In the next section,
parallelisation of the model is discussed, following details on MPI+OpenMP
improvements. Design of the parallel experiments and the corresponding results
are discussed in Sect. 3. Remarks in Sect. 4 conclude the paper.

2 Model Parallelisation

2.1 Current State

EULAG employs pure MPI programming model for parallelisation between all
cores. The computational grid is divided in all three dimensions and each MPI
process advances the solution in its subdomain. The computational domain is
decomposed evenly so that MPI processes have the same number of grid points
and the same computational load. The semi-implicit iterative elliptic solver
requires inter-processor communication between all processors in the 3D MPI

Elliptic Solver Performance Evaluation on Modern Hardware Architectures 157

topology. All-to-all communications are required for calculating global reduc-
tion operations, whereas point-to-point communications exchange halo regions
between nearest neighbours on x, y and z dimensions.

The latest state-of-the-art scalability results of EULAG model is presented by
Piotrowski et al. in [12,13]. The new three-dimensional decomposition has been
proposed to increase model performance and scalability. The performance of the
new code is demonstrated on the IBM BlueGene/L and Cray XT4/XT5 super-
computers. Form small-scale components of Earth-system models, 3D schemes
can provide substantial gains in the model performance over 2D schemes.

The domain decomposition scheme has been recently extended over 2D app-
roach in the vertical direction [13]. The code arrays are explicitly dimensioned to
contain a subgrid of a total array corresponding to the entire model grid, plus an
extra space for a copy of the neighbouring processors’ boundary cells, common
referred as “hallo cells”. Each subgrid is then assigned to only one processor,
though the halo regions may vary through the code being running. To minimise
communication, the halo regions information are exchanged partially and only
when needed. To exchange such information between processors, the code uses
distributed memory message-passing MPI standard.

2.2 Hybrid MPI+OpenMP Improvements

The MPI-all approach provides uniform way of employing the parallelism avail-
able in the application. It assumes that the message passing is the correct para-
digm for all systems. However, this may not be true especially for the hierarchical
systems. Pure MPI ignores the fact that today’s computational nodes contain
multi- and many-core processors that reside on a shared memory. Furthermore,
as the energy cost of moving data across the interconnect is substantially higher
than the cost of intra-chip communication [14] we can expect that more empha-
sis will be put on shared memory programming models. Although some MPI
libraries employ shared caches within node to improve communication time,
these optimisations are usually hidden from the application programmer. More-
over, our applications of the GCRK solver typically contain small computational
grids not larger than 5123 grid points. Thus, in the pure MPI model adding new
cores significantly increases the communication load relatively to the local sub-
domain size on per rank basis.

OpenMP is a well established shared memory programming model. The appli-
cation employing it is easy to maintain and debug as the application can still
run as a valid serial code. The standard enables to develop performance portable
application that would run on multi-core CPUs and many-core coprocessors.
Additionally, the recent OpenACC standard allow future development to employ
accelerators with small changes to existing OpenMP directives. What is more,
any OpenMP compliant compiler can generate shared memory code even if the
support for OpenACC is not available. Therefore, the hybrid MPI+OpenMP
programming was chosen as a good model that combines the distributed mem-
ory inter-node parallelism and the shared memory intra-node parallelism.

158 M. Ciznicki et.al

The principal logic of the GCRK solver resides within six routines. The gcrk
main routine advances the solution by iteratively calling other major compu-
tational routines. Furthermore, the gcrk routine invokes the collective commu-
nication to compute grid global values. Second routine coef0 is called at the
beginning of the GCRK solver to calculate required coefficients. The rhsdiv rou-
tine evaluates right hand side of the governing equations. The pressure forces
are calculated by prforc routine. The most computational intensive routines
are laplc and nablaCnablaxy that calculate the laplacian and the divergence of
C∗gradient respectively. Finally, the preconditioner is represented by the precon
routine. The preconditioner is based on sequential Thomas algorithm to solve
tridiagonal system of equations.

The computational loops in the code structure of the GCRK solver represent
almost 100 % of the computation. Thus, the OpenMP paradigm should utilise
most of the available computational parallelism. The computational loops can
be simply divided, with regard to the data access pattern, into two categories:
the point wise computations and the stencil computations. The stencil com-
putations consist ordered tasks. At first the message buffers are prepared with
necessary data. Next the non-blocking receives and sends are posted and then the
inner points are computed. Afterward, when the communication is completed the
points that use halo data are updated. This approach clearly separated commu-
nication of halo data from computing the inner points thus it allowed to overlap
each other. In addition, the boundary conditions that usually involve conditional
statements are moved from computations of inner points to evaluation of outer
points in order to facilitate the compiler SIMD parallelisation. However, this
approach has some constraints. The analysis of the profiling information showed
that generally there is no overlap between the communication and the computa-
tion. One MPI process is not able to process both tasks in parallel. As a result,
the communication is done at the synchronisation point. Moreover, some stencil
computations are spreaded between small loops that last less than 1 % of the
execution time. Even if the communication is overlapped with the computation
there is need to restructure the code to gather more computations within loops.
The main advantage of the MPI+OpenMP hybridisation is reduction of the MPI
processes and thus the number of exchanged messages.

2.3 Parallelisation of Stencil Computations

To address these issues we restructured the computational routines as shown in
the following example:

if(th_id.eq.comm_th) then
c Communication thread starts to transfer halo

MPI_IRecv(halo data)
MPI_ISend(halo data)

else
c Manually distribute iterations

it_space = (end-start+1+num_ths-1-1) / (num_ths-1)

Elliptic Solver Performance Evaluation on Modern Hardware Architectures 159

th_start = start+(th_id-1)*it_space
th_end = MIN(start+th_id*it_space-1,end)

c Computation
do i=th_start,th_end

c Some code
enddo

endif

One OpenMP thread is designated to handle the communication so that the
rest perform the computations. This change allows to fully overlap the commu-
nication with the computation. Nevertheless, it complicates the distribution of
iterations as worksharing constructs available in the OpenMP standard operates
only on the whole team of threads. Therefore, the manual work distribution is
employed to remove this obstacle. This workaround has beneficial implications
for the cache reuse as it ensures that each OpenMP thread operates on the same
grid points for the consecutive computational loops. Additionally, the loop iter-
ations are distributed according to the stencil pattern so that the grid points are
located in the local cache. Furthermore, the same work distribution is used for
first touch initialisation of the arrays to ensure the NUMA locality. This tech-
nique also significantly reduces overhead related to the parallel DO worksharing
construct. On the other hand, the potential drawback is that directives for loop
worksharing with dynamic or guided schedules cannot be employed and this can
lead to poor load balancing. However, this issue is not relevant for our case as
at some point the addition of new nodes in the strong scaling for small com-
putational domains leads to subdomains that can easily fit in the local cache.
Therefore, the data placement in the local cache is essential for fast computa-
tions. The dynamic worksharing constructs typically provide poor cache locality.

2.4 Parallelization of TDMA

The preconditioner is based on the sequential tridiagional Thomas algorithm [15]
and it has two different implementations that depend on the domain decomposi-
tion. The naive version of the algorithm is selected for the 2D horizontal decom-
position whereas the recurrence doubling version is used with the 3D decompo-
sition. The detailed description of the recurrence doubling version can be found
in [12].

c Naive version
c lstep=2 or -2 - parallel recurrence going up or going down
lone=sign(2,lstep)
call get_iterations(ngstart,ngend,mgstart,
& mgend,gstart,gend,ntstart,ntend,mtstart,mtend)
do k=gstart,gend,lone

do j=mtstart,mtend
do i=ntstart,ntend

w(i,j,k) = q(i,j,k) + p(i,j,k)*w(i,j,k-lstep)

160 M. Ciznicki et.al

enddo
enddo

enddo

c Pipelined version
c Lowermost MPI ranks in the vertical dimension
c perform naive TDMA until threshold value.
if(lpos.le.threshold) then
c Wait for the first plane

call rcvbuff(w)
call naivetdma(w,p,q)

c Send the last plane
call sndbuff(w)

else
c last=q(lp)+q(lp-2)*p(lp)+q(lp-4)*p(lp-2)*p(lp)
c Compute products of recurrence coefficients

call computeqpproduct(q,p,qppro)
c Wait for the first plane

call rcvbuff(w)
c Compute last plane

call computelastfromfirst(w,qppro)
c Send the last plane

call sndbuff(w)
call naivetdma(w,p,q)

endif

The naive version is parallelised with fine granularity in the horizontal dimension
nevertheless the dependency on the vertical dimension restrict paralellisation to
even and odd planes. In the recurrence doubling version of the algorithm the
computation of products of recurrence coefficients and the computation of the
last plane is fully parallelisable in the vertical direction.

2.5 Tuning on Xeon Phi

The specific optimisations are employed for the Xeon Phi coprocessor. The pro-
filing data showed that copying the data from MPI buffers to the halo regions
contributed to the high number of the cache misses. Particularly, the halo data
for the i, j and k dimensions have to be saved in the array of updated variable,
when the MPI message is received, with 1, np and np ∗mp strides respectively.
To improve cache hits, the halo region for each dimension was moved to the sep-
arate array so that the halo data is linearly ordered within the new array. This
change minimised the stride to one for all dimensions and significantly improved
cache hits in loops that: update boundary points with the halo data and copy
the halo data from MPI buffers. Moreover, it improved cache hits in loops that
calculate inner points as the array of updated variable did not contain the halo

Elliptic Solver Performance Evaluation on Modern Hardware Architectures 161

regions and thus the array was reduced in size. Another important aspect was the
memory alignment as it may determine the type of the vector operation used by
the compiler. The Intel compiler switch “-vec-report6” generates detailed report
about the loop vectorization with aligned or unaligned access. The GCRK solver
arrays are included in common blocks and preventing the Intel compiler (v13.0)
from aligning arrays on 64 byte boundaries, which is the perfect alignment for
Xeon Phi. To partially address this issue the compiler switch “align -zcommons”
was used to align block entities on 32 byte boundaries as common blocks could
not be removed.

2.6 Mapping Application Topology to Cluster Topology

A considerable amount of effort was spent to improve the application performance
by taking advantage of the cluster topology. Current specification of MPI standard
(3.0) provides simple primitives such as MPI Cart create and MPI Graph create
to model the application topology. These primitives allow to reorder the MPI ranks
based on the information provided by the user. However, the standard makes no
assumption about the way of mapping the application topology to the machine
topology. The main idea was to implement the method of mapping the applica-
tion topology to the machine topology to efficiently exploit actual hardware. The
first step in our approach consists of discovering the cluster topology. The MPI
ping-pong benchmark is used to measure the sustained latency and the sustained
bandwidth between all pairs of cluster nodes for different message sizes. After the
benchmark the cost matrix is calculated so that each cell represents the cost of
sending message between two nodes. The message sent within the same node has
the cost equal to zero. The cost is calculated as following:

cost = n ∗ latency + msg size/bandwidth (1)

where n is the number of messages. Afterward, the minimum path is calculated.
The procedure starts with selecting the random starting node and then picking
the next node with the lowest communication cost until the desired number
of nodes is obtained. This procedure is repeated for all starting nodes and the
minimum path is selected. Next, the application topology is mapped to the
hardware topology. The MPI rank with the position (0, 0, 0) in Cartesian grid
is mapped to the first node in the minimum path. Later, the next MPI rank
with the closest spatial position is mapped to the same node, if it is not full,
or to the next node according to the calculated minimum path. One may want
to map more than one rank on each node e.g. one MPI rank per NUMA node.
The Hilbert curve [16] is used to calculate the spatial locality. This procedure is
repeated until all MPI ranks are mapped.

3 Results

To examine the code scalability the experiments with Held-Suarez idealised cli-
mates [17] and the initial-value problem of the Taylor-Green vortex [18], posed

162 M. Ciznicki et.al

Table 1. Short overview of the tested hardware architectures

Machine name Inula Xeon Phi

Processor AMD Opteron 6234 Xeon Phi 3115A
Cores 24 57
Core frequency (GHz) 2.4 1.1
L1 cache size (data) 16 KB 32 KB
L2 cache size 2 MB 512 KB
L3 cache size 6 MB –
Memory transfer rate 32 (GB/s) 240 (GB/s)
Interconnect HyperTransport (6.4 GT/s) PCI Express 2.0
Number of threads/core 2 4
TDP(W) 115 300

Fig. 1. The strong scaling of two test cases: the Taylor-Green - left and the Held-Suarez
- right.

on a triply periodic cube, were preformed. Both tests were conducted on two
hardware architectures: Inula cluster with AMD CPUs and Xeon Phi cluster,
see Table 1. The number of iterations in the GCRK solver and the number of
time steps are fixed in all simulations. The grids employed in tests are composed
of 120x120x120 and 240x120x60 points for the HS and the TG tests respectively.

Obviously, to make all tests fair, the mapping of the application topology to
the cluster topology was employed for both codes. On runs with the high number
of cores this method reduced the execution time by factor of 2 relatively to the
random mapping. The MPI processes and the OpenMP threads were pinned to
the cores. The hybrid code used four MPI ranks per Inula node so that each MPI
process was pinned to one NUMA node to reduce the off-chip data movement.
The scaling performance was very sensitive to the particular grid decomposition
used for a given number of cores so the best decomposition was selected for each
run. The execution times are averaged over all cores.

Figure 1 shows the strong scaling for the HS and the TG test cases with runs
from 1 to 16 nodes on the Inula cluster. Both the pure MPI and the hybrid
MPI+OpenMP codes used form 24 to 384 cores.

Elliptic Solver Performance Evaluation on Modern Hardware Architectures 163

Fig. 2. Test cases execution times using one Inula node and one Xeon Phi card.

As one can see the hybrid MPI+OpenMP code scales better than the pure
MPI code. The communication overhead is reduced up to 25 % as the number
of the MPI ranks in the hybrid version is decreased by a factor of 6. Further-
more, there is improved overlap of the communication with the computation.
For instance, the run with 384 cores reduced the MPI communication overhead
by only 5 %, still the total execution time decreased by 10 %. On the other hand,
the hybrid code introduces the OpenMP overhead and the percentage of compu-
tation that is parallelised is not 100 % whereas the computation in the pure MPI
code is parallelised by 100 %. Figure 2 presents the execution times for both
test cases with the hybrid MPI+OpenMP code. The hybrid code is executed
on one Inula node with 24 OpenMP threads and on one Xeon Phi coprocessor
with 112 OpenMP threads. The speedup for the Xeon Phi card is about x1.6
relatively to the dual socket AMD CPU for both test cases. The MPI+OpenMP
hybridisation allows to efficiently utilise multi- and many-core architectures.

4 Summary

We have demonstrated various parallel software improvements to deal with
multi-level parallelism and hybrid programming models as well. In order to obtain
high-level of parallel scalability various modifications and tuning procedures are
required as hardware configurations, including processors characteristics, inter-
connects and topologies, have a great influence on large-scale simulations. We
have shown an example method to efficiently map the application topology to
the cluster topology that can be used to improve the application scalability.
Furthermore we have shown that a significant amount of work is required to
efficiently port the pure MPI code to the hybrid MPI+OpenMP code to utilise
many- and multi-core architectures. As next step, the restructured code enables
us to adapt more easily the graphic accelerators by adding OpenACC directives.

Acknowledgements. We gratefully acknowledge the help and support provided by
Jamie Wilcox from Intel EMEA Technical Marketing HPC Lab. This work is supported
by the Polish National Center of Science under Grant No. UMO-2011/03/B/ST6/03500.

164 M. Ciznicki et.al

References

1. Kurzak, J., Bader, D., Dongarra, J.: Scientific Computing with Multicore and
Accelerators. Computer and Information Science Series. Chapmann and Hall/CRC,
Boca Raton (2010)

2. Rojek, K., Szustak, L., Wyrzykowski, R.: Using Intel Xeon Phi coprocessor to
accelerate computations in MPDATA algorithm. In: Wyrzykowski, R., Dongarra,
J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384,
pp. 582–592. Springer, Heidelberg (2014)

3. Rojek, K., Szustak, L., Wyrzykowski, R.: Performance analysis for stencil-based
3D MPDATA algorithm on GPU architecture. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp.
145–154. Springer, Heidelberg (2014)

4. Georgescu, S., Okuda, H.: Conjugate gradients on multiple GPUs. Int J. Numer.
Meth. Fluids 64, 1254–1273 (2010)

5. Zhang, Y., Cohen, J.M., Owens, J.D.: Fast tridiagonal solvers on GPU. In: Newslet-
ter ACM SIGPLAN Notices - PPoPP’10, vol. 45, No. 5 (2010)

6. Prusa, J.M., Smolarkiewicz, P.K., Wyszogrodzki, A.: EULAG, a computational
model for multiscale flows. Comput. Fluids 37(9), 1193–1207 (2008)

7. Smolarkiewicz, P.K., Margolin, L.G.: Variational elliptic solver for atmospheric
applications. Appl. Math. Comp. Sci. 4, 527–551 (1994)

8. Smolarkiewicz, P.K., Grubisic, V., Margolin, L.G.: On forward-in-time differencing
for fluids: stopping criteria for iterative solutions of anelastic pressure equations.
Mon. Wea. Rev. 125, 647–654 (1997)

9. Skamarock, W.C., Smolarkiewicz, P.K., Klemp, J.B.: Preconditioned conjugate-
residual solvers for helmholtz equations in nonhydrostatic models. Mon. Wea. Rev.
125, 587–599 (1997)

10. Smolarkiewicz, P. K., Margolin, L.G.: Variational methods for elliptic problems in
fluid models. In: Proceeding of ECMWF Workshop on Developments in numerical
methods for very high resolution global models, ECMWF, pp. 137–159. Reading,
UK, 5–7, June 2000

11. Thomas, S.J., Hacker, J.P., Smolarkiewicz, P.K., Stull, R.B.: Spectral pre condi-
tioners for non hydrostatic atmospheric models. Mon. Wea. Rev. 131, 2464–2478
(2003)

12. Wyszogrodzki, A.A., Piotrowski, Z.P., Grabowski, W.W.: Parallel implementation
and scalability of cloud resolving EULAG model. In: Wyrzykowski, R., Dongarra,
J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204,
pp. 252–261. Springer, Heidelberg (2012)

13. Piotrowski, Z.P., Wyszogrodzki, A., Smolarkiewicz, P.K.: Towards petascale simu-
lation of atmospheric circulations with soundproof equations. Acta Geophys. 59(6),
1294–1311 (2011)

14. Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges. In:
Palma, J., Daydé, M., Marques, O., Lopes, J. (eds.) VECPAR 2010. LNCS, vol.
6449, pp. 1–25. Springer, Heidelberg (2011)

15. Strikwerda, J.: Finite difference schemes and partial differential equations. 2nd
Edn. SIAM: Society for Industrial and Applied Mathematics (2004). ISBN: 978-0-
89871-567-5. doi:10.1137/1.9780898717938

16. Kamata, S.I., Eason, R.O., Bandou, Y.: A new algorithm for n-dimensional hilbert
scanning. IEEE Trans. Image Process. 8(7), 964–973 (1999)

Elliptic Solver Performance Evaluation on Modern Hardware Architectures 165

17. Smolarkiewicz, P.K., Margolin, L.G., Wyszogrodzki, A.A.: A class of nonhydrosta-
tic global models. J. Atmos. Sci. 58(4), 349–364 (2001)

18. Drikakis, D., Fureby, C., Grinstein, F.F., Youngs, D.: Simulation of transition and
turbulence decay in the Taylor Green vortex. J. Turbul. 8(20), 1–12 (2007)

Parallel Geometric Multigrid Preconditioner
for 3D FEM in NuscaS Software Package

Tomasz Olas(B)

Czestochowa University of Technology,
Dabrowskiego 69, 42-201 Czestochowa, Poland

olas@icis.pcz.pl

Abstract. Multigrid methods are among the fastest numerical algo-
rithms for solving large sparse linear systems. The Conjugate Gradient
method with Multigrid as a preconditioner (MGCG) features a good
convergence even when the Multigrid solver itself is not efficient.

The parallel FEM package NuscaS allows us to solve adaptive FEM
problems with 3D unstructured meshes on parallel computers such as
PC-clusters. The parallel version of the library is based on the geomet-
ric decomposition applied for computing nodes of a parallel system; the
distributed-memory architecture and message-passing model of paral-
lel programming are assumed. In our previous works, we extend the
NuscaS functionality by introducing parallel adaptation of tetrahedral
FEM meshes and dynamic load balancing capabilities.

In this work we focus on efficient implementation of Geometric Multi-
grid as a parallel preconditioner for the Conjugate Gradient iterative
solver used in the NuscaS package. Based on the geometric decompo-
sition, for each level of Multigrid, meshes are partitioned and assigned
to processors of a parallel architecture. Fine-grid levels are constructed
by subdivision of mesh elements using the parallel 8-tetrahedra longest-
edge refinement mesh algorithm, where every process keeps the assigned
part of mesh on each level of Multigrid. The efficiency of the proposed
implementation is investigated experimentally.

Keywords: Geometric Multigrid · Conjugate Gradient method · Pre-
conditioner · FEM · Parallel adaptation · Parallel software package ·
MPI

1 Introduction

The finite element method (FEM) is a powerful tool for studying different phe-
nomena in various areas. Parallel computing allows FEM users to overcome
computational and/or memory bottlenecks of sequential applications. In par-
ticular, an object-oriented environment for the parallel FEM modeling, called
NuscaS, was developed at the Czestochowa University of Technology [15]. This
package allows for solving adaptive FEM problems with 3D unstructured meshes
on distributed-memory parallel computers such as PC-clusters [7].

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 166–177, 2014.
DOI: 10.1007/978-3-642-55224-3 17, c© Springer-Verlag Berlin Heidelberg 2014

Parallel Geometric Multigrid Preconditioner for 3D FEM in NuscaS 167

Multigrid (MG) methods are among the fastest numerical algorithms for solv-
ing large sparse systems of linear equations [2,3,13]. They are motivated by the
observation that simple iterative methods are efficient in reducing high-frequency
error components, but they can not efficiently reduce the slowly oscillating con-
tent of error. These methods were initially designed for the solution of elliptic
partial differential equations (PDEs). MG algorithms were later adopted to solve
other PDEs, as well as problems not described by PDEs.

In our previous works, we extend the NuscaS functionality by introducing
parallel adaptation of tetrahedral FEM meshes and dynamic load balancing
capabilities [7–9]. This paper is devoted to efficient implementation of Geometric
Multigrid as a parallel preconditioner for the Conjugate Gradient (CG) iterative
solver used in the NuscaS package. Based on the geometric decomposition, for
each level of Multigrid, meshes are partitioned and assigned to processors of
a parallel architecture. Fine-grid levels are constructed by subdivision of mesh
elements using the previously proposed [8], parallel 8-tetrahedra longest-edge
refinement mesh algorithm.

The materials of this paper is organized as follows. In Sect. 2, the basic con-
cepts and architecture of the NuscaS package are introduced shortly, including
parallel computing capabilities of the package. Section 3 gives an overview of
the Geometric Multigrid, while Sect. 4 is devoted to parallel implementation of
Multigrid in NuscaS. Performance of the Conjugate Gradient method with the
parallel Geometric Multigrid preconditioner is studied in Sect. 5. Conclusions
and future work are presented in Sect. 6.

2 NuscaS Package

The basic part of the NuscaS package is the kernel (NSC library) - a class
library which provides an object-oriented framework for developing finite element
applications. It consists of basic classes necessary to implement FEM modeling,
irrespective of the type of a problem being solved. The inheritance is used to
develop new applications classes for a particular modeling problem.

We assume a distributed memory architecture and message-passing model of
parallel programming (MPI). The parallel version of the library is based on the
geometric decomposition applied for nodes of a parallel system. In this case, a
FEM mesh is divided into p submeshes (domains), which are assigned to separate
processors (cores) of a parallel architecture. Every processor (or process) keeps
the assigned part of the mesh. In consequence, the j-th domain will own a set
of Nj nodes selected from all the N nodes of the mesh. For an arbitrary domain
with index j, we have three types of nodes [8]: (i) N i

j of internal nodes; (ii) N b
j

of boundary nodes; (iii) Ne
j of external nodes. Internal and boundary nodes are

called local ones, so the number of local nodes is N l
j = N i

j +N b
j ;

When solving a system of equations in parallel using iterative methods, val-
ues of unknowns computed in boundary nodes are exchanged between neighbor
domains. For this aim, in each domain (process) j for every neighbor process k
the following sets are stored:

168 T. Olas

– Sk
j - set of those indexes of boundary nodes in process j that are external

nodes for process k;
– Rk

j - set of those indexes of external nodes in process j that are assigned to
process k.

In the NSC library, object oriented techniques are used to hide details of
parallel processing. To solve system of equations with sparse matrices, which are
the results of FEM discretization, we use iterative algorithms based on Krylov
subspace methods [14], such as the CG method. The computational kernel of
this methods is the matrix-vector multiplication with sparse matrices. When
implementing this operation in parallel, the overlapping of computation and
communication is exploited to reduce execution time of the algorithm [6]. Also,
METIS and ParMETIS packages [4] are used for mesh partitioning.

3 Multigrid Method

Multigrid is motivated [3] by the observation that simple iterative methods are
effective at reducing the high frequency error, but are ineffectual in reducing the
low frequency content of the error. On the coarse grid relaxation is performed to
reduce high frequency errors, followed by the projection of a correction equation
on yet a coarser grid and so on. In this work, we use the Geometric Multigrid,
which involves a hierarchy of computational grids of different mesh resolution.

The simplest original formulation of Geometric Multigrid is based on the
following two-grid scheme:

1. perform some iterations of the basic iterative method (smoother) with fast
convergence for high frequencies in order to smooth out the error;

2. project the (low-frequency) error onto a coarse grid (restriction);
3. solve the resulting projected problem on the coarsest grid;
4. interpolate the coarse grid solution back to the finest grid (interpolation);
5. update the solution on the finer grid and reapply the smoother to get rid of

the new high-frequencies introduced.

In the above scheme, the linear system on the coarsest grid is too large to
be solved efficiently. Therefore, steps 1, 2 and 3, 4 are applied recursively until
the degrees of freedom have been small enough to solve the system efficiently.
This multigrid cycling scheme is called V-cycle (Fig. 1). To inject the error from
the fine grid Ωh to the coarse grid ΩH , it is necessary to apply a restriction
operator, while its inverse, called the interpolation (prolongation) operator, is
used to map the residual from the coarse grid to the fine grid. There are also
other cycling schemes such as W-cycle, and Full Multigrid Algorithm [3].

4 Parallel Implementation of Multigrid in NuscaS

In the NuscaS package, the Geometric Multigrid is used for unstructured meshes.
Fine-grid levels are automatically constructed by subdivision of mesh elements

Parallel Geometric Multigrid Preconditioner for 3D FEM in NuscaS 169

MGV (Ah, bh, xh, h)

– xh ← Sv1
h (Ah, bh, xh) - perform v1 iterations of the smoother (pre-smoothing)

– rh ← bh − Ahxh - compute the residual on Ωh

– fH ← Rhrh - restriction of residual to coarse grid
– xH ← 0 - initialise the coarse grid approximation
– AH ← RhAhPh - variational coarse operator
– if ΩH is the coarsest grid of the hierarchy then

• AHxH = fH - direct solve of coarsest grid
– else

• MGV (AH , fH , xH , H) - next level
– eh ← PhxH - interpolate the coarse grid approximation
– xh ← xh + eh - correction
– xh ← Sv2

h (Ah, bh, xh) - post-smoothing

Fig. 1. Recursive definition of multigrid V-cycle

using our refinement algorithm [8,9], where the refinement is performed for all
the elements of FEM meshes. At this moment, the V-cycle and Full Multigrid
Algorithm have been implemented. Furthermore, we use the weighted Jacobi
algorithm as a smoother.

When solving a system of equations in parallel, every processor (process)
keeps the assigned part of a mesh on each level of Geometric Multigrid. For each
level, every process stores information concerning the assigned nodes, including
the splitting on internal, boundary and external nodes. In addition, for each
level the process stores information about its coupling with neighbor processes,
in order to organize the data exchange between processes.

4.1 Generation of Mesh Hierarchy in Parallel

The mesh distribution is perform only once, for the input mesh, which is assigned
to p processors of a parallel architecture. In our refinement algorithm, finer mesh
levels are constructed in parallel for every processor. The finer levels inherit the
communication pattern from the coarser mesh decomposition (Fig. 2).

To minimize the parallel overhead, parts of submeshes are duplicated, and
calculations are performed locally as much as possible, instead of exchanging data
between processors. We use the same communication patterns and mechanisms
as for the standard parallel CG solver [5]. In consequence, the coarser mesh for
level hl−1 is generated from the finer mesh level hl by subdivision of its elements.
Moreover, meshes for subsequent levels of Geometric Multigrid are assigned to
processes (processors) based on the decomposition performed for the coarsest
mesh, in such a way that divisions on domains for subsequent levels were as
close as possible.

Using such a decomposition scheme provides a simple way of constructing the
prolongation and restriction operators. In particular, the data exchange between

170 T. Olas

Fig. 2. Generation of mesh hierarchy in parallel

processes is avoided. At the same time, this solution has an important disadvan-
tage; it is difficult to implement an efficient method of load balancing.

In this approach, the communication scheme for the Geometric Multigrid is
the same as in the standard case of implementing the CG method. The com-
munication take place when solving linear systems using an iterative method,
e.g., during the sparse matrix-vector multiplication and computing the global
dot product.

4.2 Data Structures

In order to implement the Geometric Multigrid, the way of storing FEM meshes
in the NSC library has to be changed. For subsequent levels of Multigrid, nodes
and elements of FEM meshes are placed in the same structures which are used
in the standard case: vectors nodes, elements, connectivity in the class Mesh.
Additionally, the array Emg of size s(L, nl) is introduced to store identifiers of
elements corresponding to a certain level l of Multigrid, where L denotes the
number of levels, and nl is the number of elements for the level l. Also, for each
level of Multigrid an inverse array Egm is required. For an element stored in the
structure elements, the array Egm gives the identifier of this element on the
level l, or −1 if this element does not belong to the given level. The analogous
structures are created for nodes (Nmg and Ngm).

Figure 3 shows structures used to store dependencies between elements, edges,
faces and nodes. Each element has an attribute level pointing out to the level of
Multigrid which this element belongs to, as well as an attribute parent identify-
ing the parent element from which this element has been created by subdivision.

Parallel Geometric Multigrid Preconditioner for 3D FEM in NuscaS 171

Fig. 3. Data structures for mesh connectivity

In turn, the parent element has information about all the elements which has
been created by its subdivision. The analogous data structures are stored for
faces (FaceConnectivity) and edges (EdgeConnectivity). Also, each element
has attributes identifying its faces and edges; these attributes are used for setting
boundary conditions. In the structure EdgeConnectivity, each edge is described
by corresponding vertices (verticles). Additionally, this structure stores rela-
tions between elements and edges (elements). In the case of faces, besides infor-
mation about their hierarchy, the structure FaceConnectivity identifies edges
which describe each face. Also, this structure stores information about elements
corresponding to each face, and identifiers of faces inside these elements.

4.3 Mesh Refinement

To generate FEM meshes for the subsequent levels of Geometric Multigrid, we
use the parallel refinement algorithm previously developed by us for the FEM
adaptation [8]. For the multigrid method, the refinement is performed for all the
elements of FEM meshes. To implement this algorithm in parallel, we utilize the
Longest-Edge Propagation Path (LEPP) method [11]. The partitioning of tetra-
hedral elements is performed based on the iterative algorithm of 8-tetrahedra
longest edge partition (8T-LT in short). Our solution is based on a decentralized
approach, so it is more scalable in comparison with previous implementations
[1,12], where a centralized synchronizing node is required.

The proposed parallel algorithm of mesh refinement is presented in (Fig. 4).
Communication between neighbor processes takes place in steps 3 and 4, based
on information about edges which are exchanged between processes. This infor-
mation is stored in sets ei

send (i = 0, . . . , p− 1), after performing the procedure
SelectEdge (Fig. 5). As a result, in step 3 which is responsible for providing
coherency of local propagation paths between neighbor processes, pairs of global
indexes (n1

g, n
2
g) describing edges are sent, using the non-blocking MPI routine

MPI Isend. After receiving this information, the mapping from the global enu-
meration to local one is performed, to allow for placing edges in local data
structures.

172 T. Olas

1. for each edge e of every element belonging to the set Eselected , perform the pro-
cedure SelectEdge(e)

2. perform locally the algorithm LEPP : for each selected edge e belonging to the set
eselected

– for each element E which uses the edge e
• add the element E to the set Eselected of already selected elements (unless

this element was added before)
• for the longest edge el belonging to faces of the element which uses the

selected edge e, perform SelectEdge(el)
3. provide coherency of local propagation paths between neighbor processes
4. derive the global enumeration of nodes taking into account newly created nodes,

together with assigning newly created nodes to separate processes
5. perform partitioning of elements which belong to Eselected

6. modify enumeration of nodes in such a way that internal nodes are located in the
first place, then boundary, and finally external; then upgrade data structures used
for communication between neighbor processes

Fig. 4. Parallel algorithm for mesh refinement

– add the edge e to the list eselected of already selected edges
– check if the edge e is located on the boundary with a neighbor domain (process);

if so, add this edge to the list ei
send of edges which are sent to this neighbor

– divide the edge e

Fig. 5. Procedure SelectEdge(e)

When performing FEM computation in parallel, elements which are located
on boundaries of domains are duplicated in neighbor processes. This solution
allows for avoiding communications at the cost of extra computation. We follow
this concept when performing the mesh refinement. In this case, the partitioning
of elements must be realized in the same way in neighbor processes. The only
difficulty emerges when during the element partitioning the algorithm selects
two or more edges with the same length. To avoid this difficulty, we propose a
solution based on the global indexes of nodes. So, when determining the longest
edge in the case of edges with the same length, we additionally compare the
global indexes of edges to choose an edge with the highest value of global indexes.
This solution allows us to avoid communication between processes. It is sufficient
to derive the global enumeration of nodes.

The implementation of step 4 starts with the parallel procedure of deriving a
new global enumeration of nodes, taking into account newly created nodes. This
procedure includes the following three stages:

1. Determine interval of global indexes for each process, as well as
assign global indexes to the local nodes of processes:

Parallel Geometric Multigrid Preconditioner for 3D FEM in NuscaS 173

For this aim, the information about the number ni
l of local nodes

assigned to each process is distributed among all the processes, using the
MPI Allgather routine. The global index ni

g of a node i in process j is
determined by adding the local index ni of this node to the sum of numbers
of nodes in all the processes from 0 do j − 1:

ni
g = ni +

j−1∑

k=0

N l
k. (1)

2. Exchange global indexes of nodes located on boundaries of
domains

3. Exchange global indexes of newly created nodes.

4.4 Construction of Subsequent Levels of Multigrid

After performing the mesh refinement, a new level of Multigrid has to be con-
structed, starting with defining internal, boundary and external nodes for each
process. At the same time, some nodes could not belong to any of these cate-
gories since they are assigned to other processes, and are not connected with the
local nodes of a given process; these nodes are not taken into consideration in
the rest of the algorithm.

Based on the information about assignment of nodes to processes, the struc-
ture nodes is completed by new nodes created as a result of mesh refinement.
All the nodes have to be ordered in such a way that at the beginning there are
internal nodes followed by boundary and external nodes. The structure Nmg is
constructed in the same way. The next stage is creating structures which describe
which boundary nodes will be sent to various processes, as well as structures
specifying processes from which external nodes will be received. Since this stage
is implemented in parallel by all the processes, it is essential to provide the same
order for nodes sent from process sj , and nodes received in another process. For
this aim the global enumeration ng is used, so all the nodes in the sending and
receiving processes are sorted according to global identifiers of nodes.

For the given domain, the results of mesh refinement are also used to create
mesh elements on the succeeding level of Multigrid; these elements are connected
with local nodes of the process. Also, the structures Emg and Egm are created
and filled in. Objects of classes ElementConnectivtiy are built as well, for newly
created elements. These objects are completed by information about hierarchy
of elements (attributes parent and children).

The available information about assignment of nodes to processors allows
also for specifying edges belonging to the given domain. For these edges, objects
of class FaceConnectivity are created, and hierarchies of edges and faces are
set. Finally, the connectivity between elements, faces and edges are completed.

4.5 Details of Implementation

To solve sparse linear systems using the Multigrid, the class MultigridSolver
is created; it inherits from the template class IterativeLinearSystemSolver.

174 T. Olas

As a parameter of constructor of this class, the reference to an object of the class
FiniteElementMesh is used. This object stores the whole information about the
FEM mesh, including objects representing elements and boundary conditions.

In order to use the multigrid solver, it is necessary to have FEM meshes
for all the levels of Multigrid. This is provided by the mesh refinement, which
is implemented using the method generate multilevel mesh bottom up of the
class MultigridSolver. The number of levels of Multigrid is one of parameter of
this method, which is currently implemented for tetrahedral FEM elements. Fur-
thermore, the class MultigridSolver is responsible for storing sparse matrices
for all the levels (attribute level matrices).

The interpolation and restriction operators are stored as sparse matrices
P and R , which are created by the method prepare projection matrices.
Then the method project vector is used to project a vector from level l to
level l − 1, while the method restrict vector is applied to restrict a vector
from level l − 1 to level l. As mentioned before, both the V-cycle scheme and
Full Multigrid algorithm have been implemented by this time.

5 Performance of Conjugate Gradient Method with
Parallel Multigrid Preconditioner

5.1 Parallel Multigrid Preconditioner

A multigrid method with an intentionally reduced tolerance can be used as an
efficient preconditioner for Krylov iterative solvers [3,14]. The CG method with
the Geometric Multigrid as a preconditioner (MGCG) features a good conver-
gence even when the multigrid solver itself is not efficient. In comparison with
other preconditioners (ICC, ILU, ...), the main benefit of using the Geometric
Multigrid as a preconditioner is independence of the convergence rate from the
problem size N . The solution may still be obtained in O(N) time as well as in
the case where the multigrid method is used as a solver.

For a given residual r, the preconditioner step z = M−1r can be implemented
as a call z = MG(A, r, z, level). Depending on the selected multigrid cycling
scheme, a suitable method is invoked, for example, the selection of MGV invokes
V-cycle.

In the NSC library, the template of the class Preconditioner is responsible
for implementation of preconditioning when solving sparse linear systems by
iterative methods. One of attributes of this class is object of the class Multigrid,
which is responsible for the implementation of Geometric Multigrid.

5.2 Performance Results

At this stage of research, our main goal is to study performance characteris-
tics of the proposed parallel solution, and determining possible bottlenecks. For
this aim, a rather simple problem of simulating the heat transfer is used; this
simulation is executed for different sizes of FEM matrices and various numbers

Parallel Geometric Multigrid Preconditioner for 3D FEM in NuscaS 175

Table 1. The number of nodes in FEM meshes used in experiments, for different levels
of multigrid

Mesh name Level 2 Level 1 Level 0

1000 1147 8245 62569
8000 8245 62569 487633

20000 19253 141307 1096157

speedup efficiency

 0

 10

 20

 30

 40

 50

 60

 0 24 48 72 96 120 144 168 192

sp
ee

du
p

number of cores

1000 - 3 levels
1000 - 4 levels
8000 - 3 levels

20000 - 3 levels

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 24 48 72 96 120 144 168 192

ef
fic

ie
nc

y

number of cores

1000 - 3 levels
1000 - 4 levels
8000 - 3 levels

20000 - 3 levels

Fig. 6. Speedup and efficiency for CG method with multigrid preconditioner for dif-
ferent FEM meshes versus number of processors

of processors (Table 1). The multigrid method with V-cycle scheme is used as
a preconditioner for the CG iterative method. We utilize the weighted Jacobi
algorithm as a smoother with two pre-smoothing and two post-smoothing iter-
ations.

These experiments are performed on a cluster with 16 nodes connected by
the Infiniband network. Each node contains two Ivy Bridge E5 V2 2.90 GHz
processors (12 cores each) with 128 GB RAM. The achieved performance results
(Fig. 6) show a clear increase in speedup with increasing the problem size. In
consequence, for the largest problem the maximum speedup of more than 50 is
achieved for 128 nodes. At the same time, increasing the number of processors
to 192 results in decreasing the speedup in this case.

To identify reasons for the observed scalability problems, the load imbalance
across processors is studied first of all. The load imbalance factor ηp is defined
as:

ηp =
max0≤j<pN

l
j

N
p

, (2)

where N i
j is the number of internal nodes in subdomain j (they are coupled only

with nodes belonging to this subdomain), N denotes the number of nodes in the
FEM mesh, and p is the number of processors

Table 2 presents values of ηp for different levels of Multigrid and various
numbers of processors. It can be seen that the imbalance factor is increased

176 T. Olas

Table 2. The load imbalance factors for different numbers of processes, for different
levels of multigrid

Level Number of nodes η2 η4 η8 η16 η32 η64

Level 3 1147 1.03 1.03 1.03 1.02 1.06 1.17
Level 2 8245 1.07 1.05 1.19 1.26 1.42 1.66
Level 1 62569 1.10 1.09 1.31 1.39 1.67 2.04
Level 0 487633 1.11 1.11 1.38 1.47 1.81 2.24

after each refinement step, and with increasing the number of processors. For the
largest number of processors in this table (p = 64), this factor reaches even 2.24
for the coarsest mesh. These results confirm the importance of load imbalance
as a reason for observed scalability problems. At the same time, they show the
necessity of further work on this issue. In particular, this works will aim at
adapting the load balancing algorithm, which was previously proposed [9] for
the dynamic load balancing when solving 3D FEM problems on clusters, to take
into account properties of Geometric Multigrid.

6 Conclusions and Further Work

In this work, the implementation and investigation of using the Multigrid as a
parallel preconditioner for the CG iterative solver were presented. The Geomet-
ric Multigrid is utilized for 3D unstructured FEM meshes. Fine-grain levels of
Multigrid are automatically constructed in parallel by subdivision of mesh ele-
ments using the previously proposed refinement algorithm. In consequence, the
distributed memory architecture and message-passing model of parallel program-
ming can be utilized. The preliminary performance results are rather promising,
but they indicate scalability problems for larger numbers of processors.

One of reasons for these problems is load imbalance arising during refinement
for finer levels of Geometric Multigird. A possible solution could be adapting the
load balancing algorithm, which was previously proposed [9] for the dynamic load
balancing when solving 3D FEM problems, to take into account properties of
Geometric Multigrid.

Acknowledgments. We gratefully acknowledge the help and support provided by
Jamie Wilcox from Intel EMEA Technical Marketing HPC Lab.

References

1. Balman, M.: Tetrahedral mesh refinement in distributed environments. In: 2006
International Conference on Parallel Processing Workshops (ICPPW’06), pp. 497–
504. IEEE Computer Soc. (2006)

2. Banaś, K.: Scalability analysis for a multigrid linear equations solver. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007.
LNCS, vol. 4967, pp. 1265–1274. Springer, Heidelberg (2008)

Parallel Geometric Multigrid Preconditioner for 3D FEM in NuscaS 177

3. Hulsemann, F., Kowarschik, M., Mohr, M., Rude, U.: Parallel geometric multi-
grid. In: Bruaset, A.M., Tveito, A. (eds.) Numerical Solution of Partial Differen-
tial Equations on Parallel Computers. Lecture Notes in Computational Science
and Engineering, vol. 51, pp. 165–208. Springer, Heidelberg (2006)

4. Karypis, G., Schloegel, K., Kumar, V.: PARMETIS Parallel Graph Partitioning
and Sparse Matrix Ordering Library Version 3.1. Univ. Minnesota, Army HPC
Research Center. http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/manual.
pdf (2003)

5. Olas, T., Karczewski, K., Tomas, A., Wyrzykowski, R.: Fem computations on clus-
ters using different models of parallel programming. In: Wyrzykowski, R., Don-
garra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp.
170–182. Springer, Heidelberg (2002)

6. Olas, T., Wyrzykowski, R., Tomas, A., Karczewski, K.: Performance modeling
of parallel FEM computations on clusters. In: Wyrzykowski, R., Dongarra, J.,
Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 189–200.
Springer, Heidelberg (2004)

7. Olas, T., Leśniak, R., Wyrzykowski, R., Gepner, P.: Parallel adaptive finite ele-
ment package with dynamic load balancing for 3d thermo-mechanical problems.
In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM
2009, Part I. LNCS, vol. 6067, pp. 299–311. Springer, Heidelberg (2010)

8. Olas, T., Wyrzykowski, R.: Adaptive fem package with decentralized parallel adap-
tation of tetrahedral meshes. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.)
LSSC 2011. LNCS, vol. 7116, pp. 622–629. Springer, Heidelberg (2012)

9. Olas, T., Wyrzykowski, R., Gepner, P.: Parallel FEM adaptation on hierarchical
architectures. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J.
(eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 194–205. Springer, Heidelberg
(2012)

10. Patzak, B., Rypl, D.: A framework for parallel adaptive finite element computations
with dynamic load balancing. In: Proceedings of the First International Conference
on Parallel, Distributed and Grid Computing for Engineering, Paper 31. Civil-
Comp Press (2009)

11. Plaza, A., Rivara M.: Mesh refinement based on the 8-tetrahedra longest-edge
partition. In: Proceedings of the 12th International Meshing Roundtable, pp. 67–
78. Sandia National Laboratories (2003)

12. Rivara, M., Pizarro, D., Chrisochoides, N.: Parallel refinement of tetrahedral
meshes using terminal-edge bisection algorithm. In: Proceedings of the 13th Inter-
national Meshing Roundtable, pp. 427–436. Sandia National Labs (2004)

13. Romanazzi, G., Jimack, P.K.: Performance prediction for multigrid codes imple-
mented with different parallel strategies. In: Proceedings of the First International
Conference on Parallel, Distributed and Grid Computing for Engineering, Paper
43. Civil-Comp Press (2009)

14. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
15. Wyrzykowski, R., Olas, T., Sczygiol, N.: Object-oriented approach to finite element

modeling on clusters. In: Sørevik, T., Manne, F., Moe, R., Gebremedhin, A.H.
(eds.) PARA 2000. LNCS, vol. 1947, pp. 250–257. Springer, Heidelberg (2001)

Scalable Parallel Generation
of Very Large Sparse Benchmark Matrices

Daniel Langr1(B), Ivan Šimeček1, Pavel Tvrd́ık1, and Tomáš Dytrych2

1 Department of Computer Systems, Faculty of Information Technology,
Czech Technical University in Prague, Thákurova 9, 160 00 Praha, Czech Republic

2 Department of Physics and Astronomy, Louisiana State University,
Baton Rouge, LA 70803, USA

langrd@fit.cvut.cz

Abstract. We present a method and an accompanying algorithm for
scalable parallel generation of sparse matrices intended primarily for
benchmarking purposes, namely for evaluation of performance and
scalability of generic massively parallel algorithms that involve sparse
matrices. The proposed method is based on enlargement of small input
matrices, which are supposed to be obtained from public sparse matrix
collections containing numerous matrices arising in different application
domains and thus having different structural and numerical properties.
The resulting matrices are distributed among processors of a parallel
computer system. The enlargement process is designed so its users may
easily control structural and numerical properties of resulting matri-
ces as well as the distribution of their nonzero elements to particular
processors.

Keywords: Sparse matrix · Benchmark matrix · Enlargement · Parallel
algorithm · Scalability

1 Introduction

Public collections of sparse matrices, such as the Matrix Market [3] or the Univer-
sity of Florida Sparse Matrix Collection (UFSMC) [4], represent useful sources
of benchmark matrices that can be utilized to evaluate generic algorithms which
involve sparse-matrix computations. These collections contain numerous matri-
ces that originate from various application domains and therefore have generally
different structural and numerical properties. However, the matrices in these
collections are available in a form of downloadable files, which, in effect, lim-
its their sizes. This hinders their use for evaluation of performance, robustness,
and especially scalability of massively parallel algorithms that involve computa-
tions with very large sparse matrices. By very large sparse matrices we denote
sparse matrices that due to their size need to be processed by massively parallel
computer systems with (generally) distributed memory architectures, which we
further call clusters.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 178–187, 2014.
DOI: 10.1007/978-3-642-55224-3 18, c© Springer-Verlag Berlin Heidelberg 2014

Scalable Parallel Generation of Very Large Sparse Benchmark Matrices 179

To evaluate such massively parallel algorithms, we would like to employ a
scalable parallel generator capable of producing, in a uniform way, sparse matri-
ces of arbitrary sizes representative of various real-world scientific and engineer-
ing problems. To our best knowledge, no such generator exists.

There are generators of sparse matrices, such that Matgen, Matrix Market
Deli, SPARSKIT, Test Matrix Toolbox for MATLAB, XLATMR, MATRAN,
some of which are capable to produce scalable representative matrices. However,
to our best knowledge, none of these generators works in parallel neither is
suitable for parallel processing.

Since each sparse matrix corresponds to a graph and vice versa, we can also
use existing generators of large graphs as generators of benchmark sparse matri-
ces (Erdös–Rényi models, Stochastic Kronecker graphs, etc.). However, graph
generators typically produce random graphs, hence, the obtained matrices have
random properties and are not representative of real-world problems (possibly
with the exception of network-simulation field).

Another option is to utilize various open-source high performance computing
(HPC) programs that involve sparse-matrix computations and extract matrices
from them. However, such a non-uniform approach might be extremely com-
plicated and highly impractical for many reasons (for instance, such programs
usually do not have APIs for extraction of sparse matrices, thus, such a task
would require to get familiar with the source code of each utilized program).

We propose here a different solution. It is based on a controlled enlarge-
ment of existing sparse matrices, e.g., matrices obtained from public collections.
This solution does not provide authentic representative matrices (such as those
extracted from real-world HPC programs), however, it allows us to easily obtain
matrices of arbitrary sizes with known structural and numerical properties.

2 Methodology

Let A = (ai,j) be an mA × nA matrix with zA nonzero elements. We call A
the seed matrix. Let further Q = (qi,j) be an mQ × nQ matrix with zQ nonzero
elements. We call Q the enlargement matrix. Let ⊗ denote the Kronecker product
operation. Then,

A′ = (a′
i,j) = A⊗Q =

⎡

⎢
⎣

a1,1Q · · · a1,nA
Q

...
. . .

...
amA,1Q · · · amA,nA

Q

⎤

⎥
⎦ (1)

is an mAmQ × nAnQ matrix with zA′ = zAzQ nonzero elements. We call A′ the
enlarged matrix.

If both A and Q are square matrices, let μ1, . . . , μnA
and ν1, . . . , νnQ

denote
their eigenvalues associated with eigenvectors u1, . . . ,unA

and v1, . . . ,vnQ
,

respectively. Then the eigenvalues of A′ have the following form:

ωi,j = μiνj , 1 ≤ i ≤ nA, 1 ≤ j ≤ nQ,

180 D. Langr et al.

where the corresponding eigenvectors are given by wi,j = ui ⊗ vj (see for
instance [9, Chap. 13] for details).

Let p1, . . . , pP denote a particular subset of processors of some cluster. By a
mapping function we denote an arbitrary function M of the following form:

M : (i, j)→ k, 1 ≤ i ≤ mAmQ, 1 ≤ j ≤ nAnQ, 1 ≤ k ≤ P.

Problem 1. We are looking for a parallel algorithm that generates an enlarged
matrix A′ distributed among P processors p1, . . . , pP according to a mapping
function M such that a′

i,j is generated by processor pk if M(i, j) = k. The
additional requirements are following:

Req. 1: The algorithm should not depend on a particular computer representa-
tion of A, Q, and A′.

Req. 2: The algorithm should be able to use an arbitrary mapping functionM.
Req. 3: The algorithm should have a minimal memory footprint.
Req. 4: We primarily assume that A is read from a file.

The consequences of these requirements are as follows:

Con. 1: Req. 3 precludes storing A and Q in computer memory. Rather, we
regard A as a sequentially accessible set of its nonzero elements, in any
order, denoted by (i, j, ai,j)1, . . . , (i, j, ai,j)zA

,

A :=
{
mA, nA, zA, (i, j, ai,j)1, . . . , (i, j, ai,j)zA

}
, (2)

and we consider Q to be a function Q(i, j) = qi,j ,

Q :=
{
mQ, nQ, zQ,Q

}
.

We call Q the enlargement function. Ideally, Q would be defined analyti-
cally (e.g., Q1(i, j) = 1), which would ensure zero data-segment require-
ments for its implementation. Some considerations regarding the choice
of a suitable enlargement function are discussed in Sect. 2.2.

Con. 2: To satisfy Req. 1, the file reading operation cannot constitute a part
of the algorithm. Instead, it is up to a user to provide A in the form
of (2). Moreover, matrices available in public collections are usually
stored in text-based file formats [2,5,8], which are not suitable for par-
allel processing. We hence assume that A is available to the algorithm
only on a single processor, namely p1.

Con. 3: The output of the algorithm is the enlarged matrix A′ whose nonzero
elements are distributed among P processors according to the map-
ping function M. The computer representation of A′ as well as M are
application-dependent. To make the algorithm application-independent
(Req. 1 and Req. 2), we assume that a user provides a subroutine,
denoted as O, that stores the generated nonzero elements of A′ in mem-
ory. We call this subroutine the output function.

Scalable Parallel Generation of Very Large Sparse Benchmark Matrices 181

Algorithm 1. Enlargement of a sparse matrix
Input: A =

{
mA, nA, zA, (i, j, ai,j)1, . . . , (i, j, ai,j)zA

}
on p1 // seed matrix

Input: Q =
{
mQ, nQ, zQ, Q} // enlargement matrix

Input: M, O // mapping and output functions
Output: A′ such that O(i, j, a′

i,j) is called on processor pk for all a′
i,j �= 0 and

M(i, j) = k // enlarged matrix
Data: α, i′, j′, i′′, j′′, r ; // auxiliary variables (local to a processor)

for all processors p1, . . . , pP do in parallel
r ← actual processor number ;
broadcast mA, nA, and zA from p1 to all other processors ;
for k ← 1 to zA do

broadcast (i, j, ai,j)k from p1 to all other processors ;
for i′ ← 1 to mQ do

for j′ ← 1 to nQ do
i′′ ← (i − 1) · mQ + i′ ;
j′′ ← (j − 1) · nQ + j′ ;
if M(i′′, j′′) = r then

α ← ai,j · Q(i′, j′) ;
if α �= 0 then call O(i′′, j′′, α)

2.1 Algorithm

Let us present Algorithm 1 that solves Problem 1 and that conforms to the
previous analysis. Its computational complexity is determined by:

1. (zA ·mQ · nQ) calls of the mapping function M by each processor,
2. (zA ·mQ · nQ) calls of the enlargement function Q by all processors,
3. (zA · zQ) calls of the output function O by all processors.

As to the space complexity, the algorithm needs only few auxiliary variables
and a small buffer for broadcasting nonzero elements of A allocated by each
processor in its local memory.

The communication complexity involves zA + 1 broadcast operations. How-
ever, the broadcasting of nonzero elements of A in an element-by-element fashion
would be inefficient. Within an implementation of Algorithm 1, one should trans-
fer data in chunks, which would considerably reduce the number of broadcast
operations, albeit at the expense of an additional memory overhead associated
with larger communication buffers.

Note that Algorithm 1 needs to access each nonzero element of A only once
and it does not depend on the order in which are the elements provided.

2.2 Enlargement Functions

The choice of a suitable enlargement function has a significant impact on the
properties of the enlarged matrix A′. Let us further restrict our analysis to

182 D. Langr et al.

square enlargement matrices Q. Recall that, ideally, we would like to define
an enlargement function analytically. In the most simple case, we can use the
constant function Q1(i, j) = 1, which however gives rise to a singular enlarged
matrix A′.

In cases where singularity is undesirable, an alternative enlargement function
might be defined as follows:

Q2(i, j) =
{

1, if i ≤ j,
0, otherwise, (3)

which corresponds to Q being an upper triangular matrix of ones and thus
zQ = nQ(nQ + 1)/2. If A is a square matrix, then the usage of Q2 results in A′

with degenerated eigenvalues ω1, . . . , ωnA
, each with multiplicity nQ. To prevent

such a degeneration of eigenvalues, we may adjust definition (3), e.g., as follows:

Q3(i, j) =
{

1/i, if i ≤ j,
0, otherwise, (4)

which corresponds to Q being an upper triangular matrix with eigenvalues
1, 1/2, . . . , 1/nQ. Thus, if A is a square matrix, then, generally, the usage of
Q3 generates A′ with distinct eigenvalues.

The suitable enlargement function is application-dependent and a more gen-
eral discussion of its choice is beyond the scope of this paper. However, let us
analyze the choice of the size of the enlargement matrix Q.

Question 1. How to choose the size of Q in order to generate the largest possible
A′ that would fit into the available amount of memory?

We further show how to answer this question for an example case defined as
follows.

Example 1.

– Let A and Q be real matrices.
– Suppose that nonzero elements of A′ will be stored on each processor in the

coordinate storage format (see for instance [10, Sect. 3.4] for details).
– Assume that row/column indexes of nonzero elements of A′ are stored using

the di-bit unsigned integer data type and their values using the df -bit floating-
point data type. The storage of a single nonzero element thus requires d =
(2di + df)/8 bytes.

– Consider the Q3 enlargement function (4).
– Suppose thatM produces a balanced distribution of A′ among P processors,

i.e., that each processor handles approximately its zA′/P nonzero elements.
– Let L denote the amount of memory in bytes that is available to each processor

for storing its local nonzero elements of A′.

Solution 1. The local nonzero elements must fit into the local memory of each
processor, therefore d · zA′/P ≤ L. By substituting zA′ = zAzQ, we get

zQ ≤ LP

zAd
.

Scalable Parallel Generation of Very Large Sparse Benchmark Matrices 183

To generate the largest possible A′ using Q3, which implies zQ = nQ(nQ + 1)/2,
this inequality turns into the equation

nQ(nQ + 1)
2

=
LP

zAd
,

which has the following positive solution:

nQ = −1
2

+
(

1
4

+
2LP
zAd

)1/2

. (5)

This result gives us the maximum size of the enlargement matrix Q, and thus
provides an answer to Question 1 for Example 1. Note that the number of nonzero
elements of A′ is proportional to P in this case.

2.3 Mapping Functions

Recall that the mapping function is application-dependent, i.e., it depends on
the intended usage of the enlarged matrix A′. The justifiable requirement for a
good mapping function would be that:

1. its usage results in a balanced distribution of the nonzero elements of A′

among processors,
2. its implementation requires no or only small amount of memory,
3. it is computationally inexpensive.

It is a common approach for many HPC codes to map matrices onto proces-
sors by continuous chunks of rows or columns. (Such row-wise mapping is, for
instance, utilized by widely-used PETSc/SLEPc [1,6] and Trilinos [7] sparse
matrix libraries.) The simplest mapping of this type is to assign each processor
the same number of rows/columns, which is provided by the following mapping
functions:

MR(i, j) =
⌊
i− 1
mAmQ

P

⌋

+ 1, MC(i, j) =
⌊
j − 1
nAnQ

P

⌋

+ 1. (6)

Such functions are memory-optimal, since they are defined purely analytically.
However, due to (1) the block nonzero pattern of A′ is the same as the nonzero
pattern of A. Thus, if the nonzero elements of A are located in rows/columns
unevenly, the usage of these functions might result in an unbalanced distribution
of the nonzero elements of A′ among processors.

Let MIR and MIC denote ideal mapping functions that provide balanced
row/column-wise distributions of A′ to processors, respectively. Generally,
these functions cannot be defined analytically, rather, they involve algorith-
mic processes that compute a number of nonzero elements of A for each of
its rows/columns.

A more detailed discussion of the choice of a suitable mapping function is
beyond the scope of this paper. However, note that to construct a mapping

184 D. Langr et al.

function that would provide a balanced distribution of nonzero elements of A′

to processors (such asMIR orMIC), the nonzero pattern of A might need to be
analyzed before the execution of Algorithm 1, which would require more than one
iteration over the sequence of the nonzero elements (i, j, ai,j)1, . . . , (i, j, ai,j)zA

.
If A is read from a file, this would imply either multiple reading of such a file or
storing of its elements in memory.

3 Experiments

We have implemented Algorithm 1 in C++ using the MPI parallel programming
model for evaluation of its performance and scalability. Within the performed
experiments, seed matrices were read from input files in the Matrix Market file
format [2]. Particularly, we used the seed matrices obtained from UFSMC that
are listed in Table 1.

Table 1. Seed matrices used for the experiments.

Matrix mA nA zA File size [MB]

ex25 8.48 · 102 8.48 · 102 2.46 · 104 0.7
cage12 1.30 · 105 1.30 · 105 2.03 · 106 61.5
Freescale1 3.43 · 106 3.43 · 106 1.89 · 107 648.0

We utilized the Q3 enlargement function (4) and the MC mapping func-
tion (6). We evaluated the weak scalability of Algorithm 1 (fixed per-processor
problem size), hence we set the enlargement matrix Q to be square with size
nQ computed via (5), where we set L = 600 MB and used 32-bit row/column
indexes and 32-bit floating point values, thus d = 12. Since we wanted to mea-
sure primarily the performance of Algorithm 1 itself, we used by default a void
(do-nothing) output function.

Unless stated otherwise, we buffered the broadcasting operations and we used
the buffer size of 1024 elements by default.

We measured the running times of Algorithm 1 using the QueenBee/LONI
cluster, which has the listed peak performance 50 TFLOPS. The obtained results
are presented in Fig. 1, where the running times are labeled with the names of the
corresponding seed matrices. The running times labeled with the (w/o buffer-
ing) suffix correspond to the measurements where the buffering of broadcast
operations was turned off. The running times labeled with the (storage) suf-
fix correspond to the measurements where generated nonzero matrix elements
were additionally stored in memory in the coordinate storage format using the
C++/STL vector container and its push back() member function. Note that
in this case, the measured results include running times of the in-memory storage
operations, which does not constitute a part of Algorithm 1.

Considering the default settings, i.e., the void output function and the broad-
cast buffer allocated for 1024 elements, the running times of Algorithm 1

Scalable Parallel Generation of Very Large Sparse Benchmark Matrices 185

Fig. 1. Running times of performed experiments.

were either approximately constant or slightly raising with the increas-
ing number of processors (and thus with the corresponding increase
of the size of the generated matrix). The resulting times include reading
of seed matrices from input files, and thus the I/O overhead imposed by this
operation depends on their file sizes. This is the reason for considerably different
running times for all 3 matrices (see the file sizes in Table 1).

Comparing the results for the cage12 matrix with turned on and turned off
buffering of the broadcast operations, we can see that the buffering considerably
reduced the algorithm running time. The corresponding memory requirements
(12 kB per processor within our experiments) are negligible on modern clusters.

As for the (storage) case, the operation of storing the resulting nonzero ele-
ments in memory took most of the running time of the corresponding experiment
(recall that this operation does not constitute a part of Algorithm 1). The linear

Table 2. Large-scale results for an experimental variant of Algorithm 1 adapted for bal-
anced row-wise partitioning of matrices among processors. The running times include
the in-memory storage of generated nonzero elements in the coordinate storage format.

Number of Space complexity Number of Running
processors of A′ [TB] nonzeros of A′ time [s]

128 0.38 1.7 · 1010 17.6
1024 3 1.3 · 1011 17.3

16384 48 2.1 · 1012 16.6
131072 384 1.7 · 1013 17.7

186 D. Langr et al.

growth of the running time with the increasing number of processors P was here
caused by the fact that the nonzero elements of the cage12 seed matrix were
stored in the input file in the order given by the growing column index. Thus,
due to the utilization of the MC mapping function, the generated nonzero ele-
ments of A′ were first stored only in the local memory of processor p1, then of
p2, etc., which resulted in zero scalability of this operation.

4 Discussion

The drawback of the presented method/algorithm is that, under some circum-
stances, the storage of the generated nonzero elements in memory can break
its scalability. This is the price for the versatility of the algorithm, which is
application-independent, i.e., it works with an arbitrary mapping function, an
arbitrary enlargement function, an arbitrary output routine, and an arbitrary
ordering of nonzero elements of seed matrices.

However, in practice, matrices are often partitioned among processors accord-
ing to contiguous chunks of rows/columns/blocks. For such restricted situations,
we might be able to develop more efficient variants of Algorithm 1 (at a price of
loosing versatility). To verify this assumption, we have experimentally developed,
implemented, and tuned such an algorithm variant for balanced row-wise parti-
tioning of matrices among processors. The results of the experiments performed
with this adapted algorithm on the 13-PFLOPS BlueWaters/NCSA cluster are
shown in Table 2. Using this algorithm, we were able to generate enormously
large matrices in less than 20 s independently of the number of utilized proces-
sors. Note that the running times include the storage of generated nonzero ele-
ments of the enlarged matrices in memory.

5 Conclusions

This paper presents a versatile method along with an accompanying algorithm
for scalable parallel generation of very large sparse benchmark matrices with
known numerical and structural properties. In the experiments performed with
the implementation of this algorithm, we were able to generate such matrices
within tens of seconds using a 50-TFLOPS cluster. However, we have shown that,
under some circumstances, storing of generated nonzero elements in memory can
break the scalability of the whole enlargement process.

Considering todays most powerful (PFLOPS) clusters, is crucial to preserve
the scalability of the enlargement process even with in-memory storage of the
generated nonzero elements. This can be achieved by adapting the presented
algorithm for some particular mappings of matrices to processors. Hence, in our
future work, we want to focus on the development of such adapted algorithm
variants.

Scalable Parallel Generation of Very Large Sparse Benchmark Matrices 187

Acknowledgements. This work was supported by the Czech Science Foundation
under Grant No. P202/12/2011, by the U.S. National Science Foundation under Grant
No. OCI-0904874, and by the U.S. Department of Energy under Grant No. DOE-
0904874. D.L. acknowledges support from Jerry P. Draayer and the Louisiana State
University (LSU). We acknowledge the Louisiana Optical Network Initiative (LONI) for
providing HPC resources. This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National Science Foundation (award
number OCI 07-25070) and the state of Illinois. Blue Waters is a joint effort of the
University of Illinois at Urbana-Champaign and its National Center for Supercomput-
ing Applications.

References

1. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D.,
Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Tech-
nical report ANL-95/11 - Revision 3.2, Argonne National Laboratory (2010)

2. Boisvert, R.F., Pozo, R., Remington, K.: The matrix market exchange formats:
initial design. Technical report NISTIR 5935, National Institute of Standards and
Technology (1996)

3. Boisvert, R.F., Pozo, R., Remington, K., Barrett, R.F., Dongarra, J.J.: Matrix mar-
ket: a web resource for test matrix collections. In: Boisvert, R.F. (ed.) The Quality
of Numerical Software: Assessment and Enhancement, pp. 125–137. Chapman &
Hall, London (1997)

4. Davis, T.A., Hu, Y.F.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1:1–1:25 (2011)

5. Duff, I., Grimes, R., Lewi, J.: User’s guide for the Harwell-Boeing sparse matrix
collection (Release I). Technical report TR/PA/92/86, CERFACS. http://people.
sc.fsu.edu/∼jburkardt/pdf/hbsmc.pdf (1992). Accessed 27 March 2011

6. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: a scalable and flexible toolkit for
the solution of eigenvalue problems. ACM Trans. Math. Software 31(3), 351–362
(2005)

7. Heroux, M., Bartlett, R., Hoekstra, V.H.R., Hu, J., Kolda, T., Lehoucq, R., Long,
K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Willen-
bring, J., Williams, A.: An overview of trilinos. Technical report SAND2003-2927,
Sandia National Laboratories (2003)

8. Hoemmen, M.: Matlab (ASCII) sparse matrix format, berkeley Benchmarking
and Optimization Group. http://bebop.cs.berkeley.edu/smc/formats/matlab.html
(2008). Accessed 27 April 2011

9. Laub, A.J.: Matrix Analysis for Scientists and Engineers. SIAM, Philadelphia
(2005)

10. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Indus-
trial and Applied Mathematics, Philadelphia (2003)

Parallel Non-Numerical Algorithms

Co-operation Schemes
for the Parallel Memetic Algorithm

Jakub Nalepa1(B), Miroslaw Blocho1,2, and Zbigniew J. Czech1,3

1 Silesian University of Technology, Gliwice, Poland
{jakub.nalepa,zbigniew.czech}@polsl.pl

2 ABB ISDC, Krakow, Poland
miroslaw.blocho@pl.abb.com

3 University of Silesia, Sosnowiec, Poland

Abstract. This paper presents a study of co-operation schemes for the
parallel memetic algorithm to solve the vehicle routing problem with time
windows. In the parallel co-operative search algorithms the processes
communicate to exchange the up-to-date solutions, which may guide the
search and improve the results. The interactions between processes are
defined by the content of the exchanged data, timing, connectivity and
mode. We show how co-operation schemes influence the search conver-
gence and solutions quality. The quality of a solution is defined as its
proximity to the best, currently-known one. We present the experimen-
tal study for the well-known Gehring and Homberger’s benchmark. The
new world’s best solutions obtained in the study confirm that the co-
operation scheme has a strong impact on the quality of final solutions.

Keywords: Parallel memetic algorithm · Co-operation scheme · Hybrid
genetic algorithm · Vehicle routing problem with time windows

1 Introduction

The vehicle routing problem with time windows (VRPTW) is a two-objective
NP-hard discrete optimization problem. Its main objective is to determine
the minimal number of homogeneous vehicles to serve customers dispersed on
the map. In addition, the total travel distance is to be minimized. A solution of
the VRPTW is feasible if (i) all customers are visited within their time windows
and (ii) the capacities of the vehicles are not exceeded.

The applications of the VRPTW are of wide range, including food, cash
and parcels delivering, school bus and airline fleet routing, rail distributions and
more. Thus, a number of exact and approximate algorithms to solve the VRPTW
have been proposed over the years. The former approaches incorporate dynamic
programming, branch-and-bound, greedy algorithms and more [5]. Due to the
NP-hardness of the VRPTW, numerous approximate algorithms have emerged
to solve it in acceptable time. Heuristic algorithms improving an initial solu-
tion (improvement heuristics) and constructing a feasible solution from scratch

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 191–201, 2014.
DOI: 10.1007/978-3-642-55224-3 19, c© Springer-Verlag Berlin Heidelberg 2014

192 J. Nalepa et al.

(construction heuristics) have been explored [4,6,11,12]. Metaheuristics, incor-
porating search space exploration and exploitation mechanisms and allowing for
temporary deterioration of a solution, evolutionary, genetic and memetic algo-
rithms (GAs and MAs), both sequential and parallel, have emerged recently [8,
13,14]. MAs are the population-based methods combining the GAs to explore
the solution space with local search algorithms for the exploitation of already
found solutions.

Here we study the co-operation schemes for our two-stage parallel memetic
algorithm to solve the VRPTW [1,2,9,10]. We present the experimental results
obtained for selected tests from the Gehring and Homberger’s benchmark. The
paper is organized as follows. Section 2 formulates the VRPTW. The parallel
memetic algorithm and co-operation schemes are described in Sect. 3. The exper-
imental study is reported in Sect. 4. Section 5 concludes the paper.

2 Problem Formulation

Let G = (V,E) be a directed graph with a set V of C + 1 vertices and a set of
edges E = {(vi, vi+1)|vi, vi+1 ∈ V, vi �= vi+1}. The VRPTW is defined on the
graph G, where each customer vi, i ∈ {1, 2, ..., C} (and the depot v0) is given
as a vertex, and each edge represents a travel connection with the cost ci,j ,
i, j ∈ {0, 1, ..., C}, i �= j. Customers define their demands di, i ∈ {0, 1, ..., C},
di ≥ 0, d0 = 0, time windows [ei, li], i ∈ {0, 1, ..., C}, and service times si,
i ∈ {1, 2, ..., C}. Let Q be a constant vehicle capacity and K denote a number
of vehicles. Each route r, r = (v0, v1, ..., vn+1), starts and finishes at the depot,
thus v0 = vn+1. A solution σ (with K routes) is feasible if (i) the vehicle capacity
Q is not exceeded for any vehicle, (ii) the service of every customer starts within
its time window, (iii) every customer is served in exactly one route, and (iv)
every vehicle leaves and returns to the depot within the time window [e0, l0].

The primary objective of the VRPTW is to minimize the number of routes
K (K ≤ �D/Q�, where D =

∑C
i=1 di). In addition, the total travel distance

T =
∑K

i=1 Ti is to be minimized, where Ti is the travel distance of the i-th
route. Let σA and σB be the feasible solutions. Then, σA is of higher quality if
(K(σA) < K(σB)) or (K(σA) = K(σB) and T (σA) < T (σB)).

3 Parallel Memetic Algorithm and Co-operation Schemes

We had proposed and later improved [1,3,9] a two-stage parallel memetic algo-
rithm (PMA) in which the number of routes is minimized by a parallel heuristic
algorithm based on the approach suggested by Nagata and Bräysy [7]. The total
travel distance is minimized using a parallel memetic algorithm. The sequential
algorithm was proposed by Nagata et al. [8] and was subjected to our improve-
ments [9,10]. In this section we give an overview of the PMA and describe
proposed co-operation schemes which are experimentally evaluated.

Co-operation Schemes for the Parallel Memetic Algorithm 193

Algorithm 1. Parallel memetic algorithm (PMA)
1: K ← RouteNumber(RM(0)); � First stage
2: for i ← 1 to N do
3: Generate a population of Np solutions with K routes each for each process Pi;
4: end for
5: parfor Pi ← P1 to PN do � Second stage
6: finished ← false;
7: while not finished do � Creating the next generation of solutions
8: Determine Np pairs (σA, σB); � Selecting the parent solutions
9: for all (σA, σB) do

10: σb
c ← σA;

11: for i ← 1 to Nc do
12: σc ← EAX(σA, σB); � Creating the child solution
13: σc ← Repair(σc); σc ← LocalSearch(σc);
14: if T (σc) < T (σb

c) then
15: σb

c ← σc;
16: end if
17: end for
18: end for
19: Form the next population;
20: Co-operate according to the co-operation scheme;
21: finished ← CheckStoppingCondition();
22: end while
23: end parfor
24: return best solution;

3.1 Parallel Memetic Algorithm Outline

The PMA consists of two stages in which the number of vehicles and the total
travel distance are minimized independently (Algorithm 1). First, the number of
routes is minimized by the parallel heuristic algorithm executed by N processes
(line 1). Then, an initial population of Np feasible solutions, each consisting
of K routes, is generated for each parallel process (lines 2–4). A solution with
the minimal total travel distance is found using a parallel memetic algorithm
(lines 5–24).

In the first stage (Algorithm 2), an initial solution in which every customer
is served in a separate route is subject to the route minimization (RM). At each
step, a random route r is selected in σ, its customers are inserted into the ejection
pool (EP) (line 5) and the penalty counters p indicating the re-insertion difficulty
are initialized (line 6). Then, a customer v is popped from the EP (line 8). If there
exist several feasible positions for v, then a random one is chosen (lines 9 and
10) – S(v, σ) is a set of feasible insertions of v. Otherwise v is inserted infeasibly,
and σ is squeezed to restore its feasibility (line 12). If the squeezing fails, then
the additional customer ejections minimizing the sum of their penalty counters
are tested (lines 15–17) and σ is perturbed by the local search moves (LSM)
for search diversification (line 18). Let N (v, σ) be the neighborhood of v in σ,
which is obtained by applying the following operators (moves): 2-opt*, OR-opt,

194 J. Nalepa et al.

Algorithm 2. Parallel heuristic algorithm for minimizing the number of routes
1: function RM(K)
2: parfor Pi ← P1 to PN do
3: σ ← σI , where σI is an initial solution; finished ← false;
4: while not finished do
5: Initialize the EP with M customers from a random route r from σ;
6: pi ← 0, i = 1, 2, . . . , M ; � Initializing penalty counters
7: while (not finished) and (EP �= ∅) do � Inserting ejected customers
8: v ← EP.pop();
9: if S(v, σ) �= ∅ then � v is being inserted

10: σ ← σ′ selected randomly from S(v, σ);
11: else
12: σ ← Squeeze(v, σ);
13: end if
14: if v �∈ σ then
15: pi ← pi + 1; � Increasing the penalty counter
16: σ ← σ′ from Se(v, σ) such that

∑Me
j=1 pj is minimal;

17: Insert Me ejected customers into the EP;
18: σ ← Perturb(σ);
19: end if
20: Co-operate according to the co-operation scheme;
21: finished ← CheckStoppingCondition();
22: end while
23: end while
24: end parfor
25: return best solution among all processes after additional local search;
26: end function

out-relocate, in-relocate and exchange [1]. In order to decrease the search space,
only NN = 50 customers nearest to v are considered. Then, the best feasible
solution σ′, σ′ ∈ N (v, σ), replaces σ, and the processes co-operate (line 20).

Once a minimal number of routes K is found, a population of Np feasible
solutions is created for each process Pi (Algorithm 1, lines 2–4). Then, according
to a pre-selection scheme [10], Np pairs of chromosomes (σA, σB) are determined
(line 8) and for each pair Nc children σc are generated using the edge assembly
crossover (EAX) operator (line 12). If σc is infeasible then it is repaired (if
possible) and enhanced by the LSM (line 13). The best feasible child σb

c, i.e. with
the shortest total travel distance, is found for each (σA, σB) (lines 14–16). The
next population is formed (line 19) according to the post-selection scheme [10],
and the processes co-operate (line 20). Finally, the best individual is returned
(line 24). The detailed descriptions of the algorithms can be found in [1,10].

3.2 Co-operation Schemes

The N processes in the PMA co-operate periodically in order to exchange solu-
tions found up-to-date and to guide the search towards solutions of better quality.
Let δR and δD denote the periods of process co-operations during the number

Co-operation Schemes for the Parallel Memetic Algorithm 195

of routes and the total travel distance minimization stages. Here we present the
proposed co-operation schemes that were explored and experimentally evaluated
in this work. The characteristics of the schemes are as follows:

1. Rigid. Each process Pi runs both optimization stages independently. After
each stage all solutions are compared and the best one is chosen. This app-
roach can be considered as the independent multi-search method since the
processes do not co-operate during the PMA execution.

2. Knowledge synchronization (KS). In the first stage, the processes send
their best solutions to process P1

1 which determines the best one σb and
broadcasts it back to each process. In the second stage, each process Pi sends
the best solution σb

i to the master. It sorts N received solutions and selects
randomly Nb, 1 ≤ Nb < N , ones for each process Pi. Finally, every process
Pi replaces its Nb worst solutions with these received from the master.

3. Ring. Let (P1, P2, . . . , PN) be the order in which processes co-operate. Then,
the ring co-operation scheme is given as: P1 → P2 → · · · → PN → P1. The
process P1 sends its best solution (in both stages) to P2. It replaces its best
solution if the received one is of higher quality and sends it to P3. As the
scheme constitutes a ring (PN co-operates with P1 at last) it is ensured that
the best solution found so far is kept by the master process P1.

4. Randomized EAX (R-EAX). The scheme is similar to the ring, however,
if the solution received by process Pi is of lower quality than the current best
one of Pi, then the EAX operator is performed on these solutions to generate
a child σc. If it is not feasible, then the feasibility is restored by the repairing
moves. Finally, if σc is feasible then it replaces the best solution kept by Pi in
both stages. The order of co-operation is randomly determined by the master
process P1 at the beginning of each co-operation phase.

5. Pool. In the first stage, process P1 handles the pool of size s, 1 ≤ s ≤ N , of
solutions with the currently minimal number of routes KP . If σ is the best
solution kept by process Pi, and K(σ) > KP , then it is replaced by a random
pool solution σP . If K(σ) = KP , then σP replaces σ with a probability p,
0 < p < 1. If process Pi finds a feasible solution σ, and K(σ) < KP , then the
pool is emptied, σ is sent to P1 to form the pool of size 1. Each process Pi

sends to P1 its best σ with KP routes to replace a random pool solution, only
if σ does not exist in the pool. In the second stage, each process Pi sends to
P1 the best σ in its population (of size Np), and it is inserted into the pool
as in the first stage. The process P1 determines ηN , 0 < η < 1, ηN ≤ Np,
best pool solutions. They replace ηN random ones in the population of Pi.

6. Pool with EAX (P-EAX). The regular pool is enhanced by applying the
EAX operator. In the first stage, if the solution σP received by process Pi

contains the same number of routes as the best solution σ kept by Pi, and
σP �= σ, then the EAX operator is applied to generate a child σc and its
feasibility is restored if necessary. At most Nc children are generated, until
a feasible one σc is obtained. Then, σc replaces σ. In the second stage, the
EAX operator is employed while replacing ηN received solutions by process

1 We distinguish the process P1 as the master process.

196 J. Nalepa et al.

Pi – a solution σa that is being replaced is crossed-over with the replacing
solution σb, σa �= σb, to generate σc. If σc is feasible, then it replaces σb.

The time complexities of the considered co-operation schemes (i.e. of a single
co-operation phase) are presented in Table 1 (it can be shown [1] that the EAX
operator takes O(C2) time, where C is the number of customers in each parent
solution). It is worth noting that data are transferred asychronously between the
processes. This means that the processes proceed with the algorithm execution
while the communication progresses, i.e. computation and communication over-
lap. Furthermore, a two-step data passing is applied: the complete solution is
transferred only if its quality has been improved since the previous co-operation.

Table 1. Time complexities of a single co-operation phase for the first (T1) and the
second (T2) optimization stages; N – number of processes, C – number of customers.

Scheme T1(N, C) T2(N, C)

Rigid C · N C · N
KS 2C · N 2C · N + N log N
Ring C · N C · N
R-EAX C2 · N C2 · N
Pool 2C · N 2C · N + N log N
P-EAX C2 · N C2 · N + N log N

4 Experimental Results

In this section we present the settings of the PMA, describe the Gehring and
Homberger’s (GH) tests solved by the PMA, and discuss the experimental results
obtained for each proposed co-operation scheme. The analyses of the quality of
solutions, search convergence and execution time of the PMA are also provided.

4.1 Settings

The proposed co-operation schemes were tested in the PMA for solving the 400-
customers GH tests. Also, we ran the PMA for some larger tests with 600 and
800 customers. However, to draw the meaningful conclusions about them, it is
necessary to investigate all instances in a subclass, thus we focus on analysis of
the results obtained for the 400-customers problems. The GH tests are divided
into six groups: C1, C2, R1, R2, RC1 and RC2. Customers are: (i) clustered (C
class), (ii) randomly dispersed on the map (R class), (iii) mixed – both clustered
and random (RC class). The subclasses C1, R1 and RC1 have smaller vehicle
capacities and shorter time windows than C2, R2 and RC2. There are 10 problem
instances in a subclass, resulting in 300 GH instances in total. Tests can be dis-
tinguished by their unique names, α β γ, where α denotes the subclass (C1, C2,
R1, R2, RC1, RC2), β relates to the number of customers (2 for 200 customers,
4 for 400, and so forth) and γ is the instance number (γ = 1, 2, . . . , 10).

Co-operation Schemes for the Parallel Memetic Algorithm 197

The PMA was implemented in C++ using the Message Passing Interface
(MPI) library and the experiments were performed on the Galera2 supercom-
puter. Let tT = tR + tP + tD, tT ≤ tmax, be the total execution time of the
PMA, where tR is the time necessary to find the minimum number of routes
(Algorithm 2), tP is the time of generating a population of solutions of size Np

(Algorithm 1, lines 2–4), and tD is the time of the total distance minimization
(Algorithm 1, lines 5–24). The PMA was run on 32 cores (4 nodes equipped
with 8 cores each), each running a single process, and tmax = 240 min. The
PMA parameters were tuned experimentally to the following values: Np = 60,
Nc = 10, ηNp = Nb = 4 (η ≈ 0.07), p = 0.5, δR = 200000, δD = 40. The values
of other PMA parameters along with the discussion on their influence on final
results can be found in [1,9].

4.2 Analysis and Discussion

In order to verify the speed of search convergence and quality of solutions
obtained using the PMA, each 400-customers GH test (60 tests in total) was
run n times, 7 ≤ n ≤ 10, using each co-operation scheme. As mentioned earlier,
the first objective of the VRPTW is to minimize the number of routes. Thus,
the number of routes K obtained from the first stage of the PMA was compared
with the currently best-known one Kb

3. The minimal number of routes Kb was
achieved for all 400-customers tests using the PMA. However, in case of the
independent multi-search method, i.e. the rigid co-operation, the PMA did not
converge to the best Kb within time tmax, and K was larger by one route for
several tests4 from C1, C2 and RC2 subclasses. It indicates that the co-operation
of processes is crucial for converging to highest-quality solutions.

The average best total travel distance obtained using the proposed co-
operation schemes and allowing for the evaluation of the quality of solutions con-
taining the same number of routes K, was calculated for each GH test. Then,
these averages were used to calculate the average total distance of each GH
subclass. The averaged best distances achieved for all 400-customers GH tests
(tests for which K > Kb are omitted for the rigid co-operation) are presented
in Table 2. The experiments showed that the ring and KS co-operations out-
performed other schemes and gave the best average total travel distances. The
percentages of the average total travel distances (%Best) shown in Table 2 are
calculated with respect to the best currently-known ones. If within a certain sub-
class a better, i.e. with a shorter total travel distance, solution than this obtained
using the PMA exists, then the percentage is larger than 100.00 %. The R1 and
RC1 subclasses turned out to be the most difficult with %Best equal to 101.07
and 100.69 respectively. The detailed results for R1 subclass given in Table 3
shows that the ring, KS and R-EAX schemes outperformed other co-operation
schemes.
2 More details can be found at: http://www.task.gda.pl/english/hpc
3 The best-known solutions of the GH tests are published at: http://www.sintef.no/

Projectweb/TOP/VRPTW/Homberger-benchmark/; reference date: April 27, 2013.
4 These were: C1 4 8, C2 4 3, C2 4 4, C2 4 10, RC2 4 1, RC2 4 2, RC2 4 5, RC2 4 6.

198 J. Nalepa et al.

Table 2. Average total travel distances of all 400-customers GH tests (the best average
total travel distance within a subclass is marked in boldface).

Scheme C1 C2 R1 R2 RC1 RC2

Rigid — — 8569.73 6188.83 8074.94 —
KS 7182.05 3907.47 8480.41 6174.17 7997.52 5301.41
Ring 7178.94 3905.91 8478.69 6157.35 7996.45 5306.01
R-EAX 7186.47 3914.56 8484.82 6163.99 8004.98 5314.27
Pool 7245.33 3919.83 8653.49 6212.85 8181.13 5378.28
P-EAX 7235.77 3931.50 8638.59 6224.70 8194.22 5403.72
Best GH 7169.31 3897.91 8388.64 6146.17 7941.85 5288.9
%Best 100.13 100.21 101.07 100.18 100.69 100.24

Table 3. Average total travel distances for the R1 tests (the best average total travel
distance for each test is marked in boldface).

Test GH best Rigid KS Ring R-EAX Pool P-EAX

R1 4 1 10372.31 10397.18 10391.91 10391.91 10391.62 10405.21 10405.21
R1 4 2 8955.50 9156.59 9027.83 9026.92 9055.03 9252.09 9273.93
R1 4 3 7826.71 8064.23 7993.51 7935.95 7963.86 8170.70 8077.30
R1 4 4 7318.62 7512.17 7412.08 7397.63 7416.84 7577.34 7518.02
R1 4 5 9242.43 9356.58 9320.95 9313.12 9317.08 9448.14 9430.42
R1 4 6 8373.71 8626.37 8513.00 8503.31 8527.90 8739.17 8788.30
R1 4 7 7645.88 7871.13 7739.90 7762.46 7698.84 7912.49 7849.95
R1 4 8 7288.95 7418.83 7353.29 7400.92 7391.00 7583.91 7546.35
R1 4 9 8742.41 8915.21 8812.72 8809.56 8835.96 9082.86 9065.89
R1 4 10 8119.88 8378.99 8238.94 8245.08 8250.08 8362.95 8430.55

A number of factors, e.g. the population size or the number of ejected cus-
tomers Me (Algorithm 2, line 17), can make the execution time of the PMA
arbitrarily large. Here we compare the average execution time t after which the
best total travel distance (among N processes) was not further improved and
the search converged, for each GH subclass (Fig. 1(a–c)). The total average exe-
cution time t of the PMA is given in Fig. 1(d). We also present the average
number of generations g. Intuitively, the PMA with the KS scheme requires the
shortest execution time to converge, since the search is guided towards the most
promising parts of the solution space which are intensively exploited. This, how-
ever, leads to getting stuck in local minima (KS was outperformed by the ring
scheme for most GH tests, see Table 2). The best solutions propagate in case of
the ring and R-EAX schemes, but the search is diversified due to updating only
the best individuals. Applying the EAX operator in the former scheme results
in increasing the execution time of the PMA. However, it is easy to see that t is
smaller for P-EAX scheme than for the regular pool. Thus, the quality of initial
populations and guiding the search, strongly influence the convergence of the
total distance minimization stage. In the PMA with the rigid co-operation, each

Co-operation Schemes for the Parallel Memetic Algorithm 199

Fig. 1. Average execution time t in seconds and average generation g.

process minimizes the travel distance independently. Clearly, the average num-
ber of generations is significantly larger than in case of the co-operative methods
(Fig. 1).

The study indicated that the GH tests with wider time windows and larger
vehicle capacities (C2, R2 and RC2) can be solved faster than these with shorter
time windows and smaller capacities (C1, R1 and RC1). The tests with random
customers (R1, R2) are more difficult to solve to good quality in comparison
with the clustered-customers tests (C1, C2). It is worth noting, that applying
the R-EAX scheme resulted in improving the world’s best total travel distances
Tb for two GH tests and decreasing the best-known number of routes for two
other ones, whereas the ring scheme decreased Tb in one GH test (Table 4).

Table 4. New world’s best results for Gehring and Homberger’s tests; in expression
x/y, x denotes the number of routes and y the total travel distance.

Test New GH best Old GH best Scheme

C1 4 2 36/7686.97 36/7687.38 R-EAX
C1 6 7 57/15997.59 58/14816.55 R-EAX
C2 4 8 11/4352.95 12/3787.08 R-EAX
R1 8 2 72/32817.67 72/32942.77 R-EAX
R2 4 5 8/7129.03 8/7136.90 Ring

200 J. Nalepa et al.

5 Conclusions and Future Work

In this work we proposed new co-operation schemes used in the parallel memetic
algorithm for the NP-hard vehicle routing problem with time windows. We
showed how the solutions quality, execution time and number of generations are
influenced by the choice of the scheme. The experiments performed on Gehring
and Homberger’s benchmark proved the ring and knowledge synchronization
schemes to be the best in terms of the search convergence speed and quality
of final solutions. However, it is the randomized EAX scheme that allowed for
finding four new world’s best solutions (one was found using the ring scheme).
We showed that the independent multi-search method gave the worst results,
what indicates that the search should be guided during the algorithm execution.

Our ongoing research includes performing full GH tests, investigating the
influence of co-operation frequency on the quality of solutions and execution
time and conducting the sensitivity analysis for its automatic tuning. Finally,
our aim is to further improve the rigid, KS and R-EAX co-operation schemes.

Acknowledgments. We thank the following computing centers where the computa-
tions of our project were carried out: Academic Computer Centre in Gdańsk TASK,
Academic Computer Centre CYFRONET AGH, Kraków, Interdisciplinary Centre for
Mathematical and Computational Modeling, Warsaw University, Wroc�law Centre for
Networking and Supercomputing.

References

1. Blocho, M.: A parallel memetic algorithm for the vehicle routing problem with
time windows. Ph.D. thesis, Silesian University of Technology (2013) (in Polish)

2. Blocho, M., Czech, Z.J.: An improved route minimization algorithm for the vehicle
routing problem with time windows. Stud. Informatica 32(99), 5–19 (2010)

3. Blocho, M., Czech, Z.J.: A parallel EAX-based algorithm for minimizing the num-
ber of routes in the vehicle routing problem with time windows. In: Proceedings
of the IEEE HPCC-ICESS, pp. 1239–1246 (2012)

4. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part I:
route construction and local search algorithms. Trans. Sc. 39(1), 104–118 (2005)

5. Kallehauge, B.: Formulations and exact algorithms for the vehicle routing problem
with time windows. Comput. Oper. Res. 35(7), 2307–2330 (2008)

6. Mester, D., Bräysy, O.: Active guided evolution strategies for large-scale vehicle
routing problems with time windows. Comput. Oper. Res. 32(6), 1593–1614 (2005)

7. Nagata, Y., Bräysy, O.: A powerful route minimization heuristic for the vehicle
routing problem with time windows. Oper. Res. Lett. 37(5), 333–338 (2009)

8. Nagata, Y., Bräysy, O., Dullaert, W.: A penalty-based edge assembly memetic
algorithm for the vehicle routing problem with time windows. Comput. Oper. Res.
37(4), 724–737 (2010)

9. Nalepa, J., Czech, Z.J.: A parallel heuristic algorithm to solve the vehicle routing
problem with time windows. Stud. Informatica 33(1), 91–106 (2012)

Co-operation Schemes for the Parallel Memetic Algorithm 201

10. Nalepa, J., Czech, Z.J.: New selection schemes in a memetic algorithm for the
vehicle routing problem with time windows. In: Tomassini, M., Antonioni, A.,
Daolio, F., Buesser, P. (eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 396–405.
Springer, Heidelberg (2013)

11. Russell, R.: Hybrid heuristics for the vehicle routing problem with time windows.
Trans. Sc. 29(2), 156 (1995)

12. Thompson, P.M., Psaraftis, H.N.: Cyclic transfer algorithms for multivehicle rout-
ing and scheduling problems. Oper. Res. 41(5), 935–946 (1993)

13. Ursani, Z., Essam, D., Cornforth, D., Stocker, R.: Localized genetic algorithm for
VRPTW. Appl. Soft Comput. 11(8), 5375–5390 (2011)

14. Zhong, Y., Pan, X.: A hybrid optimization solution to VRPTW based on simulated
annealing. In: Proceedings of the IEEE ICAL, pp. 3113–3117 (2007)

Scalable and Efficient Parallel Selection

Christian Siebert(B)

Laboratory for Parallel Programming, Department of Computer Science,
RWTH Aachen University, Aachen, Germany

christian.siebert@rwth-aachen.de

Abstract. Selection algorithms find the kth smallest element from a
set of elements. Although there are optimal parallel selection algorithms
available for theoretical machines, these algorithms are not only diffi-
cult to implement but also inefficient in practice. Consequently, scalable
applications can only use few special cases such as minimum and max-
imum, where efficient implementations exist. To overcome such limita-
tions, we propose a general parallel selection algorithm that scales even
on today’s largest supercomputers. Our approach is based on an efficient,
unbiased median approximation method, recently introduced as median-
of-3 reduction, and Hoare’s sequential QuickSelect idea from 1961. The
resulting algorithm scales with a time complexity of O(log2 n) for n dis-
tributed elements while needing only O(1) space. Furthermore, we prove
it to be a practical solution by explaining implementation details and
showing performance results for up to 458, 752 processor cores.

Keywords: Selection · QuickSelect · Median · Parallel algorithms ·
MPI

1 Introduction

Complex problems such as the search for the nearest neighbor or shortest path
require a solution for a subproblem, namely selection. We consider this problem
of selecting the kth smallest element from a set of n given elements. All ele-
ments have a key, and an ordering relation denoted by ≤ is defined on the keys.
Therefore, we can compare two keys and determine which key is smaller than
the other. If all elements would be sorted according to ≤ then the kth small-
est element would be at position1 k. As massively parallel supercomputers are
becoming widespread, there is a growing need for efficient parallel solutions to
the selection problem, where the n elements are distributed over p processors. A
common form of the parallel selection problem in practice is the special case with
a single element per processor. This forms also the base case where the other two
cases with n < p and n > p can be reduced to. Consequently, this paper focuses
1 In statistics, the kth order statistic of a sample is equal to its kth smallest value, and

the position of this value is called rank. Unfortunately, rank is also used in MPI to
identify a process. To disambiguate, we use the terms position and MPI rank.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 202–213, 2014.
DOI: 10.1007/978-3-642-55224-3 20, c© Springer-Verlag Berlin Heidelberg 2014

Scalable and Efficient Parallel Selection 203

on an efficient, comparison-based solution for the parallel selection problem with
n = p. A few special cases of selection such as finding the minimum (i.e., k = 1)
and the maximum (i.e., k = n) are properly solved and available in most parallel
programming environments (e.g., MPI Reduce(...MPI MIN...)). Unfortunately,
this is not the case for the general selection problem with an arbitrary k. Even
the frequent task of finding the median element

∼
x (i.e., k = �n/2�) efficiently

remains unsolved in practice. Instead, a common solution is to sort all elements
and then simply extract the desired element. However, this workaround is inef-
ficient as it requires more work than necessary. For example: optimal sequential
sorting requires O(n log n) time (e.g., with MergeSort), but there exist sequen-
tial selection algorithms such as BFPRT [1] that work in O(n) time. In parallel,
the situation is even worse: many scalable sorting algorithms cannot handle few
elements per process (e.g., SampleSort [3]) let alone scale to more than a couple
of thousand processes. The usual workaround, gathering all distributed elements
for sequential processing, is not feasible when we approach Exascale [8]. Inter-
estingly, there exist parallel selection algorithms for theoretical machines such
as PRAM (Parallel Random Access Machine, see [4]), but from their complexity
it can be expected that they are highly inefficient in practice. In fact, we have
not encountered any implementation of such parallel selection algorithms.

The rest of this paper is organized as follows: Sect. 2 presents a well-known
sequential selection algorithm and an idea for a minor improvement. By transfer-
ring both into the parallel world, Sect. 3 proposes a parallel selection algorithm.
Its two main ingredients are a median approximation and a parallel partition-
ing scheme, respectively presented in Sects. 3.1 and 3.2. Both parts achieve a
running time of O(log p), turning the complete parallel algorithm into a solu-
tion that scales well with O(log2 p) while requiring only a constant amount of
space. Section 4 provides practical and theoretical evidence that the approx-
imated median indeed leads to suitable partitions. A practical performance
evaluation considering different inputs and up to 458, 752 processor cores demon-
strates the efficiency of our implementation in Sect. 5. Finally, Sect. 6 concludes
our findings related to parallel selection.

2 Sequential Selection

In 1961, C.A.R. Hoare published a partition-based general selection algorithm [5],
also known as QuickSelect. Similar to QuickSort, QuickSelect is a randomized
algorithm as it chooses a “pivot” element uniformly at random. Once this pivot
is chosen, the algorithm partitions the input according to smaller and larger
elements. Based on the size of those partitions, one can infer where the target
element must reside. Contrary to QuickSort, which proceeds recursively in both
partitions, the QuickSelect algorithm proceeds recursively only within this tar-
get partition. Eventually, recursion stops when the kth smallest element is found.
Pseudocode of a sequential QuickSelect implementation is shown in Algorithm 1.
Although, QuickSelect has an expected O(n) running time, unlucky choices of
the pivot make it as slow as O(n2) in the worst case. In 1995, Kirschenhofer et al.

204 C. Siebert

Algorithm 1. Seq QuickSelect(A[1 . . . n], k) finds the kth smallest element.
1: r ← random(1 . . . n)
2: pivot ← A[r]
3: {partition A into smaller and larger elements}
4: for i ← 1 to n do
5: if A[i] < pivot then
6: append A[i] to A1

7: else if A[i] > pivot then
8: append A[i] to A2

9: end if
10: end for
11: if k ≤ length(A1) then
12: {target element is among the smaller elements}
13: return Seq QuickSelect(A1, k)
14: else if k > length(A) − length(A2) then
15: {target element is among the larger elements}
16: return Seq QuickSelect(A2, k − (length(A) − length(A2)))
17: else
18: {target element is the pivot}
19: return pivot
20: end if

improved the odds for a good running time by using a median-of-3 pivot [6]. This
approach selects not only one but three sample elements at random and picks
the median of these three samples as pivot. Although this improves the probabil-
ity of selecting a more suitable pivot, the worst case running time still remains
O(n2). In fact, the authors of a more recent analysis [2] clearly state “[...] that
median-of-three does not yield a significant improvement over the classic rule:
the lower bounds for the classic rule carry over to median-of-three”. The problem
is that only a constant number of elements are considered in the pivot selection.

Although Kirschenhofer’s median-of-3 pivot selection improves the sequential
QuickSelect performance only insignificantly, we will turn his main idea into an
effective parallel pivot selection algorithm. The advantage there is that not a
constant number of samples but instead all elements are taken into consideration.

3 Parallel Selection

In summary, the QuickSelect algorithm consists of three major steps:

(1) chose a pivot element (preferably close to the median)
(2) partition all elements according to the pivot
(3) recursively proceed in the corresponding partition (until target is found)

The main challenge for a practical parallel selection algorithm is to provide
efficient parallel implementation options for all three steps.

Scalable and Efficient Parallel Selection 205

3.1 Median Approximation

The actual median of all elements would be optimal for a perfect partitioning into
subsets of equal size. Han [4] showed that a parallel median algorithm exists with
an optimal running time of O(log p). However, this asymptotic complexity hides
a constant that is too large for such an algorithm to be applicable in practice.
In fact, he also showed that finding the median is just as complex as solving
the selection problem in general. Fortunately, any element close to the median is
also a suitable pivot. Therefore, we suggest the use of our median approximation
approach, which was only briefly introduced in [10]. This approach also achieves
the optimal O(log p) running time, but in contrast to Han’s algorithm is highly
efficient in practice. We now explain the details of our approach and subsequently
evaluate the quality of the selected median approximation in Sect. 4.

x1 x2 x3 x4 x5 x6 x7 x8 x9

≈
x

log3 p

rounds

Fig. 1. Median-of-3 reduction scheme to approximate the median of elements xi as
≈
x.

Our parallel median approximation approach groups elements into subgroups
of three elements each, finds their median and recursively proceeds with the
results of all other subgroups until a single result is obtained. Thus, this method
is essentially a median-of-3 reduction scheme within a complete ternary tree
topology as shown in Fig. 1. All processes start as leaf nodes and send their
single input value xi to a specific process, which corresponds to an inner node.
Except for the last (i.e., rightmost) node which can be ignored when it has less
than three children, all these inner-node processes receive the values from two
other processes, select the median of these values (i.e., drop the smallest and
the largest value) and forward the result to the next level. We implemented the
necessary data exchange via MPI point-to-point communication, more precisely
via MPI Isend, MPI Irecv and MPI Waitall. Although such a communication
tree is a recursive data structure, the actual implementation can be done in
an iterative fashion, thus requiring only O(1) space. After �log3 p� rounds of
communication, the process at the root node obtains the final result

≈
x. This is

regarded as approximation to the median of all input values xi and broadcast
as pivot to all participating processes. These processes can then compare their
own element with this pivot and proceed with the partitioning step.

206 C. Siebert

Note: As a median of smaller subgroups is not suitable for such a reduction
scheme, the Median-of-3 case represents the base case of a more general Median-
of-k reduction. At first glance, a general scheme seems beneficial because increas-
ing k (e.g., k ∈ {5, 7, . . . }) improves the accuracy of the approximated median
until k ≥ n where it selects always the exact median. However, though larger
values of k yield slightly fewer number of communication rounds according
to �logk p�, the optimal time needed to select the median for each subgroup
grows linearly with k and therefore easily dominates the overall running time of
O(k · logk p). Although occasionally our implementation with k = 5 was slightly
faster than the base case, we usually observed a performance degradation, espe-
cially with higher k. Therefore, we decided to use only the fast Median-of-3
reduction. Section 4 shows that even this base case suits our approach perfectly.

3.2 Partitioning

Once a pivot is chosen, all elements need to be partitioned into three sets: the ele-
ments that are smaller than, equal to, and larger than this pivot. While sequential
partitioning is straightforward, doing so in parallel is more difficult. We utilize
an auxiliary vector �vi consisting of three integers, each representing either <,
= or >. These integers are initialized with zeros. After comparing the process-
local element xi with the globally chosen pivot element, the corresponding vector
element is set to one. Using vector notation, this can be written as

�vi =

⎧
⎪⎨

⎪⎩

(1 0 0) if xi < pivot,
(0 1 0) if xi = pivot,
(0 0 1) if xi > pivot.

Adding these auxiliary vectors element-wise in parallel yields a vector �s with the
total number of elements that are smaller than, equal to or larger than the pivot,
respectively. Similarly, using a parallel prefix sum we can determine the actual
offsets �o within each partition, that is, the number of lower-ranked processes
owning elements that are smaller than, equal to, or larger than the pivot. With
a linear combination of both results, we can compute the destination process di

for each element. Using MPI terminology2, this can be expressed as

�s = Allreduce(�vi,+)
�oi = Exscan(�vi,+)

di = �vi ·
⎛

⎝

⎛

⎝
0 0 0
1 0 0
1 1 0

⎞

⎠ · �sT + �oi
T

⎞

⎠ .

Both, Allreduce and Exscan exist as collective operations in the MPI stan-
dard and can be implemented efficiently using only O(log p) individual com-
munications [7,9]. After sending every element to its destination process, the
2 We use MPI terminology: assuming xi is the input at MPI rank i then Allreduce

computes the sum
∑p−1

j=0 xj and Exscan computes the prefix sum
∑i−1

j=0 xj in parallel.

Scalable and Efficient Parallel Selection 207

global partitioning is completed. This can be accomplished in O(1) time with
a single MPI Sendrecv() operation using MPI ANY SOURCE for the receive part.
A pseudocode implementation of the partitioning step is shown in Algorithm 2.
Selecting the pivot via our median approximation scheme from Sect. 3.1 ensures
that the partitions for < and > have roughly equal size. Therefore, at most close
to half of the elements remain to be searched after a partitioning. Consequently,
this will lead to a total of O(log p) divide-and-conquer rounds.

Algorithm 2. Par Partition(x, pivot) partitions all elements according to pivot.
1: {initialize auxiliary array}
2: int v[3] ← {0, 0, 0}
3: {compare a process’ own element with the pivot element}
4: if x < pivot then
5: v[0] ← 1
6: else if x == pivot then
7: v[1] ← 1
8: else if x > pivot then
9: v[2] ← 1

10: end if
11: {determine the sizes of the resulting partitions}
12: s ← Allreduce(v, 3, +)
13: {determine the offsets within each partition}
14: o ← Exscan(v, 3, +)
15: {combine the results to compute the destination of x}
16: if x < pivot then
17: d ← o[0]
18: else if x == pivot then
19: d ← s[0] + o[1]
20: else if x > pivot then
21: d ← s[0] + s[1] + o[2]
22: end if
23: {send the element to its destination process and receive a new element}
24: Sendrecv(x, d, xnew, ANY SOURCE)

3.3 Proceed in the Target Partition

Once all elements are partitioned according to the pivot element, our selection
algorithm needs to proceed with the partition where the target element must
reside. Similar to the sequential QuickSelect algorithm, this target partition
is determined by comparing k with the partition sizes in �s. In parallel how-
ever, continuing only in the target partition comes with the challenge that only
those processes which are responsible for that particular partition can partici-
pate in subsequent steps. This is especially problematic for the required collec-
tives Bcast, Allreduce and Exscan, because MPI mandates that all processes

208 C. Siebert

in a communicator have to participate in a collective operation. A possible
solution could create one new communicator per target partition (e.g., with
MPI Comm split) including only those processes that are responsible for such
a partition. Unfortunately, the existing communicator creation’s complexity of
Ω(p) is too expensive for an efficient implementation. Instead, we propose spe-
cial “range collectives” originally mentioned and briefly introduced in [10]. These
range collectives are conceptually identical to their MPI counterparts but work
only on a continuous sub-range of all processes. As such their interface provides
two additional integer arguments firstproc and numprocs to specify the desired
range of participating processes. Only those processes within this range must call
these collectives and are actually involved in the operation; all other processes
outside the specified range do not need to call the collective, and are ignored by
our implementation even if they do. We have implemented all necessary range
collectives for our algorithm: they work with constant space and a time complex-
ity of O(log p). Therefore, they enable an efficient parallel selection in O(log2 p)
time. Moreover, using these range collectives proceeding in the target partition
becomes as simple as adjusting the processor range accordingly.

4 Quality of Our Median Approximation

Although our parallel median approximation approach does not necessarily find
the exact median, it always finds elements close to it. To support this claim, we
quantify now the accuracy of our median approximation approach.

4.1 Simulation

First, we evaluate the accuracy of our median approximation approach in sim-
ulation experiments. For this purpose, it is applied numerous times to pseudo-
random input. Since we are mainly interested in the position of an element, we
use the Scalable Parallel Random Number Generators Library to generate input
permutations of {1, . . . , n} uniformly at random. Figure 2 depicts the outcome
of 244 billion such simulations for n = 37 = 2187 and plots for each

≈
x the num-

ber of times it occurred. From these resulting frequencies, we derive individual
probability estimations for each possible outcome xi of a median approximation
as pi = frequency(xi)

totalruns . For our 2.44 · 1011 independent simulations, the resulting
expected value for the outcome E[X] =

∑
xipi is 1092.9989, which is consistent

with the actual position of the true median position(
∼
x) = 1093. In statistical

terms, our median approximation method is therefore called an unbiased esti-
mator for the true median. The resulting variance

∑
pi · (xi − E(X))2 of this

simulation is 2101.27, and thus the standard deviation is only 45.83. In other
words, in 50 % of all simulations the position of the approximated median value
is at most ±30 elements or 1.37 % off the actual median. Even when using the
most extreme outliers (cf. marked regions of unencountered results in Fig. 2)
as pivots, the ratio of partition sizes would never be worse than 34 : 66. We
conducted simulations also for 6561 and 19683 elements, confirming the general
trend that our median approximation leads to suitable partitions in practice.

Scalable and Efficient Parallel Selection 209

median
∼
x

Position of the median approximation
≈
x

F
re

q
u

en
cy

100

101

102

103

104

105

106

107

108

109

250 500 750 1000 1250 1500 1750 2000

un
en

co
un

te
re

d

un
en

co
un

te
re

d

im
p

o
ss

ib
le

im
p

o
ss

ib
le

Fig. 2. Simulation of 244 billion median approximations with 2187 random elements.

4.2 Worst Case

While the previous simulation results provide a practical insight into the quality
of our median approximation method, we are also interested in the theoreti-
cally possible worst case. Our construction of such a worst case is based on two
properties. First, observe that the algorithm is insensitive to the order in which
the elements enter a node in the ternary reduction tree (cf. Fig. 1); This follows
from the commutative property of the median operation. Therefore, we are free
to arbitrarily exchange the children (of course with their connected subtrees) of
any node without changing the result

≈
x. For a systematic analysis, we choose

a sorted order of the children: the leftmost child is therefore smaller than the
middle child, which itself is smaller than the rightmost child. Second, we retrace
the median-of-3 reduction from the root node at the bottom towards the leaf
nodes at the top. While doing so, we keep track of the relationship between a
parent and its children: either a child is identical to the parent or it is smaller or
larger than the parent. As comparisons are transitive, this method establishes
for many nodes a relationship to the result element

≈
x. Both, the reordering of

children and the relationships with respect to
≈
x are illustrated in Fig. 3.

Although the related types of nodes (i.e., �, �� and �) are settled, we can
change the unrelated nodes (i.e., ‘?’). This enables the construction of a worst
case input for our median-of-3 reduction scheme: by inserting elements that are
larger than

≈
x into the unrelated nodes, we can maximize the bias of the reduction

towards selecting a small element. Solving recurrence relations starting at the
root node reveals the number of elements for each node type: for n = 3k (∀ k ∈ N

and k > 0) induction shows that there are 2k − 1 elements larger than
≈
x and

3k−2k+1+1 elements unrelated to it. Thus in the worst case, only 2k−1 elements

210 C. Siebert

? ?

≈
x

less than
≈
x

equal to
≈
x

greater than
≈
x

? unrelated to
≈
x

Fig. 3. “Sorted” median-of-3 reduction tree showing the node relationship with
≈
x.

are guaranteed to be smaller but up to 3k − 2k elements can be larger than
≈
x.

We conclude that the 2�log3 n�− 1 largest keys and the 2�log3 n�− 1 smallest keys
can never be chosen as an approximate median. These two border-zone areas of
impossible outcomes of the median approximation are also sketched in Fig. 2.
For practical values of p, even such a worst case input results only in a minor
degradation of the algorithm’s overall running time.

5 Performance Evaluation

This section shows the evaluation results for our parallel selection implementa-
tion. All experiments were conducted on Juqueen, an IBM BlueGene/Q system
consisting of 28, 672 compute nodes, each providing 16 IBM PowerPC A2 cores
running at 1.6 GHz. Individual nodes communicate within a 5D torus network.
Our implementation was built using the IBM XL C/C++ compiler V12.1 and
the vendor-supplied MPI library V1.5. All presented measurements utilized 16
MPI processes per node, which corresponds to one process per core.

5.1 Different Inputs

The parallel selection algorithm recursively searches until the target element
is found, which can potentially be already after a single round but also after
O(log n) rounds. As the number of rounds directly influences the performance of
our implementation, a time variation can be expected depending on the actual
input. Therefore, we measured the individual running time of 10, 000 executions
with 64 MPI processes for different input arguments k. Figure 4 shows that
the minimum, average and maximum (except for few outliers) times over the
many measurements are similar for each particular input, indicating reproducible
performance for fixed inputs. In contrast, the running time with different input
values of k can differ a lot: in our measurements it varies from 208μs for 1 round
up to 736μs for 7 rounds. Similar performance differences can be observed by
changing not only k but also the input elements themselves or both.

Scalable and Efficient Parallel Selection 211

200

400

600

800

R
u

n
n

in
g

ti
m

e
in

µ
s

10 20 30 40 50 60

Input k (0 . . . 63)

maximum
average

minimum
(over 10, 000
executions)

Fig. 4. Selection performance with 64 MPI processes and different values of k.

5.2 Scalability

For our scalability evaluation, we measured the running time of our parallel selec-
tion implementation for all possible values of k (i.e., 0 ≤ k < p), and recorded
five statistical properties: the minimum, lower quartile, median, upper quartile,
and maximum. The most extreme outliers and the necessary percentiles (25th,
50th and 75th) are—of course—determined efficiently and with constant space
requirements using our scalable selection solution itself. We observed that the
quartiles are too close to the median values to be clearly visible. Therefore, Fig. 5
shows only the minimum, the median and the maximum timings. While the min-
imum values are very sensitive to the input, the maximum and especially the
median values show a smooth scalability curve, representing the O(log2 p) com-
plexity of our parallel selection algorithm. Even utilizing 458, 752 MPI processes,

10 µs

100 µs

1 ms

10 ms

R
u

n
n

in
g

ti
m

e

2 16 128 1k 8k 64k 512k

Number of MPI processes

maximum

median

minimum
(over all k)

Fig. 5. Selection performance with different number of MPI processes.

212 C. Siebert

representing the full Juqueen supercomputer, our implementation needs at most
only 6.54 ms in all 458, 752 measurements to select an arbitrary element.

In addition, the closely spaced quartiles show that there are only few outliers
(e.g., the quick ones that find the target element in early rounds) while most
executions are similarly fast. We also noticed that an average timing can be
misleading as the few but distant outliers carry a heavy weight to the average
and can distort it even beyond the quartile boundaries.

6 Conclusion

This paper presented a scalable and efficient solution for the parallel selection
problem. The proposed algorithm is based on the original QuickSelect idea with
a high-quality median approximation scheme for the pivot selection, an efficient
partitioning using parallel prefixes and sums, and an iterative scheme employing
range collectives. We provided both practical and theoretical evidence to prove
that our pivot selection leads to suitable partitions. The resulting overall time
complexity of O(log2 p) and the minimal space requirement makes this paral-
lel selection solution viable for the largest supercomputers. Although it is not
asymptotically optimal, it is very efficient in practice: Performance evaluation
with up to 458, 752 processor cores shows that it can select an arbitrary element
in less than 6.6 ms, regardless of the input. As such, it is a scalable solution to
the selection problem and therefore applicable to more complex parallel prob-
lems. In the future, we want to extend our base algorithm to include the case
with multiple elements per process, apply it to some of the many use cases and
consider different implementations as well as further optimizations.

References

1. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

2. Fouz, M., Kufleitner, M., Manthey, B., Jahromi, N.Z.: On smoothed analysis of
quicksort and Hoare’s find. Comput. Comb. 5609, 158–167 (2009)

3. Frazer, W.D., McKellar, A.C.: Samplesort: a sampling approach to minimal storage
tree sorting. J. ACM 17(3), 496–507 (1970)

4. Han, Y.: Optimal parallel selection. ACM Trans. Algorithms 3(4) (2007)
5. Hoare, C.A.R.: Algorithm 63 (Partition) and Algorithm 65 (Find). Commun. ACM

4(7), 321–322 (1961)
6. Kirschenhofer, P., Prodinger, H., Mart́ınez, C.: Analysis of Hoare’s FIND algorithm

with Median-of-Three partition. Random Struct. Alg. 10, 143–156 (1997)
7. Rabenseifner, R.: Optimization of collective reduction operations. In: Bubak, M.,

van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3036,
pp. 1–9. Springer, Heidelberg (2004)

8. Sack, P., Gropp, W.: A scalable MPI Comm split algorithm for exascale comput-
ing. In: Keller, R., Gabriel, E., Resch, M., Dongarra, J. (eds.) EuroMPI 2010.
LNCS, vol. 6305, pp. 1–10. Springer, Heidelberg (2010)

Scalable and Efficient Parallel Selection 213

9. Sanders, P., Träff, J.L.: Parallel Prefix (Scan) algorithms for MPI. In: Mohr, B.,
Träff, J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS, vol. 4192,
pp. 49–57. Springer, Heidelberg (2006)

10. Siebert, C., Wolf, F.: Parallel sorting with minimal data. In: Cotronis, Y., Danalis,
A., Nikolopoulos, D.S., Dongarra, J. (eds.) EuroMPI 2011. LNCS, vol. 6960, pp.
170–177. Springer, Heidelberg (2011)

Optimal Diffusion for Load Balancing
in Heterogeneous Networks

Katerina A. Dimitrakopoulou(B) and Nikolaos M. Missirlis

Department of Informatics and Telecommunications, National and Kapodistrian
University of Athens, Panepistimiopolis, 157 84 Athens, Greece

{kdim,nmis}@di.uoa.gr

Abstract. In [7] we studied the local Extrapolated Diffusion (EDF)
method for the load balancing problem in case of homogeneous torus
networks. The present paper develops the convergence theory of the local
EDF for heterogeneous torus networks. In particular, we determine its
quasi-optimal iteration parameters and the corresponding quasi-optimal
convergence factor using local mode analysis. As a result dynamic load
balancing becomes an efficient procedure since the parameters of local
EDF are computed via a closed form formulae resulting in the maximiza-
tion of its rate of convergence. Moreover, it is shown how the convergence
factor depends upon the communication edge weights and the processor
speeds of the network.

Keywords: Laplacian matrix · Load balancing ·Weighted torus · Fourier
analysis · Diffusion method · Heterogeneous networks

1 Introduction

In the present work we apply the approach of [7] to determine the optimum local
Extrapolated Diffusion (EDF) method for heterogeneous networks and in par-
ticular for 2d-torus. Heterogeneous networks consist of processors with different
computing speeds and different inter-processor communication links. In [5,6] a
hydrodynamic approach is proposed for a heterogeneous environment character-
ized by different computing speeds and uniform communication. Further, in [11]
implicit diffusion schemes are considered, whereas in [3] diffusion schemes for
a computational environment characterized by uniform computing speeds and
different communication characteristics are studied. In [4,9,10] these schemes
are extended for heterogeneous computational environments both with respect
to the processing performances and the communication speeds. In all the above
studies the optimum values of the involved parameters were either computed
numerically via the eigenvalues of the Laplacian matrix of the communication
graph or they used empirical formulae [9,10]. However, computing numerically

This research was partially funded by the University of Athens Special Account of
Research Grants no 10812.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 214–223, 2014.
DOI: 10.1007/978-3-642-55224-3 21, c© Springer-Verlag Berlin Heidelberg 2014

Optimal Diffusion for Load Balancing in Heterogeneous Networks 215

eigenvalues is a time consuming process and the use of empirical formulas does
not produce the best performance of the Diffusion method. It is therefore of vital
importance to determine optimum values for the parameters of the local EDF
using closed form formulae in order to (i) maximize its rate of convergence and
(ii) make efficient the process of redistributing the load due to changes in the
communication graph.

Local mode analysis is used extensively for studying multigrid methods [8].
We use this analysis to determine good approximations to the eigenvalues of the
weighted Laplacian as now this matrix is not circulant and the theory developed
in [13] does not apply. In this way we are able to find a closed form formula for
the set of the parameters of local EDF in the sense that its rate of convergence
is maximized for heterogeneous torus networks. These quasi-optimum values
depend only upon the speed and the communication edge weights of neighbor
processors and so their computation requires only local communication.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
heterogeneous EDF method. In Sect. 3, we define the local heterogeneous EDF
method and determine the eigenvalues of its iteration matrix for torus graphs
applying local mode analysis [1,8]. In Sect. 4, we develop the convergence analy-
sis of the local heterogeneous EDF method. Section 5 presents our numerical
experiments and conclusions.

2 The Heterogeneous Extrapolated Diffusion Method

Let G = (V,E) be a connected, undirected graph with |V | nodes and |E| edges,
which maps the processor network. Let wij > 0 ∈ R be the weight of edge eij ∈ E
associated to the communication link capacity and si > 0 ∈ R be the weight
of node vi ∈ V associated to the processor speed. Let us consider the following
iterative scheme that requires communication with adjacent nodes only

u
(n+1)
i = u

(n)
i − τ

∑

j∈N(i)

wij(
u

(n)
i

si
− u

(n)
j

sj
), (1)

where τ ∈ R \ {0} is the extrapolation parameter, wij > 0 are the edge weights
to be determined and N(i) is the set of nearest neighbors of node vi ∈ V . Then,
the overall workload distribution at step n, denoted by u(n), is the transpose
of the vector (u(n)

1 , u
(n)
2 , . . . , u

(n)
|V |) and u(0) is the initial workload distribution.

The iterative scheme (1) will be referred to as the Heterogeneous Extrapolated
Diffusion (HEDF) method. Note that when wij = 1 and si = 1 then (1) is the
homogeneous EDF method [2,7]. Our goal is to determine the amount of work-
load to transfer between neighbor processors in the communication graph such
that to balance the load proportionally to the speed of each processor. Therefore,
let ūi = (

∑|V |
j=1 u

(0)
j)/(

∑|V |
j=1 sj)si, i = 1, 2, . . . , |V | denotes the proportionally

balanced load. In matrix form (1) becomes

u(n+1) = Mu(n), (2)

216 K.A. Dimitrakopoulou and N.M. Missirlis

where M is called the diffusion matrix. The elements of M , mij , are equal to

mij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ
wij

sj
, if j ∈ N(i),

1− τ
∑

j∈N(i)

wij

si
, if i = j,

0, otherwise.

(3)

With this formulation, the features of diffusive load balancing are fully captured
by the iterative process (1) governed by the diffusion matrix M . The diffusion
matrix of HEDF can be written as

M = I − τL̂, L̂ = LS−1, (4)

where S = diag(si) and L is the generalized Laplacian matrix.

3 The 2D-Torus

We consider the following version of HEDF, which involves a set of parameters
τi, i = 1, 2, . . . , |V |

u
(n+1)
i = (1− τi

∑

j∈N(i)

wij

si
)u(n)

i + τi
∑

j∈N(i)

wij

sj
u

(n)
j , i = 1, 2, . . . , |V |. (5)

Note that if τi = τ , i = 1, 2, . . . , |V |, then (5) yields the HEDF method. The
iterative scheme (5) will be referred to as the local HEDF method. We define
Mij as the local HEDF operator for the N1 ×N2 torus. Then, the local HEDF
scheme at a node (i, j) can be written as

u
(n+1)
ij = (1− τijdij)u(n)

ij + τij(liju
(n)
i−1,j + riju

(n)
i+1,j + tiju

(n)
i,j+1 + biju

(n)
i,j−1) (6)

with
dij = lij + rij + tij + bij , (7)

where

tij =
w

(2)
i,j+1

si,j+1
, bij =

w
(2)
i,j−1

si,j−1
,

lij =
w

(1)
i−1,j

si−1,j
, rij =

w
(1)
i+1,j

si+1,j
,

(8)

where the w(1)
ij and w

(2)
ij denote the row and column edge weights, respectively.

The matrix L̂ is symmetric, when

li+1,j = ri,j and bi,j+1 = tij . (9)

Optimal Diffusion for Load Balancing in Heterogeneous Networks 217

In addition L̂ is nonnegative definite since it is irreducible diagonal dominant
[14]. From (9), because of (8), it follows that

w
(1)
ij

sij
=
w

(1)
i+1,j

si+1,j
and

w
(2)
ij

sij
=
w

(2)
i,j+1

si,j+1
(10)

From (10) it follows that for any j

w
(1)
ij = c

(1)
i sij , i = 1, 2, ..., N1, (11)

where c(1)i = constant. Moreover for any i

w
(2)
ij = c

(2)
i sij , j = 1, 2, ..., N2, (12)

where c(2)i = constant. Therefore, L̂ is symmetric if (11) and (12) hold. Otherwise
L̂ and hence M is not symmetric. In the sequel we will refer to the symmetric
and not symmetric L̂ as the symmetric and not symmetric case, respectively.
If L̂ is symmetric and because it also has nonnegative diagonal elements and
weak diagonal dominance it follows that the matrix L̂ is nonnegative definite
(Theorem 5.5, p. 41 of [14]).

Next, we define Mij as the local HEDF operator for the N1 ×N2 torus. The
local HEDF scheme (6) at a node (i, j) can be written as

u
(n+1)
ij = Miju

(n)
ij , (13)

where
Mij = 1− τijL̂ij (14)

with
L̂ij = dij − (lijE−1

1 + rijE1 + tijE2 + bijE
−1
2) (15)

the local operator of the generalized Laplacian matrix. The operators E1, E−1
1 ,

E2, E−1
2 are defined as E1uij = ui+1,j , E−1

1 uij = ui−1,j , E2uij = ui,j+1,
E−1

2 uij = ui,j−1, which are the forward-shift and backward-shift operators in the
x1-direction, x2-direction, respectively with uij = u(ih1, jh2) = u(x1, x2), where
x1 = ih1, x2 = jh2, h1 = 1

N1
and h2 = 1

N2
.

Lemma 1. The spectrum of the local generalized Laplacian operator L̂ij is given
by

λij(k1, k2) = (lij + rij)(1− cos k1h1) + (bij + tij)(1− cos k2h2)
+ i(lij − rij) sin k1h1 + i(bij − tij) sin k2h2, (16)

where

i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, k1 = 2π�1, �1 = 0, 1, 2, . . . , N1 − 1,
k2 = 2π�2 and �2 = 0, 1, 2, . . . , N2 − 1.

218 K.A. Dimitrakopoulou and N.M. Missirlis

Proof. By assuming that an eigenfuction of the local operator L̂ij is the complex
sinusoid ei(k1x1+k2x2) we have Lije

i(k1x1+k2x2) = λij(k1, k2)ei(k1x1+k2x2), where

λij(k1, k2) = dij −
(
lije

−ik1h1 + rije
ik1h1 + tije

−ik2h2 + bije
ik2h2

)
. (17)

So, we may view ei(k1x1+k2x2) as an eigenfunction of L̂ij with eigenvalues λij

(k1, k2) given by (17). It is easily verified that (17) yields (16). ��
In the sequel we will assume that the coefficients rij , lij , tij and bij are smooth

in the sense that rij − lij = li+1,j − lij = O(h) and tij − bij = bi,j+1 − bij =
O(h). Then, the two cosine terms in (16) are the dominant terms and we can
approximate (16) by keeping only these terms, thus

λij(k1, k2) = 2[rij(1− cos k1h1) + tij(1− cos k2h2)] (18)

where

i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, k1 = 2π�1, �1 = 0, 1, 2, . . . , N1 − 1,
k2 = 2π�2 and �2 = 0, 1, 2, . . . , N2 − 1.

In (18) we could have used lij and bij instead of rij and tij , respectively.
The convergence rate of the HEDF method depends on the convergence factor

γ(M) which is the second largest eigenvalue in absolute value of the matrix
M . Following the same streamline we define the convergence factor γij(Mij) of
the operator Mij as the second largest eigenvalue in absolute value of Mij . The
above approach known as local Fourier analysis [1] has two implicit assumptions.
First, Mij should be space-invariant. Secondly, the problem domain should be
either extended to infinity or be rectangular with Dirichlet or periodic boundary
conditions. In our case γij is a spatially varying function (see (16)) and generally
is not equal to the convergence factor γ(M) of the HEDF method. Nevertheless,
if the edge weights and the speeds are all equal to a constant value, then Mij and
hence γij are space invariant in which case γij is equal to γ(M). This is verified
by the fact that in the homogeneous case lij = rij = 1

4 , i = 1, 2, . . . , N1, j =
1, 2, . . . , N2 and (18) becomes

λij(k1, k2) = 2− cos k1h1 − cos k2h2 (19)

which coincides with the eigenvalues of the Laplacian matrix L determined in
[12,13] using matrix analysis.

4 Optimum τij

Let μij denote an eigenvalue of the operator Mij . Since

γij(Mij) = max
k1,k2

|μij(k1, k2)|, (20)

where not both k1, k2 can take the value zero and

μij = 1− τijλij . (21)

Optimal Diffusion for Load Balancing in Heterogeneous Networks 219

Next, we will study the symmetric case. This means that we will assume that
(18) holds. Under this assumption the minimum value of γij with respect to τij
is attained at

τopt
ij =

2
λij,2 + λij,N

, (22)

where λij,2, λij,N are the smallest positive and largest eigenvalues of the operator
L̂ij , respectively. Moreover, the corresponding minimum value of γij(Mij) is
given by

γopt
ij =

Pij − 1
Pij + 1

, (23)

where
Pij =

λij,N

λij,2
(24)

is the P-condition number of L̂ij . The last quantity plays an important role in the
behavior of γopt

ij . Indeed, from (23) it follows that γopt
ij is a decreasing function

of Pij . Therefore, minimization of Pij has the effect of maximizing R(LHEDF),
the rate of convergence of the local HEDF method, defined by

R(LHEDF) = − log γopt
ij . (25)

Theorem 1. If N1, N2 are even, then the convergence factor γij(Mij) is mini-
mized at

τopt
ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

(rij + lij)
(

3 + 2σij − cos
2π
N1

) , σij ≥ σ2

2σij

(tij + bij)
[

2 + σij

(

3− cos
2π
N2

)] , σij ≤ σ2

(26)

and its corresponding minimum is

γopt
ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 2σij + cos
2π
N1

3 + 2σij − cos
2π
N1

, σij ≥ σ2

2 + 2σij + cos
2π
N2

2 + 3σij − cos
2π
N2

, σij ≤ σ2.

(27)

220 K.A. Dimitrakopoulou and N.M. Missirlis

If N1, N2 are odd, then the convergence factor γij(Mij) is minimized at

τopt
ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

(rij + lij)
[

2 + cos
π

N1
− cos

2π
N1

+ σij

(

1 + cos
π

N2

)] , σij ≥ σ2

2σij

(tij + bij)
[

1 + cos
π

N1
+ σij

(

2 + cos
π

N2
− cos

2π
N2

)] , σij ≤ σ2

(28)
and its corresponding minimum is

γopt
ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos
π

N1
+ cos

2π
N1

+ σij

(

1 + cos
π

N2

)

2 + cos
π

N1
− cos

2π
N1

+ σij

(

1 + cos
π

N2

) , σij ≥ σ2

1 + cos
π

N1
+ σij

(

cos
π

N2
+ cos

2π
N2

)

1 + cos
π

N1
+ σij

(

2 + cos
π

N2
− cos

2π
N2

) , σij ≤ σ2.

(29)

where σij and σ2 are given by (31).

Proof. The optimum value for τij will be determined by (22), while the mini-
mum value of γopt

ij by (23) and (24). It is therefore necessary to determine λi,j,2

and λij,N . For the determination of λij,2 we let �1 = 0 and �2 = 1, or �1 = 1 and
�2 = 0 in (18) which lead to the following

λij,2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(rij + lij)
(

1− cos
2π
N1

)

, σij ≥ σ2

(tij + bij)
(

1− cos
2π
N2

)

, σij ≤ σ2,

(30)

where

σij =
tij + bij
rij + lij

and σ2 =
1− cos 2π

N1

1− cos 2π
N2

. (31)

The maximum eigenvalue λij,N is determined by letting �1 = �N1
2 � and �2 = �N2

2 �
in (18). Next, we distinguish two cases according to whether N1, N2 are even or
odd.

Case I: Both N1 and N2 are even numbers
In this case �1 = N1

2 and �2 = N2
2 , hence (18) yields

λij,N = 2dij . (32)

Optimal Diffusion for Load Balancing in Heterogeneous Networks 221

Case II: Both N1 and N2 are odd numbers
In this case �1 = N1+1

2 and �2 = N2+1
2 , hence (18) yields

λij,N = (rij + lij)
(

1 + cos
π

N1

)

+ (tij + bij)
(

1 + cos
π

N2

)

. (33)

Using the expressions of λij,2 and λij,N given by (30) and (32), respectively in
(22), (23) and (24), we verify the results given in (26), (27), (28) and (29). ��
Analogous results can be derived for the mixed cases, where one of N1, N2 is
even and the other is odd.

5 Optimum Edge Weights and Speeds

Up to this point we were concerned with the determination of optimum values
for the set of parameters τij , in terms of the coefficients rij , lij , tij and bij ,
i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, such that γij is minimized. Nevertheless, these
values are quasi-optimum with respect to minimizing γ(M) unless the coefficients
rij , lij , tij and bij are spatially invariant in which case become optimum. Next,
we will attempt to determine rij , lij , tij and bij such that Pij (and hence γij) is
minimized.

Theorem 2. The convergence factor γij is minimized at

σij = σ2. (34)

If N1, N2 are even, then γij is minimized at

τopt
ij =

2

(rij + lij)
(

3 + 2σ2 − cos
2π
N1

) (35)

and its corresponding minimum is

γopt
ij =

1 + 2σ2 + cos
2π
N1

3 + 2σ2 − cos
2π
N1

. (36)

If N1, N2 are odd, then γij is minimized at

τopt
ij =

2

(rij + lij)
[

2 + cos
π

N1
− cos

2π
N1

+ σ2

(

1 + cos
π

N2

)] (37)

and its corresponding minimum is

γopt
ij =

cos
π

N1
+ cos

2π
N1

+ σ2

(

1 + cos
π

N2

)

2 + cos
π

N1
− cos

2π
N1

+ σ2

(

1 + cos
π

N2

) . (38)

222 K.A. Dimitrakopoulou and N.M. Missirlis

Proof. When N1, N2 are even, it follows from (30) and (32), the P-condition
number of L̂ij is given by

Pij(L̂ij) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 (1 + σij)

1− cos
2π
N1

, σij ≥ σ2

2 (1 + σij)

σij

(

1− cos
2π
N2

) , σij ≤ σ2.

(39)

When N1, N2 are odd, it follows from (30) and (32), that the P-condition number
of L̂ij is given by

Pij(L̂ij) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + cos
π

N1
+ σij

(

1 + cos
π

N2

)

1− cos
2π
N1

, σij ≥ σ2

1 + cos
π

N1
+ σij

(

1 + cos
π

N2

)

σij

(

1− cos
2π
N2

) , σij ≤ σ2.

(40)

��
Studying the behaviour of (39) and (40) with respect to σij we can easily verify
that Pij(L̂ij) is minimized at σ2. Therefore, (22) because of (30) and (33), yields
(35), whereas (23) yields (36). In a similar way we obtain (37) and (38) when
N1, N2 are odd.

6 Numerical Experiments

In order to test our theoretical results obtained so far we applied local HEDF for
different sizes of 2d-tori. The initial load of the network was placed on a single
node of the graph, while we normalized the balanced load u = 1. Hence, the
total number of amount of load was equal to the total number of nodes in the
graph. We carried out three experiments. We select the coefficients lij , rij , tij
and bij according to the following criteria:

1. bij = lij = e10h(i+j) and tij = rij = e20h(2N) − bij
2. bij = lij = 100h2(i2 + j2) and tij = rij = 200h22N2 − bij
3. bij = e10h(i+j), tij = e20h(2N) − bij , lij = 100h(i+ j) and rij = e20h(2N) − bij
We kept iterating until an almost evenly distributing flow was calculated. The
iteration were terminated when the criterion ‖u(n)−u‖2/‖u(0)−u‖2 < ε for some
small ε was satisfied. For the 1 and 3 cases we have the same results as presented

Optimal Diffusion for Load Balancing in Heterogeneous Networks 223

Table 1. Number of iterations of LHEDF method for N × N tori.

N × N Exp. 1, 3 lij = 0.5 lij = 0.6 lij = 0.7 lij = 0.8 lij = 0.9

10 × 10 1691 153 180 180 184 214
20 × 20 23033 569 670 671 687 806
40 × 40 339216 2149 2531 2534 2599 3049

in the Table 1, whereas for the 2 case LHEDF did not converge. These results
clearly show that as long as the coefficients do not differ drastically (cases 1,
3) the LHEDF method converges otherwise it diverges. This verifies our theory
which holds under the assumption that the coefficients lij , rij , tij and bij should
be smooth functions. Optimality condition guarantees best performance. Indeed,
the results in columns 3–7 of Table 1 show that the minimum number of iterations
is achieved when the optimality condition holds. In the optimum case we have
bij = 0.2, tij = 1− bij and rij = 1− lij .

References

1. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math.
Comput. 31, 333–390 (1977)

2. Cybenko, G.: Dynamic load balancing for distributed memory multi-processors. J.
Parallel Distrib. Comput. 7, 279–301 (1989)

3. Diekmann, R., Frommer, A., Monien, B.: Efficient schemes for nearest neighbour
load balancing. Parallel Comput. 25, 789–812 (1999)

4. Elsässer, R., Monien, B., Preis, R.: Diffusion schemes for load balancing on het-
erogeneous networks. Theory Comput. Syst. 35, 305–320 (2002)

5. Hui, C.C., Chanson, S.T.: Theoretical analysis of the heterogeneous dynamic load
balancing problem using a hydro-dynamic approach. J. Parallel Distrib. Comput.
43, 139–146 (1997)

6. Hui, C.C., Chanson, S.T.: Hydrodynamic load balancing. IEEE Trans. Parallel
Distrib. Syst. 10(11), 1118–1137 (1999)

7. Karagiorgos, G., Missirlis, N.M.: Convergence of the diffusion method for weighted
torus graphs using Fourier analysis. Theor. Comp. Sci. 401(1–3), 1–16 (2008)

8. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, New
York (1971)

9. Rotaru, T., Nägeli, H.H.: Dynamic load balancing by diffusion in heterogeneous
systems. J. Parallel Distrib. Comput. 64, 481–197 (2004)

10. Rotaru, T., Nägeli, H.H.: Fast algorithms for fair dynamic load distribution in
heterogeneous environments. Appl. Numer. Math. 49, 81–95 (2004)

11. Watts, J., Taylor, S.: A practical approach to dynamic load balancing. IEEE Trans.
Parallel Distrib. Systems 9, 235–248 (1998)

12. Xu, C.Z., Lau, F.C.M.: Load Balancing in Parallel Computers: Theory and Prac-
tice. Kluwer Academic Publishers, Dordrecht (1997)

13. Xu, C.Z., Lau, F.C.M.: Optimal parameters for load balancing the diffusion method
in k-ary n-cube networks. Inf. Process. Lett. 47, 181–187 (1993)

14. Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New
York (1971)

Parallel Bounded Model Checking
of Security Protocols

Miros�law Kurkowski1,2(B), Olga Siedlecka-Lamch2,
Sabina Szymoniak2, and Henryk Piech2

1 Computer Science and Communication, University of Luxembourg,
6, rue Richard Coudenhove-Kalergi, 1359 Luxembourg, Luxembourg

2 Institute of Computer and Information Sciences, Czestochowa University of
Technology, Dabrowskiego 73, Czestochowa, Poland

miroslaw.kurkowski@uni.lu, olga.siedlecka@icis.pcz.pl

Abstract. The verification of security protocols is a difficult process
taking into consideration a concept and computations. The difficulties
start just during the appropriate adequate protocol specification, and
during studying its properties. In case of the computation connected
with constructing and searching of the modeling structures of protocol
execution and scattered knowledge of the users, the problems are the sizes
of those structures. For small values of parameters such as numbers of
sessions, users, or encryption keys the proper models are usually not very
big, and searching them is not a problem, however in case of increasing
the values of the above mentioned parameters, the models are sometimes
too big, and there is no possibility to construct them nor search prop-
erly. In order to increase the values of studying protocol parameters, and
necessary increase the computation effectiveness, the appropriate solu-
tions must be introduced. In the article, the solutions which enable full
and effective parallelization of the computations during automatic veri-
fication of security protocols are introduced. The suitable experimental
results are also presented.

Keywords: Security protocols ·Model checking · Parallel computations

1 Introduction

The security of systems and computer networks is nowadays one of the most
important problems which must be solved by the designers of such systems.
Many examples confirm the fact that improperly secured systems can expose

The first author acknowledges the support of the FNR (National Research Fund)
Luxembourg under project GALOT – INTER/DFG/12/06. The second and the
third author acknowledge that this research was co-financed by the European
Union under the European Social Fund. Project PO KL “Information technologies:
Research and their interdisciplinary applications”, Agreement UDA-POKL.04.01.01-
00-05110-00.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 224–234, 2014.
DOI: 10.1007/978-3-642-55224-3 22, c© Springer-Verlag Berlin Heidelberg 2014

Parallel Bounded Model Checking of Security Protocols 225

the users to different types of losses. Security protocols are the key elements of
security systems, including communication protocols. Some of them are respon-
sible for user’s authentication that is equivalent to people identification in real
biometric, security systems [4]. As concurrent algorithms, they should ensure
the confidentiality of the transmitted data, confirm the identity of the commu-
nication participants, or execute the distribution of the new session keys. At the
planning stage of the protocol, some faults which can lead to serious errors, as
well as seizing information by outsiders can occur. There is a necessity to model
and verify the protocol executions, including the initial knowledge, the changes
of the knowledge of the communicating parts, and also the Intruder in order to
find the errors of the protocol, and to fix them. The study of the correctness of
such protocols is an essential problem of today’s IT infrastructure.

The most effective methods in this domain are model checking methods, how-
ever, automatic or semi-automatic verification of protocol correctness is not easy.
The biggest problems are caused by the exponential explosion of states of the
examined models representing the protocol’s executions. For low values of pro-
tocol parameters (the number of the users, encryption keys, sessions, etc.) the
proper models are usually fast and automatically constructed and searched by
specialized tools. Among them are: TAPS [5], NRL [14], Isabelle [2,3,16], VerICS
[9], recently developed Scyther [7] or AVISPA [2]. The last one, AVISPA, can be
described as the leader among model checking tools such as, for example, the num-
ber of the studied sessions of the protocol, constructed models are complicated,
and the problems connected with them are in such a way very hard to solve even by
the best tools. In all the above cases, various types of a formal model of the tested
protocol are constructed. The corresponding spaces of states in these models are
then respectively automatically searched for the states corresponding to the tested
properties, and especially the security properties of the protocol. Descriptions of
the mentioned methods can be found, for example, in [12].

One of the most natural methods of dealing with the necessity of executions
of a large number of computations (too big for a single processor) is the use
of parallel solutions. However, in the case of model checking solutions for com-
plicated systems, it is sometimes not possible. Searching the model cannot be
divided into subtasks, because the next paths of the investigated model depend
on other fragments of the whole model.

In this article, the authors’ method of security protocols of modeling verifi-
cation is presented. It is worth noting that in the suggested approach all phases
of verification can be processed parallelly. This approach is based on previous
works of the authors of [10,11,17]. The proposed ideas connected with the pro-
tocol verification focus on suitable protocol specification (the execution of the
pattern) in the language proposed in [10], and next in the automatic execution
consisted in the following steps:

– generating the hypothetical executions of the protocol by computing the sim-
ple substitution from the considered space to the pattern (as in the works
[10,11]),

226 M. Kurkowski et al.

– generating the chains of states coding particular actions, making up the
protocol (see [17]),

– constructing and searching on the fly a tree of real protocol executions, in
searching the states corresponding to verified properties (as in [17]).

The solutions proposed in previous works connected with constructing the
models of protocol executions allow the use of the parallel computation in each
of the three above mentioned phases of the automatic verification. It allows to
increase the sizes of the parameters of the protocol during the verification of its
properties. This is important according to verification with many sessions of the
protocol (see [6]).

2 The Needham-Schroeder Public Key Protocol

The designing of the communication protocols is a very hard task, which is con-
nected with the possibility of many problems occurring with the later use of a
made protocol. As an essential example of a scheme which has such faults, the
NSPK protocol can be presented [14]. In the notation of this protocol, there are
designations i(A) and i(B), which identify the participants of the communica-
tion, respectively the A and B participants. The expression 〈X〉KA

stands for
the X message encrypted by the public key of A user. Similarly, the message
encrypted by the public key of B participant - 〈X〉KB

.
The A user has a very important role- it starts the run of the protocol. The

aim of the execution of this protocol is to achieve the mutual confirmation of
the identity (the authentication) between the communication participants. The
designation A → B : X refers to sending the X message from A participant
to B participant. We assume that sending the message causes the operation of
receiving it by the suitable person. The concatenation of the elements in the
message was determined by the operator ·.

The scheme of NSPK protocol proposed in [15] is as follows:
Example 1
α1 A → B : 〈NA · i(A)〉KB

,
α2 B → A : 〈NA ·NB〉KA

,
α3 A → B : 〈NB〉KB

.
In first stage of the protocol execution, the A participant creates the random

number (nonce) NA, then sends the message which is encrypted by the public
key B to B participant. It consists the drawn number NA and the identifier of A
participant. The next stage of NSPK protocol execution starts from the drawing
of its own random number NB by B participant. Next, it creates the message
consisting of nonces of both communication participants, encrypts this message
by the public key KA, and sends it to A participant.

In the further part of the protocol execution, A runs the decrypting operation
of the received message, and the operation of comparing the NA number, which
was received from B with the number NA prepared by himself. If both numbers
are correct, A considers B as authenticated. In the last step of the protocol

Parallel Bounded Model Checking of Security Protocols 227

execution, A sends its nonce NB encrypted by the KB key to B. After decrypt-
ing and comparing the numbers, B participant can consider A participant as
authenticated. Executing this protocol should guarantee both participants the
identity of the communicating person.

The NSPK protocol was used throughout 17 years. In 1995, Gavin Lowe dis-
covered a version of the protocol execution which consisted a possible attack,
showing that the NSPK protocol is susceptible to a break-in [13]. The Intruder
attacks, and the additional participant has his own identity card and keys deter-
mined by ι symbol. The Intruder does not execute the protocol according to the
scheme but, using own ways, pretends to be different subscribers, and deceives
them. The attack presented by Lowe is as follows:

Example 2
α1

1 A → ι : 〈NA · i(A)〉Kι
,

α2
1 ι(A)→ B : 〈NA · i(A)〉KB

,
α2

2 B → ι(A) : 〈NA ·NB〉KA
,

α1
2 ι → A : 〈NA ·NB〉KA

,
α1

3 A → ι : 〈NB〉Kι
,

α2
3 ι(A)→ B : 〈NB〉KB

.
The Lowe scheme consists of two different simultaneous NSPK protocol exe-

cutions. The α1 execution refers to the communication between A participant
and the Intruder ι. The α2 execution refers to the situation where the Intruder
pretends to be the A participant (ι(A)) and in his name communicates with B.

To have a correct protocol, which cannot be broken, it is enough to add the
identifier of the sender to sent message in the second step of original NSPK
protocol execution: α2 B → A : 〈NA ·NB · i(B)〉KA

. All known verification
methods and tools confirm the safety of this version of NSPK.

3 Idea of the Chains of States

A new method of modeling executions, as well as a new method of verification
of security protocols’ properties through encoding to the chains of states, and a
way of their effective parallelization during modeling and verifying is now going
to be presented.

In the work [10], a new idea of specifying the security protocols has been
proposed. To the description used in the Common Language, containing a scheme
of the process of sending the messages while performing the protocol, an addition
of a description of internal actions executed by the performers of the protocol has
been made . A step of the protocol α is defined as 5-tuple: α = (P,X ,G,L,Q),
where P is a party sending a message in step α, X is a set of information which
P needs for composing a message L sent in the step, G is a set of confidential
information generated by P needed for composing messages L (G ⊆ X), and Q is
a party receiving a message L. In the following parts of the article, the elements
P,X ,G,L,Q are determined as Send,Comp,Gen, Lett and Rec. As an example
we consider the following specification of NSPK protocol.

228 M. Kurkowski et al.

Example 3
ΣNSPK = (α1, α2, α3), where:
α1 = (A, {NA, IA,KB}, {NA},B, 〈NA · IA〉KB),
α2 = (B, {NA,NB,KA}, {NB},A, 〈NA · NB〉KA),
α3 = (A, {NB,KB}, ∅,B, 〈NB〉KB).

As can be seen, particular steps of the protocol are thoroughly specified.
Precise information is defined, information which is needed by the party in order
to compose a sending message, and generate new confidential data.

As proposed in [10] and the following works, this method requires the genera-
tion of a set of hypothetical executions of a tested protocol in order to construct
a tree of its real executions. In this tree, the states corresponding to the states
of threat to the protocol during its executions will be searched. During a gener-
ation, a defined space of considered parameters Π is used (parameters such as
the number of users, their type, number of secured information, keys etc.).

The generation of the executions here depends on a simple substitution of a
protocol of its respective parameters from the space Π to the specification men-
tioned above. Therefore, if we consider a space containing three honest users
A,B,C, then, for example, we can generate the two following executions sub-
stituting A ← a,B ← c and so on, according to the natural conditions precisely
defined in [10].

Two different executions of NSPK are as follows.
Example 4
Σ1

nSPk = (α1
1, α

1
2, α

1
3), where : Σ2

nSPk = (α2
1, α

2
2, α

2
3), where :

α1
1 = (a, {na, ia, kc}, {na}, c, 〈na · Ia〉kc), α2

1 = (c, {nc, ic, kb}, {nc}, b, 〈nc · Ic〉kb),
α1

2 = (c, {na, nc, ka}, {nc}, a, 〈na · nc〉ka), α2
2 = (b, {nc, nb, kc}, {nb}, c, 〈nc · nb〉kc),

α1
3 = (a, {nc, kc}, ∅, c, 〈nc〉kc). α2

3 = (c, {nb, kb}, ∅, b, 〈nb〉kb).

As shown, the first execution is performed between users a and c, where a is
an initiator of a protocol. The second execution is performed between c and b,
where c is an initiator.

Generating such executions (as basic model) in the case of testing one or
a few sessions as it is usually done, a generating a model is not time consum-
ing, therefore, usually no attention is paid to the effectiveness of this part of
verification. However, if we want to verify a protocol for more than a few val-
ues of the parameters, a parallel approach may seem to be necessary in order
to increase the efficiency of the computations. Of course, generating the above
substitutions-executions may be carried out in parallel. Separate threads may
choose initiators in a combinatorial way and generate the executions by choosing
the receivers of an execution for them. Such an approach turns out to be very
efficient. Respective results will be presented and explained in the last section
of this work.

Another phase of the verification method proposed in [17] is generating
respective chains of states coding the executions. According to the concepts pro-
posed in [17], four types of the states encoding steps of executions are defined:

Parallel Bounded Model Checking of Security Protocols 229

1. steps representing particular executions of the steps (as in Example 3). States
of this type will be described by: Si

j , where parameter i defines the number
of step in the appropriate execution of the protocol, and parameter j defines
the number of execution.

2. states representing generation of confidential information by the users (nonces,
encryption keys). These states will be denoted: GX

U , where this state defines
generating a secret X by user U (for example Gna

a denotes generating the
random number na by the user a).

3. states representing the gaining of knowledge about its particular elements
(there might be cryptograms) by the receiver of a particular message. These
states are expressed as KX

U - gaining knowledge about X by user U (for
example Knb

a - gaining by a the number nb.
4. states representing the necessity of having the proper knowledge necessary

for composing and sending a letter in a modeled step, these states will be
tagged PX

U - U must have knowledge about X. For example, P kb
a means that

a must know the key kb.

A method of the automatic generation of chains (sequences) for the execution
steps of a tested protocol will now be described.

If we consider ith-execution of a protocol, and its kth-step αi
k, then we place

the state Si
k in the constructed sequence for this step. Before this state, we

place the states of the PX
Sendi

k
-type (Sendi

k means a sender in a kth-step of a

ith-execution of a protocol) beside the elements, which are in the set Geni
k. We

encode these last ones as the states of GX
Sendi

k
-type, and also place them before

the Si
k state. In the constructed chain, after the state Si

k we place the state KX
U -

type for all information which the user Recik can obtain from the message Lettik
by the use of his own keys. In case of an Intruder there are as many generated
chains as the number of sets of generators for the message Lettik (see [17]).

Let us consider the space of n-executions of a protocol consisting of k-steps.
Algorithm 1, which generates the chains is as follows:

Algorithm 1. Chains of states generation
1 : for i = 1 to n do
2 : for j = 1 to k do
3 : G ← Gi

j

4 : l ← 1
5 : s(l)i

j ← Si
j

6 : Add needed()
7 : Add generated()
8 : Add knowledge()
9 : return si

j = s(1)i
j , . . . , s(l)i

j

10 : end for

11 : end for

As can be seen, the loops 1–11 and 2–10 choose the steps of particular,
considered executions of protocols. Procedures from lines 6, 7 and 8 add to the
sequence the states connected to the needs, generating or gaining the knowledge
by the users.

230 M. Kurkowski et al.

Below, as an example, we present the procedure Add needed() which assigns
the states (connected with the knowledge needed to create a sent letter) to the
chain.

Algorithm 2. Chains of states generation
1 : while Gi

j �= ∅ do
2 : if x ∈ Gi

j then
3 : for t = l to 1 do
4 : s(t + 1)i

j ← s(t)i
j

5 : end for
6 : l ← l + 1
7 : s(1)i

j ← P x
Sendi

j

8 : Gi
j ← Gi

j \ {x}
9 : end if

10 : end while

It must be stressed that all procedures of the assignment of the states can be
performed in parallel by the accessible plots. A suitable synchronicity is necessary
but the obtained experimental results indicate a rather big acceleration of this
verification phase.

3.1 Intruder and Attacks

The definitions introduced before do not include the presence of the Intruder
in the network. In our investigations, we can consider many different models
of Intruder. In this paper, we explore and give experimental results for one of
the versions of a well-known Intruder’s model called Dolev-Yao model [8]. In
our approach, we assume that there is only one Intruder, who actively tries to
deceive the others by executing the protocols against their assumptions. The
Intruder may use any information obtained from a network, and impersonate
other users. Note that the Intruder can compose sent messages contrary to the
idea and assumptions of the protocol. This can be done in many ways described
precisely in [10].

Using this we can generate protocol executions with the Intruder. A good
example is one of the executions of Lowe’s attack upon NSPK Protocol men-
tioned before:

Example 5
α2

1 ι(a)→ b : 〈na · i(a)〉kb
,

α2
2 b → ι(a) : 〈na · nb〉ka

,
α2

3 ι(a)→ b : 〈nb〉Kb
.

In some of such executions an Intruder can appear in an honest role, and
execute the protocol according to the algorithm. However, according to the model
an Intruder can also impersonate the other users, and provided that he knows
them, can use their parameters (keys, nonces) as in the execution from example 5.
We call these last executions the attacking executions. In the final phase of the
verification in the constructed tree of real executions of a protocol, we will search
for the states corresponding to the attacking executions.

Parallel Bounded Model Checking of Security Protocols 231

3.2 Correct Chains of States

Various hypothetical executions of a protocol (see [10]) can be generated in the
above described way. However, some of them cannot be executed at all, and
some cannot be executed by themselves because of lack of suitable knowledge
of users, and especially of an Intruder. The last phase of verification executed
according to the methodology in [17] is constructing chains that encode the real
executions of protocols in the computer networks. These chains will consist of the
states described above. However, of course, not all possible sequences of states
represent the real executions of protocols.

We are now going to define the sequences of states representing the real exe-
cutions of protocols in the networks. These chains correspond to computations
defined in the work [10].

Let Π be a space consisting of a defined number of users and their attributes
(identifiers, nonces, cryptographic keys, etc.). Furthermore, all executions of a
protocol in this space, as well as all the chains of states representing all these
executions have to be considered. Subsequently, in the set of all chains of states
we can define the states which correspond to the runs in the computational
structure from the work [10].

Definition 1. The chain of states s = s1, s2, . . . , sp will be called correct chain
of states if and only if the following conditions hold:

1. if si = Sk
j for some j, k ≤ p, then j = 1 ∨ ∃t<i(st = Sk

j−1) and PreCond(Sk
j)

⊆ {s1, . . . , si−1} ∧ PostCond(Sk
j) ⊆ {si+1, . . . , sp},

2. if si = GX
U , then ∀t�=i(st = GX

U),
3. if si = PX

U , then ∃t<i(st = GX
U ∨ st = KX

U).

The first point provides a proper relation in order to the realization of par-
ticular steps in a given execution. Points 2 and 3 guarantee a proper relation
of knowledge of the users necessary for the realization of particular actions in a
given step of the protocol execution.

In the work [17], a theorem has been given justifying the adequacy of con-
structed chains with runs in the structure from paper [10], which represent the
real executions of protocols in the computer networks.

3.3 Verification Algorithm

Below, Algorithm 3 constructs and searches on the fly a tree of real protocol
executions. It is based on the chains of states encoding particular steps of the
executions of the protocols and is generated in the previous phases. On an ini-
tially empty stack, at first the chains not containing the initial conditions (states
P type) are placed. Respectively the chains representing the subsequent states
according to the conditions defined in the Definition 1 are added. A constructed
tree is controlled during its creation in terms of containing the chains represent-
ing the attacking executions. Creating and searching the tree at the same time

232 M. Kurkowski et al.

finishes up in two cases. Firstly, if one of the created paths contains an attacking
execution, and secondly, if all possibilities are depleted, and none of the paths
represent an attack.

Algorithm 3. Construction and searching a tree
1 : for state in sch do
2 : if (check cond(state, knowledge)) then
3 : stack.push(state)
4 : update knowledge(state)
5 : state.visited = true
6 : if (state.isEnd()) then
7 : print path(stack)
8 : return
9 : else if ¬(state.isEnd()) then

10 : find path(stack, knowledge)
11 : end if
12 : end if

13 : end for

The main part of the algorithm is executed in the function find path which
constructs a path of a potential attack (represented by the sequence of particular
states). In this function the following objects are used: stack - local stack, on
which the following states fulfilling the initial conditions are placed, knowledge -
this function gathers the information about the gained knowledge of all the par-
ties executed in the protocol, state - state in which there is a considered protocol
execution (the information about events which take place in every considered
step of the protocol execution is recorded).

The most important methods and functions used in implementation are as
follows: check cond - checks if the state represented by the appropriate parameter
fulfills the initial conditions (comparing the events with the actual state of the
knowledge), update knowledge depending on the next states added to the stack,
it increases the knowledge of the protocol users.

The executions of a full function find path depend on current checking all the
states. If anyone fulfills the initial conditions, it can be added to the stack. At
the same time, the knowledge of the users is updated, and the state added to
the stack is designed as visited. Finally, the function find path is executed again
taking as the arguments the copy of actual knowledge, and current state of the
stack.

Although the pessimistic time complexity of algorithm is exponential because
of all parameters of the tested protocol: the number of steps, executions, users
and objects used by the users, the obtained and presented experimental results
are very good. The below mentioned results show that presented approach is
nowadays one of the most effective.

It is important to note that all phases of the proposed method of verification:
generation of executions, chains, and construction and searching the tree can be
implemented in parallel.

Parallel Bounded Model Checking of Security Protocols 233

4 Experimental Results and Summary

For protocols NSPK and NSPKLowe, we examined their vulnerability to attack
on authentication and confidentiality. A tree of real executions of the protocol
was constructed starting from states representing the initial steps of the execu-
tions up to the states representing the attack (the last states from executions
corresponding to the attacks). Taking into account the existence of the attack,
we obtained the expected results: an attack exists for the NSPK, and an attack
does not exist for NSPKLowe. However, when considering the effectiveness of
the calculation it can be seen that only parallelization of the above-mentioned
procedures gives us interesting experimental results.

Table 1 shows the experimental results for sequential and parallel implemen-
tation, carried out on a computer equipped with the quad core processor Intel
Pentium D (3000 MHz), 2 GB main memory, and the operating system Linux.
We observe 30 to 40 % speed up while increasing the number of sessions for
protocols NSPK and NPSKLowe, for both executions and chains of states gen-
eration, as well as for the construction and searching the tree. All results are
expressed in seconds.

Summarizing, we developed a method which uses chains of states for repre-
senting executions and automatic verification of security protocols. The proposed
approach enables the testing of the protocol in several steps: the generation of
hypothetical executions of the protocol, their coding, and constructing a tree
of real executions. It is important to note that it provides a feature difficult
to obtain for other methods: the ability to easily parallelize all the phases of
our approach. Therefore, we obtained very good experimental results, especially
worth noting are the excellent results for the examination of executions for mul-
tiple sessions of the protocol. In our opinion, the proposed method is very simple,
intuitive and flexible. The results are promising and lead us to further develop-
ment of the method: survey other protocols, adding of time into consideration, or
considering other types of attacks and other security properties. We also would
like to thank for the practical implementation of our ideas to Pawe�l Dudek.

Table 1. Sequential and parallel experimental results for NSPK and NSPKLowe.

Generating of executions and chains
Implementation Protocol 10 Sessions 20 Sessions 50 Sessions 100 Sessions
Sequential NSPK 0,072 0,344 1,969 8,185
Parallel NSPK 0,066 0,188 1,424 5,659
Sequential NSPKLowe 0,074 0,261 1,793 7,946
Parallel NSPKLowe 0,060 0,210 1,434 5,714

Constructing and searching the tree
Implementation Protocol 10 Sessions 15 Sessions 20 Sessions 25 Sessions
Sequential NSPK 5,300 62,729 351,620 1231,003
Parallel NSPK 3,543 39,420 212,701 778,650
Sequential NSPKLowe 5,339 60,503 350,430 1233,304
Parallel NSPKLowe 3,518 40,288 246,255 765,290

234 M. Kurkowski et al.

References

1. Armando, A., et al.: The avispa tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)

2. Bella, G., Massacci, F., Paulson, L.C.: Verifying the set registration protocols.
IEEE J. Sel. Areas Commun. 20(1), 77–87 (2003)

3. Bella, G., Paulson, L.C.: Using Isabelle to prove properties of the kerberos authen-
tication system. In: Orman, H., Meadows, C. (eds.) Proceedings of the DIMACS
Workshop (1997)

4. Bobulski, J., Kubanek, M.: Person identification system using an identikit picture
of the suspect. Opt. Appl. 42(4), 865–873 (2012)

5. Cohen, E.: Taps: A first-order verifier for cryptographic protocols. In: CSFW’00:
Proceedings of the 13th IEEE Computer Security Foundations Workshop
(CSFW’00), p. 144, Washington, DC, USA, IEEE Computer Society (2000)

6. Comon-Lundh, H., Cortier, V.: Security properties: two agents are sufficient. In:
Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 99–113. Springer, Heidelberg
(2003)

7. Cremers, C., Mauw, S.: Operational Semantics and Verification of Security Proto-
cols. Information Security and Cryptography, pp. 1–155. Springer, Berlin (2012)

8. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–207 (1983)

9. Kacprzak, M., et al.: Verics 2007 - a model checker for knowledge and real-time.
Fundam. Inform. 85(1–4), 313–328 (2008)

10. Kurkowski, M., Penczek, W.: Verifying security protocols modeled by networks of
automata. Fund. Inform. 79(3–4), 453–471 (2007)

11. Kurkowski, M., Penczek, W.: Verifying timed security protocols via translation to
timed automata. Fund. Inform. 93(1–3), 245–259 (2009)

12. Kurkowski, M., Penczek, W.: Applying timed automata to model checking of secu-
rity protocols. In: Wang, J. (ed.) Handbook of Finite State Based Models and
Applications, pp. 223–254. CRC Press, Boca Raton (2012)

13. Lowe, G.: Breaking and fixing the needham-schroeder public-key protocol using fdr.
In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166.
Springer, Heidelberg (1996)

14. Meadows, C.: The nrl protocol analyzer: an overview. J. Logic Program. 26(2),
13–131 (1996)

15. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)

16. Paulson, L.C.: Inductive analysis of the internet protocol tls. ACM Trans. Inf. Syst.
Secur. 2(3), 332–351 (1999)

17. Siedlecka-Lamch, O., et al.: A New Effective Approach for Modelling and Verifi-
cation of Security Protocols. In: Proceedings of CS&P’2012 Humboldt University
Press, Berlin, Germany, pp. 191–202 (2012)

Tools and Environments
for Parallel/Distributed/Cloud

Computing

Development of Domain-Specific Solutions
Within the Polish Infrastructure
for Advanced Scientific Research

J. Kitowski1,2(B), K. Wiatr2, P. Ba�la5,6, M. Borcz5, A. Czyżewski4,
�L. Dutka2, R. Kluszczyński5, J. Kotus4, P. Kustra3, N. Meyer7,

A. Milenin3, Z. Mosurska2, R. Paj ↪ak2, �L. Rauch3,
M. Sterzel2, D. Stok�losa7, and T. Szepieniec2

1 Department of Computer Science, AGH University, Krakow, Poland
2 ACC Cyfronet AGH, AGH University, Krakow, Poland

kito@agh.edu.pl
3 Department of Applied Computer Science and Modelling, AGH University,

Krakow, Poland
4 ETI Faculty, Multimedia Systems Department, Gdansk University of Technology,

Gdansk, Poland
5 Interdisciplinary Centre for Mathematical and Computational Modelling,

University of Warsaw, Warsaw, Poland
6 Department of Mathematics and Computer Science,

Nicolaus Copernicus University, Torun, Poland
7 Poznan Supercomputing and Networking Center, Poznan, Poland

Abstract. The Polish Grid computing infrastructure was established
during the PL-Grid project (2009–2012). The main purpose of this Project
was to provide the Polish scientists with an IT basic platform, allow-
ing them to conduct interdisciplinary research on a national scale, and
giving them transparent access to international grid resources via inter-
national grid infrastructures. Currently, the infrastructure is maintained
and extended within a follow-up PLGrid Plus project (2011–2014). Its
main objective is to increase the potential of the Polish Science by pro-
viding necessary IT services for research teams in Poland, in line with
European solutions. The paper presents several examples of the domain-
specific computational environments, developed within the Project. For
particular environments, specialized IT solutions are prepared, i.e. dedi-
cated software implementation and infrastructure adaptation, suited for
particular researchers groups’ demands.

Keywords: PL-Grid · PLGrid Plus · Domain-specific solutions · Com-
puting infrastructure · Computational environment

1 Introduction

In the last two decades a number of big infrastructure (grid) projects and initia-
tives have been developed in US, Europe and Japan based on EU, national and

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 237–250, 2014.
DOI: 10.1007/978-3-642-55224-3 23, c© Springer-Verlag Berlin Heidelberg 2014

238 J. Kitowski et al.

other resources. Currently, in Europe one of the important initiatives for devel-
oping European computing infrastructure is performed by the EGI.eu organiza-
tion [1] with one of its main outcome – the EGI InSPIRE project [2]. EGI.eu is
a not-for-profit foundation established to coordinate and manage the European
Grid Infrastructure (EGI) federation on behalf of its participants: National Grid
Initiatives (NGIs) and European International Research Organizations (EIROs).
The NGIs are organizations set up by individual countries to manage the com-
puting resources they provide to the European Grid Infrastructure (EGI). Each
of the European countries (and some outside) has been involved in developing
their own NGI in order to become a part of the European research space.

In the paper, we shortly describe the process of building the national com-
puting infrastructure for the Polish scientists, allowing them to conduct inter-
disciplinary research. Next, we move to the domain specific solutions created
within this infrastructure and we present several examples of scientific results.
In the conclusions, we make a summary of the development together with future
trends of extension.

2 Polish Grid Infrastructure

The Polish Grid (PL-Grid) Infrastructure [3] has been created during the PL-
Grid project (2009–2012) [4–6], when the basic infrastructure has been devel-
oped. Soon, in March 2010, the PL-Grid infrastructure turned out to be the
first operational NGI in Europe. Since then, the users not only were able to
conduct interdisciplinary research on a national scale, but also they have been
given transparent access to international grid resources. Next, the PLGrid Plus
project (2011–2014) [7] was started, aiming at the infrastructure extension with
specific environments, solutions and services, according to identified needs of dif-
ferent groups of scientists (cf. Fig. 1). Both projects have been maintained by the
Polish Grid Consortium and co-funded by the European Regional Development
Fund as part of the Innovative Economy program.

It is worth to mention that access to computing resources of the PL-Grid
Infrastructure is free to Polish researchers and all others engaged in scientific
activities associated with a university or research institute in Poland.

3 Domain-Specific Solutions

Contemporary science has great need for e-Infrastructures: networking, data
storage, computing. However, from the point of view of a domain scientist, using
modern computing systems, services and tools often becomes relatively diffi-
cult. Therefore, the scientist requires assistance and close collaboration with
service providers. Due to diversity of scientists’ requirements, preparation of
domain-specific computing environments, i.e., solutions, services and extended
infrastructure (including software), tailored to the needs of different groups of
scientists (see Fig. 1) has been undertaken in order to fit the PL-Grid Compu-
tational Infrastructure to the problems being a subject of research.

Development of Domain-Specific Solutions Within the Polish Infrastructure 239

Fig. 1. The layered view of the PL-Grid infrastructure.

To help researchers from different areas of science understand and use the
potential of the Polish Grid Infrastructure and to define their requirements
and expectations, the following 13 pilot communities have been included in the
PLGrid Plus project and – at the same time – involved in the infrastructure
development: AstroGrid-PL, HEPGrid, Nanotechnologies, Acoustics, Life Sci-
ence, Quantum Chemistry and Molecular Physics, Ecology, SynchroGrid, Ener-
getics, Bioinformatics, Health, Materials, and Metallurgy.

Introduction of domain-oriented solutions for these 13 communities opens
the scope of use of development results to various research groups. However, the
scope is not limited to the selected domains. Subsequently, within the Project it
is foreseen to launch more IT services, also for teams of researchers represent-
ing other scientific disciplines, who plan experiments supported by large-scale
simulations or work with large databases (collections) of data.

4 Use Cases

Considering the fact that there are as many as 13 pilot communities included in
the Project, it is impossible to provide the detailed view of all domain services
already developed in the infrastructure or being planned for implementation.
Therefore, only four sample use cases are presented within this section, intro-
ducing the research conducted by the scientists in Bioinformatics, Metallurgy,
Acoustics and Ecology domains.

4.1 Bioinformatics – Processing Genetic Data

The modern life sciences research widely uses large data sets, either stored in
the existing databases or obtained in high throughput experiments. The data

240 J. Kitowski et al.

is of different type and origin but its amount is significant and is rapidly grow-
ing as experimental equipment becomes more affordable. In result, we observe
increasing demand for disk space and computer power to store and process data.
Emerging technologies, such as Next Generation Sequencing (NGS), put addi-
tional stress on this demand. The amount of data, which biologists have to
handle, is usually too big to be stored and processed using desktop or even more
powerful single computers in the laboratory. Up to now, the research teams were
building their own infrastructures, sometimes quite extensive ones, to store and
process data. In addition, they had to provide dedicated IT staff to operate and
maintain it. Building and maintaining dedicated computer infrastructure, capa-
ble to process data in required time, is very costly and simply not feasible. In
addition, in the last few years we have observed that high throughput systems
are widely spread and are used by smaller groups or even become diagnostics
tools at hospitals. Thus, new solutions such as Grids are needed.

From its beginning, the Grid has been considered as possibility to provide
disk space and computational resources for the life sciences community. There
has been number of different grid infrastructures used. The solution built using
UNICORE middleware [8] is an example of the most successful one [9].

UNICORE infrastructure in PL-Grid is built based on the European Middle-
ware Initiative (EMI) [10] releases, which are distributed from EMI repository
as RPM packages [11]. This allows for easy installation and configuration with
only few additional dependencies.

The UNICORE has typical 3-layer architecture, covering target system
infrastructure, middleware and user interfaces. There are three types of interfaces
available for the end user: UNICORE Rich Client (URC), UNICORE Comman-
dline Client (UCC) and High Level API (HiLA).

For the data transfer between user workstation and grid infrastructure, and
between grid nodes, a new protocol called UNICORE File Transfer Protocol
(UFTP) [12] is used.

Answering the needs of the groups running genetic research and thus fac-
ing the problem of storing and processing large data sets coming from the high
throughput sequencing, we have created dedicated solution allowing to store
and process genetic data on the Grid. This way we have integrated GS FLX
Instrument available at the Collegium Medicum, N. Copernicus University with
the PL-Grid distributed infrastructure as the data storage and processing sys-
tem [13]. Similar work for the Illumina sequencer located at the Warsaw Medical
University is in progress and should be finalized soon.

During the sequencing reaction, digital images are captured by the CCD
camera. The raw image data from a single experiment (approximately 30 GB in
size) is than converted with the use of GS Run Processor (Roche Diagnostics)
into base-called results. Reports of the base-calling analysis are generated with
GS Reporter (Roche Diagnostics). The obtained reads are aligned to a revised
Cambridge Reference Sequence (rCRS) with the use of a GS Reference Mapper
(Roche Diagnostics), which enables mtDNA mutations to be detected. For this
process, we have developed a workflow, which consists of the abovementioned
programs from the FLX program set.

Development of Domain-Specific Solutions Within the Polish Infrastructure 241

First, the GS Run Processor processes raw images generated by the FLX
Instrument (Roche Diagnostics). This data, which can exceed tens of gigabytes, is
put into the UNICORE storage in an automatic way. Once a new file or directory
with data is created as a result of experiment, the UNICORE Commandline
Client program is used to put automatically data to the PL-Grid UNICORE
target system storage. Because of the size of data, a UFTP protocol is used for
transfers. Appropriate access rights to the group storage ensure privacy. For the
details of the system, refer to Fig. 2.

Fig. 2. Schematic view of the data processing system.

The GS Run Processor has several components. We run the runAnalysisPipe
script for full processing of the acquired data and use the GS LAUNCH MODE
environmental variable to set MPI mode enabling us to use multiple worker
nodes. The next part of the workflow can be run simultaneously on the available
resources. The GS Reporter generates all reports files from files created in the
previous job. The GS Reference Mapper consists of two steps, which create the
mapping project and align the reads against a reference sequence.

242 J. Kitowski et al.

The usage of the storage and processing power of the distributed infrastruc-
tures allowed for significant reduction (from several days to hours) of the analy-
sis time, which was the bottleneck in the process. Available distributed storage
allowed for tracking multiple data, which opened up field for detailed statistical
analysis. The data processing has been automated and simplified. Practically
all stages of the data processing are run automatically, reducing manual work
and unnecessary delays. Created solution allows biological and medical users to
focus on their research instead of mastering computer science details necessary
to process data.

4.2 Metallurgy – Grid-Based Numerical Modeling Dedicated to
Simulation of Metallurgical Production Processes

Numerical simulations, implemented and applied in computational science dedi-
cated to metallurgy, became very sophisticated and computationally demanding.
In many cases they require huge computing resources as well as creation of new
algorithms for innovative hardware architectures. Therefore, the main objec-
tive of this work is design and implementation of new grid-based software in
form of Client-Server applications, which are dedicated to numerical simulation
of sophisticated metallurgical production processes. Currently developed grid-
based applications are used to simulate the following industrial processes based
on metal forming: (a) Continuous Steel Casting (CSC), which is fundamental
production process of steel manufacturing [14]; proposed computer application
is based on ProCast software, allowing reliable modeling of casting and predic-
tion of material properties, (b) Extrusion, being applied in production of metallic
profiles as well as in production of surgical threads [15]; the computational service
offers 3D simulations implemented as in-house source codes, while there exists
no professional dedicated software, (c) Welding and other processes based on
liquid steel – this kind of sophisticated phenomena cannot be applied in indus-
trial practice because of its high computational cost [16], hence usage of grid
infrastructure is essential, as it aims to avoid these restrictions, (d) Stamping
concerning innovative metallic materials like DP, Mart or TRIP steels, for which
concurrent or upscaling multiscale models with high computational demand are
required. The main objective of services being developed, based on Statistically
Similar Representatives Volume Element [17] and Monte Carlo simulations [18],
is to reduce high computational cost of multiscale simulations.

For the purposes of this paper, numerical simulations of extrusion process in
3D are selected and described in some details.

The proposed grid-based software is devoted to simulation of extrusion of thin
profiles and rods of special alloys of magnesium, containing calcium supplements
(MgCa08, Ax30). These alloys are characterized by extremely low technological
plasticity during metal forming. For this reason, the range of parameters of
extrusion, not leading to the fraction of the wire during deformation, is not
wide. Therefore, the dedicated mathematical model of the processes of extrusion,
taking into account the processes of fracture, has been proposed. This model is
based on the Finite Element Method (FEM).

Development of Domain-Specific Solutions Within the Polish Infrastructure 243

In the present work the material is considered as incompressible rigid-viscopla-
stic continua and elastic deformation are neglected.

The reliable numerical simulation gives the possibility of production tech-
nology design through optimization. Because of need of a number of 3D FEM
simulations, parallelization of the model is developed [19]. This offers opportu-
nity for parametric study, including a range of possible changes in the pressing
speed, extrusion temperature and different geometry of the channel profile. All
generated variants are performed in parallel by using grid infrastructure and on
the basis of obtained results the optimal solution is selected.

Example of geometry optimization for profile extrusion is shown in Fig. 3.
Optimal variant for extrusion was selected on the basis of the smallest torsion
and bending of the profile.

Fig. 3. Example of optimization in Extrusion-Grid software for PL-Grid computation
system.

The programs were developed as Extrusion3D computing service. Implemen-
tation of proposed parallel version is based on the Intel Fortran compiler and
OpenMP library, which allowed using full capabilities of grid infrastructure com-
puting nodes. The calculations were carried out in parallel way without any bar-
rier, thus optimization time is equal to the time of simulation of one particular
case, offering significant reduction of computational time.

Performed optimization was verified experimentally in the laboratory. The
extrusion of rods was performed in accordance with the calculated parameters
(temperature, velocity of extrusion, shape of die). The resulting rods contain no
fracture and have high mechanical properties.

4.3 Acoustics – New Services for Urban Planning, Research and
Education

This interdisciplinary domain is extremely important in many areas of sci-
ence, technology and engineering. The main purpose of the presented design

244 J. Kitowski et al.

is twofold, namely: providing detailed information about the noise threats that
occur every day in city areas and preventing the noise induced hearing loss,
especially among young people. The assessment of environmental threats is per-
formed based on online data, acquired through a grid of engineered monitoring
stations, employing some selected psychoacoustic properties of the human hear-
ing system. Another aim is to make available efficient computational tools for
the community of acousticians engaged in the noise threat combating.

In the “Acoustics” domain grid two kinds of services were prepared. The first
one can be used to calculate the noise map of large city areas and it is called
the “Noise Map” [20]. The second one, called the “Hearing” service, enables
simulations of noise impact on the human hearing system.

Two scenarios of use can be distinguished. In the first scenario, a user has
to provide the input data by uploading it into the storage. The input data has
to be prepared by the user locally with dedicated software. The user specifies
the location of input data in configuration options of the program. The user
manages the computations with PL-Grid tools: QCG text client or Unicore.
When calculation process is completed, the user downloads the output data and
performs post-processing and visualization on the local terminal. In the second
scenario, the dynamic noise map and estimate of influence of noise on hearing
are produced periodically.

The engineered “Noise Map” service is intended for creating maps of noise
threats for roads, railways and industrial sources. Integration of the software
service with the network of distributed sensors brings a possibility of making
automatic updates of noise maps for a specified time period. Illustration of an
application of the developed solution is the urban area noise mapping. The frag-
ment of the calculated noise map of the city of Gdansk is presented in Fig. 4. The
map can be updated completely within relatively short period of time, employ-
ing the PL-Grid Infrastructure. Operations are performed employing a dedicated
noise prediction model, optimized for a computer cluster. In addition, predicted
maps may be adjusted, using real noise level measurements.

Fig. 4. The dynamic noise map.

The unique feature of the developed “Hearing” service is estimation of audi-
tory effects, which are caused by the exposure to excessive noise. The main part
of the “Hearing” service is the Psychoacoustical Noise Dosimeter, which is based

Development of Domain-Specific Solutions Within the Polish Infrastructure 245

on utilizing the modified psychoacoustic model of hearing. The primary function
of the Dosimeter is to estimate, in a real time, auditory effects, which are caused
by exposure to noise. Owing to that, it is possible to recognize a character of the
auditory threshold shift for a given type of noise. The user can define detailed
conditions of exposure to noise such as: noise level, exposure time and energy
distribution in the frequency domain. The calculations by means of real sound
data are also possible. The outcomes are presented in a form of the cumulated
noise dose and the characteristic of temporary shift of the hearing threshold.

An example of noise-induced temporary threshold shift (TTS) simulation
during outdoor concert was presented in Fig. 5 [21]. The considered auditory
area was of 100 × 100 m. The stage width was 20 m. Two loudspeakers were
located at both sides of the stage. The assumed duration of the concert was 3
hours. The spectrum distribution of the acoustic energy and TTS effect evoked
by the exposure to music were expressed in critical bands of hearing as a function
of the distance from the stage. The observed temporary threshold shift exceeding
20 dB extends in radius of about 20 m from the center of the stage. The hearing
recovery time required for the people being present in this area is about 450 min.

Fig. 5. Spectrum distribution of acoustic energy of noise source (left) and TTS effect
evoked by the exposure to that noise expressed in critical bands as a function of distance
from the noise source (right).

The infrastructure and the software developed can be utilized for urban or
sound enforcement planning, and for research and education purposes.

4.4 Ecology – Phenology Observations Automated by IT Platforms

Phenology is the study of the timing of life cycle events of plants and animals [22].
The presence of advanced weather forecasting systems pushed aside this area of
research, however phenological records can be a useful proxy for temperature
analysis in historical climatology [23]. Phenological observations have a long
tradition in Poland and are one of the oldest in Europe [24].

The main objective of the Ecology domain grid within PLGrid Plus project is
to develop the Automatic Phenology Observations Service (APheS) that gives an

246 J. Kitowski et al.

opportunity to observe the flora, together with important processes occurring in
it. The service will be based on the KIWI Remote Instrumentation Platform [25].
The KIWI Platform (as a successor of the Virtual Laboratory [26]) is a frame-
work for building remote instrumentation systems. The platform provides a set of
components to control and manage scientific equipment or sensors like cameras,
weather, air pollution and water flows sensors and others. All the equipment con-
nected to the KIWI Platform can be controlled remotely with one unique user
interface. It allows users to design and run so-called observation workflows. It is
possible to set up a sequence of operations starting from data acquisition, data
processing and finally visualization. This workflow can be launched periodically
by the KIWI Workflow Manager component with a desired frequency and time.

Devices and sensors produce different output data. Most of the sensors pro-
duce numerical data, which is to be visualized by the PLGrid Plus Ecogrid Web
Portal. To make the system flexible, we have designed one common and generic
interface for retrieving data from the instruments using OGC [27] standards with
the same interface used when dealing with different equipment.

The ApheS service will provide a set of meteorological sensors and KIWI Eye
monitoring system, cf. Fig. 6.

Fig. 6. Automatic phenology observations – infrastructure.

All the sensors and devices composing APheS are installed on site chosen by
a scientist from National Park of Wielkopolska and National Research Institute
of Meteorology and Water Management, consulted by experts from the natural

Development of Domain-Specific Solutions Within the Polish Infrastructure 247

sciences domain. Client side tools can be used to browse all data freely and
compare different data sets with each other in elastic manner. Different views
are to be provided for meteorological data with high responsiveness (using AJAX
technology [28]) – allowing a user for manipulation of views. Another view will
be available for phenology data. This is due to the nature of work with great
number of graphical data that needs to be compared not only with other pictures,
but also confronted with meteorological data.

Experts from the Institute of Meteorology and Water Management – National
Research Institute and Botanical Gardens in Poznan, a phenology Research Insti-
tute of Adam Mickiewicz University keep the data gathered under constant sur-
veillance – examining their accuracy, analyzing trends for any anomaly indicating
problems with equipment.

There are several scenarios designed to fully utilize installation’s potential
and provide scientists with data, otherwise requiring great human effort to
acquire. Among them are: defining: phenological year parts, climate local to
the data-gathering site, phenophases for plants cultivated on the nearby arable
area, radiation conditions’ influence on plants growth, relation between sum of
heath and plants growth, examining effects of cultivation conditions on duration
time of vegetation, determining relation between air humidity and wild plants
growth, and much more potentially.

For each scenario, to deliver results, it takes analysis of raw and post processed
meteorological data and/or photos. As a result of studies, pictures accessible
through KIWI system may be tagged with information determined by the sci-
entist. This brings information sharing to another level – results produced by
other studies are accessible not only e.g. through articles, but are spread through
whole system’s data with tags, approved by the scientists. This approach makes
new experiments easier, as they are built on top of results from other scenarios,
directly linked with raw data.

Automatic Phenology Observations Service described above composes unique
and innovative tool, introducing phenological observations to automated, remote
measurements. This solution, polished and installed within PLGrid Plus project,
is of great value, especially as it was developed in close collaboration with the
scientists from natural sciences domain. Data acquired by those tools is both
of high quality and meaningful from the scientific point of view. Generic design
of KIWI platform, on which APheS was built, allows for adapting solution pre-
sented for other sensors and devices, also from other domains.

5 Summary

The described process of developing the PL-Grid Infrastructure by the PL-Grid
Consortium in the framework of PL-Grid and PLGrid Plus projects fits well with
the need of the development of the advanced IT infrastructure designed for the
implementation of modern scientific research, and providing Polish researchers
with capability for collaboration with international research organizations.

The PL-Grid Infrastructure does not mean just computers and storage
resources – installed in the five partner centers that are part of the PL-Grid

248 J. Kitowski et al.

Consortium. The infrastructure also includes specialized software as well as the
services and tools – developed by the PL-Grid Consortium – which support both
users and administrators of computers. Access to the PL-Grid Infrastructure
enables scientists to increase the scale of the calculations carried out within the
scientific research, which would be impossible to achieve using separate com-
puters, and to place demands for resources and services available within the
infrastructure.

The presented approach proves that the most important goal of the PLGrid
Plus project – expansion of the existing computational infrastructure towards
domain-specific solutions for research teams – allowed for conducting more effec-
tive and valuable research. The results of most of these scientific calculations can
be applied in various branches of science and technology.

Pilot introduction of 13 domain grids opened the scope of use of the Project
results by various research communities. Moreover, by using the developed gen-
eral base services and experience in building the domain ones, the integration of
new groups should proceed smoothly and at much lower cost.

In the future, we plan to focus on some additional specific domains and wider
offerings on cloud [29–31] and big data [32,33] services. Modernization of both,
software environments (i.e. toward EMI components) and hardware solutions
(with more GPGPU and Intel Phi) are foreseen. We also plan to reuse results of
our previous achievements like, for example, [34] and [35].

Acknowledgements. This work was made possible thanks to the PL-Grid and PLGrid
Plus projects POIG.02.03.00-00-007/08-00 and POIG.02.03.00-00-096/10. This research
was supported in part by the PL-Grid Infrastructure. Acknowledgments are due to all
members of the PL-Grid Consortium.

References

1. European Grid Infrastructure web site, http://www.egi.eu
2. EGI InSPIRE Project web site, http://www.egi.eu/about/egi-inspire/
3. The Polish Grid Infrastructure web site, http://www.plgrid.pl
4. The PL-Grid project web site, http://projekt.plgrid.pl
5. Kitowski, J., et al.: Polish computational research space for international scientific

collaborations. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski,
J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 317–326. Springer, Heidelberg
(2012)

6. Bubak, M., Szepieniec, T., Wiatr, K. (eds.): PL-Grid 2011. LNCS, vol. 7136.
Springer, Heidelberg (2012)

7. The PLGrid Plus project web site, http://www.plgrid.pl/plus
8. UNICORE middleware website, http://unicore.eu
9. Bala, P., Baldridge, K., Benfenati, E., Casalegno, M., Maran, U., Rasch, K.,

Schuller, B.: UNICORE - a middleware for life sciences grids. In: Cannataro, M.
(ed.) Handbook of Research on Computational Grid Technologies for Life Sciences,
Biomedicine and HealthCare, IGI 2009, pp. 615–643 (2009)

10. European Middleware Initiative (EMI) website, http://www.eu-emi.eu
11. EMI Software Repository, http://emisoft.web.cern.ch/emisoft

Development of Domain-Specific Solutions Within the Polish Infrastructure 249

12. Schuller, B., Pohlmann, T.: UFTP: high-performance data transfer for UNICORE.
In: Romberg, M., Bala, P., Müller-Pfefferkorn, R., Mallmann, D. (eds.) Proceedings
of UNICORE Summit 2011, Forschungszentrums Jülich, IAS Series, vol. 9, pp.
135–142 (2011). ISBN 978-3-89336-750-4

13. Borcz, M., Kluszczyński, R., Skonieczna, K., Grzybowski, T., Ba�la, P.: Processing
the biomedical data on the grid using the UNICORE workflow system. In: Cara-
giannis, I., et al. (eds.) Euro-Par Workshops 2012. LNCS, vol. 7640, pp. 263–272.
Springer, Heidelberg (2013)

14. Buczek, A., Burbelko, A., Drożdż, P., Dziarmagowski, M., Falkus, J., Karbown-
iczek, M., Kargul, T., Mo�lkowska-Piszczek, K., Rywotycki, M., So�lek, K., Śl ↪ezak,
W., Telejko, T., Tr ↪ebacz, L., Wielgosz, E.: Modelling of continuous casting process
of steel: monograph. Wydawnictwo Naukowe Instytutu Technologii Eksploatacji
(2012)

15. Milenin, A., Kustra, P., Seitz, J.-M., Bach, F.-W., Bormann, D.: Production of thin
wires of magnesium alloys for surgical applications. In: Conference Proceedings of
the Wire Association International, pp. 61–70 (2010)

16. Siwek, A., Rońda, J., Banaś, K.: Model of convective heat transfer in keyhole mode
laser welding. Comput. Meth. Mater. Sci. 11(1), 179–184 (2011)

17. Rauch, L., Pernach, M., Bzowski, K., Pietrzyk, M.: On application of shape coef-
ficients to creation of the statistically similar representative element of DP steels.
Comput. Meth. Mater. Sci. 11(4), 531–541 (2011)

18. Szyndler, J., Madej, L.: Monte Carlo method in application to generation of the dig-
ital material representation. Hutnik - Wiadomości Hutnicze 80(2), 172–176 (2013)

19. Milenin, A., Kustra, P.: Optimization of extrusion and wire drawing of magnesium
alloys using the finite element method and distributed computing. In: Proceedings
of the InterWire 2013 International Conference (in press)

20. Czyzewski, A., Szczodrak, M., Kotus, J.: Creating acoustic maps employing super-
computing cluster. Arch. Acoust. 36(2), 124 (2011)

21. Kotus, J., Szczodrak, M., Czyzewski, A., Kostek, B.: Distributed system for noise
threat evaluation based on psychoacoustic measurements. Metrol. Meas. Syst.
XIX, 219–230 (2012)

22. About Phenology. http://www.usanpn.org/about/phenology. Accessed 28 April
2010

23. Molga, M.: Meteorologia rolnicza. PWRiL (1983)
24. Piotrowicz, K.: Historia obserwacji fenologicznych w Galicji. IMiGW (2007)
25. KIWI Remote Instrumentation Platform, http://kiwi.psnc.pl/
26. Virtual Laboratory PSNC. http://vlab.psnc.pl/
27. OGC - Open Geospatial Consortium, http://www.opengeospatial.org/
28. Ajax Technology, https://en.wikipedia.org/wiki/Ajax (programming)
29. Kryza, B., Król, D., Wrzeszcz, M., Dutka, L., Kitowski, J.: Interactive cloud data

farming environment for military mission planning support. Comput. Sci. 13(3),
89–100 (2012)

30. Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Cost- and deadline-constrained
provisioning for scientific workflow ensembles in IaaS clouds. In: SC’12 Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis, Article No. 22. IEEE Computer Society Press, Los Alamitos
(2012). ISBN: 978-1-4673-0804-5

31. Bubak, M., Kasztelnik, M., Malawski, M., Meizner, J., Nowakowski, P., Varma, S.:
Evaluation of Cloud Providers for VPH Applications. Accepted for CCGrid 2013
(2013)

250 J. Kitowski et al.

32. S�lota, R., Król, D., Ska�lkowski, K., Orzechowski, M., Nikolow, D., Kryza, B.,
Wrzeszcz, M., Kitowski, J.: A toolkit for storage QoS provisioning for data-intensive
applications. Comput. Sci. 13(1), 63–73 (2012)

33. S�lota, R., Nikolow, D., Kitowski, J., Krol, D., Kryza, B.: FiVO/QStorMan seman-
tic toolkit for supporting data-intensive applications in distributed environments.
Comput. Inf. 31, 1003–1024 (2012)

34. Dutka, L., Kitowski, J.: Application of component-expert technology for selection
of data-handlers in CrossGrid. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J.,
Volkert, J. (eds.) Euro PVM/MPI 2002. LNCS, vol. 2474, pp. 25–32. Springer,
Heidelberg (2002)

35. Marco, J., Campos, I., Coterillo, I., et al.: The interactive european grid: project
objectives and achievements. Comput. Inform. 27(2), 161–171 (2008)

Cost Optimization of Execution
of Multi-level Deadline-Constrained

Scientific Workflows on Clouds

Maciej Malawski1(B), Kamil Figiela1, Marian Bubak1,2,
Ewa Deelman3, and Jarek Nabrzyski4

1 Department of Computer Science, AGH, al. Mickiewicza 30, 30-059 Kraków, Poland
{malawski,kfigiela,bubak}@agh.edu.pl

2 ACC CYFRONET AGH, ul. Nawojki 11, 30-950 Kraków, Poland
3 USC Information Sciences Institute,

Admiralty Way, Marina Del Rey, CA 4676, USA
deelman@isi.edu

4 Center for Research Computing, University of Notre Dame, Notre Dame, IN, USA
naber@nd.edu

Abstract. This paper introduces a cost optimization model for scien-
tific workflows on IaaS clouds such as Amazon EC2 or RackSpace. We
assume multiple IaaS clouds with heterogeneous VM instances, with lim-
ited number of instances per cloud and hourly billing. Input and output
data are stored on a Cloud Object Store such as Amazon S3. Applica-
tions are scientific workflows modeled as DAGs as in the Pegasus Work-
flow Management System. We assume that tasks in the workflows are
grouped into levels of identical tasks. Our model is specified in AMPL
modeling language and allows us to minimize the cost of workflow exe-
cution under deadline constraints. We present results obtained using our
model and the benchmark workflows representing real scientific applica-
tions such as Montage, Epigenomics, LIGO. We indicate how this model
can be used for scenarios that require resource planning for scientific
workflows and their ensembles.

Keywords: AMPL optimization · Cloud computing · Scientific
workflows

1 Introduction

Nowadays, science requires processing of large amounts of data and use of hosted
services for compute-intensive tasks [10]. Cloud services are used not only to
provide resources, but also for hosting scientific datasets, as in the case of AWS
public datasets [2]. Scientific applications that run on these clouds have often
the structure of workflows or workflow ensembles that are groups of inter-related
workflows [16]. Infrastructure as a Service (IaaS) cloud providers offer services,
where virtual machine instances differ by performance and price [7]. Planning

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 251–260, 2014.
DOI: 10.1007/978-3-642-55224-3 24, c© Springer-Verlag Berlin Heidelberg 2014

252 M. Malawski et al.

scientific experiments requires optimization decisions that take into account both
execution time and cost.

Research presented in this paper can be seen as a step towards develop-
ing a cloud resource calculator for scientific applications in the hosted science
model [10]. Specifically, we address the cost optimization problem of large-scale
scientific workflows running on multiple heterogeneous clouds, using mathemat-
ical modeling with AMPL [12] and mixed integer programming. This approach
allows to describe the model mathematically and use a set of available optimiza-
tion solvers. On the other hand, an attempt to apply this method to the general
problem of scheduling large-scale workflows on heterogeneous cloud resources
would be impractical due to the problem complexity, therefore simplified models
need to be developed. In our previous work [15], we used a similar technique to
solve the problem where the application consists of tasks that are either identical
or vary in size within a small range. As observed in [4,11], large-scale scientific
workflows often consist of multiple parallel stages or levels, each of which has
a structure of bag of tasks, i.e. the tasks in each level are similar. In the case
of large workflows, when the number of tasks in the level is high, it becomes
more practical to optimize the execution of the whole level instead of looking
at each task individually, as many scheduling algorithms do [17]. Therefore, in
this paper, we extend our model to deal with applications that are workflows
represented as DAGs consisting of levels or layers of uniform tasks.

After outlining the related work in Sect. 2, we introduce the application and
infrastructure model in Sect. 3. In Sect. 4 we provide the problem formulation in
AMPL. Section 5 describes the evaluation of our model on a set of benchmark
workflows, while Sect. 6 gives conclusions and future work.

2 Related Work

Our work is related to heuristic algorithms for workflow scheduling on IaaS
clouds, such as the ones described in [1,3,5,17]. Our infrastructure model differs
in that we assume multiple heterogeneous clouds with object storage attached to
them, instead of individual machines with peer-to-peer data transfers between
them. Instead of scheduling each task individually, our approach proposes a
global optimization of placement of workflow tasks and data.

The deadline-constrained cost optimization of scientific workloads on hetero-
geneous IaaS described in [6] addresses multiple providers and data transfers
between them, where the application is a bag of tasks. The global cost mini-
mization problem on clouds, addressed in [18] focuses on data transfer costs and
does not address workflows. Other approaches presented in [8,14] consider unpre-
dictable dynamic workloads on IaaS clouds and optimize the objectives such as
cost, runtime or utility function by autoscaling the resource pool at runtime.

Pipelined workflows consisting of stages are addressed in [19], where the
processing model is a data flow and multiple instances of the same workflow are
executed on the same set of cloud resources. Our work is different in that our
goal is cost optimization instead of meeting the QoS constraints.

Cost Optimization of Execution of Scientific Workflows on Clouds 253

3 Application and Infrastructure Model

Fig. 1. Example application structure

We assume that a workflow is divided into
several levels (layers) that can be executed
sequentially and tasks within one level
do not depend on each other (see Fig. 1).
Each layer represents a bag of tasks that
can be partitioned in several groups (e.g.
application A, B, etc.) that share compu-
tational cost and input/output size. We
assume that only one task group is exe-
cuted on a specific cloud instance (VM).
This forbids instance sharing between
multiple layers, which means that each
application needs its own specific VM
template.

Similarly as in [15], we assume multi-
ple heterogeneous cloud IaaS infrastruc-
tures such as Amazon EC2, RackSpace or
ElasticHosts. Clouds have heterogeneous VM instance types, with limits on the
number of instances per cloud, e.g. 20 for EC2, 15 for RackSpace, etc. Input and
output data are stored on Cloud Object Store such as Amazon S3 or RackSpace
CloudFiles. In our model, all VM instances are billed per hour of usage, and
there are fees for data transfers. In the model we can also have a private cloud
where costs are set to 0.

4 Problem Formulation Using AMPL

To perform optimization of the total cost, Mixed Integer Problem (MIP) is for-
mulated and implemented in A Mathematical Programming Language (AMPL)
[12]. AMPL requires us to specify input data sets and variables to define the
search space, as well as constraints and objective function to be optimized.

Input data. The formulation requires the following input sets, which represent
the infrastructure model, in a similar way as we approached the problem in [15]:

– S = {s3, cloudfiles} – defines available cloud storage sites,
– P = {amazon, rackspace, . . .} – defines possible computing cloud providers,
– I = {m1.small, . . . , gg.1gb, . . .} – defines instance types,
– PIp ⊂ I – instances that belong to provider Pp,
– LSs ⊂ P – compute cloud providers that are local to storage platform Ss.

Each instance type Ii is described by the following parameters:

– pI
i – fee in $ for running instance Ii for one hour,

– ccui – performance of instance in CloudHarmony Compute Units (CCU) [9],

254 M. Malawski et al.

– pIout
i and pIin

i – price for non-local data transfer to and from the instance, in
$ per MiB (1 MiB = 1024 ∗ 1024 B).

Storage sites are characterized by:

– pSout
s and pSin

s characterize price in $ per MiB for non local data transfer.

Additionally we need to provide data transfer rates in MiB per second between
storage and instances by defining function ri,s > 0 .

Our application model is different from the one in [15] because it groups tasks
into layers:

– L – set of layers,
– G – set of tasks groups,
– Gl – set of tasks groups belonging to layer l,
– Atot

t – number of tasks in group t,
– txt – execution time in hours of a single task of group t on 1 CCU machine,
– din

t and dout
t – data size for input and output of one task t in MiB,

– pR – price per request for queuing service, such as Amazon SQS, required to
execute a single task,

– tD – total time for completing workflow (deadline).

Auxiliary parameters. A set of precomputed parameters, which are derived from
the main input parameters of the model includes:

– tnet
i,s = din+dout

ri,s·3600 – transfer time: time for data transfer between Ii and Ss,
– tui,s = tx

ccui
+ tnet

i,s – unit time: time for processing a task on instance Ii using
storage Ss that includes computing and data transfer time (in hours),

– cT
i,s = (dout ·(pIout

i +pSin
s)+din ·(pSout

s +pIin
i)) – cost of data transfer between

instance Ii and storage Ss,
– Iidx

i – set of possible instance Ii indexes (from 0 to nImax
i − 1).

Variables. Variables that will be optimized and define the solution space are:

– At,i,x – binary, 1 iff (if and only if) instance Ii with index x is launched to
process task group Gt, otherwise 0;

– Ht,i,x – int, for how many hours is instance launched;
– Tt,i,x – int, how many tasks of Gt are processed on that instance,
– Dt

l – actual computation time for Ll,
– Dl – int, maximal number of hours that instances are allowed to run in Ll.

Objectives. Cost of running one task including instance and transfer cost is:
(
tnet + tu

) · pI + din · (pSout + pIin
)

+ dout · (pIout + pSin
)

+ pR, (1)

while the objective function represents the total cost of running multiple tasks
of the application on the cloud infrastructure is defined as:

minimize
total cost

∑

t∈G,i∈I,x∈Iidx
i

((pI
i ∗Ht,i,x + pR + cT

i,s) ∗ Tt,i,x), (2)

subject to the constraints:

Cost Optimization of Execution of Scientific Workflows on Clouds 255

1.
∑

l∈L Dl ≤ tD ensures that workflow finishes in the given deadline,
2. to fix that D = �Dt� we require that: ∀l∈LDt

l ≤ Dl ≤ Dt
l + 1,

3. ∀t∈G,i∈I,x∈Iidx
i

At,i,x ≤ Ht,i,x ≤ At,i,x · tD ensures that H may be allocated
only iff A is 1,

4. ∀t∈G,i∈I,x∈Iidx
i

At,i,x ≤ Tt,i,xAt,i,x ·Atot
t ensures that T may be allocated only

iff A is 1,
5. ∀t∈G,i∈I,x∈Iidx

i
Ht,i,x ≤ Dl enforces layer deadline on instances runtime,

6. ∀l∈L,t∈Gl,i∈I,x∈Iidx
i

Tt,i,x · tut,i,s ≤ Dt
l enforces that a layer finishes work in Dt,

7. to make sure that all the instances run for enough time to process all tasks
allocated to them we require: ∀t∈G,i∈I,x∈Iidx

i
Tt,i,x ·tut,i,s ≤ Ht,i,xTt,i,x ·tut,i,s+1,

which adjusts H respectively to T ,
8. ∀t∈G

∑
i∈I,x∈Iidx

i
Tt,i,x = Atot

t ensures that all tasks are processed,
9. To reject symmetric solutions, we add three constraints:

(a) ∀t∈G,i∈I,x∈{1..(nImax
i −1)}Ht,i,x ≤ Ht,i,x−1,

(b) ∀t∈G,i∈I,x∈{1..(nImax
i −1)}At,i,x ≤ At,i,x−1, and:

(c) ∀t∈G,i∈I,x∈{1..(nImax
i −1)}Tt,i,x ≤ Tt,i,x−1.

10. ∀l∈L,p∈P

∑
i∈PIp,t∈Gl,x∈Iidx

i
At,i,x ≤ nPmax

p enforces instance limits per cloud.

To keep this model in MIP class we had to take a different approach than in previ-
ous model, and schedule each virtual machine instance separately. The drawback
of this approach is that we need to increase the number of decision variables.
We also divided the search space by storage provider. Additionally, the deadline
becomes a variable with upper bound as it may happen that shorter deadline
may actually give a cheaper solution (see Fig. 3 and its discussion).

5 Evaluation

To evaluate our model on realistic data, we use CloudHarmony [9] benchmarks
to parameterize the infrastructure model, and we use the Workflow Generator
Gallery workflows [4] as test applications. In the infrastructure model we assumed
that we have 4 public cloud providers (Amazon EC2, RackSpace, GoGrid and
ElasticHosts) and a private cloud with 0 cost. The infrastructure has two stor-
age services, S3 that is local to EC2 and CloudFiles that is local to RackSpace, so
data transfers between local compute and storage are free. We tested our model
with all applications from the gallery: Montage, CyberShake, Epigenomics, LIGO
and SIPHT for all available workflow sizes (from 50 to 1000 tasks per workflows,
up to 5000 tasks in the case of SIPHT workflow). We varied the deadline from
1 to 30 h with 1-h increment. We solve the problem for two cases, depending on
whether the data is stored on S3 or on CloudFiles.

Figure 2 shows the example results obtained for the Epigenomics application
and workflows of two sizes (400 and 500 tasks). For longer deadlines the private
cloud instances and the cheapest RackSpace instances are used so the cost is
low when using CloudFiles. For shorter deadlines the cost grows rapidly, since
we reach the limit of 15 instances per cloud and additional instances must be

256 M. Malawski et al.

(a) 400 tasks, 1 GiB data size (b) 500 tasks, 4 GiB data size

Fig. 2. Result of the optimization procedure for the Epigenomics application.

spawned on a different provider, making the transfer costs higher. This effect
is amplified in Fig. 2b, which differs from Fig. 2a not only by the number of
tasks but also by the data size of one layer. This means that the transfer costs
are growing more rapidly, so it becomes more economical to store the data on
Amazon EC2 that provides more powerful instances required for short deadlines.

Fig. 3. Ratio of actual completion time to deadline for Epigenomics workflow with 500
tasks.

One interesting feature of our model is that for longer deadlines it can find
the cost-optimal solutions that have a shorter workflow completion time than
the requested deadline. This effect can be observed in Fig. 3 and is caused by
the fact that for long deadlines the simple solution is to run the application on
a set of the least expensive machines.

Figure 4a–d show results obtained for other workflows. These workflows are
relatively small and even for short deadlines the model is able to schedule tasks
on cheapest instances on a single cloud, thus resulting in flat characteristics.

To investigate how the model behaves for workflows with the same structure,
but with much longer run times of tasks, we run the optimization for Montage
workflow with tasks 1000× longer. This corresponds to the scenario where tasks
are in the order of hours instead of seconds. The sample results in Fig. 5a show

Cost Optimization of Execution of Scientific Workflows on Clouds 257

(a) CyberShake, 500 tasks (b) LIGO, 500 tasks

(c) Montage, 500 tasks (d) SIPHT, 5000 tasks

Fig. 4. Optimal cost found by the model for different applications.

(a) Optimal cost (b) Solver runtime with different MIP gap

Fig. 5. Results obtained by the model for Montage 500 workflow with tasks runtimes
artificially multiplied by 1000 for different cloud infrastructures.

how the cost increases much steeply with shorter deadlines, illustrating the trade-
off between time and cost. The difference between Figs. 4c and 5a illustrates
that the model is more useful for workflows when tasks are of granularity that
is similar to the granularity of the (hourly) billing cycle of cloud providers.
Additionally, Fig. 5a shows how the optimal cost depends on the cloud available.

The run time of the optimization algorithm for workflows with up to 1000
tasks ranges from few seconds up to 4 min using the CPLEX [13] solver running
on a server with 4 16-core 2.3 GHz AMD Opteron processors (model 6276), with

258 M. Malawski et al.

(a) Epigenomics, 600 tasks (b) SIPHT, 5000 tasks

Fig. 6. Solver execution wall time.

a limit set to 32 cores. Figure 6a shows that the time becomes much higher for
shorter deadlines and increases for very long deadlines. This is correlated with
size of search space: the longer the deadline, the search space is larger, while
for shorter deadlines the problem has a very small set of acceptable solutions.
The problem becomes more severe for bigger and more complex workflows like
SIPHT as optimization time becomes very high (Fig. 6b).

Figure 5b illustrates how the optimization time depends on MIP gap solver
setting [13]. Applying a relative MIP gap of 1 % or 5 % instead of default 0.01 %
shortens optimization time in orders of magnitude. Increasing the MIP gap to
5 % did not decrease the quality of the result noticeably: the minimum cost
obtained for the gap of 5 % was higher only by 3.63 % in the worst case.

6 Conclusions and Future Work

In this paper, we presented a cost optimization model for scientific workflows
executing on multiple heterogeneous clouds. The model, formulated in AMPL,
allows us to find the optimal assignment of workflow tasks, grouped into layers,
to cloud instances. We tested our model on a set of benchmark workflows and
we observed that it gives useful solutions in a reasonable amount of computing
time. By solving the model for multiple deadlines, we can produce trade-off
plots, showing how the cost depends on the deadline. We believe that such plots
are a step towards a scientific cloud workflow calculator, supporting resource
management decisions for both end-users and workflow-as-a-service providers.

In future work we plan to apply this model to the problem of provisioning
cloud resources for workflow ensembles [16], where the optimization of cost can
drive the workflow admission decisions. We also plan to refine the model to better
support smaller workflows by reusing instances between layers, to fine-tune the
model, and to test different solver configurations to reduce the computing time.

Acknowledgement. This research was partially supported by the EC ICT VPH-
Share Project (contract 269978), the KI AGH grant, and by the National Science
Foundation under grant OCI-1148515.

Cost Optimization of Execution of Scientific Workflows on Clouds 259

References

1. Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds. Future Gener. Com-
put. Syst. 29(1), 158–169 (2013). http://www.sciencedirect.com/science/article/
pii/S0167739X12001008

2. AWS: AWS public datasets. http://aws.amazon.com/publicdatasets/ (2013)
3. Barrionuevo, J.J.D., Fard, H.M., Prodan, R.: Moheft: a multi-objective list-based

method for workflow scheduling. In: 4th IEEE International Conference on Cloud
Computing Technology and Science Proceedings, CloudCom 2012, Taipei, Taiwan,
3–6 December 2012, pp. 185–192 (2012)

4. Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.H., Vahi, K.: Char-
acterization of scientific workflows. In: Third Workshop on Workflows in Support
of Large-Scale Science, WORKS 2008, pp. 1–10. IEEE (2008). http://dx.doi.org/
10.1109/WORKS.2008.4723958

5. Bittencourt, L.F., Madeira, E.R.M.: Hcoc: a cost optimization algorithm for work-
flow scheduling in hybrid clouds. J. Internet Serv. Appl. 2(3), 207–227 (2011)

6. den Bossche, R.V., Vanmechelen, K., Broeckhove, J.: Online cost-efficient schedul-
ing of deadline-constrained workloads on hybrid clouds. Future Gener. Com-
put. Syst. 29(4), 973–985 (2013). http://www.sciencedirect.com/science/article/
pii/S0167739X12002324

7. Bubak, M., Kasztelnik, M., Malawski, M., Meizner, J., Nowakowski, P., Varma,
S.: Evaluation of cloud providers for VPH applications. In: CCGrid2013 - 13th
IEEE/ACM International Symposium on Cluster, Cloud and Grid, Computing,
May 2013. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6546092

8. Chen, J., Wang, C., Zhou, B.B., Sun, L., Lee, Y.C., Zomaya, A.Y.: Tradeoffs
between profit and customer satisfaction for service provisioning in the cloud. In:
Proceedings of the 20th International Symposium on High Performance Distrib-
uted Computing, HPDC ’11, pp. 229–238. ACM, New York (2011)

9. CloudHarmony: Benchmarks. http://cloudharmony.com/benchmarks (2011)
10. Deelman, E., Juve, G., Malawski, M., Nabrzyski, J.: Hosted science: managing

computational workflows in the cloud. Parallel Process. Lett. 23(2), June 2013.
http://www.worldscientific.com/doi/abs/10.1142/S0129626413400045

11. Duan, R., Prodan, R., Li, X.: A sequential cooperative game theoretic approach
to storage-aware scheduling of multiple large-scale workflow applications in grids.
In: 2012 ACM/IEEE 13th International Conference on Grid Computing (GRID),
pp. 31–39. IEEE (2012). http://dx.doi.org/10.1109/Grid.2012.14

12. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Math-
ematical Programming. Duxbury Press, Belmont (2002)

13. IBM: IBM ILOG CPLEX Optimization Studio - CPLEX User’s Manual. http://
pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp (2013)

14. Kim, H., El-Khamra, Y., Rodero, I., Jha, S., Parashar, M.: Autonomic management
of application workflows on hybrid computing infrastructure. Sci. Program. 19, 75–
89 (2011)

15. Malawski, M., Figiela, K., Nabrzyski, J.: Cost minimization for computa-
tional applications on hybrid cloud infrastructures. Future Gener. Comput.
Syst. 29(7), 1786–1794 (2013). http://www.sciencedirect.com/science/article/pii/
S0167739X13000186

16. Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Cost- and deadline-constrained
provisioning for scientific workflow ensembles in IaaS clouds. In: Proceedings of the

260 M. Malawski et al.

International Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’12. IEEE Computer Society Press (2012). http://portal.acm.
org/citation.cfm?id=2389026

17. Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet application dead-
lines in cloud workflows. In: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’11. ACM, New
York (2011). http://dx.doi.org/10.1145/2063384.2063449

18. Pandey, S., Barker, A., Gupta, K.K., Buyya, R.: Minimizing execution costs when
using globally distributed cloud services. In: 24th IEEE International Conference
on Advanced Information Networking and Applications, pp. 222–229. IEEE (2010)

19. Tolosana-Calasanz, R., Banares, J.A., Pham, C., Rana, O.F.: Enforcing QoS in
scientific workflow systems enacted over cloud infrastructures. J. Comput. Syst.
Sci. 78(5), 1300–1315 (2012). http://www.sciencedirect.com/science/article/pii/
S0022000011001607

Parallel Computations in the Volunteer–Based
Comcute System

Pawe�l Czarnul(B), Jaros�law Kuchta, and Mariusz Matuszek

Faculty of Electronics, Telecommunications and Informatics,
Gdansk University of Technology, Gdańsk, Poland

{pczarnul,qhta,mrm}@eti.pg.gda.pl

Abstract. The paper presents Comcute which is a novel multi-level
implementation of the volunteer based computing paradigm. Comcute
was designed to let users donate the computing power of their PCs in a
simplified manner, requiring only pointing their web browser at a spe-
cific web address and clicking a mouse. The server side appoints several
servers to be in charge of execution of particular tasks. Thanks to that the
system can survive failures of individual computers and allow definition
of redundancy of desired order. On the client side, computations are exe-
cuted within web browsers using technologies such as Java, JavaScript,
Adobe Flash etc. without the need for installation of additional soft-
ware. This paper presents results of scalability experiments carried on
the Comcute system.

Keywords: Volunteer computing · Parallel computations · Scalability ·
Reliability

1 Introduction

Many areas of modern science rely heavily on supercomputing power availability.
In fact, computing demand from just Materials Science, Biology, Astronomy and
Medicine [1] outpaces the supply and it is an ongoing effort to keep up with the
demand.

Part of this effort is designing systems which combine the power of many
distributed personal computers and make it available for science. Several such
systems exist e.g. BOINC1 [2], but their common property is need for a dedicated
computing module to be installed and configured by the user, who wishes to make
their computer available. This task is somewhat technical in nature and often
intimidates potential volunteers. Volunteer computing plays an important role in
supplying the computational power demanded by science. Harnessing the power
of personal computers connected to the Internet requires dedicated systems,
which distribute computations and collect results. Usually such systems require
the user of a personal computer to install and run a dedicated client software,
which often presents a difficulty to less technical-savvy users.
1 http://boinc.berkeley.edu/

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 261–271, 2014.
DOI: 10.1007/978-3-642-55224-3 25, c© Springer-Verlag Berlin Heidelberg 2014

262 P. Czarnul et al.

Recognizing this difficulty led to design and implementation of a Comcute
system, which allows volunteers to make their computing resources available by
just pointing their web browser at a web address and clicking a mouse without
installation of additional software. Development of the Comcute project2 [3] took
place in years 2010–2012 and was supported under Grant OR00010811 by the
Polish Ministry of Science and Higher Education.

2 Related Work

There is a variety of paradigms and tools for parallel computations proposed
and implemented at various levels:

– shared memory systems: GPGPU with NVIDIA CUDA and OpenCL [4,5],
OpenMP, Pthreads, Java Threads for multithreaded programming on SMP
systems [6],

– distributed memory systems:

• dedicated HPC systems: MPI [7], PVM [8],
• collection of HPC systems: MPICH-G2 [9], PACX-MPI [10],
• distributed systems, including HPC in various Virtual Organizations: grid

systems implemented on top of grid middlewares such as Globus Toolkit,
Unicore, Gridbus with scheduling and management of resources [11–13],
• frameworks such as Hadoop3,
• workflow systems such as the one in BeesyCluster [14],
• volunteer-based systems such as BOINC [2] in which distributed volunteers

donate computing power of their own computers to shared projects. Paper
[15] demonstrates how a new WeevilScout prototype framework can be
used to engage thousands of Internet browsers with JavaScript support for
computations in the master-slave fashion for a bio-informatics task.

Reference [16] presents a framework using the master-slave model for compu-
tations built on top of Google App Engine that allows free of charge execution
using the TaskQueue scheme. The master and slaves are implemented behind
a Web interface and then use the TaskQueue for execution. Compared to [16],
Comcute was designed in order not to require access to Google or any other
infrastructure and rely on computing power of Internet users’ computers instead.

Compared to volunteer computing such as BOINC [2], Comcute was created
to offer several new unique features:

– ability to run the client within a web browser supporting many technologies
such as Java, JavaScript, Adobe Flash etc. not just JavaScript as addressed
by WeevilScout [15],

– advanced management of computations at the server side supporting:
2 http://comcute.eti.pg.gda.pl
3 http://hadoop.apache.org/

Parallel Computations in the Volunteer–Based Comcute System 263

• redundancy of desired order, i.e. requesting redundant computations of data
chunks by volunteers,
• ability to partition input data and integration on-the-fly as data chunks

come,
• distributed management of computations on the server side that is able to

survive failures of individual servers (not addressed by WeevilScout [15] nor
BOINC [2]).

3 Proposed Solution

The Comcute system uses the same volunteer-based paradigm of calculation
as BOINC. A computational task (code and partitioned data) is distributed
to a great number of volunteers (Internet users). On the other hand, Comcute
differs from other volunteer-based computing systems in a level of calculation
flexibility, a level of reliability and ease of use. First, the volunteers may be
recruited from the users of common public services, such as e-government or
e-administration services, video-sharing services (e.g. YouTube) or social net-
working services (e.g. Facebook). Calculation tasks (code and data) are loaded
to their computers in a simple one-click fashion. Calculations are performed
at their computers in a web browser context which should be safe for the
client. The code is matched to the capabilities supported by the volunteer’s
browser (e.g. Java Script, Java, Flash). A single user may process many data
packs for various tasks in a single session. In this way, the Comcute system
can process various computing tasks ordered by customers at the same time.

Fig. 1. Multi-layered Comcute architecture

3.1 Architecture

A quad-layered architecture of the
Comcute system ensures the effi-
ciency and reliability of calcu-
lations. Usually a multi-layered
architecture is presented by ver-
tically divided regions, but the
quad-layered architecture of the
Comcute system is presented in a
form of concentric regions (Fig. 1)
with Z-layer representing user
interface in the center, internal
W-layer with system core nodes,
external S-layer with distributing
servers and surrounding “layer”
containing grouped sets of Internet
users’ computers.

264 P. Czarnul et al.

There is no central S nor W node in the system. The Z-layer gives access
to a number of W-nodes organized in a load-balanced grid. The first W-node
contacted by a customer forms a set of other W-nodes (W’-set) in the number
needed to complete a task, as requested by the customer. The task (code and
data) is distributed to all the W’-nodes, where task data is divided into a set
of data packs. The W’-nodes divide task data using the same algorithm and its
parameters. The task code along with data packs is sent as independent packets
from W’-nodes through S-servers to computers of Internet users (Is).

The S-servers are placed in the public domain of the World Wide Web. They
may be set up as public administration (government) servers, video (movie) servers,
social network servers and so on. Beside their normal activity, they offer participa-
tion in the Comcute project to their users. By joining the Comcute project, users
agree to download and execute computing tasks. Each data packet is processed
for a short time, but a great number of processors gives the effect of a huge com-
putational scale. The S-servers also separate the Internet users from the W-nodes,
which are located in a protected network. Locations of W and S servers depend
on the system administrator so that W-S links may offer large bandwidths.

The code is executed at the computers of Internet users in the context of a
web browser. The calculation results are sent back through the S-servers to the
W’-nodes, where they are assembled into aggregated result. This aggregation is
carried out in cooperation between the W’-nodes.

The functionality of the W-layer grid is designed to withstand attacks on the
system and the computations. Each task is processed by a set of nodes which
exchange and compare the results. An optional verification of the results can
be provided in this way. If the S-servers are not responding for a long time or
communication between the W-nodes is broken, the W-node grid may reconfigure
itself. This way the system can perform its task as long as a single W-node is in
an operational state.

3.2 Distributed Volunteer Task Execution

The W-layer is composed of independent but collaborating W-nodes driven by
the same algorithm. At the beginning of the computational cycle the first W-
node responding to the client request takes the task orders from the clients
and authorizes them. Based on the task parameters it estimates the number of
W-nodes needed for calculations and invites them to form the W’ set. It then
distributes the accepted tasks to other nodes of the W’ set.

Then each node of the W’ set divides task data into packs according to the
task parameters using a partition algorithm specified by the client. If the cus-
tomer requested a high level of reliability, the W’-set of nodes is further divided
into smaller groups G (e.g. three nodes in each group) for tight collaboration.
If not, the nodes work in loose collaboration only. Subsequently each W’-node
offers the code of the calculation tasks and packs of data as independent packets
on demand to S-servers.

During calculations W’-nodes offer data packs in a random order from the
whole data set. Collaboration among the W’-nodes means that they share

Parallel Computations in the Volunteer–Based Comcute System 265

partial results of calculations so each node has a full set of results, obtained
not only from its cooperating S-servers, but from the other W’-nodes as well.
Tight collaboration means that the W’-nodes within a G group offer the data
packs in the same order thus forming a separate subset of redundantly calculated
data. When gathering the results in the tight collaboration mode the W’-nodes
within each group exchange and compare results among each other to avoid
calculation errors (incidental or intentional).

The users of public Internet services located at the S-servers may volun-
teer to the Comcute project and agree to load task code and packs of data to
their computers. The S-servers may buffer task packets taken from the W’-node
and distribute the task data along with ordinal service data. The task code is
contained within original service web pages.

As the service web page is loaded to the Internet user computer, the user’s
web browser executes the task code loader (among the other web code) which
reports the browser capabilities to the S-server. The server chooses which form
of the task code to load (e.g. JavaScript, Java, Silverlight). As the loader receives
the task and data, it launches the code execution and after it stops the loader
sends the result back to the S-server.

The W’-node gathers the results of each data pack calculations reported by
S-servers from the Internet computers. It then exchanges the results with the
other W’-nodes. Thus each W’-node independently merges the partial results
into a final result in accordance with the algorithm specified by the customer.

If a high level of reliability was requested, each node first compares partial
results obtained from other nodes of the same G group in accordance with arbi-
tration logic specified by the customer. If partial results differ, the nodes may
repeat the calculation cycle. If there is a sufficient number of consistent partial
results, W’-nodes aggregate them into a final result. If some nodes within the
G group do not report partial results to the other members of the group, the
operating W’-nodes try to invite and join new nodes from the whole pool of
W-nodes (beyond W’-set). If not possible, they continue to operate at a lower
level of reliability.

Once each G group completes calculations of their subset of data they return
to the pool, ready to join other groups to help them to complete calculations.
However, when there are no requests for help from other groups, they try to
form a new group taking control over another subset of remaining data.

This way the calculations will complete as long as one W’-node is able to
operate. Each operating W’-node completes the whole set of partial results and
forms the final result. In the end it stores the result in its own repository and
makes it available to the other nodes and subsequently to the customer.

3.3 Performance Factors

In the process described above the number of W’-nodes (NW ′) is the first factor
of concurrency. It depends on the total number of W-nodes (NW) and the mean
W-node load factor LW (0 ≤ LW ≤ 1). This number is divided by the cardinality
of the G group (|G|), which is 1 if there is no need to form the groups, and 2 or

266 P. Czarnul et al.

more if a higher level of reliability was requested. Concurrency may be degraded
by a factor 0 ≤ κ ≤ 1 dependent, among other things, on computation overlap
between W’ nodes or G groups.

A mean number of S-servers cooperating with each W’-node is the second
main factor (NS). The third factor is a mean number of people using each public
S-service at the same time (NI). Here we consider the level of readiness (RL)
i.e. how much the users are willing to participate in the Comcute system and
share the calculation power of their computers. This level may be leveraged by a
set of marketing means (e.g. free movies). Finally, the probability of calculation
completing at each Internet user computer (PC) depends on the mean time
of single data pack calculation (TP) and the mean time when a user remains
connected to the service (TS). The practical concurrency factor (CF), defined as
how much Comcute can speed up computations taking into account redundancy
and willingness of Internet clients, can be estimated as:

CF =
NW ′

|G| (1− κ)NSNIRLPC (1)

|G| =
{

1 - if there is no need for higher reliability
≥ 2 - if a higher level of reliability was requested (2)

NW ′ = NW (1− LW) PC =
{

TS

TP
- if TS < TP

1 - if TS ≥ TP
(3)

3.4 A Versatile Client Template

In order to test the Comcute system a versatile Internet client template, nick-
named iRobot was implemented. Internal structure of iRobot is illustrated in
Fig. 2. Many instances of iRobots can be deployed simultaneously on hosting
computers and controlled remotely. The remote control capability allows the
operator to:

– switch each iRobot from a standby state to an active state,
– switch back from an active state to a standby mode,
– command every iRobot to complete its running task and exit.

iTask controller

web user profile
emulator andiTask

executor

Remote
control

Web service access

OS services access layer

Fig. 2. iRobot web user emulator
structure

In its active state, each iRobot loops
a series of transitions: query S node for a
task→ execute the returned task→ sleep.
Each query of an S node is directed at the
generic DNS address, which in turn gets
resolved to a specific S node by a round
robin load balancing algorithm, located in
a DNS server. If tasks are available for
execution, the S node queried will respond
with a task implemented in a technology
supported by iRobot instance, as deter-
mined by an availability of a iTask execu-
tor module. For this mechanism to work,

Parallel Computations in the Volunteer–Based Comcute System 267

every task query form an iRobot contains a JSON-encoded list of technologies
supported by the iRobot. This guarantees that only tasks which can be executed
by an iRobot will be sent to it.

In addition to a remote control capability, also parameters for tasks executed
by iRobots (iTasks) can be supplied remotely from a central control location.
Once supplied, these parameter sets are matched against task names being run,
thus allowing for very flexible adaptation of the testing environment to different
test patterns.

Once an iTask is started, its execution is supervised by the iTask controller.
The controller is governed by a set of timing parameters, which determine the
maximum execution time of a task Te and a delay time Td after execution is
finished, before iRobot will query S node for another task. This allows iRobot
to mimic a behavior of an average web user browsing the Web [17]. Both times
are calculated using a general normal (Gaussian) distribution:

T{e,d} = |f(x)| where f(x) =
1
σ
φ

(
x− μ
σ

)

(4)

Both μ (mean) and σ (variance) parameters can be controlled by the test
operator.

4 Experiments

We designed experiments in order to test the scalability of Comcute and obtain
timelines of particular Internet clients in order to observe characteristics of
processing and interaction with S servers.

4.1 Testbed Application and Configurations

For the following experiments, we used the client template described in Sect. 3.4
with the following parameters:

– probability of returning correct results by a volunteer equal to 1 – this allows
comparison of adequate execution times of various configurations for scalabil-
ity tests,

– processing of a data chunk by a volunteer equal to 10 s – this corresponds to
values discussed in [17]. In summary, [17] states that clients often leave pages
after 10–20 s and present probabilities of them doing so. From this perspective,
10 s seems adequate for our tests. It is also clear that the first 10 s are critical
for the client to decide whether to stay on the page or leave.

– the size of the data chunk sent from Comcute to the client equal to 5000 bytes;
this corresponds to input data such as a text fragment to search, definition of
a subspace to search by the client, coefficients of a set of equations to solve
etc.

268 P. Czarnul et al.

– the size of results equal to 1000 bytes. In many aforementioned applications,
results are smaller than the input data packets e.g. the following ones would
correspond to the applications above: returning location in a text fragment or
search subspace where matches have been found, solutions to a set of equations
etc.

We assumed 10000 data chunks which gives sufficient granularity to balance the
load among the numbers of Internet clients tested (up to 256). In fact, the system
used |G| = 2 which means that Comcute created a copy of each data packet for
a total number of packets equal to 20000.

The testbed code used on the client side contacts the S server access URL
and is automatically redirected to a particular S server by a DNS system. The
DNS system was modified so that the client can contact any of the S servers
available using the round robin scheme. The client downloads a Java client code
as a jar file. It is executed on the client side and fetches data packets from an S
server as long as the data is available. Upon termination of processing, the client
contacts the S server access URL again and repeats the procedure.

4.2 Testbed Environment

We used the following environment for tests: two W servers, each with 48 GB
RAM 2 x Intel(R) Xeon(R) E5640 2,66 GHz CPUs (4 cores, 8 threads each)
CentOS 6.2, four S servers, each with 24 GB RAM, 2 x Intel(R) Xeon(R) E5640
2,66 GHz CPUs (4 cores, 8 threads each) CentOS 6.2. Internet clients ran on a
cluster of 8 nodes, each with 4 GB RAM, 2 x Intel(R) Xeon(TM) CPU 2.80 GHz
CPUs (2 cores, 4 threads each).

We used Ethernet network connection between the components. For the sizes
of the data packets, the startup time played a crucial role in the communication
time which is much shorter than processing in this case anyway.

4.3 Simulation Results

Firstly, we aimed at assessment of the system scalability i.e. the ability of the
system to decrease the execution time of a task of a given size with an increas-
ing number of volunteers. Figure 3 presents the execution times we obtained for
the aforementioned system parameters. Figure 4 shows the obtained speed up
compared to theoretically ideal values. The latter is computed assuming all the
data packets are processed sequentially on a single machine without communica-
tion. Consequently, these ideal values should be regarded as a theoretical upper
bound that cannot be obtained in a distributed system. The system scales well
for the tested numbers of volunteers up to 256. It should be noted that the ideal
theoretical speed-up refers to the total number of data packets used i.e. 20000
in this case. On the other hand CF = 128 for 256 clients because |G| = 2.

The following conclusions could be drawn from this experiment:

Parallel Computations in the Volunteer–Based Comcute System 269

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16 32 64 128 256

ta
sk

 e
xe

cu
tio

n
tim

e
[s

]

number of clients

theoretical best for 10000 data chunks
results for 10000 data chunks

Fig. 3. Execution times of the testbed task

 0

 50

 100

 150

 200

 250

 300

 4 16 32 64 128 256

sp
ee

d-
up

number of clients

achieved speed-up
theoretical speed-up

Fig. 4. Speed-up of the testbed task vs the number of Internet clients

1. The system scales well with volunteers not limited by the resources.
2. The practical limit on the number of volunteers tested per our cluster node

is around 32. At this point with the number of volunteers higher than 32 per
cluster node, we started to observe shortage of system resources for running
the volunteers, mainly memory limitations.

We also obtained individual timelines of particular Internet clients to observe:

1. delay in taking up the task compared to other clients,
2. potential idle times during the task execution. This would indicate a tempo-

rary lack of data chunks on S servers; on the other hand constant supply of
data chunks would indicate correct prefetching of data chunks by S servers
from W servers.

Figure 5 presents a timeline for 64 Internet clients. Clients compute the task
in parallel from about time step 100 s up to around 3500 s. It can be seen that
usually the delays in starting processing the data are within 10–30 s. Before
processing of data packets starts i.e. before time step 80 s, clients query S servers
for computational codes. Around time steps 2300 and 3400 s, some S servers ran
out of data packets (fetched from W servers) that caused delay in processing
on the client side. Prefetching data from W servers is good to a certain degree
because in case server S fails, W will need to wait before sending the lost packets
to other S servers.

270 P. Czarnul et al.

 0

 16

 32

 48

 64

 0 600 1200 1800 2400 3000 3600

nu
m

be
r o

f a
ct

iv
e

w
or

ke
rs

time [s]

Fig. 5. Timeline for 64 Internet clients

5 Conclusions and Future Work

The main contribution of the Comcute system shown in this paper is its capa-
bility to balance between efficiency of concurrent calculations and reliability of
volunteer computing. It is important as each web-open system is exposed to
attacks. Comcute is resistant both to the attacks on the system itself (DDoS
attacks) and results falsification.

Another contribution and the novelty of the system for Internet users is very
simple usage (no need for installation) and ability to use many technologies
within web browsers so this idea may be used by almost any web public service.

The experiments have proven that Comcute scales well. A slight difference
between real and ideal concurrency factor results from Amdahl’s law.

In the future, we want to extend the work to a higher number of client
computers. Additionally, experiments with tasks with various data packet pri-
orities and integration with workflow management in BeesyCluster [18] will be
performed.

Acknowledgments. The work was performed within grant “Modeling efficiency, reli-
ability and power consumption of multilevel parallel HPC systems using CPUs and
GPUs” sponsored by and covered by funds from the National Science Center in Poland
based on decision no DEC-2012/07/B/ST6/01516.

We would like to thank W. Korlub for his help in the environment configuration.

References

1. Czarnul, P., Grzeda, K.: Parallel simulations of electrophysiological phenomena in
myocardium on large 32 and 64-bit linux clusters. In: Kranzlmüller, D., Kacsuk, P.,
Dongarra, J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 234–241. Springer,
Heidelberg (2004)

2. Anderson, D.P.: Boinc: a system for public-resource computing and storage. In:
Proceedings of 5th IEEE/ACM International Workshop on Grid Computing, Pitts-
burgh, USA (2004)

Parallel Computations in the Volunteer–Based Comcute System 271

3. Balicki, J., Krawczyk, H., Nawarecki, E. (eds.): Grid and Volunteer Computing.
Gdansk University of Technology, Faculty of Electronics, Telecommunication and
Informatics Press, Gdansk (2012). ISBN: 978-83-60779-17-0

4. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors. A Hands-
on Approach, 2nd edn. Morgan Kaufmann, San Francisco (2012). ISBN-13: 978–
0124159921.

5. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Professional, Reading (2010). ISBN-13: 978–
0131387683

6. Buyya, R. (ed.): High Performance Cluster Computing, Programming and Appli-
cations. Prentice Hall, Upper Saddle River (1999)

7. Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Applications
Using Networked Workstations and Parallel Computers. Prentice Hall, Upper Sad-
dle River (1999)

8. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Mancheck, R., Sunderam, V.:
PVM Parallel Virtual Machine. A Users Guide and Tutorial for Networked Parallel
Computing. MIT Press, Cambridge (1994)

9. Karonis, N.T., Toonen, B., Foster, I.: Mpich-g2: a grid-enabled implementation of
the message passing interface. J. Parallel Distrib. Comput. 63, 551–563 (2003).
(Special Issue on Computational Grids)

10. Keller, R., Müller, M.: The Grid-Computing library PACX-MPI: Extending MPI
for Computational Grids. www.hlrs.de/organization/amt/projects/pacx-mpi/

11. Garg, S.K., Buyya, R., Siegel, H.J.: Time and cost trade-off management for
scheduling parallel applications on utility grids. Future Gener. Comput. Syst. 26,
1344–1355 (2010)

12. Chin, S.H., Suh, T., Yu, H.C.: Adaptive service scheduling for workflow applica-
tions in service-oriented grid. J. Supercomput. 52, 253–283 (2010)

13. Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling algorithms for grid
computing. In: Xhafa, F., Abraham, A. (eds.) Meta. for Sched. in Distri. Comp.
Envi. SCI, vol. 146, pp. 173–214. Springer, Heidelberg (2008)

14. Czarnul, P.: Integration of compute-intensive tasks into scientific workflows in
BeesyCluster, In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra,
J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 944–947. Springer, Heidelberg (2006)

15. Cushing, R., Putra, G., Koulouzis, S., Belloum, A., Bubak, M., de Laat, C.: Dis-
tributed computing on an ensemble of browsers. IEEE Internet Comput. 17, 54–61
(2013)

16. Malawski, M., Kuzniar, M., Wojcik, P., Bubak, M.: How to use google app engine
for free computing. IEEE Internet Comput. 17, 50–59 (2013)

17. Nielsen, J.: How long do users stay on web pages? Nielsen Norman Group (2011).
http://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/

18. Czarnul, P.: Modeling, run-time optimization and execution of distributed workflow
applications in the jee-based beesycluster environment. J. Supercomput. 63, 46–71
(2013)

Secure Storage and Processing of Confidential
Data on Public Clouds

Jan Meizner1(B), Marian Bubak2,3, Maciej Malawski2, and Piotr Nowakowski1

1 ACC Cyfronet AGH, AGH University of Science and Technology, Krakow, Poland
jan.meizner@cyfronet.pl

2 Department of Computer Science, AGH University of Science and Technology,
Krakow, Poland

3 Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

Abstract. The goal of this paper is to describe problems associated
with storage and processing of confidential data in public clouds, and
to propose relevant mitigation strategies. In our opinion many types of
data in the commercial and scientific worlds require special attention
to protect them against possible mishandling. This issue affects highly
valuable data, such as trade secrets and financial information, as well as
personal data including medical records used in scientific research. We
analyse situations which require special care and next we propose a set of
solutions for ensuring data security and describe feasibility studies based
on tests performed using popular cryptographic software (OpenSSL).
Those solutions would allow to fullfil objectives of the paper which are
to analyze the requirements of scientific software regarding protection of
confidential data, the nature of the data itself and threats against those
assets.

Keywords: Security · Data · Clouds · Hybrid · AES · 3DES · OpenSSL

1 Introduction

The most commonly mentioned drawbacks of cloud computing (especially in
public clouds) are related to security and trust. Due to the nature of such
infrastructures users have limited control over data being processed and stored
by the system. As a result, multiple potential risks arise. These risks may be
caused by:

1. use of vulnerable software,
2. use of insecure infrastructures, vulnerable to eavesdropping during transmis-

sion, (D)DOS attacks etc.,
3. mishandling of data storage devices (e.g. turning over HDDs with potentially

recoverable client data to an unverified third party), which becomes especially
critical in large, complex storage systems where the user might not be allowed
to physically overwrite data,

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 272–282, 2014.
DOI: 10.1007/978-3-642-55224-3 26, c© Springer-Verlag Berlin Heidelberg 2014

Secure Storage and Processing of Confidential Data on Public Clouds 273

4. human error leading to infrastructures being unintentionally compromised
(including social engineering),

5. malicious actions taken by the provider against the user (economic espionage).

Those risks are critical if the data being processed is confidential. There are
multiple use cases that could benefit from cloud computing, but are (or might
be) restricted due to security issues. This applies both to the commercial world
(e.g. financial institutions) as well as to research (e.g. clinical studies involving
unanonymized medical records). A good example of a research project which
requires special provisions for handling sensitive medical data is the VPH-Share
initiative [1]. Such data must be strictly protected at every step - this includes
processing, storage and ensuring that the data can be provably erased once no
longer needed. Of course, any custom infrastructure may suffer issues similar to
those described above; however some security aspects remain unique to public
services, including clouds. A notable example is the inability to separate a single
storage device (disk drive) from an array so that it is not shared with other
users and can be physically destroyed (e.g. demagnetized) when the owner has
no further need for its contents. Such an action would be certainly possible in
the case of e.g. a standalone server (even one collocated at a third-party data
center), but not in the shared environment of virtualized cloud hardware.

On the most basic level we can categorize clouds based on ownership:

1. public - owned by an external entity (such as a commercial provider) and
made available to any interested party in exchange for payment,

2. community - owned by any organization and made available to a specific
group of users, such as a collaboration of scientists (physicists, clinicians,
etc.),

3. private - owned and used by a single entity (in-house infrastructure), yet
providing greater manageability and flexibility than in the case of a legacy
infrastructure.

Clearly, data security aspects depend on the category in question. Public
clouds are open to all clients - including potential intruders who, by gaining
(legal) access to the infrastructure, might try to exploit its vulnerabilities [2] to
maliciously escalate privileges e.g. by:

1. eavesdropping on traffic due to insufficient network separation,
2. attempting to defeat hypervisor isolation by exploiting some vulnerability

(e.g. CVE-2012-0217 [3]),
3. disrupting other cloud users either by generating local load affecting other

VMs (such as high I/O load) or by exploiting DoS vulnerabilities against the
host (for example allowing a guest VM to crash the host/hypervisor - e.g.
CVE-2012-6030 [4]).

Additionally (with some exceptions described later on), communication
between the user and the public cloud is carried over the public Internet, which
might also affect security. Similar issues may arise in relation to community

274 J. Meizner et al.

clouds, although “invited” users are less likely to be hostile. It is also easier
to maintain traffic separation between partners in a community cloud by com-
bining VPNs (e.g. IPSec, OpenVPN, MPLS) - which may also be offered by
public cloud providers - with the benefits of a dedicated network infrastructure
(whether physical or virtual). Finally, the private cloud infrastructure is, by its
nature, exclusive to the entity which owns it. This limits the number of potential
intruders and enables traffic to be restricted to the enterprise LAN without extra
effort, assuming all branches which host parts of the cloud are already securely
interconnected.

The final key aspect of security relates to actions performed on the data. If
the data needs to be stored in a public/community cloud but can be processed
in-house, it is easier to ensure its security e.g. through encryption. However, if
the data is processed in a potentially hostile environment, additional problems
arise, since, at a minimum, some portion of data must be temporarily decrypted.
We will show how such problems can be mitigated.

The main scientific objective of this paper is to analyze the requirements of
scientific software regarding protection of confidential data as well as the nature
of the data itself, determine threats against those assets stemming from the use
of clouds (especially public ones) and, finally, propose and validate a suitable
mitigation strategy.

The structure of the paper is as follows. Section 2 presents policies and tech-
nical solutions applicable to public and private clouds in the context of data
security. Section 3 shows a possible solution that might be constructed on the
basis of this research. Section 4 presents the validation of the presented solution
including efficiency testing. Section 5 contains conclusions and closing remarks.

2 Related Work

As already described, public clouds are, by their nature, highly prone to attacks
or other actions leading to misuse of confidential information. As such, it becomes
very important to analyze all third-party audits confirming quality of the
infrastructure as well as any solutions offered by the provider to enhance cloud
platform security. In this section we will discuss these certificates and technolo-
gies on the example of the Amazon cloud which is one of the leading public
cloud platforms. In addition to that we will also mention solutions offered by
Rackspace which is another world-wide big player in this field.

Amazon provides a dedicated page [5] describing security standards and cer-
tificates the cloud is in compliance with. These have been listed in Table 1.

In addition, Amazon defines a set of procedures aimed at enhancing platform
security. This includes a set of user rights preventing AWS users from initiat-
ing any potentially dangerous actions, which, in combination with monitoring,
should ensure fair use of the infrastructure and prevent attacks, whether internal
or external, e.g. by blocking the malicious user or firewalling suspicious external
parties. Those procedures are so strict that even legitimate penetration testing
needs to be reported to Amazon [6] in order to receive permission (and not

Secure Storage and Processing of Confidential Data on Public Clouds 275

Table 1. Security standards and certificates with which Amazon claims compliance.

Standard Description

SOC 1/SSAE
16/ISAE 3402

SOC 1 report published by Amazon, documenting internal
audits based on SSAE 16 and ISAE 3402 standards

SOC 2 Amazon report defining practices relevant to basic security
aspects (such as confidentiality, integrity and privacy) of
customer data

FISMA, DIACAP,
FedRAMP

Amazon declares that its infrastructure enables US agencies
to remain compliant with the Federal Information Security
Management Act (FISMA) and that numerous
organizations have positively passed the Assurance
Certification and Accreditation Process (DIACAP) as
defined by NIST and US DoD using the Amazon cloud.
Finally, Amazon claims to be working with a third-party
auditing company to ensure compliance with the Federal
Risk and Authorization Management Program (FedRAMP)

PCI DSS Level 1 Amazon declares that it has been validated as compliant with
the Payment Card Industry (PCI) Data Security Standard
(DSS) which certifies that the infrastructure is ready for
storage and processing of credit card information

ISO 27001 Global, periodic audit-based security standard granted to
Amazon

International Traffic
In Arms
Compliance

Related to Amazon GovCloud dedicated to US Government
usage (not commercial or open) - confirms (through a
third-party audit) that Amazon is capable of restricting
access to specific personnel (in this case, US residents) as
well as a specific physical location (US territory).

FIPS 140-2 (US GovCloud only) Confirms high-quality encryption
mechanism in use (required for confidential/secret data
processing)

be blocked). There is also a dedicated contact point for software vulnerability
reporting [7] with the promised reaction time (SLA) of 24 h, which seems quite
acceptable.

Reckspace also offers multiple informations related to security both in general
and specifically related to data on their website [8]. This information describes
both formal procedures such as certifications and auditing as well as techni-
cal solutions. On the technical side Rackspace offers interesting hybrid solu-
tions, in contrast to Amazon which at present focuses strictly on pure cloud
services (with possibility to use VPC with in-house or third party dedicated
servers). Those includes abilities to interconnect public IaaS services with ded-
icated servers hosted in Rackspace on dedicated and separated hardware both
in legacy non-cloud mode as well as private cloud (based on OpenStack). The
solution is acompanied with additional glue services such as firewalls (traditional
and web app), dedicated secured links (such as site-to-site VPN - branded as
Rackconnect service), Intrusion Detection Systems etc.

276 J. Meizner et al.

Table 2. Cryptographic libraries that can be potentially used to provide server-side
encryption and tools for end users. Certificate numbers are provided for FIPS validated
implementations, where available.

Name Description FIPS Cert Nr

Libraries
OpenSSL Well known advanced free cryptographic library

including symmetric/asymmetric enryption
#1747,

#1758
Network Security

Services
(NSS)

Another cross-platform, open source
(MPL/GPL/LGPL) library

#1837

GnuTLS Most commonly used LGPL alternative to
OpenSSL (which carries a free license but is
incompatible with GPL)

N/A

libgcrypt Simple C library developed as part of GnuPG #1757
Bouncy Castle Cryptographic library for Java and C# N/A

Tools
OpenSSL Client

Tools
In addition to the core library, OpenSSL includes

tools that can be used to generate
cryptographic material (keys) as well as
perform data
encryption/decryption/signing/verification

N/A

GnuPG Offers solution for signing and encrypting data,
comply used to protect e-mail messages and
applicable to any arbitrary data

N/A

LUKS [13] and
dm-crypt [14]

Manages encrypted disks (including real and
loopback devices) preventing access to data
without a valid key when the disk is
unmounted

#1933 (for
dm-crypt)

Most of the security arrangements in an IaaS cloud (going beyond simple
credential/key injection) need to be taken care of by the user. However, some
providers offer solutions that could assist the users in this respect. One such
solution is the AWS Virtual Private Cloud [9]. It enables users to aggregate
instances and connect them using a virtual network which can be separated
from the Internet, with the ability to control aspects such as firewalls. It is
also possible to interconnect a corporate network with the VPC using IPSec
VPNs and BGP dynamic routing protocol. Another solution offered by Amazon
is built-in encryption for S3. Users can set a flag ensuring that data moved to
S3 is encrypted on the provider’s end [10]. Encryption may also be handled on
the client side - Amazon provides a suitable helper library as part of its Java
SDK [11].

Similarly to public clouds, private infrastructures may also implement solu-
tions assisting users in protecting their data on the server/provider side, or on
the client side. Examples from both groups are described below.

There are multiple cryptographic libraries that could potentially be used
to provide server-side encryption, as well as tools suitable for end users. Some

Secure Storage and Processing of Confidential Data on Public Clouds 277

notable examples are listed in Table 2. Where FIPS 140-2 validated implemen-
tations [12] are available, their numbers are also listed.

This section shows that service providers offer a wide range of security-related
assurances, and that specific solutions such as server-side encryption are also
offered. Even so, some scientific use cases (e.g. in the previously mentioned med-
ical domain) may require an independent cryptographic solution. To support
this requirement we propose a mechanism that could be deployed in a secure
(custom/third-party) infrastructure or directly applied by the end user. Users
who are not comfortable with trusting external providers should benefit from a
centralized service based on our solution and deployed by an organization they’re
more likely to trust (such as a partner involved in a collaborative project, or even
their own organization). Similar solutions used to verify computation done on
untrusted infrastructure with singe trusted service [15] have been described in
literature. If, however, the end user decides not to trust anyone else, they can
still benefit from the results presented below when choosing tools suitable for
custom end-to-end encryption/decryption mechanisms.

3 New Approaches to Secure Data Handling in Clouds

Even moderately confidential data can be stored in both private and public
infrastructures, given the use of strong cryptographic mechanisms such as those
based on the AES encryption schema which is considered by NIST to be strong
enough for protection of classified information (AES-128 up to SECRET level,
AES-192 and AES-256 up to TOP SECRET). The key used for the decryption
process needs to be stored securely (outside of the public cloud). In this scenario
even if provider trust is abused, data should not be compromised due to the
protection afforded by the encryption mechanism.

As mentioned above, encryption is the most basic mechanism for securing
data over which the user does not have full control, and must therefore assume
that stored data might be leaked. Below we suggest three possible solutions,
balancing the required level of trust with the implied user/organizational effort:

1. provider-level encryption - requires very little or no effort on the part of the
user, however, the user also needs to trust the provider in that encryption will
be performed properly and no unencrypted data will be stored. This situation
is, of course, preferable to complete lack of server-side encryption which might
leave data unencrypted for an indefinite amount of time (possibly even after
its removal is requested, due to the previously mentioned issues with erasing
data from cloud storage),

2. organization-level encryption, as shown in Fig. 1 - this assumes that users
do not access the cloud directly; rather they’re expected to use middleware
provided by their organization (e.g. scientific institution or business) built
on top of cloud resources leased from a single provider or multiple providers
(possibly both public and private, such as in a hybrid cloud). In this model
data is encrypted prior to being dispatched to the public cloud provider (who

278 J. Meizner et al.

Fig. 1. Encryption service usable by end users to secure data before they are stored in
a public cloud.

therefore does not need to be trusted), yet there is a new entity (organization)
that has to be trusted instead. In this scenario, just like in the preceding one,
the user does not have to personally handle data encryption / decryption,

3. client-level encryption - in this case data encryption and decryption is done
using tools controlled exclusively by the end user (such as his/her PC). This
precludes the need to trust external organizations or companies but, of course,
requires the user to manually handle the encryption process, which might be
too complex (especially for non-IT users) and, in any case, might consume a
considerable amount of local resources, especially if the user is processing a
large volume of data.

It is also possible to store chunks of data (preferably fragmented in such a
way as to be unrecoverable - e.g. every n-th pixel of every image - providing
n is sufficiently large) on different public clouds. This would permit storage of
unencrypted data in a form that remains moderately secure if the attacker cannot
compromise multiple locations. Although this solution alone would most likely
not be sufficient to protect confidential data, it might be applied in addition to
encryption to further reduce the odds of data being compromised.

The data processing problem cannot be completely solved assuming a lack of
trust for the provider as the data needs to be decrypted prior to processing. As a
result, a malicious entity, either internal or external to the provider, given access
to the machine, may hijack any decrypted data and/or obtain the security keys
and use them to decrypt data. The problem can, however, be mitigated in some
situations by:

1. passing the key along with the request (through a secure channel), store it
only in memory and purge it when no longer needed. It could then be used
to decrypt chunks of input data on the fly; Intermediate results should also
be kept in memory and sanitized. Finally, results should be encrypted prior
to being stored on any potentially unsecured storage device,

2. streaming it through a secure channel to a service in a private infrastructure,
which would be considered trusted and might also be responsible for immedi-
ate encryption of data with a symmetric key (not stored in the public cloud).
It might also be possible for the service to provide a protocol that could be
mounted e.g. using FUSE [16] and, by emulating a regular filesystem, allow
seamless access to data - such as in the case of a regular hard drive,

3. performing calculations on a selection of data (and recombining results as
a final step), then encrypting different chunks of data with different keys

Secure Storage and Processing of Confidential Data on Public Clouds 279

and possibly store them in separate locations (note, however, that this is not
mandatory - indeed, it is sufficient to ensure that a single instance has access
only to part of the data). In this case each instance performs computations on
a subset of data (whose theft would not be as critical as in case of a complete
data set). Partial results can be treated as described above (point 1 or 2),
while the final part of the computation can be performed on trusted resources
(such as a private cloud) with access to all intermediate results.

There are many issues that could prevent the data from being permanently
erased. This includes possible (usually undisclosed) optimization in the cloud
middleware layer or hardware components (such as storage arrays) that would
preclude the ability to overwrite data. In addition, certain magnetic storage
devices might allow retrieval of data even after it has been overwritten.

For the reasons stated above we should conclude that the only way to prevent
exposure of data to unauthorized entities is to use strong encryption mechanisms
before data is written to any non-volatile media. Then, by destroying the key,
we would be able to ensure, with a high degree of certainty, that no data can be
recovered in a realistic timeframe. The key itself needs to be stored in the private
cloud, preferably on a non-magnetic device (such as flash or RAM) which would
allow secure erasing.

Another possible solution is to avoid writing data to any permanent storage
altogether and simply keep it in memory. It is generally inadvisable to store
critical data in RAM as it could easily be destroyed by accident; however, this
solution might become viable given sufficient redundancy. Multiple copies of
data could be maintained at different physical locations so that even a large-
scale disaster at a single site would not bring down the entire infrastructure.
Instead of plain data copies more advanced structures, such as hashes, might be
constructed, similarly to methods used by more advanced RAID levels (like 5 or
6); although such a mechanism would have to take into account the increased
probability of failure of a given instance of volatile memory compared to a single
drive in a RAID array. The obvious merits of this solutions include (in addition
to efficiency) ease of sanitization and near-zero risk of data being retrieved from
decommissioned media. It is worth noting that while the theoretical refresh time
for modern DRAM is in the millisecond range, practical studies mentioned in [17]
have shown that this type of memory might potentially maintain coherence for
several seconds in normal temperature, and up to several minutes in cryogenic
conditions. Fortunately, such conditions should not be expected to occur under
any normal circumstances (i.e. by accident) and would involve severe breaches
of cloud provider security (as the attacker would need to be able to freeze the
DRAM modules shortly after power is cut, i.e. at the data center itself).

4 Validation

The goal of this section is to validate the feasibility of encryption as a data
protection measure for public cloud computations using confidential data, as well

280 J. Meizner et al.

as determining the best cipher to use for this purpose. From the list of possible
tools and libraries described above we have chosen OpenSSL (version 1.0.1) and
GnuPG (version 1.4.11) as the most popular, reliable and well optimized pieces
of software available both as a command-line tool that can be applied directly
by end users. During our test we first tested the I/O performance of the used
storage device (ramdisk) first, and then the encryption time for different ciphers
and block sizes. The following ciphers where used:

1. 3DES in CBC mode (des-ede3-cbc) - as an example of a legacy symmetric
cipher which still enjoys significant popularity,

2. AES-128 in CBC mode (aes-128-cbc) - as the most basic version of the cur-
rently suggested algorithm,

3. AES-192 in CBC mode (aes-192-cbc) - as a more advanced variant of AES,
4. AES-256 in CBC mode (aes-256-cbc) - as the strongest AES variant available.

All calculations where performed on chunks containing 10 MB, 100 MB and
1000 MB of pseudo-random data (generated using /dev/urandom under Linux).
Each measurement was performed 10 times, with the average values and standard
deviations calculated for each sample. All tests were ran on a standard PC
equipped with Intel Core i7 CPU model 860 (4 cores, 8 threads, 2.80 GHz) and
16 GB of memory (DDR3). The test system used Linux Ubuntu 12.04.1 LTS. A
ramdisk was used for storage of input and output (encrypted) data to minimize
read/write overhead. Additionally, to obtain more accurate measurements of the

Table 3. The time needed to perform I/O operations (for a 1 GB sample file) on the
ramdisk used for storage of input and output data and the one needed to encrypt
chunks of data (10 MB, 100 MB and 1000 MB) using 3DES and different variations of
AES ciphers for OpenSSL and GnuPG.

I/O operations measurement

Avg. Time (s) Std. dev. Transfer (MB/s)
Read (1 GB chunk) 0.1432 0.0028 6981
Write (1 GB chunk) 0.3696 0.0061 2706

OpenSSL GnuPG
Avg. Time (s) Std. dev. Avg. Time (s) Std. dev.

3DES - 10 MB 0.412 0.004 0.724 0.003
3DES - 100 MB 3.977 0.017 6.905 0.026
3DES - 1000 MB 39.810 0.275 68.760 0.271
AES 128 - 10 MB 0.049 0.004 0.370 0.025
AES 128 - 100 MB 0.385 0.005 3.425 0.005
AES 128 - 1000 MB 3.722 0.030 34.095 0.099
AES 192 - 10 MB 0.058 0.003 0.370 0.004
AES 192 - 100 MB 0.439 0.004 3.526 0.013
AES 192 - 1000 MB 4.296 0.050 35.198 0.202
AES 256 - 10 MB 0.063 0.003 0.380 0.006
AES 256 - 100 MB 0.505 0.004 3.631 0.014
AES 256 - 1000 MB 4.906 0.038 36.088 0.099

Secure Storage and Processing of Confidential Data on Public Clouds 281

encryption time, I/O efficiency tests were performed for the above mentioned
drive, as shown in Table 3. This table also presents average values and standard
deviations for different data chunk sizes and ciphers.

As can be expected, encryption introduced considerable overhead - on the
order of 10–100 times the baseline value. However, if the proper cipher and
tool is applied the solution appears sufficient for many scientific use cases, even
when large volumes of data (like medical images) need to be processed. Even
with a very strong cipher (AES-256) it is still possible to achieve throughputs
of ca. 200 MB/s, which is greater than typical network bandwidth available to
most cloud instances (up to 1 GBit/s = 128 MB/s), as well as typical consumer
HDDs. While insufficient for data-intensive HPC, these solutions would still
solve many scientific problems up to the terabyte range (e.g. processing multiple
medical images). It’s important to mention that more advanced ciphers might
be handled much more efficiently than legacy ones: for instance, AES (using
OpenSSL implementation) is approximately 10 times faster than 3DES. The
relatively small differences between AES variants suggest that even for large
blocks of data AES-256 might be preferable to weaker ciphers. Finally, the results
above clearly have shown that choice of the right implementation is critical as
GnuPG performed not so good as OpenSSL. The AES implementation in the
selected version of GnuPG seams to be poorly optimised.

5 Conclusions and Future Work

In this paper we described problems related to the storage and processing of
confidential data in public clouds. We have shown possible ways to mitigate
those problems and concluded that the use of encryption appears to be the
most promising strategy. Consequently, we have decided to analyze and suggest
possible software modules that might be used for data encryption and decryption,
and propose potential architectures which strike a balance between the implied
trust in third-party providers and the effort needed on the part of the user.
Finally, we have measured and analyzed various encryption mechanisms using
sample data and different ciphers offered by the OpenSSL library and GnuPG
tool as a representative examples of the proposed solutions. We conclude that
the proposed solution is technically feasible even in conjunction with a strong
cryptographic cipher (AES-256) providing that the right choice of used tools has
been made. Additionally, we have shown that selecting right tool is critical so the
described benchmark should be performed on a target system to choose the best
configuration. We plan to perform more in-depth testing of the available solutions
including tests involving AES-NI hardware accelerator mechanisms available in
modern CPUs.

Acknowledgments. This research was partially funded by EC ICT VPH-Share
Project (contract no. 269978) and the corresponding KI AGH grant. The authors wish
to thank Dario Ruiz Lopez and Dmitry A. Vasunin for their helpful advice.

282 J. Meizner et al.

References

1. VPH-Share. http://vph-share.org/
2. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM conference on Computer and Communications Security (CCS ’09),
pp. 199–212. ACM, New York (2009)

3. Vulnerability Summary for CVE-2012-0217, National Vulnerability Database,
NIST. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-0217 (2012)

4. Vulnerability Summary for CVE-2012-6030, National Vulnerability Database,
NIST. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-6030 (2012)

5. AWS Security and Compliance Center. https://aws.amazon.com/security/
6. Penetration Testing. https://aws.amazon.com/security/penetration-testing/
7. Vulnerability Reporting.

https://aws.amazon.com/security/vulnerability-reporting/
8. Security in Rackspace. http://www.rackspace.com/security/
9. Amazon VPC. http://aws.amazon.com/vpc/

10. Using Data Encryption. http://docs.aws.amazon.com/AmazonS3/latest/dev/
UsingEncryption.html

11. Client-Side Data Encryption with the AWS SDK for Java and Amazon S3. http://
aws.amazon.com/articles/2850096021478074

12. Validated FIPS 140-1 and FIPS 140-2 Cryptographic Modules. http://csrc.nist.
gov/groups/STM/cmvp/documents/140-1/140val-all.htm

13. LUKS: Linux Unified Key Setup. http://code.google.com/p/cryptsetup/
14. dm-crypt: Linux kernel device-mapper crypto target. http://code.google.com/p/

cryptsetup/wiki/DMCrypt
15. Canetti, R., Riva, B., Rothblum, G.N.: Refereed delegation of computation. Inf.

Comput. 226, 16–36 (2013). ISSN: 0890-5401
16. FUSE: Filesystem in Userspace. http://fuse.sourceforge.net/
17. Alex Halderman, J., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calan-

drino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold
boot attacks on encryption keys. In: Proceedings of the 2008 USENIX Security
Symposium, 21 February 2008

Efficient Service Delivery in Complex
Heterogeneous and Distributed Environment

Mariusz Fras and Jan Kwiatkowski(B)

Institute of Informatics, Wroclaw University of Technology,
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

{mariusz.fras,jan.kwiatkowski}@pwr.wroc.pl

Abstract. The problem of providing quality of service (QoS) guarantees
is studied in many areas of information technologies. For network services
three attributes are directly related to everyday perception of the QoS by
the end user: availability, usability, and performance. The paper focuses
on performance issues of service delivery with use of virtualization of
services and processing resources. There are presented general issues of
efficient service delivery, and proposed solutions with different formula-
tion of guaranties for service processing. The best effort and SLA-based
approaches are considered. The selected aspects of utilizing processing
resources virtualization are also discussed.

Keywords: Quality of services · Service request distribution ·
Virtualization

1 Introduction

The quality of service delivery is one of the very current challenges for most of
the service providers. There are three attributes that directly relate to everyday
perception of the quality of service for the end user: availability, usability, and
performance [6]. Particularly for the last one it is very difficult to fulfil sufficient
values of non-functional parameters. There are a number of metrics that are used
during service delivery evaluation process. However, there is a common agree-
ment that an essential non-functional parameter for the assessment of quality
of service delivery is the response time. When services are offered using global
heterogeneous distributed system the response time consists of two components,
request processing time on the server where the service is offered and the data
transfer time.

To improve the quality of service delivery the common used solution is redun-
dancy of offered services (e.g. CDN solutions) and service request distribution. In
the context of Web services useful standards for quality of service mechanisms,
such as WS-* and others have been proposed. For example in the work [8] a com-
prehensive overall infrastructure to guarantee SLA (Service Level Agreement) for
services has been proposed, including general scheme of the runtime environment,
specifications and procedures for handling requests, and measurement of services.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 283–292, 2014.
DOI: 10.1007/978-3-642-55224-3 27, c© Springer-Verlag Berlin Heidelberg 2014

284 M. Fras and J. Kwiatkowski

The paper presents the architecture of the Virtual Service Delivery Sys-
tem (VSDS) that uses virtualization of services and virtualization of processing
resources for efficient processing of service requests. There are presented general
issues of service delivery in the considered environment, and proposed solutions
with different formulation of guaranties - best effort as well as SLA-based.

The paper is organized as follows. Section 2 briefly describes the main ideas
used during designing and developing of the VSDS. The service request control
is presented in Sect. 3. In the Sect. 4 procedures related to allocation of execution
resources to service request are discussed. Finally, Sect. 5 outlines the work and
discusses ongoing work.

2 The General Concept of Virtual Service Delivery

The concept of quality-aware service delivery is based on the idea of virtual-
ization of services and resources and distribution of client’s requests according
to actual service instance non-functional parameters. The real services are hid-
den from client point of view. The client deals with virtual service (so called
atomic service) that can be executed (by so called service instances) at different
locations. The main components of the system called Virtual Service Delivery
System (VSDS) are network service broker (further called Broker) and Virtual
Resource Manager (VRM). The Broker advertises virtual services and handles
client request for services. The main assumptions for operation of both modules
are as follows:

– the Broker delivers to clients the set of J atomic services asj , j ∈ [1, J],
– the Broker knows execution systems esm, m ∈ [1,M], where real services

(service instances isj,m) are available,
– the Broker acts as a service proxy - distribute client requests for services to

proper instances according to some distribution policy,
– the Virtual Resource Manager is responsible for service execution,
– the Virtual Resource Manager is responsible for management of processing

resources (virtualization) and service instances (creation, maintenance and
removing).

The Broker implements the Virtual Service Layer (Fig. 1). The VRM man-
ages virtualized computational resources. Both layers are defined as the tuple
<ES,CL,AS, IS>, where: ES = {es1, ..., esm, ..., esM} is the set of execution
systems esm, CL = {cl1, ..., clm, ..., clM} is the set of communication links clm
from the Broker to execution systems, AS = {as1, ..., asj , ..., asJ} is the set of J
atomic services, IS = {IS1, ..., ISj , ..., ISJ} is the set of all instances of services,
where: ISj - the subset of all instances of service asj , isj,m - the m-th instance
of j-th service asj localized in given execution system esm.

Both virtual services and virtual resources can be flexible managed to improve
system efficiency as well as to support client service tasks. This is achieved with
use of virtualization techniques and building the system in accordance with SOA
paradigm. The real resources are available on virtual servers (execution systems)

Efficient Service Delivery in Complex Heterogeneous 285

that run service instances, and can be instantiated and tuned by VRM (Fig. 2).
The execution systems and instances are registered in the Broker. The Broker
maps atomic service to instances of that service. From now registered services
can by requested by clients.

The information about services, execution systems, values of its parameter,
and values of parameters of request processing are collected. Using this data,
and functionalities of system components, the quality-aware request distribution
according to different algorithms is possible.

Fig. 1. The layers of Virtual Service Delivery System

Fig. 2. Virtual service and resource management

286 M. Fras and J. Kwiatkowski

3 Service Request Control

The quality of network services can be variously defined and different approaches
to this problem can be proposed according to problem formulation. One of the
often used approaches is to perform such request handling that quality of user
perception of service processing on the basis of non-functional service parameters
is achieved.

The instances of given atomic service are functionally the same and differ only
in values of non-functional parameters {ψ1(isj,m), ..., ψf (isj,m), ..., ψF (isj,m)},
where ψf (isj,m) is f -th non-functional parameter of m-th instance of j-th atomic
service. The service parameters can be static - constant in long period of time
(e.g. service price), or dynamic - variable in short period of time (e.g. the comple-
tion time of execution). In context of static parameters different methods based
on classic approaches (e.g. integer programming) are proposed, e.g. [9]. From the
client point of view, the very sensitive parameter is service response time, which
is often very dynamic parameter.

To satisfy proper values of service parameters distribution of the request
to proper service instance must be performed. The problem of service request
distribution can be stated using criterion function Q:

isj,m∗ ← arg
m
Q(ψ1(isj,m), ..., ψf (isj,m), ..., ψF (isj,m)) (1)

Later in this work the problem of dynamic parameters is mainly consid-
ered, and proposed algorithms are formulated for guaranties for response time,
however the general description is sometimes used.

3.1 Local and Global Distribution

Taking into account localization of system components two basic cases can be
distinguished. The Broker can be localized in the service processing center, where
execution systems are run (so called the local Broker), or near the client, and
execution systems are accessible via internet links (the global Broker). From the
service request control point of view the basic difference is to take into account
specific impact of data transfer via internet links on values of service parameters.
The main factors are:

– the data transfer time can be significant in overall cost of service processing,
– the estimation of values of certain service parameters is a challenge,
– usually the Internet communication links are out of hand i.e. there is lack of

guarantees of constant link performance, especially available bandwidth.

Another issue is that local Broker assure the full knowledge about all processed
requests. All above determine how to perform service request control.

The best effort approach can be adopted in both cases. Considering only
dynamic parameters the incoming request to the Broker at the moment n is

Efficient Service Delivery in Complex Heterogeneous 287

distributed to selected service instance isj,m using criterion function of forecasted
or calculated values of service instance parameters:

isj,m∗ ← arg
m
Q(ψ̂1

n(isj,m), ..., ψ̂f
n(isj,m), ..., ψ̂F

n (isj,m)) (2)

where ψ̂f
n(isj,m) is forecasted or calculated value of f -th parameter of instance

isj,m at the moment n. An example of such dynamic parameter is request
processing time which depends on server load.

Calculation of values of service parameters is possible under some considera-
tion. E.g. system resources must be dedicated only for requests known for system
control unit (here the Broker), characteristic of resource consumption must be
known, etc. Forecasting the values of parameters can be performed in various
ways. The common techniques used are time series analysis and methods based
on artificial intelligence approaches.

For service parameters that should be minimized, such as usually most impor-
tant response time, fuzzy neural forecasting is solid solution [1,3]. Each service
instance is modelled as two stage fuzzy-neural network described in detail in [3].
An output of the model is forecasted value of parameter of the instance isj,m

at the moment n (here request processing time t̂Pj,m in execution system), on
the basis of two input values (Fig. 3a). One input value is the number of ser-
viced requests ln. The second input is execution system state indicator sn. The
indicator may be constructed variously to best reflect the system state. E.g.
for computational tasks the processors load can be used, for intensive file data
processing tasks the number of I/O operations can be used, or any combination
of these and other suitable parameters. In case of global Broker the model of
communication link for each instance is used. The transfer time t̂Tj,m is derived
with use of link load lln and TCP Connect time tTCPC,n inputs (Fig. 3b).

Both, calculation and forecasting need monitoring of values of service para-
meters and execution system state. For processing and data transfer times fore-
casting, the real values of previous requests are used. The local Broker can use
data received from monitoring on execution system level. The global Broker can
derive estimation of this values with use of the monitoring of TCP session which
handles service request to the processing system [2].

The SLA-based distribution with use of integrated services (IntServ) and
differential services (DiffServ) approaches depends on several assumptions about
the processing environment and processing schema. As mentioned before, the
data transfer control over the Internet links is difficult. Some task of other than
best effort approaches can be used only with dedicated links, what is rather rare

Fig. 3. Model for forecasting of values of service parameters

288 M. Fras and J. Kwiatkowski

in the Internet environment. In terms of execution systems’ resources the specific
control is possible in two cases:

– the local Broker is used,
– the system serves client requests only via registration in global Broker.

The presented VSDS architecture supports this two cases and the request
distribution can be performed according to utilization of dedicated execution
resources. Hereafter, it is assumed that communication between the Broker and
execution systems is not the bottleneck and the transfer time is not considered
separately. To simplify further reading the index of the moment n is omitted
later on.

3.2 SLA-Based Distribution

Considering request service manner two general cases of request processing can
be distinguished. In the case of one-by-one request processing by execution
system the well-known queuing methods can be used. In the case of parallel
processing requests by one execution system (typical for web services) and run-
ning many service instances, the handling of service request can be performed
with aid of specific parameters characterizing processing.

For both IntServ and DiffServ approaches resource reservation is required.
For the designed method of response time evaluation one or two parameters
characterizing system usage can be taken under consideration: execution sys-
tem state indicator and especially number of requests being processed at given
moment. Many studies show that response time of typical web service server
increases slightly to a certain (characteristic for that server) request limit, and
above this value the increase is much more rapid. This limit value l∗m for every
m-th execution system determine DiffServ and IntServ algorithms thresholds.

For IntServ approach it is assumed that each incoming request clearly indi-
cates the requirements for service non-functional parameters req(ψ(asj)). Con-
sidering response time of service asj requirement req(tj) the request distribution
that saves system resources for future requests, selects the worse instance guar-
anteeing proper processing, i.e.:

isj,m∗ ← arg max
m

t̂j,m (3)

with respect to t̂j,m < req(tj).
For DiffServ approach the distribution algorithms are formulated depend-

ing on the assumptions about guaranties for request processing. The simplest
solution is for assumption that the request requirements are met when the
delivery system is not overloaded in the sense that the number of serviced
requests lm is less or equal the limit value l∗m for every execution system m.
Let C = {c1, ..., ck, ..., cK} be the set of K classes of served requests. Assume
that request priority of class ck is higher than class ck+1 (class ck is higher than
ck+1) and for each higher class the system must guarantee correct processing of

Efficient Service Delivery in Complex Heterogeneous 289

minimal amount of l∗ck
requests. Denote by lck

the number of actually processed
requests of class ck. The basic request distribution algorithm is to use best effort
approach with constraints on number of handled requests of given class. For the
request of class ck for the service asj , the instance is selected according to:

isj,m∗ ← arg min
m

t̂j,m (4)

with respect to:
⎧
⎪⎨

⎪⎩

lm ≤ l∗m
M∑

m=1
l∗m >

(
K∑

j=1

lcj
+

k−1∑

j=1

max
[(
l∗cj
− lcj

)
, 0
]
)

(5)

The constraint rules (5) are: (a) the limits of processed requests l∗m must
not be exceeded, (b) the number of actually served requests plus the number of
possible to appear requests of higher classes then class ck that must be processed
is less than the total number of requests that can be processed.

Another case is the demand to guarantee better values of service parameters
(here response times) for established number of requests l∗ck

of higher classes.
Denote as t∗m the maximal time of processing any request within limit l∗m on the
system m. The time of processing l∗m-th request for most demanding service is
assumed at this value. The distribution algorithm that performs this scenario is
as (4), but with other constraints:

k−1∑

j=1

max
[(
l∗cj
− lcj

)
, 0
]
<

∑

m:t∗
m≤t∗

m∗

(l∗m − lm) (6)

The constraint (6) means that the number of additional requests that can
be processed on servers with value t∗m lower or equal then value t∗m∗ for selected
execution server m∗ is sufficient to serve possible to appear requests of higher
classes then class ck that must be processed.

The last, most demanding, scenario is to assure processing times for individ-
ual classes. Let TH = {th1, ...thk, ...thK} be the required times of processing for
each class {c1, ...ck, ...cK}, respectively. There are defined the following require-
ments for each class ck the system must fulfil:

– the minimal amount of requests l∗ck
for every class ck processed in parallel,

– the maximal processing time thk of request of class ck,
– the class ck always has priority over class ck+1 within the limits l∗ck

of specified
requirements.

Let denote M∗
k = {m : t∗m ≤ thk} as the set of execution systems that satisfy

processing times for class ck. The distribution algorithm that assures above

290 M. Fras and J. Kwiatkowski

requirements is instance selection according to (4) with the following constraints:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀i≤k

∑

m∈M∗
i

(l∗m − lm) ≥
i∑

j=1

max
[(
l∗cj
− lcj

)
, 0
]

∃i≤k

∑

m∈M∗
i

(l∗m − lm) >
k∑

j=1

max
[(
l∗cj
− lcj

)
, 0
] (7)

The first rule tells that for each class higher then class ck of given request, the
sum of additional requests that can be processed on servers within the limits l∗m
and that satisfy time requirements (i.e. t∗m ≤ thi) must be not less than possible
to appear requests of all higher classes that must be processed. The second rule
tells that for at least one of above classes the number of additional request that
can be processed is bigger than required.

The presented algorithms are based on some simplifying assumptions, e.g.
that server load caused by given number of processed requests is close to the
medium value. In fact, this can fluctuate. To avoid the impact of such fluctuation
the second parameter sn characterizing execution system state should be used.
Moreover, the parameter sn and the number of processed requests lm can be used
on virtual resource layer for managing execution system resources to improve
request processing, especially when services are near its performance boundaries.

4 Virtual Resource Management

In general, the Virtual Resource Manager (VRM) is responsible for service exe-
cution and efficient resources utilization. To increase resource utilization exploits
the capabilities offered by virtualization techniques. The VRM uses the informa-
tion collected by its monitoring system and stored in the service repository. The
VRM is composed of a number of independent modules that provide separate
functionalities and interacting with each other using defined interfaces (XML-
RPC and SOAP). The following modules constitute the resource management
part of the VRM: VRM-Controller, VRM-Matchmaker and VRM-Virtualizer.
Basic duties of these modules are as follows: VRM-Controller is responsible for
assignment the proper amount of resources (RAM memory, percentage of CPU
time, etc.) to virtual servers. The VRM-Matchmaker module is used to match
existing set of available hardware resources with required ones when the new
service instance has to be launched and finally VRM-Virtualizer is responsible
for management of virtual machines. The VRM-Virtualizer uses libvirt library
to execute commands which make it independent on a particular hypervisor.
More information about the general architecture of the VRM can be found in
[4]. In conclusion the VRM is responsible for: minimization of resource usage
during service delivery and maintenance of the fulfilment request requirements.

To improve the work of proposed algorithms the VRM can directly affect
two important parameters limit value l∗m of virtual servers and resource usage
sm. The ways the VRM supports request processing and takes decision can be
divided into a number of scenarios depending on current set of processed requests
and current state of execution systems:

Efficient Service Delivery in Complex Heterogeneous 291

– the service request is received and all resources are satisfied,
– the service request is received but the VRM detects that resource requirements

are violated,
– the Broker request for new service instance is received.

The VRM-Controller is able to react when will be notified by the moni-
toring system that certain service is under-performing, violating the requested
non-functional requirements. The possible actions are realized by the VRM-
Virtualizer that is able to create the new service instance, change resources
allocation to existing service instances, migrate service instances to different
location, hibernate and de-hibernate them and finally close any existing service
instances. The VRM always checks the current state of the virtual server on
which the service instance is called. The current number of served requests lm
and available other resources (e.g. RAM) are compared with the limits. When the
results are positive the request is passed to the selected by the Broker instance
- first scenario happens.

In the second scenario, when no correct amount of resources is allocated,
mainly less resources is allocated to the server, the VRM can perform two actions.
In the first step VRM-Virtualizer tries to allocate additional required amount of
resources to the server. When it is not possible VRM-Controller takes decision
that the new service instance should be instantiated and request redirected to it.
However the request redirection must be specially handled by the Broker due to
service modelling needs. In that case the Broker is informed about the address
of the service instance that is used as response for the request.

The service instance can be instantiated in two ways. The instance can be
created using an service image stored in the service repository or the hibernated
instance can be de-hibernated. The implemented by the VRM-Controller pro-
cedure prefers the second approach because of the time that is needed for both
specified actions. The new service instance is then registered in the Broker.

VRM-Controller should receive from VRM-Matchmaker information about
the possible location (available servers) that can fulfil the specified in the request
requirements. For implementation of VRM-Matchmaker the idea used by the
HTCondor and the ClassAd Language was used [7]. However unlike in Con-
dor the matching is done regardless of used parameters, what enables usage of
parameters that have not been defined during creation of ontology. Design and
implemented for the VRM language PL (Property language) consists of three
instructions: substitution (<property id> = <expression>) is used to define
the property of Information Units (IU) - a set of properties specific to the par-
ticular element of our system, for example server, service instance, etc., assertion
(assert <logical expression>) used for defining requirements and conditional
statement (if <logical expression> then <property id> = <expression>).
An example how it works is presented in [5].

In the third scenario the hibernated service instance is de-hibernated or,
when it is not possible, the new service instance is created in the way presented
above. When specified in the request requirements cannot be fulfilled the request
is rejected.

292 M. Fras and J. Kwiatkowski

5 Conclusions

Quality of service delivery takes important role during the process of service
delivery system designing. It is especially important in the complex and distrib-
uted environment when a large number of processing resources are used. Using
the virtualization of delivered services and virtualization of execution resources
(namely using virtual servers) the effective service request processing can be
flexible supported. The presented architecture permits applying different quality-
aware distribution algorithms, as well as improving operation of algorithms by
low level resource management at the virtual resource layer.

The presented solutions assume some simplifications for the processing rules.
In future works, the proposed methods should take into consideration request
distribution control with separate impact of transfer times on algorithm deci-
sions. Also using the execution system state indicator should be exploited.

References

1. Borzemski, L., Zatwarnicka, A., Zatwarnicki, K.: Global distribution of HTTP
requests using the fuzzy-neural decision-making mechanism. In: Nguyen, N.T.,
Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 752–763.
Springer, Heidelberg (2009)

2. Fras, M., Kwiatkowski, J.: Quality aware virtual service delivery system. J. Telecom-
mun. Inf. Technol. 3, 29–37 (2013)

3. Fras, M., Zatwarnicka, A., Zatwarnicki, K.: Fuzzy-neural controller in service
requests distribution broker for SOA-based systems. In: Kwiecień, A., Gaj, P., Stera,
P. (eds.) CN 2010. CCIS, vol. 79, pp. 121–130. Springer, Heidelberg (2010)

4. Kwiatkowski, J., Fras, M.: Request distribution toolkit for virtual resources allo-
cation. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.)
PPAM 2011, Part I. LNCS, vol. 7203, pp. 327–336. Springer, Heidelberg (2012)

5. Kwiatkowski, J., Pawlik, M., Fras, M., Konieczny, D., Wasilewski, A.: Design of
SOA-based distribution system. In: Ambroszkiewicz, S., Brzeziński, J., Cellary, W.,
Grzech, A., Zieliński, K. (eds.) SOA Infrastructure Tools: Concepts and Methods,
pp. 263–288. Poznan University of Economics Publishing House, Poznan (2010)

6. O’Brien, L., Merson, P., Bass, L.: Quality attributes for service-oriented architec-
tures. In: Proceedings of the International Workshop on Systems Development in
SOA Environments. IEEE Computer Society, Washington DC (2007)

7. Solomon, M.: The ClassAd Language Reference Manual Version 2.4, May 2004.
http://www.cs.wisc.edu/condor/classad/refman/

8. Schmietendorf, A., Dumke, R., Reitz, D.: SLA management - challenges in the con-
text of web-service-based infrastructures. In: Proceedings of the IEEE International
Conference on Web Services, San Diego, California (2004)

9. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for Web services composition. IEEE Trans. Softw. Eng. 30(5),
311–327 (2004)

Domain-Driven Visual Query Formulation
over RDF Data Sets

Bartosz Balis1(B), Tomasz Grabiec2, and Marian Bubak1,2

1 Department of Computer Science, AGH University of Science and Technology,
Krakow, Poland

2 ACC Cyfronet AGH, AGH University of Science and Technology, Krakow, Poland
{balis,bubak}@agh.edu.pl

Abstract. Semantic Web technologies, such as RDF, SPARQL and
OWL, are increasingly used for data representation and information
retrieval in real-world applications including those from the e-Science
domain. Visual query formulation has been recognized as a useful app-
roach facilitating information retrieval for domain-experts not familiar
with RDF query languages. We propose a visual query approach over
RDF data sets based on an abstract domain-driven (conceptual) query
language. The basis for the query model are ontologies describing the
RDF data sets. We have built the QUaTRO2 tool which implements this
query approach and provides a high usability graphical user interface to
assist domain experts in constructing complex queries and browsing their
results. The concepts and their implementation are validated by applying
the QUaTRO2 tool to query the UniProt protein database.

Keywords: Semantic Web · RDF · SPARQL · Visual query formula-
tion · OWL · Ontologies

1 Introduction and Motivation

The Semantic Web is a vision of machine-understandable organization of infor-
mation in the Web. Thanks to the maturation of associated technologies over
the past decade – notably the W3C’s semantic web technology stack (RDF,
SPARQL, OWL and others) – Semantic Web is increasingly adopted for real-
world complex applications such as social data analysis [7]. In e-Science seman-
tic web has been investigated as a tool for scientific data integration [5]. Also,
advantages of representing scientific data using RDF / OWL in comparison to
the relational model have been pointed out [9]. Large scientific data sets are
being published in the RDF/OWL representation, notably the protein database
Uniprot which currently consists of nearly 7.5B triples [1].

A potential barrier to effective information retrieval from RDF data sets is
the lack of query formulation methods and tools which on the one hand enable
one to design advanced queries, on the other hand do not require expert IT skills
such as the knowledge of SPARQL. We propose a visual approach to formulating

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 293–301, 2014.
DOI: 10.1007/978-3-642-55224-3 28, c© Springer-Verlag Berlin Heidelberg 2014

294 B. Balis et al.

semantic queries over data sets represented in RDF and described by ontologies
in OWL. The approach consists in using ontologies as a basis for the visual query
language and the underlying query model, effectively providing a visual domain-
driven (conceptual) query language. The principal design goals for the proposed
query methods comprise domain-expert orientation, so that query formulation
does not require a significant IT expertise; domain independence to avoid any
assumptions as to the contents or structure of the data and thus potentially
support any RDF data set; and high query expressiveness so that formulation of
advanced queries is possible despite a high-level visual query language. Finally,
not the least of our goals was to provide a high-usability graphical user interface.

These objectives have led us to implementing the QUaTRO2 tool (prelimi-
narily described in an abstract [2]). As a validation of the proposed concepts,
we have applied QUaTRO2 to query the UniProt RDF database. Our previous
experience with visual querying concerned querying provenance data [3,4]. The
development of QUaTRO2 was driven by significantly different goals and does
not reuse any algorithms, design or code from the previous tool.

This paper is organized as follows. Section 2 presents related work. Section 3
explains the concept for a domain-driven query language, its representation,
translation and execution. In Sect. 4, the visual query formulation approach is
presented along with example queries. Section 5 concludes the paper.

2 Related Work

The need for visual tools oriented towards domain experts, as opposed to com-
puter science engineers, has been recognized in various aspects related to uti-
lization of semantic web technologies [7,13]. A number of visual approaches have
been developed to facilitate domain experts in querying RDF data sets.

RDF-GL [8] is a SPARQL-based graphical query language which covers most
of the SPARQL syntax and is very powerful in terms of query expressiveness.
The authors argue that the tool allows for an intuitive way of building complex
queries. However, because of a tight coupling to the SPARQL language, a non-
expert may find it difficult to intuitively express some relations. For example, it
is not obvious how to express a negation of a pattern. Using the tool effectively
requires a deep technical knowledge of the query language.

TAMBIS [11] is a tool for biologists to query multiple data sources using
a uniform interface. The tool utilizes an ontology to describe the domain and
formulate queries. The query is a tree where nodes represent concepts while
branches are their relationships. The query construction starts with a single
root concept (Protein by default). Next, restrictions on data or object proper-
ties can be added. In the latter case, the target concept of an object property
can further be restricted. Some limitations of the tool include the lack of logi-
cal expressions and operators in data property restrictions, which significantly
limits the expressiveness of the query language. Also, the tool is designed to
handle a specific domain and it is unclear if it is capable of supporting different
ontologies.

Domain-Driven Visual Query Formulation over RDF Data Sets 295

Eros [12] is an ontology browsing and query construction tool. The goal of
the tool is to provide a user interface to the ontology so that the user can browse
it and get familiar with it before building queries. Another goal is to leverage
ontology to assist the user in query construction. Eros presents the ontology
using two trees laid out next to each other. Each tree presents a class hierarchy.
The left tree is a so-called ‘domain tree’ whereas the right tree is called the
‘range tree’. An arrow connecting a concept from the left tree and a concept
from the right tree represents a domain – property – range relationship between
these concepts. Eros provides also another mode of exploring the ontology, the
property view. In this mode the left tree contains a hierarchy of properties. When
given property is selected, arrows are drawn to the right tree pointing domain
and range of the property. Overall, the query construction requires a significant
knowledge of RDF and its query language, RQL in this case.

VQS (Visual Query System) [6] is a set of tools assisting in constructing
queries for RDF data sets for which no ontologies exist. The methods featured
in VQS include RDF and SPARQL visual editors, a browser-like query creator,
and a condensed data viewer which is capable of visualizing a complex RDF
graph in a compact manner by grouping similar resources. The advantage of
this approach is the capability to handle data not described by ontologies. At
the same time, this positions the approach within specific area of applications,
such as social web data analysis, for which ontologies are difficult to design.

NITELIGENT [10] is a Web-based tool for semantic query construction based
on SPARQL. The proposed visual query language – vSPARQL – is a set of
graphical notations which correspond to SPARQL syntactic elements. The tool
is complemented with an ontology browser which facilitates query formulation
by allowing the users to drag and drop ontology classes and properties into the
actual query design canvas. As in the case of some other tools, the tight coupling
to SPARQL is an advantage in terms of query expressiveness, but it may affect
the usability for domain experts who are not familiar with this query language.

Overall, main novelties of our approach with respect to existing solutions
lie in the following areas. Firstly, the existing approaches provide rather a low-
level query formulation interface which directly maps the underlying RDF query
language. In contrast, our approach relies on ontologies which leads to a domain-
driven query language and, consequently, a domain-expert-oriented tool. Sec-
ondly, tools which do offer a more abstract query interface, tend to be tied to
a particular domain. Our approach is different in that it offers a generic frame-
work which can be adapted for any RDF data set for which ontologies exist;
moreover, it achieves that while providing advanced query capabilities (e.g. the
ability to combine multiple query trees with logical operators into complex query
graphs), and without sacrificing domain-expert-orientation.

3 Semantics-Driven Query Design and Execution

We propose an abstract, conceptual query model which is best explained using
a simple query example shown in Fig. 1. This query uses concepts from the

296 B. Balis et al.

UniProt ontologies and its purpose is to select genes encoding proteins which
also cause human diseases, as well as the descriptions of these diseases. The
query is basically a graph of domain concepts (ontology classes) connected by
relationships: Protein which is encoded by a Gene which in turn exists in an
organism that belongs to Taxon commonly named ‘Human’. Also, the Protein
should have an annotation about a related disease (Disease Annotation). The
result of the query can be any subset of attributes from all classes in the query
graph. In this particular case three attributes are selected: the URI of the Pro-
tein RDF resource, attribute core#prefLabel from the associated Gene resource
(preferred name of the Gene), and attribute comment from the associated Dis-
ease Annotation resource (description of the disease).

Fig. 1. Semantic query as a tree of domain ontology concepts and properties.

A textual representation of this query is shown below.

Listing 1.1. ”Textual representation of a sample semantic query.”

ConceptSelector{<http://purl.uniprot.org/core/Protein>, (URI)}(
PropertySelector{<http://purl.uniprot.org/core/encodedBy>}(
ConceptSelector{<http://purl.uniprot.org/core/Gene>, (core#

prefLabel)}
),

PropertySelector{<http://purl.uniprot.org/core/organism>}(
ConceptSelector{<http://purl.uniprot.org/core/Taxon>}(
PropertySelector{<http://purl.uniprot.org/core/commonName>}(
PropertyValueConstraint{EQUALS, ’Human’}

)

)

),

PropertySelector{<http://purl.uniprot.org/core/annotation>}(
ConceptSelector{<http://purl.uniprot.org/core/Disease Annotation>,

(comment)}
)

)

Domain-Driven Visual Query Formulation over RDF Data Sets 297

The query model supports multiple logical operators (alternative, conjunc-
tion, negation, etc.) which can be applied at both resource level and property
level. At the resource level, logical operators join multiple property selectors
each of which can be bound to a different resource. In this way, a query can be
branched into multiple subgraphs joined with complex logical relationships. At
the property level, logical operators join multiple value constraints of a given
property. Examples of queries with logical expressions are provided in Sect. 4.

We have designed and implemented a translation engine which converts the
abstract query graph into the target query language. Given the complexity of
query graphs introduced by the logical operators, this turned out to be a chal-
lenging task. One approach would be to generate and execute multiple sub-
queries for all branches of the query graph, and subsequently merge their result
subsets (union for the alternative operator, intersection for the conjunction oper-
ator, etc.). However, this approach is very inefficient: intermediate results may
be of significant volume which would increases the query execution time, as
well as both client- and server-side CPU and memory consumption. Multiple
request round trips to the RDF store would also increase the query response
time. Finally, this approach would prevent the engine of the RDF store from
applying global query optimizations.

Consequently, we have devised an algorithm (whose detailed description is
impossible due to space limitations) which applies a series of transformations in
order to create a single query in the target language of the RDF store. Currently
only support for SPARQL is implemented. However, the code is designed for
extensibility: new query languages can be supported by providing implementa-
tions of additional translation engines.

4 Visual Query Formulation

4.1 The QUaTRO2 Tool

QUaTRO2 is a visual query construction tool and a RDF data browser. Its main
components, shown in Fig. 2, include: (1) a Web-based Graphical User Interface
with visual query construction and data browsing capabilities; (2) server side
components: query executor & web server with QUaTRO2 web application; and
(3) a user, session and query persistence database.

The main configuration of a particular QUaTRO2 setup includes the con-
nection with an external RDF store, and ontologies describing the structure of
data in this store. The ontologies are used both at the visual query level and
the query execution level, as a basis for abstract queries. By providing different
ontologies and underlying RDF stores QUaTRO2 can be easily set up as a query
and browser service for a particular RDF data set. We have deployed such ser-
vice for part of the UniProt database. It is publicly available at the following
URL: http://149.156.9.71:8080/quatro.

298 B. Balis et al.

Fig. 2. Main components of QUaTRO2.

Fig. 3. Query design GUI and its features in the QUaTRO2 tool. Example query selects
citations related to proteins involved in apoptosis.

4.2 GUI and Query Examples

High usability of the graphical user interface for query construction is arguably
as much important as query expressiveness or other functional requirements.
Figure 3 presents an example query constructed in QUaTRO GUI. The query
selects citations related to proteins involved in apoptosis.

Query construction starts by selecting the initial concept. The GUI auto-
matically displays a selection list with all properties relevant for this concept.
Selecting a property further expands the query graph. When a data property
is selected, constraints on its value can be defined. In the case of selecting an
object property, another class (target of the property) is added to the query
graph along with its property list.

A small fork icon allows to create a new query branch at any time and at
any of the designated points. When creating a new branch, a logical operator
connecting the subgraphs should be selected. For existing logical operators it
is possible to add new operands (subgraphs), remove existing ones, change the
operator itself, or even change the sequence of its operands (subgraphs).

Domain-Driven Visual Query Formulation over RDF Data Sets 299

Fig. 4. Example query: non-human diseases.

Fig. 5. Example query: genes related to human diseases.

For any class in the query graph, a subset of their attributes can be selected
to appear in a table with query results; this resembles the SELECT/JOIN opera-
tion from the relational model. Among attributes that can be selected is the URI
of a matching resource; it may be clicked to display the resource in a Resource
Explorer and further explore the underlying resource tree. QUaTRO automat-
ically retrieves resource properties from the database as the tree in Resource
Explorer is expanded. This model allows to construct queries which return only
a few key properties while exploring all properties for those results which turn
out to be of particular interest.

A simple query which features a logical operator is shown in Fig. 4. This
query searches for non-human diseases. To this end, the query is actually started
from the Protein concept and selects a resource graph including a Taxon with
name different than ‘Human’, and a Disease Annotation. Becasue diseases are

300 B. Balis et al.

the main subject of interest, the URI of the disease annotation is chosen for
query results along with the description of the disease and the common name of
the organism affected by it. Based on these results, the user can inspect details
of each particular disease in the Resource Explorer.

Another query, shown in Fig. 5, selects all Genes related to human diseases.
Similarly to the previous query, the selected resource graph is based on the
Protein concept. In this case, the information about Genes and associated disease
is selected as query results.

More pre-configured queries can be found in the QUaTRO2-based UniProt
service deployed at http://149.156.9.71:8080/quatro.

5 Conclusion

Visual construction of queries over RDF scientific data sets, using ontologies
as a query language, can provide a powerful solution enabling domain experts
to formulate advanced queries using domain-specific concepts. Such an app-
roach can facilitate advanced information retrieval from RDF data sets without
requiring professional IT expertise, such as knowledge of RDF data model and
query language, but also without sacrificing query expressiveness. High usabil-
ity of the graphical user interface is a feature of the visual query environment,
arguably underestimated, yet equally important as other functional or perfor-
mance requirements.

Initial results of usability evaluation confirm that the target user groups
which could benefit from the proposed tool include, as expected, domain experts.
However, it turns out that the tool could also be of interest for anyone who does
not know the target data set in which case the guidance features of the query
formulation interface prove to be very useful in exploring the structure of the
data. This user feedback collected so far suggests an interesting direction for
future development of the tool: a SPARQL query construction assistant. In such
an application, the graphical interface would facilitate the generation of an initial
version of a query which would be subsequently refined manually by an expert.

Future work involves further usability evaluation within target users, as well
as extensions to visual query capabilities and the abstract query model in order to
enhance the query expressiveness. Also, quantitative study of QUaTRO2 regard-
ing query performance will be conducted.

QUaTRO2 is available as open source. Installation and user manuals, includ-
ing information about customization for particular RDF ontologies and data
sets, are available at http://dice.cyfronet.pl/products/quatro.

Acknowledgments. This work is partially supported by the European Union
Regional Development Fund, POIG.02.03.00-00-096/10 as part of the PLGrid Plus
Project. AGH Grant 11.11.230.015 is also acknowledged.

Domain-Driven Visual Query Formulation over RDF Data Sets 301

References

1. Apweiler, R., Martin, M.J., Donovan, C., Magrane, M., Alam-Faruque, Y.,
Antunes, R., Barrell, D., Bely, B., Bingley, M., Binns, D., et al.: The universal
protein resource (UniProt) in 2010. Nucleic Acids Res. 38, D142–D148 (2010)

2. Balis, B., Bubak, M., Grabiec, T.: Graphical Query Construction over Scientific
Data Sets using Semantic Technologies. http://www.ci.uchicago.edu/escience2012/
pdf/escience2012 submission 198.pdf

3. Balis, B., Bubak, M., Pelczar, M., Wach, J.: Provenance Tracking and End-User
Oriented Query Construction. In: Cannataro, M. (ed.) Handbook of Research on
Computational Grid Technologies for Life Sciences, Biomedicine, and Healthcare,
chap. 4, pp. 60–75. Medical Information Science Reference (2009)

4. Bubak, M., Gubala, T., Malawski, M., Balis, B., Funika, W., Bartynski, T.,
Ciepiela, E., Harezlak, D., Kasztelnik, M., Kocot, J., Król, D., Nowakowski, P.,
Pelczar, M., Wach, J., Assel, M., Tirado-Ramos, A.: Virtual laboratory for devel-
opment and execution of biomedical collaborative applications. In: Proceedings of
the Twenty-First IEEE International Symposium on Computer-Based Medical Sys-
tems, 17–19 June 2008, Jyväskylä, Finland, pp. 373–378. IEEE Computer Society
(2008)

5. Goble, C., Stevens, R., et al.: State of the nation in data integration for bioinfor-
matics. J. Biomed. Inform. 41(5), 687–693 (2008)

6. Groppe, J., Groppe, S., Schleifer, A.: Visual query system for analyzing social
semantic Web. In: Proceedings of the 20th International Conference Companion
on World Wide Web, pp. 217–220. ACM (2011)

7. Groppe, S.: Data management and query processing in semantic web databases.
Springer, Berlin (2011)

8. Milea, F.H.V., Frasincar, F., Kaymak, U.: RDF-GL: a SPARQL-based graphi-
cal query language for RDF. Emergent Web Intelligence: Advanced Information
Retrieval, pp. 87–116. Springer, London (2010)

9. Roure, D.D., Frey, J.: Three perspectives on collaborative knowledge acquisition in
e-science. In: Workshop on Semantic Web for Collaborative Knowledge Acquisition
(SWeCKa 2007) (2007)

10. Smart, P.R., Russell, A., Braines, D., Kalfoglou, Y., Bao, J., Shadbolt, N.R.:
A visual approach to semantic query design using a web-based graphical query
designer. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol.
5268, pp. 275–291. Springer, Heidelberg (2008)

11. Stevens, R., Goble, C., Paton, N.W., Bechhofer, S., Ng, G., Baker, P., Brass, A.:
Complex query formulation over diverse information sources in TAMBIS, chap. 7.
In: Lacroix, Z., Critchlow, T. (eds.) Bioinformatics: Managing Scientific Data, pp.
189–223. Morgan Kaufmann, San Francisco (2003)

12. Vdovjak, R., Barna, P., Houben, G.J.: EROS: Explorer for RDFS-based ontologies.
In: Proceedings of the 8th International Conference on Intelligent User Interfaces,
pp. 330–330. ACM (2003)

13. Wibisono, A., Koning, R., Grosso, P., Belloum, A., Bubak, M., de Laat, C.: OIntEd:
online ontology instance editor enabling a new approach to ontology development.
Softw. Pract. Exp. 43, 1319–1335 (2012)

Distributed Program Execution Control
Based on Application Global States Monitoring

in PEGASUS DA Framework

Damian Kopański1, �Lukasz Maśko2, Eryk Laskowski2, Adam Smyk1,
Janusz Borkowski1, and Marek Tudruj1,2(B)

1 Polish-Japanese Institute of Information Technology, ul. Koszykowa 86,
02-008 Warsaw, Poland

2 Institute of Computer Science, Polish Academy of Sciences, ul. Jana Kazimierza 5,
01-248 Warsaw, Poland

{damian,asmyk,janb,tudruj}@pjwstk.edu.pl

Abstract. This paper presents control implementation methods for an
original distributed program design framework PEGASUS DA (Program
Execution Governed by Asynchronous SUpervision of States in Distrib-
uted Applications) which provides automated design of distributed pro-
gram execution control based on program global states monitoring. The
framework includes a built in support for handling local and global
application states as well as automatic construction and use of strongly
consistent application global states for program execution control. In
particular, the paper presents methods used to implement distributed
program control inside the PEGASUS DA framework run on clusters of
contemporary multicore processors based on multithreading. The pro-
gram design method is illustrated on a distributed multithreaded appli-
cation executed with load balancing in a multicore system.

Keywords: Distributed program execution control · Distributed pro-
gram design · Global application states · Strongly consistent global
states · Program design tools

1 Introduction

Parallel and distributed programs execution control quite frequently has to
be organized based on the monitoring of global computation states in sets of
application components. Such needs occur in distributed program run-time opti-
mization, parallel event-driven simulation, industrial process control, scientific
distributed computing based on divide and conquer or branch and bound meth-
ods. Unfortunately, existing commercial distributed system have no support for
automated control of global program states. So, this type of control has to be
organized at the expense of tricky programming done by programmers. Some
initial attempts were reported in 1990’ies [3,4] to include some formalisms and
infrastructure for program control based on global states, however not supported

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 302–314, 2014.
DOI: 10.1007/978-3-642-55224-3 29, c© Springer-Verlag Berlin Heidelberg 2014

Distributed Program Execution Control 303

by an efficient usable framework. First contemporary runnable programming
framework, which included an infrastructure for automated detection of global
program states and the design of the respective program execution control was
PS-GRADE [5]. In this framework, asynchronous control of the behaviour of dis-
tributed processes based on global states was added to the run-time environment
for parallel program graphical design in C language.

This paper describes implementation of the internal control in the PEGA-
SUS DA framework in which ideas of distributed program execution control
based on global application states have been extended to cover not only internal
process/thread behaviour but also the control flow in distributed programs [7].
The framework provides GUI for the design of the program control flow graph
dependent on the analysis of global program states. It also provides an API of an
extended programming in C /C++ languages to be used by the programmer to
design distributed program execution control based on application global states.
This API is supported by a run-time system which provides automated global
states construction and respective control design including communication.

The PEGASUS DA framework strongly extends system hardware support for
global states-dependent program execution control to reduce time overheads of
global control implementation. We assume that the hosting system is equipped
with a triple communication network, each with features adjusted to performed
functions such as exchange of short messages for local states collection and trans-
fers of control signals, processor clock synchronization for global states detection
and user data transmission.

The basic text of the paper is organized as follows. First, general features
of the program global control in PEGASUS DA framework are described. Next,
the general structure of the framework is presented. Internal PEGASUS com-
munication library is outlined in turn. Then, the design of main elements of the
internal control in PEGASUS DA is presented. At the end, the structure of an
exemplary application – Travelling Salesman Problem (TSP) by the Branch &
Bound (B&B) method is described.

2 Features of the Applied Global States Monitoring

The PEGASUS DA implements automated global states monitoring by special
runtime infrastructure. To enable monitoring of global states processes/threads
communicate with a number of synchronizers. Synchronizers learn local state
information (events), construct global application states [1], evaluate predicates
on global states and send back control signals based on predicate values, Fig. 1.

Two types of global states are considered: Strongly Consistent Global States
(SCGSs) and Observed Global States (OGS). Strongly Consistent Global States
are identified by the synchronizers as composed of local states, which have
occurred precisely in the same time in relevant distributed processes/
threads of an application. Observed Global States are local states of relevant
processes/threads identified by synchronizers without checking any concurrency
with other states. The states are identified by some starting and ending events
that have to be known or estimated by synchronizers.

304 D. Kopański et al.

Fig. 1. Synchronizer activities for SCGs-based control.

If processor local clocks are synchronized with a known accuracy, then Strong-
ly Consistent Global States can be detected based on the clock timestamps
attached to event messages sent to synchronizers to identify event occurrence
time [2]. Events are sorted by the synchronizer according to timestamps and are
projected on the common time axis. An SCGS is constructed by local states
occurring simultaneously and not covered by any clock uncertainty interval. The
causality relation has to be preserved when constructing global states. If clock
synchronization accuracy (timestamp uncertainty interval) is smaller than half
of the message transfer time, then causality is preserved in the SCGS monitoring.

In the design of application programs execution control based on global states
monitoring we apply two kinds of control: asynchronous and synchronous ones.

Fig. 2. Parallel do-until loop for replicated, composite program block.

Distributed Program Execution Control 305

Fig. 3. Nested parallel do-until loop inside the composite block Pi from Fig. 2.

Application asynchronous control based on monitoring global states is applied
to asynchronously modify the behaviour of processes/threads as a result of a
predicate fulfilled on a global state. For this Unix signals are sent which are
handled by additional computation activation (a kind of distributed interrupts)
or by computation cancellation if received inside the signal sensitivity regions
marked in the process/thread code. Otherwise signals are neglected. To apply
synchronous program execution control we provide global distributed synchro-
nous control flow structures in the distributed application code. They are com-
binations of global control constructs on program blocks and process/thread
activation on specified computational resources. The structures are graphically
designed using the GUI provided in the framework. The global control constructs
can be replicated and nested (composite).

Exemplary PEGASUS DA control flow graphs are shown in Figs. 2 and 3.
Rectangles inside the synchronizer blocks represent predicates with outgoing
signal arrows. Other arrows represent control flow. Control flow in paths in pro-
gram graphs can be additionally synchronized using four synchronization primi-
tives: AND, OR, BARRIER and EUREKA. Process blocks which do not contain
nested control constructs called terminal blocks contain a thread synchronizer
and a number of thread blocks, Fig. 9(b). Thread blocks contain parallel threads
with the same body, created in Pthreads library. For more details of the pro-
gramming model, GUI and API in PEGASUS DA see [6–8].

3 General Structure of the PEGASUS DA Framework

The general flow diagram of the PEGASUS DA framework is shown in Fig. 4.
Program Graph Editor is a GUI-based tool for editing the global control flow
graph and specifying global control elements of an application. The graph is
composed of application components (synchronizers, processes, nested compos-
ite structures etc.). The tool also enables editing details of an application control

306 D. Kopański et al.

Fig. 4. General flow diagram of the PEGASUS DA framework.

governed by the global state analysis in synchronizers (local events, global states,
predicates and detectors inside synchronizers, signals and their relationship).
Parallel applications designed using the graph editor are stored in XML-based
and JavaScript data files. They are the input for next components of the frame-
work, such as the code generator module and the graph mapping editor.

The code generator transforms the program description given as an XML
code into a set of C files, which are later compiled and linked with the Pegasus
DA library. It also creates the unrolled program graph structure, which is a basis
for the script generator. The included code parser is composed of two classes,
which implement analysis of main graph structure (PGSControlflowParser class)
and global states control structure (PGSWiringParser).

The basic structure of the graph is returned as an instance of PGSControlflow
class. To represent internal structures of the graph, a set of classes was created.
They implement fork-join constructs, conditional constructs, loops, synchroniz-
ers, processes, thread blocks in the process. Graph description structure includes
also the control communication. It is returned by the XML parser as an instance
of PGSWiring class. This information represents a graph of states and signals
communication dependencies and is implemented as another set of classes.

Information from both parts of the input XML file are merged to obtain
the final program graph. The objects are created during compile-time, while the
XML program description file is read. The created objects are linked in such
way, which depicts the unrolled program graph structure. They are then used
for automatic generation of source files for each process in the application.

The initial program graph structure is used to create another graph represen-
tation, Program Structural Model. In this graph, replicated structures from the
initial graph are recursively substituted with their copies to create the unrolled
program graph structure. The unrolled graph is used to determine the unique
numbering of all the processes (ranks) in the distributed application, required
by the MPI library. The unrolled graph is also used to create the name space
used by the internal communication library to deliver event messages/signals to
correct destinations.

Distributed Program Execution Control 307

The unrolled program graph is also used by the Script Generator to create
the application execution script, which starts execution of the whole application.
This generator also uses the mapping information delivered by the Graph Map-
ping Editor. During compilation, executable files which implement the global
control primitives (PAR, JOIN, SWITCH, OR, AND) and executable process
files containing synchronizer and multithreaded process code are generated.

Before program execution, application components are mapped onto execu-
tive processors/cores. The only input data for this stage is the application skele-
ton graph mentioned above. First, the program graph is enriched with elements
that are required to run and control the application execution. Next, a tree con-
taining the definition of the logical executive system is created. The system can
be considered at different levels of detail: computers, processors, cores and hard-
ware threads. The mapping assigns elements of the program graph to elements
of a logical system. The next step is to define a tree containing a description of
the physical system. It is supported by additional software called hwloc which
collects information on system architecture. In the last step, a mapping of the
logical system into the physical system is done.

4 Internal PEGASUS DA Communication Library

The internal PEGASUS DA communication library (peg-lib) is a set of functions
used to perform control data transfers and process/thread activations necessary
to implement program execution control based on the global application states
monitoring. These functions are used in the PEGASUS DA run-time code and
also in the user application code. The peg-lib library contains the following
function layers:

– inter-process-communication layer: based on message passing, it implements
messages between application processes,

– intra-process communication layer: based on message queueing, it implements
communication between threads and local (thread) synchronizers,

– system parameters configuration layer,
– application configuration layer,
– process configuration layer,
– internal process control functions.

System parameters configuration layer is composed of two layers: applica-
tion configuration layer and process configuration layer. Application configu-
ration layer contains functions, which enable definitions of application process
and control blocks, synchronous control, signal and partial states and creating
a map for partial state transfers. Process configuration layer contains functions
which enable defining threads blocks, synchronizers, state detectors, predicates,
local events and local signals. It contains also functions which enable binding
local events with global state detectors, partial states with state detectors, state
detectors and remote signals with predicates. Internal process control functions

308 D. Kopański et al.

enable process and synchronizers handling, including implementation of control
messages and user threads activities.

The following types of API global control functions are available for the user:
event messaging at the thread level, event messaging at process level, asynchro-
nous signal handling at thread level, predicate defining support, state messaging
at the predicate level (partial SCGSs and process SCGSs), remote signal trans-
fers, state vector accessing.

5 Internal Control Implementation in PEGASUS DA

Application threads or processes send messages to synchronizers on current
events selected to be relevant for the program execution global control. These
events are defined by a programmer by instrumenting application thread code
for sending a thread event message or instrumenting a predicate for sending a
process event message. Event messages have single timestamps defined by read-
outs of the processor timestamp clock TS or by readouts of processor timestamp
counter TSC. Synchronizers can detect SCGSs of sets of threads of a process,
SCGSs of sets of threads from a set distributed processes, SCGSs of sets of
processes, partial SCGSs for hierarchical detection of SCGSs for global sets of
processes [6] or they can monitor observed states. For different types of moni-
tored states, different kinds of event and state messages have to be sent. After
reception and identification, the messages are processed by different types of
state detectors included in synchronizers. The correspondence of states, message
types and detectors used in the PEGASUS DA framework is shown in Table 1.

Depending on a predicate evaluation and checking result a control signal
can be sent by the predicate. We distinguish: local control signals – sent to the
threads of the same process in which the synchronizer containing the predicate is
embedded and remote control signals when the signal is sent to a synchronizer in
another process. A local signal is sent by a predicate using a local signal sending
function of the peg-lib library in which a thread id identifies the signal receiver.
A remote control signal can be sent from any predicate to a predicate in another
process. The signal is addressed by the receiver process id and the signal id.

To deliver remote signals to proper threads and process level states to syn-
chronizers, communication dispatchers are provided in application processes.
A communication dispatcher is a default thread in each application process
which communicates with other processes at the synchronizer level. A dispatcher
receives messages representing partial global states and global states coming
from other process synchronizers as a result of their predicates and messages
representing remote signals from other synchronizers (via InfiniBand network).
A communication dispatcher sends the received states/signals to message queues
of synchronizers selected based on the dispatcher configuration data (memory
write). Based on their configuration data, the synchronizers activate the rele-
vant predicates, which invoke the remote signal handling by sending Unix-type
signals to appropriate threads. Internal communication inside PEGASUS DA is
illustrated in Fig. 5.

Distributed Program Execution Control 309

Table 1. Control messages in PEGASUS DA

What is Source of the Message Message Timestamps Detector
monitored message semantics type used in the type

event

SCGS on
threads

Thread Thread event
inside a
process

SCGS-TSC TSC SCGS-TSC

Partial SCGS
or global
state of
processes

Predicate Partial state in
SCGS
hierarchic
detection or
process state

HSCGS TS, TS HSCGS

SCGS on
threads or
processes

Thread or
predicate

Thread event
inside
application or
process event

SCGS-TS TS SCGS-TS

Observed
states of
threads or
processes

Thread or
predicate

Observed event Observed None Observed

Fig. 5. Internal communication inside PEGASUS DA.

6 Pegasus DA Application Execution Control Flow

Each PEGASUS DA application is executed by the use of the mpirun function of
the MPI library. Each application process is accompanied by its rank and a name
of a processor host. The mapping of the application components and additional
parameters are generated from the information provided by a programmer dur-
ing the program graph edition, code component edition and application graph
mapping by means of the GUI and API provided in the framework.

310 D. Kopański et al.

The application execution general control flow is shown in Fig. 6. All con-
stituent application processes are created by the mpirun function. In each cre-
ated process all application-specific and process-specific data structures are first
initialized. Next, the communication dispatchers and all synchronizers are cre-
ated as threads in each process by means of the pthread create functions of the
pthread library. After threads creation gets synchronized for all processes (bar-
rier), the application processes start their runtime cycles shown in Fig. 8. In the
process runtime cycle, processes wait for activation (ACT)/termination (END)
control messages coming from other processes. After ACT message, a process
starts all computational thread blocks defined inside the process and then, all
threads in the blocks. After execution of its computational threads, the process
can send ACT/END messages to other processes. The process cycle can iter-
ate on received ACT messages until a termination message (END) arrives. After
such message, all active process threads including communication dispatcher and
synchronizers are cancelled and the process is terminated.

After compilation, a process activation structure exists in the application
code based on the inserted activation and cancellation orders to be sent by
means of control messages. Figure 7 shows the process activation graph for the
exemplary program control flow graph shown in Figs. 2 and 3.

In many thread-oriented control actions it is necessary to kill threads based on
some global predicates. Each application process contains at least one thread syn-
chronizer (#0) which besides user definable predicates has a number of default
mechanisms necessary to implement the proper execution control inside applica-
tions. The mechanisms are implemented using predicates. In the synchronizer #0
there is a hidden predicate DefCancel, see Fig. 8, which sends the SIG CANCEL
local signals to threads. Each thread has a default handler for the SIG CANCEL
signal with the function pgs def signal cancel (to be activated inside the sensitiv-
ity region to SIG CANCEL signal), which makes the receiver thread terminate.

Fig. 6. Application process control flow.

Distributed Program Execution Control 311

Fig. 7. Exemplary process activation graph.

Fig. 8. Application process runtime cycle and thread cancelling method.

The DefCancel predicate is activated by the remote signals RSIG CANCEL sent
from other synchronizers. The RSIG CANCEL signals can also be generated in
the result of the global synchronizing construct OR and from any user-defined
predicate. The SIG CANCEL signals can also be sent from predicates defined
by the user.

312 D. Kopański et al.

7 Example: Travelling Salesman Problem

The TSP application is composed of worker processes P1, P2, P3, controlled
by predicates of the global synchronizer GSync, Fig. 9(a). Worker processes are
composed of worker thread blocks and the thread synchronizers TSync, Fig. 9(b).
A worker thread block contains replicated worker threads, which are assigned
to the same processor core. TSyncs periodically report worker processes current
load to GSync. GSync takes load balancing decisions, which direct pools of search
subtasks to TSyncs, or, it orders task migrations to balance loads in worker
processes. A subtask is a trajectory of towns of known length to be developed
by adding towns. TSyncs report best solutions to GSync to be validated.

GSync synchronizer contains a number of predicates. NewSubtask – com-
putes the global mean load in the system and compares it to the loads reported by
TSyncs. Based on the load deviation of the given worker process, load balancing
decisions are taken. New subtasks can be sent to the underloaded processes, i.e.
their TSyncs, to be distributed between threads. NewBest – maintains the best
known solution found so far in response to min dist messages sent by TSyncs.
The valid new best solution min-dist is broadcasted to all TSyncs. StopIteration
– takes care of the quality of the solutions found so far. If a sufficiently good solu-
tion is found, further search can be stopped by a broadcast of the stop iteration
signal to all TSyncs.

Predicates of TSync synchronizers are as follows. NS (from NewSubtask) –
reports periodically current process load to GSync based on reports from threads,

Fig. 9. Application (a) and terminal process (b) control graphs.

Distributed Program Execution Control 313

manages subtask reception i.e. distributes subtasks to threads based on their
reported load. NB (from NewBest) – maintains the best known solutions found
in the process by threads or sent by GSync. It broadcasts valid new best solutions
min-dist to all threads in the process. SI (from StopIteration) – stops search in
process threads by broadcast of the stop iteration signal to all threads.

Threads add towns to the current trajectory one by one and compute the tra-
jectory length after each added town. They compare each new trajectory length
with the current known min-dist. A partial trajectory not shorter than min-dist
is not perspective and is rejected from further development (B&B bounding).
A new full trajectory not shorter than min-dist can be also rejected. A full
trajectory shorter than min-dist is sent to TSync as the new best.

When a thread receives a subtask of t towns out of total N , the process load
is computed as the number of possible search steps i.e. the factorial S = (N − t)!
The current load S is decreased by 1 for each perspective and by p! for each not
perspective trajectory, p is N minus the number of towns in the not perspective
trajectory. The sum of concurrent values of S for all subtasks in a thread (an
SCGS) is sent to TSync. The sum of concurrent values of S in all threads in a
TSync is sent to GSync as the process load. GSync computes the current average
load in the system based on values of S corresponding to a SCGS of all processes.

8 Conclusions

Essential control solutions in the PEGASUS DA distributed program design
framework based on global state monitoring have been presented. The framework
provides a runtime infrastructure for global state monitoring in the control design
for application processes/threads. It supports global control constructs for the
global control flow design based on graph representation. The PEGASUS DA
framework implementation is based on NetBeans graphical environment.

Acknowledgments. This paper has been partially sponsored by the MNiSW grant
No. NN 516 367 536.

References

1. Babaoglu, O., Marzullo, K.: Consistent global states of distributed systems: fun-
damental concepts and mechanisms. In: Mullender, S.J. (ed.) Distributed Systems.
Addison-Wesley, Reading (1995)

2. Stoller, S.D.: Detecting global predicates in distributed systems with clocks. Distrib.
Comput. 13(2), 85–98 (2000)

3. Marzullo, K., Wood, D.: Tools for constructing distributed reactive systems. Tech-
nical report 14853, Cornell University, Department of Computer Science, Feb. 1991

4. Tudruj, M.: Fine-grained global control constructs for parallel programming envi-
ronments. In: Bakkers, A. (ed.) Parallel Programming and Java: WoTUG-20, pp.
229–243. IOS, Amsterdam (1997)

314 D. Kopański et al.

5. Tudruj, M., Borkowski, J., Kopański, D.: Graphical design of parallel programs with
control based on global application states using an extended P-GRADE system.
In: Juhász, Z., Kacsuk, P., Kranzlmüller, D. (eds.) Distributed and Parallel Sys-
tems: Cluster and GRID Computing. Kluwer International Series in Engineering and
Computer Science, vol. 777, pp. 113–120. Springer, New York (2004)

6. Borkowski, J.: Hierarchical detection of strongly consistent global states. In: Pro-
ceedings ISPDC 2004, pp. 256–261. IEEE CS (2004)

7. Tudruj, M., Borkowski, J., Maśko, �L., Smyk, A., Kopański, D., Laskowski, E.: Pro-
gram design environment for multicore processor systems with program execution
controlled by global states monitoring. In: ISPDC 2011, pp. 102–109. IEEE CS
(2011)

8. Borkowski, J., Kopański, D., Laskowski, E., Olejnik, R., Tudruj, M.: A distributed
program global execution control environment applied to load balancing. Sacl. Com-
put. Pract. Exp. 13(3), 269–280 (2012)

Application of Parallel Computing

New Scalable SIMD-Based Ray Caster
Implementation for Virtual Machining

Alexander Leutgeb, Torsten Welsch(B), and Michael Hava

RISC Software GmbH, Softwarepark 35, 4232 Hagenberg, Austria
{alexander.leutgeb,torsten.welsch,michael.hava}@risc-software.at

Abstract. We present a highly efficient ray casting system for the visu-
alization of subtractive manufacturing, combining state-of-the-art results
of various active research fields. Besides popular techniques like accelera-
tion structures, coherent traversal and frustum culling, we integrated the
novel surface cell evaluation (SCE) algorithm, allowing the elimination of
surfaces that have no effect on the final workpiece’s shape. Thus, our ray
caster allows an interactive, non-approximate visualization of thousands
of Boolean subtraction operations between a stock and arbitrary trian-
gular swept volumes. Compared to image-space based approaches for
virtual machining, such as z-maps [3], dexels [4] or layered depth images
[10], our scalable SIMD-based implementation offers a higher rendering
performance as well as a view-independent workpiece modeling. Hence,
it is perfectly suited for of both simulation and verification in computer-
aided manufacturing (CAM) applications.

Keywords: Ray casting · SIMD · CAM · Boolean subtraction
operations · Subtractive manufacturing · Space partitioning strategy ·
Multi-axis milling

1 Introduction and Related Work

With CAM being extensively applied in industry nowadays, simulations of sub-
tractive manufacturing - material removal processes, such as milling, turning or
drilling - have become complex tasks, requiring efficient systems for their com-
putation and visualization. In our development scenario, for example, complex
multi-axis milling processes, that result in workpieces with a high-quality surface
finish, consist of thousands of material removal steps. Hence, the manufacturing
industry has a strong need for both real-time and offline visualization as well as
verification during the whole machining process. Especially in terms of verifica-
tion, not only a continuous but an interactive simulation is essential. To develop
a system that is capable of meeting the outlined requirements, one has to ensure
that state-of-the-art research results of various fields are combined in an efficient
manner, lending itself to both the available infrastructure and the application
scenario.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 317–326, 2014.
DOI: 10.1007/978-3-642-55224-3 30, c© Springer-Verlag Berlin Heidelberg 2014

318 A. Leutgeb et al.

With that respect, our implementation is related to: the STAR about ray
tracing by Wald et al. [9], the coherent grid traversal by Wald et al. [8], the
SIMD frustum culling by Dmitriev et al. [2], the fast ray/triangle intersection
test by Moeller and Trumbore [5] and the very efficient SCE algorithm presented
in this paper. As the generation of swept volumes is not the concern of this paper,
we assume that all swept volumes mentioned in the following have triangulated,
closed (“watertight”) and well oriented surfaces.

2 Basic Idea

In the context of material removal simulations, the workpiece is visualized while
a machine tool virtually cuts layer-by-layer into it. Along its path, the tool’s
movement is discretized and combined to swept volumes that are further applied
to the original stock geometry as Boolean subtraction operations.

Roth [7] firstly presented ray casting as an algorithm for rendering Boolean
operations between volumes. To apply this algorithm to our subtractive manufac-
turing scenario, an intersection counter ir has to be added per ray r, recording
whether r enters or leaves a swept volume along its way through the virtual
three-dimensional (3D) space. After all intersections between the rays and the
volumes have been determined, we sort the intersections per r in ascending order,
depending on their distance to r’s origin. Given an arbitrary r and the k + 1-th
intersection along its way, we update ir according to the following rule:

i0r := −1

ik+1
r :=

{
ikr − 1 , r enters a swept volume
ikr + 1 , r leaves a swept volume.

(1)

Note that we model the stock geometry as a subtraction from the completely
solid 3D space as well, enabling us to treat all inserted volumes equally. Thus,
each ir has to be initialized with −1 so that the final surface hit of r is found iff
ir = 0 holds. In this case, r does not lie inside a swept volume any more, as all
entered swept volumes have been left.

3 High-Level Optimizations

3.1 Acceleration Structure

Considering only volumes with triangulated surfaces, we accelerate the original
boolean ray casting algorithm by reducing the number of triangles per ray that
have to be tested for intersections. This is done by subdividing the 3D scene
into multiple cells that refer to triangles lying inside them. Hence, a ray has to
test only those nearby triangles for an intersection that lie inside cells the ray
traverses. With respect to the requirements of virtual machining, consisting of
thousands of successive Boolean subtraction operations, we need a space par-
titioning strategy that allows us to apply new swept volumes to the workpiece

New Scalable SIMD-Based Ray Caster Implementation 319

y

x

sld

sld

sld

srfc

scfrs cfr

srfc srfc srfc srfc

srfc

srfc srfcsld vd

vd sld

sld
V

AABB(SV)

GAABB

G\AABB

proximity of m3,2

srfc ctemp

sld cvalid

Fig. 1. Illustration of the temporary classification algorithm.

rapidly at low computational cost. As regular grids are fastest to build [9], we
implement a coarse regular grid whose cubical cells we call macrocells.

Additionally, we add a second regular grid level per macrocell that consists
of so-called microcells, supporting the elimination of triangles in macrocells that
are enclosed by the union of two or more swept volumes, see Sect. 3.3. The rays’
grid traversal, however, is not affected by this extension as its computation takes
place on the macrocell level only, see Sect. 3.5.

3.2 Cell Classification

As the correct evaluation of the rays’ intersection counters (1) depends on
“watertight” swept volumes, we have to keep even those triangles available for
intersection tests that have no effect on the final workpiece’s shape. To deal with
this performance issue, we first have to introduce a grid cell classification: A grid
cell can lie completely inside (void) or outside (solid) of a swept volume or it
can contain triangles of this volume (surface). For simplicity’s sake, we describe
the following algorithms in the 2D space only.

Given the grid’s microcells, G = {microcells mx,y | 1 ≤ x ≤ k ∧ 1 ≤
y ≤ l}, with k = the number of microcells in x- and l = the number of micro-
cells in y-direction. Given further an arbitrary, triangulated swept volume V
that has to be inserted into that grid. The swept volume’s triangles, SV =
{triangles t | t belongs to V }, are mapped into the grid by initially computing
the axis-aligned bounding box (AABB) of SV . Then, we determine all micro-
cells that are affected by the insertion of V , GAABB = {microcells mx,y | mx,y ∈
G ∧ mx,y ∩AABB(SV) �= ∅}. Finally, the GAABB store references to all t ∈ SV

that (partially) lie inside them, if any.
Depending on the 8-connected proximity relationship between the mx,y ∈ G

and on the microcells that are not affected by the insertion of V , G\AABB =
G \ GAABB , the grid cells are classified as described in the following: Starting
with the mx,y ∈ GAABB , we determine their individual temporary classification,
ctemp ∈ {void, solid, surface} (or vd, sld and srfc) by labeling all mx,y that store
t ∈ SV as surface. Afterwards, if a mx,y has a neighbor n ∈ G of classification
type either void or solid, it gets the same label. Otherwise, if either mx,y has no
neighbors or the label surface is the the only classification available in mx,y’s

320 A. Leutgeb et al.

proximity, we take one t ∈ SV and cast a ray rmt from the center of mx,y toward
that t. Given the intersections with other t ∈ SV on its way, if any, we use the
one nearest to the origin of rmt to determine the temporary classification ctemp

of mx,y: If rmt and the normal of that t point into the same half-space of t’s
plane, mx,y lies inside V (void), otherwise outside (solid). Note that we define all
triangle normals of swept volumes as outward-pointing. For further illustration,
see Fig. 1.

Given a microcell’s ctemp and its original valid classification cvalid, the
updated valid classification for that microcell, c+

valid, is given by (2). Note that
all microcells of the grid are initially labeled with cvalid = solid as the grid is
considered to be completely solid before applying the first swept volume onto it.

c+
valid :=

⎧
⎨

⎩

sld , ctemp = sld ∧ cvalid = sld
vd , ctemp = vd ∨ cvalid = vd
srfc , else

(2)

After c+
valid has been determined for all mx,y ∈ GAABB , the classification of

their corresponding macrocells is assigned in the following way: Every macrocell
containing at least one mx,y of the type surface is labeled as surface as well and
stores references to all t ∈ SV inside its mx,y. Otherwise, as one can easily see,
a macrocell can contain only void or solid microcells exclusively and therefore
gets the same attribute as its uniform microcells.

3.3 Triangle Elimination

Given both the new valid macro- and microcell classification for all cells that are
affected by the insertion of a swept volume, all triangles inside void macrocells
can be dismissed as they reside completely inside swept volumes and therefore
have no effect on the current workpiece’s shape. With this elimination, we get a
first grid level that holds triangles in surface macrocells only, significantly reduc-
ing the number of triangles per ray that have to be tested for intersections during
the ray casting, see Fig. 6/2–3 and Sect. 5. As we handle surface macrocells iso-
latedly during the ray’s grid traversal, there is one fundamental condition for
the ray casting of Boolean subtraction operations that has to hold if we want
to eliminate triangles that way: The ray caster must be able to determine if the
intersection point between an entering ray and a surface macrocell lies inside or
outside of swept volumes with triangles stored in that cell. Otherwise, as this
triangle removal results in non-watertight swept volumes, there is no way to
evaluate the ray’s intersection counter (1) correctly.

3.4 Surface Cell Evaluation

The basic idea is to determine if the point prM where a ray r enters a surface
macrocell Mx,y lies inside or outside of swept volumes V with triangles t ∈
SV stored in Mx,y. Given such an r that enters an Mx,y, we start with the
computation of all intersection points prt between r and all triangles stored in

New Scalable SIMD-Based Ray Caster Implementation 321

Mx,y. If r intersects with at least one triangle per V , we can determine whether
r enters or leaves these V by comparing r with the normals of those intersected
t ∈ SV with the shortest distance to r’s origin, see Sect. 3.2.

A problem occurs when there is a V with t ∈ SV stored in Mx,y not intersect-
ing with the ray r: To solve this, we chose an arbitrary triangle t ∈ SV stored in
Mx,y and determine a reference point pV that is guaranteed to lie on t and inside
Mx,y. Given pV , we create a so-called positioning ray rpos from prM toward pV .
As rpos is guaranteed to intersect with t at least, we can use it to determine if
prM lies inside or outside of V , again by comparing rpos with the normal of the
intersected t ∈ SV nearest to prM , see Sect. 3.2.

After thus proceeding with all V with t ∈ SV stored in Mx,y, we know the
relative location of r in prM in relation to all these V , allowing us to preset
the initial intersection counter i0r as follows: This time starting from i0r := 0,
i0r is decreased by one for each V with prM inside, as r must have entered
these V anywhere before the current Mx,y during its grid traversal. For further
illustration, see Fig. 2.

V1
V2

pV2

i0r ← −2

prM

i0r ← 0
prt

t ∈ SV1

i0r ← −1

Mx,y

r

rpos

Fig. 2. Illustration of the intersection
counter presetting algorithm.

Given the initial i0r, we sort the
determined intersections between r
and the V with t ∈ SV stored in Mx,y

in ascending order, depending on their
distance to r’s origin. Starting with
the first intersection, we update ir
according to (1) while checking these
intersections one by one. Finally, at
the point k where ikr = 0 holds, we
have found the final surface hit of r.
Otherwise, if no such k exists in the
current Mx,y, we continue with the
SCE algorithm in the next surface macrocell along the ray’s way through the
grid.

3.5 Coherent Grid Traversal

Given the standard 3D-DDA traversal algorithm [1] for a single ray, we have
two seemingly opposing problems to solve: Firstly, we want the grid’s macrocell
level to be as fine as possible to decrease the number of triangles that have to be
tested per ray. Secondly, we want the grid to be as coarse as possible to reduce
the time spent on grid traversal. To solve both problems at once, we join nearby
rays into disjunct ray packets similarly to Wald et al. [8]: As the four corner
rays of a ray packet define a frustum, we can incrementally compute the overlap
of that frustum with the grid’s macrocells, resulting in a slice-wise traversal of
the grid along the packet’s major traversal axis. In combination with our SCE
algorithm in Sect. 3.4, we test a complete ray packet against all swept volumes’
triangles that are stored in surface macrocells of that slice. Hence, we are able
to utilize the SIMD paradigm, see Sect. 4.4: We load the surface macrocell’s
triangles only once and compute the intersection tests for all rays inside the

322 A. Leutgeb et al.

packet in parallel afterwards. If all the packet’s rays either leave the grid or
hit the final workpiece’s surface after all surface macrocells of the current slice
have been tested, we stop the ray casting for that packet. Otherwise, the next
slice along the major traversal axis has to be determined and investigated in the
same way. Furthermore, we can apply the well-known frustum culling on these
triangles, see Sect. 4.2. Thus, we can reduce the number of triangles to be tested
against a ray packet without refining the macrocell level of the grid, preserving
the fast packets’ macrocell traversal.

4 Low-Level Optimizations

4.1 Single Instruction, Multiple Data (SIMD)

Intel introduced MMX in 1997, enabling CPUs to simultaneously perform the
same operations on multiple data. Nowadays, the advanced vector extensions
(AVX) extend both the original MMX instructions and register width (AVX:
256 bit). For performance reasons, we utilize SIMD explicitly with C/C++
intrinsics instead of letting the compiler decide where to use SIMD, for
example:

We arrange our data so that it scales with the registers’ width, meaning that
eight 3D vectors are stored vertically in three registers. In our implementa-
tion, we use this layout triangle-parallel during the frustum culling, see Sect. 4.2,
and ray-parallel while computing the ray/triangle intersection tests, see
Sect. 4.4.

4.2 SIMD Frustum Culling

Given a surface macrocell that is traversed by a ray packet and the packet’s four
corner rays defining its frustum, we compute the frustum culling for triangles
stored in that macrocell similarly to the SIMD-based approach by Dmitriev
et al. [2]: We use a triangle’s barycentric coordinates to determine whether it
lies inside the packet’s frustum or not, reducing the number of ray/triangle
intersection tests in surface macrocells that are not completely overlapped by
the frustum. Note that we apply frustum culling to all swept volumes’ triangles
SV stored in a traversed surface macrocell Mx,y before testing the triangles
t ∈ SV against any ray r of a ray packet P . As our SCE algorithm may need
a valid reference point pV per swept volume V to determine whether prM , the
point where r enters Mx,y, lies inside or outside of these V , see Sect. 3.4, we have
to distinguish between three cases here:

New Scalable SIMD-Based Ray Caster Implementation 323

if pV lies outside of P ’s frustum (a t ∈ SV between prM and pV may have been culled)
if ∃t ∈ SV : t intersects with P ’s frustum then

use t to determine a new pV inside both Mx,y and P ’s frustum
else use pV and all t ∈ SV inside Mx,y to determine whether P lies inside V or

not, and if so, skip all remaining intersections tests with other V inside Mx,y

else pV is valid as it lies inside the P ’s frustum

4.3 Ray Packet Repacking

As mentioned by Wald et al. [8], the slice-wise grid traversal yields the disadvan-
tage of testing rays for intersections with triangles stored in surface macrocells
they would never have traversed in the non-packet case. Hence, we repack the
rays of a packet after the frustum culling so that only rays that really intersect
with the current surface macrocell have to be checked for triangle intersections,
resulting in a reduced number of tests while preserving SIMD compatibility.

Additionally, we record the intersecting rays per swept volume inside the
current surface macrocell. Before using positioning rays to determine the relative
location for rays that have not intersected with one or more swept volumes, see
Sect. 3.4, we repack the packet’s rays - with respect to the swept volumes they
have missed - a second time: Given a swept volume and a list of rays that have
no intersection with this volume, we have to build positioning rays to the valid
reference point of that swept volume only for rays on the list. Again, we get rid
of some dispensable work while supporting the simultaneously computation of
the same operations on all repacked rays.

4.4 SIMD Intersection Test

Considering its good parallelization capability, we decided to adapt the algo-
rithm presented by Moeller and Trumbore [5] to the SIMD paradigm. In their
algorithm, the triangle is translated to the origin and transformed to a unity
triangle in y and z, where the rays are aligned with x. In this state, the test
whether the rays intersect with the triangle or not is easy to compute, see Fig. 3.

5 Results

The experimental results presented in this section are based on the following
hardware configuration: Intel Core i5–2400 CPU (four cores @ 3.1 GHz, four
threads, Turbo disabled, 198 GFlops) and 16 GB DDR-1333 RAM.

Using a ray packet size of eight times eight rays, 100 macrocells in the longest
grid dimension and zero microcells in one macrocell dimension, (100,0), our
implementation is tested against a simple scene first, see Fig. 5/1. Although being
no reproduction, this scene is used to demonstrate our performance speedup
compared to the recently published approximative image-space based modeling
approach by Zhao et al. [11] that uses layered depth images. By adding the times
for mapping, classification and rendering in Table 1, one can see that our imple-
mentation outperforms [11] by factor 10.4 with respect to [#triangles/(second ·
GFlops)] ([11]: 525 k triangles, 585 ms, Nvidia GeForce GTX 480, 1344 GFlops).

324 A. Leutgeb et al.

Fig. 3. SIMD intersection test between eight rays (origin, directions) and one trian-
gle (vertex0, edge1, edge2, normal). A valid intersection for the ray at position index

is found iff int (mask.m256 f32[index]) != 0 holds.

0 1,000 2,000

1

2

3

4
·105

#
m

ac
ro

ce
lls

solid surface

100

150

200

250

#swept volumes

m
ill

is
ec

on
ds

runtime

Fig. 4. Sequence of the subtractive manu-
facturing process of Fig. 6/4.

To compare our implementation
with an object-space based modeling
approach as well, we created Fig. 5/2
similar to the scene Romeiro et al. [6]
used in their paper. With a macro-
/microcell configuration of (100,3),
our overall performance - the sum of
the times for mapping, classification
and rendering in Table 1 - is faster
by a factor of 9.2 compared to their
kd-tree-based ray caster that is lim-
ited to convex primitives only; with
respect to [#rays/(second · GFlops)]
([6]: 640× 480 rays, 2314 ms, Nvidia
GeForce 6800 GT, 67 GFlops).

The last scene - as an example of
complex subtractive manufacturing - is an impeller that is machined by swept
volumes generated from 5-axis milling with a macro-/microcell configuration
of (125,3), see Fig. 6/4. Compared to an implementation with an accelerating
first grid level but without classification and elimination (68.8m grid triangles),
our SCE-based approach that adds both macrocell classification and elimination
reduces the number of triangles inside the grid’s macrocells by 90 % (6.4 m grid
triangles), resulting in a performance boost of factor 10.2. With the second

New Scalable SIMD-Based Ray Caster Implementation 325

Table 1. Overview over the benchmark scenes’ results. LTR: figure reference, number of
used CPU cores, total number of surface macrocells, total number of solid macrocells,
total number of void macrocells, total number of triangle references inside surface
macrocells, used memory in [MB], average time for mapping per swept volume in [ms],
average time for classification per swept volume in [ms], ray casting rendering time
for 0.25 M pixels in [ms], ray casting rendering time for 1.00 M pixels in [ms], average
speedup with respect to the number of used CPU cores.

fgr #crs #srfc #sld #vd #ctrngls mmry mppng clssfctn 0.25 M 1.00 M spdp

5/1 1 4,046 7,464 374,990 7,529,401 2,359 8,019 392 1,341 2,493 -
2 6,474 235 687 1,271 1.3
4 5,515 157 356 657 1.7

5/2 1 63,875 22,984 413,141 1,620,027 1,283 22.6 2.9 406 978 -
2 16.0 1.9 207 501 2.0
4 13.8 3.0 107 259 3.6

6/4 1 90,812 259,157 449,906 4,222,313 2,794 78.9 29.6 1,043 2,554 -
2 47.4 17.7 531 1,297 1.9
4 29.0 10.8 270 663 3.8

grid level’s microcells, the total number of triangles is reduced by another 34 %
(4.2 m grid triangles), additionally increasing the rendering performance by one
third. Figure 4 illustrates the generation sequence of Fig. 6/4, showing the total
number of surface and solid macrocells and the rendering runtime (0.25 M pixels)
of our implementation on four CPU cores, see also Table 1. The last column
in Table 1 shows our implementation’s scalability for all scenes: In our target
scenario (Fig. 6), it is nearly linear. Furthermore, note that for a memory-bound
algorithm, a higher resolution yields a higher spatial coherence of the rays which
leads to an increase of cache coherent operations. Hence, the runtime of our
SCE-based ray caster implementation scales sublinear with higher resolutions.

Fig. 5. LTR: Asian Dragon minus Happy Buddha (8,306,513 triangles) and cylinder
minus 1,000 random spheres (5,177,870 triangles), both original volumes and ray casted
Boolean subtraction result.

326 A. Leutgeb et al.

Fig. 6. Scene details: 2,062 volumes, 12,553,756 triangles. LTR: original stock and
swept volumes, grid’s macrocells containing all triangles (no classification) and remain-
ing surface macrocells (with classification), ray casted completely machined impeller.

Acknowledgments. The models Asian Dragon and Happy Buddha were taken from
The Stanford 3D Scanning Repository. Furthermore, this research was funded within
the scope of the program Regionale Wettbewerbsfähigkeit OÖ 2007–2013 by

the European Regional Development Fund and the state Upper Austria .

References

1. Amanatides, J., Woo, A.: A fast voxel traversal algorithm for ray tracing. In:
EUROGRAPHICS Proceedings, pp. 3–10 (1987)

2. Dmitriev, K., Havran, V., Seidel, H.P.: Faster ray tracing with SIMD shaft
culling. Research Report MPI-I-2004-4-006, Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany (2004)

3. Goldfeather, J., Hultquist, J.P.M., Fuchs, H.: Fast constructive solid geometry
display in the pixel-powers graphics system. In: ACM SIGGRAPH Proceedings of
the 13th Annual Conference on Computer Graphics and Interactive Techniques,
pp. 107–116 (1986)

4. Hook, T.V.: Real-time shaded NC milling display. In: ACM SIGGRAPH Pro-
ceedings of the 13th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 15–20 (1986)

5. Möller, T., Trumbore, B.: Fast, minimum storage ray/triangle intersection. J.
Graph. Tools 2(1), 21–28 (1997)

6. Romeiro, F., Velho, L., de Figueiredo, L.H.: Hardware-assisted rendering of CSG
models. In: SIBGRAPI Proceedings of the 19th Brazilian Symposium on Computer
Graphics and Image Processing, pp. 139–146 (2006)

7. Roth, S.D.: Ray casting for modeling solids. J. Comput. Graph. Image Proc. 18(2),
109–144 (1982)

8. Wald, I., Ize, T., Kensler, A., Knoll, A., Parker, S.G.: Ray tracing animated scenes
using coherent grid traversal. ACM J. Trans. Graph. 25(3), 485–493 (2006)

9. Wald, I., Mark, W.R., Günther, J., Boulos, S., Ize, T., Hunt, W., Parker, S.G.,
Shirley, P.: State of the art in ray tracing animated scenes. Comput. Graph. Forum
J. 28(6), 1691–1722 (2009)

10. Wang, C.C.L., Leung, Y.S., Chen, Y.: Solid modeling of polyhedral objects by
layered depth-normal images on the GPU. Int. J. Comput.-Aided Des. 42(6), 535–
544 (2010)

11. Zhao, H., Wang, C.C.L., Chen, Y., Jin, X.: Parallel and efficient boolean on polyg-
onal solids. Int. J. Comput. Graph. 27(6–8), 507–517 (2011)

Parallelization of Permuting XML Compressors

Tyler Corbin1, Tomasz Müldner1(B), and Jan Krzysztof Mizio�lek2

1 Jodrey School of Computer Science, Acadia University,
Wolfville, NS B4P 2A9, Canada

{094568c,tomasz.muldner}@acadiau.ca
2 IBI AL, University of Warsaw, Warsaw, Poland

jkm@ibi.uw.edu.pl

Abstract. The verbose nature of XML results in overheads in stor-
age and network transfers, which may be overcome by using parallel
computing. This paper presents four permuting parallel XML compres-
sors, based on an existing XML compressor, called XSAQCT. Tests were
performed on multi-core machines using a test suite incorporating XML
documents with various characteristics, and results were analyzed to find
upper bounds given by Amdahl’s law, the actual speedup, and compres-
sion ratios.

Keywords: XML · XML compression · Parallelization · Java

1 Introduction

The eXtensible Markup Language, XML [9], is a World Wide Web Consortium
(W3C) endorsed standard, which has become a popular representation standard
for ‘big data’ because of its application-agnostic and human-understandable
flexibility. Therefore, there has been considerable research on XML-conscious
compressors, i.e., compression that is aware of specific syntactical or redun-
dant features of XML, e.g., XMill [4]. XML-conscious compressors are said to
be permutation-based when the document is re-arranged before performing the
actual compression. These compressors separate structure from content, and
then apply a partitioning strategy to group content nodes into a series of data
containers that are compressed using general-purpose compressor (a back-end
compressor). The grouping philosophy of permutation compressors is forward
adaptive, i.e., it builds an entire model, based on the syntax of the XML docu-
ment, before any actual compression of the semantic data.

With the recent availability of multi-core processors, parallel programming
environments designed to take advantage of multiprocessors and shared mem-
ory have allowed applications to take advantage of the more computationally
expensive compression algorithms (e.g., context mixing and PPM), with a mar-
ginal cost to the performance of the original application. While there has been
plenty of research of parallel general-purpose compression algorithms, to date,
there has been no generalized research on applying parallelization techniques to
XML-conscious compressors.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 327–337, 2014.
DOI: 10.1007/978-3-642-55224-3 31, c© Springer-Verlag Berlin Heidelberg 2014

328 T. Corbin et al.

Contributions. (1) Description of four parallel approaches; (2) Analysis that
examines the cause and effect of (a) CPU Utilization with respect to thread
synchronization, permutation uniformity, and back-end compressor complexity;
(b) Disk Utilization and its relation to compression complexity; and (c) The
benefits of each specific algorithm for other domains of XML; (3) Implementation
and tests of all algorithms to determine their speedups using a specially designed
XML corpus; and (4) Scalability analysis in terms of file size, the type of the
backend compressor, and the number of cores.

Organization. Section 2 briefly describes a permuting XML compressor,
XSAQCT, and Sect. 3 provides parallel algorithms based on XSAQCT. Section 4
describes the implementation, results of testing and their analysis, and finally
Sect. 5 provides conclusions and describes future work.

2 Overview of Sequential XSAQCT

The algorithms described in this paper can be used for almost any permuting com-
pressor, but here they have been applied to the XSAQCT compression process
briefly described in this section. An XML document can be logically represented
as a tree composed of many highly redundant subtrees that can be transformed
to a more compressible form. An annotated tree of an XML document is a tree in
which all similar paths (i.e., paths that are identical) are merged into a single path
labeled by its tag name. Each node is labeled with a sequence of integers, called an
annotation list, representing the number of occurrences of this node’s children. In
addition, the mapping from the document D to its annotated tree is one-to-one if
D satisfies the so-called full mixed-content property; see Fig. 1. For the treatment
of cycles, e.g., consecutive siblings of the form x→y→x and for more details see [6].
The complete XML compression process involves creating text containers for each
unique path of an XML document, storing a delimited and possibly indexed list of
character data for each similar path. Character data is a general term for all the
characters not defined in the syntax of XML, mainly text elements and structure
(whitespace) data. For example, in Fig. 1 the text container of c[1, 1, 1] has three
text elements t14, t15, and t19.

Fig. 1. A document tree (left side) and its annotated tree (right side).

Parallelization of Permuting XML Compressors 329

In summary, XSAQCT is a schema-less, single-pass process that produces
a semantically lossless representation of an XML document in a more com-
pressed form, allowing query, and update functionalities. In the original version
of XSAQCT, denoted by XSAQCT-F, when the annotated tree is being con-
structed, annotation lists are kept in-memory, while the contents of text con-
tainers are forced to be temporarily written to a backing-store because it is
often impossible to buffer each partition in memory. Since frequent interactions
with a backing store may drastically reduce CPU utilization, especially with
a single-threaded process, XSAQCT will often pre-compress the data, i.e., the
character data of the text containers will be encoded to bytes and compressed
on the fly when written to the backing store. When the “compressed output” is
to be created, only a copy operation is needed. This implementation proved to
be quite efficient in terms of compression and decompression times, compression
ratios, and computational overheads, while using only a single-pass. However,
for querying, there is a non-uniformity to data access times, as it takes a longer
time to access elements at the end of a text container in comparison to elements
at the beginning.

3 Parallel XSAQCT

The work described in [5] showed that frequent interfacing with the backing store
is often a bottleneck in sequential compression, and pre-compression should be
adopted. Since pre-compression is the most computationally expensive process,
multiple text containers need to be compressed concurrently on the fly. Only
a single input (file or socket) stream is needed; one thread will be parsing and
annotating the data and the other threads will work in tandem to create the
compressed text containers. This study of different relations among threads and
paths of an annotated tree showed two key points: (1) The ordering of text
values is important, e.g., in a text container the bytes of a/b/c[313] must
always directly precede the bytes of a/b/c[314]. This feature defines the “criti-
cal section”, the portion of code that requires mutual exclusion; and (2) Indexes
and centralized storage (i.e., a database) can drastically decrease synchroniza-
tion overheads. The reason for this speedup is that the ordering of text values
is no longer a requirement as long as the index can relate a/b/c[314] to a pri-
mary key in a database, and the synchronization overheads of non-uniform data
sources (discussed in the next section) can be drastically reduced. Using this
analysis, the following four new versions of parallel XML compressors (based on
XSAQCT) have been designed:

XSAQCT-F: Complete XML compressor based on the use of writing and lock-
ing strategies limited to the parsing stage, as described in [5]. A text container
buffers bytes, and when the buffer is full, it notifies a thread pool that it has
data to compress. A thread eventually services this request, by locking the text
container from other threads; it compresses and writes all data in this container
(stealing work from other threads).

330 T. Corbin et al.

Table 1. Overview of XML corpus.

XML file Size Depth Paths* Elements Attributes Breakdown Semantic Syntax

e.w.latest [3] 37.73 6 37 1.84(8) 0.19(8) 89.3/10.7 33.69 4.04
posts [2] 11.98 4 22 0.10(8) 1.17(8) 84.6/15.4 10.14 1.85
uniprot sprot [1] 4.90 7 216 0.99(8) 1.44(8) 36.8/63.2 1.80 3.09
1gig [10] 1.09 12 548 0.17(8) 0.04(8) 72.4/27.6 0.79 0.30
e.w.books 0.15 5 29 0.53(6) 0.05(6) 91.4/8.6 0.13 0.01
dblp 0.12 6 145 3.33(6) 0.40(6) 53.5/46.5 0.07 0.06

SwissProt 0.11 5 264 2.98(6) 2.19(6) 36.8/63.2 0.04 0.07
e.w.news 0.04 5 29 2.79(5) 0.25(5) 84.7/15.3 0.04 0.01
lineitem 0.03 3 19 10.23(5) 1 19.3/80.7 0.01 0.02
shakespeare 0.01 7 58 1.80(5) 0 61.5/38.5 0.004 0.003
uwm 0.002 5 22 0.67(5) 6 21/79 0.0005 0.0017
BaseBall 0.0006 6 46 0.28(5) 0 10.6/89.4 0.0001 0.0006
macbeth 0.0002 6 22 0.04(5) 0 59.8/40.2 0.0001 0.0001

* = Number of Unique Paths

XSAQCT-FB: A variant of XSAQCT-F designed for parallelization, which
is similar to generic parallel compressors in that each text container consists
of fixed sized blocks (compressed individually, so the order of blocks matters).
Synchronization is needed when multiple threads are processing in the same
container.

XSAQCT-D: XSAQCT-D is designed to act as a database front end rather than
a generic XML file compressor because of the potential overheads required by a
database, and the storage mechanisms are completely anonymous to
XSAQCT. Instead of using file I/O, the annotated tree is transformed into a
series of SQL statements, with the database schema representing the tree in a
right-sibling-left-child structure. All of the data, including the text data, is stored
in a single database instance. Moreover, XSAQCT-D does not produce a single
compressed output file, which is not necessarily a fast process. Annotation lists,
and more specifically, text containers consist of a series of compressed blocks.
Each block is given a unique primary key referring to data stored in a database
and a text container is only required to store a list of those keys, defining the
block order. Unlike XSAQCT-FB, the order of blocks does not matter, which
are compressed and stored in the schema-table of the underlying database.

XSAQCT-FI: A lightweight database implementation. which provides all of the
necessary functionalities of a database using simple file I/O with a compression
mentality. It adopts the block-based philosophy of XSAQCT-FB and the un-
ordered nature of XSAQCT-D, where each text container is indexed and blocks
are compressed. Each text container is an indexed list using a B-tree (or Hash)
indexer. Blocks have a fixed size and data can span multiple blocks, which can
be compressed individually. Annotations can be held entirely in memory, or be
written to another indexed file. The default size of blocks is defined by the text
compressor, e.g., if the blocks are compressed with BWT/BZIP2, the block size
and BWT transform size are identical.

Parallelization of Permuting XML Compressors 331

4 Implementation, Results of Testing and Their Analysis

4.1 Test Suite and Testing Environment

To analyze the characteristics of XML, we designed an extension of the
Wratislavia XML Corpus [8] consisting of 13 files, provided in Table 1 (files
not referred to in the table can be found in that corpus). The suite describes
many general characteristics of XML, e.g., the “Breakdown” column shows the
amount of semantic data versus the amount of syntax data in each XML file.
The file size and the semantic and syntax data are in GB; v(n) for the number
of elements and attributes denotes v ∗10n. The speedup, theoretical upper bound,
and definite lower bound terminology are from [5].

Path Uniformity. Since XSAQCT derives its permutations using ‘similar paths’,
the amount of data associated with each path can play a significant role in the
compression performance. For instance, for XSAQCT-F and XSAQCT-FB (the
ordering of specific datum is necessary) performance issues arise when the major-
ity of the data is local to only a few paths since many threads will require syn-
chronization mechanisms. However, in the case of XSAQCT-D and XSAQCT-FI,
the use of an index, at the expense of compression ratio, allows unordered writ-
ing at the cost of simple synchronization. We considered, but did not analyze,
Temporal Uniformity, with globally uniform XML source and all the similar
subtrees are locally clustered. Figure 2a depicts the data distribution of enwiki-
latest.xml [3], with the path /mediawiki/page/revision/text storing 31 GB
of character data, while for the next largest path there is only 0.71 GB of data.
unitprot sprot.xml has a more evenly distribution of data, see Fig. 2b.

Testing. Tests were implemented with Java (Version 1.7) on an Intel Core i7–
3770 Processor, with four physical and eight logical cores, and an 8 MB cache.
Each test was ran with three backend compressors: GZIP, BZIP, XZ, and no
compression at all. The Berkeley Sleepycat Key-Value Database [7] was used by
XSAQCT-D.

4.2 Compression, Speedups, and Analysis

A comparison of the theoretical upper bound, using Amdahl’s law, to the actual
speedup (obtained using eight threads) is provided in Fig. 2c–f (for files from the
corpus in Sect. 4.1, with one of the three back-end compressors or no compression).

Factors in Performance. Although XSAQCT-F will typically produce the best
compression ratio, Fig. 2c depicts why this technique is not inherently scalable to
XML data of any type. Looking at the results of XZ, we can correctly hypothe-
size the “uniformed-ness” of each XML file by calculating the amount of speedup
achieved. Note that XSAQCT-FB and XSAQCT-FI (see Fig. 2e, f respectively),
both share the general trend that as the amount of semantic data increases,
the greater speedup achieved. XSAQCT-D, see Fig. 2d, also shares many of
the trends with XSAQCT-FB and XSAQCT-FI. Subtle differences arise with

332 T. Corbin et al.

Fig. 2. Data distribution and speedups of XSAQCT using various back-end compres-
sors.

Parallelization of Permuting XML Compressors 333

additional overheads offered by the database, but one major difference arises in
the “time of execution” of XSAQCT-D versus the other three algorithms. Since
XSAQCT-D is a centralized writing mechanism, it requires no “build phase”.
Comparing XSAQCT-FI to XSAQCT-D, our indexing and file I/O scheme is as
scalable as a regular database system. The four smallest files (all less than 10
MB), do not scale accordingly (with eight threads) because the parser can essen-
tially buffer the entire file (in memory). Uniformity is not a concern because the
amount of data is unsubstantial. Based on the values derived by Amdahl’s law,
we hypothesize that building the annotated tree is as computationally expensive
as compressing the data.

CPU Utilization and Compressor Complexity. To explain path uniformity
and its effect on CPU utilization, consider the areas of mutual exclusion for each
variant of XSAQCT: (1) for XSAQCT-F, each unique path has its own atomic
test-and-set, which can cause starvation in heavily non-uniform XML sources.
However, in highly uniform data distributions, it will excel because each thread
can steal compression requests thereby reducing the overhead in thread-pool
scheduling; (2) for XSAQCT-FB, since the blocks of a text-container have to
be written in order, the scalability will often depend on how many threads are
forced to work together in one text container. Multiple threads working together
in a single container may result in certain threads waiting for some other thread
to write its data. The amount of time to wait is solely dependent on the back-end
compressor complexity; (3) XSAQCT-FI, while being similar to XSAQCT-FB,
uses a FCFS method allowed by the underlying index; the only computational
overhead is the updating of the index; and (4) XSAQCT-D follows the same
methodology as XSAQCT-FI, but the synchronization is completely dependent
on the database implementation and not our own implementation. Figure 3a
plots the XSAQCT-F CPU usage of a uniform unitprot sprot.xml (top) and
enwiki-latest.xml (bottom). The graphs show that GZIP, or no compression, do
not fully exploit computational resources, thereby hurting compression efficiency,
and ultimately making it less capable of achieving a better speedup (regardless
of XSAQCT-version). This implies that the threads were often starved because
the parser was not feeding the thread pool fast enough, and not because of syn-
chronization overheads (in this case, CPU-usage is independent of uniformity).
However, for BZIP2 (or XZ, which is generally more complex), the CPU usage
was often near 100 % using the uniform source, with the parser thread often
waiting for the compressors to catch up, but for a non-uniform source, the CPU
usage oscillations are directly related to lack-of uniformity.

Parser and Disk Utilization. The percentage of CPU time during which I/O
requests were issued to the device is another important factor in the detriment
of permuting XML compressors because creating these permutations may not be
an entirely in-memory process. Note that the underlying data store must be able
to efficiently handle input (reading and parsing the XML data), and multiple
threads writing (temporarily buffering the temporary data). Figure 3b provides
the read and write transfer rates of the backing store during an XSAQCT-
F compression of a uniform data source uniprot sprot, using GZIP (top) and

334 T. Corbin et al.

Fig. 3. Examples of CPU and Disk usages, and impact of the number of cores on
speedup.

Parallelization of Permuting XML Compressors 335

BZIP (bottom). These graphs confirm the analysis showing that a fast compres-
sor GZIP is not causing the parsing to slow down substantially. However, when
large bursts of write requests are handled by the operating system, the parsing
performance diminishes by more than 50 %. For an inherently slow compressor
BZIP (also shown in Fig. 3b), the parser is always playing catch-up – waiting
for some data to be fully processed – and the writing bursts are less substantial.
Therefore, in some situations it is indeed possible to over-allocate threads and
receive performance gains since the parser will be blocked and waiting for the
compressors.

Effects of Scaling the Number of Cores. Figures 3c–f show the speedup
achieved for all XML files, using one core operating the parsing thread, respec-
tively two, four, seven, and eight cores performing compression, with GZIP and
XZ as the back-end compressors. With XSAQCT-F (specifically XZ), we clearly
see the prominence of path uniformity and its effect on performance. However,
even with the most uniform of data sources, there is a clear point of diminishing
returns after we double the number of compressor threads from four to eight, as
opposed to increasing from one to two, and to four threads (compression is still
complex). Comparing the smaller XML files leads to more interesting results, i.e.,
there is no inherent scaling, except for the smallest file and GZIP, which seems to
be a consistent anomaly across all flavours of XSAQCT. Analyzing the reduction
of compressor complexity shows that only 1gig.xml scales (which also happens to
be a temporally uniform data file, i.e., each thread is dedicated to different nodes
of the same subtree). In conclusion, adding four cores to eight cores will provide
no benefit to compression, only more starvation. Finally, when we over-allocate
the number of compressing threads by one (to make up for the lack of CPU-
complexity in the parser), there are some files in which some slight performance is
achieved and other files in which there is a performance detriment. Next, consider
XSAQCT-FB. The first noticeable feature is that scaling from one to two threads
doubles performance for all files of sufficient size, and in addition, it scales much
more consistently than XSAQCT-F, using XZ. Reducing compressor complexity,
yields better results than XSAQCT-F, but once again lacks consistent scalability.
Compressing uniprot sprot.xml with XSAQCT-FB and XSAQCT-F shows that
highly uniform sources (and lack of temporal uniformity) can reduce the amount
of synchronization overhead to a point, where container locking (XSAQCT-F)
proves to be more efficient. Finally, over-allocating the number of compressor
threads by one often decreases the performance of compression (more threads
waiting for other threads). With XSAQCT-FI, the first noticeable trend is how
well it scales with two and four compressing threads using XZ. Moving from one
to two threads doubles the relative speedup, and doubling two threads to four
once again almost doubles the relative speedup for XML files of substantial size.
Finally, XSAQCT-FB, XSAQCT-FI, and XSAQCT-D all have the same linear
trend with the smaller files. For macbeth.xml, baseball.xml, uwm.xml, shake-
speare.xml, and lineitem.xml (ordered by size), a linear trend is noticed between
file-size and core scalability. Once the files become of sufficiently large sizes, a
more plateauing trend occurs (all of these trends seem to be independent of the

336 T. Corbin et al.

characteristics of the file), and this defines a point in which parallelization (w.r.t
file size) using a specific XSAQCT technique would be most efficient.

Additional Results. While the analysis above was described in the context
of compression speedup, a plethora of benefits and detriments arise in other
domains. The first obvious issue is compression ratio. XSAQCT-F will often
produce the best compression ratios, especially with GZIP and XZ, because it
builds a model backward adaptively on the entire input (on average XSAQCT-F
compresses its data 8–12 % better for large data files—recall that blocks are com-
pressed individually for other versions). XSAQCT-F and XSAQCT-FB produce
the same compression ratios using BZIP because BZIP is a blocking compressor.
Comparing XSAQCT-FI, which incorporates an additional index for each path,
to XSAQCT-FB, our testing has shown a 2 % increase in size for files of size
greater than 25 MB. However, this approach alleviates the problem with non-
uniform query access as hinted in Sect. 2. For example, if an entire text container
is compressed with a single GZIP instance, as with XSAQCT-F, to access the ith

text element, all previous i−1 texts must be decompressed. On the other hand
using XSAQCT-FI to access the same text element, the index is first traversed to
find the block that contains the specific element. The block is then decompressed,
and then traversed, searching for the string. Thus, for certain applications this
overhead is certainly worth it. Finally, the size of XSAQCT-D files tend to be
much more bloated (in the case of SleepyCat, there is only a slight overhead)
because of the underlying architectural components of a database.

5 Conclusions and Future Work

This paper presented four new parallel compression algorithms for permuting
XML compressors, as well as results of tests to determine their speedups (using
a specially designed XML corpus). Regardless of XSAQCT version, the use of
GZIP (or no compression) as a backend compressor resulted in frequent thread
starvation and the disk/parser utilization was maximized. Using XZ or BZIP2,
the CPU usage was maximized, with significant fluctuation of disk/parser utiliza-
tion. We found that for XML files with more centralized data, the compression
speeds are lower using XSAQCT-F and XSAQCT-FB than using XSAQCT-F
and XSAQCT-D; however, in the latter case the speedup was achieved at the
expense of the compression ratio. For large files, pre-compression, while saving
space, did indeed increase performance. Compression-Indexing increased paral-
lel compression speed because it minimized the amount of mutual exclusion and
synchronization. In conclusion, the analysis provided an excellent example of
“compression time versus compression ratio”.

Preliminary work on decompression has shown that in comparison to com-
pression there are more subtle issues with scalability, memory overheads, and
using the threads efficiently (mostly to deal with pre-decompressing specific
portions of each text container). Therefore, we will work on application of a
divide-and-conquer approach to compression approach to XSAQCT.

Parallelization of Permuting XML Compressors 337

Acknowledgments. The work of the first author is partially supported by NSERC
CSG-M and the work of the second author by the NSERC RGPIN grant.

References

1. Consortium, T.U.: Update on activities at the Universal Protein Resource
(UniProt) in 2013. http://dx.doi.org/10.1093/nar/gks1068 (2013). Accessed 20
June 2013

2. CreativeCommons: Stack Overflow Creative Commons data dump. http://blog.
stackoverflow.com/?s=Data+Dump (2011). Accessed 20 June 2013

3. enwiki dumps: enwiki-latest.xml. http://dumps.wikimedia.org/enwiki/latest/
(2012). Accessed 20 June 2013

4. Liefke, H., Suciu, D.: XMill: an efficient compressor for XML data. In: Proceedings
of the 2000 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’00, pp. 153–164. ACM, New York. http://doi.acm.org/10.1145/342009.
335405 (2000)

5. Müldner, T., Fry, C., Corbin, T., Mizio�lek, J.K.: Parallelization of an xml data
compressor on multi-cores. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 101–110. Springer,
Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-31500-8 11

6. Müldner, T., Fry, C., Mizio�lek, J., Durno, S.: SXSAQCT and XSAQCT: XML
queryable compressors. In: S. Böttcher, M. Lohrey, S.M., Rytter, W. (eds.)
Structure-Based Compression of Complex Massive Data. No. 08261 in Dagstuhl
Seminar Proceedings. http://drops.dagstuhl.de/opus/volltexte/2008/1673 (2008)

7. Oracle: Berkeley DB Java edition architecture. http://www.oracle.com/
technetwork/database/berkeleydb/overview/index-093405.html (2013) Accessed
20 June 2013

8. Wratislavia: Wratislavia XML corpus. http://www.ii.uni.wroc.pl/∼inikep/
research/Wratislavia/ (2012). Accessed 20 June 2013

9. XML: Extensible markup language (XML) 1.0, 5th edn. http://www.w3.org/TR/
REC-xml/ (2013). Accessed 20 June 2013

10. xmlgen: The Benchmark Data Generator. http://www.xml-benchmark.org/
generator.html (2012). Accessed 20 June 2013

Parallel Processing Model for Syntactic Pattern
Recognition-Based Electrical Load Forecast

Mariusz Flasiński(B), Janusz Jurek, and Tomasz Peszek

Information Technology Systems Department, Jagiellonian University,
Ul. Prof. St. Lojasiewicza 4, 30–348 Cracow, Poland

mariusz.flasinski@uj.edu.pl

Abstract. A model of a recognition of distorted/fuzzy patterns for a
electrical load forecast is presented in the paper. The model is based on
a syntactic pattern recognition approach. Since a system implemented on
the basis of the model is to perform in a real-time mode, it is parallelized.
An architecture for parallel processing and a method of tasks distribution
is proposed. First experimental results are also provided and discussed.

Keywords: Syntactic pattern recognition · Distorted/fuzzy patterns ·
Grammar · GDPLL(k) · Parallel parser · Electrical load forecast

1 Introduction

There are two main approaches to pattern recognition: decision-theoretic and
syntactic. A syntactic approach is applied, if patterns considered are of a struc-
tural nature. Therefore, applications of this approach include e.g. analysis and
recognition of chromosome shapes, bubble chamber tracks, contours in 2D pic-
tures, ECG signals, EEG signals, a speech treated as a signal [2,8–10,22,23,28,
29]. A syntax analysis is made on the basis of theory of formal languages. It is
performed in two phases. In the first phase a structural representation of a pat-
tern is generated. Firstly, a pattern is segmented in order to identify elementary
patterns, called primitives. Secondly, the symbolic representation of the pattern
in the form of a string (a structure), which consists of symbols representing prim-
itives is defined. This representation is treated as a word belonging to a formal
language. During the next phase such a word is analyzed by a formal automaton,
strictly speaking by its implementation i.e. a parsers, which is constructed on
the basis of a formal grammar generating the corresponding formal language. In
result a derivation of the analyzed word is obtained. The derivation is used by
the syntactic pattern recognition system for describing structural features of the
pattern and for recognizing (classifying) it.

Since 1980s parallel techniques and environments have been successfully
applied for increasing an efficiency of pattern recognition systems [3,7,12,20,21,
25]. They have been used mainly in the first phase. However, the second phase
can be also time-consuming, especially in case of a recognition of distorted/fuzzy

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 338–347, 2014.
DOI: 10.1007/978-3-642-55224-3 32, c© Springer-Verlag Berlin Heidelberg 2014

Parallel Processing Model for Syntactic Pattern Recognition 339

patterns [10]. Then, the use of parallel techniques in this phase could increase
time efficiency.

A research into applying syntactic pattern recognition for short-term electri-
cal load forecasting (STLF) has resulted in constructing the forecasting system
[18,24]. The use of the system has revealed that distortions and fuzziness of sig-
nals analyzed influence a precision of forecasting performed in the second phase
of an analysis remarkably. Therefore, enhanced syntactic pattern recognition
models have been developed [6,10] in this research area. Unfortunately, in case
of a problem of short-term electrical load forecasting none of the known models
fulfils all the following conditions, which influence a forecasting precision:

– a grammar has strong generating power, i.e. it is stronger than context-free
grammars,

– both algorithms of: grammar inference and syntax analysis are computation-
ally efficient,

– fuzziness and distortions of patterns is handled not only in the primitive recog-
nition phase, but also during a syntax analysis.

Therefore, in order to fulfil these conditions a hybrid model based on proba-
bilistic neural networks and GDPLL(k) grammar-based parsers [5,15] has been
developed recently [19]. In the model a syntax analysis is performed repeatedly
in order to increase a precision of a recognition. On the other hand, it results in
increasing a processing time. A parallelization of performing the analysis tasks is
the best way to cope with this dilemma. For this purpose single tasks are to be
identified and a suitable architecture for a task distribution is to be defined. In
this paper we present a modification of the basic model of short-term electrical
load forecasting, which allows us to run parsing processes in a parallel manner.

The model of the parallel analysis of distorted/fuzzy string patterns, which
are used to represent electrical load signals is presented in Sect. 2. Section 3
contains the experimental results of the model. Concluding remarks are included
in Sect. 4.

2 Syntactic Pattern Recognition Model for Distorted
String Pattern Analysis

The model of the parallel recognition of distorted/fuzzy patterns is presented in
this section. The model is an enhanced version of a model introduced in [19]. It is
a hybrid model, i.e. it is based on probabilistic neural networks and GDPLL(k)
grammar-based parsers. It covers both phases of a syntactic pattern recognition
process, namely a primitive extraction and a syntax analysis.

2.1 Primitive Extraction

The first phase of a syntactic pattern recognition consists in a primitive extrac-
tion. In our model, the system module responsible for this task delivers an addi-
tional information related to an uncertainty factor. As a result we obtain the

340 M. Flasiński et al.

extended symbolic representation. Each element of the representation contains
many possible symbols together with the recognition probability (instead of a
single symbol). In this way a distortion/fuzziness nature of a primitive is char-
acterized.

The primitive extraction is performed in our system with the help of prob-
abilistic neural networks (PNN) [26], which have been successfully applied in a
pattern recognition area [4,11,27]. A detailed description of this phase can be
found in [19]. (We do not present it here, since it is out of the scope of our
considerations in the paper.) It is worth to point that the primitive extraction
functionality can be implemented with the use of different techniques that would
fit into the designed framework and deliver a representation of the required form.

2.2 Syntax Analysis

As we have mentioned it in Introduction a grammar used for description for
electrical load signals should be stronger, if a descriptive power is concerned,
than context-free grammars. It results from the fact that a formal language
consisting of structural representations of such signals is more complex than
context-free languages. On the other hand, one cannot use a context-sensitive
grammar, since the corresponding automaton, i.e. a linear bounded automaton
is of the non-polynomial complexity. Therefore, a special class of quasi-context
sensitive grammars, called GDPLL(k) grammars has been defined [5,15]. The
GDPLL(k) grammars are strong enough to generate structural representations
of electrical load signals. Moreover, a GDPLL(k) automaton is of the linear time
complexity [15]. Now, we introduce GDPLL(k) grammars in a formal way.

Definition 1. A generalized dynamically programmed context-free grammar is
a six-tuple G = (V,Σ, O, P, S,M), where: V is a finite, nonempty alphabet;
Σ ⊂ V is a finite, nonempty set of terminal symbols (let N = V \ Σ); O is
a set of basic operations on the values stored in the memory; S ∈ N is the
starting symbol; M is the memory; P is a finite set of productions of the form:
pi = (μi, Li, Ri, Ai) in which μi : M −→ {TRUE,FALSE} is the predicate
of applicability of the production pi defined with the use of operations (∈ O)
performed over M ; Li ∈ N and Ri ∈ V ∗ are left- and right-hand sides of pi

respectively; Ai is the sequence of operations (∈ O) over M , which should be
performed if the production is to be applied. �

Definition 2. Let G = (V,Σ, O, P, S,M) be a dynamically programmed
context-free grammar. The grammar G is called a GDPLL(k) grammar, if the
following two conditions are fulfilled.

1. Stearns’s condition of LL(k) grammars. (The top-down left-hand side deriva-
tion is deterministic if it is allowed to look at k input symbols to the right of
the current position of the input head in the string).

2. There exists a certain number ξ such that after the application of ξ produc-
tions in a left-hand side derivation we get at the ”left-hand side” of a sentence
at least one new terminal symbol. �

Parallel Processing Model for Syntactic Pattern Recognition 341

GDPLL(k) grammars have the following important features:

– a strong descriptive power (stronger than context-free grammars) [5,13],
– an efficient parsing algorithm [15],
– an efficient grammar inference algorithm [14,16,17].

2.3 Parallel Model for Distorted String Pattern Recognition

A parallel version of the model has been constructed in order to fulfil real-time
processing requirements. An algorithm proposed works in an iterative way. It
receives and processes vectors of the form ((v1, p1), . . . , (vn, pn)), where vi is a
terminal symbol denoting a primitive received, and pi a probability that the
primitive is represented by vi. As the parser performs many parsing trials in
parallel, there is a lot of tasks to process in every iteration, all of which have the
following form:

Task(PP, a) = {Try to derive terminal symbol a with help of parser no. PP}.
The domain of (PP, a) runs over the Cartesian product of the set of all active
parsing trials (PP) and all components of a currently processed vector (a). Since
the domain size can be large, the number of tasks to process can increase an
analysis time remarkably. On the other hand, skipping some tasks in an analysis
process can lead to a less precise recognition. A parallelization of processing tasks
is a good way to handle the problem. A task dispatcher assigns a derivation task
to separate processors/cores/threads, which are processed in a parallel way.

The architecture of a parallel GDPLL(k) parser is shown in Fig. 1. Let us
describe its basic elements.

– The input tape contains a string of vectors.
– The collection of GDPLL(k) parsing processes. For each process the

following information is stored: the current stack, the current production list,
the current automaton state, the string already analyzed etc. On the basis of
this information resuming the analysis process is possible.

– The control module governs the whole analysis process. It involves managing
the following two elements.
• The task queue. The task queue is created by the control module before

each iteration on the basis of the collection of parsing processes and
components of the input vector.
• The processor/thread/core pool. The control module assigns sub-

sequent tasks from the queue to execute to available parsers (proces-
sors/cores/threads) and collects analysis results. As a result of each
analysis, existing parsing processes can change their state or can be ter-
minated (acceptance, rejection).

– The pool of GDPLL(k) parsers. For each parser the control function is
defined. This function is used by the control module for deciding whether
the parser should continue its analysis. The control module sends tasks from
the task queue to the parsers. The parser, which has finished processing,

342 M. Flasiński et al.

Fig. 1. The architecture of the parser.

requests the control module for assigning the next task from the queue. Dur-
ing an analysis performed by the parser, a value of its control function is
computed. The parser continuously delivers messages of the following form:
(PP, v, p, val, prod, action), where: PP is an index of the parsing process,
(v, p) is a component of the input vector, val is the current value of the

Parallel Processing Model for Syntactic Pattern Recognition 343

control function, prod is the production to be used in the derivation process,
and action is one of the following possible control actions
• ACC: A symbol v is derived and the word related to the analysis path

is accepted.
• CONT : A symbol v is derived. A derivation starts with the production
prod. This path should be a subject of further analysis (the value of the
control function is big enough).
• TERM : A symbol v is derived. However, further analysis along this path

should not be continued (the value of the control function is too small).
• REJ : A symbol v cannot be derived and the word related to the analysis

path is rejected.
– The output of the control module delivering information on symbols read

and productions applied to derive these symbols.

The parser performs the following steps in an iterative way:

– read next vector (or k vectors) from the input tape,
– create a task queue,
– execute tasks from the queue with the help of the pool of available parsers,
– collect the results of the analysis and update the collection of parsing processes,
– send messages on termination/acceptance/rejection of parsing processes to

the output of the control module.

A recognition of an input symbolic vector, which represents an electric load
signal is a result of the syntax analysis performed by the parser. A value of a
probability of such a recognition is also delivered by the parser.

3 Experimental Results

In this section we present experimental results obtained with the system imple-
mented on the basis of the model presented above. Let us consider a language
L = {anbncn : n > 0}. Since the language is context-sensitive, it is difficult
to construct an efficient syntax analyzer for it. A GDPLL(k) parser recognizes
such a language in a polynomial time thanks to its very good computational
properties, mentioned in a previous section.

For our experiments we have used words represented by the input vectors,
which consist of two components. Consequently, the number of the possible res-
olutions is exponential with the base equal to 2. Let us assume that the input
vector to be parsed is defined in the following way:

[
a, 0.7
b, 0.3

] [
a, 0.75
b, 0.25

] [
b, 0.6
c, 0.4

] [
b, 0.5
c, 0.5

] [
b, 0.2
c, 0.8

] [
b, 0.2
c, 0.8

]

Thus, the number of possible resolutions is equal to 26 = 64. The size of the
input data depends on both: the number of resolutions and the length of the
input vector word. These parameters influence the number of operations that

344 M. Flasiński et al.

have to be made for complete parsing. Fortunately, many of this resolutions are
rejected at the initial phase of the syntax analysis.

A parser efficiency has been tested with a four core processor machine (Intel(R)
Core(TM) 2Quad CPU Q6600 2,4 GHz) with 3 GB of an available RAM.

A computation time as a function of the input word length is shown in Fig. 2.
(The word length means here the number of vectors, which belong to a particular
word.) Let us notice that in spite of a big number of possible resolutions, the
function is still linear-like. This is a consequence of eliminating whole ”branches”
of the resolutions during a derivation by the control module.

Fig. 2. A syntax analysis time as a function of the input vector word length (an analysis
with a one- and four-thread environment).

Table 1 contains times of computations performed with the help of a one-
and four-threaded processes.

Table 1. Time required for a complete analysis of a vector word as a function of its
length

Word length Single threaded (ms) Multi(4) threaded (ms)

30 3479 1310
60 8286 2434
90 18413 4099

120 32041 5612
150 45143 7497

The real-world experiments concerning the language of structural shapes,
which represent an electrical load demand have been performed as well. Struc-
tural patterns of load demand shapes are described with a set of primitives shown
in Fig. 3. For example, a language word f4c2b4e2d5fdb2cf is a string coding of
a structural pattern of the electrical load demand, which is shown in Fig. 3.

Parallel Processing Model for Syntactic Pattern Recognition 345

Fig. 3. A structural pattern of an electrical load demand and a set of primitives used
for its string coding

Words of various lengths containing structural distortions have been analyzed
during experiments. The results are included in Table 2.

Table 2. Time required for a complete analysis of a vector word representing structural
shapes of an electrical load demand as a function of its length

Word length Single threaded (ms) Multi(4) threaded (ms)

18 1988 529
30 3751 946
42 5471 1376
54 7200 1810
66 8932 2243

One can easily see that the use of a parallel environment results in a big
reduction of the syntax analysis time. A difference between a single-threaded
process and a multi-threaded process increases as the length of the input vector
is longer and longer. A reduction of a time of the syntax analysis time relates
approximately to the number of available threads.

4 Concluding Remarks

A parallel model of syntactic recognition of distorted/fuzzy string patterns has
been presented in the paper. The model has been developed to match require-
ments of the application for the short-term electrical load forecasting (STLF)
[1,18,24,30]. STLF is of a great significance as far as the optimal management
of resources required for energy production is concerned.

Good points of the model can be sum up as follows. The model is based on
GDPLL(k) grammars, which are of a big generating/descriptive power. Secondly,

346 M. Flasiński et al.

a GDPLL(k) parser is computationally efficient, i.e. it is of the linear time com-
plexity. Nevertheless, such a complexity has been obtained for model patterns,
i.e. for patterns, which are neither distorted nor fuzzy. In case of an analysis of
electrical load signals such an assumption is too strong. Of course, when dis-
torted/fuzzy patterns are to be analyzed, a parsing time increases remarkably.
Therefore the model had to be parallelized to meet real-time requirements. The
experiments have shown that the use of the parallel model of GDPLL(k) parsing
reduces processing time considerably.

References

1. Alfares, H.K., Nazeeruddin, M.: Electric load forecasting: literature survey and
classifcation of methods. Int. J. Syst. Sci. 33, 23–34 (2002)

2. Bunke, H.O., Sanfeliu, A. (eds.): Syntactic and Structural Pattern Recognition
Theory and Applications. World Scientific, Singapore (1990)

3. Chiang Y., Fu K.S.: Parallel parsing algorithms and VLSI implementation for
syntactic pattern recognition. IEEE Trans. Pattern Anal. Machine Intell. PAMI-6,
302–313 (1984)

4. Emary, I.M., Ramakrishnan, S.: On the application of various probabilistic neural
networks in solving different pattern classification problems. World Appl. Sci. J.
4, 772–780 (2008)

5. Flasiński, M., Jurek, J.: Dynamically programmed automata for quasi context
sensitive languages as a tool for inference support in pattern recognition-based
real-time control expert systems. Pattern Recogn. 32, 671–690 (1999)

6. Flasiński, M., Jurek, J.: On the analysis of fuzzy string patterns with the help of
extended and stochastic GDPLL(k) grammars. Fundamenta Informaticae 71, 1–14
(2006). IOS Press, Amsterdam

7. Flasiński, M., Jurek, J., Myśliński, S.: Multi-agent system for recognition of hand
postures. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J.,
Sloot, P.M.A. (eds.) ICCS 2009, Part II. LNCS, vol. 5545, pp. 815–824. Springer,
Heidelberg (2009)

8. Flasiński, M., Jurek, J.: Syntactic pattern recognition: survey of frontiers and cru-
cial methodological issues. Adv. Intell. Soft Comput. 95, 187–196 (2011). Springer,
Berlin

9. Flasiński M., Jurek J., Fundamental methodological issues of syntactic pattern
recognition. Pattern Anal. Appl. (2013) (in print). Springer

10. Fu, K.S.: Syntactic Pattern Recognition and Applications. Prentice Hall, Engle-
wood Cliffs (1982)

11. Goodman, R.M., Higgins, C.M., Miller, J.W.: Rule-based neural networks for clas-
sification and probability estimation. Neural Comput. 4, 781–804 (1992)

12. Guerra, C.: 2d object recognition on a reconfigurable mesh. Pattern Recogn. 31,
83–88 (1998)

13. Jurek, J.: Syntactic pattern recognition-based agents for real-time expert systems.
In: Dunin-Keplicz, B., Nawarecki, E. (eds.) CEEMAS 2001. LNCS (LNAI), vol.
2296, pp. 161–168. Springer, Heidelberg (2002)

14. Jurek, J.: Towards grammatical inferencing of GDPLL(k) grammars for applica-
tions in syntactic pattern recognition-based expert systems. In: Rutkowski, L.,
Siekmann, J., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI),
vol. 3070, pp. 604–609. Springer, Heidelberg (2004)

Parallel Processing Model for Syntactic Pattern Recognition 347

15. Jurek, J.: Recent developments of the syntactic pattern recognition model based
on quasi-context sensitive languages. Pattern Recogn. Lett. 26, 1011–1018 (2005).
Elsevier, Amsterdam

16. Jurek, J.: Generalisation of a language sample for grammatical inference of
GDPLL(k) grammars. Adv. Soft Comput. 45, 282–288 (2007). Springer, Berlin

17. Jurek, J.: Grammatical inference as a tool for constructing self-learning syntactic
pattern recognition-based agents. In: Bubak, M., van Albada, G.D., Dongarra, J.,
Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 712–721. Springer,
Heidelberg (2008)

18. Jurek, J., Peszek, T.: On the use of syntactic pattern recognition methods, neural
networks, and fuzzy systems for short-term electrical load forecasting. Adv. Soft
Comput. 30, 851–858 (2005). Springer, Berlin

19. Jurek, J., Peszek, T.: Model of syntactic recognition of distorted string patterns
with the help of GDPLL(k)-based automata. Adv. Intell. Soft Comput. 226, 101–
110 (2013)

20. Lee S.S., Tanaka H.T.: Parallel image segmentation with adaptive mesh. In: Pro-
ceedings of the 15th International Conference Pattern Recognition, Barcelona,
Spain, vol. 1, pp. 635–639 (2000)

21. Miguet, S., Montanvert, A., Wang, P.S.P.: Parallel Image Analysis. World Scien-
tific, Singapore (1998)

22. Ogiela, M.R., Ogiela, U.: Dna-like linguistic secret sharing for strategic information
systems. Int. J. Inf. Manag. 32, 175–181 (2012)

23. Pavlidis, T.: Structural Pattern Recognition. Springer, New York (1977)
24. Peszek, T.: Neuro–fuzzy prediction systems in energetics. Schedae Informaticae 15,

73–94 (2006)
25. Ranganathan, N.: VLSI and Parallel Computing for Pattern Recognition and Arti-

ficial Intelligence. World Scientific, Singapore (1995)
26. Specht, D.F.: Probabilistic neural networks. Neural Netw. 3, 109–118 (1990)
27. Tadeusiewicz, R.: Sieci neuronowe. Akademicka Oficyna Wydawnicza, Warszawa

(1993)
28. Tadeusiewicz, R., Flasiński, M.: Rozpoznawanie Obrazów. Państwowe

Wydawnictwo Naukowe PWN, Warszawa (1991)
29. Tadeusiewicz, R., Ogiela, M.R.: Medical Image Understanding Technology.

Springer, Berlin (2004)
30. Taylor, J., McSharry, P.: Short-term load forecasting methods: an evaluation based

on European data. IEEE Trans. Power Syst. 22, 2213–2219 (2008)

Parallel Event–Driven Simulation
Based on Application Global State Monitoring

�Lukasz Maśko1(B) and Marek Tudruj1,2

1 Institute of Computer Science of the Polish Academy of Sciences,
ul. Jana Kazimierza 5, 01-248 Warsaw, Poland

2 Polish–Japanese Institute of Information Technology,
ul. Koszykowa 86, 02-008 Warsaw, Poland

{masko,tudruj}@ipipan.waw.pl

Abstract. Discrete event simulation is a well known technique used
for modeling and simulating complex parallel systems. Parallel simula-
tion introduces multiple simulated event queues processed in parallel.
A proper synchronization between parallel queues must be introduced.
Program global state monitoring is a natural way to organize global
simulation state monitoring and control. Every queue process reports
its progress state, being the timestamp of the most recently processed
event, to a global synchronizer. Reporting is done asynchronously and
has no influence on the simulation process. A global simulation state
can be defined as the vector containing timestamps of the most recently
processed event in every queue. The paper presents the principles of par-
allel simulation designed by the use of a system infrastructure for global
states monitoring. Comparison to existing parallel simulation methods
is provided.

Keywords: Parallel simulation · Strongly consistent global states

1 Introduction

Discrete–Event Simulation (DES) is a well known technique used for modeling
and simulating complex parallel systems [1,2]. In this approach, each simulated
entity reacts to events, which are addressed to it, and as a result produces new
events, which may be sent as messages to any system component. Each such
message is marked with a timestamp, which corresponds to the event occurence
time. To preserve correctness of simulation, all event messages are examined in
respect to their timestamps. Such approach may be easily adjusted to desired
system granularity. It can be used for cycle–accurate simulations and for simu-
lation with lower precision requirements.

DES can be implemented using a simple serial algorithm. This algorithm uses
a single event priority queue. All events are sorted according to their timestamps.
In each step, the event with the lowest timestamp is selected and processed. The
resulting events are then stored in the same event queue, according to their

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 348–357, 2014.
DOI: 10.1007/978-3-642-55224-3 33, c© Springer-Verlag Berlin Heidelberg 2014

Parallel Event–Driven Simulation 349

timestamps. Because the processed event has always timestamp which is not
higher than the timestamps of the resulting events, simulation is always correct.
The main drawback of this method is its strictly sequential nature, which makes
it hard to parallelize.

Parallel DES (PDES) introduces multiple event queues [1,2], which are dis-
tributed between Logical Processes (LPs), which process events in parallel. The
events, which are results of processing, are exchanged between queues using mes-
sages. The distribution of the events between queues depends on the assumed
algorithm and the simulated system architecture. It can depend on the connec-
tion topology between simulated components, so that messages between queues
are migrated only if they address communication between disjoint parts of the
simulated system [3]. Simulation methods determine possible synchronization
mechanisms between parallel queues. If this problem is not properly solved, a
queue may receive a remote message from another queue with a timestamp lower
than the events it had already processed, which breaks the correctness rule.

Instead of strict synchronization of LPs in the PDES, which leads to decrease
of simultarion performance, simulation progress may be controlled with an asyn-
chronous method, which uses strongly consistent global states (SGCS). SCGS
is a set of fully concurrent local states detected by a synchronizer. The paper
proposes the simulation algorithm, which encorporates the idea of global–state
driven program control into the PDES algorithm in order to reduce the proba-
bility of rollbacks.

The paper is composed of 4 parts. First, the current state of the art in the
field of PDES methods is briefly shown. Then, the idea of global–state driven
program control model is presented. The third part introduces the algorithm
using global states to control the parallel discrete event simulation progress.
Finally, an eamplary simulation is depicted.

2 Related Work

The conservative approach to PDES [4] assumes that it is not allowed that a
message with a timestamp lower then events already processed arrives in a queue.
Such approach requires exact synchronization between event queues. In general,
any queue cannot process its events, if the timestamp of the earliest one is higher
than timestamps of first events in other queues. Such conservative rule leads to
sequential execution and parallelism is available only if there are events with
the same timestamp in front of different queues. This limit can be relaxed using
information about the scheduled system. For instance, if queues correspond to
separate parts of the system and sending a message between these parts takes a
known amount of time, the difference between clocks in these queues may reach
this value. Such relaxation mechanism was assumed in [3].

Unlike in conservative approach, the optimistic approach assumes, that the
progress of distributed queues doesn’t have to be strictly synchronized [1,2,5–
7]. The basic optimistic parallel simulation method is called Time Warp [5].
Time Warp allows different queues to proceed with their computations as far

350 �L. Maśko and M. Tudruj

as possible. At the same time, to preserve consistency of simulation, in the case
when events are processed in the wrong order (one of the queues receives a
remote event generated in a different queue with timestamp lower that its own
clock value), the queue, in which such error occurred, performs a rollback, i.e.
restores its state from the point of time, which is equal to timestamp of the
remote event, which caused rollback.

Each rollback imposes reduction of simulation performance. Restoring a state
of a queue to a recorded state means not only removal of some events from the
queue, but also requires cancellation of messages beeing results of processing of
these events, sent to other queues. If such events had been already processed,
those queues must also perform rollbacks, which may cause more cancellations
and more simulation performance degradationas a result of rollback avalanche.
The probability of rollback depends on the simulated system architecture and on
the distribution of simulated components between event queues. It also depends
on the time difference of simulation between queues.

In order to lower the probability of rollback, the distance between the least
and the most advanced queue in the whole simulated system can be limited.
Some solutions of this problem have been proposed. In Moving Time Windows
[6], each process is allowed to proceed with its simulation only up to a fixed time
limit, after which all the processes synchronize and proceed with the next step
of concurrent computations. The Time Bucket [7] approach also proposes work
in phases, but the length of each phase depends on new messages generated.
After each such phase, a global synchronization takes place. In the Breathing
Time Warp algorithm [7], in each phase first a standard Time Warp algorithm is
used for a fixed number of messages, then simulation is switched to Time Bucket
algorithm and finally, synchronization of all the processes is performed before
the next simulation step starts. All of these algorithms require central control
or additional synchronization phases, which constitute a possible bottleneck and
also may decrease simulation speed.

3 Global–State Driven Program Control Model

The idea of asynchronous program execution control based on global states
monitoring is illustrated in Fig. 1 [8,9]. Application consists of computational
processes and threads that can be executed in parallel in a system with shared
or distributed memory. All these processing elements can exchange data by using
standard communication mechanisms like sockets, MPI or shared memory, imple-
mented manually by a programmer.

In order to perform global synchronization operations, a special control
infrastructure has been delivered. Its main element is called a synchronizer. It
gathers local state messages from all computational elements. It detects, if the
application has reached a strongly consistent global state SCGS. SCGS is a set
of fully concurrent local states detected by a synchronizer. The construction of
strongly consistent global states is based on projecting local states of all rel-
evant processes or threads on a common time axis and finding time intervals
undoubtedly covered by local states of all these processes/threads (Fig. 2).

Parallel Event–Driven Simulation 351

Fig. 1. Synchronizer co-operation with processes or threads.

The system run-time framework, working on-line in parallel with the appli-
cation, can provide the infrastructure for sending the process local states, recep-
tion of the state messages by synchronizers, reconstruction of different kinds of
global application states including Strongly Consistent Global States (SCGS)
and using them to define the execution control of the application. An SCGS is
a state, which has occurred for sure in all involved processes.

For the assumed SCGS generation algorithm [8,9], the application processes
send local state messages accompanied by real-time event timestamps obtained
with the use of partially synchronized local processor clocks, globally synchro-
nized with a known accuracy. It requires a synchronization facility installed in
the distributed system.

Fig. 2. SGCSs detection.

352 �L. Maśko and M. Tudruj

When an SGCS is detected, a synchronizer evaluates, based on them, con-
trol predicates. If some predicates are true, the synchronizer sends control sig-
nals to selected processes or threads. The signals must be handled by these
processes/threads and some desired reaction should be undertaken.

Two types of control by synchronizer signals are provided. The first is the
asynchronous control in which the reaction consists in triggering or cancelling
some computation fragments. The second is synchronous control in which the
signals change the flow of control in the program graph.

4 Parallel Global-State Controlled Event-Driven
Simulation with Optimistic Approach

Global-state driven program control paradigm may be used to improve the
efficiency for optimistic approach to parallel DES. The queues used for event
processing are distributed between LPs. To control the whole simulation, a single
global synchronizer or a hierarchy of synchronizers may be used. Every Logical
Process reports a progress state of its queue to a global synchronizer. The state
of LP is the timestamp of the most recently processed event. Reporting is done
asynchronously at the beginning and end of processing of each event and has
no influence on the simulation process. To improve efficiency of asynchronous
control, we also assume that whenever the state caused by the start of such
procedure is sent, LP also attaches to it the predicted logical end time of this
procedure, if known. It can be obtained if each signal handling block has a known
length. Knowledge of this value may allow the synchronizer to react even before
an LP advances its logical clock beyond the threshold value.

The global simulation state can be defined as the vector containing
timestamps of the most recently processed events in every queue. The global
synchronizer gathers progress states of all the queues in the simulated system.
If a global state is detected, the synchronizer can compute the differences in
progress of simulation of all the queues, as shown in Algorithm 1. Whenever this
difference is higher than the assumed threshold ΔT , the synchronizer sends the
SUSPEND signal to those queues, in which progress has evaluated more then
ΔT time units, comparing to the slowest queues.The suspended LP is supposed
to stop all its activities after it finishes execution of a current event handling
procedure (if any), including sending of the resulting messages. It should accept
all the incoming events, but it must wait with processing its elements, until it
receives the RESUME signal or if it must perform a rollback due to a delayed
message, which arrives. In the same time, the synchronizer sends the RESUME
signal to all the already suspended queues, for which the difference in their
progress, comparing to the slowest queues, is smaller then ΔT .

The proposed algorithm requires a threshold ΔT , which influences the sim-
ulation performance. A small value may limit the parallelism in a simulation,
because many queues will be suspended even if they proceed with their events
only a little, when compared to the most delayed one. On the other hand, increase
of ΔT improves parallelism in the simulation, but also increases the probability

Parallel Event–Driven Simulation 353

of rollbacks, which reduce simulation performance. Therefore, the proper value
for each simulated system must be determined using profiling.

Progress control may benefit from the knowledge of the simulated system
structure. If parts of the system assigned to the two queues are closely coupled
and the messages sent between them introduce a small delay, the difference
between progresses of these queues should be smaller. In the same time it can
be bigger if the two parts of the system are distant in terms of time needed for
a message to travel between them.

The presented algorithm does not fully prevent from rollbacks. Therefore,
whenever they happen, the global synchronizer must be informed about this fact
and it must update its local LPclock and LPstate arrays to match the current
state of the simulated system.

Algorithm 1. Predicate code for strongly consistent state driven simulation
progress control
Input:
– LPclock[]: array containing local clocks determined from messages received from all
LPs. This array is assembled by the predicate.
– LPclockP[]: array containing the predicted logical times of completion of the cur-
rently executed event handling procedure in LPs (-1 if not reported).
– LPstate[]: array containing information about the state of each LP (running or sus-
pended). At the beginning, all the LPs are in the “running” state which means, that
they process messages. If a message receives a SUSPEND signal, its state is changed
to “suspended” until the RESUME signal is sent by the synchronizer. Then the state
of such LP is set back to “running”.

1: {Compute minimal local clock value over values from LP clocks}
2: minClk = LPclock[1];
3: for lp=2 to N do
4: minClk = min(minClk, LPclock[lp])
5: end for
6: for lp=1 to N do
7: if LPclock[lp] > minClk + threshold or

(LPclockP[lp] <> -1 and LPclockP[lp] > minClk + threshold) then
8: {LP number lp has advanced too much...}
9: if LPstate[lp] = “running” then

10: {...and it’s still running – suspend it}
11: send SUSPEND signal to LP number lp
12: LPstate[lp] = “suspended”
13: end if
14: else
15: if LPState[lp] = “suspended” then
16: {LP has been suspended, now it should proceed with simulation}
17: send RESUME signal to LP number lp
18: LPstate[lp] = “running”
19: end if
20: end if
21: end for

354 �L. Maśko and M. Tudruj

4.1 Simulation Example

As an example, we propose a simulation of a simple parallel system, divided
into 3 logical processes LP1, LP2 and LP3. Processes LP2 and LP3 periodically
generate events, which are sent to LP1. LP1 processes these messages and sends
back a reply message to the corresponding LP, which begins generation of the
next message and operation repeats.

In our example, we assume that generation of a message consumes 4 logical
time units in LP2 and 10 logical time units in LP3. Message processing on
LP1 takes 1 logical time unit. In the same time, we assume that simulation of
message generation takes 4 physical time units in LP2 and 3 physical time units
in LP3. Simulation of response generation in LP1 takes 1 physical time unit.
Message delivery in the simulating system also takes 1 physical time unit. We
assume that sending/receiving of a physical message is included in the message
processing block and data transfer operation is asynchronous. We assume that
rolling back of a block takes twice as much time as simulation of this block. The
threshold ΔT required for the presented algorithm was set to 5.

Figure 3 depicts simulation of the proposed case. Due to disproportions in
physical and logical processing times between logical processes LP2 and LP3,
LP1 will detect a misplaced message at time 5. This message has the timestamp
equal to 4 (while the local logical clock value is 10) and will force LP1 to rollback
previously processed event (no anti-messages messages are sent for no responses

Fig. 3. Diagram of the simulation with the Time-Warp method with rollbacks (left)
and local and global states in the part of the simulation (right).

Parallel Event–Driven Simulation 355

Fig. 4. Diagram of the simulation with asynchronous control.

were sent yet). The same situation may be spotted at timestamp 14, but here an
anti-message must be sent to LP3 to force it to also perform a rollback and cancel
computations which were performed after LP3 received previous response. In the
presented diagram, each rollback is represented as vertically lined rectangle.

Figure 4 depicts the same simulation, but with a synchronizer added. We
assume that the synchronizer is capable of determining the simulation state
within 1 physical time unit. State report sending is done asynchronously by LPs
and its delivery consumes 1 physical time unit. Also control signals sent from
the synchronizer to LPs are delivered after 1 physical time unit. We assume that
many state messages and control signals may be sent and delivered in parallel.

The simulation states are represented by means of records shown for the
physical time points at the right hand side in Fig. 4. Tmin and Tmax corre-
spond to the minimal and the maximal local logical clock value over all LPs.
Tmin is equal to GVT (Global Virtual Time) of the simulated system. The val-
ues (T1/T

P
1 , T2/T

P
2 , T3/T

P
3) in brackets represent the global system state and

correspond to local logical clock values of LPs (Ti corresponds to the logical
clock value of LPi) and predicted logical block simulation completion time (TP

i ,
‘?’ means that this value is unknown).

356 �L. Maśko and M. Tudruj

Fig. 5. Global states and predicates in simulation with asynchronous control.

The synchronizer implements the proposed simulation progress control algo-
rithm. The synchronizer receives from LPs state report messages, which contain
local logical clock values of LPs. The messages are sent at each beginning and
end of message processing block (arrows leading from LPs to the synchronizer).
The synchronizer collects local state messages and, based on them, it gener-
ates strongly consistent global states (SCGSs). Whenever it detects a SCGS for
which the difference between Tmax and Tmin exceeds the assumed threshold
ΔT , it sends the “SUSPEND” signal to such LPs for which Ti ≥ Tmin + ΔT .
It also sends such signal if predicted logical time of completion of the currently
simulated block exceeds such limit (for instance, the message to LP3 at time
2), which prevents an LP from sending the resulting messages too early. On the
other hand, the synchronizer sends the “RESUME” signal to all such suspended
processes LPi for which Ti < Tmin+ΔT .

Figure 5 depicts strongly consistent global states as they are created in a
part of the simulation from Fig. 4. When the global state gs1 is detected, the
synchronizer evaluates its predicate, which reports that the condition Tmax <
Tmin + ΔT does not hold. This triggers a SUSPEND signal, which is sent to
LP3 (Fig. 4). As a result, simulation in LP3 is suspended. All the activities are
resumed in LP3 after two other LPs increase their LVTs above 5.

In the presented case, the proposed algorithm leads to elimination of roll-
backs. Analysis of the diagram reveals that the overall algorithm efficiency
strictly depends on the speed of the control subsystem. Efficient synchroniza-
tion, although asynchronous, will lead to performance improvement – if the
synchronizer is capable for activity closer to synchronous control, its efficiency
improves.

Parallel Event–Driven Simulation 357

5 Conclusions

The paper presents a new approach to parallel simulation, which introduces
asynchronous control based on global consistent states of the simulation. Simu-
lation execution control is performed by the global synchronizer (or hierarchy of
synchronizers), in which a global synchronizer collects information about sim-
ulation progress from LPs in the simulation system and controls their progress
by sending SUSPEND and CONTINUE signals. This control is done asynchro-
nously and aims in rollback reduction, not elimination, therefore, due to network
latencies, the LPs must be ready to perform rollback operations, like in a stan-
dard Time Warp algorithm. The asynchronous control efficiency strictly depends
on efficiency of network communication. Therefore, the state reports and con-
trol signals should be sent via a fast, dedicated network, which is not used
for standard data transfers. Depending on the simulated system properties, the
presented approach may lead to significant reduce in the number of performed
rollbacks.

References

1. Fujimoto, R.M.: Parallel discrete event simulation. Commun. ACM - Special Issue
on Simulation 33(10), 30–53 (1990). (ACM, New York)

2. Ferscha, A., Tripathi, S.K.: Parallel and distributed simulation of discrete event sys-
tems, technical report, UM Computer Science Department; CS-TR-3336, UMIACS;
UMIACS-TR-94-100 (1998)

3. Lv, H., Cheng, Y., Bai, L., Chen, M., Fan, D., Sun, N.: P-GAS: parallelizing a
cycle-accurate event-driven many-core processor simulator using parallel discrete
event simulation. In: PADS ’10 Proceedings of the 2010 IEEE Workshop on Princi-
ples of Advanced and Distributed Simulation, pp. 89–96. IEEE Computer Society,
Washington, DC (2010)

4. Chandry, K.M., Misra, J.: Distributed simulation: a case study in design and veri-
fication of distributed programs. IEEE Trans. Softw. Eng. 5(5), 440–452 (1979)

5. Jefferson, D.R.: Virtual time. ACM Trans. Prog. Lang. Syst. 7, 404–425 (1985)
6. Sokol, L., Briscoe, D., Wieland, A.: MTW: a strategy for scheduling discrete simu-

lation events for concurrent execution. In: Proceedings Distributed Simulation Con-
ference (1988)

7. Steinman, J.S.: Breathing time warp. In: PADS ’93 Proceedings of the Seventh
Workshop on Parallel and Distributed Simulation. ACM, New York (1993)

8. Tudruj, M., Borkowski, J., Maśko �L., Smyk, A., Kopański, D., Laskowski, E.: Pro-
gram design environment for multicore processor systems with program execution
controlled by global states monitoring. In: ISPDC 2011, Cluj-Napoca, pp. 102–109,
IEEE CS, July 2011

9. Kopański, D., Maśko, �L., Laskowski, E., Smyk, A., Borkowski, J., Tudruj, M.: Dis-
tributed program execution control based on application global states monitoring
in PEGASUS DA framework. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp. 302–314. Springer,
Heidelberg (2014)

Applied Mathematics, Evolutionary
Computing and Metaheuristics

It’s Not a Bug, It’s a Feature: Wait-Free
Asynchronous Cellular Genetic Algorithm

Frédéric Pinel1(B), Bernabé Dorronsoro2, Pascal Bouvry1,
and Samee U. Khan3

1 FSTC/CSC/ILIAS, University of Luxembourg, Kirchberg, Luxembourg
{frederic.pinel,pascal.bouvry}@uni.lu

2 University of Lille, Lille, France
bernabe.dorronsoro diaz@inria.fr

3 Department of Electrical and Computer Engineering,
North Dakota State University, Fargo, USA

samee.khan@ndsu.edu

Abstract. In this paper, we simplify a Parallel Asynchronous Cellular
Genetic Algorithm, by removing thread locks for shared memory access.
This deliberate error aims to accelerate the algorithm, while preserving
its search capability. Experiments with three benchmark problems show
an acceleration, and even a slight improvement in search capability, with
statistical significance.

Keywords: Cellular Genetic Algorithm · Parallelism

1 Introduction

Evolutionary Algorithms (EAs) have been used for many years to solve hard
combinatorial and continous optimization problems. These nature-inspired algo-
rithms iteratively apply transformations to solutions, and converge to an optimal
or near-optimal solution. However, EAs require many iterations to conduct their
search. This motivates the design of concurrent versions of these algorithms, in
order to exploit the parallelism available in current computers. Moreover, paral-
lelism can also improve the search capability of the algorithms [3,5].

In this paper, we propose a new Parallel Asynchronous Cellular Genetic Algo-
rithm (PA-CGA). Our PA-CGA deliberately includes an error, that simplifies
the design of the algorithm but also improves the speed of the algorithm. We
compare this new PA-CGA with two known PA-CGAs, in terms of execution
speed but also search capability.

Section 2 defines our parallelism objective. Section 3 presents the different
models and how they are compared. Sections 4 describes the experiments.

2 Problem Description

The problem addressed in this paper is the parallelization of PA-CGA to improve
its scalability: how does a PA-CGA behave as the number of threads increases.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 361–370, 2014.
DOI: 10.1007/978-3-642-55224-3 34, c© Springer-Verlag Berlin Heidelberg 2014

362 F. Pinel et al.

The behavior of a PA-CGA should not be limited to runtime, but also include
how well the algorithm searches solutions.

The next sections provide background information on parallel EAs and
presents the PA-CGA.

2.1 Background

A survey of parallel genetic algorithm can be found in [9]. Concurrency in genetic
algorithms is often introduced at the population level, because the evolutionary
steps can be applied independently across a population of solutions. An evolu-
tionary step is a sequence of operations, which generate new solutions (called
children). The sequence is: parent selection (choosing individuals), crossover
(generating a child from the parents), mutation (applying a small random change
to the child) and replacement (criteria for the child to join the population). One
evolution of all individuals in a population is called a generation.

The concurrency in the population generally occurs in three ways: master-
slave, island and cellular. The master-slave model dispatches the operators’ work
to a number of slaves. In the island model, the population is partitioned into
isolated evolutionary processes, which periodically exchange individuals. The
cellular model, implemented in Cellular Genetic Algorithm (CGA) [1], is a fine-
grain island model, where the periodical exchange of individuals is replaced with
a more frequent update to a shared population. The CGA imposes a structure on
the population of candidate solutions, usually a two-dimensional grid, and the
parents for crossover are selected from the neighborhood of an individual. This
increases the diversity in the population. The population structure in a CGA
provides a fine-grain control over the evolution, which facilitates the exploration
of different concurrency models [4].

Individuals evolving in parallel across the population usually evolve together,
which requires synchronization. Asynchronous evolution relaxes this global time
constraint [10,11]: individuals evolve independently and the population is not of
the same age (underwent the same number of evolutions). Asynchronous models
are also known to improve search capability [2].

2.2 Parallel Asynchronous Cellular Genetic Algorithm

The PA-CGA we study was presented in [13,14]. Parallelism in the PA-CGA is
introduced at the population level. The population partition model of our PA-
CGAs is inspired from [6,7,12]. As shown in Fig. 1, the population is partitioned
into a number of contiguous sub-populations, with a similar number of individ-
uals. Each partition contains pop size/#threads individuals, where #threads
represents the number of threads launched. The neighborhood of an individual
may cross partition boundaries. The threads in a PA-CGA evolve their parti-
tion independently: they do not wait on the other threads in order to pursue
their evolution. The combination of a concurrent execution model with overlap-
ping neighborhoods leads to concurrent access to shared memory, and requires
synchronization.

Wait-Free Asynchronous Cellular Genetic Algorithm 363

Fig. 1. Partition of an 8 × 8 population over 4 threads.

3 Approach

We present in Sect. 3.1, three parallel models for a PA-CGA: the Island [9],
Lock [13] and Free, based on the principles of Sect. 2. The Free model is our con-
tribution. It is an incorrect implementation of a PA-CGA: the thread locks pro-
tecting the shared population are removed, thus data consistency is not ensured.
This is meant to improve the runtime and scalability of the PA-CGA. However,
this change should impact the search capability of the PA-CGA. To investi-
gate the behavior of the Free model, we compare the models across a selection
of benchmark problems, presented in Sect. 3.2. The behavior of the models is
observed across several metrics, presented in Sect. 3.3.

3.1 PA-CGA Models

In the PA-CGA Island model, presented in Algorithm 1, each thread operates
on two populations: (a) its local partition, and (b) the global population. Once
100 generations are completed, the thread-local partition (a) is copied to the

Algorithm 1. Island model
while < max gens do

while < max gens & not every 100 gens do � evolve local partition 100×
for all individual in local partition do

individual ← evolved(individual) � “←” follows replacement policy
end for

end while
for all individual in global partition do � update the global partition

rw lock(global individual)
global individual ← local individual
rw unlock(global individual)

end for
end while

364 F. Pinel et al.

global population (b). This copy is performed asynchronously (one individual at
a time). The global population (b) is accessed by threads when they require indi-
viduals from another partition. This occurs at crossover, when a parent selected
belongs to another partition. POSIX read-write locks [8] are used by the threads
to read individuals from another partition, and to commit their partition to the
global population. The Island model aims to reduce contention on the shared
population by operating on a thread-local data as much as possible.

Algorithm 2. Lock model
for all gens do

for all individual in global partition do
child ← evolved(individual)
rw lock(global individual)
global individual ← child � “←” follows replacement policy
rw unlock(global individual)

end for
end for

The PA-CGA Lock model, presented in Algorithm 2, is the closest to the
classic asynchronous CGA. The only difference is that each thread evolves the
individuals of its partition only. Each individual is protected with a POSIX read-
write lock. This allows for concurrent read access. When an individual can be
replaced with a better child, the change occurs immediately (provided a thread
lock is acquired), and is then visible to all other threads. The Lock model requires
more communication across threads than the Island model, however, changes are
reflected immediately.

Algorithm 3. Free model
for all gens do

for all individual in global partition do
child ← evolved(individual)
global individual ← child � “←” follows replacement policy

end for
end for

The PA-CGA Free model is the simplest of all models, as per Algorithm 3.
A thread evolves its partition, and updates the global population immediately.
However changes in the global population are made without thread locking. This
is apparently an error, because a thread may read an individual that is currently
being updated (dirty read). This is possible because of the representation of an
individual; usually a large array of word size elements. This model is considered
wait-free, because a thread’s progress is bounded by a number of steps it has
to wait before progress resumes. Increasing the number of threads makes dirty
reads more frequent, because it reduces the size of each partition, each thread
evolves its partition faster, and more individuals lie on the border of a partition.

Wait-Free Asynchronous Cellular Genetic Algorithm 365

Table 1. Benchmark of combinatorial optimization problems

Problem Fitness function n Optimum

MTTP fMTTP (x) =
n∑

i=1

xi · wi 200 −400.0

PPEAKS fPPEAKS(x) = 100 100.0
1
N

max1≤i≤p(N − HammingD(x, P eaki))

MMDP fMMDP (s) =
∑k

i=1 fitnesssi 240 40.0
fitnesssi = 1.0 if si has 0 or 6 ones
fitnesssi = 0.0 if si has 1 or 5 ones
fitnesssi = 0360384 if si has 2 or 4 ones
fitnesssi = 0.640576 if si has 3 ones

3.2 Benchmarks

The benchmark problems selected for our comparison are well-known combi-
natorial optimization problems, displaying different features like multi-modality,
epistasis, large search space, etc. Due to the lack of space it is not possible to give
details on these problems, but the reader is referred to [1]. They are summarized
in Table 1 (name, fitness value, number of variables –n–, and optimum). They
are the Massively Multi-modal Deceptive Problem (MMDP) –instance of 40 sub-
problems of 6 variables each–, the Minimum Tardiness Task Problem (MTTP)
–instances of 200 tasks–, and the PPEAKS problem, with 100 peaks.

3.3 Metrics

The metrics for the comparison aim to capture the behavior of the three algo-
rithms as the number of threads increases.

Our first metric is execution speed. It is the wall-clock runtime of the algo-
rithms for the maximum number of generations. However, increased speed is
useless if the search capability is degraded such that it requires more genera-
tions, therefore we add the following metrics:

– Success rate: the number of experiments when the optimum was found.
– Evaluation-efficiency: the number of evaluations required to find the optimum,

when found. This is measured in evaluations (calculation of the fitness of an
individual) instead of generations, because of the concurrent evolution in each
partition.

– Time-efficiency: speed and evaluation-efficiency are combined by measuring
the wall-clock time required to find the optimum (when found). This is useful
from the perspective of a potential user of the algorithm.

4 Experiments

This section defines the parameters, the environment and results for the
experiments.

366 F. Pinel et al.

Table 2. PA-CGA parameters

Parameter Value

Population size 40 × 40
Asynchronous mode Fixed line sweep
Selection operator L5, binary tournament
Crossover operator Two-point crossover
Crossover probability 1.0
Mutation operator ×2 flips
Mutation probability 1.0
Maximum generations 2500
Island synchronization period 100 generations
Runs 100

(a) MTTP (b) PPEAKS

(c) MMDP

Fig. 2. Runtime

4.1 Experimental Setup

Table 2 summarizes the various parameters for the PA-CGA. The asynchronous
mode sets the order in which the threads evolve the individuals in their parti-
tion. This is consistent with [2]. Mutation consists in randomly flipping two bits
in the individual. The maximum number of generations is the stop condition
per thread. The Island synchronization period specifies when the thread-local

Wait-Free Asynchronous Cellular Genetic Algorithm 367

(a) MTTP (b) PPEAKS

(c) MMDP Success rate (d) MMDP

Fig. 3. Evaluations to optimum (when found)

partition is committed to the global population (for other threads to access).
For each benchmark, 100 searches or runs are performed. The individuals are
randomly generated for each run.

The computer used for the experiments is a Bullx S6030, where one board
holds four Intel Xeon E7-4850@2GHz processors of 10 cores each. We use one
board for the experiments (up to 40 cores). The operating system is GNU/Linux
2.6.32-5-amd64 (Debian), GCC is version 4.4.5.

4.2 Experimental Results

In this section, we present the results from the benchmark problems, grouped
by metric.

Runtime. Figure 2 plots the average runtime (wall-clock) over the 100 runs in
msec, as defined in Sect. 3.3. We can observe that all models reduce their runtime
as the number of threads increases. The Free model is the fastest and scales the
best, which is expected given the wait-free design, although not significantly for
PPEAKS, Fig. 2b. The small difference between models for PPEAKS is due to
the fitness function of PPEAKS, which is more time consuming than MTTP and
MMDP and therefore minors the synchronization delays. The speedup observed

368 F. Pinel et al.

(a) MTTP (b) PPEAKS

(c) MMDP

Fig. 4. Time to optimum (when found)

may seem low (especially for MTTP and MMDP), but the load is essentially
due to synchronization.

Evaluation Efficiency. Figure 3 show the average number of evaluations needed
to find the optimum, as defined in Sect. 3.3. Because this metric measures runs
when the optimum is found, we first discuss the success rate.

The success rate for the different PA-CGA models for MTTP and PPEAKS is
100 % across the runs (and is not plotted). For MMDP, Fig. 3c, the rate is below
100 %. All models display about the same success rate, which also decreases from
35 threads and up. At this point, the partitions become too small, the generations
too fast, thus reducing diversity in the partitions, which hurts the search.

Regarding evaluation-efficiency, the Free model obtains similar or better
results than Lock (Wilcoxon Signed-Rank test). On MTTP, PPEAKS and
MMDP, Free is better in respectively 5, 10 and 20 % of the cases. Also, the Lock
and Free obtain constant results with the number of threads. The dirty reads
in the Free model slightly help its evaluation-efficiency. The other observation is
that the Island model does not scale well.

Time Efficiency. Figure. 4 show the time elapsed to reach the optimum, when
found, as defined in Sect. 3.3.

Wait-Free Asynchronous Cellular Genetic Algorithm 369

For the Island model, Fig. 4a,c show that the gain in runtime is offset by the
loss in evaluation-efficiency. For PPEAKS, the gain in runtime is so high, that
time-efficiency manages to improve. The Lock and Free models do improve their
time-efficiency with a greater number of threads, mainly because of the gain in
speed. The Free model obtains the best results. This is due to the surprisingly
good evaluation-efficiency, which means that the dirty reads do not harm the
search, and may actually help.

5 Conclusions

We proposed a new PA-CGA parallel model, called Free. The Free model is
based on a deliberate design error in the PA-CGA: all thread locks are removed,
and access to the shared population leads to dirty reads. The absence of thread
locks makes it wait-free. It is also the simplest PA-CGA design. This new model
was compared to existing models: Island and Lock. The evaluation consisted
in solving three benchmark problems (MTTP, PPEAKS, MMDP) using 1 to
40 threads, on a 40-core machine. These benchmarks are not computationally
intensive, therefore the differences between models is more apparent. Experi-
ments show that the Free model scales the best, and provides better or equal
search capability, compared to the previously published Island and Lock models.

Future work includes exploring other sources of randomness such as operating
system thread scheduling, and removing partition borders.

Acknowledgment. This work is supported by the Fonds National de la Recherche
Luxembourg: CORE Project Green-IT, INTER Project Green@cloud (i2r-dir-tfn-
12grcl) and AFR contract no 4017742.

References

1. Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. Operations
Research/Compuer Science Interfaces. Springer, Heidelberg (2008)

2. Alba, E., Giacobini, M., Tomassini, M., Romero, S.: Comparing synchronous
and asynchronous cellular genetic algorithms. In: Guervós, J.J.M., Adamidis,
P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002.
LNCS, vol. 2439, pp. 601–610. Springer, Heidelberg (2002)

3. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans.
Evol. Comput. 6(5), 443–462 (2002)

4. Alba, E., Blum, C., Asasi, P., Leon, C., Gomez, J.A.: Optimization Techniques for
Solving Complex Problems, vol. 76. Wiley, New York (2009)

5. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Book Series
on Genetic Algorithms and Evolutionary Computation, vol. 1, 2nd edn. Kluwer
Academic, Dordrecht (2000)

6. Folino, G., Pizzuti, C., Spezzano, G.: Parallel hybrid method for SAT that couples
genetic algorithms and local search. IEEE Trans. Evol. Comput. 5(4), 323–334
(2001)

370 F. Pinel et al.

7. Folino, G., Pizzuti, C., Spezzano, G.: A scalable cellular implementation of parallel
genetic programming. IEEE Trans. Evol. Comput. 7(1), 37–53 (2003)

8. IEEE and The Open Group: POSIX (ieee std 1003.1-2008, open group base spec-
ifications issue 7). http://www.unix.org (2008)

9. Luque, G., Alba, E., Dorronsoro, B.: Parallel genetic algorithms (Chap. 5). In:
Alba, E. (ed.) Parallel Metaheuristics: A New Class of Algorithms, pp. 107–125.
Wiley, New York (2005)

10. Maruyama, T., Konagaya, A., Konishi, K.: An asynchronous fine-grained paral-
lel genetic algorithm. In: Proceedings of the International Conference on Parallel
Problem Solving from Nature II (PPSN-II). pp. 563–572. Lecture Notes in Com-
puter Science (LNCS), North-Holland (1992)

11. Muhlenbein, H.: Evolution in time and space - the parallel genetic algorithm. In:
Rawlins, G. (ed.) Foundations of Genetic Algorithms, pp. 316–337. Morgan Kauf-
mann, San Mateo (1991)

12. Nakashima, T., Ariyama, T., Ishibuchi, H.: Combining multiple cellular genetic
algorithms for efficient search. In: Proceedings of the Asia-Pacific Conference on
Simulated Evolution and Learning (SEAL), pp. 712–716 (2002)

13. Pinel, F., Dorronsoro, B., Bouvry, P.: A new parallel asynchronous cellular genetic
algorithm for de novo genomic sequencing. In: Proceedings of the 2009 IEEE Inter-
national Conference of Soft Computing and Pattern Recognition, pp. 178–183.
IEEE Press (2009)

14. Pinel, F., Dorronsoro, B., Bouvry, P.: A new parallel asynchronous cellular genetic
algorithm for scheduling in grids. In: Nature Inspired Distributed Computing
(NIDISC) Sessions of the International Parallel and Distributed Processing Sym-
posium (IPDPS) 2010 Workshop, p. 206b. IEEE Press (2010)

Genetic Programming in Automatic Discovery
of Relationships in Computer System

Monitoring Data

Wlodzimierz Funika1,2(B) and Pawel Koperek1

1 Faculty of Computer Science, Electronics and Telecommunications,
Department of Computer Science, AGH University of Science and Technology,

al. Mickiewicza 30, 30-059 Kraków, Poland
funika@agh.edu.pl, pkoperek@gmail.com

2 ACC CYFRONET AGH, AGH University of Science and Technology,
ul. Nawojki 11, 30-950 Kraków, Poland

Abstract. Modern computer systems have become very complex.
Analyzing and modifying them requires substantial experience and
knowledge. To make administrative tasks easier, automated methods for
discovering relationships between system components are required. In
this paper we discuss the use of genetic programming as a method for
identification of meaningful relationships between computer system com-
ponents. We present our implementation of evolutionary computations
environment and compare it with an already existing solution. Next we
analyze results of a sample experiment and share our conclusions. The
final section provides directions for future work.

Keywords: Distributed systems · Automatic modeling · Monitoring ·
Genetic programming · Automatic system management

1 Introduction

Nowadays scientific experiments provide enormous amounts of data. Due to
sophisticated measurement methods scientists are able to monitor various
aspects of observed environment. Creating theoretical models and looking for
meaningful relationships between variables in such a vast amount of data is
a real challenge. Until recently such a kind of work was mostly a domain for
humans. Today as computer techniques become more and more advanced, auto-
mated analysis gains more and more attention. According to [1] computers are
now used at different stages of research process: from gathering knowledge about
related work and similar experiments, through automatic data analysis [2], up to
complete automatic systems capable of creating and verifying new hypotheses
on their own [3].

Similar situations can be observed in the management of computer systems.
They become more and more complex. Usually, they are built from many com-
ponents grouped in layers and distributed over a number of physical machines.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 371–380, 2014.
DOI: 10.1007/978-3-642-55224-3 35, c© Springer-Verlag Berlin Heidelberg 2014

372 W. Funika and P. Koperek

There are also many tools which gather and present very detailed informa-
tion about various aspects of observed systems. It is possible to analyze both
the real-time behavior and a state at a certain moment in the past. However,
at some point, the amount of gathered data becomes so big that it is very
hard to determine the actual status and relationships between different sys-
tem elements. Therefore we cannot create a useful abstract model of monitored
resources.

Discussed environments have similar problems, however solutions created in
other scientific domains have not been widely used in the domain of computer
systems monitoring. One of them is symbolic regression based on evolutionary
programming [4]. It can be used to automatically search for relationships between
variables in a data set - in other words to create a model that could explain the
observations conducted. The results of this method are mathematical expressions
which can be easily interpreted and verified by humans. Such a method can be a
great convenience and accelerate work with measurement data. In this paper we
propose to adapt this idea to automate the analysis of a computer system and
create its model. In our approach, we attempt to automatically find relations
between system’s resources. The created model is being constantly updated and
provides both knowledge about system’s dynamics and predictions on how the
system would behave under given conditions.

In the next section we provide more data about genetic programming and
symbolic regression. Then we explain details of an algorithm implementation,
compare it with an already existing one and present some results of a sample
monitoring data analysis. The last sections are conclusions and directions of
future work.

2 Background and Related Work

Genetic programming [4] is an example of algorithms inspired by natural evolu-
tion. It attempts to solve problems defined by the user through generating and
improving a population of possible solutions. Initially they are random, but in
subsequent iterations the best of them get mutated and recombined (crossed-
over) to make them closer to an ideal solution. Quality of each such individual
is measured by a fitness function. For the purpose of mutation and crossing-over
processes, individuals are built from smaller building blocks - which are analogs
of genes observed in nature.

Symbolic regression is a method used to find a mathematical expression
meeting particular criteria defined as an error metric. Contrary to traditional
regression methods, it searches for both the form of equations and their parame-
ters. Genetic programming is often used to conduct symbolic regression. Each
individual is then a mathematical expression and the fitness function can be,
e.g., the mean squared error over a provided data set. Each expression is built
from specified primitive elements such algebraic operations (+,−, ∗, /), variables
(x, y . . .), constants (3.1415, 2.71 . . .), etc.

Thanks to such a general definition, this method can be applied to solve a
magnitude of different problems by changing only a part of the above-mentioned

Genetic Programming in Automatic Discovery of Relationships 373

parameters. Particularly, it even can be used to find relationships between vari-
ables in measurement data sets. In [5] authors discuss various issues related to
such a problem statement and provide a fitness function definition which forces
the algorithm to discover implicit relationships. An implicit relationship is
a function of form f(x, y) = 0 whereas the explicit function is represented as
y = f(x)).

We investigated the functionality of some genetic programming tools and
libraries regarding the applicability to the domain of computer systems moni-
toring. We focused on tools which implemented fitness functions based on the
idea presented in [5] and on the libraries which could be used to create such
a tool in Java. Eureqa [6] is the first one we examined. It is a ready to use
software package which can analyze any provided data sets. It is possible to
generate solutions by using many fitness metrics (implicit derivatives, absolute
error etc.). Input can be pre-processed for better results (e.g. divide series by
standard deviation, subtract a constant). Computations are probably acceler-
ated with use of fitness-predictors [7], however due to the closed-source nature
of the tool, the exact algorithm is unknown. Bigger and more complicated data
sets can be processed with use of cloud services or a private grid of servers with
use of the dedicated server feature. Finally, the solution is presented in form of a
report containing information about the best individuals creating a size-fitness
Pareto front of population. However, it is still impossible to analyze a constantly
changing stream of data, e.g. one generated by a monitoring facility.

Java Genetic Algorithms Package (JGAP) [8] is a Java-based open source
library for genetic computations. It focuses on providing a simple yet power-
ful interface which can be easily used to create a particular problem solution
by applying evolution principles. The design is highly modular and allows for
easy customization of various computation engine elements. Its authors pro-
vide numerous examples of usage and a tool to graphically visualize results
of evolution. ECJ [9] is another example of evolutionary computation system
implemented in Java. It provides a rich set of features including support for the
asynchronous island model, checkpointing, coevolution and parsimony pressure.
Similarly to JGAP it was created with extensibility and modularity in mind as
well as the efficiency. A feature which distinguishes ECJ from JGAP is the geno-
type held in memory. The former system uses a pure tree representation while
the latter one stores the tree as an array. Both frameworks provide some exten-
sions for genetic programming and could be used to create systems supporting
dynamically changing data sets. Unfortunately, they lack fitness functions one
could use and are not able to evolve the population according to the principles
defined in [5].

3 Concept and Implementation Details

We decided to create a proof-of-concept implementation of evolution engine
which could be used with regard to monitoring data streams. To ensure simplic-
ity, our implementation is based on Java platform and Java Genetic Algorithms
Package [8].

374 W. Funika and P. Koperek

Each individual is represented as an expression tree built from primitive
blocks (+, −, ×, /, sin, cos, variables defined in input data set, constants). The
number of nodes of the tree can be interpreted as a measure of how compli-
cated the particular solution is. We call this parameter complexity and use as an
indicator of individual’s generality.

As the fitness function we used the formula proposed in [5]. To evaluate a
particular candidate expression f , we compute numerically partial derivatives of
a pair of variables x, y - dx

dt and dy
dt . Then we find symbolically partial derivatives

of candidate expression δf
δx and δf

δy . To compute the actual fitness value we com-
bine those elements in formula 1. Its value can be interpreted as an error rate
of a solution. Therefore, the algorithm attempts to minimize it (i.e. individuals
with a lower values are considered better).

1
N

N∑

i=1

log
(

1 + abs

(
Δxi

Δyi
− δxi

δyi

))

(1)

where: δx
δy = δf

δy

/
δf
δx .

To counter the problem of stagnation of computations, we used the evolution
method proposed in [10]. The population is evolved using the following list of
steps:

1. Randomly initialize a population of a given size
2. Randomly group individuals in pairs of parent individuals
3. Create children individuals by crossing-over of created pairs
4. Conduct mutations on children individuals
5. Add mutated individuals to the population
6. Repeat until the population size return to the initial size

(a) Select randomly two individuals
(b) Form an age-fitness Pareto front from these individuals
(c) Discard dominated individual
(d) If there are no more dominated individuals - break the loop

It is theoretically possible that the Pareto front is larger than the initial
population. In this case all non-dominated individuals should be stored and
used in a next algorithm iteration. This case is handled by a additional test
from point 6d.

To simulate the conditions of computer system monitoring, we implemented
a mechanism of moving window over a given data set. The user needs to specify
the following parameters:

1. window’s size - the number of data samples used to evaluate equations
2. time of progression - an interval of time after which we increment the

position of the first row (relative to the complete data set)

Genetic Programming in Automatic Discovery of Relationships 375

Such a facility simulates a constantly updated stream of data, e.g., measure-
ments coming from the observed software or hardware resources.

In order to be able to compare different aspects of the algorithm we estab-
lished three criteria of stop:

– time - the computations are stopped after a fixed amount of time
– target fitness fun - the computations are stopped once the best solution’s

fitness value is lower than the target value
– number of iterations - the computations are stopped after a fixed number of

iterations

Once the computations are finished, the formulas describing the relationships
found are provided to the user. They are presented in form of a complexity-fitness
Pareto front. In our experiments we validated the output manually and chose
which formulas provide the best description of the observed system. A lower
complexity indicated that the individual provided a more general description of
the monitored system. On the other hand it would not be possible to create
a meaningful expression with a too small number of elements. The system is
more precisely described by the individuals with lower fitness values, but if the
fitness is too low, it means that part of the population got over-fitted. We picked
solutions with the smallest complexity and with the fitness values relatively low
compared with other elements of the Pareto front.

4 Experiments

To verify the usefulness of evolutionary algorithms for the monitor-
ing/performance analysis of computer systems, we tried to automatically dis-
cover relationships in a sample test case. In the following sections we describe
how algorithm’s input data was generated and compare results from our imple-
mentation with those obtained from Eureqa. Finally we discuss the algorithm’s
behavior when simulating a constantly changing data set.

4.1 Test Case and Input Data

The test case is a very simple WWW server serving some simple HTML pages.
The workload is a simple application which creates a specific number of HTTP
requests to the mentioned server per minute. The exact amount of requests is
described by formula 2.

requests(t) = sin

(
3.1415× t

20

)

∗ 200 + 200 (2)

where t is the number of minutes elapsed since the beginning of the test. The
number of requests sent each minute is presented in Fig. 1.

During the request generation we measured the CPU time used by the
server process. The algorithm input data set contains two variables (timestamp,

376 W. Funika and P. Koperek

(a) HTTP requests in function of time (b) CPU usage in function of time

Fig. 1. Input data

cputime), each comprising 60 measurements. The data for the input data set
were gathered with nanosecond precision and had values over 109. Using them
directly in computations led to overflow errors. Therefore we preprocessed input
series with use of the following formulas:

input timestampi =
raw timestampi − raw timestamp0

std dev(raw timestamp)
(3)

input cputimei =
raw cputimei − raw cputime0

std dev(raw cputime)
(4)

The pre-processed CPU time data series is presented in Fig. 1.

4.2 Comparison with Eureqa

To the best of our knowledge, the only publicly available tool which provides
implementation of fitness function proposed in [5] is Eureqa. We used it as a
reference for our results to verify if the analyzed data set contains meaning-
ful relationships and what their possible form is. Both algorithms were run for
around 25 minutes with the complete data set. Table 1 presents the left sides of
equations treated as functions. Figure 2 presents their values obtained by sub-
stituting the variables with the corresponding values coming from subsequent
samples from the input data set.

Comparing the output formulas from Eureqa and our implementation is not
straightforward. Evolutionary computations are based on subsequent random
transformations of output formulas. Based on the acquired results (Fig. 2), we
can only conclude that both implementations are capable of finding solutions
of a similar quality in the analyzed test case. Since we are looking for a solu-
tion for f(x) = 0 equation, the ideal individual f(x) would evaluate to 0 for
all input values (depicted by y = 0 in Fig. 2). Formulas E and A seem to fluc-
tuate around a constant negative error value over the whole data set. Solution
B has a low average error rate and therefore could also be considered as one

Genetic Programming in Automatic Discovery of Relationships 377

Table 1. Output equations. Equation IDs correspond to the legend from Fig. 2.

Equation ID Source Equation

E Eureqa 3.115 × t + cos(3.08138 + 2.88161 × t) − 3.37825 ∗ c

A Prototype cos

(
(t+2×c)

cos
(

cos(4.718734)
c×t

)
×c

)

B Prototype c
6.182605

−
(

sin
(

sin(6.182605)/c
t∗(8.556137+c)

)

5.7461066

)

Fig. 2. Sample equations evaluated for raw data values

correctly describing the system under observation. On the other hand it is clear
that its error values constantly grow as its verification progresses through the
data set.

4.3 Simulation of Changing Data Set

To verify the usefulness of the algorithm in the monitoring domain we compared
the results of the algorithm in two cases. First, the sample data set was treated
as a whole - all the measurements were available at the same time. In the second
case only a fragment of a predefined size was visible - each minute the oldest
data sample was discarded and a new sample added.

All the experiments were executed on the same machine (AMD Phenom 9550
with 4 cores, 8 GB RAM). Each time the prototype was able to utilize 2 cores.
The genetic programming parameters are given in Table 2.

Since the new data rows were inserted at a specific interval, computations
were limited by a fixed amount of time (1860 s). In case of the constantly chang-
ing stream of data (as when monitoring a real computer system) we want to
constantly adapt the solution to the incoming data instead of stopping the evo-
lution and restarting it with each new data sample.

378 W. Funika and P. Koperek

Table 2. Genetic programming parameters used in the experiments

Parameter Value

Population size 64
Max individual length 64
Cross-over probability 0.75
Mutation probability 0.05
New data row insertion interval 60 s
Moving window size 30 data samples

4.4 Results

To set a baseline we first analyzed the approach with using the whole data set.
For each solution complexity we computed the average fitness over all the runs.
The result is illustrated in Fig. 3(a). It is clearly visible that there exists a number
of formulas that have low error values, for which the number of nodes in tree
representations (their complexity) was varying from 15 to 25. This agrees with
the result obtained with the Eureqa tool. Solutions with higher complexity have
even better fitness. Often they could be simplified with algebraic transformations
to a form which has fewer elements in the tree representation.

(a) Complete data set (b) Dynamically changing data set

Fig. 3. Average fitness per formula complexity

The average fitness of the second test case (the dynamically changing data
set) is depicted in Fig. 3(b). It is evident that there is no straightforward pattern.
However, the low minimum values of fitness indicate that the solutions properly
modelling the complete data set are found (Fig. 4(a)).

The analysis of individual runs revealed that in most of them (70 %) at
least one good enough solution was found. The poor average statistics is caused
therefore by the fact that in each execution, the solutions with good fitness
had different complexity values. To determine which of the found solutions can
be considered good enough, we compared their fitness with the average fitness

Genetic Programming in Automatic Discovery of Relationships 379

(a) Minimum fitness in subsequent runs (b) Good enough solutions per complexity

Fig. 4. Results obtained for the case of changing data set

of the solutions obtained for the first test case (the complete data set). If the
solution’s fitness was less or equal to the average value for a given complexity - it
was considered correct. Figure 4(b) presents how many solutions were found per
complexity. There are two areas where the number of “good enough” solutions
is significantly bigger than the average (2.6) - complexity varying from 15 to 25
and from 35 to 50.

5 Conclusions and Future Work

In this paper we explained details of the concept and implementation of an evo-
lutionary engine capable of finding the relationships in the data coming from
computer system monitoring. We analyzed its usefulness by comparing a new
implementation with the already existing commercial-grade product and dis-
cussing the experiments conducted.

The presented results show that both Eureqa and our prototype implemen-
tation were able to find interesting results in a relatively simple sample data set.
The relationships discovered are not trivial. We collected only the information
about the CPU usage and real timestamps of measurements. The number of
HTTP requests sent by a workload generating application had direct impact on
the amount of computations; on the other hand the number of requests was a
function of time. The found relationships bind linear time progression with CPU
time changes - so indirectly they describe the server’s input load.

The test case with a dynamically changed data set proves that the algorithm
exploited can be used to analyze a constantly changing data stream. Genetic
programming was able to find globally correct solutions, however it required an
additional effort to determine which of the presented formulas is the proper one.

Our research opens new capabilities for automatic computer system model-
ing domain. The presented prototype, based only on a limited amount of data,
provides deep insight into the observed system and enables predicting its future
state. Thanks to the iterative nature of the process used to discover the formulas,

380 W. Funika and P. Koperek

output is always updated with the most recent observations. Finally the amount
of time used to create or update the results can be easily adjusted with use of
one of the presented stop criteria. The work on the prototype is ongoing: we are
focusing on extending the set of basic building blocks and introducing a mecha-
nism to simplify the evolved equations to speedup the evaluation. We also plan
to investigate possibility of integration with semantic-oriented and autonomous
monitoring systems [11,12].

Acknowledgements. This research is partly supported by EU VPH-Share project
and the AGH grant 11.11.230.015.

References

1. Evans, J., Rzhetsky, A.: Machine science. Science 329, 399–400 (2010)
2. Schmidt, M.D., Lipson, H.: Data-mining dynamical systems: automated symbolic

system identification for exploratory analysis. In: ASME Conference Proceedings,
vol. 2008(48364), pp. 643–649 (2008)

3. King, R.D., et al.: The automation of science. Science 324, 85–89 (2009)
4. Koza, J.R.: Genetic Programming - On the Programming of Computers by Means

of Natural Selection. Complex adaptive systems. MIT Press, Cambridge (1993)
5. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.

Science 324, 81–85 (2009)
6. Nutonian Inc.: Eureqa(tm). http://www.nutonian.com/
7. Schmidt, M.D., Lipson, H.: Co-evolving fitness predictors for accelerating and

reducing evaluations. In: Riolo, R.L., Soule, T., Worzel, B. (eds.): Genetic Pro-
gramming Theory and Practice IV. Genetic and Evolutionary Computation, vol.
5. Springer, Ann Arbor, 11–13 May 2006

8. Meffert, K., et al.: Java genetic algorithms package. http://jgap.sourceforge.net/
9. Luke, S., et al.: Ecj 20. http://cs.gmu.edu/eclab/projects/ecj/

10. Schmidt, M.D., Lipson, H.: Age-fitness pareto optimization. In: Pelikan, M.,
Branke, J. (eds.) GECCO, pp. 543–544. ACM (2010)

11. Funika, W., Kupisz, M., Koperek, P.: Towards autonomic semantic-based manage-
ment of distributed applications. Comput. Sci. J. - AGH-UST 11, 51–63 (2013)

12. Funika, W., Godowski, P., Pegiel, P., Krol, D.: Semantic-oriented performance
monitoring of distributed applications. Comput. Inform. 31(2), 427–446 (2012)

Genetic Algorithms Execution Control
Under a Global Application State

Monitoring Infrastructure

Adam Smyk1(B) and Marek Tudruj1,2

1 Polish-Japanese Institute of Information Technology, 86 Koszykowa Str.,
02-008 Warsaw, Poland

2 Institute of Computer Science, Polish Academy of Sciences, 21 Ordona Str.,
01-237 Warsaw, Poland

{asmyk,tudruj}@pjwstk.edu.pl

Abstract. In the paper a new approach to the design of parallel genetic
algorithms for execution in distributed systems with multicore processors
is presented. The use of a distributed genetic algorithm based on new
control implementation principles is proposed for an optimized irreg-
ular computational mesh partitioning for the FDTD (Finite-Difference
Time-Domain) problem. The algorithm defines computational mesh par-
titions based on two objectives: load balancing and “min-cut” – the min-
imal number of edges between partition elements. The control in the
parallel genetic algorithm assumes the use of program execution global
control functions based on global application states monitoring. A con-
trol design infrastructure is provided to a programmer based on general-
ized synchronization/control processes called synchronizers. They collect
local states of program computational elements, compute global con-
trol predicates and send back control signals. The paper describes how
the assumed infrastructure can be used for convenient global program
execution control at thread and process levels applied in the proposed
genetic algorithm.

Keywords: Distributed program design paradigms · Global
application states monitoring · Distributed program design tools · Mesh
partitioning · Tiling · FDTD

1 Introduction

The efficiency of numerical applications in a parallel and distributed environ-
ment strongly depends on a computational data distribution among available
processing elements. To do this, there are two obvious problems to solve. We
should ensure a proper load distribution of all computational data and simul-
taneously minimal data transfers time between parts of the algorithm placed
on different machines in a distributed environment. In shared memory systems,
data transfer cost can be expressed as a synchronization overhead, which also

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 381–391, 2014.
DOI: 10.1007/978-3-642-55224-3 36, c© Springer-Verlag Berlin Heidelberg 2014

382 A. Smyk and M. Tudruj

should be minimized. A widely discussed problem is a mesh partitioning, which
appears in many numerical mesh-based algorithms. Optimal mesh partitioning is
a NP-complete problem and in general is not possible to be obtained. There are
many heuristic partitioning methods based on direct techniques (focusing on cut-
min optimization) [9] or iterative algorithms [5,6,8,9]. In the paper, we present
a genetic algorithm which is used for optimization of partitioning obtained by
standard mechanisms, which are not sufficient for irregular computational areas.
Convergence of genetic algorithms strongly depends on definitions of chromo-
some, genetic operators and also on the evaluation of the fitness function.

Fig. 1. Synchronizer co-operation with processes or threads.

We consider a parallel implementation of the genetic algorithm (GA), so
the whole population of individuals (solutions) will be distributed among com-
putational processors. Fitness functions for individuals can be computed inde-
pendently by threads on separate cores. But, since genetic operations in many
cases must be done globally, so some data should be exchanged between remote
instances of GA. To avoid this, we have decreased optimized computational area
into a bundle of computations, performed on one physical processor. All individ-
uals from one population are processed locally by threads. To speed-up all the
process and to increase the convergence, evaluation of genetic metrics is done in
an approximate way. Only every given number of iterations, each local instance
of GA broadcast its state to remote instances of GA located in the distributed
system. Global convergence depends on the global state of the application which
should be dynamically monitored at runtime [14]. To perform such monitoring,
a special control design infrastructure is created. Such an asynchronous program
execution control mechanism is explained in Fig. 1, [2]. It has been embedded in
the PEGASUS DA parallel program design framework (from Program Execu-
tion Governed by Asynchronous SUpervision of States in Distributed Applica-
tions) [11,12]. We have assumed that an application consists of computational

Genetic Algorithms Execution Control Under a Global Application State 383

multithreaded processes that can be executed in parallel in a system based on
shared-distributed memory. Local communication and synchronization is done
by shared memory primitives, while remotely all these processing elements can
send and receive data by using standard communication mechanisms like sockets
or MPI. Communication depends on the computational process and should be
implemented manually by the programmer. In order to perform local or global
synchronization operations, a special control infrastructure is delivered.

The main element of the control infrastructure is called a synchronizer. It
collects local thread state messages from all computational elements and it deter-
mines, if the application has reached a strongly consistent global state SCGS [1].
SCGS is defined as a set of fully concurrent local states detected without doubt
by a synchronizer. The construction of strongly consistent global states is based
on projecting the local states of all processes or threads on a common time axis
and finding time intervals which are covered by local states in all participat-
ing processes or threads [3,13]. The synchronizer, computes control predicates
on global states and undertakes predefined control actions. If some predicate is
true, then the synchronizer sends control signals (by network or by inter-process
communication subsystem) to selected processes or threads, see Fig. 2. The sig-
nals are handled by these processes and some desired actions can be performed.
Synchronizers can work locally (inside a process) or globally (inside an applica-
tion), so their actions can be visible by whole computational process, or only by
its part.

Fig. 2. Control flow diagram of a synchronizer.

In the code of a process or thread, which is connected to a synchronizer,
we can distinguish regions sensitive to incoming signals. They are indicated
by special tags, similarly to try and catch tags from e.g. C++ programming
language. If the signal arrives when the process is in the signal sensitive region,
reactions to this signal defined in the process code will take place. Otherwise,

384 A. Smyk and M. Tudruj

the signal is ignored and the reaction will not happen. All control messages
are physically separated from data used by computational elements. Such dual
communication network is described in [4] and it increases the global control
performance.

The rest of the paper is ordered as follows. Section 2 contains an overview
of the FDTD computational method. Section 3 explains computational mesh
partitioning using the proposed genetic algorithm. Section 4 describes the genetic
algorithm parallelization based on global program state monitoring.

2 FDTD Method Overview

As an example of numerical application, we present the FDTD (Finite Differ-
ence Time Domain method) computational method. It is used for simulation of
high frequency electromagnetic wave propagation by solving Maxwell equations
(1). The global asynchronous control system described in previous section will
be used to find an optimal partitioning of the FDTD data flow graph among
executive processors.

In the paper, we have assumed that a wave propagation simulation area is
represented by two dimensional irregular shape, see Fig. 3. Some parts of this
shape is characterized by strong irregularity. Before the simulation, a computa-
tional mesh is created. Its internal structure depends on the FDTD theory and
for a two dimensional problem it is defined by Maxwell equations (1) transformed
into their vector forms (2). The number of simulation points in a mesh depends
on the frequency of simulation and each point describes alternately electric com-
ponent Ez of electromagnetic field and one from two magnetic field components
Hx or Hy (depending on its coordinates).

Fig. 3. Irregular computational area with FDTD computational mesh.

Genetic Algorithms Execution Control Under a Global Application State 385

Simulation is divided into a given number of iterations. Each iteration con-
sists of the following steps:

1. Preparing for boundary conditions computation;
2. Computation of the values for electric components;
3. Computation of the values for magnetic components;
4. Computation of boundary conditions;
5. Go to step 1 or end the computation.

For regular computational areas, FDTD computations can be easily parallelized
(e.g. by stripe, block partitioning) but when an irregular shape of computational
area is considered, the decomposition is much more complicated. In this case, we
can use some advanced tool for efficient partitioning, like Metis, Jostle or Scotch.
Big disadvantage of such solution is that mentioned partitioners, can produce
very irregular structures. In such structures, despite a better data distribution,
the cost of computations is higher. Instead of the standard loop, it requires the
implementation of a complex iterator, what is impossible in numerical prob-
lems, due to their scale. Alternative techniques is loop tiling widely discussed in
numerical area [7]. A tile can be defined, as a part of computation, which can
be well defined in terms of typical programming structures, like a loop for.

Fig. 4. Macro data flow graph for single tile for FDTD computations.

Shape of the tiles depends on the relations between computational data and
usually is defined as rectangular, hexagonal, rhomboid, or equilateral. Because
of data dependency (2), in our case the rectangular tile shape has been chosen.
For the FDTD computation we have used a thread pool concurrency pattern.
Each macro data flow node can be proceed by a single thread according to the
dependency presented in Fig. 4. Such a processing pattern can be useful only in
case when the number of threads is greater than number of tiles. A macro node
can be fired for execution only if all input data have been delivered to the physical
processor on which this macro node has been mapped. The data dependencies are
described by edges between macro nodes. Usually edges can be attributed with
weights which give the amount of data, sent from one macro node to another.
The weight depends on the length of the boundary line between two adjacent
cell sub-areas. Additional cost should be also considered, if the boundary line
separates two tiles proceed on two different machines.

386 A. Smyk and M. Tudruj

3 Computation Partitioning Using a Genetic Algorithm

In this section, we describe main assumptions on repartitioning a genetic algo-
rithm data flow graph used to improve of the quality of a computational mesh
partitioning, which assures time-balanced simulation execution in processors.
The main steps of the genetic algorithm are as follows:

1. Creation of population P and initial maro data flow graph for computational
area with initial partitioning;

2. Set iteration i = 1;
3. Population of selected individuals for iteration i;
4. Operations according to given chromosomes and Fitness function evaluation
5. If is the last iteration, go to step 8;
6. Selection, crossover and mutation operations
7. i = i + 1; go to step 3;
8. Finish

We don’t want to use GA for the whole mesh partitioning, because of the time
limitation. Only chosen parts of the mesh will be taken into consideration. Before
the genetic algorithm will start, we need to create an initial population. It is done
either by Metis partitioner, or by loop tiling splitter. Both of these methods
have problems with highly irregular shapes of computational mesh. In case of
Metis, it is very fast and efficient partitioner but it tends to create islands of
nodes belonging to the same partition located inside another partition. Another,
already discussed problem is regularity of partitions. Regularity is so high, that
it is quite difficult to find a computational pattern which would be easily adopted
for each node. In this case the GA should work on a very fine grain level – a
single computational cell are moved between partitions. It is a very expensive
and time consuming approach. Even we receive satisfactory load balancing, the
implementation needs to be done according the data flow paradigm, which affects
big machine code with separate instruction for separate data.

Another, much more flexible solution is loop tiling. It is very fast method
producing partitions with regular, well defined patterns of computations. The
irregularity appears only on the boundary of the computational mesh. Each tile
contains up to 4 macro nodes (Fig. 4). Computations in each macro nodes are
done according to Eq. (2) and can be easily implemented by standard loops, and
optimize by typical compiler mechanisms. A genetic algorithm can change the
size of a tile, but it does not change its shape (the regularity of computations
depends on the tile shape). Tile shape can be changed only on the boundary
area, where for irregular shape of computational area, cannot be matched to
the shape of tile. The genetic algorithm, expands (or collapse) chosen tiles by
moving boundary line cells between two adjacent tiles.

The definition of a chromosome is presented in Fig. 5. It contains a set of
considered tiles and move operations performed for all tiles. We distinguish 5
operations, move: UP, DOWN, LEFT or RIGHT and no-move. To speed-up
the GA, we have extended the definition of the chromosome, and in general it
can specify more than one move operation executed in one iteration of GA. It

Genetic Algorithms Execution Control Under a Global Application State 387

makes more difficult to execute classical genetic operators, so to introduce addi-
tional control for moving operations (to avoid completely random movements)
all involved tiles are sorted from the most irregular tile to the most regular. At
several first iterations the GA works only on the most irregular tiles, so any move
operations are defined only for the smallest numbers of tiles. As the iteration
number increases, the number of considered tiles in this iteration increases as
well. At the end of each iteration, we have to evaluate the fitness function for all
individuals. The value of the fitness function indicates the best candidates for
reproduction process. In our experiments we have used several fitness functions:

– the estimated execution time of n partitioned tiles computed by n threads –
it requires implementing an simplified architectural model that can be used
to estimate the execution time;

– the estimated execution time of n partitioned tiles computed by m threads
where m < n – it requires implementing a thread pool model;

– the min-cut value;
– the difference between the maximally and minimally loaded tiles;

When the fitness function is evaluated we can select the best candidates for
reproduction and we can perform crossover and mutation operations.

Fig. 5. Single chromosome meaning.

4 Parallelization of a Genetic Algorithm Based on Global
Program State Monitoring

Genetic algorithms, can be easily implemented in a parallel way especially when
particular instances of GA work on loosely dependent data. An instance of the
GA is working on one processor and it processes a separate group of tiles. It
can create an isolated population without any interference of individuals from
populations created on other processors.

Each instance contains a given number of individuals that represent oper-
ations of moves for selected parts of tiles belonging to one group. All genetic
operators are implemented by threads (one thread per individual). All informa-
tion used by threads during the execution of GA, is stored in a shared memory.
So one thread can use the results produced by another threads. To decrease the
synchronization cost (granularity) they don’t use this information directly. To
access shared data stored in a shared memory, specially designed infrastructure

388 A. Smyk and M. Tudruj

Fig. 6. Co-operation between instances of a genetic algorithm and inter-process and
inter-thread synchronizers.

of synchronizers is used. We have assumed that each instance of GA can be exe-
cuted as a process (e.g. GAproc2), see Fig. 6. During execution, all information
concerning states of individuals and of the whole local population is stored in
local structures. State of a single individual is described by its chromosome, a
total execution time for current partitioning and by local (between tiles from one
GA instances) and remote (between tiles from different GA instances) min-cut
values. The local min-cut value is used to control the regularity of tiles, while the
remote min-cut for estimation of the communication cost. Both of these values
are used by synchronizers to control the whole FDTD computational process.
We have assumed that partitioning phases will be executed with computational
phases alternately. It will be done by the same threads that are switched from
one phase to another by a synchronizer. We distinguish synchronizers for threads
(Sth)and for processes (Sp). Each thread synchronizer is a special thread that
co-operates with group of computational threads created inside one process.
Each process synchronizer is a special process that co-operates with a group of
computational processes.

A process synchronizer doesn’t directly exchange information with a group
of computational threads. In Fig. 7 we present a control flow diagram of a

Fig. 7. Control flow diagram of a synchronizer for the parallel genetic algorithm.

Genetic Algorithms Execution Control Under a Global Application State 389

synchronizer for the parallel genetic algorithm implementation. The thread syn-
chronizer waits for state messages from all computation elements connected to it,
containing reports on their local states. In our case all states are kept in shared
memory, so partitioning threads sends only the location of their state in a mem-
ory. When all messages have been received, a local thread synchronizer starts
their analysis. It updates the quality report concerning each individual based on
the knowledge from last iteration. It sets the global rank for all individuals and
next is starts to compute the predefined predicates. In the case of our parallel
GA, we have specified the following predicates:

1. the synchronizer has detected an “ideal” partitioning (IDEAPART) with
accepted load imbalance or min-cut values;

2. an improvement has been observed – no strategy changing is requested
(IMOBS);

3. there is no improvement observed – a change strategy is requested (NIMOBS).

If the first predicate (IDEAPART) is met, the local partitioning paused and the
thread synchronizer sends a message to the inter process synchronizer. It coordi-
nates partitioning phases performed in different parts of the analyzed computa-
tional area. If the second predicate (IMOBS) is met, then the thread synchronizer
sends a signal to cell partitioning threads that information about the quality of
the individuals form last iteration has been update and are stored in shared mem-
ory. Each thread receives a signal and starts next iteration of GA. Information
stored by the synchronizer is mainly used during the selection operation. If the
last predicate (NIMOBS) is met, there is no significant improvement observed,
no better individuals are formed, so the signal sent to cell partitioning threads
by the synchronizer suggests to change the strategy of cell movement opera-
tions. It is quite easy to implement, because the last N iterations are recorded
in memory, and they can be easily modified and introduced by the partition-
ing threads. After given number of NIMOBS actions, the partitioning process
can be canceled and retiling can be done. Retiling is a very expensive process
because it is done globally and it causes canceling of all partitioning processes
for all instances of GA. Thread synchronizers send their states to the process
synchronizer every given number of iterations, or when the “ideal” partitioning
is observed, or when the improvement cannot be achieved. The process synchro-
nizer collects their states and evaluates the following predicates: “in most of GA
instances improvement has been observed” and “global no improvement has been
observed”.

In the first case, synchronizer is switched from the partitioning phase to
the computational phase, to estimate the efficiency of communication and load
imbalance for current partitioning. According to the estimated state informa-
tion, inter-process synchronizer definitely finishes the partitioning phase, and
switches to the FDTD computation phase. Another action taken by the syn-
chronizer is to enter into a repartitioning phase, with or without a retiling
phase.

390 A. Smyk and M. Tudruj

5 Conclusions

In this paper, we have presented an outline of the implementation of a genetic
algorithm in distributed systems with multicore processors. A genetic algorithm
is used to improve partitioning of partially irregular computational meshes. It is
done by a modification of initial partitions. In our case, an initial partitioning
has been obtained by a tiling method. For each irregular part of a computa-
tional shape, a separate instance of genetic algorithm has been created. Exe-
cution of each genetic algorithm is globally supervised at the level of threads
and also processes. This supervision is done by synchronizers, which undertake
pre-defined actions according to the information received from processing ele-
ments (threads or processes). Such a control infrastructure, embedded in the
PEGASUS DA framework, is very convenient for the implementation of genetic
algorithms, which in our case are used in both phases, the partitioning one and
the FDTD one. We have shown that such infrastructure can be very easily used
for implementation of different numerical problems based on the genetic algo-
rithm approach.

References

1. Babaoglu, O., Marzullo, K.: Consistent global states of distributed systems: fun-
damental concepts and mechanisms. In: Mullender, S.J. (ed.) Distributed Systems.
Addison-Wesley, Reading (1993)

2. Borkowski, J.: Interrupt and cancellation as synchronization methods. In:
Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001.
LNCS, vol. 2328, pp. 3–9. Springer, Heidelberg (2002)

3. Borkowski, J.: Strongly consistent global state detection for on-line control of dis-
tributed applications. In: PDP 2004, pp. 126–133. IEEE CS, February 2004

4. Borkowski, J., Tudruj, M.: Dual communication network in program control based
on global application state monitoring. In: ISPDC 2007, Hagenberg, Austria, pp.
37–44. IEEE CS, July 2007

5. Fiduccia, C.M., Mattheyses, R.M.: A linear time heuristic for improving network
partitions. In: Proceedings of the Nineteenth Design Automation Conference, pp.
175–181 (1982)

6. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph prob-
lems. Theor. Comput. Sci. 1, 237–267 (1976)

7. Jingling, X.: Loop Tiling for Parallelism. Kluwer Academic Publishers, Dordrecht
(2000)

8. Karypis, G., Kumar, V.: Unstructured graph partitioning and sparse matrix order-
ing, Technical Report, Department of Computer Science, University of Minesota
(1995). http://www.cs.umn.edu/∼kumar

9. Khan, M.S., Li, K.F.: Fast graph partitioning algorithms. In: Proceedings of IEEE
Pacific Rim Conference on Communications, Computers, and Signal Processing,
Victoria, B.C., Canada, pp. 337–342, May 1995

10. Smyk, A., Tudruj, M.: Parallel implementation of FDTD computations based on
macro data flow paradigm. In: PARELEC 2004, Dresden, Germany, 7–10 Septem-
ber 2004

Genetic Algorithms Execution Control Under a Global Application State 391

11. Tudruj, M., Borkowski, J., Masko, L., Smyk, A., Kopanski, D., Laskowski, E.: Pro-
gram design environment for multicore processor systems with program execution
controlled by global states monitoring. In: ISPDC 2011, Cluj-Napoca, pp. 102–109.
IEEE CS, July 2011

12. Kopanski, D., Maśko, �L., Laskowski, E., Smyk, A., Borkowski, J., Tudruj, M.: Dis-
tributed program execution control based on application global states monitoring
in PEGASUS DA framework. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp. 302–314. Springer,
Heidelberg (2014)

13. Stoller, S.D.: Detecting global predicates in distributed systems with clocks. Dis-
trib. Comput. 13(2), 85–98 (2000)

14. Tudruj, M., Kacsuk, P.: Extending grade towards explicit process synchronization
in parallel programs. Comput. Artif. Intell. 17, 507–516 (1998)

Evolutionary Algorithms for Abstract Planning

Jaroslaw Skaruz1(B), Artur Niewiadomski1, and Wojciech Penczek1,2

1 ICS, Siedlce University of Natural Sciences and Humanities,
3-Maja 54, 08-110 Siedlce, Poland

jaroslaw.skaruz@uph.edu.pl, artur@ii.uph.edu.pl
2 Institute of Computer Science, Polish Academy of Sciences,

Jana Kazimierza 5, 01-248 Warsaw, Poland
penczek@ipipan.waw.pl

Abstract. The paper presents a new approach based on evolutionary
algorithms to an abstract planning problem, which is the first stage of
the web service composition problem. An abstract plan is defined as an
equivalence class of sequences of service types that satisfy a user query.
Two sequences are equivalent if they are composed of the same service
types, but not necessarily occurring in the same order. The objective of
our genetic algorithm (GA) is to return representatives of abstract plans
without generating all the equivalent sequences. Experimental results
are presented and compared with these obtained using an SMT-solver,
showing that GA finds solutions for very large sets of service types in a
reasonable and shorter time.

Keywords: Genetic algorithm · Web service composition · Abstract
planning

1 Introduction

The number of web services available in the Internet has recently increased
tremendously. The users may want to achieve some goals taking advantage of
these services, but they also demand more sophisticated functionality from com-
puter systems. Frequently, a simple web service does not realize the user objec-
tive, so a composition of services need to be executed to this aim. The problem
of finding such a composition is NP-hard [8] and well known as the Web Service
Composition Problem (WSCP) [10].

There is a number of various approaches to solve WSCP [2]. Here, we follow
the approach of the system Planics [3,4], which has been inspired by [1]. The
main assumption is that all the web services in the domain of interest as well as
the objects processed by them, can be strictly classified in a hierarchy of classes,
organised in an ontology. Another key idea consists in having several stages of
planning. The first phase deals with types (classes), while the second one - with

The research described in this paper has been supported by the National Science
Centre under the grant No. 2011/01/B/ST6/01477.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 392–401, 2014.
DOI: 10.1007/978-3-642-55224-3 37, c© Springer-Verlag Berlin Heidelberg 2014

Evolutionary Algorithms for Abstract Planning 393

the concrete services (instances of classes). The first stage produces an abstract
plan, which becomes a concrete plan in the second phase. Such an approach
enables to reduce the number of concrete services, which are taken into account.

This paper focuses on the abstract planning problem only. We propose a new
approach based on an application of genetic algorithms. An individual of GA
represents a multiset of service types and all the operations of GA are performed
on this multiset. This feature of GA constitutes a great improvement in compar-
ison to a linear representation of an individual as the algorithm does not need to
care about the correct order of the service types represented. A linearization of
an individual is generated only in order to compute its fitness value. An abstract
plan is defined by a multiset of service types such that it has a linearization sat-
isfying a user query. The algorithm stores each newly found abstract plan. In the
subsequent iterations all similar individuals are ‘punished’ by decreasing their
fitness value, proportionally to the similarity to all the abstract plans stored. To
the best of our knowledge, the above approach is novel, and as our experiments
show is also very promising.

As far as the related work is concerned, some approaches to WSCP are
listed below. However, none of the existing algorithms for abstract planning uses
genetic algorithms. The existing solutions to WSCP can be divided into several
groups. Following [11] our approach belongs to AI planning methods, including
also approaches based on: automata theory [12], Petri nets [14], theorem proving
[13], and model checking [15]. The approach closest to ours is given in [7], where
a genetic algorithm is used to one phase planning, which combines an abstract
and a concrete one. Our idea of a multiset representation of a GA individual
is not entirely new as it was already suggested in [5]. However, contrary to our
approach, no linearization of a multiset is generated in order to compute the
fitness value. In [9] the authors model a problem of non-coding DNA in biolog-
ical systems in a form of genes, where their positions in an individual are not
fixed, which leads to better experimental results. The constrained optimization
problem, considered by us, was also studied in [6], where the penalty function
does not need any parameter too, but ours is defined as a similarity measure.

The rest of the paper is organized as follows. Section 2 defines the abstract
planning problem. Section 3 presents an application of GA to finding abstract
plans. Section 4 discusses experimental results and provides a comparison with
an SMT-based algorithm. The last section summarizes the results.

2 Abstract Planning Problem

This section introduces the Abstract Planning Phase (APP). APP makes inten-
sive use of the service types and the object types defined in a given ontology. In
what follows, let S denote a set of all the service types defined in the ontology. A
service type represents a set of web services with similar capabilities, while object
types are used to represent data processed by the service types. The attributes
are components of the object types. The ontology defines the inheritance rela-
tion, such that a subtype of some base object type retains all the attributes of

394 J. Skaruz et al.

the base type, and optionally introduces some new attributes. The objects are
instances of the object types. The values of the attributes of an object determine
its state. A set of the objects in a certain state is called a world.

User queries and service types. The main aim of Planics is to find a composition
of web services, which allows to achieve a user goal. The user requirements
are specified in a form of a user query. Its specification, as well as a service
type specification, consists of three sets of objects: in, inout, and out, and two
Boolean formulas, namely preCondition and postCondition (pre and post, for
short). Pre is defined over attributes of the objects from in and inout, while
post can involve also attributes of the objects from out. Since for APP there is
no need to know the exact states of the objects, the values of the attributes are
mapped to the two abstract values: set or null, denoting whether an attribute
does have some value or it does not. An abstract world is a set of objects, which
attributes have abstract values. In what follows we use the notions worlds and
values instead of abstract worlds and abstract values, respectively.

A service type s is a pair of world sets (W s
pre,W

s
post), called the input and

the output worlds, respectively. That is, a service type is an interpretation of its
specification, such that the input worlds are defined by in, inout, and pre, while
the output worlds are determined by in, inout, out, and post. A user query q
is a pair of world sets (W q

init,W
q
exp), called the initial and the expected worlds,

respectively, defined similarly to the service types.

Example 1 (Service type). Consider an object type Ware containing the
attributes name, weight, owner, and location. Let Transport (T) be a service
type able to deliver any instance of Ware to the requested destination, specified
as: inT = outT = ∅, inoutT = {w : Ware}, preT = isNull(w.location), postT =
isSet(w.location). Thus, WT

pre is the set of worlds containing one instance of
Ware with null location and any valuation of the remaining attributes, while
in the worlds of WT

post the location attribute is set.

Example 2 (User query). Assume that Doghouse is an object type extending
Ware. Consider that the user wants to obtain a doghouse. An example query
q could be: inq = inoutq = ∅, outq = {d : Doghouse}, preq = true, postq =
isSet(d.location). The interpretation of q is an empty initial world, and a set of
expected worlds containing an instance of Doghouse with the attribute location
set and any valuation of the remaining attributes.

World transformations. Assume we have two objects o1 and o2 of some worlds.
The state of the object o1 is compatible with the state of the object o2, if o1
contains all the attributes of o2 (thus both objects are of the same type, or o1
is a subtype of o2 type), and they agree on valuations of all common attributes.
A world w1 is compatible with a world w2, if both of them contain the same
number of objects and every object from w2 corresponds to a compatible object
from w1. Finally, by a sub-world of a world w we mean a restriction of w to
some subset of objects from w, and by the size of w we mean the number of the
objects in w, denoted by |w|. We say that a service of type s transforms a world
w into w′, denoted by w s→ w′, if all of the following conditions hold:

Evolutionary Algorithms for Abstract Planning 395

– w contains a sub-world IN compatible with a sub-world of some input world
of s, restricted to the objects from in,

– the objects from IN , as well as the objects not involved in the transformation,
do not change their states,

– w contains a sub-world IO compatible with a sub-world of some input world
of s, restricted to the objects from inout,

– w′ contains a sub-world IO compatible with a sub-world of some output world
of s, restricted to the objects from inout,

– w′ contains a sub-world OU compatible with a sub-world of some output
world of s, restricted to the objects from out,

– the sets of objects from IN , IO, OU are mutually disjoint, w does not contain
any of the objects from OU , and |w′| = |w|+ |OU |.

We refer to a world transformation by a service type s also as an execution of s.

Transformation sequences. Let seq = (s1, . . . , sk) be a sequence of service types
of length k, and let w0 and wk be worlds, for some k ∈ N. We say that the
sequence seq transforms the world w0 into wk, denoted by w0

seq� wk, if there
exist worlds w1, . . . , wk−1, such that wi−1

si→ wi, for every i = 1, . . . , k.
A sequence seq of service types is called a transformation sequence, if there

are worlds w,w′ such that w
seq� w′. The world w′ is called the final world of

seq while Mseq denotes the multiset of the service types [s1 + · · · + sk] of the
transformation sequence seq. A transformation sequence seq that transforms
a given world w is called a transformation sequence for w, and the process of
transforming w by seq is called the execution of seq in w. wo transformation
sequences are called equivalent if they are built over the same multiset of service
types.

User query solutions and abstract plans. Let seq = (s1, . . . , sk) be a transforma-
tion sequence of length k, and q = (W q

init,W
q
exp) be a user query. We say that

seq is a solution of the user query q, if there are worlds w,w′, such that w
seq� w′,

w ∈ W q
init, and w′ ∈ W q

exp. By QSq we denote the set of all the solutions of
q. An abstract plan is defined as a set of all the solutions equivalent to some
seq ∈ QSq and is represented by the multiset of the service types Mseq for q.

Example 3. Assume that Selling (S), Transport (T), Assembly (A) are service
types, while Boards, Nails, and Doghouse are object types extending the object
type Ware. The service type Selling is able to provide any Ware, Transport
can deliver any Ware to the requested destination, while Assembly is able to
build a doghouse using nails and boards. If the user wants to obtain a doghouse,
then there are several possibilities to achieve this goal. The shortest solution is
the sequence (S, T), which is the only solution of the abstract plan represented
by the multiset [S+T]. Another possibility is (S, T, S, T,A), where the first pair
(S, T) provides and transports boards and the second pair provides and delivers
nails, which are finally assembled by A providing a doghouse. This solution
constitutes another abstract plan represented by [A+ 2S + 2T]. Note that there
exists another equivalent solution, namely the sequence (S, S, T, T,A).

396 J. Skaruz et al.

3 Application of GA to Abstract Planning

The objective of GA is to find abstract plans (as many as possible) for a user
query q. While GA maintains a population of individuals, each representing
a multiset M of service types, it is essential to check whether M represents an
abstract plan. To this aim, for M a sequence of service types seqM is constructed.
If seqM is a solution of the user query q, then M represents a new abstract plan.

The initial population of GA is generated randomly. As each gene of an
individual models a service type, the number of all the genes is equal to the
length of an abstract plan searched for. While we take advantage of the multiset
representation, the order of the genes in an individual is irrelevant. This non-
standard form of a GA individual allows for performing genetic operations in
such a way that we do not have to receive offspring containing service types in
the correct order. A linearization of an actual multiset is generated only in order
to compute the fitness value of the corresponding individual.

Generating a sequence of service types seqM from a multiset M . The iterative
procedure starts with an empty sequence and some initial world w0, randomly
selected at the start of GA from W q

init. In the successive iterations a resulting
sequence is built by removing fromM a service type s, which is able to transform1

a current world w. Then, the current world becomes the one obtained from the
transformation of w by s, and s is appended to seqM . If none of the service
types remaining in the multiset can be executed in the current world, then they
are copied in a random order at the end of the sequence. Besides seqM , the
procedure returns also the length lM of the maximal executable prefix of seqM ,
as well as the world wM , obtained after transformation of w by this prefix.

Example 4. Consider the multiset M = [2A+S+T], where A, S, T are the same
service types as in Example 3, and let w be an empty world. Only S is able to
transform the empty world, so it is appended to seqM . Then, the current world
contains a single instance of Ware (or its subclass). In this case T has to be
chosen as the next service type, because A needs at least two objects (Nails and
Boards), in order to be executed. Finally, two occurrences of A are appended to
the resulting sequence, and the procedure returns seqM = (S, T,A,A), lM = 2,
and the world wM containing a Ware.

Fitness function. In order to evaluate an individual, its fitness value is calcu-
lated. To this aim the notion of a good service type is used. A service type is
good, if it produces objects of types from the expected worlds, or of types from
input worlds of other good service types. After an individual M has been trans-
formed to a sequence of service types seqM , the fitness function takes the triple
(seqM , lM , wM) and an expected world2 wq as the arguments, and is calculated
according to (1):

1 If there are more than one such a service type, then one of them is chosen randomly.
2 Selected randomly from W q

exp at the start of GA.

Evolutionary Algorithms for Abstract Planning 397

fitness(M) =
fwM

∗ δ + cwM
∗ α + lM ∗ β + gseqM

∗ γ
|wq| ∗ δ + |wq| ∗ α+ k ∗ β + k ∗ γ (1)

where: fwM
= |wsub| with wsub being a maximal sub-world of wM compatible

with a sub-world of wq; cwM
is the number of the objects from wM , which

types are consistent with the types of objects from wq; gseqM
is the num-

ber of the good service types occurring in seqM ; k is the length of seqM ;
and α, β, γ are parameters of the fitness function. In all the experiments pre-
sented in Sect. 4 we use the following values: α = 0.7, β = 0.1, γ = 0.2,
and δ = 0.1. These values of the parameters ensure that building a proper
sequence of service types starts with a service type which produces an object
required by a user. In the next steps, GA finds service types producing objects
required by a user or needed as an input for the other service types in a given
sequence.

After the first solution has been found, the aim of GA is to find other solutions
remaining in the search space. On the other hand, each individual that represents
a solution equivalent to some of the already found, should be eliminated. This
is the task of the measure of similarity (the coefficient in (2)), between the
currently rated individual and the plans found so far, used for modifying the
fitness value of the individual. Let Sol denote a non-empty set of plans (in a
form of multisets) found at some point of GA. Then, the modified fitness value
of the individual M is calculated according to (2):

fitnessSol(M) =
(

1.0−max
({ |M ∩ S|

|M |
⏐
⏐
⏐ S ∈ Sol

}))
∗ fitness(M) (2)

Mutation operator. Another original contributions of this paper consists in defin-
ing a mutation operator specialized for the discussed problem, which takes advan-
tage of the good service type concept. So, a gene is mutated only if it does not
represent a good service type, and if there exists a good service type for the
considered sequence. To this aim, one has to compute a set of all service types
good for this sequence. If this set is not empty, then a randomly selected element
of the set replaces the mutated gene. Notice that the mutation operator is not
deterministic and it does not work in a greedy way.

4 Experimental Results

We have evaluated our algorithm using the ontologies, the user queries, and
the abstract plans generated by our software - Ontology Generator (OG, for
short). Each ontology contains an information about the services and the object
types. OG generates the ontologies in a random manner such that semantic
rules are met. Moreover, OG provides us with a user query which corresponds to
services and object types contained in the ontology. Each query is also generated
randomly in such a way that the number of various abstract plans equals to the

398 J. Skaruz et al.

value of a special parameter of OG. This guarantees that we know a priori
whether GA finds all solutions. The remaining parameters of the generator are:
the number of various object types, the minimal and maximal number of the
object attributes, the number of service types, the minimal and maximal number
of objects in the sets in, inout, and out of the service types, the number of the
objects required by a user, and the number of the services in an abstract plan.
Thanks to many different settings of OG, one can receive such data, which
are helpful for checking how well GA scales for finding optimal solutions. The
scalability can be examined by fixing different sizes of services in the ontology
and the number of services in the abstract plans.

The experimental study was divided into two stages. In the first one, we have
tuned the values of all GA parameters.

The tuning procedure is as follows. We select a parameter, the other para-
meters are set to the typical values, and several experiments are conducted in
order to find the best value of the selected parameter, which is then fixed and set
to this value. This procedure is repeated in the same way for all the remaining
parameters, where the values of the fixed parameters are not changed anymore.
The number of the individuals is equal to 1000, probability of mutation and two-
point crossover are 5 % and 95 %, respectively. The roulette selection operator
was used in all experiments. Each benchmark has been stopped after 50 iter-
ations. The experiments were run on a standard PC computer with two cores
2.8 GHz CPU and 8 GB RAM.

Table 1 presents the summary of all the 18 experiments comparing the effi-
ciency of our GA with an SMT-based planner [8]. The columns from left to
right display: the experiment labels, the number of service types in the plans,
the number of the existing plans, the total number of the service types, and
the search space size. The next six columns contain the following GA results:
the probability of finding a solution, the maximum and average number of the
solutions found, the number of iterations needed to find the first and the sec-
ond abstract plan, and the total GA runtime. The last four columns contain the
times consumed by the SMT-based planner, in order to: find the first and the
second solution, search the whole state space to ensure that there is no more
plans, and the total SMT-planner runtime.

The experimental results can be summarized in the following way. As far
as the time needed to find the first plan is concerned, the approach based on
GA outperforms that based on SMT, because GA finds it dozen of times faster.
However, the probability of finding a solution by GA decreases along with the
increase of the length of abstract plans, similarly as for the average and the
maximum number of the solutions found. Obviously, the more service types in
an abstract plan the longer runtime of both the planners. In all the experiments
the time required to find a solution by GA is below 21 s, while SMT needs even
over 500 s. On the other hand, the SMT-based planner finds all the solutions in
each run. Moreover, it is able to check that all possible abstract plans have been
found.

Evolutionary Algorithms for Abstract Planning 399

Table 1. Experimental results

Exp Plan
len.

Sol Serv.
types

Sp.
Serv.

Prob
[%]

Max
sol.

Avg
sol.

GA
first

GA
next

GA
[s]

SMT
first
[s]

SMT
next
[s]

SMT
unsat
[s]

SMT
total
[s]

1 6 1 64 236 100 1 1 6 — 6 4.28 — 2.9 8.09
2 128 242 100 1 1 6 — 7.5 7.76 — 5.87 14.83
3 256 248 100 1 1 8 — 10 11.19 — 7.57 20.57
4 10 64 236 100 6 4.1 9 11 6 4.89 4.99 4.95 12.86
5 128 242 100 6 3.7 7 8 7.5 5.95 6.0 9.63 20.5
6 256 248 100 4 2.6 11 13 11 13.85 14.68 17.56 38.47
7 9 1 64 254 100 1 1 10 — 11 21.05 — 25.57 47.63
8 128 263 100 1 1 10 — 15 39.48 — 41.75 83.04
9 256 272 100 1 1 12 — 22 94.55 — 77.65 174.5

10 10 64 254 80 2 1 15 17 12 17.84 19.44 161.1 239.2
11 128 263 60 2 0.8 18 23 15 34.19 44.76 276.1 341.8
12 256 272 50 1 0.5 26 — 22 65.85 67.87 542.5 669.7
13 12 1 64 272 100 1 1 15 — 16 91.9 — 429.8 523.2
14 128 284 100 1 1 21 — 22 126.4 — 1141 1270
15 256 296 90 1 0.9 29 — 34 213.1 — >1800
16 15 1 64 290 80 1 0.8 21 — 28 191.7 —
17 128 2105 20 1 0.2 22 — 35 425.7 —
18 256 2120 20 1 0.2 21 — 49 552.2 —

Figure 1 presents the fitness value of the best individuals obtained in the
experiments exp1-exp12. The most important observation resulting from the
interpretation of the charts is a significant reduction of the best individual fitness
value just after finding the solution, by the similarity measure. The fitness of the
best individual chart shape can be viewed as a proof that our algorithm works
as we have expected.

In the case of the first three experiments (Fig. 1a) the plans were found
quite quickly and in all the runs of GA we have obtained solutions. Since the
similarity measure works nicely, in the experiments exp4 − exp6 (Fig. 1b) we
obtained a number of solutions within the first 20 iterations. In the experiments
exp7− exp9 (Fig. 1c) the fitness values of the initially generated individuals are
in the range between 0.5 and 0.62. In the subsequent iterations GA finds better
potential solutions. Finally, optimum is found in the 10th and the 12th itera-
tion. In the experiments exp10 − exp12 (Fig. 1d) GA obtains solutions before
the 26th iteration. After one solution has been found the algorithm tries to
find the next one, as the fitness value of the best individual increases in subse-
quent iterations. However, due to a much larger search space than in the exper-
iments exp4 − exp6, only in the experiment exp10 the next solution has been
found.

400 J. Skaruz et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

fit
ne

ss
 v

al
ue

iteration

GA performance - 6 services in the plan

best fitness
average fitness

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

fit
ne

ss
 v

al
ue

iteration

GA performance - 6 services in the plan

best fitness
average fitness

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

fit
ne

ss
 v

al
ue

iteration

GA performance - 9 services in the plan

best fitness
average fitness

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

fit
ne

ss
 v

al
ue

iteration

GA performance - 9 services in the plan

best fitness
average fitness

Fig. 1. GA performance for 64, 128, and 256 service types. exp1−exp3 (a), exp4−exp6
(b), exp7 − exp9 (c), exp10 − exp12 (d)

5 Conclusions

In the paper we presented a novel approach to the abstract planning problem
with use of a genetic algorithm. Optimal solutions representing abstract plans
have been found in each instance of the problem. This was achieved thanks to
the special forms of the fitness function and the mutation operator. To overcome
the problem of generating similar abstract plans, we have used multisets of ser-
vice types for representing abstract plans as well as individuals of GA. Such a
representation allows to generate only one solution from the set of all the equiv-
alent ones. The experimental results give a clear evidence that our approach is
quite efficient and allows to find abstract plans containing as many as 15 ser-
vice types. In comparison to the results obtained using an SMT-solver, GA finds
solutions in a much shorter time, which makes it a suitable tool for deployment
in information systems.

Evolutionary Algorithms for Abstract Planning 401

References

1. Ambroszkiewicz, S.: Entish: a language for describing data processing in open
distributed systems. Fundam. Inform. 60, 41–66 (2004)

2. Ching-Seh, W., Khoury, I.: Tree-based search algorithm for web service compo-
sition in SaaS. In: 9th International Conference on Information Technology: New
Generations (ITNG), pp. 132–138 (2012)

3. Doliwa, D., Horzelski, W., Jarocki, M., Niewiadomski, A., Penczek, W., Pó�lrola,
A., Skaruz, J.: HarmonICS - a tool for composing medical services. In: 4th Central-
European Workshop on Services and Their Composition (ZEUS-2012), pp. 25–33
(2012)

4. Doliwa, D., Horzelski, W., Jarocki, M., Niewiadomski, A., Penczek, W., Pó�lrola, A.,
Szreter, M., Zbrzezny, A.: PlanICS - a web service composition toolset. Fundam.
Inform. 112(1), 47–71 (2011)

5. Garibay, I., Wu, A.S., Garibay, O.: Emergence of genomic self-similarity in location
independent representations. Genet. Program. Evolvable Mach. 7(1), 55–80 (2006)

6. Kalyanmoy, D.: An efficient constraint handling method for genetic algorithms.
Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000)

7. Lécué, F.: Optimizing QoS-aware semantic web service composition. In: Bern-
stein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 375–391. Springer, Hei-
delberg (2009)

8. Niewiadomski, A., Penczek, W., Pó�lrola, A.: SMT-based abstract planning in Plan-
ICS ontology. ICS PAS Rep. 127, 1–62 (2012)

9. Wu, A.S., Lindsay, R.K.: A comparison of the fixed and floating building block
representation in the genetic algorithm. Evol. Comput. 4(2), 169–193 (1996)

10. Rao, J., Su, X.: A survey of automated web service composition methods. In: Car-
doso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer,
Heidelberg (2005)

11. Li, Z., O’Brien, L., Keung, J., Xu, X..: Effort-oriented classification matrix of
web service composition. In: 5th International Conference on Internet and Web
Applications and Services, pp. 357–362 (2010)

12. Mitra, S., Kumar, R., Basu, S.: Automated choreographer synthesis for web services
composition using I/O automata. In: 2007 IEEE International Conference on Web
Services (ICWS 2007), pp. 364–371 (2007)

13. Rao, X., Jinghai, W., Küngas, P., Peep, A., Matskin, W., Mihhail, M.: Composition
of semantic web services using linear logic theorem proving. Inf. Syst. 31(4–5),
340–360 (2006)

14. Gehlot, V., Edupuganti, K.: Use of colored petri nets to model, analyze, and eval-
uate service composition and orchestration. In: 42nd Hawaii International Confer-
ence on System Sciences (HICSS’09), pp. 1–8 (2009)

15. Traverso, P., Pistore, M.: Automated composition of semantic web services into
executable processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

Solution of the Inverse Continuous Casting
Problem with the Aid of Modified Harmony

Search Algorithm

Edyta Hetmaniok, Damian S�lota(B), and Adam Zielonka

Institute of Mathematics, Silesian University of Technology, Kaszubska 23,
44-100 Gliwice, Poland

{edyta.hetmaniok,damian.slota,adam.zielonka}@polsl.pl

Abstract. In the paper a description of procedure for solving the inverse
problem of continuous casting is given. The problem consists in recon-
struction of the cooling conditions of solidified ingot and is based on
minimization of the appropriate functional by using the modified Har-
mony Search algorithm – the algorithm of artificial intelligence inspired
by process of composing the jazz music.

Keywords: Artificial intelligence · Harmony Search algorithm · Inverse
continuous casting problem

1 Introduction

Mathematical optimization consists in finding the best solution of a problem
from among the set of admissible solutions with regard to some criteria. This
branch of mathematics has found many applications in mechanics, engineering,
economics, operations research and in any other cases requiring a selection of
the best solution satisfying some conditions. There is a number of available
classical optimization algorithms, however most of them need to fulfil complex
assumptions about optimized function or its domain, that is why they are often
complicated and can be applied for solving only specific groups of problems.
Elaboration of algorithms of almost universal character and, simultaneously, very
easy to implement became possible after taking inspirations from the natural
behaviors existing in the surrounding world.

The artificial intelligence algorithms, about which is the talk, are the advanced
mathematical methods based on the ability of learning and taking actions in
order to improve the chances for success. This ability is realized in various ways,
which divides the artificial intelligence optimization algorithms in many sub-
groups, including, for example, the evolutionary algorithms based on the best
adaptation to the given conditions by applying the evolutionary mechanisms,
like natural selection, mutation or recombination [1], the immune algorithms
inspired by the mechanisms functioning in the immunological systems of liv-
ing organisms [2] or the swarm intelligence algorithms based on the collective

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 402–411, 2014.
DOI: 10.1007/978-3-642-55224-3 38, c© Springer-Verlag Berlin Heidelberg 2014

Solution of the Inverse Continuous Casting Problem 403

behavior of swarms of individuals exploring the considered space of solutions
and communicating among themselves [3,4].

Interesting example of the artificial intelligence optimization algorithm
inspired by the human behavior is the Harmony Search algorithm, proposed
by Zong Woo Geem [5,6], based on the process of searching for the harmony
of sounds by the musicians taking part in the act of jazz improvisation. Jazz
improvisation consists in finding the best state of music harmony, similarly as
the optimization algorithm consists in finding the argument realizing minimum
of the function. This analogy led to elaborating the useful procedure for opti-
mizing a function which has found an application in many fields of computer
science and engineering. Group of problems solved with the aid of this algorithm
includes, for instance, tour planning [7], vehicle routing [8] and water network
design [9].

Authors of this paper have already used the swarm intelligence algorithms [3,
4], as well as the HS algorithm for solving selected problems of heat conduction,
in classical version of the algorithm in paper [10] and in modified version in
paper [11]. Proposed modification consists in dynamic change of the value of an
important parameter in case when several successive executions of the algorithm
do not improve the result. It appears that such small modification improves
significantly the convergence of algorithm.

In this paper the modified Harmony Search algorithm will be used for solv-
ing the inverse problem of continuous casting. Continuous casting is the process
whereby the molten metal is poured in the controlled way into the crystal-
lizer where it solidifies by taking the appropriate form and then is consecutively
moved out from there [12–17]. Word “inverse” means that in mathematical model
describing this process some input information is unknown and must be recon-
structed, which is possible thanks to some additional information about the
effects caused by the input data. In presented approach we need to determine
the cooling conditions of continuous casting process (the heat flux in crystal-
lizer and the heat transfer coefficient in the secondary cooling zone described
by means of boundary conditions defining the process) in case when the values
of temperature in selected points of the ingot are known. Problem formulated
in this way belongs to the group of ill-posed problems because its solution may
not exist or it exists but is unstable. In previous works we have used the deter-
ministic methods for solving that kind of problem, however they gave worse
reconstruction of boundary conditions in comparison with the currently used
heuristic stochastic approach.

2 Problem Description

Let us consider the continuous casting of pure metal on the vertical device (see
Fig. 1) working in the undisturbed cycle. We assume that the cooling conditions,
changing with reference to direction of the ingot forming, are identical in the
entire perimeter of the ingot and the dimensions of the ingot cross section satisfy
condition a� b, where a denotes the ingot thickness and 2b describes its width.

404 E. Hetmaniok et al.

α(z)

q(z)

z

x

z1

Γ0

Γ1

Γ2

Γ3

Γg

Ω1

Ω2

z

x

z1

z∗

b0

Fig. 1. Scheme of the problem (left figure) and domain of the two-dimensional prob-
lem (right figure)

Moreover, we assume that the heat flows only in direction perpendicular to
the ingot axis. Such assumption results from the fact that the amount of heat
conducted in direction of the ingot move, in comparison with the amount of
heat conducted in the direction perpendicular to the ingot axis, is slight [12].
We consider the apparently steady field of temperature generated in the course
of undisturbed cycle of working of the continuous casting device.

Under the above assumptions and because of the heat symmetry the region
Ω of the ingot can be considered as the two-dimensional region consisted of
two subregions: Ω1 taken by the liquid phase and Ω2 taken by the solid phase,
separated by the freezing front Γg (described by means of function x = ξ(t)). In
these subregions, with the space orientation taken as in Fig. 1, the heat transfer
process, including the apparently steady field of temperature and location of the
freezing front, can be described by the two-phase Stefan problem [12].

Boundary of region Ω = [0, b] × [0, z∗] ⊂ R
2 is divided into four subsets

(Fig. 1):

Γ0 = {(x, 0); x ∈ [0, b]} , (1)
Γ1 = {(0, z); z ∈ [0, z∗]} , (2)
Γ2 = {(b, z); z ∈ [0, z1]} , (3)
Γ3 = {(b, z); z ∈ (z1, z∗]} , (4)

where the boundary conditions are defined.
Discussed problem consists in determination of the cooling conditions for the

ingot in such way that the temperature in selected points of the solid phase takes

Solution of the Inverse Continuous Casting Problem 405

the given values ((xi, zj) ∈ Ω2):

T2(xi, zj) = Uij , i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, (5)

where N1 denotes the number of sensors and N2 describes the number of mea-
surements taken from each sensor. Another elements which should be determined
are the functions of temperature Tk in regions Ωk (k = 1, 2). Functions of tem-
perature within regions Ωk (for k = 1, 2) satisfy the heat conduction equation

ck �k w
∂Tk

∂z
(x, z) =

∂

∂x

(

λk
∂Tk

∂x
(x, z)

)

, (6)

where ck, �k and λk denote, respectively, the specific heat, mass density and
thermal conductivity in liquid phase (k = 1) and solid phase (k = 2), w is the
velocity of continuous casting, and, lastly, x and z denote the spatial variables.

On the respective parts of boundary the appropriate boundary conditions
must be satisfied – on boundary Γ0 the boundary condition of the first kind
with the given pouring temperature (Tz > T ∗):

T1(x, 0) = Tz, (7)

on boundary Γ1 the homogeneous boundary condition of the second kind

∂Tk

∂x
(0, z) = 0, (8)

on boundary Γ2 (crystallizer) the boundary condition of the second kind

−λk
∂Tk

∂x
(b, z) = q(z), (9)

on boundary Γ3 (secondary cooling zone) the boundary condition of the third
kind

−λk
∂Tk

∂x
(b, z) = α(z)

(
Tk(b, z)− T∞

)
(10)

and, finally, on the interface Γg the continuity condition and the Stefan condition

T1

(
ξ(z), z

)
= T2

(
ξ(z), z

)
= T ∗, (11)

L�2 w
dξ(z)
dz

= −λ1
∂T1(x, z)

∂x

∣
∣
∣
∣
x=ξ(z)

+ λ2
∂T2(x, z)

∂x

∣
∣
∣
∣
x=ξ(z)

, (12)

where function ξ describes the freezing front location, α is the heat transfer
coefficient, q denotes the heat flux, Tz is the pouring temperature, T∞ is the
ambient temperature, T ∗ is the solidification temperature and L describes the
latent heat of fusion.

In considered approach the sought elements are the heat flux in crystallizer
and the heat transfer coefficient in the secondary cooling zone, it means the
following function f should be determined

f(z) =
{
q(z) for z ≤ z1,
α(z) for z > z1.

(13)

406 E. Hetmaniok et al.

For the fixed form of function f problem (6)–(12) turns into the direct Stefan
problem, solving of which enables to find the courses of temperature Tij =
T2(xi, zj) corresponding to function f . By using the calculated temperatures Tij

and the given temperatures Uij the following functional is constructed

J
(
q, α
)

=
(N1∑

i=1

N2∑

j=1

(
Tij − Uij

)2
)1/2

, (14)

representing the error of approximate solution. Since our goal is to find such form
of function f that the reconstructed temperatures will be as close as possible to
the measurement values, solving of considered problem reduces to minimization
of functional (14). For minimizing this functional we intend to use the modified
Harmony Search algorithm, paying attention to the fact that each running of the
procedure requires to solve for many times the direct Stefan problem, appropriate
for taken conditions. To solve the Stefan problem we use the finite difference
method with application of the alternating phase truncation method [12,15,17].

3 Modified Harmony Search Algorithm

Optimization of jazz composition runs in the following way: one of the musicians
plays a note, the others remember its sound and select the next notes such that
a harmonic music arises. Successively, the musicians remember the notes played
before, add the next notes and improve them such that the most beautiful music
is composed from the chaos. Similar idea is applied for optimizing a function –
arguments of this function play the role of the notes and the values are considered
as the tones of instruments caused by these notes. Similarly like the musicians
are searching for the combination of notes giving the best harmony of music, the
procedure seeks the argument in which minimum of the function is taken.

The algorithm starts by selecting the random set of notes (arguments) and
ordering them with regard to the values of minimized function in the harmony
memory vector (HM). Next, the harmony given by the combination of selected
notes is randomly improved. One can choose the note already included in the
harmony memory vector and test it one more time or change it slightly in hope
of improving the general harmony. One can also try to find the completely new
notes. Each note is put in the right order in the HM vector. After the assumed
number of iterations the first element of HM vector is taken as the solution.

In details, the algorithm is formed from the following steps.

1. Initial data:
– minimized function J(x1, . . . , xn);
– range of the variables ai ≤ xi ≤ bi, i = 1, . . . , n;
– size of the harmony memory vector HMS (1−100);
– harmony memory considering rate coefficient HMCR (0.7−0.99);
– pitch adjusting rate coefficient PAR (0.1−0.5);
– number of iterations IT .

Solution of the Inverse Continuous Casting Problem 407

2. Preparation of the harmony memory vector HM – random selecting of HMS
vectors (x1, . . . , xn) and ordering them in vectorHM according to the increas-
ing values J(x1, . . . , xn):

HM =

⎡

⎢
⎣

x1
1, . . . , x

1
n J(x1)

...
...

xHMS
1 , . . . , xHMS

n J(xHMS)

⎤

⎥
⎦ .

3. Selection of the new harmony x′ = (x′
1, . . . , x

′
n).

– For each i = 1, . . . , n the element x′
i is selected:

• with probability equal to HMCR from among numbers xi collected in
the harmony memory vector HM ;
• with probability equal to 1−HMCR randomly, with the uniform prob-

ability distribution, from the assumed range ai ≤ xi ≤ bi.
– If in the previous step the element x′

i is selected from the harmony memory
vector HM then:
• with probability equal to PAR the sound of note is regulated, it means

the element x′
i is modified in the following way: x′

i → x′
i+Δ forΔ = bw ·

u, where bw denotes the bandwidth – part of range of the variables and
u is the randomly selected, with the uniform probability distribution,
number from interval [−1, 1];
• with probability equal to 1− PAR nothing is done.

4. If J(x′) < J(xHMS) then element x′ is put into harmony memory vector
HM in place of element xHMS and vector HM is ordered according to the
increasing values of minimized function.

5. If the successive 5 iterations do not bring any improvement of the result, the
bandwidth is updated: bw → 0.5 · bw. The bandwidth parameter participates
in regulation of the sound of note, so this action imitates the frets on the neck
of a guitar representing the semitones.

6. Steps 3–5 are repeated IT number of times. The first element of vector HM
gives the solution.

4 Verifying Example

To verify the proposed approach let us solve the inverse problem of continuous
casting of aluminium. Considered process is described by means of Eqs. (6)–(12)
with the following values of parameters: λ1 =104 [W/(m K)], λ2 = 204 [W/(m K)],
c1 = 1290 [J/(kg K)], c2 = 1000 [J/(kg K)], �1 = 2380 [kg/m3], �2 = 2679 [kg/m3],
L = 390000 [J/kg], velocity of casting w = 0.002 [m/s], solidification temper-
ature T ∗ = 930 [K], ambient temperature T∞ = 298 [K], pouring temperature
Tz = 1013 [K] and b = 0.1 [m].

To solve the investigated problem we need to determine the temperature
distribution in considered domain and to reconstruct the cooling conditions –
heat flux q(z) in crystallizer and heat transfer coefficient α(z) in the secondary
cooling zone. Exact values of the sought elements are known:

408 E. Hetmaniok et al.

q(z) = 400000 [W/m2],

α(z) = 4000 [W/(m2 K)].

Measured values of temperature, required for constructing functional (14),
are taken from two thermocouples (N1 = 2) located 0.001 and 0.002 m away
from boundary of the region. From each thermocouple we took 100 measurements
(N1 = 100) and distance along the Oz axis between the successive measurements
was equal to 0.002 m. To execute the calculations we used the exact values of
temperature and values burdened by the random error of normal distribution
and values 1, 2 and 5 %.

Modified Harmony Search algorithm was executed for size of the harmony
memory vector HMS = 25, harmony memory considering rate HMCR = 0.85,
pitch adjusting rate PAR = 0.3 and number of iterations IT = 250. Elements of
the initial harmony memory vector HM were randomly selected from different
range for each of identified parameters because of the big difference between
expected values of reconstructed parameters (for reconstructing q from interval
[250000, 500000] and for reconstructing α from interval [1000, 5000]). Initial value
of bandwidth parameter bw corresponded with 10 % of the range of variables.
We have decided about such values of parameters in result of many testing
calculations and it is important to notice that slight change of these values
influences the convergence of procedure. Moreover, to take into account the
heuristic nature of Harmony Search algorithm, meaning that each execution of
the procedure can give slightly different results, we evaluated the calculations in
each considered case for 20 times and as the approximate values of reconstructed
elements we accepted the best of obtained results.

Selected results of executed calculations are presented in figures and table
given below. Figure 2 display the relative errors of the heat flux q and the heat
transfer coefficient α identification in dependence on the number of iterations
obtained for input data burdened by 2 % and 5 % error, respectively. We can see
that in both cases about 25 iterations is needed to obtain very good reconstruc-
tions, after about 50 iterations the results stabilize on some level and any further
iterations do not improve them significantly. To improve the results probably
some other techniques should be used, which is planned for the future, however
in this moment we find obtained reconstructions as satisfying. Stability of the
procedure is confirmed by the reconstruction errors for unburdened input data
converging very quickly to zero.

Except the cooling conditions, another sought element is the distribution
of temperature. Distributions of temperature in measurement points located,
respectively, 0.001 m and 0.002 m away from boundary of the region are com-
pared with the known exact distributions in Figs. 3 and 4. The results are
obtained for input data burdened by 5 % error and one can observe that in
both cases the reconstructed and known courses of temperature almost cover
and the absolute errors of these reconstructions are at the level of 0.6 [K].

Statistical elaboration of results obtained in 20 executions of the procedure
for various noises of input data is compiled in Table 1. Relative errors of the
heat flux and the heat transfer coefficient reconstructions for unburdened input

Solution of the Inverse Continuous Casting Problem 409

0 50 100 150 200
0

2

4

6

8

10

12
e
rr

o
r

iterations
0 50 100 150 200

2

4

6

8

10

e
rr

o
r

iterations

Fig. 2. Relative errors of reconstructing the boundary conditions for the successive
iterations (� – for q, � – for α) obtained for 2 % (left figure) and 5 % (right figure)
noise of input data

0 0.2 0.4 0.6 0.8

400

500

600

700

800

900

1000

z[m]

T
[K

]

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

z[m]

Δ
T

[K
]

Fig. 3. Exact (solid line) and reconstructed (dots) distributions of temperature (left
figure) in control point located 0.001 m away from the boundary obtained for 5 % noise
of input data and absolute error of this reconstruction (right figure)

0 0.2 0.4 0.6 0.8

400

500

600

700

800

900

1000

z[m]

T
[K

]

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

z[m]

Δ
T

[K
]

Fig. 4. Exact (solid line) and reconstructed (dots) distributions of temperature (left
figure) in control point located 0.002 m away from the boundary obtained for 5 % noise
of input data and absolute error of this reconstruction (right figure)

410 E. Hetmaniok et al.

Table 1. Reconstructed values of boundary conditions (f), relative errors (δf), stan-
dard deviations (σ) and standard deviations (σp) expressed as a percent of mean val-
ues of these reconstructions, together with the maximal relative (δmax

T) and absolute
(Δmax

T) errors of temperature reconstruction, obtained for various noises of input data

Noise (%) f δf [%] σ σp [%] δmax
T [%] Δmax

T [K]

0 400201.06 0.05016 388.500 0.09713 0.03082 0.172
4002.39 0.05973 1.613 0.04032

1 397542.20 0.61445 3228.581 0.80714 0.51576 4.796
4028.21 0.61032 24.445 0.61112

2 397543.76 0.61445 2339.822 0.58496 0.51457 4.761
4028.20 0.70514 27.807 0.69517

5 408822.12 2.20553 8863.732 2.21593 0.59914 5.572
3941.77 1.45581 58.474 1.46184

data are at the level of 0.05 %. The errors increase obviously with the increasing
value of input data perturbation but in each case is much smaller than the input
data error, as well as the maximal relative error of temperature reconstruction
which is in each case insignificant. Standard deviations of the sought parameters
reconstruction, expressed as a percent of mean values of these reconstructions,
in the worst case is equal to 2.2 % which confirms stability of the procedure. At
the end let us notice that execution of the procedure took approximately 40 min.

5 Conclusions

Aim of this paper was the examination of possibilities of applying the modi-
fied Harmony Search algorithm for solving the technical problem consisted in
identification of the cooling conditions in continuous casting process such that
the reconstructed values of temperature are as close as possible to the measure-
ment values. Experimental verification indicates that the elaborated method
gives satisfying results with regard to their exactness as well as to their stabil-
ity and advantage of using the proposed approach, in comparison with classical
methods, is lack of particular assumptions needed to be satisfied by minimized
functional. Additional advantage is the respective reliability of investigated app-
roach. For appropriately selected parameters and adequate number of iterations
the method based on HS algorithm gives in any case the best possible solution,
in other words the method is the most resistant to falling into the local minima
from among other investigated heuristic algorithms. Whereas the disadvantage
of discussed approach is longer, however acceptable, time of computations and
the necessity of appropriate selection of the parameters (on the way of test-
ing calculations). More detailed comparison of the described method with other
approaches based on the heuristic algorithms is planned for the future.

Acknowledgements. This project has been financed from the funds of the National
Science Centre granted on the basis of decision DEC-2011/03/B/ST8/06004.

Solution of the Inverse Continuous Casting Problem 411

References

1. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford
(1996)

2. Cutello, V., Nicosia, G.: An immunological approach to combinatorial optimization
problems. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002.
LNCS (LNAI), vol. 2527, pp. 361–370. Springer, Heidelberg (2002)

3. Grzymkowski, R., Hetmaniok, E., S�lota, D., Zielonka, A.: Application of the ant
colony optimization algorithm in solving the inverse stefan problem. Steel Res. Int.
Special Edition: Metal Forming, 1287–1290 (2012)

4. Hetmaniok, E., S�lota, D., Zielonka, A.: Solution of the inverse heat conduction
problem by using the abc algorithm. In: Szczuka, M., Kryszkiewicz, M., Ramanna,
S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 659–668. Springer,
Heidelberg (2010)

5. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algo-
rithm: Harmony Search. Simulation 76, 60–68 (2001)

6. Geem, Z.W.: Improved harmony search from ensemble of music players. In: Gabrys,
B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4251, pp. 86–93.
Springer, Heidelberg (2006)

7. Geem, Z.W., Tseng, C.-L., Park, Y.-J.: Harmony search for generalized orienteering
problem: best touring in China. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC
2005. LNCS, vol. 3612, pp. 741–750. Springer, Heidelberg (2005)

8. Geem, Z.W., Lee, K.S., Park, Y.: Application of harmony search to vehicle routing.
Amer. J. Appl. Sci. 2, 1552–1557 (2005)

9. Geem, Z.W.: Optimal cost design of water distribution networks using harmony
search. Eng. Optim. 38, 259–280 (2006)

10. Hetmaniok, E., Jama, D., S�lota, D., Zielonka, A.: Application of the Harmony
Search algorithm in solving the inverse heat conduction. Scientific notes of Silesian
University of Technology (Zesz. Nauk. Pol. Śl.). Appl. Math. 1, 99–108 (2011)

11. Hetmaniok, E., S�lota, D., Zielonka, A.: Identification of the heat transfer coefficient
by using the modified Harmony Search algorithm. Steel Res. Int. Special Edition:
Metal Forming, 1039–1042 (2012)

12. Mochnacki, B., Suchy, J.: Numerical Methods in Computations of Foundry
Processes. PFTA, Cracow (1995)

13. Nowak, I., Nowak, A.J., Wrobel, L.C.: Inverse analysis of continuous casting
processes. Int. J. Numer. Meth. Heat Fluid Flow 13, 547–564 (2003)

14. Santos, C.A., Garcia, A., Frick, C.R., Spim, J.A.: Evaluation of heat transfer coef-
ficient along the secondary cooling zoones in the continuous casting of steel billets.
Inverse Probl. Sci. Eng. 14, 687–700 (2006)

15. S�lota, D.: Identification of the cooling condition in 2-d and 3-d continuous casting
processes. Numer. Heat Transfer B 55, 155–176 (2009)

16. Nowak, I., Smolka, J., Nowak, A.J.: Application of Bezier surfaces to the 3-D
inverse geometry problem in continuous casting. Inverse Probl. Sci. Eng. 19, 75–
86 (2011)

17. S�lota, D.: Restoring boundary conditions in the solidification of pure metals. Com-
put. Struct. 89, 48–54 (2011)

Influence of a Topology of a Spring Network
on its Ability to Learn Mechanical Behaviour

Maja Czoków1(B) and Jacek Mi ↪ekisz2

1 Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University, Toruń, Poland

maja@mat.umk.pl
2 Institute of Applied Mathematics and Mechanics,

University of Warsaw, Warsaw, Poland
miekisz@mimuw.edu.pl

Abstract. We discuss how the topology of the spring system/network
affects its ability to learn a desired mechanical behaviour. To ensure such
a behaviour, physical parameters of springs of the system are adjusted by
an appropriate gradient descent learning algorithm. We find the between-
ness centrality measure particularly convenient to describe topology of
the spring system structure with the best mechanical properties. We
apply our results to refine an algorithm generating the structure of a
spring network. We also present numerical results confirming our
statements.

Keywords: Spring system · Mechanical behaviour problem · Between-
ness centrality measure

1 Introduction

In this paper we propose heuristics which can be applied during the construction
of a spring system, in order to enhance its efficiency in learning mechanical
behaviour. It appears that the ability of adaptation of a spring system depends on
the topology of the graph representing its structure. We discuss the betweenness
centrality measure and conduct numerical analyses to see how it affects the
efficiency. The obtained results are applied to determine a proper structure of
connections between nodes in the spring system in order to construct relatively
small networks which are capable of reproducing an expected physical behaviour.

In this context, the aspect of learning of the spring system can be two-
fold. The first one is the parametric learning, where we are given both training
examples and a structure of the spring system and we are only required to find
unknown spring parameters. The algorithm implementing such an approach was
discussed in [4]. This algorithm exhibits many common features with classical
methods of machine learning [12]. The second one is the structural learning,
where both a structure of the spring system and its parameters are required to

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 412–422, 2014.
DOI: 10.1007/978-3-642-55224-3 39, c© Springer-Verlag Berlin Heidelberg 2014

Influence of a Topology of a Spring Network on its Ability to Learn 413

be found, with the possible constraints on limited resources. A simple ‘brute-
force’ method was put forward in [5].

It turns out that it is not only the amount of available resources, which have
an influence on the quality of learning, but also the topology of the system.
We note that graph centrality measures, e.g. the betweenness, are surprisingly
accurate heuristics describing the capability of learning the structure.

Spring systems are widely used for modelling properties of microscopic and
macroscopic objects. They are for example applied to model disordered media in
material sciences [11], elastic properties of physical systems [8], self-organisation
[9], and system design in material and architectural sciences [10]. We are going
to employ our model to detect intermediate conformations between two known
protein conformations [2] and to identify key residues (amino acids, groups of
atoms) during transitions from one conformation to another one [6]. To the best
of our knowledge our model is the first one, which uses spring systems as devices
capable of learning predefined mechanical behaviour.

The work is organised as follows. In Sect. 2, we briefly describe the formal
model of the spring system and its dynamics. The stochastic algorithm for gener-
ating an optimal spring network architecture for mechanical behaviour problems
is presented in Sect. 3. Results of our analysis are provided in Sect. 4. Finally, we
give concluding remarks in Sect. 5.

2 Formal Definition of the Spring System

Formally, we represent a spring system by an undirected rigid graph G = (V, E),
where V is a finite set of nodes/vertices and E is a set of edges. We say that
graph is rigid if it is impossible to change distances between two nodes without
the modification of the lengths of the edges, see [3] for more details. The node
set V ⊂ R

3 is partitioned into

• Set Vin of control nodes. These are nodes, whose positions are determined
by external intervention, such as user interaction and thus it is regarded as
system’s input.
• Set Vout of observed nodes, whose positions are regarded as system’s output.
• Set Vfixed of immobilised nodes, whose positions are kept fixed in the course

of system’s evolution.
• The remaining set V∗ of auxiliary movable nodes.

The coordinates of a vertex v ∈ V are denoted by (x(1)
v , x

(2)
v , x

(3)
v). With each

edge e = {u, v} ∈ E , u, v ∈ V we associate its equilibrium (rest) length �0[e]
and we write �[e] for its actual length (the Euclidean distance between vertices
u and v). Moreover, the spring constant k[e] ≥ 0 is ascribed to each edge e ∈ E ,
determining elastic properties of the spring represented by the edge e. The energy
(Hamiltonian) of a spring system configuration x̄V = ((x(1)

v , x
(2)
v , x

(3)
v)v∈V) is

given by the usual formula [3]

H (x̄V) :=
1
2

∑

e∈E
k[e] (�[e]− �0[e])2 . (1)

414 M. Czoków and J. Mi ↪ekisz

We are interested in configurations, which are local minima of H and are called
local equilibrium points. Let us assume that we are given a non-equilibrium con-
figuration x̄0

V . To determine the local minimum of the spring system, denoted by
G[x̄0

V], we let it evolve in time according to standard gradient descent dynamics

d

dt
x̄V := −∇H(x̄V) . (2)

Since we put constraints on the positions of immobilised nodes Vfixed ∪ Vin it
implicates taking the derivative with respect to only movable nodes V∗ ∪ Vout.
Because of that and the fact that fixed nodes Vfixed are always in the same posi-
tions we are allowed to rewrite the notation G[x̄0

V] to the form G[x̄0
V∗∪Vout

; x̄0
Vin

].
Now we are given a set (E(i))N

i=1 of training examples, each example
E(i) = (ȳ(i)

Vin
, ȳ

(i)
Vout

) consisting of

1. input part ȳ(i)
Vin

specifying the locations of input nodes,

2. output part ȳ(i)
Vout

specifying the desired locations of output nodes.

The learning mechanical behaviour problem with a fixed/predefined structure
G = (V, E) is to find parameters k[e] and �0[e], e ∈ E , so that the positions
G[x̄0

V∗∪Vout
; ȳ(i)

Vin
]Vout of output vertices in equilibrium G[x̄0

V∗∪Vout
; ȳ(i)

Vin
] are as

close as possible to the desired output locations part ȳ(i)
Vout

. To this end, we
define the mean squared error function

Φ :=
1
N

N∑

i=1

Φ(i) (3)

where

Φ(i) :=
∑

v∈Vout

dist
(
y(i)

v , G[x̄0
V∗∪Vout

; ȳ(i)
Vin

]v
)2

. (4)

The adaptation of parameters k[e] and �0[e] is performed according to the fol-
lowing gradient descent scheme:
1. Start from a predefined configuration x̄V
2. Reiterate T times, where T is a predefined positive integer number
3. Choose cyclically a subsequent example E(i) and set x̄Vin := ȳ

(i)
Vin

4. Set x̄0
V := x̄V and find x̄V := G[x̄0

V∗∪Vout
; ȳ(i)

Vin
]

5. Calculate Φ(i) and denote it as Φ(i)
before

6. Iterate through parameters p ∈ k[e] ∪ �0[e] for all e ∈ E
7. Increase p by a small constant δ > 0 and find the equilibrium state
8. Recalculate Φ(i) and denote it as Φ(i)

after;p

9. Decrease p by δ

10. Set p := p− ρ · Φ
(i)
after;p−Φ

(i)
before

δ , where ρ is a small learning constant.

Influence of a Topology of a Spring Network on its Ability to Learn 415

The main focus of this work is to extend the learning problem to a more
general case when a structure of the spring network is not known as it was
already suggested in [4]. Formally, we are given only the training examples E(i) =
(ȳ(i)

Vin
, ȳ

(i)
Vout

), but the structure of the network G = (V, E) is no longer provided.
In fact, finding the graph G along with spring elastic constants k[e] and spring
rest lengths �0[e] is our explicit target. The set of input nodes Vin and observed
nodes Vout are predefined by the set of the training examples (E(i))N

i . The goal
is to find a set of auxiliary nodes V∗, fixed nodes Vfixed and a set of edges E , for
which adjusting parameters will lead to a low error Φ.

3 Structure Searching for a Set of Training Examples

In this section we briefly reiterate the algorithm for generating a spring network
architecture for learning mechanical behaviour problems formulated earlier. The
thorough description of the algorithm can be found in [5]. The algorithm is based
on the Henneberg construction method [1], which assures us that the graph G
returned by the algorithm is rigid in d (in our case 3) dimensional space. The
generation of the graph is based on the set of the training examples (E(i))N

i=1

according to the following scheme:

1. Find the mean value m ∈ R
3 of all input and output locations specified in

(E(i))N
i=1.

2. Randomly pick 4 different nodes uniformly distributed in the ball centred at
the point m, and with the diameter equals to maximal distance between point
m and any location described in (E(i))N

i=1.
3. Add the random nodes to the set V∗, link each pair of these nodes with an

edge.
4. Add aux const subsequent graph nodes to the set V∗ always requiring that

the new node is connected to edge const ≥ 3 already existing ones.
5. Fix fixed const random nodes; as a result of this operation fixed const nodes

are moved from the set V∗ to the set Vfixed.
6. Sequentially add output nodes to the set Vout. The number of these nodes is

determined by the set of training example. Each new node is connected to
edge const ≥ 3 already existing ones and the respective location is specified
by ȳ(1)

Vout
.

7. Sequentially add input nodes to the set Vin. The number of these nodes is
determined by the set of training example. Each new node is connected to
edge const ≥ 3 already existing ones belonging to the set V∗ ∪ Vout and the
respective location are specified by ȳ(1)

Vin
.

8. Perform the adaptation of parameters k[e], �0[e], e ∈ E according to the
gradient descent algorithm in order to minimise the value of the error
function Φ.

9. Return the obtained structure.

416 M. Czoków and J. Mi ↪ekisz

The satisfaction of the condition edge const ≥ 3 is required rigidity of graph,
for more details see again [1]. One must keep in mind that 3 noncollinear immo-
bilised nodes are required to prevent the system from rotating, translating or a
combination of these two operations (moves), see Sect. 4 in [7].

There is one difference between this algorithm and the one presented in the
previous paper [5]. The order between the steps 6 and 7 is changed. In the next
section we present numerical analysis which shown that adding output nodes
before input nodes is much more effective then reversely.

4 Results

We start our numerical analysis from employing the structure generating algo-
rithm to create a large set of samples of spring systems, for a given set of training
examples and for various combinations of pairs (|V∗|, edge const). We create two
collections of such architectures for both versions of structure searching algo-
rithm: the old one with input nodes added to the graph before output nodes
and the new one, with output nodes added before input nodes (with points 6
and 7 inversed). Next, the learning algorithm is applied in order to adapt spring
systems to the desired mechanical behaviour. The algorithm, adjusting para-
meters of the springs, applies the same number of iterations T , for all learning
simulations. The value of T is sufficiently large to let us tell, that the systems
obtain adaptation near to the best possible. Plots shown in the Fig. 1 present
the mean error Φ obtained in 50 simulations, by the both versions of the algo-
rithm, versus |V∗| ∈ {3, .., 19} for edge const equal to 3 (in Fig. 1a) and 5 (in
Fig. 1b). The variant of the algorithm, which adds output nodes before input
ones, for a given |V∗| creates a graph with more edges, than the version which
add input nodes before output ones, only if |V∗| < edge const, so in the tests it
is true for |V∗| ∈ 3, 4 and edge const = 5. After the modification, the value of
error function decreases on average 4.181 ± 2.35 times for edge const = 3 and
2.120± 0.685 times for edge const = 5, for tests, for which results are presented
in Fig. 1. As we can see, the correction of the algorithm particularly improves
results for spring system with the set V∗ with small size. Throughout the rest of
the paper we assume that tests are carried with the more efficient version (step
6 before step 7).

Since we know that the graph topology has the relevant influence on the
adaptation ability of the spring system, we decided to exploit this fact during
the construction of the structure of a spring system. In this context we will
discuss betweenness centrality measure. The betweenness centrality measure of a
vertex is defined by

B(v) :=
∑

s �=v

∑

t�=v,t�=s

σst(v)
σst

, (5)

where σst is total number of shortest paths from node s to node t and σst(v) is
the number of those paths pass through v.

Influence of a Topology of a Spring Network on its Ability to Learn 417

a)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
30

00
60

00
90

00
12

00
0

|V
*
|

Φ

input nodes added before output nodes
output nodes added before input nodes

b)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
50

0
10

00
15

00

|V
*
|

Φ

input nodes added before output nodes
output nodes added before input nodes

Fig. 1. Plots depict error Φ vs the number of auxiliary vertices |V∗|, for mean value of all
50 independent simulations. The network is adapted to three training examples, |Vin| =
6, |Vout| = 4, |Vfixed| = 2, the initial error is of the order 104; (a) for edge const = 3;
(b) for edge const = 5

In Fig. 2 we present a graph with values of betweenness of particular nodes.
In Fig. 3, for one exemplary graph G built by the enhanced structure searching
algorithm, we present sequence of attachment of nodes versus values of between-
ness for the respective nodes. It is clear that nodes added later have on average
lower values of betweenness centrality measure than the ones added earlier. Hav-
ing introduced the notion of betweenness and conducted comparison of numerical
results returned by two versions of the structure searching algorithm, we con-
clude that a spring system has better learning capability when its input nodes
have lower values of betweenness than output nodes.

418 M. Czoków and J. Mi ↪ekisz

Fig. 2. Brightness shows the node betweenness, the darkest node has the highest value
of betweenness, the lightest node has the lowest value of betweenness

0 10 20 30 40

0
20

40
60

80
10

0

sequence of node attachment

be
tw

ee
nn

es
s

va
lu

e

auxiliary nodes
output nodes
input nodes

Fig. 3. Sequence of attachment of nodes versus values of betweenness for the respective
nodes, for one exemplary graph G built by the structure searching algorithm

We start next analysis from creating a random sample of spring systems.
For a given set of training examples and for each pair of different values (|V∗|,
edge const) we construct and adapt 50 spring systems. For each of these net-
works we calculate Bin, Bout, B∗, which are mean values of betweenness of the
nodes belonging to the sets Vin, Vout and V∗ respectively. Next, for each sample
of 50 systems constructed for pair (|V∗| and edge const) we calculate Pearson
correlations (ρ(X,Y) :=

∑
i(xi −EX)(yi −EY)/

√
D2XD2Y) ρin := ρ(Bin, Φ),

ρout := ρ(Bout, Φ), ρ∗ := ρ(B∗, Φ). On average statistics ρin, ρout are posi-
tive and ρ∗ is negative. The absolute value of ρout is on average greater than
absolute value of ρin. In Table 1 are presented values of ρout, ρin and ρ∗ for net-
work constructed for exemplary set of training examples, for |V∗| ∈ {4, ..., 13}
and edge const ∈ {4, 6}.

In order to obtain systems with lower values of error function Φ, we decided
to adapt to training examples only the chosen networks. Criteria of selection

Influence of a Topology of a Spring Network on its Ability to Learn 419

Table 1. Values of ρin, ρout and ρ∗ for |V∗| ∈ {4, ..., 13} and edge const ∈ {4, 6}.
The network applied in analysis were adapted to three training examples, |Vin| = 8,
|Vout| = 14, |Vfixed| = 2

For edge const = 4
4 5 6 7 8 9 10 11 12 13 Eρ

ρout 0.103 0.019 0.013 0.154 0.186 0.170 0.099 0.153 0.211 0.352 0.146
ρin 0.063 −0.207 0.010 0.007 0.043 −0.089 0.336 0.075 −0.004 0.088 0.032
ρ∗ −0.207 −0.112 −0.097 −0.210 −0.107 −0.216 −0.188 −0.147 −0.243 −0.257 −0.178

For edge const = 6
4 5 6 7 8 9 10 11 12 13 Eρ

ρout 0.374 0.329 0.043 0.296 0.204 0.048 0.145 0.117 0.063 0.239 0.185
ρin 0.165 0.028 0.095 0.075 0.115 0.068 0.003 0.162 −0.120 −0.027 0.056
ρ∗ −0.335 −0.342 −0.035 −0.199 −0.220 −0.141 −0.112 −0.152 −0.127 −0.181 −0.184

are established on the base of Bout. Statistics ρout, ρin and ρ∗ illustrate, that
systems, which are better adapted to required mechanical behaviour, have on
average lower values of Bout, Bin and higher of B∗ than systems, which are worse
adapted. Correlation between Φ and Bout is stronger than between Φ and Bin.
So, eventually, as a criterion of network selection we decided to pick the one
with minimal value of Bout. It is unequivocal with selection graphs with high
B∗, because Pearson correlation between Bout and B∗ turns out to be near to −1.

Now we are ready to employ networks with low output betweenness to per-
form numerical analysis. To this end, we create new collections of 50 samples
of adapted spring systems constructed for each pair (|V∗|, edge const) and for
the set of the training examples. But this time selection of structures of the
graphs is conducted. Namely, each sample of 50 structures is picked up out of
500 random architectures with the lowest mean values of betweenness of the
output nodes. In Fig. 4 we can see how the selection of the graphs enhances
obtained results. The plots present the results for two different sets of train-
ing examples. For the first set (Fig. 4a), after the modification, the value of the
error function decreases on average 1.256 ± 0.208 times for edge const = 3 and
1.594 ± 0.410 times for edge const = 5. In turn, for the second set of train-
ing examples (Fig. 4b), after the modification, the value of the error function
decreases on average 1.153 ± 0.130 times for edge const = 4 and 1.239 ± 0.127
times for edge const = 6. This modification slightly decreases the value of an
error generated by networks, but since the adaptation of spring systems to learn-
ing examples is extremely complex and time-consuming, even small improve-
ments are significant.

The applied method of selection of structures with a low mean value of
betweenness of the output nodes is convenient for many reasons. First of all,
this keeps graph G rigid. The auxiliary and the input nodes preserve their large
and low values of betweenness respectively. The generation of one structure has
the time complexity O(|V| · |E|). In addition we note that for most applica-
tions the spring network is a sparse graph, so this estimation can be improve

420 M. Czoków and J. Mi ↪ekisz

a)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
50

0
10

00
15

00

|V
*
|

Φ
edge_count=3, any betweenness
edge_count=5, any betweenness
edge_count=3, low betweenness
edge_count=5, low betweenness

b)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20

00
40

00
60

00
80

00

|V
*
|

Φ

edge_count=4, any betweenness
edge_count=6, any betweenness
edge_count=4, low betweenness
edge_count=6, low betweenness

Fig. 4. A plot of error Φ vs the number of auxiliary vertices |V∗|, for mean value
of all 50 independent simulations. (a) The network is adapted to three training
examples, |Vin| = 6, |Vout| = 4, |Vfixed| = 2, results for edge const = {3, 5};
the initial error is of the order 104. (b) The network is adapted to three training
examples, |Vin| = 8, |Vout| = 14, |Vfixed| = 2, results for edge const = {4, 6}; the
initial error is of the order 105

to O(|V|2) The algorithm is sufficiently fast even if before learning we want to
randomly pick several spring structures and choose one of them for the learning
process. The presented analyses were replicated for 50 structures picked up out
of 5000. Such increase of the number of random samples has not introduced fur-
ther improvements of the ability of learning of mechanical behaviour by spring
systems.

Influence of a Topology of a Spring Network on its Ability to Learn 421

5 Conclusions

We discussed how the topology of the spring system/network influences its ability
of learning mechanical behaviour. Betweenness centrality measure was employed
in order to describe structures with the required topology. It turned out that it
is especially advantageous to keep low values of betweenness of input nodes for
networks with a small set of auxiliary nodes. This property can be vital for real-
world problems whose character demands a reduction of the set |V∗|. Low values
of betweenness of input vertices are achieved by adding these vertices at the end
of the process of network construction.

Additional enhancement of the learning ability of spring system is obtained
by building a group of graphs and selecting the one with the lowest mean value
of betweenness of output nodes. This modification slightly decreases the value
of an error generated by networks, but since the adaptation of spring systems
to learning examples is so complex, even small improvements are significant.
Perhaps it could be interesting to apply an algorithm which builds a rigid graph
with minimal values of betweenness of some group of vertices (input and output
ones) and maximal values for remaining vertices (auxiliary vertices). To the best
of our knowledge such a method is not known.

Setting different values of betweenness for different types of nodes is vital in
spring systems which are applied to mimic dynamics of real-word objects. It is
known for example that atoms which play a key role in conformational move-
ments of proteins have on average higher values of betweenness than remaining
ones [6]. This is important in the context of our ongoing work where we are going
to apply the model of spring systems and the results presented in this paper to
explore conformational transitions of proteins.

References

1. Anderson, B.D.O., Belhumeur, P.N., Morse, A.S., Eren, T.: A framework for main-
taining formations based on rigidity. In: Proceedings of the IFAC World Congress,
Barcelona (2002)

2. Chirikjian, G.S., Jernigan, R.L., Moon, K.K.: Elastic models of conformational
transitions in macromolecules. J. Mol. Graph. Model. 21, 151–160 (2002)

3. Connelly, R.: Rigidity and energy. Invent. Math. 66, 11–33 (1982)
4. Czoków, M., Schreiber, T.: Adaptive spring systems for shape programming. In:

Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2010, Part II. LNCS, vol. 6114, pp. 420–427. Springer, Heidelberg (2010)

5. Czoków, M., Schreiber, T.: Structure searching for adaptive spring networks for
shape programming in 3D. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS,
vol. 7268, pp. 207–215. Springer, Heidelberg (2012)

6. Dokholyan, N.V., Karplus, M., Paci, E., Vendruscolo, M.: A small-world view of
the amino acids that play a key role in protein folding. Phys. Rev. E 65, 061910
(2002)

7. Greiner, W.: Classical Mechanics: Systems of Particles and Hamiltonian Dynamics.
Classical Theoretical Physics. Springer, New York (2010)

422 M. Czoków and J. Mi ↪ekisz

8. Gusev, A.A.: Finite element mapping for spring network representations of the
mechanics of solids. Phys. Rev. Lett. 93, 034302 (2004)

9. Kanellos, A.: Topological self-organisation: using a particle-spring system simula-
tion to generate structural space-filling lattices. Masters thesis, UCL (2007)

10. Kilian, A., Ochsendorf, J.: Particle-spring systems for structural form finding. J.
IASS 46, 77–84 (2005)

11. Ostoja-Starzewski, M.: Lattice models in micromechanics. Appl. Mech. Rev. 55,
35–60 (2002)

12. Trawinski, B., Smetek, M., Telec, Z., Lasota, T.: Nonparametric statistical analysis
for multiple comparison of machine learning regression algorithms. Int. J. Appl.
Math. Comput. Sci. 22(4), 867–882 (2012)

Comparing Images Based on Histograms
of Local Interest Points

Tomasz Nowak, Marcin Gabryel, Marcin Korytkowski, and Rafa�l Scherer(B)

Institute of Computational Intelligence, Czestochowa University of Technology,
al. Armii Krajowej 36, 42–200 Czestochowa, Poland

{tomasz.nowak,marcin.gabryel,marcin.korytkowski,
rafal.scherer}@iisi.pcz.pl

http://iisi.pcz.pl

Abstract. One of the key unresolved issues of image processing is the
lack of methods for searching images similar to the reference image. This
paper focuses on objects that there are in images and presents a method
to compare the objects and search for images that contain objects belong-
ing to the same classes. Taking advantage of the fact that local keypoints
of images constitute a very good basis for further processing images,
we use them for objects comparison. More precisely, the comparison of
images is based on histograms, that are generated on the basis of the key-
points of objects contained in images. We present results of experiments
which have been conducted for various classes of objects and histograms
generated using the proposed method.

Keywords: Content-based image processing · Histogram comparison

1 Introduction

Digital image processing is a very complex issue. Humans looking at a picture
at the very first moment are able to recognize objects on the image, and see
the dependencies between them so they can conclude what the image shows. In
addition, they see differences between images, even if they represent the same
object, for example car racing or car dealer - such an interpretation is called a
semantic image analysis. The image is a collection of pixels, which are arranged
in a corresponding manner to show given situation. A collection of these pixels is
really a huge amount of data to be processed and their combinations is infinite,
therefore it is not possible to make a dictionary, which contains an index of all the
words. Therefore, image analysis is so difficult and complicated for computers
and a very serious challenge for researchers. For the time being there is no
method which would always be effective. There are many algorithms used at the
different stages of image analysis [1,4,5,7,10], however, there is not one coherent
algorithm allowing to perform fully automated image search in a large variety
of graphics data sets. The correctness of many methods depends on the input
data, which can be: distribution of colors, edges, shapes, groups or keypoints.
The method presented in this paper is based mainly on keypoints.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 423–432, 2014.
DOI: 10.1007/978-3-642-55224-3 40, c© Springer-Verlag Berlin Heidelberg 2014

424 T. Nowak et al.

There exists a large number of methods for image processing used in specific
cases, e.g. face detection [8], signature recognition [15,16], or smile detection
for photo cameras [14]. There are also many specialized methods used e.g. in
medical imaging. They are able today to locate a specific cell [12], to detect
bones [11] or other changes in the cells [2]. At the moment there is no solution
that would allow for automatic search of similar objects in images which are
semantically similar. The paper presents a method developed on the basis of
histograms generated from image keypoints. The authors note that each class
of objects generates similar histograms. Using this relationship it is possible to
extract from a database the images consisting of similar objects.

The paper is structured as follows. Section 2 shows an overview of popular
existing solutions image comparison. Section 3 shows the new method of com-
paring objects in images. The process of comparison is based on an analysis of
histograms generated for individual objects. Section 4 shows the results of exper-
iments carried out using the proposed method. Section 5 presents conclusions.

2 Previous Works

The base of content-based image retrieval in many cases are image keypoints.
One of the most popular algorithms used to generate the keypoints of a picture is
SIFT (Scale Invariant Feature Transform) [9] which was presented in 1999 by D.
Lowe. The newer version of SIFT is the SURF (Speeded Up Robust Features) [3]
algorithm which was presented in 2006 by H. Bay. SIFT is much more accurate,
but somewhat slower than SURF. The method proposed in this paper is based
on the keypoints that were generated with the help of the SURF algorithm.

The main element that makes SURF runs faster is the structure named inte-
gral images, what allows to significantly reduce the number of operations. This
structure is represented by the sum of pixels in any rectangular area in the input
image I

I∑(x, y) =
i≤x∑

i=0

j≤y∑

j=0

I(x, y) , (1)

where I is a processed image, I∑(x, y) - the sum of all pixels in the image.
Calculation of the sum of the pixels in the selected area of the image (integral
image) is presented in Fig. 1, and is described by (2).

∑
= A−B − C +D , (2)

where A, B, C and D are the coordinates of the vertices of the selected rectan-
gular area in the image. Thanks to integral images, it takes only three additions
and four memory accesses to calculate the sum of intensities inside a rectangular
region of any size. Calculation time is independent of its size, which translates
to the performance of the algorithm. SURF uses different filters (simpler ones)
than SIFT thus is faster and also somewhat less accurate (Fig. 2a) thanks to
using less complex filters. However, in many applications high accuracy is not

Comparing Images Based on Histograms of Local Interest Points 425

Fig. 1. Thanks to the integral images concept, it takes only three additions and four
memory accesses to calculate the sum of intensities inside a rectangular region of any
size.

Fig. 2. The SURF algorithm uses filters of simple construction, which are scaled during
searching keypoints. This approach allows to speed up the algorithm [3].

needed, and we can sacrifice it for the speed of the algorithm. SURF searches
interesting points at different scales. In the SIFT, scale-spaces are created from
pyramids consisting resized images which requires more resources, whereas in
SURF only filters are scaled while the image remains unchanged. This approach
allowed to substantially speed up calculations (Fig. 2b). Object recognition based
on keypoints and their descriptors is done by matching keypoints belonging to
the reference image to the keypoints contained in the test images. Many of
these comparisons will be invalid due to various noise present in the test images.
Matching is done by finding the nearest neighbour in a database of keypoints.
The nearest neighbour is defined as the keypoint with minimum Euclidean dis-
tance for the invariant descriptor vector as was described in [9]. The RANSAC
algorithm (Random Sample Consensus) [6] is also frequently used to compare
images based on keypoints. The algorithm randomly selects samples from a small
set of matching candidates and estimates homography between these points by
minimizing the least squared error. The algorithm is used usually during search

426 T. Nowak et al.

operations of the pattern object in another image, or combining images e.g. to
create panoramic photos.

The keypoints are usually used during the search of the reference object in the
test image, they are very useful while tracking the object e.g. in video sequences.
The algorithms which work on the keypoints allow to find the searched object
in another image even if it is rotated or partially hidden. Its descriptors are also
resistant to some extent to change the lighting and the scale. The keypoints,
however, are not a sufficient solution when we look for objects that are not
identical, but have to be similar to each other - they belong to the same class
of objects, e.g. two dogs. This is related with the comparison method of the
group of points in order to find their counterparts in the second image, they are
compared point by point and a small change in the value of their descriptors
contributes to the fact that they are not taken into account. Two object that
are similar to each other but not identical, contain different sets of keypoints,
therefore it is not possible to use them to find similar objects.

3 Proposed Method

Starting point of the proposed method is a set of keypoints generated using
the SURF algorithm. The main task of the algorithm is to sort keypoints that
belong to an object in the image, depending on the area of the coordinate system
where they are located. An important part is also the angle which is created
between a vector passing through the origin and the keypoint and the X-axis
of coordinate system. All the resulting vectors are grouped on the basis of the
formed angles with increments of 5 ◦, then the average vector is calculated for all
vectors included in one group. This operation is aimed at reducing the amount
of processed data. The next step is to generate a histogram, which is the basis
for the comparison of images. Below is a detailed description of the individual
steps of the proposed method.

3.1 Construction of Coordinate System

In the first step of the algorithm we determine an additional point that specifies
the center of the test object. Then, we move the origin of the coordinate system
to this point location. The new point shall be calculated on the basis of all the
keypoints found by the SURF algorithm. Determining position of the new point
to the object takes place according to the following expression

x̄ =
∑n

i=1 wixi∑n
i=1 wi

, ȳ =
∑n

i=1 wiyi∑n
i=1 wi

, (3)

where [x1, x2, ..., xn], [y1, y2, ..., yn] are coordinates of the points and [w1, w2, ...,
wn] are weights of the points. If we have the center point and other keypoints of
the object, we can proceed to classify the keypoints by angles (Fig. 3).

Comparing Images Based on Histograms of Local Interest Points 427

Fig. 3. General block diagram of the proposed method.

3.2 Classification of Keypoints on the Basis of Angles

In order to compare the keypoints using histograms they need to be correctly
grouped. In order to do this, we must move the entire coordinate system relative
to the test object. After moving the coordinate system, we create vectors between
the beginning of the coordinate system and subsequent points designated by the
SURF algorithm. Then, we normalize the length of each vector and calculate the
angles between them and the X -axis. For this purpose we use the dependency of
tangent tg of the angle α of the inclination relative to the X -axis on the linear
function directional coefficient

y = ax+ b, a = tgα . (4)

Having calculated all the angles which are formed by the vectors between the X-
axis and the keypoints, we can proceed to their grouping (Fig. 4). The keypoints

Fig. 4. The keypoints are divided into groups depending on the angle formed between
the vector that passes through the keypoint and the X-axis.

428 T. Nowak et al.

are divided into groups depending on the angle formed between the vector that
passes through the keypoint as well as the origin of coordinate system and the
X-axis. As the interval we assumed circle sector of the angle 5 ◦. The circle was
divided into the 72 equal sectors, the first sector begins with the X-axis (from 0 ◦

to 5 ◦), each next sector has 5 ◦, until value 360 ◦ is reached. All the length of the
vectors and the keypoints that are in the specified sector are counted, and on the
basis of these values a histogram is built (Fig. 5). Storing keypoints in this way
causes, that objects of similar class generate similar histograms. The similarity
of histograms allows coarse finding objects similar to each other. Transforming
keypoints into histogram allows also to reduce the amount of data that must
be stored in data base in order to perform future comparison and retrieval of
objects.

Fig. 5. In the presented method the keypoints are grouped depending on the circle
sector in which they are. On the basis of such aggregated points histogram is created,
by means of which it is possible to find similar objects to the reference object. In
addition, storing keypoints transformed into a histogram greatly reduces the amount
of required calculations needed to compare two objects as well as memory requirements.

3.3 Comparison of Histograms

For the comparison purposes the histogram is divided into four parts, in accor-
dance with the relevant quarters of the circle. The first quarter includes angles
from 0 ◦ to 90 ◦ degrees, the second from 90.1 ◦ to 180 ◦, etc. In each separate
part we calculate the absolute value of the differences of individual sectors, and
the average difference in each sector (5). Then the results from each of the quar-
ters Wl are compared with a threshold value P which was determined during the
experiments empirically, and on the basis of this comparison image is classified
as similar to a reference image or not (6)

Wl =
1
k

k∑

n=1

|zn|, |zn| = |xn − yn| , (5)

j∑

l=1

Wl ≥ P , (6)

Comparing Images Based on Histograms of Local Interest Points 429

where xn and yn are number of points found in the data range appropriate for
the reference image and test image, i is the number of sectors, k the number of
sectors in the selected quarter (j).

4 Experimental Results

The database on which we have tested our method consists of various objects
belonging to different classes: different kind of animals and everyday objects.
Namely, for our research we used the VOC2012 [13] database, from which we
selected 10 classes of objects (dog, horse, butterfly, car, computer, etc.). We
need to indicate that the focus is on developing methods to help search similar
objects, hence the database contains images of objects, mostly without the back-
ground, we used more than 500 images (Fig. 6). The main task was to find similar
objects in the database, acting only on the previously generated histograms for
all images. The proposed method is based on the assumption that similar his-
tograms are generated for the objects belonging to the same class. Figure 7 shows
a set of generated histograms for several examples of objects contained in the
tested database. As we can see, most of the objects of the same class generate
similar data distribution in the histogram. The main task was to find similar
images based on the reference image. The reference image was chosen at ran-
dom, and all found images were different from the reference image. Table 1 shows
the results of the experiment for each of the 10 tested classes, and they prove
that the search based on the histogram created on the basis of keypoints gives
satisfactory results. An average of 77 % of objects belonging to the same class
was found in the database on the basis of the proposed method. Worse results
were obtained comparing the ratio of the quantity of good images to all found
images. On average, every third image from the obtained was correct. But it
must be taken into account that the method of analysis of histograms presented
in detail in Sect. 3 is based on a very simple solution, which translates to so
many additional images in the obtained results. Using other features of images
and using additional methods of filtration can significantly reduce the amount
of incorrect images in the obtained results.

Fig. 6. Examples of images used in the experiments.

430 T. Nowak et al.

Fig. 7. Experimental results for ten tested classes. For each class, we selected five
examples of objects to illustrate the results. As we can see, each of the classes generates
different histogram. However, they are relatively similar for every class.

Comparing Images Based on Histograms of Local Interest Points 431

Table 1. Test results. The first column shows the class label for which the experiment
was conducted. The second column shows the number of found images in a database
from of all the images of the class in the database. The third column shows the number
of correct matches for tested class against the background of all the obtained results.

Class Found images from The correct images to the
label the selected class [%] entire result of the search [%]

A 91 24
B 100 45
C 60 50
D 67 32
E 100 32
F 80 29
G 64 43
H 90 27
I 60 13
J 56 17
Avg. 77 31

5 Conclusions and Future Work

In this paper we presented a new method for content-based image retrieval.
Namely, we proposed a quick search of objects belonging to the same class (e.g.
dogs, cars, computers) from a set of pictures using histograms of image interest
point descriptors. On the basis of the generated histograms and the appropriate
method of comparing them, we are able to find in the database objects similar to
the presented pattern. Using methods based only on the comparison of keypoints
it is not possible to find similar objects, because keypoints are very useful to
search for the same objects, their fragments, or to track selected objects e.g. in
video sequences. This is caused by necessity to exact match pairs of keypoints
of the respective images. However, in the situation when the test objects are
not identical, the use of only keypoints is not sufficient. Our method extends
the applicability of keypoints towards the possibility of finding objects similar to
each other. In the future, the authors plan to streamline the process of comparing
histograms and reduce the amount of redundant images in the obtained results
by including other important features of images, such as color saturation or the
shapes of objects.

Acknowledgments. The project was funded by the National Center for Science under
decision number DEC-2011/01/D/ST6/06957.

References

1. Achanta, R., Süsstrunk, S.: Saliency detection for content-aware image resizing.
In: IEEE International Conference on Image Processing, pp. 1005–1008 (2009)

432 T. Nowak et al.

2. Akgül, C.B., Rubin, D.L., Napel, S., Beaulieu, C.F., Greenspan, H., Acar, B.:
Content-based image retrieval in radiology: current status and future directions.
J. Digit. Imaging 2, 208–222 (2011)

3. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features
(SURF). Int. J. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)

4. Bazarganigilani, M.: Optimized image feature selection using pairwise classifiers.
J. Artif. Intell. Soft Comput. Res. 1(2), 147–153 (2011)

5. Chang, Y., Wang, Y., Chen, C., Ricanek, K.: Improved image-based automatic
gender classification by feature selection. J. Artif. Intell. Soft Comput. Res. 1(3),
241–253 (2011)

6. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Comm.
ACM 24, 381–395 (1981)

7. Górecki P., Artiemjew P., Drozda P., Sopy�la K.: Categorization of similar objects
using bag of visual words and support vector machines. In: Proceedings of 4th
International Conference on Agents and Artificial Intelligence, ICAART’12, pp.
231–236 (2012)

8. Kisku, D.R., Rattani, A., Grosso, E., Tistarelli, M.: Face identification by SIFT-
based complete graph topology. In: IEEE Workshop on Automatic Identification
Advanced Technologies 2007, pp. 63–68 (2007)

9. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput.
Vis. 2(60), 91–110 (2004)

10. Ryga�l, J., Najgebauer, P., Romanowski, J., Scherer, R.: Extraction of objects from
images using density of edges as basis for GrabCut algorithm. In: Rutkowski, L.,
Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2013, Part I. LNCS, vol. 7894, pp. 613–623. Springer, Heidelberg (2013)

11. Shubhangi, D.C., Raghavendra, S., Chinchansoor, P., Hiremath, S.: Edge detection
of femur bones in X-ray images - a comparative study of edge detectors. Int. J.
Comput. Appl. 42(2), 13–16 (2012)

12. Tek, F.B., Dempster, A.G., Kale, I.: Malaria parasite detection in peripheral blood
images. In: British Machine Vision Conference (2006)

13. Visual Object Classes Challenge 2012. http://pascallin.ecs.soton.ac.uk/challenges/
VOC/voc2012/

14. Whitehill, J., Littlewort, G., Fasel, I., Bartlett, M., Movellan, J.: Toward practical
smile detection. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2106–2111 (2009)

15. Zalasiński, M., �Lapa, K., Cpa�lka, K.: New algorithm for evolutionary selection of
the dynamic signature global features. In: Rutkowski, L., Korytkowski, M., Scherer,
R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II.
LNCS, vol. 7895, pp. 113–121. Springer, Heidelberg (2013)

16. Zalasiński, M., Cpa�lka, K.: Novel algorithm for the on-line signature verification
using selected discretization points groups. In: Rutkowski, L., Korytkowski, M.,
Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013,
Part I. LNCS, vol. 7894, pp. 493–502. Springer, Heidelberg (2013)

Improved Digital Image Segmentation Based
on Stereo Vision and Mean Shift Algorithm

Rafa�l Grycuk, Marcin Gabryel, Marcin Korytkowski, Jakub Romanowski,
and Rafa�l Scherer(B)

Institute of Computational Intelligence, Czȩstochowa University of Technology,
Al. Armii Krajowej 36, 42-200 Czȩstochowa, Poland

{rafal.grycuk,marcin.gabryel,marcin.korytkowski,jakub.romanowski,
rafal.scherer}@iisi.pcz.pl

http://iisi.pcz.pl

Abstract. Segmentation of digital images is an important issue of
object recognition. This method of image processing allows to determine
single object areas in images. This paper presents an improved segmen-
tation method which gives a possibility to detect single objects in images
by using the disparity map algorithm in connection with the mean shift
pixel grouping algorithm. Images are processed in grayscale where range
of colors is in from 0 to 255. Grayscale allows to detect objects on the
basis of pixels brightness. To achieve this purpose we used one of group-
ing algorithms known as mean shift. Images obtained from mean shift
are in the form of separated images which could be subject of further
processing. Important feature of mean shift processing is that we obtain
the results in the form of backgroundless images containing important
objects from the input image.

Keywords: Content-based image processing · Stereo vision · Image
segmentation

1 Introduction

The main goal of this research is to perform segmentation of image based on
stereo vision images. Segmentation is the process of dividing the input image on
the homogeneous objects having similar properties. Segmentation is one of the
most complicated image processing fields, as it is extremely difficult to obtain
a uniform, homogeneous objects from images containing background or overlap-
ping areas. There are many algorithms for object extraction, but none of them
is universal for all types of images [1]. This paper aim is to present an algorithm
that uses stereo-vision images to extract objects. This section presents some
of the methods of image segmentation. The proposed algorithm uses several
methods which are presented in Sect. 2. Sections 3 and 4 describe the proposed
method and obtained results. In the literature, there are many methods of image
segmentation, which can be split into the following groups:

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 433–443, 2014.
DOI: 10.1007/978-3-642-55224-3 41, c© Springer-Verlag Berlin Heidelberg 2014

434 R. Grycuk et al.

– Methods that operate on image areas - homogeneity of pixel neighborhoods,
– Methods based on thresholding (edge detection), consisting in determining

the boundaries and contour of objects,
– Segmentation based on pattern matching to a specified object [18].

The first one consists in determining the coherent areas. i.e. direct (B-neighbors)
and indirect (N -neighbors) neighbors of the selected point.

Fig. 1. Determining of neighborhood

Figure 1 illustrates the method of determining the pixels neighbourhood. For
the selected pixel (x, y) in its direct neighborhood there are pixels with common
sides of the pixel. In this case all pixels are marked in gray (0,2,4,6). As can be
seen, B-neighborhood pixels are even numbers. In contrast, N -neighborhood are
pixels having common corner with the selected pixels (1,3,5,7). There are two
basic types of neighborhood: 4-neighborhood and 8-neighborhood.

Fig. 2. A: 4-neighborhood, B: 8-neighborhood [16]

Figure 2A,B illustrate the neighborhood. Two points p and q are neighbors,
if p is included the 4-neighborhood of point qN4(q) and if q is included in 4-
neighborhood of the point pN4(p). Similarly, in the case of 8-neighborhood.
Coherence in the sense 4- or 8-neighborhood can refer as well to the contours
and areas [11,16].

Another type of segmentation is based on merging areas. It divides the image
into individual areas on the basis of thresholding techniques. The main advan-
tage of this solution is the simplicity of implementation. There is however a
problem with the selection of thresholds and it usually requires additional logic
filtration to remove isolated pixels and operations related to the anti-aliasing or
standardization inside them [12,20,21].

Digital Image Segmentation Based on Stereo Vision and Mean Shift 435

1.1 Selected Segmentation Methods

Use of stereo-vision methods in image segmentation has been already proposed
by Katto et al. [15]. However, their method uses image fusion and a multi-camera
system. Their algorithms require images from four cameras and they also used
k-means clustering. In this case a certain number of groups is required. In our
approach we use the mean shift algorithm which does not require setting k para-
meter [13,15]. Another interesting algorithm referring to this topic is the work
of Toru in which segmentation uses split and merge algorithm [5,19]. However in
the case of multiple objects, this method does not perform perfectly. They also
did not show the results of tests for objects in a heterogeneous background.

2 Algorithms Used in the Proposed Approach

During the experiments, a number of algorithms and methods were used to
achieve the results. This section describes the most important of them.

2.1 Stereo Vision and Disparity Map

An exceptionally interesting field of image processing is stereo vision and related
algorithms which can be generally divided into global and local algorithms. The
first group is characterized by a high cost of computing and is usually outside
of scientific research. The second group of algorithm is less precise, but much
faster and is used in many applications, for example to create 3D scenes. Local
algorithms are also known as algorithms based on areas. They calculate the
difference for each pixel based on the photometric properties of neighboring
pixels. In stereo vision we could create a map of distances (disparity map). It
is created on the basis of two video cameras positioned in one axis but offset
relative to each other, as well as arrangement in a human eye. For most of the
pixels in the left camera image there are equivalent pixels in the right camera
image (with suitable offset). Differences of coordinates of the pixels is called
disparity. It is inversely proportional to the distance from the camera. Disparity
can be expressed by the formula d = bf

z [3], where z is the distance between
camera and the observed object, b is the distance between cameras, while f is
the focal length of the camera. Figure 3 presents a diagram illustrating the above
values [3].

Fig. 3. The method of calculating the disparity map [8]

436 R. Grycuk et al.

2.2 Mean Shift Clustering Algorithm

Mean shift is a clustering algorithm which does not require setting the number
of output clusters or their shapes. The number of parameters of the algorithm
is, in fact, limited to the radius [3]. The basic version of the algorithm was pre-
sented in the two-dimensional Euclidean space. The task of the algorithm is to
compute the Euclidean distance between each point and all other points. Then
the groups measures are calculated and assignment to the selected group. Mean
shift determines the points in d-dimensional space as a probability density func-
tion, where the denser regions correspond to local maxima [2]. For each point
in this space there is performed a procedure of gradient increase until coverage.
Points assigned to one agent of group (stationary point) are considered to be a
part of the group and form a single cluster (group) [9]. Given n points xi ∈ Rd ,
multivariate kernel density function K(x) is expressed using the following equa-
tion [4,9]

f̂k =
1

nhd

n∑

i=1

(
x− xi

h

)

, (1)

where h is a radius of the kernel function. The kernel function is defined as follows
[4,9] K(x) = ckk(‖ x ‖2), where ck is a normalization constant. If estimator
density gradient is given it is possible to make the following calculations [6]

∇f̂(x) =
2ck,d

nhd+2

[
n∑

i=1

g

(

‖ x− xi

h
‖2

)]

term1

[∑n
i=1 xig

(‖ x−xi

h ‖2)
∑n

i=1 g
(‖ x−xi

h ‖2) − x

]

term2

, (2)

where g(x) = −k′(x) is derivative of selected kernel of function. First term
(term1) of formula 2 allows to define the density, instead second term (term2) is
named as mean shift vector m(x). Points in the direction of maximum gain and
proportional to the density gradient can be determined at the point x obtained
with the kernel function K.

2.3 Blob Extraction

Blob extraction is one of the basic methods of image processing. It allows to
detect and extract a list of blobs (objects) in the image. Unfortunately, obtain-
ing homogeneous objects from an image as a list of pixels is extremely compli-
cated. Especially when we are dealing with a heterogeneous background. In other
words, the objects containing multicolored background. There are many methods
for extracting objects (blobs) from image [5]. In this paper we use methods imple-
mented in the AForge.NET library. These algorithms are described by Andrew
Kirillov [14]. There are four types of algorithms: Convex full, Left/Right Edges,
Top/Bottom Edges, Quadrilateral. Figure 4 describes the blob detection meth-
ods. Figure 6A illustrates Quadrilateral method. As can be seen, round the edges
of the objects are not detected correctly. Much better results are obtained by

Digital Image Segmentation Based on Stereo Vision and Mean Shift 437

Fig. 4. Comparison of methods for blob detection used in the AForge.NET library [14]

the algorithm Top/Bottom Edges (Fig. 6C). Edges of objects are detected mostly
correctly, with individual exceptions. The Left/Right Edges method behaves sim-
ilarly (Fig. 6B). The last method has a problem with the detection of vertices
inside figures, e.g. star type objects (Fig. 6D).

3 Proposed Method for Stereo Images Segmentation

The proposed segmentation algorithm can be divided into several stages. In this
subsection we present them in a simplified block diagram.

We can distinguish seven stages of the algorithm. On the input of the algo-
rithm we specify stereo images (left, right). Based on these images we create a
disparity map as a grayscale image. The next step is to create a dictionary struc-
ture that stores the following items (key - value). The key is a pixel intensity,
defined in grayscale while the value is a list of all pixels with an intensity equal

Fig. 5. Block diagram of the proposed algorithm

438 R. Grycuk et al.

to the value of the key. So formed structure can be suitable for further image
processing. The next step of the algorithm is to filter the upper or lower values
of the dictionary (depending on the image type). This step allows to remove
unnecessary pixels from the image. Objects colors closer to the observer (cam-
eras), are shifted toward white, while distant objects have color shifted toward
black, it is possible to cut out insignificant pixels. In obtained image we com-
bine neighbor intensities. This step is based on combining the nearest pixels.
This is possible due to the equal distance of objects in the image. Only the
pixels of the same object can be combined. Another element of the proposed
method is the clustering algorithm (mean shift). This element of the algorithm
is extremely important because it significantly increase the division of the image
into objects. At the output we obtain subjected pixels grouping, which allows to
uniquely identify objects. The penultimate step is the detection and removal of
unnecessary objects. As a result of the creation of the disparity map we obtain
small groups of pixels that do not fit into any objects. They must be removed.
The final step is to cut out objects from the input image and to impose them
to those obtained in the previous steps of the algorithm. As a result of the pro-
posed algorithm we obtained segmented images. Steps of proposed algorithmic
solution:

1. Creating a disparity map based on the stereo-images.
2. Create of the dictionary structure (intensity, pixel count),
3. Filter intensities,
4. Combine neighboring intensities,
5. Run cluster algorithm on obtained intensities,
6. Find and remove insignificant (small) objects.
7. Extract grayscale objects from original image in the RGB scale.

Now we will analyse the proposed method in a more detailed way. For two input
stereo-images it is possible to create a disparity map. This is a grayscale image,
reflecting the position of objects on stereo images. In the proposed framerowrk,
we use the differential mapping implementation written by E. Georgiou [7].

The next step is to create a dictionary structure described earlier. The next
stage of the algorithm is to filter out unnecessary (insignificant) intensities. For

Fig. 6. Generation disparity map. The left (A) and middle (B) are stereo images. Right
(C) is the disparity map

Digital Image Segmentation Based on Stereo Vision and Mean Shift 439

Fig. 7. Combining similar pixel clusters

this purpose we use high/low pass filter. The algorithm parameter g is a threshold
value – intensities of value below g are filtered out. Then, pixels are combined
by similar intensity. Figure 7 shows the result of this process.

This step is very important, because we need distinctly different data at
the input of the mean shift algorithm (the next step). Clusters must have clear
boundaries. The next step is extremely interesting as we use mean shift to cluster
pixel intensities. After this process we obtain pixel clusters representing specific
patterns of objects (blobs). The only parameter of this step is value h (see
Sect. 2.2) and it has a significant impact on the quantity and size of the groups.
The result of the algorithm is shown in Fig. 8A.

Fig. 8. The results of the mean shift algorithm

The structure of objects is clearly extracted. However, it can also be observed
that there are pixels not associated with the object. In other words, sometimes
blobs not connected with extracted object (e.g. lamp) are sometimes detected.
In order to remove these groups of pixels, we use blob detection methods. Blobs
with the area less then the specified value of the image are removed to extract
only the object. This step was implemented with the support of the AForge.Net

440 R. Grycuk et al.

library (Computer Vision module). Figure 8B illustrates the effect of this part
of the algorithm.

The final step of the algorithm is to extract objects in grayscale from original
RGB image. In other words, RGB pixel values must be replaced by pixels in
grayscale. This step is not particularly interesting, but it allows to obtain the
RGB scale results. The result of the last stage of the proposed algorithm is shown
in Fig. 8C.

4 Experimental Results

The proposed algorithm has been tested on a number of stereo images. Some
of the simulations are presented in this section. The images are arranged in the
following order: Fig. 9(A) and (B) - stereo images, Fig. 9(C) - disparity map,
Fig. 9(D) - the segmented objects.

4.1 Segmentation of Multiple Objects

First image used in experiments contains many objects. They are in fairly close
proximity relative to the cameras. Thus the algorithm has been tested for this
type of images. Figure 9 illustrates important steps of the algorithm on the
selected image.

As can be seen, the algorithm correctly segmented input image into objects.
The resulting files containing images are presented in Fig. 9D.

Fig. 9. The output images, objects: head, lamp, camera, table

Digital Image Segmentation Based on Stereo Vision and Mean Shift 441

4.2 Extraction of Distant Objects

During the simulations we have tested the case where the distance to the object
is considerable. In this experiment we use different pair of images from that pre-
sented and analyzed in Sect. 3. Similarly, as in the previous case we presented
algorithm steps in Fig. 10. The result of the experiment is also correct and con-
sistent with the objectives of the proposed method. Since only distinctive object
is a lamp, it has been extracted from the image. It can be considered, that the
proposed method is valid for both types of objects, i.e. that are near and far
away from the observer (cameras).

Fig. 10. The output image, object: distant lamp

5 Final Remarks

In this paper we proposed a novel method for object extraction from stereo
images. The proposed method of stereo image segmentation shows high flexi-
bility. The experiments demonstrated the presented method is suitable for both
types of images, close and far away from the observer (cameras). The algorithm
works well when there is a heterogeneous background of the analyzed image.
During the simulations we have encountered the problem of determining the
value of the parameter h (mean shift algorithm). Although the mean shift does
not require determining the cluster count, it require the parameter h. However, it
is possible to develop a method for estimation of this parameter. The algorithm
allows to extract multiple objects from image, so it is possible to further use of
the newly created objects. The next step in our research will be export of seg-
mented images to the database and develop method for fast content-based image
search. We will also study the mean shift algorithm working in a time-varying
environment using techniques proposed in [10,17].

442 R. Grycuk et al.

Acknowledgments. The project was funded by the National Center for Science under
decision number DEC-2011/01/D/ST6/06957.

References

1. Chang, Y., Wang, Y., Chen, C., Ricanek, K.: Improved image-based automatic
gender classification by feature selection. J. Artif. Intell. Soft. Comput. Res. 1(3),
241–253 (2011)

2. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal.
Mach. Intell. 17(8), 790–799 (1995)

3. Chowdhury, M.M.H., Bhuiyan, M.A.A.: A new approach for disparity map deter-
mination. Daffodil Int. Univ. J. Sci. Technol. 4(1), 9–13 (2009)

4. Comanciu, D., Meer, P.: Mean shift analysis and applications, computer vision. In:
The Proceedings of the 7th IEEE International Conference, pp. 1197–1203 (1999)

5. Damiand, G., Resch, P.: Split and merge algorithms defined on topological maps
for 3D image segmentation. Graph. Models 65(1–3), 149–167 (2003)

6. Derpanis, K.G.: Mean Shift Clustering. http://www.cse.yorku.ca/kosta/CompVis
Notes/mean shift.pdf (2005)

7. Evangelos, G.: Stereo Correspondence Disparity Map with Emgu CV, http://
mymobilerobots.com/myblog/ (2012)

8. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function,
with applications in pattern recognition. IEEE Trans. Inf. Theor. 21(1), 32–40
(1975)

9. Georgescu, B., Shimshoni, I., Meer, P.: Mean shift based clustering in high dimen-
sions: a texture classification example. In: Ninth IEEE International Conference
on Computer Vision, vol. 1, pp. 456–463 (2003)

10. Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of
time-varying regression. Ann. Inst. Stat. Math. 35(2), 215–228 (1983)

11. Haralick, R.H., Shapiro, L.G.: Image segmentation techniques. Comput. Vis.
Graph. Image Process. 29(1), 100–132 (1985)

12. Jiang, X., Bunke, H.: Edge detection in range images based on scan line approxi-
mation. Comput. Vis. Image Underst. 73(2), 183–199 (1999)

13. Katto, J.; Ohta, M.: Novel algorithms for object extraction using multiple camera
inputs. In: Proceedings of International Conference on Image Processing, pp. 863–
866 (1996)

14. Kirillov, A.: Detecting some simple shapes in images. AForge.NET. http://www.
aforgenet.com/articles/shape checker/ (2010)

15. Marugame, A., Yamada, A., Ohta, M.: Focused object extraction with multiple
cameras. IEEE Trans. Circ. Syst. Video technol. 10(4), 530–540 (2000)

16. Nakib, A., Najman, L., Talbot, H., Siarry, P.: Application of graph partitioning
to image segmentation. In: Bichot, C.-E., Siarry, P. (eds.) Graph Partitioning, pp.
251–274. ISTE Wiley, London (2011)

17. Rutkowski, L.: On Bayes risk consistent pattern recognition procedures in a quasi-
stationary environment. IEEE Trans. Pattern Anal. Mach. Intell. 4(1), 84–87
(1982)

18. Schreiber, J., Schubert, R., Kuhn, V.: Femur Detection in Radiographs Using
Template-Based Registration, Bildverarbeitung fur die Medizin. Springer, Heidel-
berg (2006)

Digital Image Segmentation Based on Stereo Vision and Mean Shift 443

19. Tamaki, T., Yamamura, T., Ohnishi, N.: Image segmentation and object extraction
based on geometric features of regions. In: Proceedings of SPIE - The International
Society for Optical Engineering. vol. 3653, pp. 937–945 (1999)

20. Wani, M.A., Batchelor, B.G.: Edge-region-based segmentation of range images.
IEEE Trans. Pattern Anal. Mach. Intell. 16, 314–319 (1994)

21. Wu, Q., Yu, Y.: Two-level lmage segmentation based on region and edge integra-
tion. In: Sun C., Talbot H., Ourselin S., Adriaansen, T. (eds.) Proceedings of the
VIIth Digital Image Computing: Techniques and Applications, pp. 957–966 (2003)

Minisymposium on GPU Computing

Evaluation of Autoparallelization Toolkits
for Commodity GPUs

David Williams1(B), Valeriu Codreanu1, Po Yang2, Baoquan Liu2,
Feng Dong2, Burhan Yasar3, Babak Mahdian4, Alessandro Chiarini5,

Xia Zhao6, and Jos B.T.M. Roerdink1

1 University of Groningen, Groningen, The Netherlands
d.p.williams@rug.nl

2 University of Bedfordshire, Luton, UK
3 RotaSoft Ltd, Ankara, Turkey

4 ImageMetry, Prague, Czech Republic
5 Super Computing Solutions, Bologna, Italy

6 AnSmart, Wembley, UK

Abstract. In this paper we evaluate the performance of the OpenACC
and Mint toolkits against C and CUDA implementations of the standard
PolyBench test suite. Our analysis reveals that performance is similar in
many cases, but that a certain set of code constructs impede the ability
of Mint to generate optimal code. We then present some small improve-
ments which we integrate into our own GPSME toolkit (which is derived
from Mint) and show that our toolkit now out-performs OpenACC in
the majority of tests.

Keywords: GPU computing · Autoparallelization · Evaluation

1 Introduction

The last ten years have seen the widespread adoption of parallel computing
hardware in the form of Graphics Processing Units (GPUs). These GPUs have
steadily increased in programmability and have found widespread application in
a number of specialist fields [1], but typically require a developer to be experi-
enced with OpenCL or CUDA and to have a strong understanding of the GPU’s
parallel architecture. This acts as a barrier to adoption in environments where
such specialised knowledge is not readily available.

The development of automatic parallelization tools [2–5] has the potential to
shift this balance and encourage more wide-spread adoption of GPU acceleration.
The OpenMP standard [8] has already had a significant impact on the use of
multiple cores in CPU applications, and we believe that such semi-automatic
approaches are also the most promising approach to easily bringing code to the
GPU. These tools typically work by augmenting the input C/C++ code with
compiler directives which mark regions to be parallelized, and then automatically
generating the required OpenCL/CUDA code for device initialization, memory

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 447–457, 2014.
DOI: 10.1007/978-3-642-55224-3 42, c© Springer-Verlag Berlin Heidelberg 2014

448 D. Williams et al.

transfers and kernel implementation. Based on this we have adopted the open
source Mint tool [6] as a foundation of our research efforts.

In this paper we provide an evaluation of Mint against OpenACC [7] (which
is emerging as the standard for directive-based autoparallelization) with the par-
ticular aim of identifying and implementing improvements to Mint. We perform
this evaluation against the PolyBench [11] test suite after adding OpenACC,
Mint, and OpenMP directives. We then identify the areas in which Mint is not
competitive, and in the second half of the paper we present some changes which
we include in our enhanced version of Mint (known as the GPSME toolkit [9]).

2 Related Work

OpenACC is a relatively new technology, with the first version of the standard
being finalised in 2011. Coupled with the lack of freely available and mature
implementations, this means it has not been widely evaluated by the academic
community. The small number of available evaluations have focused primarily
on small test cases [10,18] though some application to real-world code has also
been performed [19,20]. In all cases significant speedup was observed on sections
of parallelizable code, and it should be noted that the OpenACC compilers are
still undergoing rapid development due to the standard being so new.

To our knowledge, work evaluating Mint has been limited to that undertaken
by its authors. The original Mint paper [6] claimed its performance was twice
that of the PGI Accelerator model when using 3D heat simulation as a test case.
The PGI Accelerator model was the predecessor to PGI’s OpenACC compiler, so
it is interesting to see how the performance has changed. A later paper presented
an application of Mint to earthquake simulation and demonstrated an order of
magnitude performance increase over the CPU reference implementation [13].

We have chosen to use an existing benchmark suite rather than to design our
own, in order to minimise the bias which would be implicit in such a process.
The PolyBench polyhedral benchmark suite [11] was designed to test the perfor-
mance of a number of kernels from various application domains, and was recently
extended with GPU implementations of most of the tests [12]. This provides an
ideal basis for evaluating the performance of autoparallelization tools.

3 Methodology

The PolyBench test suite contains 15 test programs in the domains of convo-
lution, linear algebra, data mining and stencil operations. The original imple-
mentations [11] were in C but GPU implementations in OpenCL and CUDA
were added later [12] by Grauer-Gray et al. We do not consider these GPU
implementations to be optimal as we were able to obtain equal or better results
than most of them using our autoparallelization tools (see Sect. 4), but they still
provide a useful reference point in the performance analysis. We consider only
the CUDA implementation as there are known differences between OpenCL and
CUDA performance [14,15], and our tools use CUDA as a backend anyway.

Evaluation of Autoparallelization Toolkits for Commodity GPUs 449

Table 1. Optimal thread block sizes were selected by testing a range of parameters and
selecting the best via an auto-tuning process. The sizes are similar between OpenACC
and GPSME because they are running on the same hardware. Thread blocks are two-
dimensional in most cases, except for those ending with ‘×1’ which are one-dimensional.

Benchmar OpenACC GPSME Benchmark OpenACC GPSME

2DCONV 32 × 16 32 × 16 FDTD-2D 64 × 2 128 × 2
2MM 32 × 32 32 × 32 GEMM 32 × 32 32 × 32
3DCONV 8 × 128 8 × 128 GESUMMV 8 × 1 32 × 1
3MM 32 × 32 32 × 32 GRAMSCHM 16 × 16 16 × 16
ATAX 32 × 1 16 × 1 MVT 128 × 1 128 × 1
BICG 16 × 1 32 × 1 SYR2K 8 × 8 8 × 8
CORR 64 × 8 64 × 16 SYRK 8 × 128 8 × 128
COVAR 64 × 2 64 × 16

Within this work we will sometimes need to refer to individual tests within
PolyBench. We do this by using the name which PolyBench assigns to each
test, written in upper case letters. For example, the ‘ATAX’ test uses matrix
transpose and vector multiplications while the ‘SYRK’ test contains symmetric
rank-k operations. A full list of test names and descriptions is provided with
PolyBench [11].

We are primarily concerned with measuring the performance of Mint and
OpenACC with respect to each other, but a comparison to CPU performance
is also useful as a baseline. In the interests of fairness this CPU implementation
should take advantage of all available cores and threading opportunities. We
have therefore added OpenMP directives to each of the PolyBench tests.

The performance of CUDA programs (and, by extension, the output of our
tools) is often highly dependent on the way in which the problem space is par-
titioned into thread blocks within the application. The optimal size for these
thread blocks depends on a number of factors including the nature of the work
done in the kernel, the need for synchronization between threads, the data access
pattern, and the target hardware. Prior to performing the evaluation we wrote
an automated system to compile each test in a large number of thread block con-
figurations, and then chose to perform our tests using the configuration which
showed the greatest performance (see Table 1). A similar benchmarking approach
is described in [17].

3.1 Modifications to PolyBench

A few of the benchmarks required minor modifications in order for their
computational pattern to be successfully captured by the Mint and OpenACC
programming models. These modifications affected the ATAX, BICG, and
GRAMSCHMIDT tests as they contained two or three-level nested loops with
inter-loop dependencies. These were resolved by splitting the loop into two

450 D. Williams et al.

Fig. 1. Speed-up of GPU implementations compared to OpenMP on the default
dataset. The values are in logarithmic scale.

successive nested loops. The modifications affected all the parallelization tools
equally as each test is only implemented once but with multiple sets of pragmas
applied.

Additionally, we adjusted the timing code for the CUDA manual implemen-
tations to be inclusive of the data transfer time as this was previously omitted.
The time taken to transfer data to and from the GPU is often significant and
can dominate algorithm runtime in some cases [16]. By accounting for this we
help ensure a fair comparison.

3.2 Test Configuration

The test machine is comprised of a quad-core Intel Core i7-2600K 3.4 GHz CPU
and an NVidia GTX680 GPU. All tests were performed under Ubuntu 12.04
LTS using GCC 4.6 as the C/OpenMP compiler, NVCC (from the CUDA 5.0
SDK) as the CUDA compiler, and PGI 13.1 as the OpenACC compiler. All tests
were compiled on maximum optimization settings.

4 Initial Results

Initial performance measurements for the CUDA, Mint and OpenACC versions
of each of the 15 tests are shown in Fig. 1. These measurements are all shown
relative to the baseline set by the OpenMP implementation running on the CPU
and using all cores. Note that the tests are performed using the default dataset
size provided by the PolyBench suite.

It can be seen that for many tests the performance of the three implementa-
tions is similar. Among these cases there is usually a small amount of variation
in the exact performance distribution. When the CUDA version is faster it can
be attributed to missed optimization opportunities in the autogenerated code,
and when the CUDA version is slower we found that autogenerated code was
using pitched memory allocations to reduce the memory coalescing penalties. This

Evaluation of Autoparallelization Toolkits for Commodity GPUs 451

Fig. 2. Speed-up of GPU implementations compared to OpenMP on the enlarged
dataset. The values are in logarithmic scale.

penalty is heavily incurred in the case of SYR2K, the manual version being more
than 30 % slower than the automatic ones, with the kernel code being similar.

Furthermore we can observe that the performance of Mint and OpenACC is
generally very similar, but that Mint has a slight edge in the majority of cases.
An analysis of the output code has suggested that this is due to better register
usage in the Mint code, as well as some redundant instructions in the OpenACC
version (probably reflecting its more general-purpose nature).

More interestingly, there are a few tests which are notably different from the
generalizations described above. Most striking is the large performance difference
between OpenACC and Mint in the CORR, COVAR and GRAMSCHMIDT
tests. This can be explained by the triangular nature of the nested loops in
these tests, and is further discussed in Sect. 5.1 where we address this problem.

Three of the tests (ATAX, BICG, GESUMMV) actually showed reduced per-
formance when running on the GPU. These tests made use of a one-dimensional
thread block which did not contain enough work to benefit from offloading to
the GPU, and the additional communication overhead caused an overall slow-
down. However, it can be observed that Mint performed significantly better than
OpenACC in these cases, and this is due to its support of the tile and chunksize
parameters. OpenACC could not have the same degree of control with the vec-
tor, worker and gang parameters, and will include a tile parameter in OpenACC
version 2.0.

There are other differences arising from the organization of the parallel loops.
The 3DCONV benchmark is composed of a three-level nested for-loop. In the
manual CUDA version the outer for-loop is iterated on the CPU, and only the
inner two levels of the loop nest are offloaded as a 2D thread block. The automatic
approaches use a 3D thread block, reducing thus the CPU−GPU communication.
The same happens with the CORR, COVAR and GRAMSCHMIDT examples.

Before moving on to make improvements to Mint in the next section, we
first ran the tests again with all the dataset sizes doubled in each dimension. All
other parameters were left the same and the results can be seen in Fig. 2.

452 D. Williams et al.

#pragma mint copy(data,toDevice, M, N)

#pragma mint copy(mean,toDevice, M)

#pragma mint copy(symmat,toDevice, M, N)

#pragma mint parallel

{

... //Some code omitted for brevity

/* Calculate the m * m covariance matrix. */

#pragma mint for nest(2) tile(16, 16)

for (j1 = 0; j1 < M; j1++)

{

for (j2 = j1; j2 < M; j2++)

{

... //Some code omitted for brevity

}

}

}

#pragma mint copy(symmat,fromDevice, M, N)

Algorithm 1. The covariance code from PolyBench with Mint directives added.

In these results for the enlarged dataset we can see that the speed difference
between the GPU approaches and the CPU implementation is increasing when
compared to the default dataset. This happens because most of the benchmarked
problems have a complexity which is quadratic with respect to the dataset size
and this increases the amount of work performed by each thread. Even at this
dataset size, the ATAX, BICG and GESUMMV tests perform better on the
CPU, but the Mint model continues to provide faster code than OpenACC.

5 Mint Enhancements

As part of our GPSME project [9] we have developed a number of extensions to
Mint to create a new tool known as the ‘GPSME toolkit’. We have added signif-
icant functionality (C++ and multi-file support, preliminary OpenCL output,
etc.) but this is not used for the PolyBench tests and is not the focus of this
paper. Instead, we wish to use the insight we have gained in Sect. 4 to improve
the performance characteristics of our toolkit relative to OpenACC.

5.1 Supporting Triangular Loops

In Sect. 4 it was stated that three of the tests (CORR, COVAR and GRAM-
SCHMIDT) suffered from poor performance in Mint due to the usage of trian-
gular loops. A problematic section of code from the COVAR test is shown in
Algorithm 1, complete with the Mint directives which were added.

The key issue is the dependency of the initial value of j2 in the inner loop on
the current value of j1 in the outer loop. Although Mint does process this loop

Evaluation of Autoparallelization Toolkits for Commodity GPUs 453

j2

j1

j2
Thread block with
all threads occupied

Thread block with
some threads occupied

Thread block with
no threads occupied

Occupied thread

Unoccupied thread

Fig. 3. Iteration space of the two-level covariance loop

it fails to understand the dependencies, and so generates non-compilable output
code in which variables are initialised by other variables which have not yet
been declared. Replacing ‘nest(2)’ with ‘nest(1)’ allowed parallelization of only
the outermost loop to proceed as expected, but the performance was significantly
less than that obtained from OpenACC (see Sect. 4).

An extension in our GPSME toolkit has allowed this situation to be handled
naturally. A rectangular iteration space is defined by the full range of values
which j1 and j2 can assume, and just over half of these points fall within the
triangular region processed by the test (see Fig. 3). A grid of CUDA thread
blocks is overlaid on the rectangular iteration, and the CUDA kernel contains
a test to determine whether a given set of thread indices actually form part of
the triangular region. With this in mind, a thread block can be categorized as
being in one of three states with respect to the number of threads which need
to execute:

– Full: All threads are part of the triangular iteration space and must be exe-
cuted. No processing capability is wasted in this scenario.

– Empty: None of the threads are part of the triangular iteration space. All
threads will fail the membership test implemented in the kernel and return
immediately.

– Half-full: In this case the running time of the thread block is determined by
the threads which do need to run. Threads which do not need to run must
still wait upon those that do, and this represents some wasted processing
capability.

With this new addition, the performance of the output code is greater than
the one generated with OpenACC, and is more than 30 times faster than the
one generated by the base Mint (full results presented later in Sect. 6).

454 D. Williams et al.

Table 2. Timing improvement for the 2MM benchmark

2MM-1D [s] 2MM-2D [s] SYR2K-1D [s] SYR2K-2D [s]

OpenACC 3.921 8.927 16.671 32.272
GPSME 3.814 2.812 17.01 12.08

The GPU’s streaming architecture is not well-suited to processing conditional
logic, but in our case only the half-full blocks exhibit the problematic divergent
behavior. The proportion of blocks which are half-full decreases as the problem
size grows and this results in a net gain overall.

The number of idle processing elements in the ‘half-full’ category is depen-
dant upon the size of the thread block, and so a smaller thread block size results
in better utilization. However, CUDA applications in general benefit from mak-
ing thread blocks rather large (in the absence of synchronization concerns) and
this outweighs the benefits of better utilization for the CORR, COVAR and
GRAMSCHMIDT examples.

5.2 Single-Dimensional vs. Multi-dimensional Arrays

Another advantage to the GPSME model is that it finds more optimization
opportunities when applied to code that uses multi-dimensional arrays. The opti-
mizations are in terms of better register reuse, as well as better shared memory
usage. We’ve tested this assumption on some of the tests. For the 2MM and
SYR2K tests, a further 25 % performance increase is obtained when using two-
dimensional addressing instead of the default flattened array addressing.

The changes from single-dimensional to multi-dimensional array accesses
were done in a manual manner, as in Polybench all tests are written with
flattened array accesses. However, with extra hints from the programmer the
GPSME toolkit should be able to treat the single dimensional arrays as multi-
dimensional ones.

An interesting observation is that when faced with the same two-dimensional
arrays in the 2MM and SYR2K tests, the OpenACC compiler reports more than
two times worse performance, as can be observed in Table 2. The reasons for this
are not currently clear and will be the subject of some future investigation.

6 Final Results

The results obtained after implementing the proposed enhancements are pre-
sented in Fig. 4. The tests which benefited from our enhancements are shown in
strong colors, with other tests faded out to indicated that they have not changed
since the initial results. The improvements of GPSME over Mint is shown by the
hatched bars. These examples rely on triangular loop support, and our improve-
ment has enhanced their performance dramatically.

Evaluation of Autoparallelization Toolkits for Commodity GPUs 455

Fig. 4. Speed-up of GPU implementations compared to OpenMP on the enlarged
dataset. The faded bars correspond to tests which have not changed since Fig. 2, and for
the three tests which have changed the hatched bars show how GPSME has improved
over Mint.

We note that the improvements observed from multi-dimensional addressing
are not included in this table, as it is not implemented at this point as an
automatic transformation.

7 Conclusions

Automatic parallelization through compiler directives is proving to be an effec-
tive method of maximising computing resources, and we expect that the coming
years will see the approaches achieving the kind of widespread adoption that
we currently see with OpenMP. We have shown that both OpenACC and also
Mint/GPSME are capable of delivering code with a performance to meet or
exceed that provided by the hand-written code supplied with PolyBench, and
that the modifications presented in this paper have been enough to push it into
the lead on the PolyBench tests.

Future work will revolve around automating some changes which were made
manually for the purpose of this paper (such as the enhancements in Sect. 5.2),
as well as identifying further opportunities for optimization. It would also be
interesting to extend our tests to other paralellization toolkits [2–5] and manual
implementations in order to perform a more comprehensive evaluation of the
field.

References

1. Owens, J.D., Luekbe, D., Govindaraju, N., Harris, M., Krger, J., Lefohn, A.E., Pur-
cell, T.J.: A survey of general-purpose computation on graphics hardware. Comput.
Graph. Forum 26(1), 80–113 (2007)

456 D. Williams et al.

2. Amini, M., Creusillet, B., Even, S., Keryell, R., Goubier, O., Guelton, S., McMa-
hon, J.O., Pasquier, F.X., Péan, G., Villalon, P.: Par4All: from convex array regions
to heterogeneous computing. In: 2nd International Workshop on Polyhedral Com-
pilation Techniques, Paris, France, Jan 2012

3. Lee, S., Eigenmann, R.: OpenMPC: extended openMP programming and tuning
for GPUs. In: Proceedings of the 2010 ACM/IEEE Conference on Supercomputing,
November 2010, pp. 1–11 (2010)

4. Meister, B., Vasilache, N., Wohlford, D., Baskaran, M.M., Leung, A., Lethin, R.:
R-stream compiler. In: Padua, D. (ed.) Encyclopedia of Parallel Computing, pp.
1756–1765. Springer, Heidelberg (2011)

5. Verdoolaege, S., Juega, J.C., Cohen, A., Gómez, J.I., Tenllado, C., Catthoor, F.:
Polyhedral parallel code generation for CUDA. ACM Trans. Archit. Code Optim.
9(4), 54:1–54:23 (2013)

6. Unat, D., Cai, X., Baden, S.B.: Mint: realizing CUDA performance in 3D Stencil
methods with Annotated C. In: Proceedings of the International Conference on
Supercomputing, pp. 214–224 (2011)

7. The OpenACC Application Programming Interface, Version 1.0 (2011)
8. OpenMP Application Program Interface, Version 3.1 (2011)
9. Dong, F.: A General Toolkit for “GPUtilisation” in SME Applications. http://

www.gp-sme.eu/ (2013). Accessed Oct 2013
10. Lee, S., Vetter, J.S.: Early evaluation of directive-based GPU programming models

for productive exascale computing. In: Proceedings of the International Conference
on High Performance Computing, Article 23 (2012)

11. Pouchet, L-N.: PolyBench: The Polyhedral Benchmark suite (2011), Version 3.2.
http://www.cs.ucla.edu/∼pouchet/software/polybench/ (2011)

12. Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-tuning
a high-level language targeted to GPU codes. In: Proceedings of Innovative Parallel
Computing, pp. 1–10 (2012)

13. Zhou, J., Unat, D., Choi, D.J., Guest, C.C., Cui, Y.: Hands-on performance tun-
ing of 3D finite difference earthquake simulation on GPU fermi chipset. Procedia
Comput. Sci. 9, 976–985 (2012)

14. Fang, J., Varbanescu, A.L., Sips, H.: A comprehensive performance comparison
of CUDA and OpenCL. In: Proceedings of the Parallel Processing, pp. 216–225
(2011)

15. Komatsu, K., Sato, K., Arai, Y., Koyama, K., Takizawa, H., Kobayashi, H.: Eval-
uating performance and portability of OpenCL programs. In: Proceedings of the
Automatic Performance Tuning (2010)

16. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Skadron, K.: A perfor-
mance study of general-purpose applications on graphics processors using cuda. J.
Parallel Distrib. Comput. 68(10), 1370–1380 (2008)

17. Magni, A., Grewe, D., Johnson, N.: Input-aware auto-tuning for directive-based
GPU programming. In: Proceedings of the 6th Workshop on General Purpose
Processor Using Graphic Processing Units, pp. 66–75 (2013)

18. Reyes, R.N., Lopez, I., Fumero, J.J., de Sande, F.: Directive-based programming for
GPUs: a comparative study. In: IEEE 9th International Conference on Embedded
Software and Systems (HPCC-ICESS) (2012)

Evaluation of Autoparallelization Toolkits for Commodity GPUs 457

19. Wienke, S., Springer, P., Terboven, C., an Mey, D.: OpenACC — First experiences
with real-world applications. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G.
(eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 859–870. Springer, Heidelberg (2012)

20. Herdman, J.A., Gaudin, W.P., McIntosh-Smith, S., Boulton, M., Beckingsale, D.A.,
Mallinson, A.C., Jarvis, S.A.: Accelerating hydrocodes with OpenACC, OpeCL and
CUDA. In: Proceedings of the High Performance Computing, Networking, Storage
and Analysis (SCC), pp. 465–471 (2012)

Real-Time Multiview Human Body Tracking
Using GPU-Accelerated PSO

Boguslaw Rymut2 and Bogdan Kwolek1(B)

1 AGH University of Science and Technology,
30 Mickiewicza Av., 30-059 Krakow, Poland

bkw@agh.edu.pl
2 Rzeszów University of Technology, W. Pola 2, 35-959 Rzeszów, Poland

brymut@prz.edu.pl

Abstract. This paper presents our approach to 3D model-based human
motion tracking using a GPU-accelerated particle swarm optimization.
The tracking involves configuring the 3D human model in the pose
described by each particle and then rasterizing it in each particle’s 2D
plane. In our implementation, we launch one independent thread for each
column of each 2D plane. Such a parallel algorithm exhibits the level of
parallelism that allows us to effectively utilize the GPU resources. Owing
to such task decomposition the tracking of the full human body can be
performed at rates of 15 frames per second. The GPU achieves an aver-
age speedup of 7.5 over the CPU. The speedup that achieves the GPU
over CPU grows with the number of the particles. For marker-less motion
capture system consisting of four calibrated and synchronized cameras,
the efficiency comparisons were conducted on four CPU cores and four
GTX GPUs on two cards.

Keywords: GPGPU · Real-time computer vision · Human motion
capture

1 Introduction

In the early years of computer graphics, the GPU could only be programmed
through a graphics rendering interface. Over the years, the GPU has evolved from
a highly specialized graphics processor to a versatile and highly programmable
architecture that can perform a wide range of data-parallel operations. The GPU
architectures benefit from massive fine-grained parallelization, as they are able to
execute as many as thousands of threads concurrently. Recently, many research
papers reported that general purpose GPUs (GPGPUs) are capable to obtain
significant speedups compared to current homogeneous multicore systems in the
same price range. These scientific reports initiated a passionate debate on the
limits of GPU-supported acceleration for various classes of applications [11]. A
comparison of 14 various implementations showed speedups from 0.5× to 15×
(GPU over CPU). The experiment was made with Intel Core i7 and NVidia

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 458–468, 2014.
DOI: 10.1007/978-3-642-55224-3 43, c© Springer-Verlag Berlin Heidelberg 2014

Real-Time Multiview Human Body Tracking Using GPU 459

GTX 280. There is a common agreement that in order to achieve satisfactory
performance the algorithms to be executed on GPU should be carefully designed.

CPUs are still the most frequently used hardware for image processing, given
their versatility and tremendous speed. In general, image processing algorithms
are good candidates for GPU implementation, since the parallelization is natu-
rally provided by per-pixel operations. Many research studies confirmed this by
showing GPU acceleration of many image processing algorithms [3]. A recent
study [13] reports a speedup of 30 times for low-level algorithms and up to 10
times for high-level functions, which contain more overhead and many steps that
are not easy to parallelize.

Non intrusive human body tracking is a key issue in user-friendly human-
computer communication. This is one of the most challenging problems in com-
puter vision being at the same time one of the most computationally demanding
tasks. Particle filters are typically employed to achieve articulated motion track-
ing. Several improvements of ordinary particle filter were done to achieve fast and
reliable articulated motion tracking [4] as well as to obtain the initialization of
the tracking [15]. 3D motion tracking can be perceived as dynamic optimization
problem. Recently, particle swarm optimization (PSO) [6] has been successfully
applied to achieve human motion tracking [7,12]. The motion tracking is achieved
by a sequence of static PSO-based optimizations, followed by re-diversification
of the particles to cover the possible poses in the next time step.

There are only a few publications that discuss the implementation details of
the PSO on GPU. In [16], an approach that restricts the communication of a
particle to its two closest neighbors and thus limits the communication between
threads was proposed. The authors of [10] compared three different variants of
the PSO on GPU, but only parallelized the cost function. In [14], a multi-swarm
PSO algorithm was used to achieve a high degree of parallelism. In [7] an app-
roach to PSO-based full body human motion tracking on GPU and using single
camera has been proposed. The 3D model with 26 DOF was constructed using
cuboids, which were projected into 2D plane and then rendered in parallel. A
single thread was responsible for comparing images containing the projected
model and the extracted person. The tracking of the full human body was per-
formed with 5 frames per second, whereas the speedup of GTX280 over a CPU
was about 15. A common approach to parallelize the PSO consists in executing
a local swarm on every processor while optimizing the communication between
the swarms. Mussi et al. [12] proposed an approach to articulated human body
tracking from multi-view video using PSO running on GPU. Their implementa-
tion is far from real-time and roughly requires 7 s per frame. Recently, in [2] a
framework for 3D model-based visual tracking using a GPU-accelerated parti-
cle filter has been presented. A hand was tracked using both synthetic and real
videos. The authors reported a speedup of 9.5 and 14.1 against a CPU for image
resolution of 96× 72 and 128× 96 using 900 and 1296 particles, respectively.

In this work we present an approach that effectively utilizes the advantages
of modern graphics card hardware to achieve real-time full body tracking using
a 3D human model. The motion tracking was accomplished by a PSO algorithm

460 B. Rymut and B. Kwolek

running on a GPU. The presented approach to 3D articulated human tracking
follows the Black Box Optimization paradigm [5], according to which the search
processes/particles investigate the hypothesis space of a model state in order to
identify the hypothesis that optimally fit a set of observations.

2 GPU Computing

CUDA is a parallel computing platform and programming model invented by
NVIDIA. Each function that is executed on the device is called a kernel. A
CUDA kernel is executed by an array of threads. Blocks of threads are organized
into one, two or three dimensional grid of thread blocks. Blocks are mapped
to multiprocessors and each thread is mapped to a single core. A warp is a
group of threads within a block that are launched together and usually execute
together. When a warp is selected for execution, all active threads execute the
same instruction but operate on different data. A unique set of indices is assigned
to each thread to determine to which block it belongs and its location inside it.

GPUs offer best performance gains when all processing cores are utilized and
memory latency is hidden. In order to achieve this aim, it is common to launch
a CUDA kernel with hundreds or thousands of threads to keep the GPU busy.
The benefit of having multiple blocks per multiprocessor is that the schedul-
ing hardware is capable to swap out a block that is waiting on a high-latency
instruction and replace it with a block that has threads ready to execute. The
context switch is very fast because the GPU does not have to store the state, as
the CPU does when switching threads between being active and inactive. Thus,
it is advantageous to have both high density of arithmetic instructions per mem-
ory access as well many more resident threads than GPU cores so that memory
latency can be hidden. This permits the GPU to execute arithmetic instructions
while certain threads are waiting for access to the global memory.

Memory latency can be hidden by careful design of control flow as well as
adequate design of kernels. The kernels can employ not only the global memory
that resides off chip, but also they can use shared memory that resides on chip.
This memory is shared between all the cores of stream multiprocessor. Its latency
is several times shorter than the latency of the global memory. Threads that
are executing within the same block can cooperate using it, but threads from
different block cannot cooperate via shared memory.

3 Parallel PSO for Object Tracking

Particle Swarm Optimization (PSO) [6] is a bio-inspired meta-heuristic for solv-
ing complex optimization problems. The PSO is initialized with a group of ran-
dom particles (hypothetical solutions) and then searches for optima by updating
all particles locations. The particles move through the solution space and undergo
evaluation according to some fitness function. Each particle iteratively evaluates
the candidate solutions and remembers the personal best location with the best
objective value found so far, making this information available to its neighbors.

Real-Time Multiview Human Body Tracking Using GPU 461

Particles communicate good positions to each other and adjust their own veloc-
ities and positions taking into account such good locations. Additionally each
particle utilizes a best value, which can be:

• a global best that is immediately updated when a new best position is found
by any particle in the swarm
• neighborhood best where only a specific number of particles is affected if a

new best position is found by any particle in the sub-population

Typically, a swarm topology with the global best converges faster since all par-
ticles are attracted simultaneously to the best part of the search space. Neigh-
borhood best permits parallel exploration of the search space and decreases the
susceptibility of falling into local minima. However, such a topology slows down
the convergence speed. Taking into account the faster convergence the topology
with the global best has been selected for parallel implementation.

In the ordinary PSO algorithm the update of particle’s velocity and position
can be expressed by the following equations:

v
(i)
j ← wv

(i)
j + c1r

(i)
1,j(p(i)

j − x(i)
j) + c2r

(i)
2,j(pg,j − x(i)

j) (1)

x
(i)
j ← x

(i)
j + v

(i)
j (2)

where w is the positive inertia weight, v(i)
j is the velocity of particle i in dimen-

sion j, r(i)1,j and r
(i)
2,j are uniquely generated random numbers with the uniform

distribution in the interval [0.0, 1.0], c1, c2 are positive constants, p(i) is the best
position that the particle i has found, pg denotes best position that is found by
any particle in the swarm.

The velocity update equation (1) has three main components. The first com-
ponent, which is often referred to as inertia models the particle’s tendency to
continue the moving in the same direction. In effect it controls the exploration
of the search space. The second component, called cognitive, attracts towards
the best position p(i) previously found by the particle. The last component is
referred to as social and attracts towards the best position pg found by any par-
ticle. The fitness value that corresponds p(i) is called local best p(i)

best, whereas
the fitness value corresponding to pg is referred to as gbest. The ordinary PSO
algorithm can be expressed by the following pseudo-code:

1. Assign each particle a random position in the problem hyperspace.
2. Evaluate the fitness function for each particle.
3. For each particle i compare the particle’s fitness value with its p(i)

best.
If the current value is better than the value p(i)

best, then set this value as the
p
(i)
best and the current particle’s position x(i) as p(i).

4. Find the particle that has the best fitness value gbest.
5. Update the velocities and positions of all particles according to (1) and (2).
6. Repeat steps 2–5 until a stopping criterion is not satisfied (e.g. maximum

number of iterations or a sufficiently good fitness value is not attained).

462 B. Rymut and B. Kwolek

Our parallel PSO algorithm for object tracking consists of five main phases,
namely initialization, evaluation, p best, g best, update and motion. At the
beginning of each frame, in the initialization stage an initial position x(i) ←
N (pg, Σ) is assigned to each particle, given the location pg that has been esti-
mated in the previous frame. In the evaluation phase the fitness value of each
particle is calculated using a cost function. The calculation of the matching score
is the most time consuming operation of the tracking algorithm. The calculation
of the matching score is discussed in Sect. 4.2, whereas the decomposition of this
task into kernels is presented in Sect. 4.3. In the p best stage the determining of
p
(i)
best as well as p(i) takes place. This stage corresponds to operations from the

point 3. of the presented above pseudo-code. The operations mentioned above
are computed in parallel using available GPU resources, see Fig. 1. Afterwards,
the gbest and its corresponding pg are calculated in a sequential task. Finally, the
update stage that corresponds to point 5. in the pseudo-code is done in parallel.
That means that in our implementation we employ the parallel synchronous par-
ticle swarm optimization. The synchronous PSO algorithm updates all particle
velocities and positions at the end of each optimization iteration. In contrast
to synchronous PSO the asynchronous algorithm updates particle positions and
velocities continuously using currently accessible information.

In order to decompose an algorithm into GPU we should identify data-parallel
portions of the program and isolate them as CUDA kernels. In the initialization
kernel we generate pseudo-random numbers using the curand library provided
by the CUDATM SDK. On the basis of the uniform random numbers we generate
normally distributed pseudorandom numbers using Box Mueller transform based
on trigonometric functions [1]. The normally distributed random numbers are

Fig. 1. Decomposition of synchronous particle swarm optimization algorithm on GPU.

Real-Time Multiview Human Body Tracking Using GPU 463

generated at the beginning of each frame to re-distribute the particles around
the pose in time t−1 and to calculate their velocities. Then the uniform random
numbers r1, r2 for the optimal pose seeking are generated. This means that for
every particle we generate 2 × D × K uniformly distributed random numbers,
where D is dimension and K denotes the maximum number of iterations. They
are stored in the memory and then used in the update kernel, see Fig. 1. At
this stage the computations are done in �N/(2 × W)� blocks and W threads
on each of them, where W denotes the number of cores per multiprocessor. In
the compute pbest kernel and the update kernel the number of blocks is equal
to �N/W �, whereas the number of threads in each block is equal to W . In the
update kernel we constrain the velocities of the particles to the assumed maximal
velocity values. In the motion stage the model’s bone hierarchy is recursively
traversed and the internal transformation matrices are updated according to the
state vector of the particle.

4 Implementation of Articulated Body Tracking on GPU

At the beginning of this section we detail our approach to 3D model based visual
tracking of human motion. Afterwards, we present the cost function. Finally, we
discuss the parallelization of the calculations of the cost function.

4.1 3D Model-Based Visual Tracking

The articulated model of the human body has a form of kinematic chain con-
sisting of 11 segments. The 3D model is constructed using truncated cones (frus-
tums) that model the pelvis, torso, head, upper and lower arm and legs.

The model has 26 DOF and its configuration is determined by position and
orientation of the pelvis in the global coordinate system and the relative angles
between the limbs. Each truncated cone is parameterized by the center of base
circle A, center of top circle B, bottom radius r1, and top radius r2. Given the
3D camera location C and 3D coordinates A and B, the plane passing through
the points A,B,C is determined. Since the vectors AB and AC lie in the plane,
their cross product, which is perpendicular to the plane of AB and AC, is the
normal. The normal is used to determine the angular orientation of the trapezoid
to be projected into 2D plane. Each trapezoid of the model is projected into 2D
image of each camera via modified Tsai’s camera model. The projected image
of the trapezoid is obtained by projecting the corners and then a rasterization
of the triangles composing the trapezoid. Though projecting all truncated cones
we obtain the image representing the 3D model in a given configuration.

In each frame the 3D human pose is reconstructed through matching the
projection of the human body model with the current image observations. In
most of the approaches to articulated object tracking a background subtraction
algorithms are employed to extract the subject undergoing tracking. Addition-
ally, image cues such as edges, ridges and color are often employed to improve

464 B. Rymut and B. Kwolek

the extraction of the person. In the presented approach the human silhouette is
extracted via background subtraction. Afterwards, the edges are located within
the extracted silhouette. Finally, the edge distance map is extracted [9]. The
matching score reflects (i) matching ratio between the extracted silhouette and
the projected 3D model and (ii) the normalized distance between the model’s
projected edges and the closest edges in the image. The objective function of all
cameras is the sum of such matching scores. Sample images from the utilized
test sequences as well as details of camera setup can be found in [9].

The motion tracking can by attained by dynamic optimization and
incorporating the temporal continuity information into the ordinary PSO. Con-
sequently, it can be achieved by a sequence of static PSO-based optimizations,
followed by re-diversification of the particles to cover the potential poses that
can arise in the next time step. The re-diversification of the particle i can be
obtained on the basis of normal distribution concentrated around the best parti-
cle location pg in time t− 1, which can be expressed as: x(i) ← N (pg, Σ), where
x(i) stands for particle’s location in time t, Σ denotes the covariance matrix
of the Gaussian distribution, whose diagonal elements are proportional to the
expected velocity.

4.2 Cost Function

The most computationally demanding operation in 3D model based human
motion tracking is calculation of the objective function. In PSO-based approach
each particle represents a hypothesis about possible person pose. In the eval-
uation of the particle’s fitness score the projected model is matched with the
current image observation. The fitness score depends on the amount of overlap-
ping between the extracted silhouette in the current image and the projected
and rasterized 3D model in the hypothesized pose. The amount of overlapping is
calculated through checking the overlap degree from the silhouette to the raster-
ized model as well as from the rasterized model to the silhouette. The larger the
overlap is, the larger is the fitness value. The objective function reflects also the
normalized distance between the model’s projected edges and the closest edges
in the image. It is calculated on the basis of the edge distance map [9].

The fitness score for i-th camera’s view is calculated on the basis of fol-
lowing expression: f (i)(x) = 1 − ((f (i)

1 (x))w1 · (f (i)
2 (x))w2), where w denotes

weighting coefficients that were determined experimentally. The function f (i)
1 (x)

reflects the degree of overlap between the extracted body and the projected 3D
model into 2D image corresponding to camera i. The function f

(i)
2 (x) reflects

the edge distance map-based fitness in the image from the camera i. The objec-
tive function for all cameras is determined according to the following expression:
f(x) = 1

4

∑4
i=1 f

(i)(x). Since we use synchronous PSO the fitness values are
transmitted once in every iteration. The images acquired from the cameras are
processed on CPU and then transferred onto the device. They are then utilized
in the PSO running on the GPU.

Real-Time Multiview Human Body Tracking Using GPU 465

4.3 Parallelization of the Cost Function

In the evaluation phase, see Fig. 1 we employ two kernels. In the first one the
3D models are projected into 2D image of each camera. In the second one we
rasterize the models and evaluate the objective functions. In our approach, in
every block we rasterize the model in the pose represented by a single particle
as well as we calculate its fitness score. Thus, the number of blocks is equal to
the number of the particles, see Fig. 2. Each thread is responsible for rasterizing
the model in single column and summing the fitness values of the pixels in
that column. The number of threads in each block is equal to the image width,
whereas the number of running threads in each block is equal to the number of
cores per multiprocessor, see Fig. 2.

Fig. 2. Parallelization of the cost function.

The cost values of the objective function are summed using parallel reduction.
The results from each column of the threaded block are stored in the shared
memory. In the next stage, W/2 consecutive threads determine the sums of the
two adjacent memory cells of the shared memory and then store the results in
the shared memory. The next iteration employs W/4 threads to add the results
of the previous iteration, and so on.

5 Experiments

The experiments were conducted on a PC computer equipped with Intel Xeon
X5690 3.46 GHz CPU (6 cores), with 8 GB RAM, and two NVidia GTX 590
graphics cards, each with 16 multiprocessors and 32 cores per multiprocessor.
Each card has two GTX GPUs, each equipped with 1536 MB RAM and 48 KB
shared memory per multiprocessor.

466 B. Rymut and B. Kwolek

Table 1. Computation time [ms] for single frame of size 480 × 270

part. (10 it.) CPU [ms] GPU [ms] Speedup

1 camera 100 131.1 24.6 5.3
300 352.7 44.9 7.9

1000 1134.7 106.4 10.7
2 cameras 100 132.8 26.8 5.0

300 352.4 47.4 7.5
1000 1117.4 113.5 9.9

4 cameras 100 170.3 37.3 4.6
300 442.3 62.8 7.1

1000 1391.9 144.7 9.6

Table 1 shows computation time that has been obtained on CPU and GPU
for 1, 2, and 4 cameras and PSO executing 10 iterations. For two cameras the
computations were conducted on two CPU cores and two GPUs on single card,
whereas for four cameras we employed 4 CPU cores and four GPUs. The images
acquired from calibrated and synchronized cameras were preprocessed off-line
and transferred frame by frame to the GPU. As we can observe, for a system
consisting of 2 cameras the speedup that achieves the GPU over the CPU is
between 5.0 and 9.9. For 4 cameras the speed up is slightly smaller due to addi-
tional transmission overhead between two cards. For MoCap system consisting
of 4 cameras and using the PSO algorithm with 300 particles and 10 iterations
we can process 16 frames per second. In [9] we demonstrated that for such a PSO
configuration the average error on images of size 960 × 540 is below 75 mm. In
this work we employed the images scaled to 480×270 resolution and the average
error was about 5 mm larger. Another reason for a slightly larger error is the
use of synchronous PSO that achieves worse tracking accuracy in comparison to
asynchronous PSO.

The processing times on the CPU were obtained using an implementation
presented in [9]. In [8] we showed that a modified PSO algorithm, i.e. annealed
particle swarm optimization (APSO) [9], with 300 particles and executing 10
iterations, can be successfully used in 3D gait-based person identification.

6 Conclusions

In this paper we presented an algorithm for articulated human motion tracking
on GPU. The tracking has been achieved in real-time using a parallel PSO
algorithm. The tracking of full human body can be performed at frame-rates of
16 frames per second using a two high-end graphics cards and images acquired by
four cameras. The speedup of the algorithm running on GPU over CPU grows
with the number of evaluations of the cost function, i.e. with number of the
particles or with the number of iterations. In consequence, on the GPU we can
obtain more precise tracking.

Real-Time Multiview Human Body Tracking Using GPU 467

Acknowledgment. This work has been supported by the National Science Center
(NCN) within the research project N N516 483240.

References

1. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates.
Ann. Math. Stat. 29(2), 610–611 (1958)

2. Brown, J., Capson, D.: Framework for 3d model-based visual tracking using a
GPU-accelerated particle filter. IEEE Trans. Vis. Comput. Graph. 18(1), 68–80
(2012)

3. Castano-Diez, D., Moser, D., Schoenegger, A., Pruggnaller, S., Frangakis, A.S.:
Performance evaluation of image processing algorithms on the GPU. J. Struct.
Biol. 164(1), 153–160 (2008)

4. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed
particle filtering. In: IEEE International Conference on Pattern Recognition, pp.
126–133 (2000)

5. Hansen, N., Auger, A., Ros, R., Finck, S., Poš́ık, P.: Comparing results of 31 algo-
rithms from the black-box optimization benchmarking BBOB-2009. In: Genetic
and Evolutionary Computation Conference. GECCO’10, pp. 1689–1696. ACM
(2010)

6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, pp. 1942–1948. IEEE Press, Piscat-
away, NJ (1995)

7. Krzeszowski, T., Kwolek, B., Wojciechowski, K.: GPU-accelerated tracking of the
motion of 3d articulated figure. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J.,
Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 155–162.
Springer, Heidelberg (2010)

8. Krzeszowski, T., Michalczuk, A., Kwolek, B., Switonski, A., Josinski, H.: Gait
recognition based on marker-less 3D motion capture. In: 10th IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 232–237
(2013)

9. Kwolek, B., Krzeszowski, T., Wojciechowski, K.: Swarm intelligence based search-
ing schemes for articulated 3d body motion tracking. In: Blanc-Talon, J., Kleihorst,
R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2011. LNCS, vol. 6915,
pp. 115–126. Springer, Heidelberg (2011)

10. Laguna-Sanchez, G.A., Olguin-Carbajal, M., Cruz-Cortes, N., Barron-Fernandez,
R., Alvarez-Cedillo, J.A.: Comparative study of parallel variants for a particle
swarm optimization. J. Appl. Res. Technol. 7(3), 292–309 (2009)

11. Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish,
N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., Dubey, P.:
Debunking the 100x GPU vs. CPU myth: an evaluation of throughput computing
on CPU and GPU. In: Proceedings of the 37th Annual International Symposium
on Computer Architecture. ISCA’10, pp. 451–460. ACM, New York, NY, USA
(2010)

12. Mussi, L., Ivekovic, S., Cagnoni, S.: Markerless articulated human body tracking
from multi-view video with GPU-PSO. In: Tempesti, G., Tyrrell, A.M., Miller,
J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 97–108. Springer, Heidelberg (2010)

13. Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision
with OpenCV. Commun. ACM 55(6), 61–69 (2012)

468 B. Rymut and B. Kwolek

14. Solomon, S., Thulasiraman, P., Thulasiram, R.: Collaborative multi-swarm PSO for
task matching using graphics processing units. In: Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation, pp. 1563–1570 (2011)

15. Wu, C., Aghajan, H.: Human pose estimation in vision networks via distributed
local processing and nonparametric belief propagation. In: Blanc-Talon, J., Bouren-
nane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol.
5259, pp. 1006–1017. Springer, Heidelberg (2008)

16. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: IEEE
Congress on Evolutionary Computation. CEC’09, pp. 1493–1500 (2009)

Implementation of a Heterogeneous Image
Reconstruction System for Clinical Magnetic

Resonance

Grzegorz Tomasz Kowalik1(B), Jennifer Anne Steeden1, David Atkinson2,
Andrew Taylor1,3, and Vivek Muthurangu1,3

1 Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science,
London, UK

kowgrzegorz@gmail.com
2 Division of Medicine, University College London, Royal Free Campus,

Rowland Hill Street, London, UK
3 Cardiorespiratory Unit, Great Ormond Street Hospital for Children, London, UK

Abstract. This paper describes development of a novel online, het-
erogeneous image reconstruction system for Magnetic Resonance data.
The system integrates an external computer equipped with a Graphic
Processing Unit card into the Magnetic Resonance scanner’s image recon-
struction pipeline. The system promotes fast online reconstruction for
computationally intensive algorithms making them feasible in a busy
clinical service. Analysis and improvement of execution time of the com-
plex, iterative reconstruction algorithm as well as networking framework
are presented.

The imaging algorithm was broken down into distinctive steps for exe-
cution time profiling. Also, steps to achieve overlapping of execution and
transmission are described.

The system was successfully used in research and clinical studies
requiring high data throughput.

Keywords: GPGPU · CORBA · Distributed system

1 Introduction

Magnetic Resonance Imaging (MRI) is increasingly used in the medical field
to make diagnoses and aid patient management. Conventionally, MRI data is
acquired in a spatial frequency domain called k -space in a rectilinear manner
allowing conversion of k -space data into images with a simple Fast Fourier Trans-
form (FFT). However, the rectilinear filling of k -space is not temporally efficient
and can result in temporal blurring when trying to perform fast MRI (temporal
resolution - TR: < 50 ms). MRI can be sped by using more time efficient k -space
filling strategies, called trajectories (e.g. a spiral trajectory). However, recon-
struction of data acquired with non-Cartesian trajectories requires additional
processing steps, including gridding onto a rectilinear grid prior to FFT, making

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 469–479, 2014.
DOI: 10.1007/978-3-642-55224-3 44, c© Springer-Verlag Berlin Heidelberg 2014

470 G.T. Kowalik et al.

it more computationally intensive. In addition, the use of time efficient trajecto-
ries does not alone provide the necessary speed-up to perform high temporal res-
olution imaging. Thus, such acquisitions are usually further sped-up using a data
reduction technique, called undersampling. Undersampling produces artefacts in
the reconstructed images if no additional reconstruction steps are undertaken.
However, it is possible to remove these artefacts using information acquired
from multiple receiver coils, each of which experiences a different spatial sen-
sitivity. Several reconstruction methods exist for undersampled data, however
this work focuses on the use of the SENSE (sensitivity encoding) algorithm [1].
When combined with undersampled arbitrary trajectories, the SENSE algorithm
adopts an iterative reconstruction process to produce artefact free images [2].
Consequently, this shifts the bottleneck of MR scanning from data acquisition
to reconstruction. As the SENSE reconstruction is highly parallelizable, the use
of graphical processing units (GPU) as coprocessors may offer a solution. GPU
implementations do exist [3–5] and have been shown to significantly speed-up
the reconstruction. However, to be truly effective, such developments must be
incorporated into the online scanner reconstruction pipeline. This is vital as it
improves the overall efficiency of clinical workflow and enables rapid viewing of
the images to check for data integrity prior to finishing the MR exam.

Recently, we have developed a novel online, heterogeneous image reconstruc-
tor [6,7] in the form of a distributed system based on client-server architecture,
which was designed to address following challenges: (i) use of advanced MR
sequences is limited by their reconstruction time and (ii) GPU implementations
exist but run in off-line mode. Our motivation was not only to provide fast
image reconstruction for computationally intensive reconstructions, but most of
all to make them feasible within a busy clinical service. This was achieved by
integrating an external computer equipped with a GPU card into a scanner’s
native image reconstruction system for seamless reconstruction process from a
clinician’s point of view.

In this article we present a description of development and implementation
process of the mentioned heterogeneous MRI reconstruction system.

2 Methods

2.1 Distributed Image Reconstructor

The distributed image reconstruction system, required development of two major
components: (i) implementation of networking framework with remote execution
based on client-server architecture and (ii) implementation of GPU based MRI
reconstruction algorithm for undersampled arbitrary trajectory acquisitions.

Client-server architecture. The distributed client-server architecture (Fig. 1) was
based on the Common Object Request Broker Architecture (CORBA) technol-
ogy. CORBA was chosen to simplify the development of this distributed system,
as it ensures parameters passed by one side are transferred unchanged, and are
translated into an equivalent format on the target system. The networking layer

Implementation of a Heterogeneous Image Reconstruction System 471

does not depend on any specific implementation of CORBA. Multiple imple-
mentations of CORBA can be used to accommodate different programing lan-
guages (e.g. c/c++, Java, Python, MATLAB etc). Nevertheless, CORBA could
be replaced with other technology, providing that the necessary interfaces are
supplied. The architecture does not force a built reconstruction system to consti-
tute of fixed number of dedicated servers and clients, but it was rather designed
to allow flexible arrangement of clients and servers into separate reconstruction
systems. This approach is not limited to a single connection - it can contain mul-
tiple servers residing on the same/different machines, as well as clients making
requests to the same/different servers.

The distributed reconstruction goes through two system states (Fig. 1); sys-
tem set-up and reconstruction. The system set-up state is maintained by a nam-
ing service. This naming service contains a record of servers that registered
themself as available to clients. A desired system instantiation is created ad hoc
by a client searching for, and connecting to, servers providing the required func-
tionality. The system is destroyed by the client disconnecting from the servers,
however the servers applications remain awaiting new connections.

The reconstruction state contains four stages (Fig. 1); initialization, data
transmission, remote execution and result collection. In the initialization stage a
client sends the required parameters for the server to create the necessary data
structures. This process is normally done once per reconstruction, since differ-
ent repetitions usually have the same conditions. After initialisation, the client
invokes the remaining reconstruction stages in a desired order until the whole
reconstruction task is done.

The system framework (Fig. 1) is divided into three separate layers; Network-
ing layer, Client-reconstruction layer, Server-reconstruction layer. The network-
ing layer provides a set of data transmission and remote execution interfaces for
the client-server architecture. The client-reconstruction layer schedules, organises
and controls data exchange and remote execution processes, employing interfaces
provided by the networking layer. The server-reconstruction layer implements a
specific functionality to the interfaces provided by the networking layer. Within
this layer, different reconstruction algorithms can be implemented and stored in
form of modules. The modules are accessible through a module interface built
into the server layer. This approach allows a single server to consist of multiple
different processing modules that can be loaded on the client’s request.

This layered architecture was adopted to allow disjointed development of each
side of communication, as well as flexibility in porting across different hardware
and programming technologies. This allows different client side implementations
for each MR system to be developed without interfering with the server or net-
working side of the application. Similarly, technology providing data transmis-
sion, remote execution, or the way in which the server manages the reconstruc-
tion modules can be changed without affecting the other layers.

Four networking interfaces were declared (Fig. 1), directly relating to each
of the reconstruction stages described above. Each interface provides the client
with a set of input parameters which specify the type of operation, the means

472 G.T. Kowalik et al.

Fig. 1. Client-server architecture for
the distributed image reconstruction
system.

Fig. 2. Organisation of overlapping
data transmission and remote execu-
tion for continuous, real-time acquisi-
tions.

to transmit an arbitrary length of data, and return the status of an operation.
To allow transmission of data back from a server onto a client, the interface for
the result collection stage provides a parameter for the output of an arbitrary
length of data.

Real-time Data transmission and remote execution management. The client-
server architecture does not force a specific order for the reconstruction stages.
However, for real-time applications proper data transmission management can be
as important as efficient implementation of the image reconstruction algorithm.
Time improvements gained by efficient reconstruction can be counterbalanced
by a slow transmission process or wasted on unnecessary synchronizations. For
optimal processing of continuous and arbitrary length streams of real-time data,
an overlap between data transmission and reconstruction is desired. This can
be achieved by buffering of incoming data and assigning different processing
threads to each of the communication and execution stages. The optimal situa-
tion is when reconstruction time is equal or shorter than data transmission. In
this case only one additional storage space is required to allow a constant stream
of data between computers. However, in the case of reconstruction being slower
than data transmission, it may be beneficial to have more than two buffers.

Figure 2 presents our implementation of a client for an incoming stream of
real-time data. The whole process is controlled by three cross-network groups of
threads; Send threads, Process threads and Get threads. Each group of threads
controls the processing of different aspects of the reconstruction state, enabling
overlapping of data transmission and execution. On the client these are rep-
resented by three control blocks, which work independently from one another,
communicating only by passing messages about the completion of the previous
stage. The stream of constantly acquired is divided into sets, which can fit into
buffers organised on the external machine. The buffers integrity is protected by
a set of locks shared between the control blocks. This mechanism was adopted to
prevent overwriting of currently being reconstructed data, with newly incoming
data. The number of buffers is an arbitrary parameter that is set during the
reconstruction initialization stage.

Implementation of a Heterogeneous Image Reconstruction System 473

Fig. 3. Construction of a single row
of a resampling matrix GH for a spi-
ral trajectory of three interleaves. The
red ring represents a convolution ker-
nel centred on one of trajectory points.
The blue squares it encompasses are
rectilinear grid points used in calcula-
tions. The arrows point places where
kernel values are stored within GH .

Fig. 4. Transmission tests results,
showing the decrease in transmis-
sion time with increasing transmission
package size.

Send threads control the preparation of data for reconstruction. The client
separates, labels the data and initiate the sending process. Equivalent threads
on the server side store the transferred data in an appropriate format for a
reconstruction, within a selected by the client buffer. The incoming data is first
pre-stored by the client’s send control block to avoid transmission of small chunks
of data. The transmission takes place if the storage limits are reached or when
the last line of data in a set was received. The send control block is responsible
to check the status of the buffer’s lock, and only transmit data if the buffer is
unlocked. When the buffer is filled-up, the send control block locks the buffer and
changes the index of the receiving buffer. This way transmission can continue
using a different buffer.

Process threads are responsible for overlooking each side of the remote exe-
cution. The client signals readiness for processing by passing an index for the
newly filled buffer, to the server. Corresponding threads on the server start the
reconstruction and return its status upon completion. If the reconstruction is
successful the process control block passes the index of the buffer to the collect
control block.

Get threads maintain the process of collecting results. The client sends the
index of a result to the server for translation into its specific data storage system.
A result is returned if processing for the selected buffer has finished. Next, the
client marks the buffer as unlocked and the retrieved data are sent further down
the scanner’s system for processing, storing or presentation.

This organization of overlapping transmission and remote execution can work
smoothly with no interruptions or breaks, providing transmission and reconstruc-
tion are faster than the data acquisition.

474 G.T. Kowalik et al.

2.2 Reconstruction Implementation

Reconstruction algorithm. MRI reconstruction algorithms are based on solving
a set of linear equations that represent the process of imaging;

Eρ = s (1)

This formula expresses the relationship between the imaged object (ρ) and the
acquired signal (s) as a result of the encoding transformation (E). For the SENSE
algorithm the encoding matrix encompasses gridding, FFT and combination with
coil sensitivity maps (CSM) [2]. A solution is found using an iterative conjugate-
gradient linear solver - this is a very time consuming algorithm that requires
significant computational power.

GPUs as vector processors were designed to support matrix operations. As
we can express the SENSE reconstruction in the form of matrix multiplications
and additions, this makes it a perfect candidate for implementation on a GPU
platform.

Implementation. This GPU implementation was based on a previous (original)
multi-core CPU implementation. When profiled, the bottleneck of the CPU
reconstruction was found to be the gridding, which could take between 70–81 %
of the total reconstruction time.

Gridding is the process where the signal is resampled onto a Cartesian grid -
this is achieved by convolution with a kernel function. The problem of gridding
has been well studied and different ways of implementing it on GPU platform can
be found [4]. These are very specific solutions for a GPU platform - they are not
trivial in implementation and may require optimizations depending on targeted
hardware. This project does not aim to create the fastest gridding implementa-
tion, however the following solution is proposed to avoid future reimplementation
with new GPU architectures.

The operation of convolution with resampling used for gridding can be
expressed in form of a matrix multiplication;

G(Nc,Nt)s
t
(Nt,m) = sc

(Nc,m) (2)

Here gridding of m data sets of Nt samples each acquired on an arbitrary tra-
jectory, is performed by multiplying the acquired data organised into a column-
major matrix (st) with the gridding matrix (G). The operation produces a new
matrix (sc) of m data sets with Nc samples on a Cartesian grid.

The gridding matrix is created as shown on Fig. 3. The gridding matrix is too
big to be stored in dense format. Fortunately, the matrix can be kept in a sparse
representation, as only a small fraction of its elements are non-zero values. This
approach allows us reuse already existing and optimised code for sparse-dense
matrix operations allowing maximisation of GPU’s potential.

GPU Implementation specifics. The GPU version of the imaging algorithm was
implemented using NVIDIA’s CUDA toolkit and which includes libraries; cus-
parse for sparse-dense matrix operations, cublas for simple linear vector, matrix

Implementation of a Heterogeneous Image Reconstruction System 475

operations, reduction and dot product calculations and cufft for 2D Fourier
Transformations. Some minor operators were not provided with the libraries (e.g.
element-wise multiplication) - these were implemented in the form of in-house
functions, which were executed on the GPU. Using these libraries significantly
reduced the time required for development, and means the implementation ben-
efits from constant optimisation with new releases of the toolkit, as well as their
adoption to new GPU architectures.

The entire SENSE algorithm was ported onto the GPU, whilst keeping the
number of CPU to GPU communications to an absolute minimum. Incoming
real-time data are sent to GPU’s memory at the start of the reconstruction and
only the results are retrieved upon finishing. The data are stored in continuous
allocations, which allow them to be processed by the same kernel. This means
that even though a single image may not have enough elements to fully utilise
the whole GPU, an operation can be extended to the whole set of images. In this
way the data sets can be treated as a dense matrix allowing gridding of all of
the sets in a single matrix-matrix multiplication; cusparseXcsrmm(). Similarly
for 2D Fourier Transformation, a batched transformation can be scheduled with
cufftPlanMany(). Additionally, the in-house kernels were implemented to take
advantage of these data structures. The use of batched functions allowed rapid
processing of multiple of data sets. Also, it minimised the number of CPU/GPU
synchronisations, since convergence is checked for all of the sets rather than for
each individual set.

Implemented System Specifics. The described system was implemented within
our clinical environment, on a 1.5 Tesla MR scanner (Avanto, Siemens Med-
ical Solutions, Erlangen, Germany). The scanner’s native reconstruction sys-
tem provides a c/c++ based, multi-threaded programming environment for the
implementation of the client side of the system (2x Intel Xeon E5440 2.83 GHz,
16 GB RAM). The scanner was connected with an external computer (2x Intel
Xeon E5645, 2.40 GHz, 24 GB RAM) equipped with NVIDIA Tesla C2075 (4 GB
RAM, 448 CUDA cores) using a half-duplex ethernet connection. C++ imple-
mentation of CORBA technology (omniORB, Apasphere Ltd, Cambridge, UK)
was used to implement the networking layer.

3 Tests

Both the data transmission and the GPU reconstruction were tested using a
data set of 60 images (∼2.48 s, ∼32 MB/s, image size: 128× 128, TR: ∼41 ms).
To test for the optimum transmission protocol, the test was run with different
transmission package sizes (number of acquisition lines that are sent over network
together).

Gridding was the major bottleneck of the native scanner reconstruction
and therefore, we initially compared gridding performance alone. We tested
two implementations of our new gridding approach and compared them to the
native gridding method. The first implementation was on the multi-core CPU
in the external machine and tested the speed-up related to realizing gridding as

476 G.T. Kowalik et al.

Table 1. Comparison of the averaged times of each step of the algorithm, the averaged
times of an iteration and the total reconstruction times between CPU and GPU.

CPU [ms] [%] GPU [ms] [%] CPU/GPU

Per iteration FFT 212.03 7 69.75 38 3
Grid 2147.07 70 59.15 33 36
Matrix combination 610.13 20 26.12 14 23
Other 78.20 3 20.55 11 4
Total 3047.42 - 181.51 - 17

Per 60 frames
(test data set)

Total 12190.80 - 727.29 - 17

a matrix multiplication and using more modern hardware. The second imple-
mentation was on the GPU of the external machine and tested the additional
benefit of GPU gridding over the multi-core CPU gridding based on the same
algorithm.

In addition, we compared the total native scanner reconstruction with a GPU
reconstruction that included all parts of the iterative SENSE algorithm. The
different steps of the iterative SENSE reconstruction were timed for comparison
between the CPU and GPU implementations.

4 Results

Figure 4 presents results of the data transmission tests, where the transmission
time was measured from the beginning of the transmission until the last image of
the set was fully transferred on the external computer. The optimal transmission
protocol was found for a transmission package size of 12, as this introduced
the shortest latency. Importantly, for this protocol the total transmission time
(∼2.42 s) was faster than the acquisition (∼2.48 s).

The native scanner multi-core CPU gridding of 60 images took ∼2.14 s. The
new multi-core implementation on the external machine was ∼8.5x faster than
the native scanner gridding (∼253 ms to grid a set of 60 images). Thus, in this
new implementation gridding was reduced from∼70 % of the total reconstruction
time to ∼ 22 %. However, the final reconstruction time would only decrease to
∼4.61 s, which is still ∼1.9x slower than the acquisition.

The gridding performed on the GPU was ∼36x faster than the native scan-
ner gridding and ∼4x faster than the multi-CPU gridding run on the external
computer. This meant that gridding was no longer the bottleneck of the GPU
reconstruction. However, if only the gridding was ported to the GPU, total
reconstruction time would still have been greater than acquisition time.

Timing results for each step of the complete GPU reconstruction and the
native scanner multi-core CPU reconstruction are presented in Table 1. The total
CPU reconstruction time was ∼12.2 s for each 60 frame set, which rendered
the reconstruction unsuitable for the arbitrary length streams of real-time data.

Implementation of a Heterogeneous Image Reconstruction System 477

This is because reconstructing the data would take∼5.0x longer than acquisition.
On the other hand, each of the reconstruction steps was sped-up by the GPU
implementation and this resulted in the total reconstruction time being ∼3.4x
faster than the acquisition.

5 Application Example

The system was used in a research project measuring continuous cardiac output
during an exercise protocol [7]. This imaging protocol, which uses continuous,
real-time reconstruction for undersampled acquisitions with arbitrary trajec-
tories, was shown to benefit the most from the described system. Continuous
cardiac output monitoring is clinically important, however impractical with pre-
vious reconstruction technology. A spiral MR sequence [8] with 4x undersampling
was used to achieve high temporal resolution (TR: ∼44 ms) real-time data. Data
were acquired over a period of ∼10 min producing 13980 images that needed
to be reconstructed within clinically acceptable time (< 1 min). The original
CPU reconstruction would need over 80 min of additional processing; while the
GPU online reconstruction took only ∼9 s. This was possible thanks to full over-
lap between the reconstruction and the data acquisition. The protocol produced
raw aortic flow data, which allowed continuous monitoring of changes in response
to the exercise.

6 Discussion

The paper describes the challenges underlying translation of advanced MR pro-
tocols into clinical workflow. The need for improved computational power for
fast and robust reconstructions within the clinical environment were addressed
with the development of an external, heterogeneous image reconstructor. The
presented, distributed system, based on client-server architecture allowed the
creation of a flexible, modular platform that could be implemented on differ-
ent MR systems and using different reconstruction hardware. Importantly, our
implementation was invisible to the end user, which is essential for clinical trans-
lation allowing simple transfer of final image data to processing and storage
nodes.

For our application of continuous flow quantification, the native CPU recon-
struction was longer than the acquisition time. This limits the imaging protocol
to short scans and precludes its use in the clinical environment. It has been
proven that complex image reconstruction algorithms can be significantly sped-
up by porting them onto a GPU platform. In this work the GPU implementation
reduced the main bottleneck, the gridding step, from ∼70 % to ∼33 % of the total
reconstruction time. This was significantly better than a novel multi-core CPU
reconstruction based on the same gridding approach, demonstrating the impor-
tance of using the GPU. However, it was only by speeding up each part of the
iterative SENSE reconstruction using the GPU that was it possible to perform
reconstruction quicker than acquisition. Nevertheless the GPU implementation

478 G.T. Kowalik et al.

must be integrated into the scanner’s reconstruction pipeline to truly enable
these protocols for clinical use. This introduced a middle step in the form of
data transmission that could become the new bottleneck of the reconstruction.
The proposed and implemented data management scheme allowed full overlap
between all three parts of the reconstruction; acquisition, transmission and exe-
cution.

Although, the transmission protocol proved sufficient for the presented appli-
cations it may not be enough for more data intensive protocols (e.g. acquisitions
with 32 channel receiver coils). For these applications a faster data transmission
may be achieved with data compression. This step can be easily introduced to
the networking framework, but a suitable compression algorithm needs to be
researched to achieve satisfactory compression rates, which are not outweighed
by the time needed to run the compression.

Similar works toward offloading of image reconstruction from a scanner had
been done [9]. These works concentrated on interventional MRI where resultant
images were presented on separate viewing stations. Also, worth of mentioning
is a recent work toward an open source platform for implementing and sharing
of medical image reconstruction algorithms [10].

In conclusion, we achieved all of the project goals by integrating the GPU
based image reconstructor into the scanner’s system. We believe it has a potential
to revolutionise a type of sequences that are performed on patients and could
improve diagnosis and management of patients with cardiovascular disease.

References

1. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity
encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)

2. Pruessmann, K.P., Weiger, M., Bornert, P., Boesiger, P.: Advances in sensitivity
encoding with arbitrary k-space trajectories. Magn. Reson. Med. 46(4), 638–651
(2001)

3. Hansen, M.S., Atkinson, D., Sorensen, T.S.: Cartesian sense and k-t sense recon-
struction using commodity graphics hardware. Magn. Reson. Med. 59(3), 463–468
(2008)

4. Sorensen, T.S., Schaeffter, T., Noe, K.O., Hansen, M.S.: Accelerating the nonequi-
spaced fast fourier transform on commodity graphics hardware. IEEE Trans. Med.
Imaging 27(4), 538–547 (2008)

5. Stone, S.S., Haldar, J.P., Tsao, S.C., Hwu, W.M., Sutton, B.P., Liang, Z.P.: Accel-
erating advanced MRI reconstructions on GPUS. J. Parallel Distrib. Comput.
68(10), 1307–1318 (2008)

6. Kowalik, G., Steeden, J., Atkinson, D., Muthurangu, V.: A networked GPU recon-
structor within the clinical workflow for rapid fat quantification. In: Proceedings
of the 19th Annual Meeting of ISMRM, Montreal (2011)

7. Kowalik, G.T., Steeden, J.A., Pandya, B., Odille, F., Atkinson, D., Taylor, A.,
Muthurangu, V.: Real-time flow with fast GPU reconstruction for continuous
assessment of cardiac output. J. Magn. Reson. Imaging 36(6), 1477–1482 (2012)

Implementation of a Heterogeneous Image Reconstruction System 479

8. Steeden, J.A., Atkinson, D., Taylor, A.M., Muthurangu, V.: Assessing vascular
response to exercise using a combination of real-time spiral phase contrast MR
and noninvasive blood pressure measurements. J. Magn. Reson. Imaging 31(4),
997–1003 (2010)

9. Roujol, S., de Senneville, B.D., Vahala, E., Sorensen, T.S., Moonen, C., Ries, M.:
Online real-time reconstruction of adaptive TSENSE with commodity CPU/GPU
hardware. Magn. Reson. Med. 62(6), 1658–1664 (2009)

10. Hansen, M.S., Sorensen, T.S.: Gadgetron: an open source framework for medical
image reconstruction. Magn. Reson. Med. 69(6), 1768–1776 (2013)

X-Ray Laser Imaging of Biomolecules
Using Multiple GPUs

Stefan Engblom1 and Jing Liu1,2(B)

1 Division of Scientific Computing, Department of Information Technology,
Uppsala University, 751 05 Uppsala, Sweden

{stefan.engblom,jing.liu}@it.uu.se
2 Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology,

Uppsala University, 751 24 Uppsala, Sweden

Abstract. Extremely bright X-ray lasers are becoming a promising tool
for 3D imaging of biomolecules. By hitting a beam of streaming particles
with a very short burst of a high energy X-ray and collecting the result-
ing scattering pattern, the 3D structure of the particles can be deduced.
The computational complexity associated with transforming the data
thus collected into a 3D intensity map is very high and calls for efficient
data-parallel implementations.

We present ongoing work in accelerating this application using mul-
tiple GPU nodes. In particular, we look at the scaling properties of the
application and give predictions as to the computational viability of this
imaging technique.

Keywords: GPU cluster · CUDA/MPI · Single molecule imaging ·
X-ray laser

1 Introduction

We consider in this paper an emerging computational technology from the field
of structural biology. The classical method of determining atomic structures of
biological molecules by collecting diffraction patterns from X-ray illuminations
of crystals is currently undergoing a rapid development. Modern X-ray free-
electron lasers (XFELs) provide extremely intense bursts of X-rays allowing
for diffraction patterns to be collected from a single protein molecule, a virus
particle, or a cell. The idea of using XFELs for the purpose of atomic resolution
imaging of non-crystallized samples was first suggested in [6]; for a review, see
[2]. In a nutshell, a femtosecond X-ray pulse is faster than the damage processes
and the collected diffraction pattern thus belongs to the original object. Notable
recent successful applications include the study of photo absorption processes
of atoms [11], investigations in nanocrystallography [1], and in imaging of single
viruses [9].

The basic idea is simple: target particles are injected into the beam and hit
by X-ray pulses. The resulting diffraction pattern is collected by a pixellated

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 480–489, 2014.
DOI: 10.1007/978-3-642-55224-3 45, c© Springer-Verlag Berlin Heidelberg 2014

X-Ray Laser Imaging of Biomolecules Using Multiple GPUs 481

detector and represents one 2D projection of the particle. Using a collection of
such diffraction patterns from identical particles, a 3D image can in principle be
obtained by solving what is remindful of a complicated “puzzle”. Solving for the
unknown particle rotations when fitting the individual patterns into a consistent
3D structure is a solvable problem, albeit a highly compute intense one. Some
different algorithms have been proposed, and the approached considered here
is the one successfully employed in [9], and suggested earlier in [4]. The idea is
that data is repeatedly matched against tentative rotations of the particles such
that after convergence, the final 3D image may be deduced in the sense of a
Maximum Likelihood estimator.

With X-ray laser technology developing rapidly, and with diffraction data
being delivered at an ever increasing rate, massively parallel approaches for
bringing down the run times for analysis become vital. We present in this paper
the first results to this effect, namely, a working multi-GPU implementation.

A brief explanation of the imaging algorithm under consideration is found
in Sect. 2 and we discuss our data parallel distributed implementation in some
detail in Sect. 3. Our results, including a validation, are presented in Sect. 4 and
we offer a concluding discussion with some outlooks in Sect. 5.

2 Maximum-Likelihood Imaging with X-Ray Lasers

Denote by K = (Kk)Mdata
k=1 the stream of measured photon counts on the pixel-

lated 2D detector. From an increasingly detailed data set an improved estimate
of the 3D intensity distribution of the object W can in principle be constructed.
In practice the computational challenges due to a small signal to noise ratio are
severe and calls for both robust and efficient implementations.

Assuming for now i.i.d. data the Maximum-Likelihood estimator can be for-
mulated as an optimization problem,

Ŵ = argW max M−1
data

Mdata∑

k=1

log P(Kk|W), (2.1)

that is, maximizing the likelihood of the data given a probabilistic intensity
model. This approach is not directly tractable because (i) the rotation Rk of each
sample associated with the measurement Kk is unknown and, (ii) the photon
fluency φk hitting the sample is in practice also an unknown. A third obstacle
has already been mentioned: the measurements are severely contaminated by
noise, and care has to be taken in order to arrive at a convergent and robust
algorithm.

2.1 The EM Approach

The Expectation Maximization algorithm deals with likelihood estimation under
hidden data conditions in a constructive way. Briefly, alternating steps of (i)
assigning probabilities to the hidden states, and (ii) likelihood estimates of the

482 S. Engblom and J. Liu

parameters of the model can be shown under broad conditions to be a descent
step of the full likelihood functional [5]. In step (i) the model parameters are
frozen at the previous step, while in (ii) the hidden state probabilities (the
responsibilities using EM terminology) from step (i) are used.

To discuss the EM algorithm in the current context we need to introduce
some notation. We discretize the intensity space by introducing the set of points
(qi)

Mpix
i=1 and we also discretize the set of possible rotations by (Rj)Mrot

j=1 . We define
Wij as the unknown mass intensity of the sample at position Rjqi. Similarly, φjk

is introduced as an estimator of the intensity of the beam that produced data
frame k given rotation Rj .

The probabilistic model is that the intensity of the ith pixel in the kth mea-
surement is Gaussian,

P(Kik = κ|Wij , Rj , φjk) ∝ exp
(

− (κ/φjk −Wij)2

2σ2

)

, (2.2)

with σ a free noise parameter. Up to a constant the log-likelihood is therefore

Qijk = Qijk(W,φ) := − (Kik/φjk −Wij)2

2σ2
, (2.3)

and summing over i produces the joint log-likelihood function,

Qjk = Qjk(W,φ) :=
Mpix∑

i=1

Qijk(W,φ). (2.4)

This implies the “E-step”

P
(n+1)
jk = P

(n+1)
jk (W (n), φ(n)) := P(Rj |Kk,W

(n), φ(n))

=
wjTjk(W (n), φ(n))

∑Mrot
j′=1 wj′Tj′k(W (n), φ(n))

, (2.5)

in terms of Tjk(W,φ) = exp(Qjk(W,φ)), and where wj are weights normalized
such that

∑
j wj = 1. These additional degrees of freedom allow for prior prob-

abilities on the rotations and are necessary when the rotational space is not
uniformly discretized. In practice, (2.5) is computed in logarithmic space using
an appropriate scaling.

For the case of the current Gaussian model there is no explicit likelihood
formula available, but a fix-point iteration step may be used for the “M-step”,

W
(n+1)
ij =

∑Mdata
k=1 P

(n+1)
jk Kik/φ

(n)
jk

∑Mdata
k=1 P

(n+1)
jk

, (2.6)

φ
(n+1)
jk =

∑Mpix
i=1 K2

ik
∑Mpix

i=1 W
(n)
ij Kik

. (2.7)

This approach of using ‘partial steps’ can be theoretically justified under certain
conditions [5].

X-Ray Laser Imaging of Biomolecules Using Multiple GPUs 483

2.2 The EMC Algorithm

In principle, the iteration written symbolically as W (n+1) := (M ◦ E)W (n) can
be used as a method to obtain the required image as W∞ (E defined by (2.5),
M by (2.6)). The problem here is that the problem is severely overdetermined;
there are many pairs (i, j) such that Rjqi is nearly the same point. This problem
is of course emphasized when the end result is understood in the sense of a finite
resolution pixelized image.

A simple way around this is to add expansion/compression-steps before and
after the E and M -steps. The purpose of the latter step is to compress (aver-
age/smooth) the overdetermined representation into, say, a Cartesian represen-
tation with a minimum number of degrees of freedom. Vice versa, the expansion
step takes us back to the working description.

Consider therefore interpolation weights f such that for a predetermined set
of interpolation abscissas (pl)

Mgrid
l=1 and g some smooth function,

g(q) ≈
Mgrid∑

l=1

f(pl − q)g(pl). (2.8)

The expansion operator can now be defined (“e-step”),

Wij =
Mgrid∑

l=1

f(pl −Rjqi)Wl, (2.9)

that is, a map from values on a grid Wl := W (pl) into the working description
Wij = W (Rjqi).

In the implementation discussed here, the M- and the c-steps are in fact
intertwined in that the normalization is postponed until after W has been deter-
mined. Hence we start by computing (compare (2.6))

W
(n+1)
ij =

Mdata∑

k=1

P
(n+1)
jk Kik/φ

(n)
jk , (2.10)

with total probability per rotation j given by

νj =
Mdata∑

k=1

P
(n+1)
jk . (2.11)

Next the “c-step” is determined by averaging,

W
(n+1)
l =

∑Mpix
i=1

∑Mrot
j=1 f(pl −Rjqi)W

(n+1)
ij

∑Mpix
i=1

∑Mrot
j=1 f(pl −Rjqi)νj

. (2.12)

In Algorithm 1 we summarize our view of the EMC algorithm. A key issue to
note is the nonlinear character of several of the steps involved, and in particular

484 S. Engblom and J. Liu

of the E-step where computations in logarithmic space and a subsequent nor-
malization is made. This precludes the use of highly optimized standard linear
algebra packages such as BLAS. On the other hand, as pointed out already in [4],
the algorithm can clearly be distributed and is moreover suitable to data-parallel
implementations. This is the topic next discussed.

Algorithm 1. The principal logic behind the EMC algorithm.

Input: Initial guess of the 3D intensity distribution W
(0) of the object on

the grid (pl)
Mgrid
l=1 and initial estimate of the rotational probabilities P (0).

Output: Improved image W and probabilities P .
1: repeat
2: n = 0, 1, . . .
3: W (n) := e ◦W

(n). {Expansion step according to (2.9).}
4: P (n+1) := E ◦ P (n). {Expectation step, (2.5).}
5: [W (n+1),W(n+1)] := cM ◦W (n). {Combined Maximization and

compression, (2.10) and (2.12).}
6: until change in W is small enough

3 Parallelization Using Multiple GPU Nodes

3.1 Single-Node Data-Parallel Version

Thanks to their high compute density and memory bandwidth, GPUs are an
attractive alternative in many applications with a predominantly data parallel
character. Our single-node EMC was implemented using CUDA with C/C++-
wrappers and the implementation closely follows the logic in Algorithm 1. Briefly,
the CPU controls the overall procedure and streams all data to the GPU as well
as writes the output. The diffraction patterns are thus first loaded to the CPU,
then streamed and copied into GPU memory. At the end of each EMC iteration,
the GPU has the option to communicate back various variables to the CPU
which is written to disk. On the GPU, the compute intensive steps Eqs. (2.9),
(2.5), (2.10) and (2.12) in Algorithm 1 naturally become the kernels.

3.2 Distributed Implementation

Due to the increasing size of diffraction-pattern datasets, we extended the single-
node implementation into a distributed version using MPI/CUDA. Related
approaches with multi-GPU applications in Computational Fluid Dynamics [3]
and NAS-LU benchmarks [7] suggest that good efficiency can be achieved using
this combination.

Generally speaking, a good parallel efficiency is obtained when the tasks at
each node are roughly of the same computational complexity. There are two
immediate ways of distributing data which both target the running time of the
most time consuming part (the E-step, see Table 2). Simply put: one either splits
the matrix of rotational probabilities P along the rotations or along the images.

X-Ray Laser Imaging of Biomolecules Using Multiple GPUs 485

Fig. 1. Distribution of data and communication pattern for our distributed EMC imple-
mentation. In the figure, all rectangles representing data have the correct scale with
respect to the variable they represent (see Table 1). Step 0 is the initialization phase.
For each EMC iteration, intensity model updates are performed via step 1 through 3
among the GPU nodes.

We prefer to split P along rotations, that is, we localize P such that each node
has its own segment Pjk for j in a certain block of size about Mrot/N , where N is
the number of nodes, and where k = 1...Mdata. This approach to distribution is
natural when considering the size of typical data (see Table 1) and the associated
communication pattern. The only data thus gathered from the slave GPUs are
vectors with locally computed maximum values and local sums.

Figure 1 indicates how data flows in our implementation; in the initialization
step we distribute the diffraction patterns and the initial model. To normalize
the updated rotational probability P at each GPU node, the local maximum
and the local sum of P must be transferred to the Master node (steps 1.1–1.4 in
Fig. 1). Compression according to (2.12) is first done locally (step 2), while the
final reduced average is computed by the Master GPU. The updated intensity
model is lastly broadcasted and becomes the initial model for the next iteration
(step 3). In this way, each GPU node keeps its own probability estimate, while
the reconstruction of the model relies on a global reduction. Algorithm 2 further
details our distributed EMC algorithm.

With each GPU bind to one CPU, all communications among GPUs were
achieved via OpenMPI using CPU buffers and internal communication within
each CPU/GPU-pair. A notable difference to the single GPU implementation is
that, due to the global nature of the normalization in steps 1.1–1.4 of Fig. 1, the
kernel of the E-step must now be divided into 3 smaller kernels with intertwined
global communications.

486 S. Engblom and J. Liu

Algorithm 2. Pseudocode for our distributed version of the EMC
algorithm.

Input/output: As in Algorithm 1.

1: Distribute the 3D intensity W
(0) and the diffraction patterns K among

the nodes.
2: repeat
3: n = 0, 1, . . .
4: At each GPU node:
5: W (n) := e ◦ W

(n). {Local expansion step according to (2.9).}
6: P (n+1) := E ◦ P (n). {Local expectation step (2.5), but globally normalized

via steps 1.1–1.4 in Fig. 1.}
7: [W (n+1), W(n+1)] := cM ◦ W (n). {Local Maximization and compression,

(2.10) and (2.12).}
8: Gather models at the Master GPU and compute the average W

(n+1).
9: Broadcast the resulting W

(n+1).
10: until change in W is small enough

4 Results

In this section we present results from validating our implementation and some
first tentative results as to the parallel efficiency obtained on a small multi-GPU
computer. All tests ran on a single Linux machine (Red Hat 4.4.6-4) with two
Tesla C2075 GPUs and one GeForce GTX 680 GPU. We compiled our code with
GCC 4.4.6, CUDA 5.0 and OpenMPI 1.5.4.

In Table 1 we list the sizes of all relevant data in our setup. These runs were
configured to reconstruct a 64× 64× 64 or a 128× 128× 128 3D intensity model
from a collection of 198 diffraction patterns. The setup itself is a reconstruction
problem for a mimivirus diffraction dataset [9].

Table 2 shows our initial profiling result from the Nvidia profiler using a single
GPU. As can be seen, the E-step dominated the cost of the EMC iterations and
took more than 57 % of the total execution time.

4.1 Validation

The goal of the EMC algorithm is to reconstruct a 3D intensity model, which
emerges as a function of the estimated rotational probabilities and the raw

Table 1. Sizes of data as used in our experiments. Note that the value of Mpix is the
result after binning the raw data 1024 × 1024 into a coarser 64 × 64 (or 128 × 128)
format

Size Value

Mpix 4,096 (or 16,384)
Mdata 198
Mrot 86,520

Mgrid 262,144 (or 2, 097, 152) (= M
3/2
pix)

X-Ray Laser Imaging of Biomolecules Using Multiple GPUs 487

Table 2. Profile of the single GPU EMC implementation.

EMC step Relative time (%)

Expectation step (2.5) 57
Computation of the photon fluency (2.7) 23
Maximization step (2.10) 10
Compression step (2.12) 1.9
Expansion step (2.9) 1.4
Other 6.7

0 10 20 30 40 50 60 70 80
10

−9

10
−8

10
−7

10
−6

10
−5

Iteration #

AE of 2 GPUs

AE of 3 GPUs

EPI for 2 GPUs

EPI for 3 GPUs

Fig. 2. KS statistics (4.1) as a function of iteration number. Accumulated Error and
Error Per Iteration.

diffraction patterns. To validate our code, we relied on the Kolmogorov-Smirnov
statistics (KS) over these rotational probabilities;

DN = max
jk

(|FN
jk − F 1

jk|), (4.1)

where FN
jk is the cumulative distribution function of the rotational probability

Pjk for N ∈ {2, 3} GPUs, and we thus considered the N = 1 case to be the
truth.

EMC is an iterative algorithm and in validating our implementation we
both considered the error per iteration (EPI) and the accumulated error (AE).
Figure 2 displays these for the first 80 iterations for the case Mpix = 64 × 64.
The average values are less than about 1.5 × 10−7 (EPI) and 3.3 × 10−6 (AE).
Given that single precision was used and that the data consists of about 105

floating point numbers we judge that the implementation is validated to within

488 S. Engblom and J. Liu

Table 3. Average execution times per iteration and efficiencies for three different
hardware configurations

Set up Mpix = 64 × 64 Mpix = 128 × 128
Time (s) Efficiency Time (s) Efficiency

1 × C2075 49.9 ± 0.09 ≡ 1 179.8 ± 0.13 ≡ 1
2 × C2075 25.2 ± 0.04 0.99 90.5 ± 0.17 0.99
2 × C2075 + 1 × GTX580 16.9 ± 0.03 0.98 62.4 ± 0.17 0.96

the floating point accuracy. These results are very remindful of other similar
accuracy comparisons [8].

4.2 Efficiency

We tested our implementation using one to three GPUs and two different prob-
lem sizes. The time measured thus included all computations in one EMC iter-
ation and all the necessary data synchronization. As Algorithm 2 describes we
globally synchronize for normalizing the rotational probability and for averag-
ing the 3D intensity model. GPUs were therefore idle until all nodes reached
these barriers, and hence we cannot reasonably expect a linear speed up. Table 3
shows the average EMC iteration execution time and efficiency for the first 80
iterations.

5 Discussion

With our implementation we obtain a very reasonable and almost linear speedup.
Our parallel efficiency is comparable to that obtained in other MPI/CUDA appli-
cations [3,10,12].

There are some algorithmic changes that could be made to improve on the
efficiency. For instance, we need to synchronize in order to globally broadcast
the maximum value of P as used in scaling the result. When this value does
not differ substantially from the previous iterations, that value could clearly be
reused. Also, in the current implementation we make no effort in hiding the
communication time behind the time for computing the photon fluency (2.7),
which is independent on the update of the rotational probabilities in (2.5).

A somewhat more technical approach is to prefer to use GPU-to-GPU (or
“peer-to-peer”-style) communication to MPI, thus eliminating the need for the
CPU to be involved in the communication loop and also the need for the CPU-
to-GPU buffer copy.

For future work it is of interest to improve on the resolution of the recon-
structed model. By increasing the number of diffraction patterns and use a less
coarse binning procedure, it is possible to obtain a considerably higher resolu-
tion. For this magnitude of scaling up the input data, which we believe to be

X-Ray Laser Imaging of Biomolecules Using Multiple GPUs 489

realistic in the near future, it is clear that further improvements as to the dis-
tribution of data and to the computational efficiency of the individual parts are
needed. This is ongoing work.

Acknowledgment. This work was financially supported by the Swedish Research
Council, the Röntgen Ångström Cluster, the Knut och Alice Wallenbergs Stiftelse, the
European Research Council (JL), and by the Swedish Research Council within the
UPMARC Linnaeus center of Excellence (SE, JL).

References

1. Chapman, H.N., et al.: Femtosecond X-ray protein nanocrystallography. Nature
470(7332), 73–77 (2011). doi:10.1038/nature09750

2. Gaffney, K.J., Chapman, H.N.: Imaging atomic structure and dynamics with ultra-
fast X-ray scattering. Science 316(5830), 1444–1448 (2007). doi:10.1126/science.
1135923

3. Jacobsen, D.A., Thibault, J.C., Senocak, I.: An MPI-CUDA implementation
for massively parallel incompressible flow computations on multi-GPU clus-
ters. In: 48th AIAA Aerospace Sciences Meeting and Exhibit, vol. 16 (2010).
doi:10.2514/6.2010-522

4. Loh, N.D., Elser, V.: Reconstruction algorithm for single-particle diffraction imag-
ing experiments. Phys. Rev. E 80(2), 026705 (2009). doi:10.1103/PhysRevE.80.
026705

5. Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental,
sparse, and other variants. In: Jordan, M.I. (ed.) Learning in Graphical Models,
pp. 355–368. Kluwer, Dordrecht (1998)

6. Neutze, R., Wouts, R., van der Spoel, D., Hajdu, J.: Potential for biomolecular
imaging with femtosecond X-ray pulses. Nature 406(6797), 752–757 (2000). doi:10.
1038/35021099

7. Pennycook, S.J., Hammond, S.D., Jarvis, S.A., Mudalige, G.R.: Performance analy-
sis of a hybrid MPI/CUDA implementation of the NASLU benchmark. ACM SIG-
METRICS Perf. Eval. Rev. 38(4), 23–29 (2011). doi:10.1145/1964218.1964223

8. Salvadore, F., Bernardini, M., Botti, M.: GPU accelerated flow solver for direct
numerical simulation of turbulent flows. J. Comput. Phys. 235, 129–142 (2013).
doi:10.1016/j.jcp.2012.10.012

9. Seibert, M.M., et al.: Single mimivirus particles intercepted and imaged with an
X-ray laser. Nature 470(7332), 78–81 (2011). doi:10.1038/nature09748

10. Wang, Y., Dou, Y., Guo, S., Lei, Y., Zou, D.: CPU-GPU hybrid parallel
strategy for cosmological simulations. Concurr. Comput.: Pract. Exper. (2013).
doi:10.1002/cpe.3046

11. Young, L., et al.: Femtosecond electronic response of atoms to ultra-intense X-rays.
Nature 466(7302), 56–61 (2010). doi:10.1038/nature09177

12. Zaspel, P., Griebel, M.: Solving incompressible two-phase flows on multi-GPU clus-
ters. Comput. Fluids 80, 356–364 (2013). doi:10.1016/j.compfluid.2012.01.021

Out-of-Core Solution of Eigenproblems
for Macromolecular Simulations

José I. Aliaga1, Davor Davidović2, and Enrique S. Quintana-Ort́ı1(B)

1 Dpto. de Ingenieŕıa y Ciencia de Computadores,
Universidad Jaume I, 12.071 Castellón, Spain

{aliaga,quintana}@uji.es
2 Centar Za Informatiku I Računarstvo - CIR,
Institut Ruder Bošković, 10000 Zagreb, Croatia

ddavid@irb.hr

Abstract. We consider the solution of large-scale eigenvalue problems
that appear in the motion simulation of complex macromolecules on desk-
top platforms. To tackle the dimension of the matrices that are involved
in these problems, we formulate out-of-core (OOC) variants of the two
selected eigensolvers, that basically decouple the performance of the
solver from the storage capacity. Furthermore, we contend with the high
computational complexity of the solvers by off-loading the arithmetically-
intensive parts of the algorithms to a hardware graphics accelerator.

Keywords: Macromolecular motion simulation · Eigenvalue problems ·
Out-of-core computing · Multicore processors · GPUs

1 Introduction

Coarse-grained models (CGM) combined with normal mode analysis (NMA) has
been applied in recent years simulate biological activity at molecular level for
extended time scales [1–3]. Concretely, iMod [4] is a tool chest that exploits
the advantage of NMA formulations in internal coordinates (ICs) while extend-
ing them to cover multi-scale modeling. Despite the reduction in the degrees of
freedom offered by ICs, the diagonalization step remains the major computa-
tional bottleneck of this approach, specially for large molecules. In particular,
the eigenproblem that has to be solved in this step of CGM-NMA is given by

AX = BXΛ, (1)

where A ∈ R
n×n and B ∈ R

n×n correspond, respectively, to the Hessian and
kinetic matrices that capture the dynamics of the macromolecular complex, Λ ∈
R

s×s is a diagonal matrix with the s sought-after eigenvalues, and X ∈ R
n×s

contains the corresponding unknown eigenvectors [5]. Furthermore, when dealing
with large macromolecules, A,B are dense symmetric positive definite matrices,
n ≥ 10,000, and typically only the s ≈ 100 smallest eigenpairs are required.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 490–499, 2014.
DOI: 10.1007/978-3-642-55224-3 46, c© Springer-Verlag Berlin Heidelberg 2014

Out-of-Core Solution of Eigenproblems for Macromolecular Simulations 491

In this paper we address the efficient solution of large-scale generalized sym-
metric definite eigenproblems arising in the simulation of collective motions of
macromolecular complexes using multicore desktop platforms equipped with
graphics processing units (GPUs). While there exist other related work [6–8],
our paper makes the following original contributions:

– The eigenproblems associated with this particular application involve dense
matrices that are, in general, too large to fit into the memory of the GPU
and, in some cases, even the main memory of the server. To address this,
we consider two specialized algorithms that, by applying out-of-core (OOC)
techniques [9], amortize the cost of data transfers with a large number of
floating-point arithmetic operations (flops). Besides, to deliver high perfor-
mance, both “OOC-GPU” algorithms off-load the bulk of their computations
to the attached hardware graphics accelerator.

– One of our algorithms is the first OOC-GPU implementation that employs
spectral divide-and-conquer (sd&c) based on the polar decomposition pro-
posed recently [10]. We enhance this algorithm with ad-hoc splitting strate-
gies, that aim at reducing the number of sd&c iterations, and are cheap to
compute for the biological target application.

– As an alternative algorithm, we revisit an implementation of the two-stage
reduction to tridiagonal form [11], where the first stage is also an OOC-GPU
code while the subsequent stage operates on a much reduced compact matrix
that fits in-core.

– We perform a comparison of these two approaches using several datasets rep-
resentative of large-scale macromolecular complexes [8].

Overall the major contribution of this paper lies in that it provides a demonstra-
tion that complex macromolecular motion simulations can be tackled on desktop
servers equipped with GPUs even when the problem data is too large to fit into
the memory of the hardware accelerator and, possibly, even the main memory.

The rest of the paper is structured as follows. In Sect. 2 we briefly describe
the solution of generalized eigenproblems. In Sect. 3 we review in detail the
sd&c method [10], and revisit the two-stage eigensolver, describing our hybrid
CPU-GPU approach. Implementations of these eigensolvers are evaluated next,
in Sect. 4, using a collection of cases from biological sources. Finally, we close
the paper in Sect. 5 with a few concluding remarks.

2 Solution of Symmetric Definite Eigenproblems

All the eigensolvers considered in this work initially compute the Cholesky fac-
torization B = UTU , where U ∈ R

n×n is upper triangular [5], to then tackle the
standard symmetric eigenproblem

CY = Y Λ ≡ (U−TAU−1)(UX) = (UX)Λ, (2)

where C ∈ R
n×n is symmetric and Y ∈ R

n×s. Thus, the standard eigenprob-
lem (2) shares its eigenvalues with those of (1), while the original eigenvectors

492 J.I. Aliaga et al.

can be recovered from X := U−1Y . The initial Cholesky factorization, the con-
struction of C := U−TAU−1 in (2), and the solve for X are known to deliver
high performance on a large variety of HPC architectures, including multicore
processors and GPUs, and their functionality is covered by numerical libraries
(e.g., LAPACK, libflame, ScaLAPACK, PLAPACK, etc.) including some OOC
extensions (SOLAR, POOCLAPACK). Therefore, we will not consider these
operations further but, instead, focus on the more challenging solution of the
standard eigenproblem (2) on a hybrid CPU-GPU platform when the data matri-
ces are too large to fit into the GPU memory (and, possibly, the main memory).

Among the different solvers for the symmetric eigenproblem, we discard those
based on the one-stage reduction to tridiagonal form as well as the Krylov meth-
ods [5]. From an OOC viewpoint, the major drawback of these two classes of
methods is that they cast a significant part of their computations in terms of
the matrix-vector product (mvp). For a matrix of size n×n, this kernel roughly
performs 2n2 flops on n2 numbers (i.e., a rate of computation to data of O(1)),
so that an implementation that operates with OOC data (e.g., a GPU mvp rou-
tine where the matrix is on the main memory, or a multicore mvp code with
data on disk) is intrinsically limited by data movement and will attain very low
performance.

Instead, we will investigate a recent sd&c approach [10], with a much higher
computational cost than the one-stage/Krylov-based methods, but which con-
sists mainly of matrix-matrix operations that naturally render it as an appeal-
ing candidate for OOC-GPU strategies/platforms. As an alternative, we will
also consider a classical eigensolver based on a two-stage reduction to tridiag-
onal form, which first transforms the matrix C from dense to band form, to
then refine this intermediate matrix to tridiagonal form. We have previously
described [11] an OOC-GPU practical implementation of this two-stage eigen-
solver and demonstrated how, by carefully orchestrating the PCI data transfers
between host and device, in-core performance is maintained or even increased
for the OOC solution of general large-scale eigenproblems on hybrid CPU-GPU
platforms.

3 OOC Eigensolvers for GPUs

In this section we review the mathematical methods that underlie our GPU
eigensolvers, discuss how to refine the sd&c algorithm to reduce its compu-
tational cost for the solution of the eigenproblems arising in macromolecular
motion simulation, and offer some practical details about the OOC-GPU imple-
mentations using one key numerical kernel that appears in the algorithms.

3.1 The sd&c Algorithm

Numerical Method. For a symmetric matrix Â ∈ R
n×n, the following sd&c

algorithm [10] starts by computing its polar factor using the QR-based

Out-of-Core Solution of Eigenproblems for Macromolecular Simulations 493

dynamically weighted Halley (QDWH) iterative scheme [12]:
[√

cjXj

In

]

=
[
Q1

Q2

]

R (QR factorization), (3)

Xj+1 :=
bj
cj
Xj +

1√
cj

(

aj − bj
cj

)

Q1Q
T
2 , j ≥ 0, (4)

where X0 := Â/α and In denotes the identity matrix. In practice, the scalars α,
aj , bj , cj require estimates of the smallest singular value and matrix 2-norm of
Â, which are cheap to compute and, upon convergence, the sequence Xj yields
the sought-after polar factor Up.

Assume QDWH has been applied to Â := C − σIn, with σ a user-defined
splitting point for the eigenspectrum of the symmetric matrix C in (2). The
subspace iteration [5] is next employed to compute an orthogonal matrix [V1, V2],
where V1 ∈ R

n×k, such that (Up + In)/2 = V1V
T
1 ; therefore,

[
V T

1

V T
2

]

C [V1, V2] =
[
C1 E

T

E C2

]

, (5)

where C1 and C2 contain, respectively, the eigenvalues of C to the left and right
of σ, and ‖E‖F ≈ u, with u the machine unit roundoff [10].

Choosing the Splitting Point. The previous method is designed as a recursive
sd&c algorithm: after dividing the spectrum of C into those of C1 and C2, the
method is applied again to these two subproblems, using appropriate shifts σ1

and σ2 to further divide the spectrum. Note that our goal is to compute only a
few eigenpairs of the problem, specifically the smallest s. We therefore designed
three sd&c strategies, with the common purpose of selecting the appropriate
value of σ, that separates the eigenspectrum of C into two subsets C1 and C2,
with the dimension of the former being equal to (or only slightly larger than) s.
Specifically, we designed and evaluated three different sd&c strategies:

sd&c-a. σ = trace{A}/n, where trace{·} denotes the trace of its argument.
sd&c-b. σ = 4 trace{A}/n.
sd&c-c. In this case, given a macromolecule, we use iMod to generate the
Hessian and kinetic matrix for a problem of much smaller dimension, say
m ≈ 1, 024, and choose σ as the (100 · m/n)-th largest eigenvalue of this
problem.

Note also that just before the application of the subspace extraction, the
value k = ‖Up + In‖2F /2 indicates the number of eigenvalues in C1. Therefore, in
case k < s, the QDWH iterate has to be recomputed, with a larger value for σ.
After the first successful split, the eigenspectrum of C1 is completely computed
using a direct in-core eigensolver based on the reduction to tridiagonal form (and
with a negligible cost compared with that of the initial stage).

494 J.I. Aliaga et al.

3.2 Two-Stage Reduction to Tridiagonal Form

The eigensolver based on the two-stage reduction to tridiagonal form performs
the major part of the computations in terms of efficient Level-3 BLAS opera-
tions, in exchange for a nonnegligible increment in the computational cost when
compared with the direct (one-stage) reduction. The two-stage algorithm first
computes the decomposition QT

1 CQ1 = Ĉ, where Ĉ ∈ R
n×n is a matrix of band-

width w, and Q1 ∈ R
n×n is orthogonal. In the subsequent stage, Ĉ is further

reduced to a tridiagonal matrix T ∈ R
n×n as QT

2 ĈQ2 = T with Q2 ∈ R
n×n

orthogonal. Finally, the eigenvalues of T (which are also those of the C) and
the associated eigenvectors, in Z ∈ R

n×s, are computed using, e.g., the MR3

solver [13,14], and the eigenvectors are recovered from Y := Q1Q2Z.
Our implementation of this approach is based on the SBR (Successive Band

Reduction) toolbox [15] for the two-stage reduction to tridiagonal form, and
employs the LAPACK routine for the MR3 method, which in general only adds
a negligible cost. We have previously described an OOC-GPU implementation
of the reduction to band form [11] that carefully orchestrates computation and
communication to deliver performance equal or superior to that of an in-core
GPU routine. Furthermore, provided w is carefully chosen, the second stage and
the solution of the tridiagonal eigenproblem can proceed with data in core [11].

The OOC-GPU code for the first stage consists basically of three major
kernels: QR factorization, one-sided update (for the application of orthogonal
transforms from the left), and two-sided update (application from both left and
right). These kernels are thus conceptually analogous to some of those appearing
in the sd&c algorithm.

3.3 OOC Kernels

We next illustrate the OOC-GPU implementations using (a specialized case
of) the QR factorization as a workhorse. Our OOC-GPU algorithm for this
operation encodes a left-looking, slab-oriented factorization [9] that transfers
data by column blocks (slabs) of width s. Note that, while there exist linear
algebra libraries to obtain the QR factorization on GPUs [7], these lack of the
specialized kernels that are necessary for our particular operation.

In particular, let us denote the 2n×n matrix that has to be factorized in (3) as
D, and consider a partitioning of this matrix into blocks of dimension s×s each,
where D[i, j] denotes the (i, j)-th block and, for simplicity, we assume that n is
an integer multiple of s. Here, the parameter s is chosen so that a slab of size (n+
s)×s can fit into the GPU memory. Routine QR OOC in Listing 1.1 and Fig. 1
(left) describe how to leverage the upper triangular structure of the bottom n×n
half of D during the computation of the QR factorization of this matrix using our
OOC-GPU algorithm. For each iteration of the outer loop, the algorithm first
updates (part of) the k-th slab of D w.r.t. the transforms that were calculated
earlier (as corresponds to a left-looking variant). These transforms are divided
into slabs of width s and applied, in the inner loop, to the corresponding fraction
of D[:, k] from the left, invoking routine Update GPU for that purpose. After

Out-of-Core Solution of Eigenproblems for Macromolecular Simulations 495

the update, the algorithm proceeds to factorize the current slab, using routine
QR Hybrid. Note how, at each outer iteration of this loop, one slab of D is
transferred from main memory to the GPU, modified there, and the results are
sent back to the main memory.

The code for the building kernels Update GPU and QR Hybrid is also
given in Listing 1.1, and both procedures are illustrated in Fig. 1 (right). In these
routines matrices E and F are partitioned into blocks of size b×b, so that E[i, j],
F [i, j] stand for the (i, j)-th blocks of the corresponding matrix. For simplicity,
we assume now that s is an integer multiple of b. The first routine operates
with F (a slab of D of width s) stored in-core (i.e., in the GPU memory), and
streams blocks of E, of width b, from the main memory to the GPU, in order
to update F with the orthogonal transforms contained in them. The second
routine computes a QR factorization of F (stored in-core), using a conventional
blocked left-looking procedure with block size b, so that the block factorizations
and orthogonal transforms are computed in the CPU, while the updates of the
trailing submatrices are performed in the GPU.

1 function D = QR OOC(n, s, b, D);
2 r = n/s;
3 for k = 1:r
4 Copy D[1:r+k, k] to GPU
5 for j = 1:k-1
6 D[j:r+j, k] = Update OOC(n, s, b, D[j:r+j, j], D[j:r+j, k]);
7 end
8 D[k:r+k, k] = QR Hybrid(n, s, b, D[k:r+k, k]);
9 Copy D[k:r+k, k] to main memory

10 end
11 //---
12 function F = Update OOC(n, s, b, E, F);
13 r = n/b; t = s/b;
14 for k = 1:t
15 Copy E[k:r+k, k], containing Qk , to main memory
16 F[k:r+k, :] = Qk ’ * F[k:r+k, :]; // Update in GPU
17 end
18 //---
19 function E = QR Hybrid(n, s, b, E);
20 r = n/b; t = s/b;
21 for k = 1:t
22 Copy E[k:r+k, k] to main memory
23 E[k:r+k, k] = Rk/Qk = QR(E[k:r+k, k]); // Factorize in CPU
24 Copy E[k:r+k, k], containing Qk , to GPU
25 E[k:r+k, k+1:r] = Qk ’ * E[k:r+k, k+1:r]; // Update in GPU
26 end

Listing 1.1. OOC-GPU left-looking slab-based algorithm for the QR factorization
QR OOC and the building kernels Update OOC and QR Hybrid.

Optimization of QR OOC. In our QR OOC algorithm, only the orthogo-
nal matrix of the resulting QR factorization of D is built/stored while the upper
triangular factor is not referenced/kept. Our QR algorithm is a left-looking algo-
rithm that applies all previous transformations to the current slab —in contrast
with the traditional right-looking approach that immediately propagates the
transforms to the right of the current slab— since left-looking OOC variants in
general incur in a smaller number of transfers [9].

496 J.I. Aliaga et al.

D[j:r+j,j]

D[j:r+j,k]

D[k:r+k,k]

n+s

n+s

s s

s
b

s

E[k:r+k,k]

E[k:r+k,k+1:r]

F[k:r+k,1:r]

n+b n+s

Fig. 1. Accompanying illustrations for the OOC-GPU QR factorization QR OOC
(left), and the building kernels Update OOC and QR Hybrid (right).

Furthermore, we leverage the special structure of D[:, k] (Fig. 1, left) to fur-
ther reduce the number of transfers. Concretely, at each step of the inner loop
of routine QR OOC, D[j : r + j, k], of size (n + s) × s, is stored in the GPU
memory. Now, during the next iteration of loop j, D[j + 1 : r + j + 1, k] will
be required; see Fig. 1 (left). Thus, the difference between these two slabs cor-
responds to D[j, k], which does not need to be sent back to main memory as it
belongs to the upper triangular factor; and D[r + j + 1, k], which is stored in
main memory and will have to be transferred to the GPU. Therefore, at the end
of iteration j, D[j, k] is removed from the GPU memory, as it is not required
any longer; and the new block D[r + j + 1, k] is transferred from main memory
to the GPU. Applying this approach, at each update step only one block of size
s× s needs to be sent to the GPU, instead of the whole slab of size (n+ s)× s.

Optimization of QR Hybrid. This routine computes the QR factorization
of D[k : r + k, k] with the collaboration of both CPU and GPU. This slab is
divided into blocks of width b; see Fig. 1 (right). At each iteration of routine
QR Hybrid in Listing 1.1, the orthogonal factor for E[k : r+ k, k] is computed
on the CPU, and transferred to the GPU; and the submatrix to the right is next
updated on the GPU. Thus, the QR factorization computed at each iteration
only involves E[k : r + k, k]. Following this approach, the special structure of
E can be efficiently exploited with little overhead, that depends only on the
relation between b and s. (In practice, b ≤ 128 while s is much larger.)

Out-of-Core Solution of Eigenproblems for Macromolecular Simulations 497

4 Experimental Results

All the experiments were performed on a server with two Intel Xeon E5520
quad-core processors (total of 8 cores @ 2.27 GHz), 48 Gbytes of RAM, and a
Tesla C2050 GPU (2.6 Gbytes of memory, ECC on), using ieee double-precision
arithmetic. The results include the cost of transferring the input data and results
between main memory and GPU. The codes were linked to NVIDIA CUBLAS
(v5.0) and the BLAS implementation in GotoBLAS2 (v1.13).

For simplicity, we will only consider GPU routines that operate with data
residing in the main memory. For matrix decompositions such as the QR fac-
torization and other similar Level-3 BLAS-based kernels, disk latency can be
mostly hidden by overlapping it with computation, even in platforms equipped
with GPU accelerators [16]. Therefore, we expect these results to carry over to
the case where data is stored on disk.

We employed 6 datasets in the experimentation: utubseam40, utubseam10,
riboTIpre, 1cwp, 1qgt and utubseam20, leading to eigenproblems of dimen-
sion n = 24, 943, 29,622, 30,065, 30,504, 30,785 and 31,178, respectively, that in
all cases do not fit into the GPU memory.

Our first experiment analyzes the scalability of the OOC-GPU algorithms,
measured as the ability of these methods to deliver a constant GFLOPS (billions
of flops/second) rate as the problem dimension grows to exceed the capacity of
the GPU memory. For this purpose, we employed iMod to generate matrices
of varying dimensions for the utubseam{10,20,40} benchmarks. Figure 2 shows
that the OOC-GPU two-stage and sd&c algorithms are scalable in this sense.
At this point, be aware that the much higher GFLOPS ratio of the approach
based on the sd&c method do not necessarily imply superior performance since,
as we will show in the next experiment, this method also requires a much higher
cost than the two-stage alternative.

0

50

100

150

200

0 5000 10000 15000 20000 25000 30000

G
F

LO
P

S

Matrix Dimension

OOC-GPU algorithms on Intel Xeon E5520 (x2) and NVIDIA C2050

SD&C
Two-stage

Fig. 2. GFLOPS rate of the OOC-GPU eigensolvers applied to reduced versions of the
utubseam{10,20,40} test cases.

498 J.I. Aliaga et al.

Table 1. Comparison of eigensolvers. Time is reported in seconds in all cases. For the
sd&c variants, “#iter” is the number of QDWH iterations and “split” is subproblem
size after the first divided-and-conquer step.

Case Two-stage sd&c-a sd&c-b sd&c-c
Time Time #iter split Time #iter split Time #iter split

utubseam40 1534.3 3087.9 7 8678 2402.8 7 712 2428.2 7 1024
utubseam10 2536.3 4652.3 7 9006 3871.2 7 936 3877.8 7 1034
riboTIpre 2426.4 5868.2 9 11779 3420.6 6 284 4736.9 7 11448
1cwp 2523.1 5949.8 9 7005 4276.4 7 1412 8264.1 12 16721
1qgt 2622.9 6503.7 10 7362 5525.9 9 1562 9650.2 12 20952
utubseam20 2780.9 7263.4 10 9288 4521.4 7 815 5937.8 9 2511

Table 1 compares the total execution time of the OOC-GPU two-stage and
sd&c algorithms, using the three techniques to choose the splitting parameter σ
described in Subsect. 3.1 for the latter. As could be expected, the execution time
of the sd&c algorithm strongly varies depending on the properties of the spec-
trum and the splitting point, and different strategies to select σ greatly affect the
convergence speed of the QDWH. For our particular test cases, strategy sd&c-b
offers the best results as it combines fast convergence with the decoupling of a
subproblem C1 of reduced size, which renders the cost of the subspace iteration
low. However, in all cases, the two-stage approach is clearly superior to the sd&c
method.

5 Concluding Remarks

We have presented and evaluated two hybrid CPU-GPU algorithms for the solu-
tion of generalized symmetric eigenproblems arising in macromolecular motion
simulation, based on the two-stage reduction to tridiagonal form and a new spec-
tral divide-and-conquer approach for the polar decomposition. In both cases, by
carefully amortizing the cost of the PCI data transfers with a large number
of floating-point arithmetic operations, the implementations attain high perfor-
mance and, more importantly, offer perfect scalability so that the dimension
of the macromolecular problems that can be tackled is not constrained by the
capacity of the GPU memory.

Experiments on an desktop platform with two Intel Xeon multicore proces-
sors and an NVIDIA “Fermi” GPU, representative of current server technology,
illustrate the potential of these methods to address the simulation of biological
activity. These results also show the superior performance of the OOC-GPU two-
stage approach over the sd&c implementations, despite the former necessarily
computes the full eigenspectrum of the problem while the latter can be used, in
principle, to obtain only the sought-after part of the spectrum.

As part of future work, we plan to extend these algorithms to operate with
data on disk, so that much larger problems can be addressed on desktop
platforms with a reduced main memory.

Out-of-Core Solution of Eigenproblems for Macromolecular Simulations 499

Acknowledgments. D. Davidović’s visit to UJI was supported by the COST Action
IC0805. The researchers from UJI were supported CICYT TIN2011-23283 and
FEDER, the EU FP7 318793 “EXA2GREEN”, and P1-1B2011-18 of the Fundació
Caixa-Castelló/Bancaixa and UJI. We also thank the Structural Bioinformatics Group,
from CSIC, for the datasets.

References

1. Ayton, G.S., Voth, G.A.: Systematic multiscale simulation of membrane protein
systems. Curr. Opin. Struct. Biology 19(2), 138–44 (2009)

2. Bahar, I., Lezon, T.R., Bakan, A., Shrivastava, I.H.: Normal mode analysis of
biomolecular structures: functional mechanisms of membrane proteins. Chem. Rev.
110(3), 1463–97 (2010)

3. Skjaerven, L., Hollup, S.M., Reuter, N.: Normal mode analysis for proteins. J. Mol.
Struct. (Theochem) 898(1–3), 42–48 (2009)

4. Lopez-Blanco, J.R., Garzon, J.I., Chacon, P.: iMOD: multipurpose normal mode
analysis in internal coordinates. Bioinformatics 27(20), 2843–50 (2011)

5. Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press, Baltimore (1996)

6. Aliaga, J., Bientinesi, P., Davidović, D., Napoli, E.D., Igual, F., Quintana-Ort́ı,
E.S.: Solving dense generalized eigenproblems on multi-threaded architectures.
Appl. Math. Comput. 218(22), 11279–11289 (2012)

7. MAGMA project home page. http://icl.cs.utk.edu/magma/
8. López-Blanco, J.R., Reyes, R., Aliaga, J.I., Badia, R.M., Chacón, P., Quintana,

E.S.: Exploring large macromolecular functional motions on clusters of multicore
processors. J. Comp. Phys. 246, 275–288 (2013)

9. Toledo, S.: A Survey of Out-of-core Algorithms in Numerical Linear Algebra.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society Press, Providence (1999)

10. Nakatsukasa, Y., Higham, N.J.: Stable and efficient spectral divide and conquer
algorithms for the symmetric eigenvalue decomposition and the SVD. Technical
Report 2012.52, Manchester Inst. Math. Sci., The University of Manchester (2012)

11. Davidović, D., Quintana-Ort́ı, E.S.: Applying OOC techniques in the reduction to
condensed form for very large symmetric eigenproblems on GPUs. In: 20th Euro.
Conf. PDP 2012, pp. 442–449 (2012)

12. Nakatsukasa, Y., Bai, Z., Gygi, F.: Optimizing Halley’s iteration for computing the
matrix polar decomposition. SIAM J. Matrix Anal. Appl. 31, 2700–2720 (2010)

13. Dhillon, I.S., Parlett, B.N.: Multiple representations to compute orthogonal eigen-
vectors of symmetric tridiagonal matrices. Linear Algebra Appl. 387, 1–28 (2004)

14. Bientinesi, P., Dhillon, I.S., van de Geijn, R.: A parallel eigensolver for dense
symmetric matrices based on multiple relatively robust representations. SIAM J.
Sci. Comput. 27(1), 43–66 (2005)

15. Bischof, C.H., Lang, B., Sun, X.: Algorithm 807: the SBR toolbox–software for
successive band reduction. ACM Trans. Math. Soft. 26(4), 602–616 (2000)

16. Quintana-Ort́ı, G., Igual, F.D., Marqués, M., Quintana-Ort́ı, E.S., de Geijn,
R.A.V.: A run-time system for programming out-of-core matrix algorithms-by-
tiles on multithreaded architectures. ACM Trans. Math. Softw. 38(4), 25:1–25:25
(2012)

Using GPUs for Parallel Stencil Computations
in Relativistic Hydrodynamic Simulation

Sebastian Cygert1, Daniel Kiko�la2, Joanna Porter-Sobieraj1(B),
Jan Sikorski3, and Marcin S�lodkowski3

1 Faculty of Mathematics and Information Science,
Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

cygerts@gmail.com, j.porter@mini.pw.edu.pl
2 Department of Physics, Purdue University, 525 Northwestern Ave.,

West Lafayette, IN 47907, USA
dkikola@purdue.edu

3 Faculty of Physics, Warsaw University of Technology,
Koszykowa 75, 00-662 Warsaw, Poland

slodkow@if.pw.edu.pl, jsikorski@fuw.edu.pl

Abstract. This paper explores the possibilities of using a GPU for
complex 3D finite difference computation. We propose a new approach
to this topic using surface memory and compare it with 3D stencil com-
putations carried out via shared memory, which is currently considered
to be the best approach. The case study was performed for the extensive
computation of collisions between heavy nuclei in terms of relativistic
hydrodynamics.

Keywords: Finite difference · Riemann solver · MUSTA-FORCE
algorithm · Parallel algorithms · CUDA

1 Introduction

Relativistic hydrodynamics is a theory which provides a simple and straight-
forward solution to many complicated physical problems, for instance in high
energy physics, high energy nuclear science and astrophysics [1–4]. Even a com-
plicated, dynamic system can be described with a limited set of relatively simple
hyperbolic conservation laws in this framework. All the information regarding
the physical process is contained in a single equation of state, which describes the
relationship between the thermodynamic properties of a studied system. Assum-
ing the collective fluid system, the knowledge of the details of interactions on the
microscopic level is not required. In the case of relativistic hydrodynamics, an
accurate representation of relativistic flows and shock waves is crucial for a pre-
cise description of many important phenomena, for example jet propagation in
nuclear hot matter during heavy nuclei collisions. This requires full 3+1 (the
three spatial dimensions + time) dimensional simulations on a larger numerical
grid, which are extremely demanding in terms of computing resources.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 500–509, 2014.
DOI: 10.1007/978-3-642-55224-3 47, c© Springer-Verlag Berlin Heidelberg 2014

Using GPUs for Parallel Stencil Computations 501

The hydrodynamic simulation is equivalent to solving a set of hyperbolic
conservation laws with a given boundary and initial conditions, with additional
constraints provided by the equation of state [4,5]. The equations, which describe
relativistic hydrodynamic evolution, have a general form of:

∂U
∂t

+
∂

∂x
(Fx(U)) +

∂

∂y
(Fy(U)) +

∂

∂z
(Fz(U)) = 0, (1)

where U = [E, M x , M y , M z , R] is a vector of conserved quantities in a laboratory
rest frame, E - energy density, M x , M y , M z - momentum density and R is a
charge density; F x (U), F y(U) and F z (U) are fluxes defined as:

Fx(U) =

⎛

⎜
⎜
⎜
⎜
⎝

(E + p)vx

Mxvx + p
Myvx

Mzvx

Rvx

⎞

⎟
⎟
⎟
⎟
⎠
Fy(U) =

⎛

⎜
⎜
⎜
⎜
⎝

(E + p)vy

Mxvy

Myvy + p
Mzvy

Rvy

⎞

⎟
⎟
⎟
⎟
⎠
Fz(U) =

⎛

⎜
⎜
⎜
⎜
⎝

(E + p)vz

Mxvz

Myvz

Mzvz + p
Rvz

⎞

⎟
⎟
⎟
⎟
⎠
, (2)

and p is a pressure. The equation of state has a general form of:

p = f(e, n), (3)

where e and n are energy density and charge density in a rest frame of fluid (i.e.
in a frame where velocity v is vanishing: v = [0, 0, 0]).

In the numerical applications, all continuous hydrodynamic fields have to be
represented as discrete quantities on a numerical grid. In our program, we use
a finite-difference scheme on a Cartesian grid for the hydrodynamic simulations.
Time evolution in a one-dimensional case for a particular cell i is given by:

Un+1
i = Un

i +
Δt

Δx
(Fi− 1

2
− Fi+ 1

2
), (4)

where Un
i represents a conserved quantity at the discrete time tn; Δt and Δx are

time and space steps, respectively, and Fi− 1
2
, Fi+ 1

2
, are numerical fluxes through

the cell boundaries.
The numerical fluxes are obtained by solving a Riemann problem at each cell

boundary [4,5]. We use a second order (in space and time) MUSTA-FORCE
[6] approach to obtain Fi− 1

2
and Fi+ 1

2
. MUSTA-FORCE is a MUlti-STAge

predictor-corrector algorithm which uses a relatively simple central scheme called
FORCE for solving a Riemann problem in the intermediate steps. The central
scheme does not require any assumption to be made about a simulated physical
process; therefore it can be used for solving any system of hyperbolic conserva-
tion laws. Moreover, this approach provides excellent accuracy and the number
of MUSTA steps can be adjusted to obtain a shock wave resolution required for a
particular study. However, this approach is more expensive in terms of comput-
ing power compared to traditional algorithms. A typical test would use 200–300
cells in each direction (overall up to 27 million cells). Therefore, it is necessary
to use parallel processing in order to achieve a reasonable simulation time in

502 S. Cygert et al.

the case of (3+1)-dimensional simulations. A promising route towards higher
efficiency is computing using graphics processing units, which offer an unprece-
dented increase in computing power compared to standard CPU simulations.

2 3D Finite Difference Computation on a GPU

2.1 GPU Background

The MUSTA-FORCE algorithm presented in the previous section has been
implemented on a GPU with the use of the CUDA parallel programming model
[7–9]. The functions executed on a GPU are called kernels. Each kernel is exe-
cuted by launching blocks of threads. Threads from one block run together on
the same streaming multiprocessor, each containing streaming processors with
on-chip shared memory. All threads have access to common global memory with
high access latency. Multiprocessors also contain register memory that guaran-
tees low-latency access that can be completely hidden by the thread scheduler.
These registers are partitioned among concurrent threads; when threads perform
computations, all the variables are placed by default in registers for as long as
they are available. If there is lack of registers, variables awaiting computation
are held in local (private for a thread) memory, which is part of the global device
memory and which gives the same time penalty for using it. This is called reg-
ister spilling or register pressure [8] and slows down the computations. Besides
this, a limited amount of shared memory is available for all threads within one
block – thus, they can communicate through it. The advantage of using shared
memory is that it can be significantly faster than global memory.

Furthermore, CUDA threads are partitioned into warps. The threads that
comprise a warp are designed to process one common instruction at a time. As a
result, when there are conditional sentences in the code and when threads within
one warp follow different paths, a warp scheduler needs to issue instructions for
all the paths. This unwanted behavior is called branch divergence and therefore,
in general, conditional sentences should be used carefully. The warp scheduler
selects a warp that is ready to execute its next instruction. This implies that
the CUDA program executes efficiently when there are thousands of threads
executed in parallel, so the scheduler can hide the memory latencies.

2.2 Related Works

Using graphical processors to speed up computations of 3D finite difference
algorithms is a problem that has recently been well addressed in many articles
[10–12]. The general approach, called sliding window, is to slice the 3D grid into
2D slices and keep the data shared between many threads in shared memory. In
Fig. 1 we present a 16× 16 data grid and halos that are kept in shared memory.
Halos are elements that are required by the border cells to compute their value
in the next iteration. Since we use a second order algorithm in space, the width

Using GPUs for Parallel Stencil Computations 503

Fig. 1. 16 × 16 data grid (white) and halos (grey) for the 4th order stencil in shared
memory (left) and the pattern of data distribution between shared memory (white cells
on the xy plane) and registers (grey cells along the z-axis) for a thread for 3D stencil
computation (right)

of the area of halos is 2. The next important point is also to keep the 2 cells in
front and the 2 behind in registers. When the threads are iterating through the
z-axis, they shift their registers and load only the next cell.

This approach - although very good - has several drawbacks.

1. Problems with halos. When the grid is divided into the blocks there are always
some halo elements needed (as seen on the left of Fig. 1) to proceed with the
computations. The border threads of the block are used to load these ele-
ments. When the size of the grid does not fit perfectly into threadblocks, the
last block, of a smaller size, needs to be taken into account during implemen-
tation. There is also another case when the size of the last block is smaller
than the order of the algorithm - in this case the corresponding threads need
to load more cells than normally. This all complicates the code and increases
branch divergence, which should be discussed as denoted in Sect. 2.1. Note
that the algorithm presented in the appendix of [11] works properly only when
all blocks are of the same size.

2. Data redundancy. With the presented approach the halo elements will some-
times be read more than once. In such a model, the number of reads per cell
is (n∗m+k(n+m))/(n∗m) [11], where n and m stand for a block’s size and k
is the order of stencil. For the presented example, with 16× 16 data tiles and
a 4th order stencil, the read redundancy is equal to 1.5. Furthermore, due to
the limited maximum size of shared memory per block (48 KB in contempo-
rary GPUs) in each iteration, the data is read from global to shared memory,
read from shared memory and then written back to the global memory, which
increases the data redundancy factor by 1. This all means that the overall
data redundancy in this example is 2.5.

3. Relatively heavy usage of registers. In the finite element method each cell con-
tains a number of variables. When the cell size is multiplied by the number
of elements needed to be kept in registers, it may turn out that there are
no registers left to proceed with other computations. As denoted in Sect. 2.1,
variables not stored in registers are placed in local memory, which is signifi-
cantly slower.

504 S. Cygert et al.

Despite these drawbacks, the sliding window algorithm is regarded as the best
way to approach 3D finite difference algorithms. However, recent advances in
CUDA hardware have also opened up the possibility of using another competing
method, based on surface memory.

Texture memory was initially designed for graphics usage where thousands
of pixels are processed in parallel. Texture memory resides in device memory
and is cached in a special cache which is optimized for 2D spatial locality. This
means that a read from this memory costs one memory read from global mem-
ory on a cache miss, otherwise access to the data is almost instant. However,
texture memory allows for only reading operations, and – in devices of compute
capability 2.x and higher – surface memory was introduced to handle read/write
operations. All this means that texture/surface memory performs well in tasks
where there is 2D locality in accessing memory. In particular, solving hydrody-
namics equations on a grid suits it perfectly, as well as most 3D finite difference
algorithms. Texture memory has already been used for solving fluid dynamics
[13–15].

2.3 Implementation Notes

The algorithm presented in Sect. 1 has been implemented on a GPU in two
versions - one using shared memory and another using surface memory. The
shared memory algorithm is described below.

Algorithm 1. An order-4 stencil computation using shared memory

Load data from host to device global memory.
For t_n in 1..N do

Load two front, a current and one behind cell into registers.
For z in 3..Z_Dimension-2 do

Load the second behind cell into register.
Save a current cell into shared memory.
For border threads in block do

Load halos into shared memory.
Synchronize threads.
Load neighboring cells from shared memory.
Synchronize threads.
Compute cell.
Write result to global memory.
Shift registers.
Synchronize threads.

Send data back to host.

It needs to be stressed that the Compute cell function is quite complicated. The
MUSTA-FORCE algorithm uses many temporary data from interpolated cells.
As a result, most variables are sent to local memory because of a lack of registers.
Now, due to the operator splitting method we used in integration, and the fact

Using GPUs for Parallel Stencil Computations 505

that for most of the interpolated cells the velocity also needs to be computed,
this function is called 90 times for a single cell.

Furthermore, in the presented algorithm a cell is a vector of five variables:
E,Mx,My,Mz and R as mentioned in Sect. 1. Each of these variables is com-
puted separately. When we multiply the size of the cell structure by the number
of overall cells – which in our computations reaches millions – it can very clearly
be seen that this algorithm is very expensive in terms of both computations and
memory usage.

The algorithm using surface memory was built based on the idea of the pre-
vious one. One great thing about using surface memory is that implementation
becomes extremely simple compared to that with shared memory. Only the way
of accessing specific cells is a little more difficult but it can easily be hidden
using some functions. The pseudo-code is presented in Algorithm 2.

Algorithm 2. An order-4 stencil computation using surface memory

Load data from host to device global memory.
Load data from global memory into surface memory.
For t_n in 1..N do

For z in 3..Z_Dimension-2 do
Load neighboring cells from surface memory.
Synchronize threads.
Compute cell.
Write result to surface memory.
Synchronize threads.

Save data from surface memory to global memory.
Send data back to host.

Two surfaces are used in this algorithm; both are used for writing and reading
alternately. Because surface memory is part of global memory, in most cases
a data grid of almost the same size as in the algorithm using shared memory
will fit in the memory. It is very clear that using surface memory simplifies the
algorithm. In the main loop the algorithm works using just surface memory, so
data redundancy is almost nonexistent and fewer synchronizations are needed. It
must be noted that currently surface memory does not support double precision
arithmetic. Obviously, if it were necessary, it could be simulated but it would
probably negate most of the advantages of using surface memory.

2.4 Results and Analysis

The numerical tests were performed on a PC with an NVIDIA GeForce 610
1 GB graphics card with CC 2.1. The goal of our research was to compare the
effectiveness of two implementations: surface and shared memory for solving 3D
finite difference algorithms.

The figures present the times for a hydrodynamic simulation for various con-
figurations of input data. The tests were performed for grids of dimensions 60,

506 S. Cygert et al.

Fig. 2. Execution time for 100 steps of a hydrodynamic simulation using the MUSTA-
FORCE algorithm as a function of the total number of cells

Fig. 3. Execution time for 100 steps of a hydro dynamic simulation using the MUSTA-
FORCE algorithm for different sizes of a single cell

Fig. 4. Execution time for 100 steps of a generalized 3D finite difference algorithm

110, 160, 200, and 220 in each of the three axes and for 100 steps of the algo-
rithm. On the horizontal axis of the graphs the total number of cells in the
corresponding grids is presented. The tests were performed using a 16× 8 data
grid which we found to be the most effective size. 8× 8 and 16× 16 proved to
be only a little slower. Tests on bigger blocksizes (32× 16, 32× 32) were up to
50 % slower. This was caused by the fact that for bigger blocksizes, a smaller

Using GPUs for Parallel Stencil Computations 507

number of blocks could be executed on one streaming multiprocessor in parallel
due to the number of register limitations. The maximum grid that fits within
the memory limitations for a single cell, including vector U, and thus occupying
20 bytes of memory, was 240× 240× 240.

Figure 2 shows that the execution times for both implementations are practi-
cally the same with the surface-memory algorithm enjoying a slight advantage.
However, we must be aware that some properties of this algorithm affect the
results. As was described in Sect. 1, it can be seen that the algorithm is quite
difficult, especially because it uses a lot of memory. Due to this fact, we are faced
here with quite a big register spill which causes a latency in computations. As a
result, more time is spent just loading and saving the variables in local memory
instead of doing computations.

To give an overview of how increasing the single cell’s size (and thus keeping
data in local memory) impacts the time required for simulation, another test
was performed. As mentioned in Sect. 1 the algorithm operates on variables in
both – the laboratory frame and the fluid rest frame. Initially, it was convenient
to keep all this data within a single cell, however while optimizing the code only
laboratory frame variables were preserved. Figure 3 presents the timing for both
cell sizes using surface memory. The extended cell implementation used 46 B
instead of 20 B for a single cell. It has to be stressed that in both tests we only
keep the laboratory frame variables in surface memory, which means that the
extended cell does not provide any extra fetching from surface memory. Figure 3
shows that just increasing the size of the cell, without any extra computation
cost, causes the algorithm to take about 5 times longer. This confirms the great
impact of register pressure on the time needed for computations. Note that the
maximum grid size that fit in the memory was just 180× 180× 180 and thus the
tests could only be performed on a smaller number of cells.

To investigate the impact of register spilling on the timing in our applica-
tion, we prepared a simplified version of an algorithm for a generalized 3D finite
difference method. Instead of using the MUSTA-FORCE algorithm we just com-
pute a simple interpolation between the neighboring cells. The shared memory
implementation is about 1.5 times slower than the one with surface memory for
a huge number of cells as can be seen in Fig. 4.

To investigate both algorithms in more detail we used Compute Visual
Profiler [8] for the simplified algorithm. The most interesting statistic was the
number of registers used. The maximum number of registers per thread on the
tested graphics card was 63. The surface memory algorithm used 43 of them. The
shared memory algorithm used all of them and another 32 bytes were transferred
to the local memory. This number fits perfectly our thesis in Sect. 2.2 that the
shared memory algorithm is heavily dependent on registers. Another interesting
statistic is the control flow divergence [9]. This gives the percentage of thread
instructions that were not executed by all threads in the warp, hence causing
divergence, which obviously should be as low as possible. In the case of surface
memory it is 12.5 % while in the case of shared memory it ranges from 13.5 % to
15.5 %. This is a smaller difference than we expected but surface memory still

508 S. Cygert et al.

gives a 15 % relative gain. Another quite important statistic is the occupancy
achieved. This ratio provides the actual occupancy of the kernel based on the
number of warps executed per cycle. This is the ratio of active warps and active
cycles divided by the maximum number of warps that can be executed on a
multiprocessor. In the case of surface memory this ratio is equal to 0.45 while in
shared memory - 0.32. The rest of the statistics were more or less the same for
both implementations.

3 Conclusions

In the paper the possibilities of using surface memory for 3D finite difference
algorithms have been examined. To study the performance of this novel idea
compared to the shared memory method, which is currently considered to be the
best approach for this type of problem, two algorithms using surface memory
and one using shared memory were implemented.

The main objective was to investigate the usefulness of surface memory, which
seems to be a promising approach for complex 3D finite difference methods.
The presented algorithm based on using surface memory provides a number of
benefits. There is almost no data redundancy. Only the first and the last iteration
use the cells twice, while during the whole computation all the data is kept only
in surface memory. It also ensures lower usage of memory per thread which can
be considered a great advantage because registers are significantly faster than
local memory.

Despite all of these advantages, surface memory turned out to be only slightly
faster than the algorithm using shared memory. This is due to the fact that in cur-
rent graphic cards shared memory is generally the fastest type of memory after
the registers. The speed increase gained by using surface memory depends on
the characteristics of the algorithm used. For expensive algorithms like MUSTA-
FORCE which we used, the register pressure and computation costs cause the
time of computations for both algorithms to be comparable. But, as was proved,
for algorithms that are not as expensive the usage of surface memory can result
in a speed-up of up to 1.5 times.

One important aspect of our algorithm that affects the results is the ratio of
computations to shared memory loading. In the case of this algorithm it is very
small, the cells are loaded into shared memory, then they are used to compute
only one value (in the next timestep), and finally a new batch of cells is loaded
into shared memory. If it was possible to perform more computations with one
shared memory load, it would decrease the benefits of using surface memory.

Besides these performance related advantages of surface memory, there are
also some other benefits. Above all, the implemented code is more general. The
code can be easily changed to use any other kind and order of isotropic or
anisotropic stencil in any direction.

The studies performed show that surface memory is a promising alterna-
tive for shared memory in 3D finite difference algorithms. CUDA technology is
relatively new and advances in graphics cards are proceeding very fast. A possi-
ble gain in texture cache would definitely increase the benefits of using surface

Using GPUs for Parallel Stencil Computations 509

memory. However, an increase in the amount of shared memory would cause
the opposite effect. Either way, surface memory proved to be a very competi-
tive alternative for using shared memory in 3D finite difference algorithms an
therefore should also be considered in complex stencil computation.

References

1. Adams, J., et al.: (STAR collaboration): experimental and theoretical challenges
in the search for the quark-gluon plasma: the STAR Collaboration’s critical assess-
ment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005)

2. Marti, J.M., Muller, E.: Numerical hydrodynamics in special relativity. Living Rev.
Relativ. (2003)

3. Duncan, G.C., Hughes, P.A.: Simulations of relativistic extragalactic jets. Astro-
phys. J. 436, L119–L122 (1994)

4. Rischke, D.H., Bernhard, S., Maruhn, J.A.: Relativistic hydrodynamics for heavy-
ion collisions: general aspects and expansion into vacuum. Nucl. Phys. A 595,
346–382 (1995)

5. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics. Springer,
Berlin (1997)

6. Toro, E.F.: Multi-stage predictor-corrector fluxes for hyperbolic equations. Isaac
Newton Institute for Mathematical Sciences Preprint Series NI03037-NPA, Uni-
versity of Cambridge, UK (2003)

7. CUDA C Best Practices Guide, NVIDIA Corporation (2012)
8. NVIDIA Corporation: Compute Visual Profiler User Guide
9. NVIDIA Corporation: NVIDIA CUDA Programming Guide Version 5.0 (2012)

10. Zumbusch, G.: Vectorized higher order finite difference kernels. In: Manninen, P.,
Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 343–357. Springer, Heidelberg
(2013)

11. Micikevicius, P.: 3D finite difference computation on GPUs using Cuda. In: Pro-
ceedings of the 2nd Workshop on General Purpose Processing on Graphics Process-
ing Units (2009)

12. Michéa, D., Komatitsch, D.: Accelerating a 3D finite-difference wave propagation
code using GPU graphics cards. Geophys. J. Int. 182(1), 389–402 (2010)

13. Brandvik, T., Pullan, G.: Acceleration of a two-dimensional Euler flow solver using
commodity graphics hardware. Proc. Inst. Mech. Eng., Part C.: J. Mech. Eng. Sci.
221(12), 1745–1748 (2007)

14. Elsen, E., LeGresley, P., Darve, E.: Large calculation of the flow over a hypersonic
vehicle using a GPU. J. Comput. Phys. 227(24), 10148–10161 (2008)

15. Phillips, E., Fatica, M.: Implementing the Himeno benchmark with CUDA on GPU
clusters. In: IEEE International Parallel & Distributed Processing Symposium, pp.
1–10 (2010)

Special Session
on Multicore Systems

PDNOC: An Efficient Partially Diagonal
Network-on-Chip Design

Thomas Canhao Xu(B), Ville Leppänen, Pasi Liljeberg,
Juha Plosila, and Hannu Tenhunen

Department of Information Technology, University of Turku, 20014 Turku, Finland
canxu@utu.fi

Abstract. With the constantly increasing of number of cores in multi-
core processors, more emphasis should be paid to the on-chip intercon-
nect. Performance and power consumption of an on-chip interconnect are
directly affected by the network topology. The efficiency can also be opti-
mized by proper mapping of applications. Therefore in this paper, we pro-
pose a novel Partially Diagonal Network-on-Chip (PDNOC) design that
takes advantage of both heterogeneous network topology and congestion-
aware application mapping. We analyse the partially diagonal network
in terms of area usage, power consumption, routing algorithm and imple-
mentation complexity. The key insight that enables the PDNOC is that
most communication patterns in real-world applications are hot-spot
and bursty. We implement a full system simulation environment using
SPLASH-2 benchmarks. Evaluation results shown that, the proposed
PDNOC provides up to 25 % improvement in execution time over concen-
trated mesh, and 3.6x better energy delay product over fully connected
diagonal network.

Keywords: Multicore · 3D Chip · Heterogeneous · Network-on-Chip

1 Introduction

In recent years, Chip Multiprocessors (CMPs) have been becoming widely used
due to the constraint of chip clock frequency and power consumption. As the
number of cores increases, Network-on-Chip (NoC) was proposed as a highly
scalable solution to address the communication problems in CMPs [1,2]. The
communication methodologies of traditional computer networks are used for
on-chip communication. Despite the fact that NoC improves scalability, it also
contributes to communication latencies. For example, latency caused by complex
router structure and routing algorithm has become a more prominent factor
affecting system performance. Moreover, the power consumption and area of
routers are becoming more costly overheads. On-chip networks should provide
both low latency and high bandwidth that efficiently support various workloads.
Several NoC topologies have been proposed, including ring, star, mesh, torus,
tree, fat tree, butterfly etc. A topology defines how nodes are connected, which

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 513–522, 2014.
DOI: 10.1007/978-3-642-55224-3 48, c© Springer-Verlag Berlin Heidelberg 2014

514 T.C. Xu et al.

(a) (b) (c)

Fig. 1. Three NoC topologies, PEs in (c) are not shown for clarity.

will affect the performance of a network [3]. Mesh (Fig. 1a) has been the most
popular topology for on-chip network due to the simple grid-type shape and
regular structure. Figure 1a depicts a NoC containing 16 nodes/tiles arranged in
mesh topology. Each node consists of a Router R and a Processing Element PE.
The PE accommodated a network interface, processor core and related cache.
Routers are connected to each other with four cardinal links. Network messages
are generated by PEs, serialized and transmitted by routers via links.

The diameter of mesh network increases rapidly with larger networks, degrad-
ing system performance and power consumption. Researchers have proposed
alternative topologies that can offer high performance or provide reduced area
and power consumption. Concentrated mesh (CMesh, Fig. 1b) is proposed to
provide low latency for networks with low injection rates [4]. The CMesh net-
work alleviates the scalability problem by sharing the router among multiple
network nodes. Concentration degree is defined as the number of nodes sharing
a router. By reducing the number of routers, the hop count between nodes are
greatly decreased, resulting lower latency in point-to-point communication. Since
the router is shared by several nodes, CMesh saturates much earlier than regular
mesh under high injection rates [5,6]. A diagonally linked mesh network DMesh
is presented in [7] (Fig. 1c). Diagonal links are added to the mesh network, reduc-
ing the distance between diagonal nodes and alleviating traffic congestion in the
network. It is demonstrated that DMesh improves average latency and satura-
tion traffic load on mesh networks [8]. However, the extra links and high power
consumption from complex routers can lead to lower efficiency compared with
regular mesh networks. In addition, the overall utilization of DMesh network can
be insufficient due to the unbalanced traffic pattern of applications.

In this paper, we propose a Partially Diagonal Network-on-Chip (PDNOC)
design focusing on balancing performance and power consumption. We first
investigate the traffic pattern of applications. It is discovered that despite the
traffic of most applications being self-similar, they appear to contain a common
hot-spot and bursty patterns. We explore Partially Diagonal (PD) networks
in a mesh. The router design, routing algorithm, number of PD networks and
placement of PD networks are analysed. We further propose a congestion-aware
mapping algorithm that maps nodes with hot-spot and bursty traffic to PD

PDNOC: An Efficient Partially Diagonal Network-on-Chip Design 515

networks. A full system simulation environment is implemented to verify our
design, and compare with other designs. The experiments with 64-core CMP
show that the PDNOC provides comparable performance with DMesh while
dramatically improved system efficiency.

2 Motivation

To assess the performance of NoCs, different traffic patterns, e.g. synthetic and
realistic, can be used. Synthetic traffic patterns, such as uniform random, trans-
pose and hotspot, are abstract models of messages passing in the network. Realis-
tic traffic patterns are traces of real applications running on a NoC-based system.
Since NoCs are designed to execute programmes, the most accurate method to
evaluate the characteristics of the NoC should be based on realistic application
traffic. For this reason, we use the traces of applications to analyse the traffic
patterns of the network. The simulation environment and system configuration
are described in Sect. 4.

The network injection rate of 64 cores running LU matrix decomposition is
illustrated in Fig. 2. Notice that there are several spikes that exceed the limit of
the Z-axis. In uniform random traffic pattern, each node should generate around
1.56 % (1/64) traffic. However the traffic trace for LU application shows hot-
spots and bursty patterns. During the 119.3 M executed cycles, total of 18.99 M
messages are transmitted by network nodes. Notice that the time of X-axis is rep-
resented as the percentage of total executed cycles, i.e. one percent correspond
to 1.19 M-cycles. It is revealed that, 32.4 % of traffic are concentrated on five
nodes or PEs (PE0 13.6 %, PE7 6.1 %, PE8 6.1 %, PE37 3.4 % and PE10 3.2 %).
The concentrated traffic introduced heavy hot-spot traffic in certain regions of
the NoC. Moreover, a small portion of source-destination pairs generated a con-
siderable amount of the traffic. For example, the traffic amount between node
0–38 is 0.791 %, or 33.0x higher than the average traffic volume1. Besides hot-

Fig. 2. Network injection rate for 64-core NoC running LU.

1 Considering 642 = 4096 source-destination pairs, each pair should contribute
0.0244 % traffic in uniform random traffic.

516 T.C. Xu et al.

spot traffic, we notice the injection rate changes rapidly over time, displaying a
bursty pattern. Furthermore, communication peak can be observed, where most
of the nodes are actively sending and receiving messages, after around 60 % of
the execution time. Despite the fact that we analyse only one application here,
we discovered the communication pattern of most applications shows similar
behaviour. While fully connected diagonal mesh network can alleviate traffic
contention, most of the network resources are wasted due to low overall utiliza-
tion, i.e. there are only a few hot-spot nodes. Based on this insight, we propose
an optimized partially diagonal network design.

3 The PDNOC Design

PDNOC is designed to be a highly efficient NoC optimized for hot-spot and
bursty traffic patterns. Our design leverages several insights: first, the concept
of partially diagonal network is introduced and the number and placement of
the partially diagonal networks are analysed; second, a task mapping algorithm
is proposed for PDNOC to achieve higher performance and efficiency.

3.1 Partially Diagonal Network

The main concept of the partially diagonal network is illustrated in Fig. 3. As
is shown in Fig. 3a, node C (Central) provides one extra diagonal connections
to each of the D (Diagonal) nodes. Network congestion should be alleviated in
this region due to the extra resources. Furthermore the minimal hop counts of
node C for accessing adjacent nodes are reduced as well (Fig. 3b). Based on the
fundamental design, we analyse one and two partially diagonal networks in a 8×8
mesh, and the effect of different placements of two networks (Fig. 3c). Comparing
with the fully connected diagonal network (Fig. 1c), our design requires less links
and smaller routers, which can provide higher efficiency. For example, regular
routers in a mesh network have 5 links (4 cardinal and 1 local), each configured
with several buffers. The crossbar and buffers can consume over 80 % of router
area and power [9]. In [7], the routers of the DMesh design are configured with
three sub-routers and two crossbars, each 6×5. There are totally 13 links in each
DMesh router, making the router much larger than the conventional mesh router.
Meanwhile, extra router delay should be considered with increased number of
crossbar and additional sub-routers. Similarly, the routers of the CMesh design
with a concentration degree of 4 are implemented with 4 cardinal links and 4
local links. Therefore the size, power consumption and latency are higher than
for the mesh router. We analyse our design in terms of routing algorithm and
network overhead.

Since there are extra diagonal links, the routing algorithm should be modified
accordingly. XY deterministic routing is widely used in the mesh network, in
which a flit is first routed to the X direction and last the Y direction. In PDNOC,
all regular nodes (nodes without any diagonal connection, i.e. white nodes in
Fig. 3a) still apply XY routing. For D nodes, if the destination of a flit is C,

PDNOC: An Efficient Partially Diagonal Network-on-Chip Design 517

Fig. 3. Partially diagonal network of 5 × 5 mesh (a), minimal distance from C node
(b), different numbers and placements of partially diagonal networks in 8 × 8 mesh (c)
(upper - one network “PDNOC-1”, lower left - two adjacent networks “PDNOC-2A”,
lower right - two interleaving networks “PDNOC-2I”).

then it will be transferred via diagonal links, otherwise it will follow XY routing.
For C node: if the destination of a flit is directly connected (e.g. nodes with 1
hop in Fig. 3b), then it will be transferred directly; otherwise if the destination
is in the x − /x + /y − /y + direction, then XY routing is applied; finally if the
destination is in the x − y + direction, then the flit will be sent to x− or the
diagonal link of x − y + in a round-robin sequence. Notice that this strategy
helps balancing the load between two links. However the routing path is not
always minimal. The rest (x + y +, x + y − and x − y −) may be deduced by
analogy. Deadlock is avoided since there is no cyclic dependence in the routing
path. Livelock is also avoided by using multiple virtual networks.

To calculate the overhead from the routers with diagonal links, we model
and simulate the area and power consumption of various router schemes. All
routers are modelled under 32 nm processing technology, with 3.0 GHz operat-
ing frequency and 1 V voltage. Regular routers with five links consume 0.865 W
power when active, and occupy 0.255 mm2 area. The D routers have one addi-
tional link, which will result in larger crossbar and related buffer area. Moreover
the routing logic is more complex. Simulation results show that the area and
power consumption of D routers are 0.355 mm2 and 1.251 W, 39.2 % and 44.6 %
higher than the regular router, respectively. On the other hand, router C is con-
nected with 9 links (8 directions, plus 1 to the PE), requiring the expansion of
the crossbar, virtual channels and related buffers. Results revealed that the area
and power consumption of C router are 0.749 mm2 and 2.616 W respectively,
around three times higher than the baseline standard mesh router. Consider-
ing 1 partially diagonal network, the overhead of area and power consumption

518 T.C. Xu et al.

of a 8 × 8 network are 5.47 % and 5.95 % respectively. Two partially diagonal
networks will results higher overhead on area and power consumption, 10.96 %
and 11.9 % respectively. It is noteworthy that a full 8 × 8 diagonal network
consumed 2.91x and 2.78x of area and power than the regular mesh network.
Therefore the overhead is relatively small in our design.

3.2 Mapping Algorithm

In consideration of the high traffic count between nodes, we further propose
a congestion-aware application mapping algorithm for PDNOC. The mapping
strategy of applications is a major factor leading to communication congestion.
Network latency, resource utilization, execution time and power consumption
are affected by application mapping. For example, as aforementioned, the traf-
fic amount between nodes 0–38 is 33x higher than the average traffic volume.
However, the Manhattan Distance (MD) [10] between the two nodes is 10 hops
in the mesh network with XY routing. System performance can improve pro-
vided that the two nodes are mapped close to each other. Considering Fig. 3b,
by mapping the hot-spot node to C, and mapping other 8 nodes adjacently to C
such that the 8 nodes are selected based on the communication volume with the
hot-spot node, the average communication delay among hot-spot node and other
8 nodes are reduced significantly. For example, we discovered node 0 for LU is a
hot-spot node, therefore it will be mapped to a C node. Other 8 nodes (38, 14,
29, 15, 8, 28, 36 and 58) are mapped adjacently to node 0 starting with D nodes.
Next, 12 nodes with minimum hop count of 2 are selected for mapping according
to the same evaluation criteria. If there are 2 partially diagonal networks, then
two nodes with highest amount of injection traffic will be selected and mapped
to the C nodes at first.

The pseudo code of the mapping algorithm is shown in Algorithm 1. It is
noteworthy that two mapping regions can overlap with each other (cf. Fig. 3c).
To solve this problem, we first map PD1 with adjacent nodes of MD=1, once the
adjacent nodes are full, the algorithm moves the PD2 with MD=1 and so forth.
It is noteworthy that the result from the mapping algorithm is an optimized
mapping, not necessarily optimal.

4 Experimental Evaluation

4.1 Experiment Setup

We evaluate and compare PDNOC with several other NoC designs. The sim-
ulation platform is based on a cycle-accurate NoC simulator (GEMS/Simics
[11,12]). The source code of GEMS is modified to fit the simulation requirements.
We implement a multi-core processor with 64 (8 × 8) Sun UltraSPARCIII+
cores. Each core is running at 2 GHz, and equipped with private L1 cache
(split I + D, 16 KB + 16 KB, 4-way associative, 64-byte line, 3-cycle access
delay). The 16MB shared L2 cache is divided into 64 banks/slices, each 512 KB.

PDNOC: An Efficient Partially Diagonal Network-on-Chip Design 519

Algorithm 1. Mapping algorithm for PDNOC.
Input: The number of partially diagonal networks NPD, network injection

traffic of nodes Ninj , node-node communication volume T ,
Output: A mapping region R

Sort Ninj according to network injection rate
Sort T according to communication volume
Select hot-spot nodes HNi from Ninj according to NPD

foreach HNi do
foreach traffic Ti ∈ T do

Search node-node communication for HNi in Ti according to
communication volume
Map related free nodes adjacent (MD=1,2,3...) to the HNi in terms of
Ti

Move to the next HNi if adjacent nodes with smallest MD are full
Loop until the sub region Ri is full
Place Ri to R

end

end

The simulated processor configuration is similar as modern commercial NoCs,
e.g. Tilera TILE [2]. We implement static non-uniform cache architecture [13] for
the memory/cache architecture. MOESI, a two-level distributed directory cache
coherence protocol that has been used widely in modern multi-core processors
[14], is selected for the target system. The routers and links of various designs are
modelled accurately, e.g. each router includes routing computation unit, virtual
channel locator, switch allocator, crossbar switch and related input buffers. We
model delays of links according to their length, and delays of different router
designs according to the router area and complexity of pipeline stages. The
routers and links are running at 3 GHz. Orion2 for on-chip networks is used
to evaluate detailed power characteristics of routers and links [15]. Simulations
are run on Solaris 9 based on UltraSPARCIII+ instruction set in-order issue
structure. Workloads used here are selected from SPLASH-2 [16].

4.2 Performance Analysis

Here we compare the performance and efficiency of PDNOC with a conventional
mesh network (Mesh in figures), a fully connected diagonal mesh network [7]
(DMesh in figures) and a concentrated mesh network [5] (CMesh in figures).
To further analyse the number and placement of the partially diagonal net-
work, we classify the PDNOC into three groups: the first with one partially
diagonal network (PDNOC-1 in figures), the second with two adjacent partially
diagonal networks (PDNOC-2A in figures) and the third with two interleaving
partially diagonal networks (PDNOC-2I in figures). The performance is mea-
sured in terms of execution time and energy delay product. The energy delay
product is a combination of average network latency and power consumption

520 T.C. Xu et al.

of routers and links. Average network latency represents the average number
of cycles required for successful transmitting all network messages. The num-
ber of cycles of each message is calculated as, from the injection of the message
header into the network at the source node, to the reception of the tail flit at
the destination node. Systems with a lower energy delay product generally have
a better trade-off between the performance and power. To eliminate the effect
of arbitrary application mapping in Mesh, DMesh and CMesh, we utilize the
same mapping method from PDNOC-2I for these topologies. The full system
simulation results are illustrated in Fig. 4 and 5, normalized to the Mesh.

As Fig. 4 illustrates, the PDNOC-2I provides the best overall execution time.
Compared with regular mesh network, the average execution time of applications
has reduced 9.8 %, 13.5 % and 16.4 % in PDNOC-1, PDNOC-2A and PDNOC-2I
respectively. The main reason for these improvements is the additional process-
ing capabilities of routers and links in the areas with hot-spot and bursty traf-
fic. It is noteworthy that the execution times of PDNOC-2I are better than
that in DMesh. The reason being that the additional latencies from the extra
sub-routers and crossbar in the more complex DMesh routers. We notice that
applications with higher overall network injection rate, more hot-spot nodes and
more intense bursty traffic, e.g. Cholesky, FFT, LU and Water-Nsq, benefit more
from the PDNOC. Increased number of PD network provides improved perfor-
mance, and the interleaved placement of PD networks performed better than
the adjacent placement. On the other hand, CMesh suffered from insufficient
bandwidth among hot-spot nodes. Results revealed that for all 8 applications,
the average execution time of CMesh is 11.4 % longer than Mesh. The clustered
organization of nodes in CMesh makes a router shared by 4 nodes. This design
is beneficial for network with low loads, due to the reduced delay by eliminat-
ing intermediate routers. However the scalability of CMesh is much worse than
other architectures. Furthermore, intuitively, although hot-spot nodes should be

Fig. 4. Normalized execution time with PDNOC designs and other NoC designs.

PDNOC: An Efficient Partially Diagonal Network-on-Chip Design 521

Fig. 5. Normalized energy delay product with PDNOC designs and other NoC designs.

mapped within the same cluster in CMesh for better performance, it is ques-
tionable whether the router can satisfy the bandwidth requirements.

Considering the energy delay product, CMesh is obviously very power-efficient,
29.7 % better than the regular mesh network on average. Notice that only 16
routers are used in CMesh, however each router is much larger and consumes more
power than other router designs. For DMesh, despite the fact that it shows promis-
ing performance in terms of execution time, the power consumption is disappoint-
ing. The energy delay product of DMesh is 2.27x higher than in the Mesh for 8
applications. The overhead is mainly from three sub-routers and two crossbars of
each DMesh router. Taking the 64 DMesh routers into account, we calculated that
the overall power consumption reaches as high as 160W, implying that it may not
be a viable solution for scalable, efficient NoCs. Our partially diagonal network
designs demonstrated significantly improved energy delay product compared with
DMesh. On average, compared with Mesh, this metric improved 25.6 %, 33.7 %
and 37.1 % for PDNOC-1, PDNOC-2A and PDNOC-2I respectively. This is pri-
marily due to the reduced average network latency. Although PDNOC designs
consume more power than Mesh and CMesh, they provide further gains on net-
work latency. The trade-off from power consumption to performance is worthy in
our design.

5 Conclusion

Network-on-Chip (NoC) is expected to be a promising candidate for optimizing
the on-chip communication of multicore processors. However, performance and
power consumption of an on-chip interconnect are affected by the network topol-
ogy. We proposed Partially Diagonal NoC (PDNOC) in this paper. The commu-
nication traces of several typical applications were analysed. We discovered that
the traffic of most applications shows hot-spot and bursty patterns. Based on this

522 T.C. Xu et al.

insight, we attempted to design an efficient network topology and a congestion-
aware mapping algorithm. The partially diagonal network consisted of a central
router, several diagonal routers and links. We studied different placements and
numbers of the proposed approach. The PDNOC was optimized for high efficiency,
that the performance was improved considerably by slightly sacrificing power con-
sumption. Full system evaluation results shown that, on average for 8 applications,
the proposed PDNOC with two interleaved networks provided 25 % improvement
in execution time over concentrated mesh, and 3.6x better energy delay product
over fully connected diagonal network.

References

1. Jantsch, A., et al.: Networks-on-Chip. Kluwer Academic Publishers, Norwell (2003)
2. Bell, S., et al.: Tile64 - processor: a 64-core soc with mesh interconnect. In: IEEE

International Solid-State Circuits Conference, ISSCC 2008, Digest of Technical
Papers, pp. 88–598 (2008)

3. Agarwal, A.: Limits on interconnection network performance. IEEE Trans. Parallel
Distrib. Syst. 2(4), 398–412 (1991)

4. Balfour, J., et al.: Design tradeoffs for tiled cmp on-chip networks. In: Proceedings
of the 20th ICS, pp. 187–198. ACM, New York (2006)

5. Das, R., et al.: Design and evaluation of a hierarchical on-chip interconnect for next-
generation cmps. In: Proceedings of the 15th HPCA, pp. 175–186, February 2009

6. Kim, J., et al.: Flattened butterfly topology for on-chip networks. Comput. Archit.
Lett. 6(2), 37–40 (2007)

7. Wang, C., et al.: Design and evaluation of a high throughput qos-aware and
congestion-aware router architecture for network-on-chip. In: Proceedings of the
20th PDP, pp. 457–464 (2012)

8. Wang, C., et al.: Congestion-aware network-on-chip router architecture. In: Pro-
ceedings of the 15th CADS, pp. 137–144 (2010)

9. Kim, J.: Low-cost router microarchitecture for on-chip networks. In: 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-42, pp. 255–
266 (2009)

10. Dally, W.J., et al.: Route packets, not wires: on-chip inteconnection networks. In:
Proceedings of the 38th DAC, pp. 684–689, June 2001

11. Magnusson, P., et al.: Simics: a full system simulation platform. Computer 35(2),
50–58 (2002)

12. Martin, M.M., et al.: Multifacet’s general execution-driven multiprocessor simulator
(gems) toolset. Comput. Archit. News 33, 92–99 (2005)

13. Kim, C., et al.: An adaptive, non-uniform cache structure for wire-delay dominated
on-chip caches. In: Proceedings of the 10th ASPLOS, pp. 211–222. ACM, New York
(2002)

14. Patel, A., et al.: Energy-efficient mesi cache coherence with pro-active snoop filtering
for multicore microprocessors. In: Proceeding of the 13th ISLPED, pp. 247–252,
August 2008

15. Kahng, A.B., et al.: Orion 2.0: a fast and accurate noc power and area model for
early-stage design space exploration. In: Proceedings of the DATE ’09, pp. 423–428
(2009)

16. Woo, S.C., et al.: The splash-2 programs: characterization and methodological con-
siderations. In: Proceedings of the 22nd ISCA, pp. 24–36, June 1995

Adaptive Fork-Heuristics for Software
Thread-Level Speculation

Zhen Cao(B) and Clark Verbrugge

School of Computer Science, McGill University, Montréal, QC H3A 2A7, Canada
zhen.cao@mail.mcgill.ca, clump@cs.mcgill.ca

Abstract. Fork-heuristics play a key role in software Thread-Level
Speculation (TLS). Current fork-heuristics either lack real parallel execu-
tion environment information to accurately evaluate fork points and/or
focus on hardware-TLS implementation which cannot be directly applied
to software TLS. This paper proposes adaptive fork-heuristics as well as
a feedback-based selection technique to overcome the problems. Adap-
tive fork-heuristics insert and speculate on all potential fork/join points
and purely rely on the runtime system to disable inappropriate ones.
Feedback-based selection produces parallelized programs with ideal
speedups using log files generated by adaptive heuristics. Experiments of
three scientific computing benchmarks on a 64-core machine show that
feedback-based selection and adaptive heuristics achieve more than 88 %
and 50 % speedups of the manual-parallel version, respectively. For the
Barnes-Hut benchmark, feedback-based selection is 49 % faster than the
manual-parallel version.

Keywords: Software thread-level speculation · Fork heuristics · Auto-
matic parallelization · Performance tuning

1 Introduction

Thread-level speculation (TLS) is a safety-guaranteed approach to automatic or
implicit parallelization. Speculative threads are optimistically launched at fork
points, executing a code sequence from join points well ahead of their parent
thread. Safety is preserved in this speculative model by buffering reads and
writes of the speculative thread. Once the parent thread reaches the join point
the latter may be joined, committing speculative writes to main memory and
merging its execution state into the parent thread, provided no read conflicts
have occurred. In the presence of conflicts the speculative child execution is
discarded or rolled back for re-execution by the parent.

The selection of fork/join points plays a key role in the performance of TLS,
especially for software implementations as a result of higher overhead than its
hardware counterpart. So far there are three sorts of fork-heuristics: static heuris-
tics [5], static profiling heuristics [4,10,11] and dynamic profiling heuristics [9].
The first build mathematical cost-benefit models of speculative execution using

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 523–533, 2014.
DOI: 10.1007/978-3-642-55224-3 49, c© Springer-Verlag Berlin Heidelberg 2014

524 Z. Cao and C. Verbrugge

compile-time program information, and use the models to predict profitable
fork/join points. This approach has the limitation that some model parame-
ters, such as thread dependency probability and iteration count of nested loops,
are unknown at compile-time, which in turn limits its effectiveness and appli-
cation. The second heuristics compile and run the sequential program, collect
profiling execution traces, and then use the traces to determine the best fork/join
points. The drawback of this approach is lack of real parallel execution environ-
ment information, which limits accuracy of the fork point selection decision. The
third approach is more promising for real estimation, but is currently based on
hardware implementation, which is inappropriate and cannot be directly applied
to software TLS.

This paper proposes adaptive fork-heuristics to solve the above problems.
Adaptive heuristics are dynamic profiling heuristics for software TLS, which
insert all potential fork/join points into the speculative program and rely entirely
on the runtime system to determine profitable fork/join points and disable inap-
propriate ones. Since fork/join points are evaluated during real speculative par-
allel execution, all necessary information such as the thread conflict ratio and
thread execution time is available, enabling accurate estimation of cost-benefit
of each thread and thus each pair of fork/join points. On-the-fly fork/join point
selection also eliminates the requirement of profiling runs and enables adaptation
to different fork/join points for different input data. Our investigation demon-
strates feasibility of this approach, as well as providing concrete data on actual
performance in a realistic thread-level speculative system.

2 Related Work

The bulk of proposed fork-heuristics are static profiling heuristics. Java runtime
parallelizing machine (Jrpm) [4], for instance, first profiles execution of a sequen-
tial program with a hardware profiler, and then dynamically speculates on the
selected prospective loops after collecting enough profiling data to decide the
best loops to parallelize. Du et al. [6] proposed a cost-model-driven compilation
framework SPT to select candidate loops for speculative parallelization, which
builds control-flow graphs and data-dependence graphs with profiling informa-
tion of a sequential execution and uses the graphs to evaluate candidate loops
based on the cost model. The STAMPede [11] TLS approach selects specula-
tively parallel loops based on several filter criteria: the loop execution coverage
and iteration count are above a threshold and the loop body is neither too large
nor too small. The Mitosis [10] compiler/architecture uses arbitrary pairs of basic
blocks as fork/join points and models parallel execution based on profiling traces
to estimate candidate pairs. The POSH [7] compiler simulates sequential execu-
tion on a train input set and models TLS parallel execution to select beneficial
fork/join points.

There is also research dedicated to static profiling heuristics. Whaley and
Kozyrakis [13] proposed three classes of heuristics for method-level speculation,
and found that single-pass heuristics lead to best speedups while simple/complex

Adaptive Fork-Heuristics for Software Thread-Level Speculation 525

multi-pass heuristics tend to over/under speculation. Wang et al. [12] constructed
a loop-graph and used it for global loop selection to maximize program perfor-
mance. Liu et al. [8] proposed an online-profiling approach to speculatively paral-
lelize candidate loops. Online static profiling approaches [4,8] have the advantage
over offline-profiling that they do not require additional profiling input and can
dynamically profile on the real data. However, these still lack parallel execu-
tion environment information for accurate estimation of fork/join points. Pure
static heuristics are less common, since they lack runtime parameters. Dou and
Cintra [5] proposed a thread-tuple cost-model to estimate speedups of candidate
loops. As well, some heuristics combine profiling and static approaches, such
as SPT [6].

Dynamic profiling heuristics have recently been studied. Luo et al. [9] pro-
posed a dynamic performance tuning technique for selection of candidate loops.
It used hardware performance monitors to profile runtime statistics such as
instruction fetch penalty and cache miss, and estimated the efficiency of each
thread and loop with the statistics. Unfortunately, this approach cannot be
directly applied to software TLS without low-level and machine-specific access
to hardware performance monitors.

All the above are hardware-TLS heuristics, which tend to focus on finer-
granularity parallelism due to hardware resource constraints. In software-TLS,
heuristics should focus on coarser-granularity parallelism as software TLS has
higher overhead than hardware implementation. So far as we know, the adap-
tive heuristics we propose are the first heuristics specifically proposed for and
validated in software TLS.

HEUSPEC [14] is a software speculation parallel model that dynamically
adapts to different value predictors and granularity tasks. While adaptive fork-
heuristics target the problem of fork point selection.

3 Adaptive Fork-Heuristics

Adaptive fork-heuristics add potential pairs of fork/join points to the specula-
tive program, evaluate the cost-benefit of each pair during parallel execution
and disable unprofitable ones. The design involves three aspects: (1) what the
potential fork/join points are, (2) how to estimate the cost-benefit of each pair
of fork/join points, and (3) how to disable fork points.

3.1 Potential Fork/Join Points

The potential fork/join points of the design are loop iterations and function
(method) calls, since loops usually take the majority of program’s execution
time and function calls usually represent independent computation tasks. They
are also the choice of most other TLS works, known as loop-level speculation
and method-level speculation, respectively.

We also apply two optimizations for each loop: “blockize” and “end-barrier.”
Suppose there are n processors. Blockize splits the loop iterations into n blocks,

526 Z. Cao and C. Verbrugge

which in turn avoids creating too many small threads. The exception is loops
with a small constant number of iterations, which do not need this optimization.
The end-barrier optimization adds a barrierpoint just after the end of the loop.
This optimization is beneficial because loops usually have dependency with their
continuation, particularly for loop nests, in which case an inner loop thread may
cause cascading rollbacks of the outer loop threads.

In this implementation, we add directives of fork/join/barrier points and per-
form the two optimizations manually. This is a limitation of our prototype—both
the adding of fork/join/barrier points annotation and the optimizations can be
automated by compiler transformation, enabling full automatic parallelization.

3.2 Cost-Benefit Estimation

The design uses a cost-benefit model to evaluate the profitability of each thread
and each pair of fork/join points. The model assumes a constant time Toverhead of
overhead (thread creation, cache miss, buffering, etc.) for each thread. Although
this is an inaccurate approximation since threads with different memory access
frequencies have different buffering overhead, we find it works well for our estima-
tion, partly because we are only concerned with whether a thread is profitable,
and not how profitable it is.

The runtime Tt,run of a speculative thread t comprises two parts: work
time Tt,work and synchronization/validation/commit/rollback time, which are
available through timing. If thread t commits, its cost-benefit is estimated as
ηt = Tt,work/(Tt,run + Toverhead). If it rolls back, its cost-benefit is 0. Given a
minimum cost-benefit threshold ηthreshold, if ηt < ηthreshold, then thread t is
considered not profitable and should not have been speculated.

If the assumption holds that threads speculated at the same fork point always
show similar behaviour (they always commit/rollback and have similar work
time / runtime ratio), then we can directly use ηt to estimate the cost-benefit
of the fork point. However, the assumption generally does not hold, even for
fork/join points speculating independent loop iterations. The reason is that at
the beginning of program execution many threads with dependencies are specu-
lated, causing nondeterministic rollbacks.

We propose 3 independent mechanisms to address this issue: global hint,
local hint and interval hint. Global hint uses at least Nwarmup threads instead
of one thread to determine the cost-benefit of a pair of fork/join points. When
a thread completes execution, its runtime plus overhead is accumulated to the
runtime Trun of the pair Trun = Trun + Tt,run + Toverhead. The exception is
when it is cascadingly rolled back, as a cascading rollback does not represent the
cost-benefit of a thread. If it commits, its work time is accumulated to the work
time Twork of the pair Twork = Twork + Tt,work. After N >= Nwarmup threads
completes, the cost-benefit of the pair is then estimated as η = Twork/Trun. The
hint disables the fork point if the cost-benefit is below a threshold. For local hint,
if a thread decides not to speculate on a fork point then none of its child threads,
grand-child threads, etc. can speculate on the fork point. In other words, a local
hint affects the sub-tree of a thread, hence the name. Interval hints directly use

Adaptive Fork-Heuristics for Software Thread-Level Speculation 527

the cost-benefit of a thread to decide profitability of its fork point; if a fork-
point is disabled, it will try to speculate again after certain amount of time has
passed. We find the global hint is the most effective for our benchmarks. It seems
to work well on independent loops while the other two might suit more irregular
applications. We plan to compare these hints in future work.

3.3 Disabling Fork Points

Each fork point has a globally unique id. The TLS runtime system maintains the
attributes of the fork point, which can be accessed given the id. When a thread
reaches a fork point, it queries the runtime system with the id whether it can
speculate on the fork point. The runtime system then checks a flag variable of
fork point attributes and returns the result. When a thread commits/rollbacks,
if the adaptive fork-heuristics decide that one fork point is not profitable as
discussed in Sect. 3.2, the runtime system then set the flag variable to false to
disable the fork point.

If a loop nest has independent outer loops, such as enumerating elements on
a matrix, then we can select to speculate on any or all of these loops. Speculating
on outer loops enables coarser granularity parallelism but tends to consume more
memory than inner ones, while speculating on all loops maximizes parallelism.
These decisions have important influence on performance. However, the adaptive
fork heuristics will select all speedup loops, even though disabling inner ones
may yield further speedups as a result of less thread overhead. Here, we add an
option, nest-loop-disabling, to disable an inner loop if its parent nest loop stably
commits (its N and η are above the thresholds).

We also propose an optimizing technique called feedback-based selection to
achieve ideal speedups from the second compilation for our benchmarks. After
the program completes execution, it records the cost-benefit of each fork point
to a feedback-based selection log file. The next time the TLS compiler compiles
the program, it reads the log file and does not insert inappropriate fork/join
points as potential candidates. For points that behave differently depending on
the input, the programmer can annotate them so that the compiler still insert
them even though they are in the log file. The optimization prevents unprofitable
fork/join points from hurting performance repeatedly for each compilation.

4 Implementation Framework

We implement the adaptive fork-heuristics into the MUTLS [2,3] software-TLS
compiler framework. MUTLS is a language and architecture independent soft-
ware TLS framework purely based on the LLVM [1] intermediate representation
(IR). It can exploit substantial parallelism from both loop- and method-level
speculation. It supports compiler directives to annotate fork/join/barrier points.
Each annotation also specifies an id. Threads speculated at a fork point will start
execution from the join point with the same id, and will be joined when the non-
speculative thread reaches that join point. A thread will also stop execution
when it reaches a barrier point with the same id.

528 Z. Cao and C. Verbrugge

A sample program as well as its semiautomatically parallelized program anno-
tated with adaptive fork-heuristics and feedback-based selection log file gener-
ated by the MUTLS compiler is illustrated in Fig. 1. Given the log file, there are
various criteria to decide inappropriate fork/join points, such as whether a fork
point is disabled, whether the cost-benefit is below a threshold, and whether
the ratio of committed/total threads is below a threshold. Combination of these
criteria is also possible. In the current implementation, we simply decide not to
add a pair of fork/join points as potential ones if the fork point is disabled.

void work(int n) {
…
for(i = 0; i < n; i++){

for(j = 0; j < 8; j++){
x = f(i, j);
s[i][j] += x*x;

}
}
…

}

void work(int n) {
…
for(p = 0; p < P; p++){

#pragma tls fork id 1
for(i = n * p / P; i < n * (p+1) / P; i++){

for(j = 0; j < 8; j++){
#pragma tls fork id 2
#pragma tls fork id 3

x = f(i, j);
#pragma tls join id 3

s[i] += x*x;
#pragma tls join id 2

}
#pragma tls barrier id 2

}
#pragma tls join id 1

}
#pragma tls barrier id 1

…
}

(a) Original Program

(b) Program with Adaptive Fork-Heuristics

fork point id 1 selected
cost-benefit 0.9 commit 80 rollback 0
fork point id 2 disabled
cost-benefit 0.3 commit 15 rollback 0
fork point id 3 disabled
cost-benefit 0 commit 0 rollback 10

(c) Feedback-based Selection Log File

Fig. 1. Semiautomatic-parallelization of a program

5 Experimental Results

Experiments are performed on a AMD Opteron machine with 64 2.2 GHz proces-
sor cores (4 × 16 core, 8 × 2 MB L2 cache) and 64 GB memory. We use three
scientific computing benchmarks: Barnes-Hut (bh), molecular dynamics (md)
and Mandelbrot (mb). The performance results are shown in Figs. 2, 3 and 4
and compared in Fig. 5.

For each benchmark, we present the speedups of the manually speculated
program (manual version), the semiautomatically parallelized program using
adaptive fork-heuristics (adaptive version), as well as the optimized program
parallelized by feedback-based selection (feedback version). We also present the
results of the program speculating at every fork point (no hint version) as a base-
line. The manual version evenly distributes the computing tasks to N processor
cores, which serves as the reference implementation. We ran the semiautomatic-
parallel programs 10 times each and present the maximum, average (arithmetic

Adaptive Fork-Heuristics for Software Thread-Level Speculation 529

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

A
bs

ol
ut

e
Sp

ee
du

p

Number of CPU

Manual
Adaptive - Max
Adaptive - Average
Adaptive - Min
Feedback
No Hint

Fig. 2. Speedup results - Barnes Hut

mean) and minimum speedups. The feedback version is parallelized using the
log file produced by the maximum speedup run.

We can see that the adaptive fork-heuristics perform excellently on these
benchmarks. The feedback and adaptive versions of all benchmarks achieve more
than 88 % and 50 % of the manual parallel performance at 64 cores, respectively.
The feedback version of Barnes-Hut is even 49 % faster than the manual ver-
sion. The adaptive version also beats the manual one on average. In addition to
the top-level task distribution loops, the heuristics also select some fork points
in the task computation functions. However, those fork points result in better
speedups not because they contribute to more parallelism, but just because of
cache issues. In fact, we find that even just adding pure rollback yields higher
speedups than the manual version—even failed speculation acts as pre-fetching.
This case demonstrates the power of adaptive fork heuristics that can be directly
applied on real execution, which can always avoid inappropriate fork points and
try to select as more beneficial ones as possible. In contrast, other fork heuris-
tics use pre-defined fork points that do not guarantee benefits on real execution.

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

A
bs

ol
ut

e
Sp

ee
du

p

Number of CPU

Manual
Adaptive - Max
Adaptive - Average
Adaptive - Min
Feedback
No Hint

Fig. 3. Speedup results - molecular dynamics

530 Z. Cao and C. Verbrugge

Moreover, they cannot select such cache-beneficial fork points due to lack of real
parallel execution environment information.

For the md benchmark, all versions show close performance, with little vari-
ance in the adaptive runs. Overhead of heuristics is negligible, which demon-
strates satisfactory efficiency and applicability of the heuristics. The adaptive
and feedback versions generally show higher performance between 8 and 55 cores
than the manual version, but lower with 1 to 7 and 56 to 64 cores, due to different
cache behaviours affected by the heuristics.

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

C
d
uq
nw
vg
"U
rg
gf
w
r

Pwodgt"qh"ERW

Manual
Adaptive - Max
Adaptive - Average
Adaptive - Min
Feedback
No Hint

Fig. 4. Speedup results - Mandelbrot

On the other hand, mb is the least efficient benchmark with respect to
the heuristics, due to its small innermost loop body. However, the normalized
speedups of the adaptive version is relatively stable with the number of cores,
and there is not much variance between each run, which guarantees worst-case
performance. The nest-loop-disabling option is used for the benchmark, which
improves the speedups by 3 times.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

N
or

m
al

iz
ed

 S
pe

ed
up

Number of CPU

bh - adaptive bh - feedback bh - no hint
md - adaptive md - feedback md - no hint
mb - adaptive mb - feedback mb - no hint

Fig. 5. Performance comparison, speedups normalized to the manual versions

Adaptive Fork-Heuristics for Software Thread-Level Speculation 531

Though the feedback-based selection log file is chosen to be the best speedup
one over 10 runs, all the log files select the same fork/join points as the manual
version for mb and md. For bh, any of the log files produces a feedback version
with significantly higher speedups over the corresponding adaptive ones. Besides,
the feedback versions can be further applied feedback-based selection to produce
even better feedback versions.

To understand what the best parameters are for the benchmarks, we also
experimented with different parameter configurations to see their influence on
the performance. The results are illustrated in Fig. 6, with speedups normalized
to the average speedups of the adaptive versions. For all experiments, we set
ηthreshold = 0.5 to indicate overhead should not take more time than useful
work. We then set the default parameters Toverhead = 1000000, Nwarmup = 10
and adjust one of them. The speedup data is computed by geometric means over
10 runs on 64 processor cores.

0

0.2

0.4

0.6

0.8

1

1.2

1000 10000 100000 1000000 10000000

N
or

m
al

iz
ed

 S
pe

ed
up

Toverhead / Cycle

mb md bh

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 10 100 1000 10000

N
or

m
al

iz
ed

 S
pe

ed
up

Nwarmup

mb md bh

Fig. 6. Parameter results - Toverhead and Nwarmup

It can be seen that the performance is not very sensitive to the parameters of
the heuristics, which is encouraging. The benchmarks have relatively stable per-
formance with Toverhead between 100000 and 1000000 CPU cycles and Nwarmup

between 3 and 10. In general, the performance degrades outside these ranges,
except for mb, which prefers smaller thread overhead and less warmup runs.
The significant performance drop of Nwarmup from 10 to 100 is because a large
number of warmup runs prevents the nest-loop-disabling optimization. It is also
remarkable that memory-intensive benchmarks (bh) tend to suit larger Toverhead

than computation-intensive ones (mb, md).

6 Conclusions and Future Work

In this paper we proposed an adaptive fork-heuristics for software TLS, which
inserts all potential fork/join points and purely relies on the heuristics and run-
time system to disable the inappropriate ones. These adaptive heuristics have
ability to utilize the real parallel execution environment information to maximize
performance. In addition, we proposed a feedback-based selection technique to
achieve ideal speedups.

532 Z. Cao and C. Verbrugge

Experiments on three scientific computing benchmarks on a 64-core machine
demonstrate that the adaptive fork-heuristics are both highly effective and
efficient. All benchmarks achieve more than 88 % and 50 % speedups of the
manual version for the programs parallelized by feedback-based selection and
adaptive fork-heuristics, respectively. Moreover, the feedback version of Barnes-
Hut are 49 % faster than the manual version due to exploitation of cache effi-
ciency. Experiments also show the encouraging fact that the heuristics are not
overly parameter sensitive.

In future work, we will exploit more accurate cost-benefit models and hints
that are more stable and even less parameter dependent, and evaluate with
more benchmarks. We will also implement the necessary compiler optimizations
to enable fully automatic parallelization with adaptive fork-heuristics.

References

1. LLVM (low-level vitrual machine). http://llvm.org
2. Cao, Z., Verbrugge, C.: Language and architecture independent software thread-

level speculation. In: Kasahara, H., Kimura, K. (eds.) LCPC 2012. LNCS, vol.
7760, pp. 270–272. Springer, Heidelberg (2013)

3. Cao, Z., Verbrugge, C.: Mixed model universal software thread-level speculation.
In: ICPP’13: Proceedings of the 42nd International Conference on Parallel Process-
ing, pp. 651–660 (2013)

4. Chen, M.K., Olukotun, K.: The Jrpm system for dynamically parallelizing Java
programs. In: ISCA’03: Proceedings of the 30th Annual International Symposium
on Computer Architecture, pp. 434–446, June 2003

5. Dou, J., Cintra, M.: A compiler cost model for speculative parallelization. ACM
Trans. Architect. Code Optim. 4(2), 12 (2007)

6. Du, Z.H., Lim, C.C., Li, X.F., Yang, C., Zhao, Q., Ngai, T.F.: A cost-driven
compilation framework for speculative parallelization of sequential programs. In:
PLDI’04: Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation, pp. 71–81, June 2004

7. Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J., Torrellas, J.: POSH:
a TLS compiler that exploits program structure. In: PPoPP’06: Proceedings of the
11th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pp. 158–167, Mar 2006

8. Liu, Y., An, H., Liang, B., Wang, L.: An online profile guided optimization app-
roach for speculative parallel threading. In: Choi, L., Paek, Y., Cho, S. (eds.)
ACSAC 2007. LNCS, vol. 4697, pp. 28–39. Springer, Heidelberg (2007)

9. Luo, Y., Packirisamy, V., Hsu, W.C., Zhai, A., Mungre, N., Tarkas, A.: Dynamic
performance tuning for speculative threads. In: Proceedings of the 36th Annual
International Symposium on Computer Architecture (ISCA ’09), pp. 462–473
(2009)

10. Quiñones, C.G., Madriles, C., Sánchez, J., Marcuello, P., González, A., Tullsen,
D.M.: Mitosis compiler: an infrastructure for speculative threading based on pre-
computation slices. In: PLDI’05: Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pp. 269–279, June
2005

Adaptive Fork-Heuristics for Software Thread-Level Speculation 533

11. Steffan, J.G., Colohan, C., Zhai, A., Mowry, T.C.: The stampede approach to
thread-level speculation. ACM Trans. Comput. Syst. (TOCS) 23(3), 253–300
(2005)

12. Wang, S., Dai, X., Yellajyosula, K.S., Zhai, A., Yew, P.-C.: Loop selection for
thread-level speculation. In: Ayguadé, E., Baumgartner, G., Ramanujam, J.,
Sadayappan, P. (eds.) LCPC 2005. LNCS, vol. 4339, pp. 289–303. Springer, Hei-
delberg (2006)

13. Whaley, J., Kozyrakis, C.: Heuristics for profile-driven method-level speculative
parallelization. In: ICPP’05: Proceedings of the 2005 International Conference on
Parallel Processing, pp. 147–156, June 2005

14. Xu, F., Shen, L., Wang, Z., Guo, H., Su, B., Chen, W.: Heuspec: A software
speculation parallel model. In: ICPP’13: Proceedings of the 42nd International
Conference on Parallel Processing, pp. 621–630 (2013)

Inexact Sparse Matrix Vector Multiplication
in Krylov Subspace Methods:

An Application-Oriented Reduction Method

Ahmad Mansour(B) and Jürgen Götze

Information Processing Lab, TU Dortmund, Otto-Hahn-Str. 4,
44227 Dortmund, Germany

{ahmad.mansour,juergen.goetze}@tu-dortmund.de

Abstract. Iterative solvers based on Krylov subspace method proved
to be robust in the presence of well monitored inexact matrix vector
products. In this paper, we show that the iterative solver performs well
while gradually reducing the number of nonzero elements of the matrix
throughout the iterations. We benefit from this robustness in reducing
the computational effort and the communication volume when imple-
menting sparse matrix vector multiplication (SMVM) on a Network-on-
Chip (NoC).

Keywords: Krylov subspace method · Inexact matrix-vector multipli-
cation · Network-on-chip

1 Introduction

Iterative solvers based on Krylov subspace method are considered to be among
the most effective solvers for large linear systems. This method relies on finding
an approximate solution in a lower dimension subspace called Krylov subspace.
During the run of the iterative solver, matrix vector multiplication (MVM) is
performed in each iteration in order to generate and extend the Krylov subspace.
If the system matrix is sparse, the computation cost of the iterative solver is
mostly spent in sparse matrix vector multiplications (SMVM) [8].

Researchers found that these iterative solvers perform well even with the
presence of inexact matrix vector product [2–4,11]. In these papers, the robust-
ness of Krylov subspace methods was only studied from numerical analysis point
of view. In this paper, the robustness of these iterative solvers is utilized in reduc-
ing the computation cost of SMVM in an NoC. This is done by reducing the
number of nonzero elements in the considered matrix while maintaining the con-
vergence of the iterative solver. This can be very beneficial in case of matrices
with big differences in the magnitude of their elements as, e.g., matrices from
modeling 2D fluid flow in a driven cavity, and matrices representing dynamic
analyses in structural engineering. As an example for iterative solvers based on
Krylov method, our approach is applied to the Generalized Minimal Residual

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 534–544, 2014.
DOI: 10.1007/978-3-642-55224-3 50, c© Springer-Verlag Berlin Heidelberg 2014

Inexact Sparse Matrix Vector Multiplication in Krylov Subspace Methods 535

method (GMRES) [10]. In our previous work [7], a row-based reduction method
was used in which matrix elements are compared to a row-dependent threshold.
In this paper, a generalized reduction method is introduced, where the threshold
is used for the whole matrix elements.

In the following section, the practical background which motivates our inves-
tigations is introduced. The theoretical background of the iterative solver is
discussed in Sect. 3. In Sect. 4, the reduction mechanism is introduced, which is
used to produce the perturbed matrix. The numerical experiments are discussed
in Sect. 5. Finally, the paper is concluded in Sect. 6.

2 Practical Background

The computation of SMVM in general purpose processors is inefficient. This is
due to the irregular data transfers and the high number of memory accesses
compared to the number of floating point operations. Hence, researchers tried to
enhance the poor performance of SMVM computations by modifying the existing
algorithms or by using accelerators as, e.g., graphics processing units (GPU),
and FPGA-based accelerators. In our previous work, an SMVM accelerator is
implemented using an FPGA-based NoC [5,12]. In this implementation, only the
SMVM is performed on the accelerator while the rest of the iterative algorithm
is performed by the host PC. In this case, the matrix has to be loaded in each
iteration to perform the matrix vector multiplication.

Matrix elements are read from memory and then injected into a k × k mesh
of nodes, as shown in Fig. 1(a) for k = 4. Each node consists of a processing
element (PE) and a network interface. The mapping method of matrix and
vector elements is shown in Fig. 1(b). The matrix element aij and the vector
element xj are mapped to PE(mod(j, k × k + 1)) for multiplication. Then, the
multiplication result bij is mapped to PE(mod(i, k × k + 1)) for accumulation
with multiplication results in the i-th row.

Bus Interface

B
us

 I
nt

er
fa

ce

M
em

or
y

B
us

C
on

tr
ol

le
r

PE PE PE PE

PEPEPEPE

PE PE PE PE

PEPEPEPE

b1
PE1

PE5

PE9

PE13 PE15PE14 PE16

x9

x4 a12 x4 a94

9

9

9

PE10

PE6 PE7 PE8

PE4PE3PE2

PE11 PE12

b17

b12 b94

x7 17

(a) (b)

Fig. 1. NoC architecture and data mapping method

536 A. Mansour and J. Götze

For an N ×N sparse matrix with nz nonzero elements, the number of float-
ing point operations in SMVM is 2nz − N . The communication volume (the
number of sent messages) cannot be determined from the number of nonzeros as
it depends on the sparsity structure of the matrix and the used data mapping
method. For example, the multiplication result b12 in Fig. 1(b) travels to the
next node for accumulation, while b94 has to travel five nodes to reach its desti-
nation. Regardless of matrix structure and the used data mapping method, the
communication volume rises with the number of the nonzero elements. Hence,
the objective is reducing the number of nonzeros such that computation and
communication costs are reduced while simultaneously taking into consideration
the convergence of the iterative solver.

3 Theoretical Background

Iterative solvers have been used in solving large linear systems due to their
low storage requirements compared to direct solvers [9]. This is particularly
important in case of sparse matrices where the factorization of the matrix for the
direct solution leads to an increased number of nonzeros compared to the original
matrix. We assume that readers are familiar with Krylov subspace methods. For
more details on these methods, refer to Saad [9].

Given a system of linear equations Ax = b, the goal is to find a solution (x∗)
such that the norm of the residual (r) is less than the targeted tolerance (η), i.e.,
with r = b − Ax, one obtains ‖r‖2 = ‖b−Ax‖2 < η for x = x∗. For the rest of
the paper, the Euclidean norm is denoted by ‖.‖. In Krylov subspace methods,
the iterative solver aims to find an approximate solution in a lower dimension
subspace. This subspace of candidates is called Krylov subspace Km(A, v1), which
is spanned by

{v1, Av1, A2v1, ..., A
m−1v1}, (1)

where v1 = r0/ ‖r0‖.
As example for Krylov methods, the Generalized Minimum Residual

(GMRES) method is considered in theory and experiments. The details of
GMRES can be found in Algorithm 1.

In lines (2-9), Arnoldi iteration is used to build an orthogonal basis (Vm)
for the Krylov subspace. After m iterations, one obtains AVm = Vm+1Hm+1,
where Vm = [v1, v2, ..., vm] is an orthogonal matrix, Hm = V T

mAVm is an upper
Hessenberg matrix and Hm+1 is the matrix Hm augmented with hk+1,ke

T
m, where

em is the mth canonical vector. As it can be seen from line (10), one solves an
m-dimensional system instead of solving the original system. The result of this
minimization (y) is used to calculate the solution of the linear system as shown
in line (11). The residual in this case can be calculated as follows:

r = b−Ax = b−A(x0 + Vmy) = r0 −AVmy = r0 − Vm+1Hm+1y. (2)

Inexact Sparse Matrix Vector Multiplication in Krylov Subspace Methods 537

Algorithm 1. GMRES
1: r0 = b − Ax0, β = ‖r0‖ , v1 = r0/β
2: for i = 1, 2, ..., do
3: w = Avi

4: for k = 1, .., i do
5: hk,i = wT vk

6: w = w − hk,ivk

7: end for
8: hi+1,i = ‖w‖
9: vi+1 = w/hi+1,i

10: Solve min
y

‖βe1 − Hy‖
11: If satisfied, Set x = x0 + Viy and quit
12: end for

The computation and storage cost of GMRES algorithm grows with the num-
ber of iterations. In order to overcome this drawback, the algorithm is restarted
after a given number of iterations (m) such that the intermediate solution is used
to initialize the next restart while old stored data are cleared. This algorithm is
denoted by GMRES(m).

In the following section, GMRES with the presence of inexact matrix vector
products is discussed as well as the proposed reduction method.

4 Convergence Under Inexact Products

In a Krylov method using inexact matrix vector products, a perturbed matrix
is used instead of the original matrix for creating the Krylov subspace. That is,
the term w = Av in Algorithm 1 is replaced by w = Ãiv, where Ãi = (A−ΔAi)
is the perturbed matrix in the ith iteration and ΔAi is the perturbation matrix.
The Arnoldi iteration in the inexact case gives

[(A−ΔA1)v1, (A−ΔA2)v2, ..., (A−ΔAm)vm] = Vm+1Hm+1,

or
AVm − [ΔA1v1,ΔA2v2, ...,ΔAmvm] = Vm+1Hm+1.

In contrast to the residual in the exact case in Eq. (2), the residual in the
inexact case can be calculated as

r̃ = b−Ax = b−A(x0 +Vmy) = r0−AVmy = r0−Vm+1Hm+1y+ ε = r+ ε. (3)

where

ε = [ΔA1v1,ΔA2v2, ...,ΔAmvm]y =
m∑

i=1

y(i)ΔAivi, (4)

538 A. Mansour and J. Götze

is the gap between the exact and the inexact residuals, which is dependent on the
amount of applied perturbation. The norm of the residual gap can be described
as follows

‖ε‖ =
m∑

i=1

|y(i)| ‖ΔAivi‖ ≤
m∑

i=1

|y(i)| ‖ΔAi‖ , (5)

where (refer to Lemma 5.1 in [11])

|y(i)| ≤ ‖r̃i−1‖
σmin(Hm)

. (6)

One can see from Eq. (6), that the magnitude of y elements decreases as the
residual approaches the tolerance. Therefore, one can increase the norm of the
perturbation matrix such that |y(i)| ‖ΔAi‖ is always the same and, hence, the
residual gap is determined. The residual gap is controlled by bounding the norm
of the perturbation matrix to achieve the same convergence as in the exact case.
This explains why the norm of the perturbation is allowed to grow throughout
iterations.

In this paper the perturbation is expressed by omitting matrix elements
which are in magnitude less than some threshold (ε) such that the norm of the
perturbation matrix is less than the allowed bound. As the bound on the norm
of the perturbation grows, the dropping threshold also increases. That is, the
reduction method progressively reduces the number of nonzeros until reaching
the solution.

Given a sparse matrix A of size N × N , by dropping elements less than εi,
the perturbation matrix in the ith iteration can be expressed as follows

ΔAi =

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · 0 · · · a1N

0 a22 · · · a2k · · · 0
...

...
. . .

...
. . .

...
0 0 · · · aNk · · · aNN

⎤

⎥
⎥
⎥
⎦
,

where the nonzeros of ΔAi are less than εi. Moreover, the positions of the
dropped elements in ΔAi are selected randomly.

To calculate the norm of ΔAi, the eigenvalues of ΔAT
i ΔAi need to be deter-

mined. The extreme case of ΔAi is considered by replacing all ignored elements
by εi. The worst case that ΔAT

i ΔAi can take is

ΔAT
i ΔAi = Nε2i

⎡

⎢
⎢
⎢
⎣

1 · · · 1 · · · 1
1 · · · 1 · · · 1
...

. . .
...

1 · · · 1 · · · 1

⎤

⎥
⎥
⎥
⎦
.

Inexact Sparse Matrix Vector Multiplication in Krylov Subspace Methods 539

As the maximum eigenvalue for this matrix is λmax(ΔAT
i ΔAi) = (Nεi)2,

then (‖ΔAi‖2)max =
√
λmax = Nεi, and in the general case: ‖ΔAi‖2 ≤ Nεi. By

choosing

εi = σ
η

‖r̃i−1‖ , (7)

where σ is the perturbation parameter and η is the targeted tolerance, the norm
of the perturbation matrix becomes

‖ΔAi‖ ≤ Nεi = Nσ
η

‖r̃i−1‖ , (8)

and the norm of the residual gap in (5) becomes

‖ε‖ ≤ m ·N · η · σ

σmin(Hm)
. (9)

The problem in determining the value of σ is that σmin(H) is not available
before the mth iteration, and depends on the amount of perturbation. As in [11],
the relation between σmin(H) and σmin(A) is described as

σmin(Hm) ≥ σmin(A)− ‖[ΔA1v1,ΔA2v2, ...,ΔAmvm]‖ , (10)

or as in [3],

σmin(Hm) ≥ σmin(A)(1− c), (11)

with 0 < c < 1, depending on the amount of perturbation.
Let us now determine the upper bound of the second term on the right hand

side of Inequality (10). As v is a unit vector and ΔA is very sparse, the maximum
possible perturbation in w caused by dropping matrix elements less than ε is

Δw = ΔA · v =
kiεi√
N

⎡

⎢
⎢
⎢
⎣

1
1
...
1

⎤

⎥
⎥
⎥
⎦
, (12)

where ki is the maximum number of dropped elements in the matrix rows in the
ith iteration. As ΔA is very sparse, then k � N and can be replaced by αN ,
where α� 1. This gives

Δw = ΔA · v = αiεi

√
N

⎡

⎢
⎢
⎢
⎣

1
1
...
1

⎤

⎥
⎥
⎥
⎦
, (13)

540 A. Mansour and J. Götze

and

[ΔA1v1,ΔA2v2, ...,ΔAmvm] =
√
N

⎡

⎢
⎢
⎢
⎣

α1ε1 α2ε2 · · · αmεm

α1ε1 α2ε2 · · · αmεm

...
...

. . .
...

α1ε1 α2ε2 · · · αmεm

⎤

⎥
⎥
⎥
⎦
. (14)

The norm of this matrix can be calculated as follows

‖[ΔA1v1,ΔA2v2, ...,ΔAmvm]‖ =
√
N

√
√
√
√N

m∑

i=1

(αiεi)2 = Nσ

√
√
√
√

m∑

i=1

(
αiη

‖r̃i−1‖)2.

(15)
As α � 1 and the norm of the residual is always bigger than the tolerance

(‖r̃i−1‖ > η), the term under the square root can be replace by some constant
c� 1.

‖[ΔA1v1,ΔA2v2, ...,ΔAmvm]‖ = Nσc, (16)

and Inequality (10) becomes

σmin(Hm) ≥ σmin(A)−Nσc. (17)

By choosing σ = σmin(A)/N , the last inequality can be rewritten as

σmin(Hm) ≥ σmin(A)(1− c), (18)

or
σmin(A)
σmin(Hm)

≤ 1
1− c ≈ 1, (19)

and the norm of the residual gap becomes

‖ε‖ ≤ m ·N · η · σmin(A)
N · σmin(Hm)

≈ m · η. (20)

To check whether the selection of σ is correct, one can monitor the effect of
the perturbations on the new generated vector by calculating the norm of the
perturbation in Eq. (13). The norm can be described as

(‖Δwi‖)max = Nαiεi = Nαi
η

‖r̃i−1‖σ = αiσmin(A)
η

‖r̃i−1‖ , (21)

and the maximum perturbation in all iterations (as η/‖r̃i−1‖ → 1) is

‖Δw‖ ≤ ασmin(A) ≤ α(‖w‖)min < (‖w‖)min, (22)

where ‖w‖ ∈ [σmin(A), σmax(A)] (remembering that w = Av and ‖v‖ = 1).
From the previous equations it can be seen that with this selection of σ,

the residual gap is bounded by m · η. However, as shown later in Sect. 5, this

Inexact Sparse Matrix Vector Multiplication in Krylov Subspace Methods 541

selection is practically too strict, leading to relatively small reduction rates (the
number of ignored nonzeros to the total number of nonzeros). This can obviously
be seen from Eq. (22), which allows very small deviations from the exact Krylov
subspace. The following experiments use three variants of σ, from which σmin(A)
seems to be good enough to achieve small residual gaps and big reduction rates.

5 Numerical Experiments

In this section, MATLAB simulations are performed using matrices from Matrix
Market [1]. The perturbed matrices are used in the gmres MATLAB func-
tion instead of the original matrices. For each test matrix, three variants of
the perturbation parameter (σ) are considered, which are σ1 = σmin(A)

/
N ,

σ2 = σmin(A)
/√

N and σ3 = σmin(A). The true residual (not the GMRES
residual) in the following figures needs not to be calculated in the algorithm for
both exact and inexact cases. However, it is calculated in the experiments for
illustration purpose only.

Figures 2, 3 and 4 show the convergence of residuals and the reduction rates
for three cases. In the first case, the non-restarted GMRES (as in Algorithm
1) is considered using ARC130 matrix. The restarted version of GMRES(m) is
considered in the second case, in which FS 760 1 matrix is used with restart size
m = 40. In the last case, the preconditioned GMRES is tested using incomplete
LU factorization (ILU) [9]. For this case, CAVITY03 matrix is used with drop
tolerance 10−3 for the ILU preconditioner.

As it can be seen from the figures, the convergence in the inexact case is iden-
tical to that in the exact case even with the presence of growing perturbations.
The achieved reduction rate increases by using bigger perturbation parameters.
Based on the mathematical proof in Sect. 4, using σ1 always leads to identical
convergence as in the exact case. On the other hand, using σ2 or σ3 may lead to
bigger residual gaps. In this case, the iterative solver may require more iterations
to reach the targeted tolerance.

2 4 6 8 10 12 14 16

10−15

10−10

10−5

100

number of iterations

re
sid

ua
l

exact MVM
inexact σ1
inexact σ2
inexact σ3

(a)

2 4 6 8 10 12 14 16

10

15

20

25

30

35

40

45

50

number of iterations

re
du

ct
io

n
pe

rc
en

ta
ge

 (%
)

σ1

σ2

σ3

(b)

Fig. 2. Convergence and reduction rate for ARC130, 130 × 130, m = 130 and η = 10−14

542 A. Mansour and J. Götze

20 40 60 80 100

10−15

10−10

10−5

100

number of iterations

re
sid

ua
l

exact MVM
inexact σ1

inexact σ2

inexact σ3

(a)

20 40 60 80 100

10

20

30

40

50

60

70

80

number of iterations

re
du

ct
io

n
pe

rc
en

ta
ge

 (%
)

σ1

σ2

σ3

(b)

Fig. 3. Convergence and reduction rate for FS 760 1, 760×760, m = 40 and η = 10−14

5 10 15 20 25 30 35

10−15

10−10

10−5

100

number of iterations

re
sid

ua
l

exact MVM
inexact σ1

inexact σ2

inexact σ3

(a)

5 10 15 20 25 30 35
0

2

4

6

8

10

number of iterations

re
du

ct
io

n
pe

rc
en

ta
ge

 (%
) σ1

σ2

σ3

(b)

Fig. 4. Convergence and reduction rate for CAVITY03, 317×317, m =10 and η = 10−14

Going back to our NoC, we compare the effort of performing exact and inex-
act SMVM in the NoC. An OMNeT++ based NoC simulator [6] is used to
compare the performance of SMVM using some test matrices and their reduced
versions. The simulator is modular, scalable and parameterizable framework for
modeling the NoC-based SMVM accelerator. Benefiting from OMNeT++ built-
in support for recording simulation results, the simulator is used to record the
number of sent messages in the NoC and the number of floating-point opera-
tions performed in each node. Table 1 shows the simulation results for three test
matrices using a 4× 4 NoC. For each matrix, two reduced versions are used (the
reduction percentages are in the brackets).

From these results it can be concluded that using the reduced matrices is
beneficial due to the reduction in the number of floating point operations and
reduction in communication volume. This leads to higher throughput of the NoC,
which is expressed by Speed-up in the last column of the table. The reduction
in SMVM effort and the speed-up depend on the system architecture, the data
mapping method, the sparsity structure of the matrix and the positions of the
ignored nonzeros in that matrix. For example, ignoring a12 (see Fig. 1(b)) reduces
the number of sent messages by one. On the other hand, ignoring a94 saves five

Inexact Sparse Matrix Vector Multiplication in Krylov Subspace Methods 543

Table 1. NoC simulation results

Matrix Mode Nonzeros FLOP Sent messages Speed-up

ARC130 Original 1037 1944 11248 -
Reduced (20 %) 829 1311 10218 1.35
Reduced (40 %) 622 1009 7508 1.727

FS 760 1 Original 5739 10718 49188 -
Reduced (40 %) 3487 6214 31846 1.52
Reduced (60 %) 2316 3872 22622 2

BCSSTM07 Original 7252 14084 78088 -
Reduced (20 %) 5808 11196 63508 1.23
Reduced (50 %) 3692 6964 40852 1.85

sent messages. However, it is obvious that the achieved speed-up increases when
using higher reduction rates. It has to be noticed that the number of messages
in the table includes the number of messages required for injecting the matrix
and vector elements and the messages required for collecting the final result.

6 Conclusion and Future Work

In this paper we made use of the robustness of the iterative solvers based on
Krylov subspace method in reducing the effort of SMVM in an NoC. It was
shown that the reduction mechanism was very beneficial for matrices with big
differences in the magnitude of their elements. Besides, the proposed method
does not require costly calculations as, e.g., the norm of the perturbation matrix.
One of the main challenges in our method, and in other papers, is that the lowest
singular value of the matrix needs to be determined. As future work, we aim to
find an alternative for the minimum singular value benefiting from the available
data during the run of the algorithm.

From hardware point of view, the comparison in performance has to be real-
ized on hardware in order to measure the actual speed-up and the saved power.

References

1. Boisvert, R., Pozo, R., Remington, K., Barrett, R., Dongarra, J.: Matrix market:
a web resource for test matrix collections. In: Boisvert, R. (ed.) The Quality of
Numerical Software: Assessment and Enhancement, pp. 125–137. Chapman & Hall,
London (1997)

2. Bouras, A., Frayssé, V.: Inexact matrix-vector products in Krylov methods for
solving linear systems: a relaxation strategy. SIAM J. Matrix Anal. Appl. 26(3),
660–678 (2005)

3. Giraud, L., Gratton, S., Langou, J.: Convergence in backward error of relaxed
GMRES. SIAM J. Sci. Comput. 29(2), 710–728 (2007)

4. Gratton, S., Toint, P.L., Ilunga, J.T.: Range-space variants and inexact matrix-
vector products in Krylov solvers for linear systems arising from inverse problems.
Technical Report TR/PA/10/14, CERFACS, Toulouse, France (2011)

544 A. Mansour and J. Götze

5. Jheng, H.Y., Sun, C.C., Ruan, S.J., Götze, J.: FPGA acceleration of sparse matrix-
vector multiplication based on network-on-chip. In: 19th European Signal Process-
ing Conference (EUSIPCO), Barcelona, pp. 744–748, August 2011

6. Mansour, A., Götze, J.: An OMNeT++ based network-on-chip simulator for
embedded systems. In: IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS 2012), Kaohsiung, Taiwan, pp. 364–367, December 2012

7. Mansour, A., Götze, J.: Utilizing robustness of Krylov subspace methods in reduc-
ing the effort of sparse matrix vector multiplication. Procedia Comput. Sci. 18,
2406–2409 (2013)

8. Morris, G., Prasanna, V.: Sparse matrix computations on reconfigurable hardware.
Computer 40(3), 58–64 (2007)

9. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston
(1996)

10. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869
(1986)

11. Simoncini, V., Szyld, D.B.: Theory of inexact Krylov subspace methods and appli-
cations to scientific computing. SIAM J. Sci. Comput. 25(2), 454–477 (2003)

12. Sun, C.C., Götze, J., Jheng, H.Y., Ruan, S.J.: Sparse matrix-vector multiplication
on network-on-chip. Adv. Radio Sci. 8, 289–294 (2010)

The Regular Expression Matching Algorithm
for the Energy Efficient Reconfigurable SoC

Pawe�l Russek(B) and Kazimierz Wiatr

AGH University of Science and Technology,
Mickiewicza Av. 30, 30-059 Krakow, Poland

{russek,wiatr}@agh.edu.pl

Abstract. This paper presents an algorithm for a regular expressions
pattern matching system. The goal was to achieve better performance
and low energy consumption. The proposed scheme is particularly use-
ful when a large set of complex regular expression patterns must be
inspected in parallel (e.g. in computer malware and anti-virus systems).
The idea of the algorithm derives from a concept of the Bloom filter algo-
rithm. The Bloom filter operation is used to inspect an incoming data and
to find static sub-patterns of regular expressions. When the Bloom filter
reports a match, a closer inspection is performed. The Bloom filtering
is done by a hardware dedicated co-processor. The regular expressions’
wildcard matching part is executed by a CPU.

The above concept was implemented and tested on the Xilinx Zynq-
7000 All Programmable SoC platform. The results and performance for
regular expressions patterns from the ClamAV virus database is given.

Keywords: Regular expressions matching · Energy-efficient systems ·
Custom architectures · HW–SW Co-Design

1 Motivation

Regular expression matching has become a bottleneck of software based pattern
matching systems. Such systems play an important role in data intensive com-
puting. Network Intrusion Detection Systems (NIDS) are one of the examples
where regular expression matching is used. In some advanced NID systems deep
packet inspection (DPI) is performed. In such systems, received data is assem-
bled from network packets and its content is checked against viruses and another
malware software. Known viruses’ information is stored in virus databases which
are frequently updated. As an example, ClamAV [1], an open source anti-virus
toolkit and database, is used to demonstrate the properties of the solution pro-
posed in this paper. As the number of regular expressions increases, matching
requires more and more computational effort. ClamAV contains nearly 100,000
regular expression based patterns as of January 2013.

Regular expression pattern matching may consume a lot of CPU run-time in
software systems. Basically, it is an example of simple data-intensive computing.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 545–556, 2014.
DOI: 10.1007/978-3-642-55224-3 51, c© Springer-Verlag Berlin Heidelberg 2014

546 P. Russek and K. Wiatr

In other words, it is not a CPU bound problem, but rather Input/Output (IO)
bound problem. For such problems the computer system should support efficient
data movement in the system rather than high computing power. The present
state-of-the-art, super-scalar, many-core processors fall behind real needs of
data-intensive problems. For example, modern processors offer over 200 GFlops
of processing power. To accommodate such performance data reuse is necessary.
That is why a big cache memory is required for efficient computing. However,
when considering a O(n) complex problem, data reuse in many applications is
limited. A rough estimation shows that to hold the performance of 200 billions
of 64-bit operations per second, data transfer of 1.6 TBps (Trillion Bytes per
second) is requested. The comparison of CPU’s computing performance to avail-
able network traffic speed shows a tremendous gap as well. Above facts put into
doubts a policy to use fastest CPUs when tasks are data oriented. Farther, the
cost and the energy consumption of powerful processors need to be considered.
There is an energy efficiency penalty that has to be paid for flexible performance
of super-scalar CISC processors.

A possible approach to solve the above problems is a computer system that is
better balanced for data dependent computing. Such systems can be built around
low-energy processors. Such processors features lower computing power, but offer
an attractive ratio of computing power per energy consumption. Consequently,
lower computing power better fits the available IO devices’ throughput. In sys-
tems for data-intensive computing, lower CPUs’ performance is compensated by
a higher number of computing nodes. In that policy, by adding to the system
an additional node, one adds CPU performance together with an additional IO
data throughput that is introduced by the node’s IO devices.

Recently, an approach that plays a significant role in data processing is cus-
tom processors. They outperform general purpose processors in terms of per-
formance and energy consumption. Today, the field programmable gate array
(FPGA) is proven semiconductor technology that is used for implementation of
custom computing devices. Examples of data processing in the FPGAs can be
found in [2,3].

A recent introduction of the Xilinx’s Zynq [4] is the motivation to focus on
research capabilities of low-energy processors which are tightly coupled with an
FPGA structure. The Zynq-7000 Extensible Processing Platform is a family of
silicon devices that combine a complete ARM processor-based SoC with inte-
grated programmable logic.

In this research, the problem of regular expression matching is approached
in the manner of HW/SW co-design for embedded SoC. The algorithm was
proposed and its performance tested on the Zynq-7000 platform. We applied the
bottom-up approach as the algorithm was conceived from scratch with the target
platform architecture kept in mind. The most powerful and efficient algorithm
that is widely used for string matching is the Bloom filter algorithm. It is suitable
for both hardware and software implementations. Although the Bloom filter is
very fast it is not suitable for direct regular expression matching. As presented

The Regular Expression Matching Algorithm 547

here, adoption of the Bloom algorithm to regular expression matching benefits
its performance.

The paper is organized as follows. The next section presents recent and
related works chosen from literature. In Sect. 3 an outline of issues which are the
background of the work is given. Section 4 presents a decomposition of the prob-
lem into hardware and software parts. In Sect. 5 the architecture of the proposed
custom hardware accelerator is presented. The results of hardware and software
implementation are in Sect. 6. The paper ends with conclusions in Sect. 7.

2 Related Work

Pattern matching is commonly performed by expressing patterns as sets of reg-
ular expressions those are converted into automata. Different kinds of automata
are used in the literature: deterministic (DFA), non-deterministic (NFA) and
alternatively Aho-Corasick automata. The majority of proposals that are met in
literature implement DFA or NFA. The NFAs are smaller in size, but the DFAs
work faster. In the work of Fang Yu et al. [5], the DFA-based algorithm was run
on a PC with a 3.4 Ghz CPU and a 3.7 GB memory. The throughput perfor-
mance was 0.6–0.7 Gbps for the Linux L7-filter. I was 47.9 to 704 times faster
than the NFA-based scanner from a popular software library. On the contrary,
the memory usage was 2.6–8.4 times higher. Pasetto et al. [6] have presented
Aho-Corasick automata on an Intel Xeon E5472. It could achieve processing
rates up to 4.5 Gbps per core on the simpler XML (32 regexs) and SMTP (20
regexs) parsing, and from 0.74 to 1.1 Gbps on the more demanding Snort (500
regexs) and Linux L7 (150 regexs) NIDS sets. The peak performance on eight
Intel Xeon cores reaches 46 and 35 Gbps, respectively, for SMTP and XML pars-
ing.

Today, accelerators such as the GPGPUs, FPGAs and also IBM’s Cell play
an important role in computer systems. As a consequence, many solutions have
been proposed in that field. Scarpazza and Russell [7] presented a SIMD solution
that delivers up to 14.3 Gbps on one IBM Cell/B.E. chip. Also on Cell, Iorio and
van Lunteren [8] proposed the BFSM string matcher for automata achieving
32 Gbps. Lately, the idea of using parallelism offered by the GPUs was considered
in [9]. Although the maximum reported throughput was 35 Gbps, the largest of
the test cases was limited to around 120 regular expressions. Another GPGPU
related work by Naghmouchi et al. [10] focuses on tokenization: a form of regexp
matching used to divide a character stream into tokens like telephone number,
URLs, etc. The limitation of this approach is the small size of the rule set.
Typical, maximal and minimal achieved throughputs after all the introduced
optimizations were: 9.4, 44.0 and 7.6 Gbps respectively.

Regarding FPGAs, one of the first papers that proposed to construct an NFA
from a regular expression to perform string matching was [11]. This approach was
later developed by Sourdis et al. in [12]. The latest achievement can be found in
[13]. Thanks to the sharing of common sub-regular expressions the total number
of implemented Snort rules was 24,214 characters. The reported throughput was

548 P. Russek and K. Wiatr

approx. 1 Gbps. Thanks to parallelism in multi-character architecture, Chang
et al. [14] was able to increase the maximum system throughput to 4.68 Gbps
(2 character design) and 7.27 Gbps (4 character design). Bande Serrano and
Palancar [15] proposed an approach that is related to and presented in our work.
Unique sub-sequence matchings were used for detecting the possible presence of
the string in the data flow. In doing so, they made a reduction of the area cost
for processing multiples characters.

Although the original Bloom’s algorithm is intended for static patterns, sev-
eral authors tried its adoption for regular expression matching. A more recent
approach was given by [16]. The authors proposed a hashing-table look-up mech-
anism which uses parallel Bloom filters to enable a large number of fixed-length
strings to be scanned in hardware. Based on the Bloom filter, Lockwood et al.
[17] proposed a gateway that provides Internet worm and virus protection in
networks.

3 Background

3.1 Computing Platform

A hardware processor requires an appropriate host system architecture. The per-
formance of all the components should fit in a well-balanced system. In a general
purpose solution the properties of a system cannot be strictly defined because
they are different for various algorithms. In practice, the best general purpose
solutions are built using state-of-the art components: processors, memory chips,
graphics card, storage devices, etc. A policy of choosing the best available on
the market component to set up a computer works in practice because usually
systems execute different applications.

An essential computing system equipped with a hardware accelerator is
depicted in Fig. 1. It consists of a multi/textendash CPU processor, a memory
controller connected to a memory block, an IO device and a hardware accelerator.
The CPU is tightly coupled with the memory controller that allows for higher

Fig. 1. A simple system with an accelerator.

The Regular Expression Matching Algorithm 549

data throughput and lower latency. In contrary, the IO devices and the accel-
erators have access to the memory thanks to a system bus (e.g. PCIe, AMBA,
etc.). As the memory controller is also connected to the system bus, the IOs
and accelerators can also perform memory operations. Preferably, the system
bus devices use Direct Memory Access (DMA) transactions to access the main
memory. The DMA mechanism allows the CPUs, IO devices and accelerators to
work simultaneously. In principle they perform algorithms in a pipeline manner.
The functional decomposition of an algorithm is done i.e. separate blocks of data
are processed concurrently by IO devices, CPU, accelerator (Acc), and so on. To
allow a smooth algorithm execution, the performance of all components must
fit. This means that none of the components outperforms other components and
none of the components waits for another component to complete its task.

3.2 The Bloom Filter

The fundamental operations that are behind the Bloom filter are both data
hashing and memory read. In general, the hashing converts a word into another
word of a smaller bit length. In other words, the hashing process converts a
w − bit input word into a h − bit output word, where h < w. The output word
that is generated by the hashing process, is an address in a memory where the
stored values are ‘true’ or ‘false’. These indicate the existence or non-existence
of the input word in the filter. In the teaching phase the memory is programmed
for the given word dictionary. In the check phase, if the location in the memory
at the generated address is ‘true’ a hit occurs. In Bloom’s original algorithm, for
a single word, the mentioned memory operation is sequentially repeated several
times for different hash functions. We denote this number of tries as k. If all the
tries are successful, during the check phase, a positive match is generated, i.e.,
the word exists in the Bloom filter.

There are at least two major disadvantages of the Bloom filter method that
need to be considered here. The first, the Bloom algorithm is not a trustworthy
tool. The second, in the original algorithm, the search is performed sequentially.

With regard to the first disadvantage, there is a finite probability of an incor-
rect word match. The Bloom algorithm generates a match signal for the words
outside the dictionary. They are further denoted as ‘false-positives’. If faultless-
ness is required, the results ought to be additionally verified by another, perfect
algorithm. The nature of the fault indicated in the Bloom filter is a misstate-
ment, i.e., the words that are not in the dictionary can match. Fortunately, the
opposite situation, where the algorithm overlooks words is not possible. This
means that the words held in the dictionary are always indicated.

The probability of ‘false-positives’ is given by the formula (1).

perr = [1− (1− 1
m

)(kn)]k ≈ [1− e− kn
m]k (1)

where: n is the number of searched patterns, m is the bit size of memory and k is
a number of hash operations performed. Additionally, a reasonable assumption
is that m = 2h.

550 P. Russek and K. Wiatr

In the algorithm presented in this paper we assume that k = 1. This assump-
tion simplifies the hardware architecture of the design. As a result, the perr is
slightly higher than the optimal value that could be achieved for the adjusted
value of k. Moreover, it was also possible to get rid of the hashing operation.
We use patterns directly to address the Bloom memory. The algorithm allows
for that because the patterns’ length can be freely chosen. Their length can be
adjusted to the requested value of log2(m). This phenomenon will be clarified in
the next section. In other words, the Bloom filter used in the presented algorithm
is reduced to the basic memory look-up operation.

Also the assumption that all patterns are different is taken (in opposite to
patterns’ hashes). That allows to derive a simplified hit probability (Eq. 2).

perr =
n

m
=

n

2p
(2)

where: p = log2(m) is the patterns’ length.
The property of the Bloom filtering is that for an input data rate Rin, the

output data rate is:

Rout = perr ∗Rin (3)

4 Principles of the Proposed Algorithm

In this section the basic idea of the proposed algorithm will be introduced. The
main assumption behind the proposed scheme is HW–SW decomposition. To
achieve good performance, the part of the algorithm will be executed by the
custom processor. The part executed in custom hardware is the Bloom filter-
ing. The CPU is used for regular expression verification (Fig. 2). The streaming
architecture was chosen for the custom accelerator data flow as it frequently
offers the highest performance.

Obviously, as presented in the previous section the Bloom filter approach
cannot be applied directly to detection of regular expressions because it does not
support wildcards matching. On the other hand, the performance advantages

Fig. 2. HW–SW decomposition of the algorithm

The Regular Expression Matching Algorithm 551

of this method cannot be neglected. In order to get rid of the Bloom filter
limitations, this operation must be additionally supplemented. Here, the results
from the Bloom filtering are further processed by the procedure executed by
the CPU. Accordingly, our approach consist of two stages. In the first stage,
data is examined against static sub-patterns and then suspected blocks of data
and appropriate sub-patterns locations are passed to the second stage for deeper
examination. Regular expression matching is implemented in the second stage.

Our algorithm requires regular expression preprocessing before it can be
applied. This preprocessing is a very simple process. It requires an extraction of
static sub-pattern from the regular expression patterns. The static sub-pattern
is the part of the regular expression that does not contain wildcard characters.
The bit-length of the sub-pattern can be set to the value that fits p = �log2(m)�.

For the best performance of the software part of the algorithm it is requested
that the sub-pattern for the different regular expressions are different. In other
words, we want the sub-patterns to distinguish regular expressions as much as
possible. For example, for d different regular expressions we want n = d different
static patterns of bit-length p. It should be mentioned here that the length of
patterns can be bigger than �log2(m)�. In such a case a compression that uses
a hash function can be applied. That hash function returns a result of length
p. In some cases the use of hashing helps achieve a uniform patterns to regular
expressions mapping.

The Bloom filter hardware processor inspects data for characteristic sta-
tic patterns. Their occurrences in the inspected block of data are returned to
the CPU as the locations in the data block. Then, the CPU extracts patterns
from locations and checks if a regular expression matches. To start the regular
expression matching a proper regular expression must be fetched from the reg-
ular expressions database. Its retrieval is sped-up thanks to a hash index. The
hash indexes of length h and a hash table of size 2h is used. The hash table
contains positions of the regular expression body in a database. The hashes are
used to address the table and the database’s position is read from the hash
index table. As h < p, it happens that more than one regular expression has to
be checked for a single hash value. This functionality is provided by the database
organization that allows it to store more than one regular expression pattern at
its single entry. Merged lists of regexs are created and stored as indexed records
in the database.

The scheme of the algorithm’s operation is presented in Fig. 3. In a well-
balanced system, the performance (i.e. the maximum input data rate) of regular
expression verification stage must fit the output data rate of the Bloom filtering
stage.

5 The Parallel Architecture of Custom Processor

A custom processor for the Bloom filtering was created in the reconfigurable
hardware. Basically, it is implemented as a dual port synchronous RAM memory.
Patterns are directly set to the memory’s address bus. The size of the bus fits

552 P. Russek and K. Wiatr

the bit-width of patterns. To achieve the highest throughput, the execution of
the incoming data is performed both in a parallel and pipelined manner. The
input buffer is matched with a single byte resolution. To fit these requirements
with the 32-bit architecture of the host system, the Bloom processor consist of 4
parallel block modules. The modules inspect the input data with a different byte
offset (range from 0 to 3). This concept is presented in Fig. 4. The architecture
can process 32-bits of data at each clock cycle. The throughput is 4× fclk bytes
per second. The processor can return a single 32-bit word at each cycle. The
returned word is a 32-bit value that contains a position of a matching pattern in
the input data buffer. As a match can occur in all Bloom blocks simultaneously,
it is necessary to include fifos to buffer the output data. The input values are

Fig. 3. Principles of the algorithm operation.

Fig. 4. Parallel and pipeline Bloom filter implementation.

The Regular Expression Matching Algorithm 553

processed in a pipeline. The FPGA’s memory consumes one clock cycle to read
the data and one clock cycle is necessary to write the data to the fifos. The
architecture is programmed with the Bloom filter values during the run-time.
Despite the normal operating mode, the matching also implements a teaching
mode. In this mode the input data patterns are written to the internal memory.

6 Implementation Results

The presented algorithm was tested on the Zedboard development board [18].
It is built on Xilinx’s XC7Z020 System on a Chip that is from the family of the
Zynq-7000 All Programmable SoC. The SoC combines the ARM’s sub-system
and the FPGA sub-system in a single integrated circuit. The ARM sub-system is
a dual core Cortex-A9 Processing System (PS). The FPGA sub-system consisting
of 85,000 logic cells is the Xilinx’s series-7 Programmable Logic (PL) structure.
Additionally PL contains 140 blocks of 36-kbit Block RAM (BRAM) memory.
Zedboard offers 512 MB of 533 MHz DDR3 memory, which is organized as a 32-
bit operating memory. An operating frequency of ARM processor is 800 MHz. All
performance tests were performed on the Zedboard under control of the Linux
operating system. Linux used Busybox filesystem that was implemented on a
ramdisk. The size of BRAM memory that is offered by Zedboard’s XC7Z020 is
5.4 Mbit. This allowed us to implement the Bloom filter to p = 20. As XC7Z020
is one of the smallest chips in the Zynq-7000 family, additionally, the simulation
results of the Bloom filter implemented on XC7Z045 are given in Table 2. The
size of the XC7Z045’s PL structure allowed us to fit the Bloom filter to p = 22.
The clock frequency for both FPGA implementations was 100 MHz. For the
32-bit input interface, the peak data throughput of the designs is 400 MB/s.

Table 1. The performance of the CPU and the FPGA for the algorithm’s procedures

Processor parameters Algorithm rate
Bloom filtering Reg. Ex. Matching
MB/s patterns/s

Intel Xeon E5645 113 1,582,000
2.4 GHz CPU
12 MB cache
Single core ARM Cortex A-9 70 365,000
800 MHz CPU
512 kB cache
Dual core ARM Cortex A-9 140 730,000
800 MHz 2 × CPU
512 kB cache
Zynq (PL) 400 -
100 MHz FPGA

554 P. Russek and K. Wiatr

Table 2. The FPGA Bloom filter implementation results

ZYNQ Bloom filter Total Used Rout (for Rin=320 MB/s)

xc7z020 p = 20 53,200 LUTs 1,580 LUTs (2 %) 0.30 M hits/s (n = 1, 000)
106,400 FFs 960 FFs(1 %) 0.61 M hits/s (n = 2, 000)
140 BRAMs 130 BRAMs (92 %) 0.91 M hits/s (n = 3, 000)

xc7z045 p = 22 218,600 LUTs 1,993 LUTs (1 %) 0.30 M hits/s (n = 4, 000)
437,200 FFs 966 FFs (1 %) 0.61Mhits/s (n = 8,000)
545 BRAMs 514 BRAMs (94 %) 0.91 M hits/s (n = 12, 000)

For reference, the software version of the Bloom filter was implemented as
well. The use of a processor’s cache was assumed for the Bloom memory. The
results of the software performance for p = 22 is given in Table 1.

To evaluate the performance of the regular expressions verification procedure,
virus bodies from the ClamAV malware database were used. The characteristic
static sub-patterns for the ClamAV’s viruses were found using an exhaustive
search algorithm. The goal was to find the unique sub-patterns for each virus
definition. However, that requirement was not met and some of the viruses shared
common sub-patterns. It did not obstruct our algorithm to operate properly.

The performance of the regular expression verification procedure was mea-
sured for the ARM and Intel CPUs. For this measure, a hash index of size
h = 14 was established. The average rate of a number of patterns verified in a
second is given in Table 1. For the verification procedure, the locations of static
sub-patterns in the inspected data buffer is already known from the Bloom fil-
ter procedure. A method to obtain the average rate was to measure verification
time of input data that contained all viruses’ bodies that were concatenated. The
measured time was divided by the number of viruses to calculate the average rate
of patterns per second. It should be noted that the given rates in Table 1 are pes-
simistic, the worst-case values. They were measured when all verifications were
positive. In practice, only a small fraction of verification would be positive. The
algorithm of the verification procedure performs a negative verification faster
because the procedure terminates immediately when the first wildcards’ match
fails.

Table 2 gives an expected output match rate Rout of the Bloom filter for
h = 20 and h = 22. According to Eq. 3, the value Rout is given for the differ-
ent numbers of patterns n. The calculations in Table 2 were done for the value
Rin = 320MB/s, as the data to the Bloom filter must be transfered from the
operation memory. The data in Table 2 shows that for the XC7Z045 a number of
implemented patterns could be 8,000. That value fits the pessimistic (for positive
verifications only) Dual Core ARM CPUs performance. The respective value for
the XC7Z020 is 2,000 patterns.

We used the Xilinx Power Estimator (XPE) spreadsheet tool [19] to calculate
the power consumption of the SoC system. The energy consumption results of
the design were as follows:

The Regular Expression Matching Algorithm 555

– single CPU (800 MHz) power consumption: 1.0 W
– dual CPU (800 MHz) power consumption: 1.5 W
– FPGA (100 MHz) power consumption: 1.3 W
– Total power consumption (2×CPU+FPGA): ∼2.8 W

7 Conclusions and Further Work

The Bloom filter performance of an FPGA custom co-processor outperforms the
CPUs’ performance for a similar algorithm. The achieved speed-up is six when
compared to a single ARM core. The real advantage of the presented solution is
that the FPGA custom processor and the CPUs work in parallel so the FPGA
does not replace the CPU, but adds additional performance to the system. The
energy consumption is probably the most notable measure of the design.

Compared to the solution of Chang et al. [14], our design offers a dest
2.56 Gbps of throughput (7.27 Gbps in [14]). The performance is lower, but the
competitive FPGA solutions offer implementation of fewer regular expressions
(e.g. 24,214 characters of regular expressions in [13]) Our solution offers a sup-
port for 2,000 (8,000 for XC7Z045) of complete regular expressions. Also, the
method described in [13] could be adopted to our design. Thanks to the com-
mon sub-patterns sharing a number of patterns implemented in the Bloom filter
could be reduced. The spared logic could be used to gain additional parallelism
that would increase the throughput. On the other hand, the internal system
throughput should fit the IO devices capabilities and the value of 2.56 Gbps
seems to be a reasonable value when compared to the performance of TCP/IP
stack implementations for Ethernet standard.

Further work will be focused on the scaling of the presented single-node solu-
tion to a multi-node system. Obviously, a single ARM processor is not capable of
handling the size of today’s virus database (e.g. over 100,000 body based virus
signatures in ClamAV). The presented algorithm can be scaled up using the
MPI (Message Passing Interface) programming model for distributed memory
systems.

Acknowledgment. This work was supported by: the National Science Centre (NCN)
under Grant No. 18.18.120.146 and the National Centre for Research and Development
(NCBiR) under Grant No. SP/I/1/77065/10.

References

1. ClamAV: Clam antivirus signature database. http://www.clamav.net. Accessed 1
Feb 2013

2. Jamro, E., Russek, P., Dabrowska-Boruch, A., Wielgosz, M., Wiatr, K.: The imple-
mentation of the customized, parallel architecture for a fast word-match program.
Comput. Syst. Sci. Eng. 26(4), 285–292 (2011)

3. Russek, P., Wiatr, K.: The enhancement of a computer system for sorting capabil-
ities using FPGA custom architecture. Comput. Inform. 32(4), 859–876 (2013)

556 P. Russek and K. Wiatr

4. Xilinx.: Zynq-7000 AP SoC Overview. http://www.xilinx.com. Accessed 1 Feb 2013
5. Yu, F., Chen, Z., Diao, Y., Lakshman, T.V., Katz, R.H.: Fast and memory-efficient

regular expression matching for deep packet inspection. In: ACM/IEEE Sympo-
sium on Architecture for Networking and Communications Systems, ANCS 2006,
pp. 93–102 (2006)

6. Pasetto, D., Petrini, F., Agarwal, V.: Tools for very fast regular expression match-
ing. IEEE Comput. 43(3), 50–58 (2010)

7. Scarpazza, D.P., Russell, G.F.: High-performance regular expression scanning on
the Cell/B.E. processor. In: 23rd International Conference on Supercomputing
(ICS09) (2009)

8. Iorio, F., Lunteren, J.V.: Fast pattern matching on the cell broadband engine.
In: 2008 Workshop on Cell Systems and Applications (WCSA), Affiliated with
the 2008 International Symposium on Computer Architecture (ISCA08), Beijing,
China, June 2008

9. Cascarano, N., Rolando, P., Risso, F., Sisto, R.: iNFAnt: NFA pattern matching
on GPGPU devices. SIGCOMM Comput. Commun. Rev. 40(5), 20–26 (2010)

10. Naghmouchi, J., Scarpazza, D.P., Berekovic, M.: Small-ruleset regular expression-
matching on GPGPUs: quantitative performance analysis and optimization. In:
24th International Conference on Supercomputing (ICS’10), pp. 337–348 (2010)

11. Sidhu, R., Prasanna, V.K.: Fast regular expression matching using FPGAs. In:
IEEE Symposium on Field-Programmable Custom Computing Machines (2001)

12. Sourdis, I., Bispo, J.A., Cardoso, J.A.M., Vassiliadis, S.: Regular expression match-
ing in reconfigurable hardware. J. Signal Process. Syst. 51(1), 99–121 (2008)

13. Lin, C.-H., Huang, C.-T., Jiang, C.-P., Chang, S.-C.: Optimization of regular
expression pattern matching circuits on FPGA. In: Proceedings of the Conference
on Design, Automation and Test in Europe. Designers Forum, DATE06, European
Design and Automation Association, Leuven, Belgium, pp. 12–17 (2006)

14. Chang, Y.-K., Chang, C.-R., Su, C.-C.: The cost effective pre-processing based
nfa pattern matching architecture for nids. In: Proceedings of the 2010 24th IEEE
International Conference on Advanced Information Networking and Applications,
AINA 10, IEEE Computer Society, Washington, DC, USA, pp. 385–391 (2010)

15. Serrano, B.: String alignment pre-detection using unique subsequences for FPGA-
based network intrusion detection. Comput. Commun. 35(6), 720–728 (2012)

16. Dharmapurikar, S., Krishnamurthy, P., Sproull, T.S., Lockwood, J.W.: Deep packet
inspection using parallel bloom filters. IEEE Micro 24(1), 52–61 (2004)

17. Lockwood, J.W., Moscola, J., Kulig, M., Reddick, D., Brooks, T.: Internet worm
and virus protection in dynamically reconfigurable hardware. In: Military and
Aerospace Programmable Logic Device (MAPLD), p. 10 (2003)

18. Zedboard: ZedBoard Hardware User’s Guide. http://www.zedboard.org. Accessed
1 Feb 2013

19. Xilinx: Xilinx Power Estimator. http://www.xilinx.com/power. Accessed 1 Feb
2013

Workshop on Numerical Algorithms
on Hybrid Architectures

Performance Evaluation of Sparse Matrix
Multiplication Kernels on Intel Xeon Phi

Erik Saule1(B), Kamer Kaya1, and Ümit V. Çatalyürek1,2

1 Department of Biomedical Informatics, The Ohio State University, Columbus, USA
2 Department of Electrical and Computer Engineering, The Ohio State University,

Columbus, USA
esaule@uncc.edu, {kamer,umit}@bmi.osu.edu

Abstract. Intel Xeon Phi is a recently released high-performance
coprocessor which features 61 cores each supporting 4 hardware threads
with 512-bit wide SIMD registers achieving a peak theoretical perfor-
mance of 1Tflop/s in double precision. Its design differs from classical
modern processors; it comes with a large number of cores, the 4-way
hyperthreading capability allows many applications to saturate the mas-
sive memory bandwidth, and its large SIMD capabilities allow to reach
high computation throughput. The core of many scientific applications
involves the multiplication of a large, sparse matrix with a single or mul-
tiple dense vectors which are not compute-bound but memory-bound. In
this paper, we investigate the performance of the Xeon Phi coprocessor
for these sparse linear algebra kernels. We highlight the important hard-
ware details and show that Xeon Phi’s sparse kernel performance is very
promising and even better than that of cutting-edge CPUs and GPUs.

Keywords: Intel Xeon Phi · SpMV · SpMM

1 Introduction

Given a large, sparse, m × n matrix A, an input vector x, and a cutting edge
shared-memory manycore architecture Intel Xeon R© Phi, we are interested in
analyzing the performance of computing y← Ax in parallel. The computation,
known as the sparse-matrix vector multiplication (SpMV), and with some vari-
ants, such as the sparse-matrix matrix multiplication (SpMM), they form the
computational core of many applications involving linear systems, eigenvalues,
and linear programs, i.e., most large scale scientific applications. For this rea-
son, they have been extremely intriguing in the context of high performance
computing (HPC). Efficient shared-memory parallelization of these kernels is

This work was partially supported by the NSF grants CNS-0643969, OCI-0904809
and OCI-0904802. We would like to thank NVIDIA for the K20 cards, Intel for
the Xeon Phi prototype, and the Ohio Supercomputing Center for access to Intel
hardware.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 559–570, 2014.
DOI: 10.1007/978-3-642-55224-3 52, c© Springer-Verlag Berlin Heidelberg 2014

560 E. Saule et al.

well studied [1–3,9,19], and there exist several techniques such as prefetching,
loop transformations, vectorization, register, cache, TLB blocking, and NUMA
optimization, which have been extensively investigated to optimize the perfor-
mance [7,11,12,19]. In addition, company-built support is available for many
shared-memory architectures, such as Intel’s MKL and NVIDIA’s cuSPARSE.
Popular 3rd party libraries such as OSKI [18] and pOSKI [8] also exist.

Intel Xeon Phi is a new coprocessor with many cores, hardware thread-
ing capabilities, and wide vector registers. Although Intel Xeon Phi has been
released recently, performance evaluations already exist in literature [6,15,17].
Eisenlohr et al. investigated the behavior of dense linear algebra factorization on
Xeon Phi [6] and Stock et al. proposed an automatic code optimization approach
for tensor contraction kernels [17]. For sparse, irregular data, we evaluated the
scalability of graph algorithms, coloring and breadth first search (BFS) [15].

Although similar to BFS, SpMV and SpMM are different kernels, in terms of
synchronization, memory access, and load balancing. The irregularity and spar-
sity of SpMV-like kernels create several problems for accelerators. In this paper,
we analyze how Xeon Phi performs on SpMV and SpMM. Reference [4] studied
the performance of a Conjugate Gradient application which uses SpMV, however
this study concerns only a single matrix and is application oriented.

Having 61 cores and hyperthreading capability can help the Intel Xeon Phi
to saturate the memory bandwidth during SpMV, which is not the case for many
cutting edge processors. Yet, our analysis showed that the memory latency, not
the memory bandwidth, is the bottleneck and the reason for not reaching to the
peak performance. We observed that the performance of the SpMV kernel highly
depends on the nonzero pattern of the matrix and its sparsity: when the nonze-
ros in a row are aligned and packed in cachelines in the memory, the memory
accesses are much faster. We investigate two existing approaches for densify-
ing the computation (namely the reverse Cuthill-McKee ordering RCM [5] and
dense register blocking). This paper presents concise results and a more detailed
version of our work can is available as a technical report [16].

Section 2 presents a brief architectural overview of the Intel Xeon Phi
coprocessor. Section 3 describes the sparse-matrix multiplication kernels. In
Sects. 4 and 5, we conduct analyze Xeon Phi’s performance on these kernels using
22 matrices from UFL Sparse Matrix Collection1. Section 6 shows that Xeon
Phi’s sparse matrix performance is better than that of four modern architectures:
two dual Intel Xeon processors, X5680 (Westmere) E5-2670 (Sandy Bridge), and
two NVIDIA Tesla R© GPUs C2050 and K20. Section 7 concludes the paper.

2 The Intel Xeon Phi Coprocessor

In this work, we use a pre-release KNC card SE10P. There are 61 cores clocked
at 1.05 GHz. Each core in the architecture has a 32 kB L1 data cache, a 32 kB L1
instruction cache, and a 512 kB L2 cache. The architecture of a core is based on
1 http://www.cise.ufl.edu/research/sparse/matrices/

Performance Evaluation of Sparse Matrix Multiplication Kernels 561

the Pentium architecture: though its design has been updated to 64-bit. A core
can hold 4 hardware contexts at any time. A core never executes two instructions
from the same hardware context consecutively: in other words, if a program only
uses one thread, half of the clock cycles are wasted.

Most of the performance of the architecture comes from the vector process-
ing unit (VPU). Each core has 32×512-bit SIMD registers which can be used
as a vector of 8×64-bit or 16×32-bit values. The VPU can perform many basic
instructions, such as addition or division, and mathematical operations, such as
sine and sqrt, allowing to reach 8 double precision operations per cycle (16 sin-
gle precision). The VPU can also perform both an addition and a multiplication
simultaneously using a Fused Multiply-Add (FMA) instruction. Therefore, the
peak performance of the SE10P card is 1.0248 Tflop/s in double precision (2.0496
Tflop/s in single precision) and half without FMA.

The card has 8 memory controllers; each can execute 5.5 billion transac-
tions/second and has two 32-bit channels. Hence, the controllers can achieve an
aggregated total bandwidth of 352 GB/s. The cores’ memory interface are 32-bit
wide with two channels and the total bandwidth is 8.4 GB/s per core. Thus, the
cores can consume 512.4 GB/s at most. However, the bandwidth between the
cores and the memory controllers is limited by the ring network which and can
theoretically transport at most 220 GB/s. There is a total of 8 GB of memory.

To better understand the performance of Intel Xeon Phi, we designed two
simple benchmarks on read and write bandwidth. In both cases, each thread
reads or writes large arrays into the memory multiple times. The read-bandwidth
benchmark shows four configurations. The first two read the array one byte at a
time or four bytes at a time; they are instruction bound and reach respectively
12 GB/s and 60 GB/s. The third benchmark (vect) uses SIMD instructions to
process 64 bytes at a time; it reaches 171 GB/s. The last one (vect+pref) adds
prefetching instructions and obtains 177 GB/s. Results are presented in Fig. 1(a).

Figure 1(b) shows a similar benchmark for write operations. All three tested
configurations use vectorized write instructions to overcome the instruction
bound. The first benchmark uses a simple store operation and reaches 65 GB/s.
The second configuration disables the Read For Ownership protocol (which forces

Fig. 1. Benchmarking read and write bandwidth with various instructions. The ring
bus theoretical maximal bandwidth is shown.

562 E. Saule et al.

the processor to bring a cacheline into the cache before being able to write it) by
using a No-Read hint (NR) and improves the write bandwidth to 99 GB/s. The
last configuration allows the write operations to be committed to the memory in
an arbitrary order using the Non Globaly Ordered write instructions (NRNGO);
it yields 155 GB/s.

More detailed experiments can be found in our report [16] which shows that
when using vect+pref and store-NRNGO, the bandwidth scales sublinearly with
the number of cores, indicating a contention on the memory subsystem.

3 Sparse Multiplication Kernels

SpMV is in the form y← Ax where A is an m× n sparse matrix, and x and y
are n×1 and m×1 column vectors. In this kernel, each nonzero is accessed, mul-
tiplied with an x-vector entry, and the result is added to a y-vector entry once.
That is, there are two reads and one read-and-write per each nonzero accessed.
Different from SpMV, in SpMM, x and y are n × k and m × k dense matri-
ces. Hence, there are k reads and k read-and-writes per each nonzero accessed.
Obtaining a good performance for SpMV is difficult on almost any architecture
due to the sparsity pattern of A which yields a non-regular access to the mem-
ory. The amount of computation per nonzero is also very small. And most of the
operations suffer from bandwidth limitation.

An m×n sparse matrix A with τ nonzeros is usually stored in the compressed
row storage format CRS which uses three arrays:

– cids[.] is an integer array of size τ that stores the column ids for each nonzero
in row-major ordering.

– rptrs[.] is an integer array of size m+ 1. For 0 ≤ i < m, rptrs[i] is the location
of the first nonzero of the ith row in the cids array. The first element is rptrs[0]
= 0, and the last element is rptrs[m] = τ . Hence, all the column indices of
row i are stored between cids[rptrs[i]] and cids[rptrs[i+ 1]]− 1.

– val[.] is an array of size τ . val[i] is the value of the ith nonzero.

There exist other sparse matrix representations [14], and the best storage
format almost always depends on the pattern of the matrix and the kernel. In
this work, we use CRS as it constitutes a solid baseline. Since A is represented
in CRS, it is straightforward to assign a row to a single thread in a parallel
execution. Each entry yi of the output vector can be computed independently
while streaming the matrix row by row. While processing a row i, multiple x
values are read, and the sum of the multiplications is written to yi. Hence, there
are one multiply and one add operation per nonzero, and the total number of
floating point operations is 2τ .

4 SpMV on Intel Xeon Phi

For the experiments, we use a set of 22 matrices given in Table 1. The matrices
are taken from the UFL Sparse Matrix Collection with one exception mesh 2048

Performance Evaluation of Sparse Matrix Multiplication Kernels 563

Table 1. Properties of the matrices used in the experiments. All matrices are square.

name #row #nonzero

1 shallow water1 81,920 204,800
2 2cubes sphere 101,492 874,378
3 scircuit 170,998 958,936
4 mac econ 206,500 1,273,389
5 cop20k A 121,192 1,362,087
6 cant 62,451 2,034,917
7 pdb1HYS 36,417 2,190,591
8 webbase-1M 1,000,005 3,105,536
9 hood 220,542 5,057,982
10 bmw3 2 227,362 5,757,996
11 pre2 659,033 5,834,044

name #row #nonzero

12 pwtk 217,918 5,871,175
13 crankseg 2 63,838 7,106,348
14 torso1 116,158 8,516,500
15 atmosmodd 1,270,432 8,814,880
16 msdoor 415,863 9,794,513
17 F1 343,791 13,590,452
18 nd24k 72,000 14,393,817
19 inline 1 503,712 18,659,941
20 mesh 2048 4,194,304 20,963,328
21 ldoor 952,203 21,723,010
22 cage14 1,505,785 27,130,349

which corresponds to a 5-point stencil 2048×2048 mesh in 2D. We used the CRS
representation, store all the scalar values in double precision, and all the indices
via 32-bit integers. In the rest of the paper, the matrices are ordered from 1 to 22
by increasing number of nonzero entries. We repeated each operation 70 times
and compute the averages of the last 60 operations. Caches are flushed between
each measurement.

4.1 Performance Evaluation

The SpMV kernel is implemented in C++ using OpenMP and processes the rows
in parallel. We tested our dataset with multiple scheduling policies when com-
piled with icc 13.0 in -O1 and -O3 (see [16] for more details). When compiled
with -O1, the performance obtained varies from 1 to 13GFlop/s. When compiled
with -O3 the performance rises for all matrices and reaches 22GFlop/s on nd24k.
In total, 5 matrices from our set achieve a performance over 15GFlop/s.

An interesting observation is that the difference on the performance is not
constant; it depends on the matrix and not correlated to its size. Analyzing the
compiled assembly code for the SpMV inner loop (which computes the dot prod-
uct between a sparse matrix row and the dense input vector) gives an insight
on why the performances differ. When -O1 is used, the dot product is imple-
mented in a simple way, one element at a time, with 3 memory indirections, one
increment, one addition, one multiplication, one test, and one jump per nonzero.

The code generated in -O3 is much more complex. It uses vectorial opera-
tions so as to make 8 operations at once. The compiled code loads 8 consecutive
values of the sparse row in a 512-bit SIMD register in a single operation. Then
it populates another SIMD register with the values of the input vector. Once
populated, the two vectors are multiplied and accumulated with previous results
in a single FMA. Populating the SIMD register with the appropriate values from
x is non trivial since these values are not consecutive in memory. However, Xeon
Phi offers an instruction, vgatherd, that allows to fetch multiple values at once.
The instruction takes an offset vector, a pointer to the beginning of the array,
and a destination register. In general, vgatherd needs to be called as many times
as the number of cachelines the offset vector touches (indicated by a auxiliary

564 E. Saule et al.

Fig. 2. The improvement of -O3 (Comp. Vect.) is linked to cacheline density.

bit-mask), since it can only simultaneously fetch the elements that are on the
same cacheline. So overall, one FMA, two vector loads (one for the nonzero from
the matrix and one for the column positions), one increment, one test, and some
vgatherd are performed for each 8 nonzeros of the matrix.

Figure 2 shows the SpMV performance for each matrix with -O1 and -O3 as
a function of the useful cacheline density (UCLD), a metric we devised for the
analysis. For each row, we computed the ratio of the number of nonzeros on
that row to the number of elements in the cachelines of the input vector due to
that row. Then we took the average of these values to compute UCLD. For each
matrix, there are two points in Fig. 2, one for the performance in -O1 (marked
with ‘+’s) and one for the performance in -O3 (marked with ‘×’s). These points
are horizontally aligned for the same matrix, and their vertical distance repre-
sents the improvement on the performance for that matrix. The improvement
with vectorization, and in particular with vgatherd, is significantly much higher
when the UCLD is high.

4.2 Bandwidth Considerations

The nonzeros in the matrix need to be transferred to the core before being
processed. Assuming the access to the vectors do not incur any memory trans-
fer, and since each nonzero takes 12 bytes (8 for the value and 4 for the column
index) and incurs two floating point operations (multiplication and sum), the
flop-to-byte ratio of SpMV is 2

12 = 1
6 . We saw that the sustained memory band-

width is about 180 GB/s, which indicates a maximum performance for the SpMV
kernel of 30GFlop/s. This is not obtained by our previous experiments.

Assuming only 12 bytes per nonzero need to be transfered to the core gives
only a naive bandwidth for SpMV: both vectors and the row indices also need
to be transferred. For an n × n matrix with τ nonzeros, the actual minimum
amount of memory that need to be transferred in both ways is 2× n× 8 + (n+
1)× 4 + τ × (8 + 4) = 4 + 20× n+ 12× τ . Usually, 12τ dominates the equation,
but for sparser matrices, 20n should not be ignored. The application bandwidth,

Performance Evaluation of Sparse Matrix Multiplication Kernels 565

Fig. 3. The achieved bandwidth for SpMV (left) and SpMM (right).

which takes both terms into account, is a common alternative cross-architecture
measure of performance on SpMV.

Figure 3 (left) shows that the naive approach which ignores a significant por-
tion of the data for some matrices. The application bandwidth obtained ranges
from 22 GB/s to 132 GB/s. Most matrices have a bandwidth below 100 GB/s.

The application bandwidth is computed assuming that every single byte of
the problem is transferred exactly once. This assumption is (mostly) true for the
matrix and the output vector. However, it does not hold for the input vector for
two reasons: first, it is unlikely that each vector element will be used by only
a single core’s threads, some element will be transferred to multiple cores. Fur-
thermore, a core’s cache is only 512 kB, and elements of the input vector may be
transfered multiple times to the same core. We analytically computed the number
of cachelines accessed by each core assuming that chunks of 64 rows are distrib-
uted in a round-robin fashion. We performed the analysis assuming an infinite
cache and with a 512 kB cache. We computed the effective memory bandwidth of
SpMV and display them as the top two stacks of the bars in Fig. 3 (left). Three
observations are striking: first, the difference between the application band-
width and estimated actual bandwidth is greater than 10 GB/s on 10 instances
and more than 20GB/s on three of them. The highest difference is seen on
2cubes sphere (#2) where the amount of data transferred is 1.7 times larger than
the application bandwidth. Second, there is no significant difference between the
assumed infinite cache and 512 kB cache bandwidth. That is, no cache thrashing
occurs. Finally, even when we take the actual memory transfers into account,
the obtained bandwidth is still way below the architecture peak bandwidth.

4.3 Effect of Matrix Ordering

A widely-used approach to improve SpMV performance is ordering the rows and
columns to make the matrix more suitable for the kernel. Such permutations are
used in sparse linear algebra for multiple purposes such as improving numer-
ical stability and preconditioning. Here, we employ the reverse Cuthill-McKee
algorithm (RCM) [5]. RCM has been widely used for minimizing the maximum
distance between the nonzeros and the diagonal of the matrix, i.e., the bandwidth

566 E. Saule et al.

of the matrix. We expect that such a densification of the nonzeros can improve
both the UCLD of the matrix and reduce the number of times the vector needed
to be transfered from the main memory to the core caches.

RCM improves the performance of only 4 matrices by more than 2GFlop/s
and most of the matrices benefit less. The performance of 8 matrices degrade.
Hence, RCM ordering was not able to significantly improve SpMV on Intel Xeon
Phi (see [16] for more details).

4.4 Effect of Register Blocking

One limitation in the original SpMV implementation is that only a single nonzero
is processed at a time. Register blocking helps us to process all the nonzeros
within a region at once. The region should be small enough that the data associ-
ated with it can be stored in the registers so as to minimize memory accesses [7].
Assuming a regular partitioning A to blocks of size a× b, we use a dense block
representation for the blocks containing at least one nonzero. We represent this
list of non-empty blocks via CRS. One dimension of the blocks is set to 8 to
leverage the Xeon Phi architecture which naturally align on 512 bits, the other
dimension varies from 1 to 8. To perform the multiplication, each dense block
is loaded into the registers in packs of 8 values allowing to use Fused Multiply-
Add operations. Register blocking typically helps the performances by reducing
three quantities: (1) the matrix size in memory, (2) the number of instructions
to perform the multiplications, (3) the number of load instructions to the vector.

Overall, we could not observe a constant improvement for register blocking on
Xeon Phi. The best scheme with 8× 1 blocks improved the performance on only
8 instances compared to the original implementation (detailed results in [16]).
Register blocking allows to reach a much higher utilization of the hardware (the
effective memory bandwidth is over 160GB/s) but this does not compensate the
large increase in matrix sizes. Indeed, the matrices we used have a low locality
leading to a sharp increase in the size of the matrix when encoded using dense
tiles. There is almost no reduction of the load instruction of the vector since the
vgatherd instruction already reads the input vector per batch.

5 SpMM on Intel Xeon Phi

One idea to obtain more performance is to increase the flop-to-byte ratio by
performing more than one SpMV at a time. Many applications can take the
advantage of using multiple vectors at once, e.g., graph based recommendation
systems [10] or eigensolvers (by the use of the LOBPCG algorithm) [20]. Mul-
tiplying several vectors by the same matrix boils down to multiplying a sparse
matrix by a dense matrix, which we refer to as SpMM. All the statements above
are also valid for existing cutting-edge processors and accelerators. However, with
its large SIMD registers, Xeon Phi is expected to perform significantly better.

To implement Y ← AX, we encode the dense m × k input matrix X in
row-major, so each row is contiguous in memory. To process a row Ai∗ of A,

Performance Evaluation of Sparse Matrix Multiplication Kernels 567

a temporary array of size k is first initialized to zero. Then for each nonzero
in Ai∗, a row Xj∗ is streamed to be multiplied by the nonzero and the result
is accumulated into the temporary array. We developed three variants of that
algorithm: the first variant is generic and relies on compiler vectorization. The
second is tuned for values of k which are multiple of 8 and uses FMA to per-
form the multiplications and additions of 8 at a time. The temporary values are
kept in registers by taking the advantage of the large number of SIMD registers
available on Xeon Phi. The third variant also uses Non-Globally Ordered write
instructions with No-Read hint (NRNGO).

We experimented with k = 16. Manual vectorization doubles the performance
allowing to reach more than 60GFlop/s in 11 instances. The use of NRNGO
write instructions provides significant performance improvements. The achieved
performance peaks on the matrix pwtk matrix at 128GFlop/s. Figure 3 (right)
shows the bandwidth achieved by the best implementation (complete results are
in [16]). The application bandwidth is computed assuming the matrix and vector
are transferred only once. It surpasses 60 GB/s in only 1 instance. Since there
are 16 input vectors, the overhead induced by transferring the values in X to
multiple cores is comparable to the application bandwidth. The impact of having
a finite cache is mostly negligable.

6 Against Other Architectures

We compare the performance of Xeon Phi with 4 other architectures including
2 GPU configurations and 2 CPU configurations. We used two CUDA-enabled
cards from NVIDIA: an NVIDIA Tesla C2050 (448 CUDA Cores @ 1.15 GHz,
2.6 GB memory @ 1.5 GHz, ECC on, CUDA 4.2) and an NVIDIA Tesla K20
(2,496 CUDA Cores @ 0.71 GHz, 4.8 GB memory @ 2.6 GHz, ECC on, CUDA
5.0). For both GPU configurations, we use the CuSparse library. We also use two
Intel CPU systems: the first has a dual Intel Xeon X5680 (Westmere: 6 cores @
3.33 Ghz, no hyperthreading, 12 MB shared L3 cache). The second has a dual
Intel Xeon E5-2670 (Sandy Bridge: 8 cores @ 2.6 GHz, hyperthreading enabled,
20 MB shared L3 cache). The codes for both CPU architectures are compiled
with the icc 13.0 with -O3 optimization flag. The implementation used is the
same as the one used on Xeon Phi except the vector optimizations in SpMM
where the instruction sets differ.

Results of the experiments are presented in Fig. 4. We present the config-
urations as stacked bar charts: K20 on top of C2050 and E5-2670 on top of
X5680. Figure 4 (left) shows the SpMV results: E5-2670 appears to be roughly
twice faster than X5680. It reaches a performance between 4.5 and 7.6GFlop/s
and achieves the highest performance for one instance. For GPU architectures,
K20 is faster than the C2050. It performs better for 18/22 instances. It obtains
between 4.9 and 13.2GFlop/s and the highest performance on 9 instances. Xeon
Phi reaches the highest performance on 12 instances and it is the only architec-
ture which obtains more than 15GFlop/s. Furthermore, it does it for 7 instances.

568 E. Saule et al.

Fig. 4. Architectural comparison between a Intel Xeon Phi coprocessor (Pre-release
SE10P), two NVIDIA GPUs (C2050 and K20) and two dual CPU architectures (Intel
Xeon X5680 and Intel Xeon E5-2670) for SpMV (left) and SpMM (right).

Figure 4 (right) shows the SpMM results: E5-2670 gets twice the performance
of X5680, which is similar to their relative SpMV performances. The K20 is often
more than twice faster than C2050, which is much better compared with their
relative performances in SpMV. The Xeon Phi coprocessor gets the best perfor-
mance in 14 instances. Intel Xeon Phi is the only architecture which achieves
more than 100GFlop/s. Furthermore, it reaches more than 60GFlop/s on 9
instances. The CPU configurations reach more than 60GFlop/s on 6 instances
while the GPU configurations never achieve that performance.

7 Conclusion and Future Work

In this work, we analyze the performance of Intel Xeon Phi coprocessor on
SpMV and SpMM. These sparse algebra kernels have been used in many impor-
tant applications. The analysis gives the first absolute performance results of
Xeon Phi. Overall, the performance we obtained is very promising. When com-
pared with cutting-edge processors and accelerators, its SpMV, and especially
SpMM, performance are superior thanks to its wide registers and vectorization
capabilities.

In particular, we showed that the sparse matrix kernels we investigated are
latency bound. Our experiments suggested that having a relatively small 512 kB
L2 cache per core is not a problem for Intel Xeon Phi. However, having 61 cores
induces a significant data transfer overhead due to accessing similar parts of x
and X from multiple cores, especially in SpMM. We linked the performance of
SpMV to the efficacy of the vgatherd instruction which allows efficient memory
loads. The classical techniques to improve the performance of SpMV appeared
to bring little improvements on Xeon Phi. As a future work, we are planning to
investigate matrix storage schemes, intra-core locality, and data partitioning to
improve the performance of Xeon Phi.

Performance Evaluation of Sparse Matrix Multiplication Kernels 569

References

1. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: Proceedings of the High Performance Com-
puting Networking, Storage and Analysis, SC ’09 (2009)

2. Buluç, A., Fineman, J.T., Frigo, M., Gilbert, J.R., Leiserson, C.E.: Parallel sparse
matrix-vector and matrix-transpose-vector multiplication using compressed sparse
blocks. In: Proceedings of the SPAA ’09, pp. 233–244 (2009)

3. Buluç, A., Williams, S., Oliker, L., Demmel, J.: Reduced-bandwidth multithreaded
algorithms for sparse matrix-vector multiplication. In: Proceedings of the IPDPS
(2011)

4. Cramer, T., Schmidl, D., Klemm, M., an Mey, D.: Openmp programming on intel
xeon phi coprocessors: an early performance comparison. In: Proceedings of the
Many-core Applications Research Community (MARC) Symposium at RWTH
Aachen University, November 2012

5. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In:
Proceedings of the ACM National Conference, pp. 157–172 (1969)

6. Eisenlor, J., Hudak, D.E., Tomko, K., Prince, T.C.: Dense linear algebra factor-
ization in OpenMP and Cilk Plus on Intel MIC: development experiences and per-
formance analysis. In: TACC-Intel Highly Parallel Computing Symposium (2012)

7. Im, E.-J., Yelick, K.A.: Optimizing sparse matrix computations for register reuse
in SPARSITY. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S.,
Tan, C.J.K. (eds.) ICCS 2001. LNCS, vol. 2073, pp. 127–136. Springer, Heidelberg
(2001)

8. Jain, A.: pOSKI: an extensible autotuning framework to perform optimized spmvs
on multicore architecture. Master’s thesis, UC Berkeley (2008)

9. Krotkiewski, M., Dabrowski, M.: Parallel symmetric sparse matrix-vector product
on scalar multi-core CPUs. Parallel Comput. 36(4), 181–198 (2010)

10. Küçüktunç, O., Kaya, K., Saule, E., Çatalyürek, Ü.V.: Fast recommendation on
bibliographic networks. In: Proceedings of the ASONAM’12, August 2012

11. Mellor-Crummey, J., Garvin, J.: Optimizing sparse matrix-vector product compu-
tations using unroll and jam. Int. J. High Perform. Comput. Appl. 18(2), 225–236
(2004)

12. Nishtala, R., Vuduc, R.W., Demmel, J.W., Yelick, K.A.: When cache blocking
of sparse matrix vector multiply works and why. Appl. Algebra Eng. Commun.
Comput. 18(3), 297–311 (2007)

13. Potluri, S., Tomko, K., Bureddy, D., Panda, D.K.: Intra-MIC MPI communication
using MVAPICH2: early experience. In: TACC-Intel Highly Parallel Computing
Symposium 2012 (2012)

14. Saad, Y.: Sparskit: a basic tool kit for sparse matrix computations - version 2
(1994)

15. Saule, E., Çatalyürek, Ü.V.: An early evaluation of the scalability of graph algo-
rithms on the Intel MIC architecture. In: IPDPS Workshop MTAAP (2012)

16. Saule, E., Kaya, K., Çatalyürek, Ü.V.: Performance evaluation of sparse matrix
multiplication kernels on intel xeon phi. Technical Report arXiv:1302.1078, ArXiv,
Feb. 2013

17. Stock, K., Pouchet, L.-N., Sadayappan, P.: Automatic transformations for effective
parallel execution on intel many integrated core. In: TACC-Intel Highly Parallel
Computing Symposium (2012)

570 E. Saule et al.

18. Vuduc, R., Demmel, J., Yelic, K.: OSKI: a library of automatically tuned sparse
matrix kernels. In: Proceedings of the SciDAC 2005, J. of Physics: Conference
Series (2005)

19. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimiza-
tion of sparse matrix-vector multiplication on emerging multicore platforms. In:
Proceedings of the SC ’07 (2007)

20. Zhou, Z., Saule, E., Aktulga, H.M., Yang, C., Ng, E.G., Maris, P., Vary, J.P.,
Çatalyürek, Ü.V.: An out-of-core eigensolver on SSD-equipped clusters. In: Pro-
ceedings of the IEEE Cluster, September 2012

Portable HPC Programming
on Intel Many-Integrated-Core Hardware

with MAGMA Port to Xeon Phi

Jack Dongarra1,2,3, Mark Gates1, Azzam Haidar1, Yulu Jia1, Khairul Kabir1,
Piotr Luszczek1(B), and Stanimire Tomov1

1 University of Tennessee Knoxville, Knoxville, USA
luszczek@eecs.utk.edu

2 Oak Ridge National Laboratory, Oak Ridge, USA
3 University of Manchester, Manchester, USA

Abstract. This paper presents the design and implementation of
several fundamental dense linear algebra (DLA) algorithms for multicore
with Intel Xeon Phi Coprocessors. In particular, we consider algorithms
for solving linear systems. Further, we give an overview of the MAGMA
MIC library, an open source, high performance library that incorporates
the developments presented, and in general provides to heterogeneous
architectures of multicore with coprocessors the DLA functionality of the
popular LAPACK library. The LAPACK-compliance simplifies the use
of the MAGMA MIC library in applications, while providing them with
portably performant DLA. High performance is obtained through use of
the high-performance BLAS, hardware-specific tuning, and a hybridiza-
tion methodology where we split the algorithm into computational tasks
of various granularities. Execution of those tasks is properly scheduled
over the heterogeneous hardware components by minimizing data move-
ments and mapping algorithmic requirements to the architectural
strengths of the various heterogeneous hardware components. Our
methodology and programming techniques are incorporated into the
MAGMA MIC API, which abstracts the application developer from the
specifics of the Xeon Phi architecture and is therefore applicable to algo-
rithms beyond the scope of DLA.

Keywords: Numerical linear algebra · Intel Xeon Phi processor · Many
Integrated Cores · Hardware accelerators and coprocessors · Dynamic
runtime scheduling using dataflow dependences · Communication and
computation overlap

1 Introduction and Background

Solving linear systems of equations and eigenvalue problems is fundamental to
scientific computing. The popular LAPACK library [3], and in particular its

The authors are listed in an alphabetical order.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 571–581, 2014.
DOI: 10.1007/978-3-642-55224-3 53, c© Springer-Verlag Berlin Heidelberg 2014

572 J. Dongarra et al.

vendor optimized implementations like Intel’s MKL [8] or AMD’s ACML [2], have
been the libraries of choice to provide these solvers for dense matrices on shared
memory systems. This paper considers a redesign of the LAPACK algorithms
and their implementation to add efficient support for heterogeneous systems of
multicore processors with Intel Xeon Phi coprocessors. This is not the first time
that DLA libraries have needed a redesign to be efficient on new architectures
– notable examples being the move from LINPACK [7] to LAPACK [3] in the
80’s to make algorithms cache friendly, ScaLAPACK [6] in the 90’s to support
distributed memory systems, and now the PLASMA and MAGMA libraries [1]
targeting efficiency on multicore and heterogeneous architectures, respectively.

The development of new high-performance numerical libraries is complex,
accounting for the extreme level of parallelism, heterogeneity, and wide variety
of accelerators and coprocessors available in current architectures. Challenges
vary from new algorithmic designs to choices of programming models, languages,
and frameworks that ease development, future maintenance, and portability.
This paper addresses these issues while presenting our approach and algorithmic
designs in the development of the MAGMA MIC [9] library.

To provide a uniform portability across a variety of coprocessors/accelerators,
we developed an API that abstract the application developer from the low level
specifics of the architecture. In particular, we use low level vendor libraries, like
SCIF for Intel Xeon Phi (see Sect. 3), to define API for memory management
and off-loading computations to coprocessors and/or accelerators.

To deal with the extreme level of parallelism and heterogeneity in current
architectures, MAGMA MIC uses a hybridization methodology, described in
Sect. 4, where we split the algorithms of interest into computational tasks of
various granularities, and properly schedule those tasks’ execution over the het-
erogeneous hardware. Thus, we use a Directed Acyclic Graph (DAG) approach
to parallelism and scheduling that has been developed and successfully used for
dense linear algebra libraries such as PLASMA and MAGMA [1], as well as
in general task-based approaches to parallelism, such as runtime systems like
StarPU [4] and SMPSs [5].

Besides the use of high-performance low-level libraries, addressed in Sect. 3,
obtaining high performance depends on a combination of algorithm and hardware-
specific optimizations, discussed in Sect. 4.3. The implication of this on software,
in order to maintain its performance portability across hardware, is the need to
build in it algorithmic variations that are tunable, e.g., at installation time. This
is the basis of autotuning, an example of these advanced optimization techniques.

A performance study is presented in Sect. 5. Besides verifying our approaches
and confirming the appeal of the Intel Xeon Phi coprocessors for high-performance
DLA, the results open up a number of future work opportunities discussed in our
conclusions.

2 Compiler Support for Offload

The primary mode of operation for the Xeon Phi coprocessor is the off-load
mode. The device receives work from the host processor and reports back upon

Intel MIC MAGMA on Xeon Phi 573

completion of the assignment without the host being involved in between these
two events. This is very similar to the operation of network off-load engines,
specifically, the TCP Off-load Engines (TOEs) that feature an optimized imple-
mentation of the TCP stack that handles the majority of the network traffic to
lessen the burden of the main processor, which handles other operating system
and user application tasks.

This way of using the Xeon Phi device has direct support from the compiler
in that it is possible to issue requests to the device and ascertain the completion
of tasks directly from the user’s C/C++ code. The support for this mode of
operation is offered by the Intel compiler through Phi-specific pragma directives:
offload, offload attribute, offload transfer, and offload wait.

3 Programming Model: Host-Device with a Server Based
on LLAPI

For many scientific applications, the offload model offered by the Intel compiler,
described in Sect. 2, is sufficient. This is not the case for a fully equivalent port of
MAGMA to the Xeon Phi because of the very rich functionality that MAGMA
inherits from both its CUDA and OpenCL ports. We had to use the LLAPI (Low-
Level API) based on Symmetric Communication InterFace (SCIF) that offers,
as the name suggests, a very low level interface to the host and device hardware.
The use of this API is discouraged for most workloads as it tends to be error-
prone and offers very little abstraction on top of the hardware interfaces. What
motivated us to use it for the port of our library was: (1) the asynchronous events
capability that allows low-latency messaging between the host and the device to
notify about completion of kernels on Xeon Phi; (2) the possibility of hiding the
cost of data transfer between the host and the device which requires the transfer
of submatrices to overlap with the computation. The direct access to the DMA
(Direct Memory Access) engine allowed us to maximize the bandwidth of data
transfers over the PCI Express bus. The only requirement was that the memory
regions for transfer be page-aligned and pinned to guarantee their fixed location
in the physical memory. Figure 1 shows the interaction between the host and
the server running on the Xeon Phi and responding to requests that are remote
invocations of numerical kernels on data that have already been transferred to
the device.

4 Hybridization Methodology and Optimization
Strategies

The hybridization methodology used in MAGMA [10] is an extension of the task-
based approach for parallelism and developing DLA on homogeneous multicore
systems [1]. In particular,

– The computation is split into BLAS-based tasks of various granularities, with
their data dependencies, as shown in Fig. 1b.

574 J. Dongarra et al.

PCIe

Host Intel Xeon Phi
Main () server ()

LLAPI

Fig. 1. (a) MAGMA MIC programming model with a LLAPI server mediating requests
between the host CPU and the Xeon Phi device. (b) DLA algorithm as a collection of
BLAS-based tasks and their dependencies. The algorithm’s critical path is, in general,
scheduled on the CPUs, and large data-parallel tasks on the Xeon Phi.

– Small, non-parallelizable tasks with significant control-flow are scheduled on
the CPUs.

– Large, parallelizable tasks are scheduled on Xeon Phi.

The difference with multicore algorithms is the task splitting, which here is of
various granularities to make different tasks suitable for particular architectures,
and the scheduling itself. Specific algorithms using this methodology, and cov-
ering the main classes of DLA, are described in the subsections below.

4.1 Design and Functionality

The MAGMA interface is similar to LAPACK. For example, compare LAPACK’s
LU factorization interface vs. MAGMA’s:

lapackf77 dgetrf(&M,&N, hA, &lda, ipiv, &info)

magma dgetrf mic(M, N, dA,0, ldda, ipiv, &info, queue)

Here hA is the typical CPU pointer (double *) to the matrix of interest in the
CPU memory and dA is a pointer in the Xeon Phi memory (magmaDouble ptr).
The last argument in every MAGMA call is an Xeon Phi queue, through which
the computation will be streamed on the Xeon Phi device (magma queue t).

To abstract the user from knowing low level directives, main functions, such
as BLAS, CPU-Phi data transfers, and memory allocations and deallocations,
are redefined in terms of MAGMA data types and functions. This design allows
us to more easily port the MAGMA library to other device such as the GPU
accelerator using either CUDA or OpenCL and eventually to merge them while
maintaining a single source. Also, the MAGMA wrappers provide a complete set
of functions for programming hybrid high-performance numerical libraries. Thus,
not only users but application developers as well can opt to use the MAGMA

Intel MIC MAGMA on Xeon Phi 575

wrappers. MAGMA provides the standard four floating point arithmetic preci-
sions – single real, double real, single complex, and double complex. There are
routines for the so called one-sided factorizations (LU, QR, and Cholesky), and
recently we are developing the two-sided factorizations (Hessenberg, bi-, and
tridiagonal reductions), linear system and least squares solvers, matrix inver-
sions, symmetric and nonsymmetric standard eigenvalue problems, SVD, and
orthogonal transformation routines.

4.2 LU, QR, and Cholesky Factorizations

The one-sided factorization routines implemented and currently available
through MAGMA are:

magma zgetrf mic computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges;

magma zgeqrf mic computes a QR factorization of a general M-by-N matrix A;
magma zpotrf mic computes the Cholesky factorization of a complex Hermitian

positive definite matrix A.

Routines in all standard four floating point precision arithmetics are avail-
able, following LAPACK’s naming convention. Namely, the first letter of the
routine name (after the prefix magma) indicates the precision – z, c, d, or s for
correspondingly double complex, single complex, double real, or single real. The
suffix mic indicates that the input matrix and the output are on the Xeon Phi
memory.

4.3 Hybrid Implementation and Optimization Techniques

In order to explain our hybrid methodology and the optimization that we devel-
oped, let us give a detailed analysis for the QR decomposition algorithm. While
the description below only addresses the QR factorization, it is straightforward
to derive with the same ideas the analysis for both the Cholesky and LU fac-
torizations. For that we start briefly by recalling the description of the QR
algorithm.

The QR factorization is a transformation that factorizes an m × n matrix
A into its factors Q and R where Q is a unitary matrix of size n × n and R
is a triangular matrix of size m ×m. The QR algorithm can be described as a
sequence of steps where, at each step, a QR of a panel is performed based on
accumulating a number of Householder transformations in what is called a “panel
factorization” which are, then, applied all at once by means of high performance
Level 3 BLAS operations in what is called the “trailing matrix update”. Despite
that this approach can exploit the parallelism of the Level 3 BLAS during the
trailing matrix update, it has a number of limitations when implemented on
massively multithreaded system such as the Intel Xeon Phi coprocessor due to

576 J. Dongarra et al.

the nature of its operations. On the one hand, the panel factorization relies
on Level 2 BLAS operations that cannot be efficiently parallelized on either
Xeon Phi or any accelerator such as GPU-based architectures, and thus it can
be considered to be close to sequential operations that limit the scalability of
the algorithm. On the other hand, this algorithm is referred as the fork-join
approach since the execution flow will show a sequence of sequential operations
(panel factorizations) interleaved with parallel ones (trailing matrix updates). In
order to take advantage of the high execution rate of the massively multithreaded
system, in particular, the Phi coprocessor we redesigned the standard algorithm
in a way to perform the Level 3 BLAS operations (Trailing matrix update) on the
Xeon Phi while performing the Level 2 BLAS operations (panel factorization)
on the CPU. We also proposed an algorithmic change to remove the fork join
bottleneck and to minimize the overhead of the panel factorization by hiding its
costs behind the parallel trailing matrix update. This approach can be described
as the “scalable lookahead techniques”. Our idea is to split of the trailing matrix
update into two phases, the update of the lookahead panel (panel of step i+1, i.e.,
dark blue portion of Fig. 2) and the update of the remaining trailing submatrix
(clear blue portion of Fig. 2). Thus, during the submatrix update the CPU can
receive asynchronously the panel i+1 and performs its factorization. As a result,
our MAGMA implementation of the QR factorization can be described by a
sequence of the three phases described below. Consider a matrix A that can be
represented as:

A =

⎛

⎝
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞

⎠ , (1)

– Phase 1, the panel factorization: at a step i, this phase consists of a
QR transformation of the panel Ai:n,i as in Eq. 2. This operation consists of
calling two routines. The DGEQR2 that factorizes the panel and produces nb
Householder reflectors (V∗i) and an upper triangular matrix Rii of size nb×nb,
which is a portion of the final R factor, and the DLARFT that generates the
triangular matrix Tii of size nb×nb used for the trailing matrix update. This
phase is performed on the CPU.

⎛

⎝
A11

A21

A31

⎞

⎠ =⇒
⎛

⎝
V11

V21

V31

⎞

⎠ , (R1,1) , (T1,1) . (2)

– Phase 2, the look ahead panel update: the transformation that was
computed in the panel factorization needs to be applied to the rest of the
matrix (trailing matrix, i.e., the blue portion of Fig. 2). This phase consists
into updating only the next panel (dark blue portion of Fig. 2) in order to
let the CPU start its factorization as soon as possible while the update of
the remaining portion of the matrix is performed in phase 3. The idea is to
hide the cost of the panel factorization. This operation presented in Eq. 3, is

Intel MIC MAGMA on Xeon Phi 577

performed on the Phi coprocessor and involves the DLARFB routine which
has been redesigned as a sequence of DGEMM’s to better take advantage of
the Level 3 BLAS operations.

⎛

⎝
R12

Ã22

Ã32

⎞

⎠ =
(
I − V∗iT

T
ii V T

∗i

)
⎛

⎝
A12

A22

A32

⎞

⎠ . (3)

– Phase 3, the trailing matrix update: Similarly to phase 2, this phase
consists into applying the Householder reflectors generated during the panel
factorization of step i according to Eq. 3, but to the remaining portion of
the matrix (the trailing submatrix i.e., the clear blue portion of Fig. 2). This
operations is also performed on the Phi coprocessor, while in parallel to it,
the CPU performs the factorization of the panel i+1 that has been computed
in Phase 2.

This hybrid technique of distribution of tasks between CPU-Phi allows us
to hide the memory bound operations occurred during the panel factorization
(Phase 1) by performing such operation on the CPU in parallel with the trailing
submatrix update (Phase 3) on the Phi coprocessor. However, one of the key
parameters to performance tuning is the blocking size as the performance and
the overlap between the CPU-Phi will be solely guided by it. Figure 2b illustrates
the effect of the blocking factor on the performance. It is obvious that, a small
nb will reduce the cost of the panel factorization phase 1, but it decreases the
efficiency of the Level 3 BLAS kernel of phase 2 and phase 3 and thus resulting
a bad performance. As opposed, a large nb will dramatically affect the panel
factorization phase 1 which becomes slow and thus the CPU/Phi computation
cannot be overlapped, providing a deterioration in the performance as shown in
Fig. 2b. As a consequence, the challenging problem is the following: on the one
hand, the blocking size nb needs to be large enough to extract high performance
from the Level 3 BLAS phase 3 and on the other hand, it has to be small enough
to extract efficiency (thanks to the cache speed up) from the Level 2 BLAS
phase 1 and overlap CPU/Phi computation. Figure 2b show the performance
obtained for different blocking sizes and we can see a trade-off between small
and large nb’s. Either nb = 480 or nb = 960 can be considered as a good
choice because MKL Phi BLAS is optimized for multiples of 240. Moreover,
to extract the maximum performance and allow the maximum overlap between
both of the CPU and the Xeon Phi coprocessor, we developed a new variant that
can use a variable nb during the steps of the algorithm. The flexibility of our
implementation allows an efficient task execution overlap between the CPU host
and the Phi coprocessor which enables the algorithm to scale almost perfectly in
the Phi coprocessor and provides very good performance close to the practical
peak obtained on such system. Our tuned variable implementation is represented
by the red curve of Fig. 2b where we can easily observe its advantage over the
other variants.

578 J. Dongarra et al.

Fig. 2. Effect of the blocking factor (Color figure online).

5 Performance Results

This section presents the performance results obtained by our hybrid CPU-Xeon
Phi implementation in the context of the development of the state-of-the-art
numerical linear algebra libraries.

5.1 Experimental Environment

Our experiments were performed on a system equipped with Intel Xeon-Phi. It
is representative of a vast class of servers and workstations commonly used for
computationally intensive workloads.

Intel multicore system with dual-socket, 8 core Intel Xeon E5–2670 (Sandy
Bridge) processors, each running at 2.6 GHz. Each socket has a 24 MB shared
L3 cache, and each core has a private 256 KB L2 and 64 KB L1. The system is
equipped with 52 Gbytes of memory. The theoretical peak for this architecture in
double precision is 20.8 Gflop/s per core, giving 332 Gflops in total. The system
is also equipped with an Intel Xeon Phi cards with 7.7 Gbytes per card running
at 1.09 GHz, and giving a double precision theoretical peak of 1046 Gflops.

There are a number of software packages available. On the CPU side we used
the MKL (Math Kernel Library) [8] which is a commercial software package
from Intel that is a highly optimized numerical library. On the Intel Xeon side,
we used the MPSS 2.1.5889-16 as the software stack, icc 13.1.1 20130313 which
comes with the composer xe 2013.3.163 suite as the compiler and the BLAS-3
routine GEMM from MKL 11.00.03.

5.2 Performance Results

Figure 3 reports the performance of the three amigos linear algebra kernels,
the Cholesky, QR and LU factorizations with our hybrid implementation and
compare it to the performance of the CPU implementation of the MKL libraries.

Intel MIC MAGMA on Xeon Phi 579

For our implementation, the blocking factor has been chosen to be flexible in
order to achieve the best performance, as a reference it is in the range of 480–960
as described in Sect. 4.3. The graphs show the performance measured using all
the cores available on the system (i.e., 60 for the Intel Phi and 16 for the CPU)
with respect to the problem size. In order to reflect the time completion, for
each algorithm the operation count is assumed to be the same as that of the
LAPACK algorithm (i.e., 1

3N3, 2
3N3, and 4

3N3 for the Cholesky factorization,
the LU factorization and the QR decomposition respectively)

Figure 3a,b,c provide roughly the same information: our MAGMA algorithm
with hybrid techniques delivers higher execution rates than the CPU optimized
counterpart. Such comparison is not fair, our goal is not to compare, but it is
rather to show the boost that the hybrid CPU+Phi coprocessor implementation
provides, versus a CPU implementation. The figures show that the MAGMA
hybrid algorithms are capable of completing any of the three amigos algorithms
as twice faster as the CPU optimized version for a matrix of size larger than
10000; and more than three times faster when the matrix size is large enough
(larger than 20000). The actual curves of Fig. 3 illustrates the efficiency of our

Fig. 3. Comparison of the performance versus the optimized CPU version of the MKL
libraries for the three amigos.

580 J. Dongarra et al.

hybrid techniques where we note that the performance obtained by our imple-
mentation, achieves a very close level to the practical peak of the Intel Xeon Phi
coprocessor computed by running the GEMM routine (which is around 850
Gflops). This gain is mostly obtained by two improvements. First the nature
of the operations involved in the Phi side which are mostly BLAS Level 3 oper-
ations redesigned and redeveloped as a combination of DGEMM’s. For more
details we denote below the routines executed on the Xeon Phi coprocessor:

– The DSYRK operations for the Cholesky factorization where the DSYRK has
been redesigned as a combination of DGEMM’s routines,

– The DGEMM for the LU factorization,
– The DLARFB for the QR decomposition where also its has been redesigned

as a combination of DGEMM’s.

Second, all of the Level 2 BLAS routines that are memory bound and that
represent a limit for the performance (i.e., DPOTF2, DGETF2, and DGEQR2
for Cholesky, LU, and QR factorization respectively) are executed on the CPU
side while being overlapped with the Phi coprocessor execution as described in
Sect. 4.3.

An important remark has to be made here for the Cholesky factorization:
the left-looking algorithm as implemented in LAPACK is considered as well
optimized for memory reuse but at the price of less parallelism and thus is
not suitable for massively multicore machines. This variant delivers poor perfor-
mance when compared to the right looking variant that allows more parallelism
and thus run at higher speed.

6 Conclusions and Future Work

In this article, we have shown how to extend our hybridization methodology
from existing systems to a new hardware platform. The challenge of the porting
effort stemmed from the fact that the new coprocessor from Intel, the Xeon
Phi, featured programming models and relative execution overheads, that were
markedly different from what we have been targeting on GPU-based accelerators.
Nevertheless, we believe that the techniques used in this paper adequately adapt
our hybrid algorithm to best take advantage of the new heterogeneous hardware.
We have derived an implementation schema of the dense linear algebra kernels
that also can be applied to either the two-sided factorization used for solving the
eigenproblem and the SVD or to the sparse linear algebra algorithms. We plan to
further study the implementation of multi-Xeon Phi algorithms in a distributed
computing environment. We think that the techniques presented will become
more popular and will be integrated into dynamic runtime system technologies.
The ultimate goal is that this integration will help to tremendously decrease
development time while retaining high-performance.

Acknowledgments. The authors would like to thank the National Science Founda-
tion, the Department of Energy and ISTC for Big Data for supporting this research
effort.

Intel MIC MAGMA on Xeon Phi 581

References

1. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,
Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: the
plasma and magma projects. J. Phys. Conf. Ser. 180(1), 012037 (2009)

2. AMD. AMD Core Math Library (ACML). http://developer.amd.com/tools/
3. Anderson, E., Bai, Z., Bischof, C., Blackford, S.L., Demmel, J.W., Dongarra, J.J.,

Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.C.:
LAPACK User’s Guide, 3rd edn. SIAM, Philadelphia (1999)

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
Comput. Pract. Exp. 23(2), 187–198 (2011)

5. Barcelona Supercomputing Center. SMP Superscalar (SMPSs) User’s Manual, Ver-
sion 2.0. http://www.bsc.es/media/1002.pdf (2008)

6. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J.J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R.C.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997). http://www.netlib.
org/scalapack/slug/

7. Dongarra, J., Bunch, J., Moler, C., Stewart, G.W.: LINPACK Users’ Guide. SIAM,
Philadelphia (1979)

8. Intel. Math Kernel Library. http://software.intel.com/en-us/articles/intel-mkl/
9. Software distribution of MAGMA MIC version 1.0. http://icl.cs.utk.edu/magma/

software/. Accessed 3 May 2013
10. Tomov, S., Dongarra, J.: Dense linear algebra for hybrid GPU-based systems. In:

Kurzak, J., Bader, D.A., Dongarra, J. (eds.) Scientific Computing with Multicore
and Accelerators. Chapman and Hall/CRC, London/Boca Raton (2010)

Using Intel Xeon Phi Coprocessor to Accelerate
Computations in MPDATA Algorithm

Lukasz Szustak1(B), Krzysztof Rojek1, and Pawel Gepner2

1 Czestochowa University of Technology,
Dabrowskiego 69, 42-201 Czestochowa, Poland

{lszustak,krojek}@icis.pcz.pl
2 Intel Corporation, Swindon, UK

pawel.gepner@intel.com

Abstract. The multidimensional positive definite advection transport
algorithm (MPDATA) belongs to the group of nonoscillatory forward-
in-time algorithms, and performs a sequence of stencil computations.
MPDATA is one of the major parts of the dynamic core of the EULAG
geophysical model.

The Intel Xeon Phi coprocessor is the first product based on the
Intel Many Integrated Core (Intel MIC) architecture. In this work, we
outline an approach to adaptation of the 3D MPDATA algorithm to the
Intel MIC architecture. This approach is based on combination of tem-
poral and space blocking techniques, and allows us to ease memory and
communication bounds and better exploit the theoretical floating point
efficiency of target computing platforms. In order to utilize computing
resources available in Intel Xeon Phi, the proposed approach employs
two main levels of parallelism: (i) task parallelism which allows for uti-
lization of more than 200 logical cores, and (ii) data parallelism to use
efficiently 512-bit vector processing units.

We discuss performance results obtained on two platforms, includ-
ing either two Intel Xeon E5-2643 CPUs and Intel Xeon Phi 3120A, or
two Intel Xeon E5-2697 v2 CPUs and Intel Xeon Phi7120P. The top-of-
the-line Intel Xeon Phi 7120P gives the best performance results for all
tests. Notably, this coprocessor executes the MPDATA algorithm 2 times
faster than two Intel Xeon E5-2697 v2 CPUs, and 2.86 times faster than
two Intel Xeon E5-2643 processors. Both the utilization of Intel Xeon
Phi many cores and vectorization play the leading role in performance
exploitation.

Keywords: EULAG model · Stencil computation · MPDATA · Intel
Xeon Phi · Multi-/manycore programming · OpenMP · Adaptation

1 Introduction

The multidimensional positive definite advection transport algorithm (MPDATA)
[7] is one of the two major parts of the dynamic core of the EULAG geophysical

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 582–592, 2014.
DOI: 10.1007/978-3-642-55224-3 54, c© Springer-Verlag Berlin Heidelberg 2014

Using Intel Xeon Phi Coprocessor to Accelerate Computations 583

model. EULAG (Eulerian/semi-Lagrangian fluid solver) is an established compu-
tational model for simulating thermo-fluid flows across a wide range of scales and
physical scenarios, including the numerical weather prediction (NWP).

The resent research of EULAG parallelization have been carried out using
IBM Blue Gene/Q and CRAY XE6 [4]. Three-dimensional MPI parallelization
has been used for running EULAG on these systems with tens of thousands of
cores, or even with more than 100K cores. When parallelizing EULAG computa-
tion on supercomputers and CPU clusters, the efficiency is declined below 10 %.
In this study, we propose to rewrite the EULAG dynamical core and replace
standard HPC systems by smaller heterogeneous clusters with accelerators such
as GPU [5] and Intel Many Integrated Cores (MIC) [3].

Preliminary studies of porting anelastic numerical models to modern archi-
tectures, including hybrid CPU-GPU architectures, were carried out in works
[5,10,11]. The results achieved for porting selected parts of EULAG to CPU-
GPU architectures revealed potential in running scientific applications on novel
hardware architectures.

In this work, we outline an approach to adaptation of the 3D MPDATA algo-
rithm to the Intel MIC architecture. This approach is based on combination of
temporal and space blocking techniques, and allows us to ease memory and com-
munication bounds, and better exploit the theoretical floating point efficiency of
target computing platforms. We show some of the optimization methods that we
found effective, and demonstrate their impact on the performance of both the
Intel CPU and MIC architectures. The main focus is using MPDATA to mod-
elling geophysical flows on NWP. The size of computational grid in such problems
typically does not exceed 270 thousand grid points (2048 × 1024 × 128). Here,
the starting point is an unoptimized parallel implementation of the MPDATA
algorithm. In our work, we use OpenMP standard for multi- and many-core
programming.

The content of the paper is organized as follow. In Sect. 2, architecture
overview is outlined. The introduction to 3D MPDATA algorithm, including
characterization of computation and communication, is presented in Sect. 3.
Section 4 introduces the proposed approach to adaptation of MPDATA to Intel
MIC Architecture, including block decomposition of 3D MPDATA algorithm,
improving efficiency of block decomposition, and parallelization. Preliminary
performance results are presented in Sect. 5, while Sect. 6 gives conclusions and
future work.

2 Architecture Overview

2.1 Architecture of Intel Many Integrated Cores

The Intel MIC architecture combines many Intel CPU cores onto a single chip
[2,3]. The Intel Xeon Phi coprocessor is the first product based on this archi-
tecture. The main advantage of these accelerators is that it is built to provide
a general-purpose programming environment similar to that provided for Intel

584 L. Szustak et al.

CPUs. This coprocessor is capable of running applications written in industry-
standard programming languages such as Fortran, C, and C++.

The Intel Xeon Phi coprocessor includes processing cores, caches, memory
controllers, PCIe client logic, and a very high bandwidth, bidirectional ring inter-
connect [3]. Each coprocessor contains of more than 50 cores clocked at 1 GHz
or more. These cores support four-way hyper-threading, which gives more than
200 logical cores. The real number of cores depends on the generation and model
of a specific coprocessor. Each core features an in-order, dual-issue x86 pipeline,
32 KB of L1 data cache, and 512 KB of L2 cache that is kept fully coherent by
a global-distributed tag directory. As a result, the aggregate size of L2 caches
can exceeds 25 MB. The memory controllers and the PCIe client logic provide
a direct interface to the GDDR5 memory on the coprocessor and the PCIe
bus, respectively. The coprocessor has over 6 GB of onboard memory (maximum
16 GB). The high-speed bidirectional ring connects together all the cores, caches,
memory controllers and PCIe client logic of Intel Xeon Phi coprocessors.

An important component of each Intel Xeon Phi processing core is its vector
processing unit (VPU) [2], that significantly increases the computing power. Each
VPU supports a new 512-bit SIMD instruction set called Intel Initial Many-Core
Instructions. The new ability to work with 512-bit vectors enables operating on
16 float or 8 double elements per iteration, instead of a single element.

The Intel Phi coprocessor is delivered in form factor of a PCI express device,
and cannot be used as a stand-alone processor. Since the Intel Xeon Phi coproces-
sor runs Linux operating system, any user can access the coprocessor as a net-
work node, and directly run individual applications in the native mode. These
coprocessors also support heterogeneous applications wherein a part of the appli-
cation is executed on the host (CPU), while another part is executed on the
coprocessor (offload mode).

2.2 Target Platforms

A summary of key features of tested platforms is shown in Table 1. In this study,
we use two platforms containing a single Intel Xeon Phi coprocessor. The first
platform is equipped with two newest CPUs, based on the Ivy Bridge architec-
ture, and the Intel Xeon Phi 3120A card. The second one includes two Sandy
Bridge-EP CPUs, and the top-of-the-line Intel Xeon Phi 7120P coprocessor.

It should be noted that values of peak performance shown in Table 1 are
given for the double precision arithmetic, with taking into account the usage of
SIMD vectorization.

3 Introduction to MPDATA Algorithm

The multidimensional positive definite advection transport algorithm (MPDATA)
belongs to the group of nonoscillatory forward-in-time algorithms, and performs
a sequence of stencil computations. The full description of the MPDATA algo-
rithm can be found in [6,7].

Using Intel Xeon Phi Coprocessor to Accelerate Computations 585

Table 1. Specification of tested platforms [1]

Product Code # of cores SIMD Freq. Peak Cache Memory Memory
name (threads) vector DP size size band.

[bits] [GHz] [GFlop/s] [MB] [GB] [GB/s]

Intel Xeon Ivy 2 × 12 256 2.7 518 2 × 30 64 2 × 51.2
E5-2697 v2 Bridge (2 × 24)
Intel Xeon Knights 57 512 1.1 1003 28.5 6 240
Phi 3120A Corner (228)
Intel Xeon Sandy 2 × 4 256 3.3 211 2 × 10 64 2 × 51.2
E5-2643 Bridge-EP (2 × 8)
Intel Xeon Knights 61 512 1.238 1208 30.5 16 352
Phi 7120P Corner (244)

The whole MPDATA computation in each time step are decomposed into
a set of 17 stencil sweeps, called further stages. Each stage is responsible for
calculating elements of a certain matrix, based on the corresponding stencil. The
stages dependent on each other: prior outcomes from stages are usually input
data for the subsequent computations. A part of the MPDATA implementation
is shown in Fig. 1. It corresponds to the linear version of MPDATA [7].

A single MPDATA time step requires 5 input and 1 output matrices. Other 16
matrices are temporary, and do not play role in the further computational steps.
In the basic, unoptimized implementation of the MPDATA algorithm, every
stage uses a required set of matrices from the main memory, and writes results to
the main memory after computation. This scheme is repeated for all the stages.
In consequence, a heavy traffic to the main memory is generated. Moreover,
compute units (cores/threads, and VPUs) have to wait for data transfers from
the main memory to the cache hierarchy. In order to take full advantage of the
novel architecture, the adaptation of MPDATA to the Intel MIC architecture is
considered. The new implementation takes into account the memory-bounded
character of the algorithm.

4 Adaptation of MPDATA to Intel MIC Architecture

4.1 Block Decomposition of 3D MPDATA Algorithm

Since the MPDATA algorithm includes so many intermediate computation, one
of the primary methods for reducing the intensity of memory traffic is to avoid
data transfers associated with these computation. For this aim, all the intermedi-
ate results must be kept in the cache memory. Such treatment increases the cache
reusing. The memory traffic is generated only to transfer the required input and
output data. Such an approach is commonly called the temporal blocking [8,9].

In order to implement this approach efficiently, the loop tiling technique is
applied. The grid is partitioned into blocks. Every block provides computation
for all the 17 stages on the assigned part of the grid. Within a single block,

586 L. Szustak et al.

#define fdim(a, b) ((a>b) ? (a-b):(0.0))

#define donor(y1, y2, a) (fdim(a, 0.0) * (y1) - fdim(0.0, a) * (y2))

//stage 1

for(...) // i - dimension

for(...) // j - dimension

for(...) // k - dimension

f1[i][j][k] = donor(xIn[i-1][j][k],xIn[i][j][k],u1[i][j][k]);

//stage 2

for(...) // i - dimension

for(...) // j - dimension

for(...) // k - dimension

f2[i][j][k] = donor(xIn[i][j-1][k],xIn[i][j][k],u2[i][j][k]);

//stage 2

for(...) // i - dimension

for(...) // j - dimension

for(...) // k - dimension

f3[i][j][k] = donor(xIn[i][j][k-1],xIn[i][j][k],u3[i][j][k]);

//stage 4

for(...) // i - dimension

for(...) // j - dimension

for(...) // k - dimension

x[i][j][k] = xIn[i][j][k]-(f1[i+1][j][k]-f1[i][j][k]+f2[i][j+1][k]-

f2[i][j][k]+f3[i][j][k+1]-f3[i][j][k])/h[i][j][k];

/*...*/

Fig. 1. Part of MPDATA implementation

each stage computes the adequate chunk of the corresponding matrix. Executing
of a sequence of blocks determines the final outcomes for a single MPDATA time
step.

The main requirement for this approach is to keep in the cache hierarchy all
the data required for MPDATA computation within each block. Therefore, the
size nB × mB × lB of each block has to be selected in an appropriate way. The
idea of block decomposition of the MPDATA algorithm is shown in Fig. 2. This
decomposition determines four dimensions of distribution of MPDATA calcula-
tion across computing resources: i-, j-, and k-dimensions relate to the grid par-
titioning, while s-dimension is associated with the order of executing MPDATA
stages.

Due to data dependencies between subsequent stages additional computation
and communication within each data block are required. These overheads are
needed on the borders between adjacent blocks. In the proposed method, the
computation associated with all the 17 stages, and executed within each block are
extended by adequate halo areas. Adding halo allows to avoid data dependency
between blocks within a single MPDATA time step.

The sizes of halo areas are determined in all the four dimensions (i, j, k and s),
according to data dependencies between MPDATA stages. Thus, each of 5 input,

Using Intel Xeon Phi Coprocessor to Accelerate Computations 587

Fig. 2. Idea of block decomposition of MPDATA computation

Table 2. Sizes of halo areas for MPDATA algorithm

Halo Matrices
areas Input Temporary Output

u1 u2 u3 h x S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17

iL 2 2 2 2 3 2 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0
iR 3 2 2 2 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0
jL 2 2 2 2 3 2 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0
jR 2 3 2 2 3 2 3 2 2 1 2 1 1 1 1 1 1 1 0 1 0 0
kL 2 2 2 2 3 2 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0
kR 2 2 3 2 3 2 2 3 2 1 1 2 1 1 1 1 1 1 0 0 1 0

one output, and 16 temporary matrices, is partitioned into chunks of size nB ×
mB × lB, which further is expanded by adequate halo areas with sizes iL, iR,
and jL, jR as well as kL, kR. Table 2 presents the sizes of halo areas in i-, j-, and
k-dimensions for chunks of all the matrices.

This approach allows us to avoid data transfers for intermediate computation
at the cost of extra computation associated with halo areas in chunks of tem-
porary matrices, as well as extra communication between the main and cache
memories, corresponding to halo areas in chunks of the input matrices. Another
advantage of this approach is reducing the main memory consumption because
all the intermediate results are stored in the cache memory only. In the case
of coprocessors, it plays an important role because the size of main memory is
fixed, and significantly smaller than for traditional CPU solutions.

The requirement of expanding halo areas is one of the major difficulties when
applying the proposed approach, taking into account data dependencies between
MPDATA stages. It requires to develop a dedicated task scheduling for the
MPDATA block decomposition.

4.2 Improving Efficiency of Block Decomposition

Although the block decomposition of MPDATA allows for reducing the mem-
ory traffic, it still does not guarantee a satisfying utilization of used platforms.
The main difficulty here results from extra computation and communication,

588 L. Szustak et al.

which have impact on the performance degradation. In particular, there are
three groups of extra computation and communication, corresponding to i-, j-,
and k-dimensions. Some of them can be reduced or even avoided by applying
the following rules:

1. The additional computation and communication in k-dimension can be
avoided if lB = l, and the size nB × mB × lB of block is small enough
to save in cache all the required data. This rule is especially useful when the
value of l is relatively small, as it is in the case of NWP, where l is in range
[64, 128].

2. The overheads associated with j-dimension is avoided by leaving partial
results in the cache memory. It becomes possible when extra computation
are repeated by adjacent blocks. In this case, some results of intermediate
computation have to reside in cache for executing the next block. This rule
requires to develop a flexible management of computation for all the stages,
as well as an adequate mapping of partial results onto the cache space. In con-
sequence, all the chunks are still expanded by their halo areas (Table 2), but
only some portions of these chunks are computed within the current block. It
means that this approach does not increase the cache consumption. The idea
of improving the efficiency of block decomposition is shown in Fig. 3.

3. In order to reduce additional calculations in i-dimension, the size nB should
be as large as possible to save in the cache hierarchy all the data required to
compute a single block.

Fig. 3. Idea of leaving partial results in cache memory

4.3 Parallelization

In order to utilize computing resources available in the Intel Xeon Phi coproces-
sor, the proposed approach employs two main levels of parallelism:

– task parallelism which allows for utilization of more than 200 logical cores;
– data parallelism to use efficiently 512-bit vector processing units.

Using Intel Xeon Phi Coprocessor to Accelerate Computations 589

Different MPDATA blocks are processed sequentially, following the order
proposed for the CPU block decomposition in the previous subsection (Fig. 3).
For a fixed MPDATA block, a sequence of stages is executed, taking into account
the adequate sizes of halo areas. All computation executed within every stage are
distributed across available threads. Assigned chunk to each stage is partitioned
into sub-chunk of size nB∗ × mB∗ × lB, where partitioning takes place along
i and j dimensions. As a result, a task is assigned to each thread, as a part
of MPDATA block. Due to the data dependencies of MPDATA, appropriate
synchronizations between MPDATA stages are necessary.

Another level of parallelization is vectorization applied within each thread,
so the resulting SIMDification is performed within k-dimension. In consequence,
the value of size lB has to be adjusted to the vector size.

Because of intra-cache communication between tasks, the overall system per-
formance depends strongly on a chosen task placement onto available threads.
Therefore, the physical core affinity plays a significant role in optimizing the sys-
tem performance. In this work, the affinity is adjusted manually, to force com-
munication between tasks placed onto the closest adjacent cores. This increases
the sustained intra-cache bandwidth, as well as reduces cache misses, and the
latency of access to the cache memory.

5 Preliminary Performance Results

In this section we present preliminary performance results obtained for the dou-
ble precision 3D MPDATA algorithm on the platforms introduced in Sect. 2. In
all the tests, we use the ICC compiler as a part of Intel Parallel Studio 2013, with
the same optimization flags. The best configurations for our approach is chosen
in an empirical way, individually for each platform. Moreover, we use Intel Xeon
Phi in the native mode.

Currently, only the first four stages are implemented and tested. These four
stages correspond to the linear version of the MPDATA algorithm. Since all the
input matrices are required to provide the correctness of calculation, the overall
performance for this part of MPDATA is strongly limited by the memory traffic
between the main memory and cache memory.

Figure 4 presents the normalized execution time of the 3D MPDATA algo-
rithm, for 500 time steps and the grid of size 1022 × 512 × 63. The achieved
performance results correspond to the following setups: (a) comparison of the
block and improved block versions; (b) advantages of using vectorization; (c)
performance for different numbers of threads per core; (d) comparison of Intel
Xeon CPU and Intel Xeon Phi (best configurations with SIMD).

Figure 4a presents a performance gain for the improved version of block
decomposition. The proposed method of reducing extra computation allows us
to speedup MPDATA block version from 2 to 4 times, depending on the platform
used and size of the grid.

The advantages of using vectorization is observed for all the platforms. In
particular, for Intel Xeon Phi 7120P, it allows us to accelerate computation more
than 3 times, using all the available threads/cores (Fig. 4b).

590 L. Szustak et al.

Fig. 4. Preliminary performance results: (a) comparison of block and improved block
versions; (b) advantages of using vectorization; (c) performance for different numbers
of threads per core; (d) comparison of Intel Xeon CPU and Intel Xeon Phi (best
configurations with SIMD)

Figure. 4c shows the performance obtained for different numbers of threads
per core, using Intel Xeon Phi 7120P. The best efficiency of computation is
achieved when running 4 threads per each core.

The performance comparison of all the platforms is shown in Fig. 4d. For
each platform, we use all the available cores with vectorization enabled. As
expected, the best performance result is obtained using Intel Xeon Phi 7120P.
This coprocessor executes the MPTADA algorithm 2 times faster than two Intel
Xeon E5-2697 v2 CPU, totally containing 24 cores. The both models of the Intel
Xeon Phi coprocessor give similar performance results.

6 Conclusions and Future Work

Using the Intel Xeon Phi coprocessor to accelerate computations in the 3D
MPDATA algorithm is a promising direction for developing the parallel imple-
mentation of this algorithm. Rewriting the EULAG code, and replacing con-
ventional HPC systems with heterogeneous clusters using accelerators such as
Intel MIC is a perspective way to improve the efficiency of using this model in
practical simulations.

The main challenge of the proposed parallelization is to take advantage of
many- and multi-core, vectorization, and cache reusing. For this aim, we propose
the block version of the 3D MPDATA algorithm, based on combination of tem-
poral and space blocking techniques. Such an approach gives us the possibility
to ease memory bounds by increasing the efficient cache reusing, and reducing
the memory traffic associated with intermediate computations. Furthermore,
the proposed method of reducing extra computation allows us to accelerate the
MPDATA block version up to 4 times, depending on the platform used and size
of the grid.

In all the performed tests, the Intel Xeon Phi 7120P coprocessor gives the
best performance results. This coprocessor executes the MPTADA algorithm
2 times faster than two Intel Xeon E5-2697 v2 CPUs, totally containing 24
cores, and 2.86 times faster than two Intel Xeon E5-2643. Both the manycore

Using Intel Xeon Phi Coprocessor to Accelerate Computations 591

and vectorization features of the Intel MIC architecture play the leading role in
the performance exploitation. The other important features are the number of
threads per core, as well as an adequate thread placement onto physical cores.
All these features have a significant impact on the sustained performance.

At this point of our research, only the first four stages of the MPDATA
algorithm are implemented, and tested. They correspond to the linear part of
MPDATA. The performance achieved for this part of MPDATA is still limited
by memory traffic, mostly because all the input data of the whole MPDATA
algorithm are required to provide the correctness of computation for the linear
part. As a result, the tested part of MPDATA does not extract the full potential
of applying this coprocessor to implement MPDATA computation. Moreover,
since the remaining part is unleashed from the memory-cache communication, it
gives the opportunity for increasing the efficiency of computation. Implementing
and optimizing this part of MPDATA will be studied in future works.

The achieved performance results provide the basis for further research on
optimizing the distribution of MPDATA computation across all the computing
resources of the Intel MIC architecture, taking into consideration features of its
on-board memory, cache hierarchy, computing cores, and vector units. Addition-
ally, the proposed approach requires to develop a flexible data and task sched-
uler, supported by adequate performance models. Another direction of future
work is adaptation to heterogeneous clusters with Intel MICs, with a further
development and optimization of code.

Acknowledgments. This work was supported in part by the Polish National Science
Centre under grant no. UMO-2011/03/B/ST6/03500.

We gratefully acknowledge the help and support provided by Jamie Wilcox from
Intel EMEA Technical Marketing HPC Lab.

References

1. Intel Architectures Comparison. http://ark.intel.com/pl/compare/75799,75797,
64587,75283

2. Intel: Intel Xeon Phi Coprocessor System Software Developers Guide. Intel Cor-
poration (2013)

3. Colfax International: Parallel Programming and Optimization with Intel Xeon Phi
Coprocessors. Handbook on the Development and Optimization of Parallel Appli-
cations for Intel Xeon Processors and Intel Xeon Phi Coprocessors. Colfax Inter-
national (2013)

4. Piotrowski, Z., Wyszogrodzki, A., Smolarkiewicz, P.: Towards petascale simulation
of atmospheric circulations with soundproof equations. Acta Geophys. 59, 1294–
1311 (2011)

5. Rojek, K., Szustak, L.: Parallelization of EULAG model on multicore architec-
tures with GPU accelerators. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 391–400. Springer,
Heidelberg (2012)

592 L. Szustak et al.

6. Rojek, K., Szustak, L., Wyrzykowski, R.: Performance analysis for stencil-based
3D MPDATA algorithm on GPU architecture. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp.
145–154. Springer, Heidelberg (2014)

7. Smolarkiewicz, P.: Multidimensional positive definite advection transport algo-
rithm: an overview. Int. J. Numer. Meth. Fluids 50, 1123–1144 (2006)

8. Treibig, J., Wellein, G., Hager, G.: Efficient multicore-aware parallelization strate-
gies for iterative stencil computations. J. Comput. Sci. 2, 130–137 (2011)

9. Wittmann, M., Hager, G., Treibig, J., Wellein, G.: Leveraging shared caches for
parallel temporal blocking of stencil codes on multicore processors and clusters.
Parallel Process. Lett. 20(4), 359–376 (2010)

10. Wyrzykowski, R., Rojek, K., Szustak, L.: Model-driven adaptation of double-
precision matrix multiplication to the cell processor architecture. Parallel Comput.
38, 260–276 (2012)

11. Wyrzykowski, R., Rojek, K., Szustak, L.: Using blue gene/P and GPUs to acceler-
ate computations in the EULAG model. In: Lirkov, I., Margenov, S., Waśniewski,
J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 670–677. Springer, Heidelberg (2012)

Accelerating a Massively Parallel Numerical
Simulation in Electromagnetism Using a Cluster

of GPUs

Cédric Augonnet(B), David Goudin, Agnès Pujols, and Muriel Sesques

CEA/CESTA, 15 Avenue des Sablières, CS 600001, 33116 Le Barp, France
cedric.augonnet@cea.fr

Abstract. We have accelerated a legacy massively parallel code solving
3D Maxwell’s equations on a hybrid cluster enhanced with GPUs. To
minimize the impact on our existing code, we combine its original Full-
MPI approach with task parallelism to design an efficient accelerated LLt

solver that efficiently shares the same GPUs between different processes
and relies on an optimized communication patterns. On 180 nodes of
the Tera100 cluster, our GPU-accelerated LLt decomposition reaches 80
TFlop/s on a problem with 247980 unknowns, whereas the sustained
machine’s CPU and GPU peaks are respectively 13 and 153 TFlop/s.

Keywords: GPU · Dense linear algebra · Cluster computing · Appli-
cation · Electromagnetism

1 Context

Accelerators are a promising way to build powerful energy-efficient machines.
Transitioning to these architectures is however a significant challenge, especially
for legacy codes. In this paper, we consider a massively parallel 3D electromag-
netic Full-MPI code that requires a tremendous amount of processing resources,
and show how we have modified it to exploit a large cluster enhanced with GPUs.
This optimized production code was written in FORTRAN since the 90s, so we
had to adopt a suitable porting methodology, based on pragmatic constraints.
We have followed a gradual porting methodology with a limited impact on our
code, and which is flexible enough to be adapted to other architectures in the
future (e.g. Intel Xeon Phi processors).

1.1 Physical Problem

The design of stealthy objects requires the computation of the Radar Cross
Section (or RCS) of complex 3D targets with complex coatings. The RCS is
defined as the ratio between reflected and incident energy in a specific direction.
This implies numerically solving Maxwell’s equations with the harmonic hypoth-
esis into penetrable bodies and the unbounded surrounding free space. Objects

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 593–602, 2014.
DOI: 10.1007/978-3-642-55224-3 55, c© Springer-Verlag Berlin Heidelberg 2014

594 C. Augonnet et al.

(a) Currents (at 2.6 GHz)

(b) RCS (at 8 GHz)

Fig. 1. An example of RCS computation on NASA almond object

can be composed with both conducting and dielectric bodies. The problem con-
sists in numerically solving Maxwell’s equations. The electric and magnetic fields
at any point in space can be expressed in terms of surface integral of the charges
and currents induced on the surface of the body, as shown on Fig. 1(a). This prob-
lem is discretized using the finite element method, so that we can approximate
the electric current at the surface of the domain by solving a complex symmet-
ric (non hermitian) dense linear system AX = B. On Fig. 1(b), we depict the
ratio of energy reflected in each direction due to the currents we have computed
at the surface of the objects. We here consider stealth objects with really low
RCS, so double precision is required to achieve a sufficient accuracy. Besides, a
direct method is used because iterative solvers would not be suitable with many
right-hande sides.

With the time harmonic hypothesis, the mesh size is constraint by the wave-
length of the illuminating wave, and typically for linear finite elements, ten
discretization points per wavelength are required. Consequently the size of the
discretized problems grows as a cubic (square) function of the frequency; for
large objects or high frequency illuminating waves the size of the associated lin-
ear systems can increase up to millions of unknowns. Due to the use of a dense
method, the size the impedance matrix A is in O(n2) and its factorization is in
O(n3) operations. millions of unknowns with dense linear systems. Thanks to the
recent advances of the parallel architectures based on accelerators (GPU, MIC),
the on-going research on linear algebra (especially direct methods for sparse and
dense linear systems), large 3D simulations become realistic.

1.2 Parallelization and Performance Analysis of Legacy Code

All the experiments in this paper were carried out on the Hybrid partition of
the Tera100 cluster of the CEA/DAM. It consists of 180 nodes interconnected
by an Infiniband QDR network. Each node contains two Xeon E5620 quad-
core processors clocked at 2.40 GHz and 24 GB of main memory along with two
NVIDIA M2090 FERMI cards with 6 GB of ECC-enabled embedded memory.

This legacy application is a FORTRAN-based massively parallel code written
using a Full-MPI paradigm. Given the size and the complexity of the code, a
full rewrite of the entire application is currently not a realistic option.

Accelerating a Massively Parallel Numerical Simulation in Electromagnetism 595

The integral formulation leads to the steps presented in Table 1. The number
of unknowns is denoted as n, the number of right-hand sides is denoted as nrhs.
As an illustration, the actual time measurements on the existing code are also
given for a problem with 247980 unknowns, on the CPUs of 64 nodes of the
Hybrid partition of the Tera100 cluster. It is worth noting that about 458 GB
are required to store the assembled matrix for this problem. The factorization
step clearly dominates the overall computation time in Table 1, and thus consti-
tutes the first portion of the code that we must accelerate using GPUs, in Sect. 4.
Resolution time grows linearly with the number of incidence angles. While the
cost for a single scan angle is limited, the overall scanning may thus incur a sig-
nificant cost. Section 5 therefore optimizes and accelerates the resolution phase,
especially in the context of a large number of scan angles. Result exploitation,
and the assembly of the impedance matrix and of the right-hand sides is also a
non negligible step, however the corresponding code is currently not suitable to
be adapted to GPU computing. Its acceleration, for example by the means of
code annotations (e.g. OpenACC, HMPP), is a future work.

Table 1. Steps of the legacy code and their complexity

Step Description Complexity Duration (relative cost)

Assembly Compute A and B O(n2) 197.97 s (3.4 %)
Factorisation Find L such as A = LLt O(n3) 5542.61 s (95.6 %)
Resolution Find X such as LLtX = B O(n2 × nrhs) 1.80 s (0.03 %)
I/O Interpret and save results - 55.8 s (1.0%)

2 Related Work

3D Maxwell equations are commonly solved using Fast Multipole Method (FMM)
[10], but our code achieves a complete physic model that would be particularly
difficult with FMM. Methods like Multigrid [4] or Discontinuous Galerkin [6] are
also well suited for accelerators but they have not been tested in our code for all
the physics we have to deal with.

Dense symmetric (non hermitian) complex matrices are not common prac-
tice, so there is no such variant of Cholesky decomposition readily available in
libraries such as Scalapack. Dense linear algebra is a problem mostly studied
on a single machine equipped with accelerators [1,7], but there are also a few
studies which consider hybrid clusters. Parsec (formerly known as DAGUE) [5]
and libflame [8] provide kernels on top of hybrid clusters. They also use tiled
algorithms and optimize collective communications. We differ from them as we
consider a Full-MPI legacy code, so that we have developed specific techniques
to efficiently share each GPU between multiple processes. On the other hand,
for efficiency purposes, most runtime systems [3,5,8] assume that we can use a
hybrid programming model with one process per node or per GPU. This would
require to rework our entire code, while our approach is to gradually adapt

596 C. Augonnet et al.

portions of our code using a Full-MPI approach. S GPU is a library that virtu-
alizes GPUs shared among multiple MPI processes [9]. It offers support for load
balancing and data management, but S GPU does not automate out-of-card
algorithms.

3 Full-MPI vs. Hybrid Approach

The original code was written using a Full-MPI approach, which means there is
one process per processing unit. This approach does not take advantage of the
memory hierarchy available in machines nowadays. Even though MPI implemen-
tations may internally take advantage of this hierarchy, costly synchronizations
and memory transfers are still required within a MPI node. A Full-MPI approach
may also increase the size of the buffers used to exchange data between processes,
which limits the scalability in terms of memory consumption. Hybrid program-
ming models allow to reduce these costs by only creating a few MPI process per
node (typically one per NUMA node or per GPU), and to use a multi-threaded
approach within the process (e.g. using OpenMP or pthreads). This allows using
shared memory, and thereby to reduce memory footprint and to avoid superflu-
ous data transfers within a machine. Having fewer processes per GPU device also
avoids contention and the overhead of blocking operations. However, a hybrid
model usually implies porting efforts to use thread-safe data structures along
with multi-threaded algorithms. OpenMP language extensions could help to
write a multi-threaded assembly phase, but the data structures in our legacy
code are not thread safe: therefore, we did not modify the assembly phase yet
and concentrated on accelerating the factorization and resolution phases.

Table 2. Performance projections depending on the parallelization strategy

Legacy code GPU-accelerated projections
1 process/core 1 process/GPU 1 process/core

Assembly 200 s 200 × 4 = 800 s 200 s
Factorization 5500 s 5500/8 = 690 s 5500/7 = 785 s
Total 5700 s 1490 s (×3.8) 985 s (×5.6)

Table 2 shows performance projections under different scenarios for the same
test case detailed before with 247980 unknowns. The first column evaluates the
legacy Full-MPI code with a process per core. The second and the third columns
respectively assume we have a Full-MPI code with a process per GPU, or per
core. Using 2 cores out of 8 approximately results in a slowdown of 4 for assembly
phase. We typically measure a speedup of 8 by using GPUs instead of CPUs for
this code. In the third column, we however approximate the slowdown due to
multiplexing each GPU between multiple cores by only assuming a speedup
of 7. One would intuitively try to optimize factorization as much as possible as

Accelerating a Massively Parallel Numerical Simulation in Electromagnetism 597

this accounts for most of processing time. However, due to Amdhal’s law, these
estimations show that without a hybrid assembly phase, only using one MPI
process per GPU would result in a significant slowdown of the entire application.

Due to the porting efforts that would have been required to port the assembly
phase with a hybrid paradigm, we therefore ported our entire application using
a Full-MPI strategy which enables an incremental porting strategy. In Sect. 4.3,
we show how to effectively design an algorithm that fully exploits GPUs which
are shared between multiple processes.

4 Factorization Phase

The factorization phase of the algorithm constitutes the most time consuming
part of our application. It consists in factorizing the impedance matrix A with
a LLt decomposition where L is a lower triangular matrix.

4.1 Tiled Cholesky Algorithm

The legacy LLt decomposition in our code was written similarly to the SCALA-
PACK, and adopted a 2D-cyclic data distribution which ensures a good load
balancing. However, this approach is based on a fork-join parallelism, which is
known not to be scalable enough for manycore platforms. Instead, we have used
a tiled LLt decomposition algorithm, which is well suited for multicore platforms
equipped with accelerators [2].

We obtain an efficient load balancing thanks to the existing 2D-cyclic data
distribution, however the data layout within a MPI node was restructured in
order to have matrices divided into contiguous tiles. Tiled algorithms indeed
refer to blocked dense linear algebra algorithms where the matrix is organized
in blocks of data stored contiguously. Besides enabling much more parallelism
than available in the original algorithms, this data organization significantly
improves cache efficiency by allowing a better data locality or avoiding false
sharing. Transferring contiguous blocks over MPI or between accelerators and
the host is also much more efficient. Blocks can also be stored independently, so
that it is possible to only allocate a subset of blocks on the accelerators when
the entire matrix does not fit into embedded memory.

Task Parallelism. We have implemented a Full-MPI distributed version of the
tiled LLt algorithm, which naturally translates into a graph of tasks. Each task
is an asynchronous piece of computation accessing a few tiles. Edges account
for data dependencies, and are translated into MPI transfers over MPI or copies
between host and the accelerators.

This is indeed a convenient and portable paradigm to encapsulate computa-
tion. It maintains a separation of concerns between the actual execution of the
graph over the parallel machine (load balancing, efficient data transfers, etc.) and
the design of efficient numerical kernels on the available architectures. Porting
a code already written with tasks on a new type of accelerator requires to re-
implement a few kernels (e.g. on top of an optimized library such as CUBLAS),

598 C. Augonnet et al.

and to provide the mechanisms to transfer data between main memory and
the accelerator.

We have for instance implemented an optimized hybrid kernel which fac-
torizes diagonal blocks by combining calls to the MKL and CUBLAS libraries,
regardless of how the overall graph would be scheduled over the parallel machine.

Granularity Considerations. Block sizes in the tiled algorithm were chosen
with regards to the performance obtained by the matrix multiplication kernel
which dominates computation time. While MKL’s ZGEMM performs well on
(40 × 40) blocks, reaching 5 GFlop/s per core on Tera100, its CUBLAS coun-
terpart only performs well for larger matrix sizes, typically above (128 × 128) to
obtain up to 210 GFlop/s per device.

A large blocking size ensures a good efficiency of the different kernels, but
a large granularity reduces the amount of parallelism and requires to allocate
large buffers to store temporary blocks. We have thus empirically selected an
appropriate block size by considering trade-offs between the efficiency of kernels,
the amount of parallelism, and limitations of the memory footprint.

4.2 Data Management

A static schedule is derived from a 2D-cyclic data distribution. Data dependen-
cies are enforced over the cluster by exchanging coherent data over MPI and
between the host and the accelerators.

Within each node, we have implemented a light-weight runtime layer that
facilitates transfers between the host and the accelerators. It provides simple
mechanisms such as synchronization methods and functions to lazily copy an
up-to-date version of a piece of data. This is achieved by keeping track of data
replicates to determine whether a piece of data is valid on the host and/or on the
accelerators, and by performing data transfers from a valid source if the local
copy is out-of-date. Maintaining such a cache avoids numerous data transfers
between the host and the accelerator. This is a portable approach because this
thin layer can easily be adapted to new architectures by reimplementing a few
core functionality using vendor’s specific API.

Our runtime layer also exploits asynchronous data transfers to overlap them
with computation, and to reduce the impact of kernel submission latency. Latency
indeed becomes critical when the accelerator is shared with other MPI processes,
as they could maintain the processing unit busy for a long time before it becomes
available. There also exists much more evolved general-purpose runtime systems
that provide similar features along with task scheduling within a single MPI
node [1,5,8], but the use of such full-fledged environment and their potential
overhead is not necessary here as we consider a very regular algorithm with a
static mapping.

We are also severely constrained by the amount of memory required to store
the impedance matrix. Not to be limited to the memory available on the GPU
devices, our runtime layer transparently keeps a list of pre-allocated blocks on

Accelerating a Massively Parallel Numerical Simulation in Electromagnetism 599

the devices, and keeps reference counts to evict unused blocks and reuse them
when the algorithm needs to access new blocks of data. Maintaining such a pre-
allocated set of blocks also avoids having to regularly allocate and deallocate
data, which would induce costly synchronization as described in Sect. 4.3.

4.3 Efficient Multiplexing of CUDA Devices Between Multiple MPI
Processes

It is well known that asynchronous task and data management is essential to
properly exploit GPUs. When a GPU is shared by multiple processes, relying
on blocking operations results in waiting for all other pending computation on
other processes to end before actually executing any operation. Such a high
latency severely impacts performance as it delays most computation and avoids
to overlap computation with data transfers. However, ensuring that CUDA does
not explicitly or implicitly performs any blocking operation is a delicate problem.

Using multiple CUDA streams allows programmers to submit independent
non-blocking operations on the device. However, presumably non-blocking oper-
ations become blocking API calls if there are too many pending operations.
CUDA also inserts implicit dependencies when different streams need to use the
same resource: for example, two independent asynchronous data transfers would
be serialized on a C1060 TESLA device, even if they are in different streams and
in different directions (i.e. from or to the device).

Synchronization should be performed at stream-level with CUDA events or
cudaStreamSynchronize() rather than synchronizing at context scope with
cudaThreadSynchronize(). One should also rely on the non-blocking
cudaStreamWaitEvent method to express dependencies between two CUDA
streams. Modifications of the address space (e.g. with cudaFree) should be
avoided because they force CUDA to block the device and to flush all pend-
ing computation.

4.4 Optimizing Communication Patterns

Figure 2 shows a trace of the panel update phase of the tiled LLt algorithm.
Note that we here depict a small problem with a small amount of parallelism

(a) Synchronous broadcasts (b) Asynchronous broadcasts

Fig. 2. Trace showing the optimization of collective communications

600 C. Augonnet et al.

to visually emphasize data transfers. On Fig. 2(a), collective data transfers are
performed using MPI Bcast which is blocking. Since a set of independent tiles are
broadcasted at each step, blocking MPI calls introduce a significant performance
bottleneck because a large amount of time is wasted broadcasting each tile one
by one. Furthermore, this prevents the host from submitting any work to the
devices during the entire data diffusion phase. We thus observed that our initial
implementation on Fig. 2(a) does not scale with the number of tiles to be broad-
casted, and therefore with the number of processors because a large number of
tiles is required to create enough parallelism. underlined in a accelerator-based
environment: GPUs may accelerate computation by an order of magnitude, but
the network is unchanged and thus becomes relatively slower.

We therefore replaced all synchronous broadcast operations by an asynchro-
nous flat tree algorithm, in which the root node sends point-to-point asyn-
chronous messages to all destination nodes individually. This allows to transfer
multiple tiles at the same time, and to wait for transfers completion only once
needed. flat-tree broadcast algorithm is usually not as efficient as tree-based
hierarchical algorithms for a single transfer. However, the tiled LLt algorithm
successively broadcasts multiple blocks to different sub-set of the processors, so
that a set of simultaneous asynchronous broadcasts based on a flat-tree algorithm
turns out to be an efficient approach in our case, as shown on Fig. 2(b).

4.5 Performance Evaluation

Each node of the machine described in Sect. 1.2 has 8 CPU cores and 2 GPUs.
The asymptotic speed of the ZGEMMNT kernel, which we will refer as the
sustained peak on Fig. 3(a), is 9 GFlop/s per core and 425 GFlop/s per GPU .
It is worth noting that the accelerated Factorization phase only involves CPUs
to perform part of the diagonal block LLt decomposition. The legacy code takes
7417 s to factorize the matrix, which results in an overall execution time of 7705 s
for the entire application. Our accelerated version only takes 777 s to factorize
the matrix, and the entire application lasts 1088 s. We thus obtain a speedup of
×9.54 for the matrix decomposition on Fig. 3(b), which results in a speedup of

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120 140 160 180

S
pe

ed
 (

T
F

lo
p/

s)

Number of MPI nodes (x2 GPUs)

Sustained GPU peak
N = 247k
N = 103k

Sustained CPU peak

(a) Strong scalability

 10000

 1000

 100

 180 96 64 32 16 8

D
ur

at
io

n
(s

ec
on

ds
)

Number of MPI nodes (x2 GPUs)

x9.54

247k (CPU)
247k (GPU)
103k (CPU)
103k (GPU)

(b) Duration of the factorization

Fig. 3. Performance evaluation on the factorization step

Accelerating a Massively Parallel Numerical Simulation in Electromagnetism 601

7.08 for the overall application. We measure 80 TFlop/s on 180 nodes, whereas
the sustained peak 180 nodes would be 13.0 TFlop/s (resp. 153.0) using CPUs
(resp. GPUs).

5 Solve Phase

The number of observation angles may grow considerably when computing the
RCS around an entire object. Rather than solving two symmetric linear systems
per angle (one resolution per polarisation), we can solve a single system with
multiple right-hand sides. This reduces parallelization overhead because more
computation is made during each solve phase. This is also much more efficient
on accelerators which are especially suited for vector processing. sides at the
same time. However, to avoid superfluous memory consumption, the number of
systems to be solved simultaneously must remain limited to fit into memory
along with the factorized matrix.

Similarly to the factorization phase, we have implemented a GPU-accelerated
resolution algorithm with a tiled algorithm. We also used the data management
runtime layer introduced in Sect. 4.2, so that the factorized impedance matrix
need not be transferred back to the host between factorization and resolution
phases. To preserve parallelism and avoid communication overhead, collective
operations were also implemented by the means of asynchronous broadcasts
based on point-to-point transfers described in Sect. 4.4.

We measured that the resulting GPU-accelerated implementation is typically
three times faster than our CPU-based legacy algorithm, which leads to dramatic
improvements for a large angular scanning with thousands of incidence angles.

6 Conclusion

We have ported a real legacy application on a hybrid cluster and obtained sig-
nificant speedup. We have described the pragmatic methodology we followed to
determine which parts of the application should and could be accelerated, and
which parallelization strategy to adopt. Our scalable Full-MPI LLt solver show
that it is possible to efficiently share GPUs between multiple MPI processes. This
conservative approach enabled a gradual porting strategy with a limited impact
on the rest of our Full-MPI legacy code. We have shown that task parallelism
combined with a runtime system is a convenient paradigm from performance,
portability and programmability points of view. Besides, we have shown how to
design CUDA applications that are really asynchronous, which is essential to
design any scalable algorithms.

In the future, we will use multicore CPUs in conjunction with GPUs, either
within a hybrid factorization, or to use idle CPUs to perform other computation
such as matrix assembly or post-processing. Matrix assembly will be accelerated
using an annotation-based approach such as OpenACC to minimize the impact
on existing code. We will extend task paradigm to exploit dynamic scheduling,
possibly by the means of a runtime system, and to adapt it on other architectures

602 C. Augonnet et al.

such as Intel Xeon Phi. We will consider numerical improvements and use our
approach on other solvers, for example based on the ACA method [11].

References

1. Agullo, E., Augonnet, C., Dongarra, J., Faverge, M., Ltaief, H., Thibault, S.,
Tomov, S.: QR factorization on a multicore node enhanced with multiple GPU
accelerators. In: International Parallel and Distributed Processing Symposium, pp.
932–943. IEEE (2011)

2. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief,
H., Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures:
the PLASMA and MAGMA projects. J. Phys. Conf. Ser. 180, 12–37 (2009). IOP
Publishing

3. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: Starpu: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurr. Comput.
Pract. Exp. 23(2), 187–198 (2011)

4. Baker, A.H., Falgout, R.D., Kolev, T.V., Yang, U.M.: Scaling hypres multigrid
solvers to 100,000 cores. High-Performance Scientific Computing, pp. 261–279.
Springer, London (2012)

5. Bosilca, G., Bouteiller, A., Herault, T., Lemarinier, P., Saengpatsa, N.O., Tomov,
S., Dongarra, J.J.: Performance portability of a GPU enabled factorization with
the DAGuE framework. In: IEEE Cluster, pp. 395–402 (2011)

6. Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids:
I. time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221
(2002)

7. Humphrey, J.R., Price, D.K., Spagnoli, K.E., Paolini, A.L., Kelmelis, E.J.: CULA:
hybrid GPU accelerated linear algebra routines. In: SPIE Defense, Security, and
Sensing, pp. 770502–770502. International Society for Optics and Photonics (2010)

8. Igual, F.D., Chan, E., Quintana-Ort́ı, E.S., Quintana-Ort́ı, G., Van De Geijn,
R.A., Van Zee, F.G.: The flame approach: from dense linear algebra algorithms
to high-performance multi-accelerator implementations. J. Parallel Distrib. Com-
put. 72(9), 1134–1143 (2012)

9. Ospici, M., Komatitsch, D., Mehaut, J.F., Deutsch, T., et al.: SGPU 2: a runtime
system for using of large applications on clusters of hybrid nodes. In: Second Work-
shop on Hybrid Multi-Core Computing, held in Conjunction with HiPC (2011)

10. Song, J., Lu, C.C., Chew, W.C.: Multilevel fast multipole algorithm for electromag-
netic scattering by large complex objects. IEEE Trans. Antennas Propag. 45(10),
1488–1493 (1997)

11. Zhao, K., Vouvakis, M.N., Lee, J.F.: The adaptive cross approximation algorithm
for accelerated method of moments computations of EMC problems. IEEE Trans.
Electromagn. Compat. 47(4), 763–773 (2005)

Multidimensional Monte Carlo Integration on
Clusters with Hybrid GPU-Accelerated Nodes

Dominik Sza�lkowski(B) and Przemys�law Stpiczyński

Institute of Mathematics, Maria Curie–Sk�lodowska University,
Pl. Marii Curie-Sk�lodowskiej 1, 20-031 Lublin, Poland

{dominisz,przem}@hektor.umcs.lublin.pl

Abstract. The aim of this paper is to show that the multidimensional
Monte Carlo integration can be efficiently implemented on clusters with
hybrid GPU-accelerated nodes using recently developed parallel versions
of LCG and LFG pseudorandom number generators. We explain how to
utilize multiple GPUs and all available cores of CPUs within a single
node and how to extend computations on all available nodes of a cluster
using MPI. The results of experiments performed on a Tesla-based GPU
cluster are also presented and discussed.

Keywords: Multidimensional integration ·Monte Carlo methods · Par-
allelized pseudorandom number generators · GPU clusters

1 Introduction

Recently, GPU clusters have become a very attractive computer architecture
for achieving high performance execution of scientific applications at low costs
[1–3], especially for linear algebra computations [4]. The detailed description
of NVIDIA CUDA and Fermi architectures can be found in [5] and [6]. GPU
clusters comprise three principal components: host nodes, GPUs and intercon-
nection network, which can be treated as a single system. GPUs are connected to
host nodes using PCIe bus (PCIe ×16 slots are required for connecting NVIDIA
Tesla cards). In order to achieve really high performance system, interconnec-
tion network should be of high throughput and low latency. It should also be
scalable. Thus, QDR or FDR Infiniband 4× interconnect is highly desirable.
Message Passing Interface [7] and CUDA SDK [6] are usually used in software
development process for GPU clusters.

Many problems in physics involve computing of multidimensional integrals.
Very often such problems have to be solved numerically because their analytical
solutions are known only in a few cases. Monte Carlo methods are a broad class
of computational algorithms that rely on repeated random sampling to obtain
numerical results approximating exact analytical solutions. Such methods are
very attractive for solving multidimensional integration problems [8].

It is clear that the process of generation pseudorandom numbers is the most
important part of the Monte Carlo integration. Linear congruential generator

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 603–612, 2014.
DOI: 10.1007/978-3-642-55224-3 56, c© Springer-Verlag Berlin Heidelberg 2014

604 D. Sza�lkowski and P. Stpiczyński

(LCG) and Lagged Fibonacci generator (LFG) are rather simple generators
(sometimes even better than other “high quality” generators [9]) and their par-
allel versions have been introduced in the SPRNG Library [10,11]. This library has
been developed under the assumption that a parallel generator should produce a
totally reproducible stream of pseudorandom numbers without any interproces-
sor communication [12] using cycle division or parameterizing techniques [13,14].
Parallel generators should also be portable between serial and parallel platforms
and they should be tested for possible correlations and “high quality” properties
[15]. Our approach for developing parallel pseudorandom number generators is
quite different [16]. We parallelize recurrence relations for LCG and LFG and
statistical properties of our parallel generators are exactly the same as for cor-
responding sequential ones, thus there is no need to perform special statistical
(and rather expensive) tests.

In this paper we show how to implement our parallel versions of LCG and
LFG to utilize multiple GPUs and all available cores of CPUs within a single
node and how to extend computations on all available nodes of a cluster using
MPI. The results of experiments performed on a Tesla-based GPU cluster are
also presented and discussed.

2 Parallel Pseudorandom Numbers Generators

Let us consider the following two well-known pseudorandom number generators
which can be used in Monte Carlo integration algorithms:

1. Linear Congruential Generator (LCG): xi+1 ≡ (axi +c)(modm), where
xi is a sequence of pseudorandom values, m > 0 is the modulus, a, 0 < a < m
is the multiplier, c, 0 ≤ c < m is the increment, x0, 0 ≤ x0 < m is the seed
or start value,

2. Lagged Fibonacci Generator (LFG): xi ≡ (xi−p1 �xi−p2)(modm), where
0 < p1 < p2, � ∈ {+,−, ∗, xor} (for example p1 = 5, p2 = 17, which was the
standard parallel generator in the Thinking Machines Connection Machine
Scientific Subroutine Library).

Usually, m = 2M , and M = 32 or M = 64, thus the generators produce numbers
from Zm = {0, 1, . . . ,m− 1}. It allows the modulus operations to be computed
by merely truncating all but the rightmost 32 or 64 bits, respectively. Thus,
when we use unsigned int or unsigned long int data types, we can neglect
“(modm)”. Note that the integers xk are between 0 and m − 1. They can be
converted to real values rk ∈ [0, 1) by rk = xk/m. It is clear that LCG and LFG
can be considered as special cases of linear recurrence systems [17]. The LCG
generator can be defined as

{
x0 = d

xi+1 = axi + c, i = 0, . . . , n− 2,
(1)

Multidimensional Monte Carlo Integration on Clusters 605

and similarly for the LFG generator we have
{
xi = di i = 0, . . . , p2 − 1
xi = xi−p1 + xi−p2 , i = p2, . . . , n− 1.

(2)

Let us assume that n = rs, where r, s > 1. Then (1) can be rewritten in the
following block form:

⎡

⎢
⎢
⎢
⎣

A
B A

.
B A

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x0

x1

...
xr−1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

f0
f
...
f

⎤

⎥
⎥
⎥
⎦
, (3)

where xi = (xis, . . . , x(i+1)s−1)T ∈ Z
s
m and f0 = (d, c, . . . , c)T ∈ Z

s
m, and f =

(c, . . . , c)T ∈ Z
s
m, and the matrices A and B are defined as follows

A =

⎡

⎢
⎢
⎢
⎣

1
−a 1

.
−a 1

⎤

⎥
⎥
⎥
⎦
∈ Z

s×s
m , B =

⎡

⎢
⎢
⎢
⎢
⎣

0 · · · 0 −a
...

. . . 0 0
...

. . .
...

0 · · · · · · 0

⎤

⎥
⎥
⎥
⎥
⎦
∈ Z

s×s
m .

From (3) we have Ax0 = f0 and Bxi−1 +Axi = f , i = 1, . . . , r− 1. When we set
t = A−1f and y = A−1(ae0), where e0 = (1, 0, . . . , 0)T ∈ Z

s
m, then we get the

main formula for the parallel version LCG:
{

x0 = A−1f0
xi = t + xis−1y, i = 1, . . . , r − 1.

(4)

The equation (4) has a lot of potential parallelism. The algorithm comprises the
following steps. First (Step 1) we have to find x0, y, t (using three separate
tasks). Then (Step 2) we find the last entry of each vector xi, i = 1, . . . , r − 1.
Finally (Step 3), we find in parallel s− 1 entries of the vectors x1, . . . ,xr−1.

Similarly we can consider the following algorithm for finding a pseudorandom
sequence using (2). Let n = rs, r, s > p2. To find a sequence x0, . . . , xn−1, we
have to solve the following system of linear equations

⎡

⎢
⎢
⎢
⎣

A0

B A
.

B A

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x0

x1

...
xr−1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

f
0
...
0

⎤

⎥
⎥
⎥
⎦
, (5)

where the matrices A0, A and B are of the forms showed in Fig. 1. The vectors are
defined as f = (d0, . . . , dp2−1, 0, . . . , 0)T ∈ Z

s
m, xi = (xis, . . . , x(i+1)s−1)T ∈ Z

s
m.

Thus we have {
A0x0 = f
Bxi−1 +Axi = 0, i = 1, . . . , r − 1.

(6)

606 D. Sza�lkowski and P. Stpiczyński

Fig. 1. The matrix of the system (5) for n = 24, s = 12, r = 2, p1 = 3, p2 = 6. Symbols
“•” and “×” denote −1 and 1, respectively.

Let yk satisfies the system of linear equations Ayk = ek, k = 0, . . . , p2−1, where
ek is the k-th unit vector from Z

s
m, and y ≡ y0 = (1, y1, . . . , ys−1)T . It is easy

to verify that
yk = (0, . . . , 0

︸ ︷︷ ︸
k

, 1, y1, . . . , ys−1−k)T .

Thus it is sufficient to find only the vector y. Finally using (6) we get the main
formula for the parallel version LFG:
{

x0 = A−1
0 f

xi =
∑p2−1

k=0 xis−p2+kyk +
∑p1−1

k=0 xis−p1+kyk, i = 1, . . . , r − 1.
(7)

Note that (7) is the generalization of (4). Thus one can develop a similar parallel
divide-and-conquer algorithm. During the first step we have to find the vectors
x0 and y0, then (Step 2) using (7) we find p2 last entries of x1, . . . ,xr−1. Finally
(Step 3) we use (7) to find s− p2 first entries of these vectors (in parallel). Note
that Step 2 requires interprocessor communication. To implement the parallel
algorithms efficiently, let us observe that we have to find the following matrix

Z = [x0, . . . ,xr−1] ∈ Z
s×r
m , (8)

where all vectors xi are defined by (4) or (7). The details of our single-GPU
implementations can be found in [16].

3 Multidimensional Monte Carlo Integration

The idea of Monte Carlo methods for multidimensional integration can be found
in [18]. For a given dimension d ≥ 1, let Id = [0, 1]d be the d-dimensional

Multidimensional Monte Carlo Integration on Clusters 607

s

r

node 0

GPU 0

s

r

node 1

s

r

node #nodes−1
...

GPU 1 CPU cores

...

node 0

Fig. 2. Implementation of the algorithm

unit cube and let f(v) be a bounded Lebesgue-integrable function on Id. The
approximation for the Lebesgue integral of f over Id can be found using

∫

Id

f(v)dv ≈ 1
N

N∑

i=1

f(vi), (9)

where v1, . . . ,vN are random points from Id. The strong law of large numbers
guarantees that the numerical integration using (9) converges almost surely and
from the central limit theorem it follows that the expected error is O(N−1/2)
(see [18] for more details).

The idea of Monte Carlo algorithm for multidimensional integration can be
rather simple. It comprises three main steps:

1. generate N pseudorandom points vi ∈ Id, i = 1, . . . , N , using Nd pseudoran-
dom real numbers from [0, 1),

2. calculate the values of f(vi), i = 1, . . . , N ,
3. perform the global reduction (summation) according to (9).

In order to implement the multidimensional Monte Carlo integration using
the parallel versions of LCG and LFG for clusters with hybrid GPU-accelerated
nodes, let us assume the following:

1. each cluster node is responsible for generating n real random numbers and
n/d random points from Id,

2. the global number of random points N is equal to pn/d, where p denotes the
number of cluster nodes,

3. each cluster node computes the matrix Zj , j = 0, . . . , p− 1, of the form (8),
4. matrices Zj are computed using available GPUs and CPU cores, thus Zj are

divided into blocks of columns (see Fig. 2),
5. the ratio of the number of columns in GPU blocks to the number of columns

in CPU blocks follows from the performance ratio of GPUs to CPU cores,

608 D. Sza�lkowski and P. Stpiczyński

6. GPU blocks are computed according to (4) or (7) using CUDA kernels, while
CPU blocks are computed using (1) or (2),

7. GPU blocks are stored in the GPU’s global memory, while CPU blocks are
computed “on the fly”, so there is no need to store them in RAM,

8. as soon as the last stripe of rows of Zj is calculated (Step 2), the required
number (LCG)/p2 numbers (LFG) is/are sent to the next node,

9. after computing entire GPU blocks, GPUs calculate values of integrand func-
tion and perform the reduction,

10. CPU cores calculate values of integrand function and the sum of them “on
the fly”,

11. OpenMP is used to utilize CPU cores and multiple GPUs within a single
node,

12. we use two levels of communication: two GPU cards inside of a single node
communicate using peer-to-peer memory access with cudaMemcpyPeer()
routine omitting CPU, then all nodes perform the standard MPI reduce()
function (the next level of communication).

Our approach is equivalent to the process of generating a single sequence of
random numbers with known statistical properties. Thus there is no need to use
parametrization techniques that need testing and sometimes can lead to obtain
sequences with unwanted correlations between numbers [10,11].

4 Results of Experiments

The considered algorithm for the multidimensional integration (9) using the
parallel versions of LCG and LFG respectively, has been tested on a GPU cluster
of 32 nodes, each with two Intel Xeon X5650 (6 cores each with hyper-threading,
2.67 GHz, 48 GB RAM) and two NVIDIA Tesla M2050 (448 cores, 3 GB GDDR5
RAM with ECC off), connected using 40 Gbit/s Infiniband, running under Linux
with NVIDIA CUDA Toolkit ver. 5.0 and Intel Cluster Studio ver. 2012. We have
used the set of the following test functions [19] (c,w ∈ R

d are fixed coefficients):

1. Oscillatory: f1(v) = cos(c · v + 2πw1),
2. Product peak: f2(v) =

∏d
i=1

1
(vi−wi)2+c−2

i

,

3. Corner peak: f3(v) = 1
(1+c·v)d+1 ,

4. Gaussian: f4(v) = exp(−c2(v −w)2),
5. C0-continuous: f5(v) = exp(−c · |v −w)|,
6. Discontinuous: f6(v) =

{
0 for v1 > w1 ∨ v2 > w2,

exp(c · v) otherwise.

Figure 3 shows the speedup of the integration using LCG and LFG using two
GPUs vs one CPU core. We can observe that in case of LCG the speedup is from
2 up to 8, depending on the type of integrand functions. For some functions, the
dimension d also influences the speedup. The best speedup can be observed for
“Product peak” and “Discontinuous”. In case of LFG, the values of p1 and p2 are

Multidimensional Monte Carlo Integration on Clusters 609

 2

 3

 4

 5

 6

 7

 8

 9

 10 20 30 40 50 60 70 80

S
pe

ed
up

Dimension (d)

GPU vs CPU integration (LCG generator)

C0-continuous
Corner peak
Continuous

Gaussian
Oscillatory

Product peak

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 10 20 30 40 50 60 70 80

S
pe

ed
up

Dimension (d)

GPU vs CPU integration (LFG generator)

p1=5, p2=7
p1=7, p2=10
p1=5, p2=17
p1=6, p2=31

p1=24, p2=55

Fig. 3. Speedup of the integration using LCG (left) and LFG (right) using two GPUs
vs one CPU core

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30 35

T
im

e
(s

ec
on

ds
)

Nodes

Integrating functions for d=30 (constant number of points, LCG generator)

C0-continuous
Corner peak
Continuous

Gaussian
Oscillatory

Product peak

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35

T
im

e
(s

ec
on

ds
)

Nodes

Integrating functions for d=30 (increasing number of points, LCG generator)

C0-continuous
Corner peak
Continuous

Gaussian
Oscillatory

Product peak

Fig. 4. Time of the integration for d = 30 and with constant number of global points
(left) and with increasing number of global points (right)

crucial for the efficiency of the algorithm. Bigger values of these parameters result
in substantial decrease of the performance. It is a straightforward conclusion from
the analysis of the formula (7), where the number of operations grows when p1

and p2 grow. The results from Fig. 3 have been used to determine the number
of columns in GPU and CPU blocks.

Let pGPU = 2 be the number of GPU devices and pCPU = 22 be the number
of CPU cores. We use nGPU ≈ 377 · 106 random numbers per each GPU (this is
to fill its 3 GB global memory) and for each CPU core we use nCPU = nGPU · r
random numbers, where r is the performance ratio of GPUs to CPU cores (see
Fig. 3). Thus, the global number of generated random numbers is n = pGPU ·
nGPU +pCPU ·nCPU . Depending on the function family, dimension and the type

610 D. Sza�lkowski and P. Stpiczyński

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60 70 80

T
im

e
(s

ec
on

ds
)

Dimension (d)

Integrating functions on 4 nodes (LCG generator)

C0-continuous
Corner peak
Continuous

Gaussian
Oscillatory

Product peak

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 20 30 40 50 60 70 80

T
im

e
(s

ec
on

ds
)

Dimension (d)

LCG integration vs LFG integration (4 nodes)

LCG
LFG with p1=5, p2=7

LFG with p1=7, p2=10
LFG with p1=5, p2=17
LFG with p1=6, p2=31

LFG with p1=24, p2=55

Fig. 5. Time of the integration using four nodes with fixed number of global random
numbers and increasing dimensions (left). Comparison of the integration time using
LCG and LFG (various p1 and p2, right)

 0

 500

 1000

 1500

 2000

 2500

 10 20 30 40 50 60 70 80

S
pe

ed
up

Dimension (d)

LCG integration (4 nodes) vs NAG integration speedup

C0-continuous
Discontinuous

Oscillatory

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 10 20 30 40 50 60 70 80

S
pe

ed
up

Dimension (d)

LFG integration (4 nodes, p1=24, p2=55) vs NAG integration speedup

C0-continuous
Discontinuous

Oscillatory

Fig. 6. Speedup of the integration using LCG (left) and LFG (right) using four nodes
vs D01GBF NAG routine using one node

of generator, we use n from 7 · 109 to 67 · 109. Then the global number of points
is N = n/d, where d is the dimension.

The scalability of the algorithm in case of the fixed number of global points
(we use n random numbers) is shown in Fig. 4 (left). We can observe that the
performance grows (the time decreases) to a certain number of nodes. From
this threshold value, the performance decreases slightly. It is due to the ratio
of the computation to communication cost. For Monte Carlo methods it is very
important to use sufficiently large number of points to achieve desired accuracy.
Thus it is better to increase the number of global points when additional cluster
nodes are used (we add n random numbers for each new node). Figure 4 (right)
shows that in such a case the execution time grows slightly.

Multidimensional Monte Carlo Integration on Clusters 611

Table 1. Accuracy of the LCG integration and D01GBF for “Oscillatory”

Dimension LCG integration LCG accuracy NAG integration NAG accuracy

24 −0.48923137 2.48E-5 −0.48917838 1.58E-4
30 −0.69255621 2.71E-5 −0.69255412 1.90E-4
36 0.12922529 3.11E-5 0.12918500 2.45E-4
42 0.61335932 3.14E-5 0.61327319 2.86E-4
48 0.20421457 3.39E-5 0.20427389 3.24E-4
54 −0.49101977 3.82E-5 −0.49094998 3.86E-4
60 −0.34648007 4.00E-5 −0.34634743 4.26E-4
66 0.02768727 4.20E-5 0.02758309 4.49E-4
72 0.42734610 4.40E-5 0.42736322 5.27E-4

It should be noticed that for the increasing dimension and the fixed num-
ber of global random numbers, the number of global points from Id decreases
resulting in shorter execution time (Fig. 5, left). The comparison of the time of
the algorithm using LCG and LFG respectively is shown in Fig. 5 (right). Again
we can see the influence of the values of p1 and p2.

Figure 6 compares our algorithm with D01GBF routine from the well-known
NAG Library. D01GBF uses an adaptive Monte Carlo method based on the algo-
rithm described in [20]. Although we have used the version of NAG intended
for multicore shared-memory machines, we have not observed any change of the
performance of D01GBF in case of the use of multiple cores of Xeon processors.
We have observed that our algorithm is much faster than the NAG routine.
Moreover, our algorithm produces more accurate results (see Table 1).

5 Conclusions

We have showed that the multidimensional Monte Carlo integration can be
efficiently implemented on clusters with hybrid GPU-accelerated nodes using
recently developed parallel versions of LCG and LFG pseudorandom number
generators. We have explained how to utilize multiple GPUs, all cores of CPUs
and all available nodes of a cluster using MPI. The results of experiments per-
formed on a Tesla-based GPU cluster have shown the our implementation is
much more efficient than the corresponding NAG routine. Although, we use the
NVIDIA CUDA Fermi architecture, the implementation does not rely heavily
on it. We use basic CUDA interface, thus the use of advanced hardware features
is hidden. However we can expect that the use of the new Kepler architecture
would be profitable but it will be the subject of our further research.

References

1. Kindratenko, V.V., Enos, J., Shi, G., Showerman, M.T., Arnold, G.W., Stone,
J.E., Phillips, J.C., mei Hwu, W.: GPU clusters for high-performance computing.
In: Proceedings of the 2009 IEEE International Conference on Cluster Computing,
pp. 1–8, New Orleans, LA, USA. IEEE, 31 Aug–4 Sept 2009

612 D. Sza�lkowski and P. Stpiczyński

2. Bueno, J., Planas, J., Duran, A., Badia, R., Martorell, X., Ayguade, E., Labarta,
J.: Productive programming of GPU clusters with OmpSs. In: 26th International
Conference on Parallel Distributed Processing Symposium (IPDPS), 2012, pp. 557–
568. IEEE (2012)

3. Göddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P.S., Buijssen, S.H.M.,
Grajewski, M., Turek, S.: Exploring weak scalability for FEM calculations on a
GPU-enhanced cluster. Parallel Comput. 33(10–11), 685–699 (2007)

4. Fatica, M.: Accelerating linpack with CUDA on heterogenous clusters. In: Pro-
ceedings of 2nd Workshop on General Purpose Processing on Graphics Processing
Units, GPGPU 2009, pp. 46–51, Washington, DC, USA, 8 Mar 2009

5. NVIDIA Corporation: NVIDIA next generation CUDA compute architecture:
Fermi. http://www.nvidia.com/ (2009)

6. NVIDIA Corporation: CUDA Programming Guide. NVIDIA Corporation. http://
www.nvidia.com/ (2012)

7. Pacheco, P.: Parallel Programming with MPI. Morgan Kaufmann, San Francisco
(1996)

8. Bull, J.M., Freeman, T.L.: Parallel globally adaptive quadrature on the KSR-1.
Adv. Comput. Math. 2, 357–373 (1994)

9. Ferrenberg, A., Landau, D., Wang, Y.J.: Monte Carlo simulations: hidden errors
from good random number generators. Phys. Rev. Lett. 69, 3382–3384 (1992)

10. Mascagni, M., Srinivasan, A.: Algorithm 806: SPRNG: a scalable library for
pseudorandom number generation. ACM Trans. Math. Softw. 26(3), 436–461
(2000)

11. Mascagni, M., Srinivasan, A.: Corrigendum: Algorithm 806: SPRNG: a scalable
library for pseudorandom number generation. ACM Trans. Math. Softw. 26(4),
618–619 (2000)

12. Mascagni, M.: Parallel linear congruential generators with prime moduli. Parallel
Comput. 24(5–6), 923–936 (1998)

13. Mascagni, M., Chi, H.: Parallel linear congruential generators with Sophie-Germain
moduli. Parallel Comput. 30(11), 1217–1231 (2004)

14. Mascagni, M., Srinivasan, A.: Parameterizing parallel multiplicative lagged-
Fibonacci generators. Parallel Comput. 30(5–6), 899–916 (2004)

15. Srinivasan, A., Mascagni, M., Ceperley, D.: Testing parallel random number gen-
erators. Parallel Comput. 29(1), 69–94 (2003)

16. Stpiczyński, P., Sza�lkowski, D., Potiopa, J.: Parallel GPU-accelerated recursion-
based generators of pseudorandom numbers. In: Proceedings of the Federated
Conference on Computer Science and Information Systems, pp. 571–578, Wroclaw,
Poland. IEEE Computer Society Press, 9–12 Sept 2012

17. Stpiczyński, P.: Solving linear recurrence systems on hybrid GPU accelerated
manycore systems. In: Proceedings of the Federated Conference on Computer Sci-
ence and Information Systems, Szczecin, Poland, pp. 465–470. IEEE Computer
Society Press, 18–21 Sept 2011

18. Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull.
Am. Math. Soc. 84, 957–1041 (1978)

19. Hahn, T.: CUBA–a library for multidimensional integration. Comput. Phys. Com-
mun. 168, 78–95 (2005)

20. Lautrup, B.: An adaptive multi-dimensional integration procedure. In: Proceedings
of the 2nd Colloquium on Advanced Methods in Theoretical Physics, Marseille

Efficient Execution of Erasure Codes
on AMD APU Architecture

Roman Wyrzykowski, Marcin Woźniak(B), and Lukasz Kuczyński

Institute of Computer and Information Sciences,
Czestochowa University of Technology,

Dabrowskiego 73, 42-201 Czestochowa, Poland
{roman,marcell,lkucz}@icis.pcz.pl

Abstract. Erasure codes such as Reed-Solomon codes can improve the
availability of distributed storage in comparison with replication sys-
tems. In previous studies we investigated implementation of these codes
on multi/many-core architectures, such as Cell/B.E. and GPUs. In par-
ticular, it was shown that bandwidth of PCIe bus is a bottleneck for the
implementation on GPUs.

In this paper, we focus on investigation how to map systematically
the Reed-Solomon erasure codes onto the AMD Accelerated Processing
Unit (APU), a new heterogeneous multi/many-core architecture. This
architecture combines CPU and GPU in a single chip, eliminating costly
transfers between them through the PCI bus. Moreover, APU processors
combine some features of Cell/B.E. processors and many-core GPUs,
allowing for both vectorization and SIMT processing simultaneously.

Based on the previous works, the method for the systematic map-
ping of computation kernels of Reed-Solomon and Cauchy Reed-Solomon
algorithms onto the AMD APU architecture is proposed. This method
takes into account properties of the architecture on all the levels of its
parallel processing hierarchy.

Keywords: Erasure codes · Reed-Solomon codes · Multicore architec-
tures · GPU · APU · OpenCl

1 Introduction

There is a rapid increase in sensitive data, such as biomedical records or finan-
cial data. Protecting such data while in transit as well as while at rest is crucial
[7]. An example are distributed data storage systems in grids [18] and clouds [1],
that have different security concerns than traditional file systems, since data are
now spread across multiple hosts. Failure of a single host could lead to loss of
sensitive data, and compromise the whole system. Consequently, suitable tech-
niques, e.g., cryptographic algorithms and data replication, should be applied to
fulfill such important requirements as confidentiality, integrity, and availability
[1,18].

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 613–621, 2014.
DOI: 10.1007/978-3-642-55224-3 57, c© Springer-Verlag Berlin Heidelberg 2014

614 R. Wyrzykowski et al.

A classic concept of building fault-tolerant systems consists of replicating
data on several servers. Erasure codes can improve the availability of distributed
storage by splitting up the data into n blocks, encoding them redundantly using
m blocks, and distributing the blocks over various servers [4]. As was shown in
[16], the use of erasure codes reduces “mean time of failures by many orders of
magnitude compared to replication systems with similar storage and bandwidth
requirements”. This approach can be also used to build large-scale storage instal-
lation that requires fault-protection beyond RAID-5 in the case of multiple disk
failures [1,13].

There are many ways of generating erasure codes. A standard approach is the
use of the Reed-Solomon (or RS) codes [11]. These codes were applied, among
others, to provide a reliable data access in the well known persistent data store,
OceanStore [9]. The main disadvantage of this approach is a relatively large
computational cost because all operations are implemented over the Galois field
GF (2w) arithmetic, which is traditionally not supported by microprocessors,
where

2w ≥ n+m. (1)

All operations, such as addition, multiplication or division, have to be performed
in the Galois field GF (2w), which in the case of multiplication or division leads
to a significant growth of computational cost. The computational cost of RS
codes grows with the value of n [15] (and m, as well).

The development of high-performance multicore architectures opens a way
to take advantages of RS erasure codes, since performance delivered by this
architectures is no longer an obstacle to utilization of RS codes in practical
data storage systems [1,5,10,19]. In our previous studies [10,18–20], we investi-
gated implementation of these codes on multi/many-core architectures, such as
Cell/B.E. and GPUs. In particular, it was shown that bandwidth of PCIe bus is
a bottleneck for the implementation on GPUs.

Therefore, the APU (Accelerated Processing Unit) [2], where RAM memory
access from the GPU does not require the PCIe transfer, appears to be an
interesting alternative to alleviate such a bottleneck. In this work, we focus
on investigating how to map systematically the RS erasure codes on the AMD
APUs, a new heterogeneous multi/many-core architecture, which combines CPU
and GPU in a single chip.

The material of this paper is organized as follows. Details of the Reed-
Solomon encoding/decoding algorithm are introduced in Sect. 2. In Sect. 3, we
discuss the previous research using heterogeneous architectures: Cell/B.E. hybrid
processor and NVIDIA Tesla M2070Q GPU. Sect. 4 provides overview of the
AMD APU architecture as well as discusses the proposed methodology for map-
ping the RS codes on the APU. The performance results achieved on
A8-3870 APU are presented in Sect. 5. The last Sect. 6 gives conclusions and
future work.

Efficient Execution of Erasure Codes on AMD APU Architecture 615

2 Reed-Solomon Codes and Linear Algebra Algorithms

Applying EC codes to increase reliability of distributed data management sys-
tems can be described in the following way [11]. A file F of size |F | is partitioned
into n blocks (stripes) of size B words each, where:

B = |F |/n . (2)

Each block is stored on one of n data devices D0,D1, . . . , Dn−1. Also, there are
m checksum devices C0, C1, . . . , Cm−1. Their contents are derived from contents
of data devices, using an encoding algorithm. This algorithm has to allow for
restoring the original file from any n (or a bit more) of n + m storage devices
D0, D1, . . . , Dn−1, C0, C1, . . . , Cm−1, even if m of these devices failed, in the
worst case.

The application of the Reed-Solomon erasure codes includes [11,12] two
stages: (i) encoding, and (ii) decoding. At the encoding stage, an input data
vector dn = [d0, d1, . . . , dn−1]T , containing n words each of size w bits, is multi-
plied by a special matrix

F(n+m)×n =
[

In×n

F∗
m×n

]

(3)

with elements defined over GF (2w). As a result of the encoding procedure, we
obtain an (n+m) column vector

en+m = F(n+m)×ndn =
[
dn

cm

]

, (4)

where:
cm = F∗

m×ndn . (5)

Therefore, the encoding stage can be reduced to performing many times the
matrix-vector multiplication (5), where all operations are carried out overGF (2w).

The decoding stage consists in deleting those rows of the matrix F(n+m)×n

that correspond to failed nodes. The reconstruction of failed elements (words)
of the vector dn is based on applying the following expression:

dn = φ−1
n×n × e∗

n , (6)

where the column e∗
n consists of entries of the original vector en+m located in

nodes that did not fail. The decoding procedure ends with determining those
entries of the checksum vector cm that correspond to failed nodes.

In our investigations we focus on mapping only the first stage, namely encod-
ing, since our main objective is to determine opportunities given by applying
innovative multicore architectures to accelerate computations required to imple-
ment the classic version of the Reed-Solomon codes. It follows from the above
assumption that there is no need to consider the decoding phase, since it dif-
fers from the encoding phase only by an additional procedure of computing the

616 R. Wyrzykowski et al.

inverse matrix of size n×n, which is performed just once in order to reconstruct
a given file after the failure. Moreover, the complexity of the inversion procedure
is small for relatively small values of m, which are of our primary interest. So,
for sufficiently large files, efficiency aspects of entire computations depend in
practice on the efficiency of operation (5).

3 Previous Research Using Cell/B.E. and Tesla M2070Q
GPU

The computational power of Cell/B.E. [3], coupled with its security features,
make it a suitable platform to implement algorithms aimed at improving data
confidentiality, integrity, and availability [10,18], such as Reed-Solomon codes.
Also, basic features of multicore GPUs [6,17] such as utilization of a large number
of relatively simple processing units operating in the SIMD fashion, as well as
hardware supported multithreading, enable the efficient implementation of this
type of computations.

Previous investigations [10,18–20] confirmed the advantage of using Cell/B.E.
for the efficient implementation of the classic Reed-Solomon codes, as well as the
Cauchy modification of Reed-Solomon Codes. The implementation for Cell/B.E.
covered all three levels of processor parallelism: eight SPE cores, vector process-
ing, and two pipelines. In the case of massively parallel NVIDIA GPU, the main
factor limiting the encoding efficiency was the PCIe bus bandwidth, in spite of
using the stream processing, which allows for overlapping GPU computations
with data transfers between the GPU and CPU. The achieved encoding band-
width was up to 9.5 GB/s in the case of the Cell processor, and 3.5 GB/s for the
NVIDIA Tesla GPU.

4 Mapping Reed-Solomon Algorithm on AMD APU
Architecture

4.1 AMD APU Architecture

Accelerated Processing Unit is combination of CPU and GPU in a single chip.
An architecture overview of APU is shown in Fig. 1. In addition to the CPU and
GPU, the AMD APU architecture also consists of High Performance Bus and
Memory Controller, as well as Unified Video Decoder and Platform Interfaces
providing communication with external components. The access to the RAM
memory from both the CPU and GPU is realized by the High Performance Bus
and Memory Controller with the bandwidth of 29.8 GB/s. Such a combination
of CPU, GPU and RAM enables for the elimination of time-consuming transfers
over PCIe when performing memory access. Furthermore, the multi-core Radeon
GPU used in this architecture allows for running thousands of threads, and
vectorization, as well as provides a relatively low power consumption (TDP at
100 W), and very low hardware costs. Both CPU and GPU cores can be used
through the OpenCL programming framework [8].

Efficient Execution of Erasure Codes on AMD APU Architecture 617

Fig. 1. AMD APU Architecture

In the presented study, the AMD A8-3870 (Liano) processor with the Radeon
HD 6550D GPU is used. This GPU consists of 5 SIMD engines with 20 texture
units each, which gives 400 GPU cores. For 600 MHz clock frequency, its peak
performance is 480Gflops in single precision.

4.2 Mapping Details

The basic algorithm for mapping the Reed-Solomon encoding on the APU GPU
is based on the vectorization algorithm proposed in [19] for the Cell/B.E. imple-
mentation. The general form of the algorithm is as follows:

c = [0, 0, . . . , 0]
for i = 0, 1, . . . ,m− 1 do {

for j = 0, 1, . . . , n− 1 do

ci := ci ⊕ f∗
i,j � dj (7)

}
Here ⊕ and � symbols denote respectively the addition and multiplication
operations carried out over GF (2w).

As mentioned before, the basic operation of the Reed-Solomon algorithm
is a matrix-vector multiplication over the GF (2w) arithmetic. For the efficient
implementation, the multiplication operation of the form c = f∗d is implemented
using table lookups [12], based on the following formula:

c = gfilog(gflog(f) + gflog(d)) . (8)

618 R. Wyrzykowski et al.

Here gflog and gfilog denote respectively logarithms and antilogarithms tables
of 256 elements each, defined over GF (2w). Values of these tables are stored in
the fast local memory. The addition is implemented as a bitwise XOR operation.

The important factor influencing the encoding performance is the structure
of F-matrix. Taking into account the fact that the first row and the first col-
umn have the same values (f∗

0,j = f∗
i,0 = 1), it possible to reduce the number

of instructions performed by each GPU thread. Also, the situation in which an
encoded data item has a value of 0 requires a different treatment. In the pro-
posed approach, the conditional instruction is eliminated by introducing some
additional calculations so that every single GPU thread will perform exactly the
same instructions shown below:

k = get global id(0);
c[0][k] = d[0][k];
for j = 1, ..., n− 1 do c[0][k] ∧ = d[j][k];

for i = 1, ...,m− 1 do {
c[i][k] = d[0][k];
for j = 1, ..., n− 1 do {

tmp = d[j][k] && true;

c[i][k] ∧ = tmp ∗ gfilog[gflog[f∗[i][j] + gflog[d[j][k]]]; (9)
}

}
In the case of d[j][k] == 0, the right side of expression (9) takes the value of 0.
In any other case, the value of expression (9) is determined using the lookup
table.

As one of the main assumptions in our development is keeping the full com-
patibility with the open-source Jerasure library [14], values of gflog and gfilog
tables, as well as F-matrix, are taken from this library.

5 Performance Results

The performance experiments are carried out for the platform based on the
AMD A8-3870 APU with the Radeon HD 6550D GPU, 8 GB RAM. To program
this platform we use the OpenCL v1.2 programming standard and gcc v4.7.2
compiler. As in the previous studies, two variants of encoding are tested. They
assume the use of either 4 data nodes and 4 checksums nodes, or 8 data nodes and
4 checksums nodes. In both cases, the maximum encoding bandwidth of 1.5 GB/s
is achieved, while on CPU with the Jerasure library the encoding bandwidth is
about 0.25 GB/s only (Fig. 2).

Since the APU processor allows for the vector processing in each single GPU
thread, a vectorized version of the RS algorithm is also examined. It is based

Efficient Execution of Erasure Codes on AMD APU Architecture 619

Fig. 2. Bandwidth achieved on AMD A8-3870 (Radeon 6550D) for different variants of
implementing the Reed-Solomon encoding, depending on size of encoded file: (a) first
variant of encoding with n, m = 4; (b) second variant of encoding with n = 8, m = 4

on vectorizing accesses to lookup tables [18,19]. However, in the case of APU,
where gflog and gfilog tables are placed in the fast local memory, the vectorized
version of lookup table introduces too many additional operations, which results
in decreasing the performance.

Table 1 presents the performance comparison for the RS algorithm imple-
mentation on AMD A8-3870 APU and NVIDIA Tesla M2070Q GPU, where
results for the GPU are taken from our previous work [19].

The bandwidth of 1.5 GB/s on the AMD A8 APU seems to be not much in
comparison with 3.5 GB/s on the Tesla GPU processor. However, taking into
account the power consumption, the APU architecture is a better choice. In
fact, because the Tesla GPU processor can not work separately, the TDP factor
in this case should also include the CPU power consumption. So based on the
ratio of encoding bandwidth to TDP of each system, we conclude about a clear
advantage of APU over GPU. At the same time, the deciding factor in favor of
the AMD A8 APU architecture is its much lower hardware cost.

Table 1. Reed-Solomon performance comparison

Tesla M2070Q GPU AMD A8-3870 APU

Peak performance (Gflops) 1030 480 56
TDP (W) 225 + 100 100
RAM bandwidth (GB/s) (over PCIev2.0 x16) 8 29,8
Peak performance

TDP
(Gflops

Watt
) 2,68 4,80

Encoding bandwidth (GB/s) 3,5 1,5
Encoding bandwidth

TDP
(GB/s

Watt
) 0,011 0,015

Hardware cost $2100 $100

620 R. Wyrzykowski et al.

6 Conclusions

The preliminary performance results achieved on AMD A8 APU show the pos-
sibility of using the APU architecture for the efficient implementation of the
Reed-Solomon codes. The proposed approach allows us to encode data on the fly
in case of distributed data storage systems based on the 10GbEth network. Low
hardware costs and possibility to eliminate time-consuming CPU-GPU transfers
over the PCIe bus makes APUs a perspective architecture for many demanding
applications.

References

1. Gomez, L.B., Nicolae, B., Maruyama, N., Cappello, F., Matsuoka, S.: Scalable
Reed-Solomon-based reliable local storage for HPC applications on IaaS clouds. In:
Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS,
vol. 7484, pp. 313–324. Springer, Heidelberg (2012)

2. Branover, A., Foley, D., Steinman, W.: Amd fusion APU: llano. IEEE Micro 32(2),
28–37 (2012)

3. Chen, T., Raghavan, R., Dale, J., Iwata, E.: Cell broadband engine architecture
and its first implementation: a performance view. IBM J. Res. Dev. 51, 559–572
(2007)

4. Collins, R., Plank, J.: Assessing the performance of erasure codes in the wide-
area. In: Proceedings of 2005 International Conference on Dependable Systems
and Networks - DSN’05, pp. 182–187. IEEE Computer Society (2005)

5. Curry, M.L., Skjellum, A., Lee Ward, H., Brightwell, R.: Gibraltar: a Reed-Solomon
coding library for storage applications on programmable graphics processors. Con-
curr. Comput. Pract. Exp. 23(18), 2477–2495 (2011)

6. Fatahalian, K., Houston, M.: A closer look at gpus. Commun. ACM 51(10), 50–57
(2008)

7. Kher, V., Kim, Y.: Securing distributed storage: challenges, techniques, and sys-
tems. In: Proceedings of the 2005 ACM Workshop on Storage Security and Sur-
vivability, StorageSS ’05, pp. 9–25. ACM, New York (2005)

8. Khronos Group: The opencl specification version 1, 2 (2012)
9. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,

Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.:
OceanStore: an architecture for global-scale persistent storage. In: Proceedings
of 9th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems - ASPLOS 2000, pp. 190–201 (2000)

10. L. Kuczynski and R. Wyrzykowski. Efficient Data Management in PC Meta-
Clusters. The Publishing Office of Czestochowa University of Technology, 2011.

11. Plank, J.: A tutorial on Reed-Solomon coding for fault-tolerance in raid-like sys-
tems. Softw. Pract. Exp. 27, 995–1012 (1997)

12. Plank, J., Ding, Y.: Note: correction to the 1997 tutorial on Reed-Solomon coding.
Softw. Pract. Exp. 35, 189–194 (2005)

13. Plank, J., Luo, J., Schuman, C., Xu, L., Wilcox-O’Hearn, Z.: A performance eval-
uation and examination of open-source erasure coding libraries for storage. In:
FAST-09: 7th USENIX Conference on File and Storage Technologies, pp. 253–265
(2009)

Efficient Execution of Erasure Codes on AMD APU Architecture 621

14. Plank, J., Simmerman, S., Schuman, C.: Jerasure: a library in C/C++ facilitat-
ing erasure coding for storage applications. https://www.cs.utk.edu/plank/plank/
papers/CS-08-627.pdf

15. Plank, J., Thomason, M.: A practical analysis of low-density parity-check era-
sure codes for wide-area storage applications. In: Proceeding of 2004 International
Conference on Dependable Systems and Networks - DSN’04, pp. 115–124. IEEE
Computer Society (2004)

16. Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. replication: a quantitative
comparison. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002.
LNCS, vol. 2429, p. 328. Springer, Heidelberg (2002)

17. Wozniak, M., Olas, T., Wyrzykowski, R.: Parallel implementation of conjugate
gradient method on graphics processors. In: Wyrzykowski, R., Dongarra, J., Kar-
czewski, K., Wasniewski, J. (eds.) PPAM 2009, Part I. LNCS, vol. 6067, pp. 125–
135. Springer, Heidelberg (2010)

18. Wyrzykowski, R., Kuczynski, L.: Towards secure data management system for grid
environment based on the cell broadband engine. In: Wyrzykowski, R., Dongarra,
J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 825–
834. Springer, Heidelberg (2008)

19. Wyrzykowski, R., Kuczynski, L., Wozniak, M.: Towards efficient execution of era-
sure codes on multicore architectures. In: Jónasson, K. (ed.) PARA 2010, Part II.
LNCS, vol. 7134, pp. 357–367. Springer, Heidelberg (2012)

20. Wyrzykowski, R., Kuczynski, L., Wozniak, M.: Systematic mapping of Reed-
Solomon erasure codes on heterogeneous multicore architectures. In: High-
Performance Computing on Complex Environments, 25 pp. Wiley, New york (2014)

AVX Acceleration of DD Arithmetic Between
a Sparse Matrix and Vector

Toshiaki Hishinuma1(B), Akihiro Fujii1,
Teruo Tanaka1, and Hidehiko Hasegawa2

1 Major of Informatics, Kogakuin University,
Tokyo, Japan

2 Faculty of Lib., Info. and Media Sci., University of Tsukuba,
Tsukuba, Japan

em13015@ns.kogakuin.ac.jp

Abstract. High precision arithmetic can improve the convergence of
Krylov subspace methods; however, it is very costly. One system of high
precision arithmetic is double-double (DD) arithmetic, which uses more
than 20 double precision operations for one DD operation. We acceler-
ated DD arithmetic using AVX SIMD instructions. The performances
of vector operations in 4 threads are 51–59 % of peak performance in a
cache and bounded by the memory access speed out of the cache. For
SpMV, we used a double precision sparse matrix A and DD vector x
to reduce memory access and achieved performances of 17–41 % of peak
performance using padding in execution. We also achieved performances
that were 9–33 % of peak performance for a transposed SpMV. For these
cases, the performances were not bounded by memory access.

Keywords: Double-double arithmetic · AVX · SpMV · High precision

1 Introduction

In many cases, the kernel of a numerical simulation is the solution of a large and
sparse system of linear equations. Well-known algorithms for this solution are
the Krylov subspace methods, but these methods diverge, stagnate, and increase
iterations because of rounding errors. High precision arithmetic may be able
to improve the convergence of these methods [1]; however, it is very costly.
One system of high precision arithmetic is double-double (DD) arithmetic [2],
which does not need any special hardware and runs on general-purpose
processors but uses more than 20 double precision operations for one DD
operation.

In this study, we accelerate DD arithmetic using AVX (Intel Advanced Vector
Extensions) [3]. The targeted operations of Krylov subspace methods are the
vector operation, double precision sparse matrix and DD vector product (SpMV),
and transposed double precision sparse matrix and DD vector product.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 622–631, 2014.
DOI: 10.1007/978-3-642-55224-3 58, c© Springer-Verlag Berlin Heidelberg 2014

AVX Acceleration of DD Arithmetic Between a Sparse Matrix and Vector 623

2 SIMD Instruction and DD Arithmetic

2.1 Test Bed

The CPU is a 4-core 8-thread Intel Core i7 2600 K 3.4 GHz (Sandy Bridge),
which can use AVX. It has an 8 MB L3 cache and 16 × 256 bit SIMD registers.
ALU of Sandy Bridge operates an FP adder and multiplier in parallel. AVX
calculates four double precision variables at once. The peak performance of this
CPU is 108.8 GFLOPS (3.4 × 4 (cores) × 2 (adder and multiplier) × 4 (AVX)).

Memory is a 16 GB DDR3–1333 dual channel and memory bandwidth is
21.2 GB/s (10.6 GB/s × 2 (dual channel)).

OS is Fedora 16 and the compiler is an Intel C/C++ compiler 12.0.3. Com-
piler options -O3, -xAVX, -openmp, and -fp-model precise are used for enabling
C code optimization, AVX instructions, OpenMP based multi-threading, and
value-safe optimization.

2.2 DD Arithmetic

DD arithmetic consists of combinations of double precision values only and uses
two double precision variables to implement one quadruple precision variable [2].
It is based on the error-free floating-point arithmetic algorithms by Dekker [4]
and Knuth [5]. A DD addition consists of 11 double precision addition instruc-
tions, and a DD multiplication consists of 15 double precision addition instruc-
tions and 9 double precision multiplication instructions.

An IEEE 754 quadruple precision variable consists of a 1 bit sign part, 15
bit exponent part, and 112 bit significant part. A DD precision variable consists
of a 1 bit sign part, 11 bit exponent part, and 104 (52 × 2) bit significant part.
The exponent part of a DD precision variable is 4 bits shorter and the significant
part is 8 bits shorter than the exponent and significant parts of an IEEE 754
quadruple precision variable, respectively.

The simplest way to use IEEE 754 quadruple precision is with Fortran
REAL*16. We compared Fortran REAL*16 using an Intel Fortran compiler
12.0.3 (ifort) and DD arithmetic without any SIMD instructions. The compiler
option in ifort was -O3. Fortran REAL*16 in ifort was implemented only by
integer operations. We computed y = α × x + y , where x and y are quadruple
precision vectors and α is a quadruple precision variable. Two vectors x and
y whose sizes are 105 can be stored in the cache. The elapsed time of Fortran
REAL*16 was 3 ms and that of DD Arithmetic was 0.76 ms in 1 thread, which
means that DD arithmetic was 3.9 times faster than Fortran REAL*16.

The exponent and significant parts of DD variables were shorter than those
of quadruple variables but DD arithmetic was faster than quadruple precision
arithmetic in Fortran.

624 T. Hishinuma et al.

Table 1. Double-double vector operations

Operation Load Store Complexity (add + sub:mult)

axpy y = αx+y 2 1 35 (26:9)
axpyz z = αx+y 2 1 35 (26:9)
xpay y = x+αy 2 1 35 (26:9)
dot val = x ·y 2 0 35 (26:9)
nrm2 val = ‖x‖ 1 0 31 (24:7)
scale x = αx 1 1 24 (15:9)

NOTE: α and val are DD variables, x , y and z are DD vectors.

Fig. 1. Performances of vector operations on AVX

3 Double-Double Vector Operations

3.1 Vector Operations

Table 1 lists DD vector operations. “Load” means the number of elements of DD
vector referred in a kernel, “Store” means the number of elements of DD vector
moved to memory in a kernel, and “Complexity” means the number of double
precision operations in a kernel. We computed “GFLOPS for double precision”
using (Complexity × N)/elapsed-time.

We used an average at least 70 experiments and used the static scheduling in
OpenMP. Figure 1 shows the performances of DD vector operations in 1 thread
and 4 threads on AVX when N is 105. In this case, all variables were stored in
the cache.

The performances of vector operations in 1 thread are from 16.6 to 17.7
GFLOPS and 61–65 % of peak performance of one core, while those in 4 threads
are from 55.7 to 64.7 GFLOPS and 51–59 % of peak performance. The perfor-
mances of vector operations in 4 threads are 3.4–3.7 times higher than those of 1
thread. Multi-threading worked well for vector operations in the cache on AVX.

AVX Acceleration of DD Arithmetic Between a Sparse Matrix and Vector 625

The performance of dot is the highest, i.e., 64.7 GFLOPS in 4 threads and
59 % of peak performance. All vector operations were expressed by the same
instructions and only in the case of dot, store was eliminated from inside the
loop by the compiler. The performance of scale is the lowest, i.e., 55.7 GFLOPS
and 51 % of peak performance. Scale consisted of one load and one store. This
ratio was considered to be low performance.

The peak performance on the Intel core i7 2600 K is on the premise that
FP adder and multiplier are performed in parallel. However, DD arithmetic has
a different number of double precision addition and multiplication instructions.
For example, axpy consists of 26 double precision addition and 9 double pre-
cision multiplication instructions in a kernel. Theoretically, ALU calculates 26
double precision addition and 26 double precision multiplication instructions,
i.e., a total of 52 flops. However, axpy can calculate a maximum of 35 flops.
Therefore, the peak performance of axpy diminishes 67 % (35/52) of the peak
performance of hardware. We defined diminished peak performance as corrected
peak performance. The corrected peak performance of axpy, axpyz, xpay, dot
was 73.2, that of nrm2 was 70.4, and that of scale was 87.2 GFLOPS. The
performances of vector operations in 1 thread were 91–97 % of corrected peak
performances of one core, and those in 4 threads were 65–88 % of corrected peak
performances.

3.2 Memory Access

The 8 MB L3 cache can store two vectors when N is less than 2.6 × 105. Figure 2
shows the performances of axpy in 1 thread and 4 threads on AVX when the
vector size changes from 103 to 8.0 × 105.

In the cache, when N is 105, the performance of axpy in 1 thread is 17
GFLOPS, which is 62 % of peak performance of one core and 93 % of corrected
peak performance of one core. The performance of axpy in 4 threads is 61.4

Fig. 2. Performances of axpy on AVX

626 T. Hishinuma et al.

GFLOPS, which is 56 % of peak performance and 84 % of corrected peak perfor-
mance, meaning that the performance of axpy in 4 threads is 3.6 times higher
than that in 1 thread. Out of the cache, when N is 8.0 × 105, the performance
of axpy diminishes to 12 GFLOPS in 1 thread and 4 threads. The speed of data
moved from/to memory was (8.0 × 108 × 16 (bytes) × 3)/elapsed-time (2.2 ms)
= 17.5 GB/s. It is 83 % of the peak memory access speed of 21.2 GB/s. In the
DDR3–1333 dual channel, the maximum theoretical performance of axpy is 15.4
GFLOPS, i.e., 21.2/(16 × 3 × 35 (flops)). Out of the cache, we considered per-
formance to be bounded by the memory access speed and multi-threading was
not effective.

4 Sparse Matrix Vector Product in DD Arithmetic

4.1 Product of the Double Precision Matrix and DD Vector

Out of the cache, DD arithmetic for vectors is bounded by the memory access
speed; therefore, we need to reduce memory access to accelerate computation.
In many cases, for an iterative solver library, input matrix A is given by double
precision and iteratively used. To reduce memory access and accelerate the sparse
matrix and vector product, we used the double precision sparse matrix A and
DD precision vector x product (SpMV). This allowed the size of value in the
sparse matrix to half, compared to store in DD values.

The complexity of the DD matrix and DD vector product is 35 flops. SpMV
consists of 25 double precision addition and 8 double precision multiplication
instructions and its complexity is 33 flops. We computed GFLOPS for SpMV
using (33 × the number of non-zero elements (nnz))/elapsed-time. The corrected
peak performance of SpMV is 72 GFLOPS in 4 threads.

To store the double precision sparse matrix A, Compressed Row Storage (CRS)
[6] is used. The CRS format is expressed by the following three arrays:col ind,
row ptr, and val; one for matrix value (val), and the other two for integers (col ind
and row ptr). The val array stores the values of the non-zero elements of matrix
A, as they are traversed row-wise. The col ind array stores the column indexes of
the elements in the val array, i.e., if val[k] = aij then col ind[k] = j. The row ptr
array stores the locations in the val array that start a row, i.e., if val[k] = aij then
row ptr[i] � k < row ptr[i + 1].

The memory requirements of SpMV in its kernel is 50 bytes, consisting of 8
bytes for matrix A, 16 bytes for vectors x and y , and 4 bytes for vector col ind.
However, the DD matrix and DD vector product needs 58 bytes in a kernel.
The value of byte per flops is 1.5 for SpMV and 1.7 for the DD matrix and DD
vector product. SpMV can reduce the required memory to 88 % of that of the
DD matrix and DD vector product.

4.2 Fraction Processing on AVX

AVX must calculate four double precision instructions at once. Processing for
the remainder, which has one, two, or three elements, occurs at most once for

AVX Acceleration of DD Arithmetic Between a Sparse Matrix and Vector 627

a vector. However, in SpMV, the remainder occurs for each row. We call the
processing of the remainder as fraction processing.

Four methods exist for fraction processing. Table 2 lists these methods and
the performance of fraction processing for a band matrix in 4 threads, where
N is 104 and the bandwidth is 63 and 1023. There were three elements in the
remainder in each row. This was the worst case. In SpMV, we used an average
of 500 experiments and guided scheduling in OpenMP.

Table 2. Performance of fraction processing in ms (GFLOPS) (N = 104, 4 threads)

Bandwidth 63 1023

Padding in execution 49 (42.2) 71 (47.4)
Padding in creation CRS 47 (44.3) 71 (47.4)
Using SSE2 and normal instruction (without padding) 53 (39.0) 81 (41.1)
Using normal instruction (without padding) 48 (41.1) 71 (47.1)

“Padding” means that unnecessary elements are added to the remainder and
the remainder is eliminated. “Padding in execution” assigns zero to the operand
of AVX instructions at the execution. “Padding in creation” assigns zero to val
and col ind of CRS when creating CRS, but it enlarges the size of vector val and
col ind. “Using SSE2 (Streaming SIMD Extensions 2) and normal instruction”
means the following code, where r represents the number of elements in the
remainder:

if (r � 2)
process two elements with SSE2 instruction; r = r − 2;
if (r == 1)
process one element with normal instruction.

“Using normal instruction” means the following code:

for (; r < 0 ; r = r − 1)
process one element with normal instruction.

The performance of “using SSE2 and normal instruction” was the least (from
39.0 to 41.1 GFLOPS), because the ymm register is the same hardware as the
xmm register. When switching from AVX to SSE2, there is some processing to
save the register’s values; therefore, frequently switching AVX and SSE2 is not
recommended.

The performance of “padding in creation CRS” was the best (from 44.3 to
47.4 GFLOPS). However, the difference between “padding in execution” and
“using normal instruction” was from 1 % to 7 %. We chose the “padding in
execution” and “using normal instruction”, which did not need an extra cost for
the creation of the CRS matrix or any extra storage for a matrix.

628 T. Hishinuma et al.

Fig. 3. Performances of SpMV on AVX (1 thread)

We used a set of 15 sparse matrices that were taken from the University of
Florida Sparse Matrix Collection [7]. Figure 3 shows the performances of SpMV.
It arranges by nnz/row in 1 thread. The performances of SpMV using “padding
in execution” are from 5.1 to 12.4 GFLOPS, 19–46 % of peak performance of one
core, and 28–69 % of corrected peak performance of one core. The performances
of SpMV “using normal instruction” are from 3.4 to 12.2 GFLOPS, 12–45 % of
peak performance of one core, and 19–68 % of corrected peak performance of
one core. The performances of “padding in execution” are 1.0–1.2 times higher
than those of “using normal instruction”, except for apache1.

In this result, “padding in execution” is the best overall condition because it
can calculate any remaining numbers at once. However, “using normal instruc-
tion” needs a loop of processing fraction, which is the number of the remainder.

4.3 Multi-threading and Memory Access

Figure 4 shows the performances of SpMV in 1 thread and 4 threads “using
padding in execution”. The performances of SpMV in 1 thread are from 5.1
to 12.4 GFLOPS, 19–46 % of peak performance of one core, and 28–69 % of
corrected peak performance of one core. The performances of SpMV in 4 threads
are from 18.3 to 44.5 GFLOPS, 17–41 % of peak performance, and 26–62 %
of corrected peak performance, meaning that the performances of SpMV in 4
threads are 3.3–3.6 times higher than those in 1 thread. The performances of
SpMV show that matrices with more nnz/row show higher performances.

For the evaluation of memory access, we changed the size of the band matrix
from 103 to 4.0 × 105 when matrix bandwidth was 32. The 8 MB L3 cache can
store one double precision band matrix and two DD vectors when the matrix
size is less than 1.9 × 104. In the cache, when N is 104, performance of SpMV
in 1 thread is 12.7 GFLOPS, while that in 4 threads is 41.2 GFLOPS, meaning

AVX Acceleration of DD Arithmetic Between a Sparse Matrix and Vector 629

Fig. 4. Performances of SpMV on AVX (padding in execution)

Fig. 5. Performances of the transposed SpMV on AVX (padding in execution)

that the performance of SpMV in 4 threads is 3.2 times higher than that in 1
thread. Out of the cache, when N is 4.0 × 105, the performance of SpMV in 1
thread is 11.8 GFLOPS, while that in 4 threads is 38.1 GFLOPS, meaning that
the performance of SpMV in 4 threads is 3.2 times higher than that in 1 thread.
The performance of SpMV in 4 threads in the cache is 1.1 times higher than out
of the cache. As the difference in performance between in and out of the cache
is small, we concluded that SpMV is not bounded by the memory access speed.

4.4 Product of the Transposed Sparse Matrix and Vector

A transposed SpMV is also necessary for a Krylov subspace method. How-
ever, the performance and memory access patterns of the transposed SpMV are

630 T. Hishinuma et al.

different from those of the original SpMV with the same storage format. An
effective storage format for a transposed SpMV is available, but storage space
needs twice because of the transposed matrix. We evaluated a double precision
transposed sparse matrix AT and DD vector product x (y = ATx).

The difference between ATx and Ax is the cache hit ratio of DD vector x and
y . When a sparse matrix has a complicated structure, SpMV has a diminishing
cache hit ratio of loading x , while a transposed SpMV has a diminishing cache
hit ratio of loading and storing y .

Figure 5 shows the performances of ATx and Ax in 1 thread and 4 threads
using padding in execution. The performances of the transposed SpMV in 1
thread are from 6.8 to 11.3 GFLOPS and those in 4 threads are from 9.3 to 36.3
GFLOPS. The performances of the transposed SpMV in 4 threads are 1.3–3.3
times higher than those in 1 thread. The performances of SpMV are 1.3–1.7 times
higher than those of the transposed SpMV in 4 threads, except for apache1 and
aft01 that have a few the number of nnz/row. The difference in performances
between SpMV and transposed SpMV were small.

5 Conclusion

We accelerated DD arithmetic using AVX SIMD instructions. The peak perfor-
mance is on the premise that FP adder and multiplier were performed in parallel.
However, DD arithmetic has a different number of double precision addition and
multiplication instructions. It does not perform FP adder and multiplier in par-
allel and does not reach peak performance of hardware. We defined diminished
peak performance as corrected peak performance.

In the cache, the performances of DD vector operations in 4 threads were
51–59 % of peak performance and 65–88 % of corrected peak performance. The
performances of DD vector operations in 4 threads were 3.4–3.7 times higher than
those in 1 thread. Multi-threading worked well, but performances were bounded
by memory access speed out of the cache. In the theoretical memory access
speed, the maximum performance of axpy was 15.4 GFLOPS. We concluded that
performance was bounded by the memory access speed and multi-threading was
not effective.

For SpMV, we used the double precision sparse matrix A and DD precision
vector x product to reduce the required memory access to 88 % of that of the
DD matrix and DD vector product. To use the AVX, processing of the remainder
was necessary for each row. We chose “padding in execution” and “using normal
instruction”, which did not need any extra cost for the creation of the CRS
matrix or any extra storage for a matrix. “Padding in execution” was 1.0–1.2
times faster than “using normal instruction”. “Padding in execution” was the
best overall condition.

In the cache, when the size of the bandmatrix was 104 and bandwidth was 32,
using “padding in execution”, the performance of SpMV in 1 thread was 47 % of
peak performance of one core and 70 % of the corrected peak performance of one
core. The performance of SpMV in 4 threads was 38 % of peak performance and

AVX Acceleration of DD Arithmetic Between a Sparse Matrix and Vector 631

57 % of corrected peak performance, meaning that the performances of SpMV
in 4 threads were 3.2 times higher than those in 1 thread. Out of the cache,
when the size of the bandmatrix was 4.0 × 105, the performance of SpMV in
1 thread was 44 % of peak performance of one core and 66 % of corrected peak
performance of one core. The performance of SpMV in 4 threads was 35 % of
peak performance and 53 % of corrected peak performance, meaning that the
performance of SpMV in 4 threads was 3.2 times higher than that in 1 thread.
For these cases, the performance was not bounded by memory access speed. The
performances of SpMV were 1.3–1.7 times higher than that of the transposed
SpMV in 4 threads. The difference in performance between SpMV and the trans-
posed SpMV were small, except in some matrices which had a few nnz/row. The
ratio of corrected peak performance were good except for vector operations out
of the cache. ALU and multi-threading worked well. AVX acceleration of DD
arithmetic was effective. The problem of acceleration was in the different num-
ber of addition and multiplication instructions of DD arithmetic. In the future,
we will improve the number of addition and multiplication instructions.

Acknowledgement. The authors would like to thank the reviewers for their helpful
comments.

References

1. Hasegawa, H.: Utilizing the quadruple-precision floating-point arithmetic operation
for the Krylov subspace methods. In: The 8th SIAM Conference on Applied Linear,
Algebra (2003)

2. Bailey, D.H.: QD (C++ / Fortran-90 double-double and quad-double package),
http://crd-legacy.lbl.gov/dhbailey/mpdist/

3. Intel: Intrinsics Guide, http://software.intel.com/en-us/articles/intel-intrinsics-
guide

4. Dekker, T.: A floating-point technique for extending the available precision. Numer.
Math. 18, 224–242 (1971)

5. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, vol.
2. Addison-Wesley, Reading (1969)

6. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, pp. 57–65. SIAM, Philadelphia (1994)

7. The University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/
research/sparse/matrices/

Using Quadruple Precision Arithmetic to
Accelerate Krylov Subspace Methods on GPUs

Daichi Mukunoki1,3(B) and Daisuke Takahashi2

1 Graduate School of Systems and Information Engineering,
University of Tsukuba, Tsukuba, Japan

mukunoki@hpcs.cs.tsukuba.ac.jp
2 Faculty of Engineering, Information and Systems, University of Tsukuba,

1-1-1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan
daisuke@cs.tsukuba.ac.jp

3 Japan Society for the Promotion of Science, 5-3-1 Kojimachi,
Chiyoda-ku, Tokyo 102-0083, Japan

Abstract. The convergence of the Krylov subspace methods is affected
by round-off errors. The number of iterations until convergence may be
decreased by reducing round-off errors through the use of quadruple pre-
cision arithmetic instead of double precision. We implemented the CG
and BiCGStab methods using quadruple precision arithmetic and com-
pared the performance with the standard double precision implementa-
tions on an NVIDIA Tesla K20X GPU. Our results show that in some
cases our implementations using quadruple precision arithmetic outper-
form the double precision versions. We will show that quadruple precision
arithmetic is not costly for the CG and BiCGStab methods on GPUs and
the use of quadruple precision arithmetic may be a more effective alter-
native to the use of preconditioning.

Keywords: Krylov subspace method · CG method · BiCGStab method ·
Quadruple precision · GPU

1 Introduction

The convergence of the Krylov subspace methods, which are iterative methods
for solving linear systems, is significantly affected by round-off errors. Thus, there
are cases where reducing round-off errors with multiple precision arithmetic, such
as quadruple precision, causes the algorithm to converge more quickly [8].

Although multiple precision arithmetic operations generally require a large
amount of computation time, we have shown that dense matrix-vector multipli-
cation using software implemented quadruple precision arithmetic is memory-
bound on GPUs. This is due to the low Bytes/Flop of GPUs, and thus the
execution time is only about twice that of double precision operation [10]. This
shows that the use of quadruple precision arithmetic is not always costly on
modern processors such as GPUs.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 632–642, 2014.
DOI: 10.1007/978-3-642-55224-3 59, c© Springer-Verlag Berlin Heidelberg 2014

Quadruple Precision Krylov Subspace Methods on GPUs 633

In this paper, we will describe the implementation and performance of the
Conjugate Gradient (CG) and Bi-Conjugate Gradient Stabilized (BiCGStab)
methods, which are Krylov subspace methods, using quadruple precision arith-
metic on an NVIDIA Tesla K20X GPU. Then, we will compare the perfor-
mance with the standard double precision implementations on the GPU. Since
the Krylov subspace methods are generally regarded as being memory-intensive,
using quadruple precision arithmetic operations on the GPU will only double
the execution time of 1 iteration of double precision versions. Even if the use of
quadruple precision arithmetic increases the execution time of 1 iteration, the
time until convergence may be reduced if increasing the precision can reduce the
number of iterations enough to compensate. Therefore, we expect that the imple-
mentations using quadruple precision arithmetic may outperform the standard
double precision versions.

This paper is organized as follows: In Sect. 2 we will introduce related work. In
Sect. 3 we will explain the CG and BiCGStab methods using quadruple precision
arithmetic. In Sect. 4 we will show our implementation for GPUs. In Sect. 5 we
will compare the performance of our quadruple precision implementation with
the double precision versions. In Sect. 6 we will discuss the performance and
effectiveness of quadruple precision arithmetic. Finally, we will conclude the
paper in Sect. 7.

2 Related Work

Hasegawa [8] compared the performance of an unpreconditioned BiCG method
using quadruple precision arithmetic to the preconditioned method using only
double precision arithmetic on various architectures. He did not show cases where
implementations using quadruple precision arithmetic outperformed those using
only double precision arithmetic, but he expected that the use of quadruple
precision arithmetic may be an effective alternative to preconditioning which
has low parallelism on parallel architectures.

Furuichi et al. [6] implemented the Generalized Conjugate Residual (GCR)
methods using quadruple precision arithmetic on the NEC SX-9 supercomputer.
They applied quadruple precision arithmetic to the preconditioned methods save
for the preconditioning operations, which were performed using double precision
operations. As a result, they improved the convergence without significantly
increasing the execution time. Saito et al. [15] also showed convergence improve-
ment of the GCR methods on the Scilab toolbox they developed by using quadru-
ple precision arithmetic for certain parts of the algorithm.

Such studies showed that the use of quadruple precision arithmetic improves
the convergence and is useful for solving problems which cannot be solved using
standard double precision solvers. However, we expect that the use of quadru-
ple precision arithmetic can also be used to accelerate double precision solvers
even when quadruple precision arithmetic is not necessary. In addition, although
Krylov subspace methods have been implemented on GPUs [7,11], there is no
research on the implementation and performance of methods using quadruple-
precision arithmetic on GPUs.

634 D. Mukunoki and D. Takahashi

r0 = b − Ax0

for : k = 1, 2, ... do
solve Mzk−1 = rk−1

ρk−1 = rk−1, zk−1

if k = 1 then
p1 = z0

else
βk−1 = ρk−1/ρk−2

pk = zk−1 + βk−1pk−1

end if
qk = Apk

αk = ρk−1/ pk, qk

xk = xk−1 + αkpk

rk = rk−1 − αkqk

if ||rk||/||r0|| break
end for

Fig. 1. Preconditioned CG
method

r0 = b − Ax0

r̃ = r0

for : k = 1, 2, ... do
ρk−1 = r̃, rk−1

if ρk−1 = 0 method fails
if k = 1 then

pk = rk−1

else
βk−1 = (ρk−1/ρk−2)(αk−1/ωk−1)
pk = rk−1 + βk−1(pk−1 − ωk−1vk−1)

end if
solve pk = Mp̂
vk = Ap̂
αk = ρk−1/ r̃, vk

s = rk−1 − αkvk

if ||s||/||r0|| then
xk = xk−1 + αkp̂
break

end if
solve s = Mŝ
t = Aŝ
ω = t, s / t, t
xk = xk−1 + αkp̂ + ωkŝ
rk = s − ωkt
if ||rk||/||r0|| break
if ω = 0 break

end for

Fig. 2. Preconditioned BiCGStab
method

3 CG and BiCGStab Methods Using Quadruple Precision
Arithmetic

The CG method (Fig. 1) and the BiCGStab method (Fig. 2) [2] are Krylov sub-
space methods which are often used to solve large sparse linear systems Ax = b.
The CG method is applied when the coefficient matrix A is a symmetric pos-
itive definite matrix, and the BiCGStab method can be used when the coeffi-
cient matrix A is asymmetric. The convergence of the Krylov subspace methods
depends on the spectral properties of the coefficient matrix. To improve the
spectral properties, preconditioners which approximate the coefficient matrix
are often used. In the algorithms shown in Figs. 1 and 2 use the preconditioning
matrix M . By setting M = I, the algorithms become the same as the unprecon-
ditioned ones.

For this paper, we implemented both the unpreconditioned and precondi-
tioned methods. For the unpreconditioned methods, we used quadruple precision

Quadruple Precision Krylov Subspace Methods on GPUs 635

arithmetic everywhere except for the norm computation for checking conver-
gence, where we used double precision. Double precision is enough for the norm
computation because the operation is unrelated to the convergence. The input
matrix A and vector b are stored in the double precision format. The vector x
and all other floating-point data are stored in the quadruple precision format.

For the preconditioned methods, we use an incomplete-LU preconditioner
while preserving the non-zero pattern of the coefficient matrix A, as known
as ILU(0), one of the most popular preconditioners for Krylov subspace meth-
ods. The ILU(0) performs incomplete-LU factorization which approximates A ≈
M = LU , where L and U are the lower and upper triangular matrices, respec-
tively. Thus, the system is solved as M−1Ax = M−1b using sparse triangular
solvers with a forward substitution with L and a backward substitution with U .
In general, a preconditioning process has serial processing portions, and these
portions may be the most time-consuming portion in the Krylov subspace meth-
ods on parallel architectures. In fact, Naumov [11] reports that the most time-
consuming portion of the ILU(0) preconditioned BiCGStab method is triangular
solvers on GPUs. On the other hand, preconditioning can be performed using
lower precision arithmetic since the objective of preconditioning is computing an
approximation of the coefficient matrix. Therefore, even when using quadruple
precision arithmetic, we used a double precision ILU(0) preconditioner.

4 Implementation

In our research, we implemented both the double and quadruple precision ver-
sions to compare the performance. We used CUDA which is a C/C++ based
programming environment for GPU computing. Our target architecture is the
NVIDIA Kepler architecture GPUs of compute capability 3.5.

4.1 CG and BiCGStab Methods

We used the GPU to perform vector operations, and the CPU to perform scalar
operations. We implemented SpMV (y = Ax), DOT (r = 〈x, y〉) and some GPU
kernel functions which perform scalar multiplication and vector addition similar
to AXPY (y = αx + y). For some double precision kernels, vendor provided
libraries such as CUBLAS [12] and cuSPARSE [13] are available. However, in
order to measure the performance impact of the different precisions accurately,
we implemented all vector operation subroutines that require both double and
quadruple precision versions from scratch. By doing this we can ensure that the
algorithms of both quadruple and double precision versions are completely the
same including the number of threads for GPU kernel functions.

Among the kernels we implemented, SpMV is generally the most time-
consuming operation. We used the Compressed Row Storage (CRS) format which
is one of the most widely used storage formats for storing sparse matrices. In the
CRS format, a sparse matrix is stored into the data array by scanning the matrix
in the row direction using two arrays to represent the position of the non-zero

636 D. Mukunoki and D. Takahashi

elements: an index array, which represents the column number of the non-zero
elements in the data array, and a pointer array, which points to the first non-
zero element of each row. Our SpMV implementation is based on the CRS-vector
method [3] which assigns 32 threads to calculate a single row. Reguly and Giles
[14] improved the method by selecting the optimal number of threads for the
calculation of a single row from among 1, 2, 4, 8, 16 and 32 in proportion to the
average number of non-zero elements per row. We also used this approach and
optimized the implementation for the Kepler architecture. The Kepler architec-
ture supports some new features that we expect will improve the performance
of SpMV, such as the 48 KB read-only data cache and shuffle instructions. We
used these features to improve the performance of SpMV.

For the preconditioned methods, we used the double precision ILU(0) pre-
conditioning subroutines provided by the cuSPARSE library. The usage of the
subroutines is shown in Naumov’s report [11]. In the iterative portion, the cuS-
PARSE subroutine cusparseDcsrsv solve() is executed two and four times on
the CG and BiCGStab methods, respectively. The subroutine solves a sparse
lower or upper triangular system with either a forward substitution or a back-
ward substitution.

4.2 Quadruple Precision Arithmetic

Quadruple precision arithmetic operations are not natively supported by GPUs.
We implemented double-double (DD) operations [1] which are often used to
perform quadruple precision floating-point arithmetic operations in software. In
the DD operations, a quadruple precision floating-point value a(q) is represented
as a(q) = a

(d)
hi +a(d)

lo using two double precision floating-point values, a(d)
hi and a(d)

lo

(|a(d)
lo | ≤ 0.5ulp(a(d)

hi)). The total significand precision of the quadruple precision
format on the DD operations is twice that of the IEEE double precision format
but the exponent precision is the same. Therefore, the significand and exponent
are less than that of the “binary128” 128-bit floating-point format as defined in
IEEE 754–2008 [9]. The quadruple precision arithmetic operations are computed
using only double precision floating-point arithmetic operations. Fundamentally,
the algorithm computes two-digit numbers much the same way as humans do on
paper. Such techniques were proposed in 1971 by Dekker [5].

We implemented the DD addition and multiplication as CUDA device func-
tions. Implementation details are the same as in our previous work [10]. One DD
value is stored using a “double2” type value which is a vector type consisting of
two double precision values defined in CUDA. For scalar value computations on
the CPU side, the DD operations are performed using the QD library [1].

5 Performance Evaluation

5.1 Evaluation Method

We evaluated the execution time of the iterative portion of the CG and BiCGStab
methods. We used an NVIDIA Tesla K20X Kepler architecture GPU (6 GB

Quadruple Precision Krylov Subspace Methods on GPUs 637

Table 1. Properties of the test matrices

bmwcra 1 pdb1HYS Lin SiO

of rows 148,770 36,417 256,000 33,401
of nonzeros 10,641,602 4,344,765 1,766,400 1,317,655
Structure symmetric symmetric symmetric symmetric
Positive definite yes yes no no
Application structural weighted structural theoretical/quantum

problem undirected graph problem chemistry problem

(a) bmwcra 1 (b) pdb1HYS (c) Lin (d) SiO

Fig. 3. Nonzero patterns of the test matrices

GDDR5 memory with ECC-enabled) and a CUDA 5.0 environment. The host
is an Intel Xeon E5–2609 (2.40 GHz) with 16 GB DDR3 memory, and CentOS
6.4 (kernel: 2.6.32–358.2.1.el6.x86 64). The programs were compiled with nvcc
5.0 (-O3 -arch sm 35) and gcc 4.4.6 (-O3). The “-arch sm 35” compiler flag for
nvcc is required in order to use the features of the Kepler architecture.

In the next section, we will show four cases where the use of quadruple
precision arithmetic is effective. The test matrices we used and their nonzero
patterns are shown in Table 1 and Fig. 3, respectively. The four matrices are real
square matrices selected from The University of Florida Sparse Matrix Collection
[4]. We used the CG and BiCGStab methods for the positive-definite and non
positive-definite matrices, respectively. The following conditions are used on all
the methods: right-hand side vector b = (1, 1, ..., 1)T , x0 = 0, the stopping
criterion ε = 10−12, and the maximum number of iterations is 20,000.

In this paper, we call the unpreconditioned CG method using double precision
arithmetic “DP-CG”and that using quadruple precision arithmetic “QP-CG”.
For the implementations using the double precision ILU(0) preconditioner, we
add the suffix “+DP-ILU(0)”. This is also the same for the BiCGStab methods.
For example, the preconditioned BiCGStab method using quadruple precision
arithmetic is “QP-BiCGStab+DP-ILU(0)”.

5.2 Result

The results for the matrices “bmwcra 1”and “pdb1HYS” on the CG methods
are shown in Tables 2 and 3, respectively. For the unpreconditioned method,
using quadruple precision arithmetic reduces the total time until convergence
to approximately 89 % of the double precision version on “bmwcra 1”and to

638 D. Mukunoki and D. Takahashi

Table 2. Results for matrix “bmwcra 1”

Implementation # of iteration Execution time [s] ||b−Ax||2
||b||2

1 iteration Total

DP-CG 18442 1.31E-03 24.1 6.26E-08
QP-CG 10077 2.14E-03 21.6 2.06E-09
DP-CG+DP-ILU(0) 2191 0.0195 42.6 2.31E-08
QP-CG+DP-ILU(0) 1387 0.0202 28.0 2.06E-09

Table 3. Results for matrix “pdb1HYS”

Implementation # of iteration Execution time [s] ||b−Ax||2
||b||2

1 iteration Total

DP-CG 9083 5.73E-04 5.20 4.21E-04
QP-CG 4428 7.83E-04 3.47 3.06E-05
DP-CG+DP-ILU(0) 1593 0.216 343.70 1.76E-04
QP-CG+DP-ILU(0) 1062 0.216 229.40 3.10E-05

approximately 67 % on “pdb1HYS”. The total time is also reduced when using
the preconditioned method, to approximately 66 % on “bmwcra 1”and approxi-
mately 67 % on “pdb1HYS”. However for both the problems, the total time for
the preconditioned method is longer than the unpreconditioned method on both
the double and quadruple precision implementations.

The results for the matrices “Lin”and “SiO” on the BiCGStab methods are
shown in Tables 4 and 5, respectively. The total time until convergence is reduced
to approximately 76 % of the double precision version on “Lin”with the precon-
ditioned method and to approximately 42 % on “SiO”with the unpreconditioned
method by using quadruple precision arithmetic. On the other hand on “Lin”,
although the DP-BiCGStab calculated the solution in 9.89 s, the method broke
down with ρ = 0 on the 7619th iteration, but the QP-BiCGStab got the solu-
tion faster without breaking down. On “SiO”, quadruple precision arithmetic is
useful with the unpreconditioned method, but not on with the preconditioned
method except for improving the accuracy of the solution.

Note that, in all four cases the accuracy of the solution is improved on both
the unpreconditioned and preconditioned methods by using quadruple precision
arithmetic.

6 Discussion

6.1 Computation Cost for Quadruple Precision Arithmetic

In the four cases shown in the previous section, the execution time of 1 iteration
of the unpreconditioned methods using quadruple precision arithmetic is approx-
imately 1.4 – 1.6 times more than the double precision versions. We investigated

Quadruple Precision Krylov Subspace Methods on GPUs 639

Table 4. Results for matrix “Lin”

Implementation # of iteration Execution time [s] ||b−Ax||2
||b||2

1 iteration Total

DP-BiCGStab 7619* 1.30E-03 9.89 8.17E-10
QP-BiCGStab 4606 2.09E-03 9.62 7.49E-13
DP-BiCGStab+DP-ILU(0) 1820 0.0118 21.49 9.00E-12
QP-BiCGStab+DP-ILU(0) 1294 0.0127 16.39 4.79E-13

* broke down at the iteration

Table 5. Results for matrix “SiO”

Implementation # of iteration Execution time [s] ||b−Ax||2
||b||2

1 iteration Total

DP-BiCGStab 1524 8.39E-04 1.28 2.37E-11
QP-BiCGStab 444 1.21E-03 0.54 8.99E-13
DP-BiCGStab+DP-ILU(0) 187 0.485 90.64 3.46E-12
QP-BiCGStab+DP-ILU(0) 209 0.485 101.40 6.81E-13

the computation cost for quadruple precision arithmetic on the main vector oper-
ations of the CG and BiCGStab methods. Table 6 shows the performance of the
double and quadruple precision SpMV, DOT and AXPY for the four problems.
For quadruple precision operations, we used “DDFlops”which means DD-type
floating point operations per second, instead of the standard “Flops”. We found
the performance ratio, DP:QP, to be ≈ 1.5–1.9:1 on SpMV, 1.3–1.7:1 on DOT,
1.3–1.9:1 on AXPY.

We can infer that these operations are memory-bound on the GPU on both
double and quadruple precision as evidenced by the Byte/Flop and Bytes/DDFlop
of the GPU and the operations. For example, quadruple precision SpMV is
approximately (8+4)×NNZ [Bytes]/(2×NNZ) [DDFlop] = 6.0 [Bytes/DDFlop],
where NNZ � N and the input matrix is double precision. For the Tesla K20X
GPU, the theoretical peak double precision performance is 1.31 TFlops and the
actual bandwidth is approximately 170 GB/s with ECC-enabled. The theoretical
peak performance of the quadruple precision operations using DD operations is
just 1/20 of double precision on multiply-add operations [10]: 1.31[TFlops]/20 =
65.5[GDDFlops]. Thus, the GPU has a Bytes/DDFlop ratio of: 170/65.5 ≈ 2.6.

Therefore, in theory quadruple precision arithmetic operations can be per-
formed in about twice the time of double precision on SpMV, DOT and AXPY,
however the performance ratio of DP:QP may vary because the execution effi-
ciency may vary depending on problem size and precision. However, in practice,
the execution time for quadruple precision operations may be less than twice that
of the double precision operations due to precision-independent costs such as the
kernel launch cost and the overhead incurred while handling the SpMV index
arrays. Hence, we can conclude that the use of quadruple precision arithmetic
on the CG and BiCGStab methods may be not as costly on GPUs.

640 D. Mukunoki and D. Takahashi

Table 6. Performance of double and quadruple precision SpMV, DOT and AXPY

Problem DP [GFlops] QP [GDDFlops]
SpMV DOT AXPY SpMV DOT AXPY

bmwcra 1 20.87 5.49 12.45 12.55 3.58 6.84
pdb1HYS 23.45 1.87 11.82 15.92 1.49 8.60
Lin 12.55 7.70 13.49 8.42 4.55 7.17
SiO 14.06 1.73 11.08 7.52 1.38 8.24

6.2 Effectiveness of Quadruple Precision Arithmetic

As we previously discussed, quadruple precision arithmetic operations can be
performed in about twice the time of double precision for SpMV, DOT and
AXPY on GPUs. Therefore, when the use of quadruple precision operations
can reduce the number of iterations to about half that of the double precision
version, the time until convergence may be shortened.

However, on the preconditioned methods on GPUs, the preconditioner takes
an extremely long time. In general, the preconditioning process includes serial
processing portions. The ILU(0) preconditioner also includes serial processing
portions in the forward and a backward substitution step. In the four cases pre-
sented in this paper, the preconditioning process occupies approximately 83.5 –
99.8 % of the execution time of 1 iteration. As a result, the execution time of
1 iteration is almost the same on both the double and quadruple precision ver-
sions when using a double precision preconditioner. In such cases, when quadru-
ple precision arithmetic decreases the number of iterations, the implementations
using quadruple precision arithmetic outperform the double precision versions.
In addition, preconditioning is generally used when the problem does not con-
verge when using unpreconditioned methods, but as an example of “Lin”, there
are cases where the use of quadruple precision arithmetic may be preferable to
preconditioning. Hence, the use of quadruple precision arithmetic may be a more
effective alternative to the use of preconditioning on GPUs.

On the other hand, we found cases where the number of iterations increases
when using quadruple precision arithmetic, for example on “SiO” with the pre-
conditioned method. We need to do further research in order to determine under
which conditions the number of iterations decreases when using quadruple pre-
cision arithmetic.

7 Conclusion

We have implemented the CG and BiCGStab methods using quadruple precision
arithmetic on GPUs and evaluated the performance on a Tesla K20X GPU. Our
results show that there are cases where the time until convergence can be reduced
by using quadruple precision arithmetic instead of double precision even when
quadruple precision arithmetic is not necessary. We have shown the following:

Quadruple Precision Krylov Subspace Methods on GPUs 641

1. unpreconditioned CG and BiCGStab methods using quadruple precision
arithmetic outperform those using only double precision arithmetic

2. unpreconditioned CG and BiCGStab methods using quadruple precision
arithmetic outperform the methods using only double precision arithmetic
with the double precision ILU(0) preconditioner

3. CG and BiCGStab methods using quadruple precision arithmetic with the
double precision ILU(0) preconditioner outperform the methods using only
double precision arithmetic with the same preconditioner

We conclude that quadruple precision arithmetic may be not costly on the CG
and BiCGStab methods on GPUs and there are cases where the use of quadruple
precision arithmetic is an effective alternative to the use of preconditioning on
GPUs. In addition, we need to do further research to determine in which cases
quadruple precision arithmetic is effective.

Acknowledgment. This research was supported by JST, CREST.

References

1. Bailey, D.H.: QD (C++/Fortran-90 double-double and quad-double package).
http://crd.lbl.gov/∼dhbailey/mpdist/

2. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear Sys-
tems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)

3. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA.
NVIDIA Technical Report NVR-2008-004 (2008)

4. Davis, T., Hu, Y.: The University of Florida Sparse Matrix Collection. http://
www.cise.ufl.edu/research/sparse/matrices/

5. Dekker, T.J.: A floating-point technique for extending the available precision.
Numer. Math. 18, 224–242 (1971)

6. Furuichi, M., May, D., Tackley, P.: Development of a stokes flow solver robust to
large viscosity jumps using a schur complement approach with mixed precision
arithmetic. J. Comput. Phys. 230(24), 8835–8851 (2011)

7. Gravvanis, G., Filelis-Papadopoulos, C., Giannoutakis, K.: Solving finite difference
linear systems on GPUs: CUDA based parallel explicit preconditioned biconjugate
conjugate gradient type methods. J. Supercomput. 61(3), 590–604 (2012)

8. Hasegawa, H.: Utilizing the quadruple-precision floating-point arithmetic operation
for the Krylov Subspace Methods. In: Proceedings of the SIAM Conference on
Applied Linear Algebra (LA03) (2003)

9. IEEE Computer Society: IEEE Standard for Floating-Point Arithmetic. IEEE Std
754-2008, pp. 1–58 (2008)

10. Mukunoki, D., Takahashi, D.: Implementation and evaluation of triple precision
BLAS subroutines on GPUs. In: Proceedings of the 2012 IEEE 26th Interna-
tional Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW 2012), The 13th Workshop on Parallel and Distributed Scientific and
Engineering, Computing (PDSEC-12), pp. 1378–1386 (2012)

11. Naumov, M.: Incomplete-LU and Cholesky Preconditioned Iterative Methods
Using CUSPARSE and CUBLAS. NVIDIA White Paper, WP − 06720 − 001 v5.5
(2013)

642 D. Mukunoki and D. Takahashi

12. NVIDIA Corporation: CUBLAS Library. https://developer.nvidia.com/cublas
13. NVIDIA Corporation: cuSPARSE Library. https://developer.nvidia.com/cusparse
14. Reguly, I., Giles, M.: Efficient sparse matrix-vector multiplication on cache-based

GPUs. In: Proceedings of the Innovative Parallel Computing: Foundations and
Applications of GPU, Manycore, and Heterogeneous Systems (InPar 2012), pp.
1–12 (2012)

15. Saito, T., Ishiwata, E., Hasegawa, H.: Analysis of the GCR method with mixed
precision arithmetic using QuPAT. J. Comput. Sci. 3(3), 87–91 (2012)

Effectiveness of Sparse Data Structure for
Double-Double and Quad-Double Arithmetics

Tsubasa Saito1, Satoko Kikkawa2,
Emiko Ishiwata3, and Hidehiko Hasegawa4(B)

1 Tokyo Metropolitan Ome Sogo High School, Tokyo, Japan
2 Canon Inc., Tokyo, Japan

3 Tokyo University of Science, Tokyo, Japan
4 University of Tsukuba, Tsukuba, Japan

hasegawa@slis.tsukuba.ac.jp

Abstract. Double-double and Quad-double arithmetics are effective
tools to reduce the round-off errors in floating-point arithmetic. However,
the dense data structure for high-precision numbers in MuPAT/Scilab
requires large amounts of memory and a great deal of the computa-
tion time. We implemented sparse data types ddsp and qdsp for double-
double and quad-double numbers. We showed that sparse data structure
for high-precision arithmetic is practically useful for solving a system of
ill-conditioned linear equation to improve the convergence and obtain
the accurate result in smaller computation time.

Keywords: Ill-conditioned matrix problem · Sparse matrix · Multiple
precisions

1 Introduction

In floating-point arithmetic, we cannot avoid the computation errors. Therefore,
for example, it is known that the iterative method for solving a system of ill-
conditioned linear equation may not converge when double-precision arithmetic
is used. Double-double and Quad-double arithmetics facilitate the use of high-
precision arithmetic on ordinary double-precision arithmetic environment. We
have developed MuPAT [1,2], which is “Multiple Precision Arithmetic Toolbox”
on Scilab [3] (cf. [4]), and have shown the effectiveness of double-double and
quad-double arithmetics for ill-conditioned problems [5]. MuPAT has only dense
data structures. Because of the large amount of memory and much more compu-
tation time, double-double and quad-double arithmetics cannot be applied for
large matrices.

We developed sparse data structures for quadruple and octuple-precision
arithmetics as a part of MuPAT. This implementation enables the users to treat
large matrices with lower memory consumption and small computation time. We

Tsubasa Saito and Satoko Kikkawa were at Tokyo University of Science while con-
ducting this research.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 643–651, 2014.
DOI: 10.1007/978-3-642-55224-3 60, c© Springer-Verlag Berlin Heidelberg 2014

644 T. Saito et al.

defined new data types for a sparse matrix which have double-double and quad-
double numbers, and made it possible to use a combination of double, double-
double, and quad-double arithmetics for both dense and sparse data structures.

We compared the memory consumption and the computation time of the
matrix computations with sparse and dense data structures for double-double
and quad-double arithmetics. We also showed that high-precision sparse data
structure is practically useful for ill-conditioned matrices by applying double,
double-double and quad-double arithmetics for the Biconjugate Gradient (BiCG)
method.

2 Double-Double and Quad-Double

Double-double and Quad-double arithmetics were proposed for quasi-quadruple-
precision and quasi-octuple-precision arithmetics by Hida et al. [6]. A double-
double number is represented by two, and a quad-double number is represented
by four, double-precision numbers. A double-double number x(dd) and a quad-
double number y(qd) are represented by an unevaluated sum of double-precision
numbers x0, x1, y0, y1, y2, y3 as follows:

x(dd) = x0 + x1, y(qd) = y0 + y1 + y2 + y3,

where x0, x1, y0, y1, y2, y3 satisfy the following inequalities:

|x1| ≤ 1
2

ulp(x0), |yi+1| ≤ 1
2

ulp(yi), i = 0, 1, 2,

where ulp stands for “units in the last place”. A double-double(quad-double)
number has 31(63) significant decimal digits. They can be computed by using
only double-precision arithmetic operations (see [6,7] for details).

In Scilab, double-precision numbers are defined by the data type named
constant. Scalars, vectors and matrices are treated in the same way as constant.
In MuPAT, double-double and quad-double numbers are defined as data types
named dd and qd, consisting of two or four constant data. We can use constant,
dd and qd types at the same time, with the same operators (+,−, ∗, /) and the
same functions such as abs, sin and norm.

3 Sparse Data Structure for MuPAT

MuPAT has only the dense data structures of the three data types constant,
dd, and qd. Sparse data structure is important to reduce the memory consump-
tion and the computation time. Especially using double-double and quad-double
arithmetics, sparse data structures are more important because they require
twice or four times memories compared with double-precision arithmetic, and
also require much more computation time. We developed the sparse data struc-
tures for double-double and quad-double arithmetics with considering the fol-
lowing points;

Effectiveness of Sparse Data Structure 645

• The same arithmetic operators (+,−, ∗) can be used among these data types.
• Operations for sparse and dense data in different precision numbers are avail-

able at the same time.

The users can compare problems in different precisions with lower memory con-
sumption and small computation time.

3.1 Sparse Data Structure for Double Precision Number

Sparse data structure stores non-zero entries with its row and column indices.
In Scilab, the following matrix

a =

⎛

⎜
⎜
⎝

0 0 9 0
0 0 7 1
1 0 0 0
0 0 0 8

⎞

⎟
⎟
⎠

can be represented by a sparse data type sparse as follows.

a =
(4, 4) sparse matrix
(1, 3) 9.
(2, 3) 7.
(2, 4) 1.
(3, 1) 1.
(4, 4) 8.

The first line (4, 4) means the size of the matrix. The row and column indices
and values of the matrix are stored after line 2. The entries are stored row-
by-row. The same arithmetic operators (+,−, ∗) for constant can be used for
sparse, and mixed operations between constant and sparse are also allowed.
The results of these binary operations become constant or sparse depending
on the operations.

3.2 Sparse Data Structures for Double-Double and Quad-Double
Numbers

To treat high-precision arithmetic for sparse data structure, we defined two new
sparse data types; one is ddsp for double-double numbers, and the other is qdsp
for quad-double numbers. These data types are based on CCS (Compressed
Column Storage) format, which contains some vectors; row index, column pointer
and values. ddsp has two and qdsp has four value vectors to represent a double-
double number and a quad-double number respectively. By these definitions of
data types, MuPAT has six data types: constant, dd, qd for dense data and
sparse, ddsp, qdsp for sparse data of double, double-double and quad-double
numbers respectively.

646 T. Saito et al.

3.3 Definition of Matrix Operators

Now we have three sparse data types sparse, ddsp, and qdsp. To enable the use
of the same matrix operators (+,−, ∗) for these data types, operator overloading
was applied to perform arithmetic operations among every existing data types
constant, dd, and qd, and sparse data types sparse, ddsp, and qdsp.

In many cases, the sparsity cannot be kept after sparse matrix operations.
Especially for sparse matrix multiplication, the result tends to have many non-
zero entries and become a dense matrix. Therefore, we should allocate memory
space dynamically.

3.4 Functions for Sparse Matrix

Some functions for sparse are extended to ddsp and qdsp. For example, full
for changing a sparse data type into a dense data type, and nnz for returning
the number of non-zero entries, and so on can be used in the same syntax among
sparse, ddsp, and qdsp. A’ for transposition of A and insertion and extraction
of matrix elements can be performed in the same syntax for all data types.

4 The Memory Consumption and the Computation Time

To confirm the effectiveness of a sparse matrix computation with using ddsp
and qdsp, we compared the memory consumption and the computation time
between sparse and dense data structures. All experiments were carried out on
Intel Core i5 1.7 GHz, 4 GB memory and Scilab version 5.3.3 running on Mac
OS X Lion. An explicit parallelization, for example OpenMP, was not applied.

4.1 Memory Consumption

We prepared some 1000×1000 random sparse matrices with different sparsity for
constant, dd, qd, sparse, ddsp, and qdsp. The sparsity patterns are random.
Table 1 shows the sparsity and the memory consumption of each matrix. Sparsity
is defined as the percentage of non-zero entries of the matrix. If the sparsity is
less than 66 % for double-double number or 80 % for quad-double number, the
memory consumptions of the sparse data structures are smaller than that of the
dense data structures.

4.2 Matrix Operations

Using the matrices in Table 1, we measured the following matrix operations.

• Matrix vector product Ax, Bx, Cx
• Matrix addition A + B, B + C, C + A
• Matrix multiplication AB, BC, CA

We executed each operation repeatedly 100 times. Tables 2 and 3 show the
results.

Effectiveness of Sparse Data Structure 647

Table 1. Memory consumption

Matrix Memory (MB)
Sparsity constant sparse dd ddsp qd qdsp

A 1 % 8.00 0.12 16.00 0.25 32.00 0.41
B 5 % 8.00 0.60 16.00 1.21 32.00 2.01
C 10 % 8.00 1.21 16.00 2.41 32.00 4.01
D 66 % 8.00 7.92 16.00 15.85 32.00 26.40
E 80 % 8.00 9.60 16.00 19.21 32.00 32.01

Table 2. Results of matrix operations (Memory)

Sparsity (%) Memory (MB)
ddsp qdsp

A + B 6 1.43 2.39
C + A 11 2.63 4.39
B + C 15 3.49 5.82

AB 40 9.51 15.98
CA 63 15.17 25.17
BC 99 23.86 39.73

Table 3. Results of matrix operations (Time)

Time (s)
dd ddsp dd/ddsp qd qdsp qd/qdsp

Ax 4.10 0.03 141.5 20.73 0.15 134.6
Bx 4.13 0.14 30.2 20.76 0.74 28.0
Cx 4.10 0.32 13.0 20.81 1.49 14.0

A + B 6.36 0.64 10.0 15.97 1.16 13.7
C + A 6.40 1.25 5.1 15.66 2.14 7.3
B + C 6.35 1.69 3.7 15.85 2.90 5.5

AB 2245.59 5.21 430.9 14909.50 12.27 1214.7
CA 2288.42 8.10 282.6 14964.51 20.84 718.1
BC 2282.17 16.54 138.0 14954.12 71.61 208.8

Matrix Vector Product. The computation time of matrix vector product for
ddsp is 141.5 times smaller than that of dd when the sparsity of the matrix is
1 % (Ax) and 13.0 times faster when the sparsity is 10 % (Cx). The computation
time for qdsp is 134.6 times smaller than that of qd when the sparsity is 1 % and
14.0 times faster when the sparsity is 10 %. The speedup values increase as the
matrix sparsity decreases.

Matrix Addition. The computation time of matrix addition for ddsp is 10.0
times and 3.7 times smaller than that of dd when the sparsity is 6 % (A + B)

648 T. Saito et al.

Table 4. Properties of test matrices

Matrix Dimension Non-zero Sparsity (%) Condition number

west0497 497 1,721 0.70 4.62 × 1011

gre 1107 1,107 5,664 0.46 3.19 × 107

tols2000 2,000 5,184 0.13 5.99 × 106

sherman3 5,005 20,033 0.08 3.49 × 1018

and 15 % (B +C) respectively. The computation time for qdsp is 13.7 times and
5.5 times smaller than that of qd when the sparsity is 6 % and 15 % respectively.

Matrix Multiplication. The sparsity may be increased in matrix multiplica-
tion. In case of quad-double arithmetic, the computation result of BC (Sparsity
99 %) by using a dense data type qd requires 32 MB memory. On the other hand,
the result by using a sparse data type qdsp requires 40 MB memory. When the
sparsity of the result is more than 66 % for double-double number or 80 % for
quad-double number, the memory usage of sparse data types ddsp and qdsp are
larger than that of dense data types dd and qd. However, the computation times
using qd and qdsp are 14954.1 s and 71.6 s respectively. The computation time
for qdsp is 208.8 times smaller than that of qd. In case of AB, AB keeps low
sparsity, and the computation time of ddsp is 430.9 times and qdsp is 1214.7
times smaller than that of dd and qd respectively.

5 Using High-Precision Arithmetic with Sparse Data
Structure for Ill-Conditioned Problems

We show the effectiveness of sparse data structure for high-precision arith-
metic on Scilab by applying the Biconjugate Gradient (BiCG) method for ill-
conditioned matrices. Theoretically, the BiCG method, which is one of the
Krylov subspace method, converges after at most n iterations, where n is the
dimension of the matrix [8]. However, in floating-point arithmetic, the norm of
the residual may diverge and oscillates, and then the iteration process may not
converge. Sometimes it may require more than n iterations.

The iteration was started with x0 = 0 and the right-hand side vector b was
given by substituting the solution x∗ = (1, 1, ..., 1)� into b = Ax∗. Stopping
criterion was ‖rk‖2 ≤ 10−12‖r0‖2. The initial shadow residual was r∗

0 = r0.
Iteration process was terminated at 104 iterations if it did not converge.

We took up four ill-conditioned test sparse matrices from [9]. These matrices
are constructed double-precision numbers, then lower components of double-
double and quad-double numbers are filled with zero. Condition numbers were
obtained using the Scilab function cond in double-precision. Table 4 shows the
list of test matrices.

Table 5 shows the results for double (D), double-double (DD), and quad-
double (QD). “Iterations” denotes the number of iterations required for conver-
gence, “Residual” denotes the relative residual norm ‖r‖2/‖r0‖2 and “Error”

Effectiveness of Sparse Data Structure 649

Table 5. Computation results

D

Matrix
Time (s)

Iterations Residual Error constant sparse c/s
west0497 † 1.02e+02 3.70e+05 39.1 2.8 13.8
gre 1107 † 6.97e+03 1.69e+04 278.7 4.1 68.7
tols2000 † 8.06e+02 2.34e+06 998.6 4.7 211.7

sherman3 † 1.73e-03 6.24e-01 6749.1 11.7 577.6

DD

Matrix
Time (s)

Iterations Residual Error dd ddsp dd/ddsp
west0497 † 2.18e-01 7.73e+02 303.7 15.0 20.2
gre 1107 † 2.40e-01 9.08e-01 1828.9 21.2 86.2
tols2000 1586 9.29e-13 3.55e-09 938.3 4.1 228.7

sherman3 7696 9.98e-13 1.05e-13 31227.4 45.8 681.9

QD

Matrix
Time (s)

Iterations Residual Error qd qdsp qd/qdsp
west0497 2676 6.09e-13 3.50e-08 306.6 7.0 43.84
gre 1107 3401 8.59e-13 3.05e-11 2136.2 17.6 121.3
tols2000 1080 6.77e-13 1.96e-09 2342.8 7.1 328.5

sherman3 4884 9.35e-13 1.73e-13 − 91.1

† : More than 104 iterations, − : Out of Memory, c/s : constant/sparse

denotes the relative error norm ‖x− x∗‖∞/‖x∗‖∞. constant/sparse is abbre-
viated to “c/s”. The values of “Residual” and “Error” were obtained by using
sparse data structures.

Using double-precision arithmetic, the BiCG method did not converge for
all matrices. Especially, for west0497 and gre 1107, the BiCG method converged
by only using quad-double arithmetic. For sherman3, even if the BiCG method
converged by using double-double arithmetic, the number of iteration became
more than n. Using quad-double arithmetic, the convergence improved, and the
number of iteration decreased and became less than n. High-precision arithmetic
produces great improvement and enables us to obtain the accurate result that
cannot be obtained by double-precision arithmetic.

However, using dense data types dd and qd, iteration process requires a great
deal of the computation time. Sparse data types ddsp and qdsp can save the
computation time. For sherman3, the computation time of ddsp is 680 times
smaller than that of dd, in the best case. Thus, high-precision sparse data struc-
ture provides more accurate results with practicable computation time. In case
of dense data structure, sherman3 could not be stored by a quad-double number
because of Out of Memory error. High-precision sparse data structure is also
important in terms of the memory consumption.

An improvement of the accuracy by high-precision arithmetic depends on the
problems and the methods. Although double-double and quad-double
arithmetics do not perform well for all problems, high-precision sparse data
structures surely increase the number of problems which can be solved accu-
rately.

650 T. Saito et al.

6 Conclusion

We developed the sparse data structures for quadruple-precision and octuple-
precision arithmetics in MuPAT/Scilab, and showed that high-precision sparse
data structure is practicable for solving a system of ill-conditioned linear
equation.

MuPAT covers all arithmetic operators for double, double-double, and quad-
double numbers for both dense and sparse data structures. Using MuPAT, six
data types are available at the same time and operations for mixed-precision and
mixed data structure are also available by the same operators and functions. To
use double-double and quad-double arithmetics with lower memory consumption
and smaller computation time, only a modification to definition of numbers is
needed.

The memory consumption of the sparse data types is smaller for a matrix
whose sparsity is less than 66 % for double-double number or 80 % for quad-
double number when comparing with dense data types. In matrix vector product,
the computation time of sparse data structures for a double-double number and
a quad-double number are 141.5 times and 134.6 times smaller than that of dense
data structures respectively, when the sparsity of the matrix is 1 %. In matrix
addition, the computation time of sparse data structure for a double-double
number and a quad-double number are 10.0 times and 13.7 times smaller than
that of dense data structures respectively, when the sparsity of the result is 6 %.
In matrix multiplication, even if the result becomes a dense matrix whose sparsity
is more than 99 %, needing more memory than using dense data structures, the
computation time can be reduced.

As a case study, we investigated the convergency of the BiCG method for
ill-conditioned matrices (cf. [5] for the results of the GCR method with double-
double arithmetic). Double-double and Quad-double arithmetics are crucial to
improvement of the accuracy. However, dense data structures for double-double
and quad-double numbers and arithmetics require large amounts of memory and
considerably long computation time. For some situations, a matrix cannot be
stored by a quad-double number because it requires four times as large memory
as a double-precision number. High-precision sparse data structure facilitates
the pragmatic problems of these restriction. Using sparse data structure, the
computation time became 20–680 times smaller than using dense data struc-
ture. Sparse data structure for double-double and quad-double arithmetics is a
practicable way to improve the convergence for ill-conditioned matrices, and to
increase the number of problems that can be solved.

Parallelization of sparse data structures for a double-double number and a
quad-double number is another big issue. As our future works, we will discuss
elsewhere.

Acknowledgement. The authors would like to thank the reviewers for their helpful
comments.

Effectiveness of Sparse Data Structure 651

References

1. MuPAT, http://www.mi.kagu.tus.ac.jp/qupat.html
2. Kikkawa, S., Saito, T., Ishiwata, E., Hasegawa, H.: Development and acceleration

of multiple precision arithmetic toolbox MuPAT for Scilab. JSIAM Lett. 5, 9–12
(2013)

3. Scilab, http://www.scilab.org/
4. Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou, J.,

Luszczek, P., Tomov, S.: Accelerating scientific computations with mixed preci-
sion algorithms. Comput. Phys. Comm. 180, 2526–2533 (2009)

5. Saito, T., Ishiwata, E., Hasegawa, H.: Analysis of the GCR method with mixed
precision arithmetic using QuPAT. J. Comput. Sci. 3, 87–91 (2012)

6. Hida, Y., Li, X.S., Bailey, D.H.: Quad-double arithmetic: algorithms, implementa-
tion, and application, Technical Report LBNL-46996, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720 (2000)

7. Dekker, T.J.: A floating-point technique for extending the available precision.
Numer. Math. 18, 224–242 (1971)

8. Barrett, R., et al.: Templates for the solution of linear systems: building blocks for
iterative methods, 2nd edn. SIAM, Philadelphia (1994)

9. The University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/
research/sparse/matrices/

Efficient Heuristic Adaptive Quadrature
on GPUs: Design and Evaluation

Daniel Thuerck1(B), Sven Widmer2, Arjan Kuijper1,3, and Michael Goesele2

1 TU Darmstadt, Darmstadt, Germany
daniel.thuerck@gris.informatik.tu-darmstadt.de

2 Graduate School of Computational Engineering,
TU Darmstadt, Darmstadt, Germany

3 Fraunhofer IGD, Darmstadt, Germany

Abstract. Numerical integration is a common sub-problem in many
applications. It can be solved easily in CPU-based applications using
adaptive quadrature such as the adaptive Simpson’s rule. These algo-
rithms rely, however, on error estimation yielding a significant computa-
tional overhead. In addition, they require recursive function evaluations,
which are not well suited for parallel computation on graphics processing
units (GPUs) due to warp divergence issues. In this paper, we introduce
heuristic forward quadrature as an alternative that is not only more effi-
cient than traditional methods, but also better suited for accelerated
massively-parallel calculation on GPUs. Additionally, we will give an
error estimate for our method and demonstrate performance results for
1D and 2D integral applications which show that the algorithm leverages
quadrature for the efficient implementation on GPUs.

Keywords: Numerical integration · GPGPU · Numerical algorithms ·
Heuristics · Interval estimation

1 Introduction

General purpose programming on graphics processing units (GPGPU) has been
popularized with the advent of CUDA [8], OpenCL and related techniques and
is currently one of the state-of-the-art approaches both inside and outside the
computer science domain. GPGPU is often used to numerically solve ordinary
or partial differential equations (ODEs, PDEs), e.g. in flow simulations, image
processing [9], or the economic sciences (option pricing via the Black-Scholes
equation) [5]. Especially when solving PDEs in financial mathematics, integra-
tion is required at some point. If there is no analytical solution available, we need
to rely on numerical integration (also known as quadrature). Adaptive methods
such as the adaptive Simpson’s method or the Gauss-Kronrod algorithm are
used with a given error tolerance to ensure exact values.

The principle of standard adaptive quadrature algorithms is shown in Algo-
rithm 1. The integration is first performed on the whole interval. Then, the

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 652–662, 2014.
DOI: 10.1007/978-3-642-55224-3 61, c© Springer-Verlag Berlin Heidelberg 2014

Efficient Heuristic Adaptive Quadrature on GPUs: Design and Evaluation 653

Algorithm 1. Principle of adaptive quadrature algorithms.
function AdaptiveQuadrature(f, a, b, ε)

q
≈← ∫ b

a
f(x)dx

δ ← |q − ∫ b

a
f(x)dx| � Using some given error estimator.

if δ > ε then
q ← AdaptiveQuadrature(f, a, a + (b − a)/2, ε) + AdaptiveQuadra-

ture(f, a + (b − a)/2, b, ε)

error is estimated by a given heuristic (in Simpson’s case, the result is compared
with a second integration using standard Simpson’s rule to check the difference
against a user-defined error tolerance). If the threshold is exceeded, the interval
is subdivided in at least two parts and the method is called recursively on the
subintervals.

While the method is able to guarantee a given error threshold, it requires
a significant computational overhead: Each time the interval is subdivided, the
last result is discarded. Additionally, the error estimates are complex and com-
putationally intensive as they need to compute a better approximation than the
current algorithm’s level. Given those two characteristics, the algorithm is not
well suited for GPUs. First, interval subdivision often yields branching which
severely affects the performance of threads in the same warp. Second, recursive
kernels are not yet possible in consumer cards (but will become available with
Nvidia HyperQ). In CUDA, recursion is limited to device functions while it is
not available at all in OpenGL (and OpenGL ES). Although transformation in
a non-recursive algorithms is possible, it is quite complex [7]. In this paper, we
propose an alternative method that results in a smaller number of function eval-
uations (and thus in a significant improvement of performance) and is especially
well suited for GPUs.

Our contributions are as follows: We propose heuristic adaptive forward
quadrature as an alternative quadrature method. We motivate and investigate a
special heuristic, give an error estimate and its proof, and show that the number
of function evaluations is significantly smaller than with today’s standard rou-
tine. Furthermore, we show a GPU implementation and analyze its performance
using an application from the image processing domain.

2 Related Work

Adaptive quadrature is a well-investigated topic. Research has, however, been
discontinued in recent years. A good overview can be found in Gander and
Gautschi [6]. The precision of the traditional, recursive algorithm depends largely
on the error metric. Typically, an integrand is integrated with two different
methods, one more precise than the other, and it is tested whether a given error
threshold is exceeded [6]. Further investigation on those estimators has been
conducted by Shapiro [12] and Berntsen et al. [3,4]. Both methods rely on the

654 D. Thuerck et al.

Algorithm 2. Principle of heuristic adaptive forward quadrature.
function HeuristicQuadrature(f, a, b, h∗, h∗)

p ← a
q ← 0
while p < b do

h ← EstimateIntervalLength(f, p, h∗, h∗)

q ← q + h f(p)+f(p+h)
2

p ← p + h

traditional method and improve the performance by clever interval subdivision
and error estimators that combine global and local precision.

As stated above, these traditional approaches use recursion intensively and
are not well suited for GPUs. Quadrature implementations on GPUs rely mostly
on non-adaptive integration [15], which is embarrassingly parallel. Another app-
roach for multidimensional quadrature was proposed by Arumugam et al. [2].
Integration is done in two phases – interval division and integration – and relies
on recursion. The recursive subdivision part is, however, implemented on the
CPU using a hybrid CPU/GPU architecture. Anson et al. [1] presented a sim-
ilar method on a reconfigurable FPGA architecture. Existing CPU libraries as
QUADPACK [10] implement only the Simpson and Gauss-Kronrod methods,
which are badly suited for the GPU. Currently, there is no published method for
adaptive integration on GPUs available. In contrast to these libraries, we lever-
age adaptive quadrature for efficient use on commodity GPUs by introducing a
new algorithm and a suitable implementation.

3 Non-recursive Adaptive Quadrature

As mentioned in the introduction, there are two ways of adaptive quadrature:
One can either estimate the quadrature error a posteriori and subdivide intervals
thereafter or estimate the interval length a priori. Our method concentrates on
the latter. An overview over this algorithm is given in Algorithm 2. In essence,
we apply the trapezoid rule for every interval. In usual quadrature, the result
is discarded if it exceeds the error threshold and the interval is subdivided,
effectively returning to its begin. This method could be called forward-backward,
while our method is of the forward kind: One after another, the heuristic selects
intervals and arbitrary algorithms can be applied to them, never discarding the
result. Of course the success depends largely on the interval selection heuristic.
Before we propose a particular heuristic, let us shortly review advantages and
disadvantages of this approach.

The clear advantage is, as mentioned, that all intervals contribute to the final
result and the number of function evaluations is minimized. As the evaluation
of an error estimator is unnecessary, we save computational power and do need
to evaluate conditionals. On the other hand, the error of our method is clearly
dependent on the heuristic. Additionally, there is no possibility to implement a

Efficient Heuristic Adaptive Quadrature on GPUs: Design and Evaluation 655

hard error threshold: the heuristic defines the interval lengths and such (indi-
rectly) the error. Using careful design, the error can, however, be bounded and
practical results are promising as shown in Sect. 4.

3.1 The ∂2 Heuristic

Every heuristic has the goal of providing small interval sizes in regions where
the integrand is curved while using larger intervals on near-linear parts. Ideally
(in terms of error), every interval would only contain a linear subset of the
integrand’s graph. To predict how a function develops in a given interval, we
can use its first and second derivatives. For the error estimation (see Sect. 4)
we assume that the integrand is C2-continuous on [a, b]. The second derivative
yields information about the curvature of the integrand and thus about the
development of the rate of value change. If the second derivative is small or even
zero, the curve’s steepness will remain almost constant and a greater interval
length can be used. Alternatively, if the second derivative grows, the curvature
of the integrand increases and we need to consider smaller intervals.

A first approximation of this heuristic (given a minimal interval size h∗ and
maximal interval size h∗) is

hi = h∗ + (α− f ′′(pi))hi−1(h∗ − h∗). (1)

pi is the last integration point (with interval length hi). α is a given constant.
Remember that we use a forward method: each interval length depends on the
length of the last interval to model the integrand’s change. Unfortunately, Eq. 1
shows bad behavior when the second derivative of the integrand is small, e.g. in
the case of the sine function. To improve the estimation here, we replace α −
f ′′(pi) by β = max(|f ′′(pi)|, |f ′(pi)− f ′(pi−1)|). The second max term captures
the behavior of functions where the curvature is small but nonetheless, the rate
of change (hence, the first derivative) is huge such as piecewise linear functions.
Note that although the later error proof needs the continuity assumption, in
practice the algorithm can be applied to non-continuous functions, too.

A linear involvement of the curvature is, however, not very useful since for
only small changes, no interval length change is necessary. Following this intu-
ition, we introduce weighting by e−β . This yields the final heuristic

hi = h∗ + e− max(|f ′′(pi)|,|f ′(pi)−f ′(pi−1)|)(h∗ − h∗). (2)

A visualization on how this heuristics works in an application is given in Fig. 1.
Often, derivatives are not directly given and thus not available for calculation.

In this case, we need to approximate first and second derivative using simple
central differences (Algorithm 3).

With this heuristic, we tested several functions on the unit interval and com-
pared the error and the number of integrand evaluations required to MATLAB’s
quad function, an improved adaptive Simpson’s method with ε = 10e − 6. As
Table 1 shows, this approach is much more efficient for most functions while
loosing only very little precision.

656 D. Thuerck et al.

Algorithm 3. ∂2 heuristic algorithm implemented using simple central differ-
ence approximations.

function FAQ(f, a, b, h∗, h∗)
q ← 0
h← h∗
p← a
lastVal← f(p)
lastHill← (f(p + 0.1h)− lastVal)/(0.1h) � Capture extreme behaviour at graph start.
while p < b do

p← p + h
thisVal← f(p)
thisHill← |thisVal− lastVal|/h � Approximate f ′.
q ← q + h · (thisVal + lastVal)/2
d← max(|(thisHill− lastHill)/thisHill|, |thisHill− lastHill|) � Approximate f ′′.
h← h∗ + e−d(h∗ − h∗)
if p + h > b then

h← b− p

lastVal← thisVal
lastHill← thisHill

0 5 10 15

−0.2

0

0.2

0.4

0.6

0.8

x

s
in

(x
)/

x

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Fig. 1. Interval selection for ∂2-heuristic and integrand sin(x)
x

visualized (a) and in 3D

for a Gaussian Kernel e−|x−0.5|1/0.252
view from above (b) with h∗ = 0.01, h∗ = 0.05.

4 Error Estimation

After motivating and introducing our heuristic in the previous sections, we still
need to discuss how the method’s error can be estimated. Note that while other
quadrature methods offer the possibility to define a hard error threshold, we are
unable to do so. Instead, we need to estimate the methods’s error a priori. As
for non-adaptive methods, a theorem on how the error behaves can be derived.
Using the trapezoidal rule error estimation and the fact that our integrand f is
C2-continuous we arrive at the following error bound theorem:

Theorem 1. Let I be the result of adaptive quadrature with heuristic (2) applied
to the function f and bounds a, b with minimum and maximum interval sizes

Efficient Heuristic Adaptive Quadrature on GPUs: Design and Evaluation 657

Table 1. Error and performance results for our forward quadrature method in com-
parison to adaptive Simpson quadrature.

Function Relative Absolute Percentage of function evaluations
error error compared to Matlab quad

sin(x) 0.01 −0.01 48 %
sinh(x) 0.01 0.02 48 %
x8 + x4 + x3 + x + 1 0.0 0.18 37 %
exp(−x) 0.01 0.01 65 %
sin(x)/x 0.0 0.0 64 %
log(x) −0.15 −0.09 21 %√

(x) 0.0 −0.01 27 %

h∗, h∗ and let further f be a twice continuously differentiable function on R.
Then the error ΔI = |I − ∫ b

a
f(x)dx| is bounded by

ΔI ≤ sup
η∈[a,b]

h̃i
2
(b− a)
24

f ′′(η)

where h̃i is defined as given in the proof.

Proof. By the given algorithm, it is obvious that we can express the interval
lengths as a sequence (hi)i∈R+ with

hi = h∗ + e
− |f′(a+

∑i−1
j=0 hj)−f′(a+

∑i−2
j=0 hj)|

f′(a+
∑i−2

j=0 hj) (h∗ − h∗) (3)

where a +
∑i−2

j=0 hj is the second-to-previous quadrature anchor point and a +
∑i−1

j=0 hj the previous. The quotient

|f ′(a+
∑i−1

j=0 hj)− f ′(a+
∑i−2

j=0 hj)|
f ′(a+

∑i−2
j=0 hj)

(4)

in the algorithm is essentially an approximation of the second derivative f ′′,
which we can use for error estimation. As f ′′ is continuous, we can use the mean
value theorem, such that there is an ξ ∈ [a, b] that

f ′′(ξ) =
f ′(b)− f ′(a)

b− a (5)

or

f ′′(ξ)
b− a
f ′(a)

=
f ′(b)− f ′(a)

f ′(a)
(6)

whose last part is – when applied to each interval hi (so that hi = b − a) –
exactly the approximated quotient mentioned earlier. Hence we can provide an

658 D. Thuerck et al.

upper bound for the interval length with a being the starting point of interval
hi

hi ≤ h̃i = sup
ξ∈[a−hi−1,a]

(

h∗ + e
−f ′′(ξ)

hi−1
f′(a−hi−1) (h∗ − h∗)

)

. (7)

Let now |H| = b−a
h̃i

, then we can estimate the quadrature error by using the
estimate for the rectangle rule (as integration in a given interval is done by
rectangle rule in the algorithm), being xi the calculation point in interval hi:

ΔI ≤
|H|∑

i=1

h̃3
i

24
f ′′(xi) ≤ sup

η∈[a,b]

|H| h̃
3
i

24
f ′′(η). (8)

4.1 Extension on Two-Dimensional Integrands

So far, the integrand was implicitly a function f : [a, b]→ R. This is, however, not
always the case. Often, an integral needs to be evaluated on an area Ω ⊂ R

2. As
our integrand f is differentiable, it is also continuous. Let now [a, b] be compact,
then we can use Fubini’s theorem to formulate the approximation for f : R

2 → R

on a rectangle Ω = I × J :
∫

Ω

f(x, y) dxdy =
∫

J

(∫

I

f(x, y)dx
)

dy (9)

≈
∫

J

(∑|Hx|
i=1
|hx,i|f(pi, y)

)

dy (10)

≈
∑|Hx|

i=1
|hx,i|

(∑|Hy,i|
k=1

|hy,k|f(pi, pi,k)
)

(11)

where Hd is the set of intervals chosen by the heuristic in direction d. Effectively,
we get a grid on Ω for quadrature. An example grid is shown in Fig. 1(b). By
repeating this method, we can extend the algorithm to n dimensions.

5 Implementation and Performance on GPUs

As the proposed quadrature algorithm is well suited for GPUs, we implemented
it using CUDA Version 5.0 [8]. The performance is evaluated using two differ-
ent applications, one for the one dimensional and the other for the two dimen-
sional case. An extension to n dimensions is straightforward. We compare the
performance against a multi-threaded CPU version with our heuristic as well
as a GPU and multi-threaded CPU implementation of the quadrature by the
standard adaptive Simpson’s rule. To the authors’ best knowledge, there are
no implementations for quadrature on CUDA that can be considered as indus-
try standard and baseline. The well-known QUADPACK [10] is limited to one-
dimensional functions and despite its popularity, there is no massively-parallel
implementation available. Hence, programmers usually create their own imple-
mentations of popular methods such as the Simpson rule or the Gauss-Kronrod

Efficient Heuristic Adaptive Quadrature on GPUs: Design and Evaluation 659

method. Although the last one is considered state-of-the-art, it is computation-
ally more expensive than using the Simson rule which is why we compare our
performance to the Simpson rule.

All experiments were performed on a PC running Ubuntu 12.04 with the
latest Nvidia drivers (version 304.88). The system is equipped with an Intel Core
i7-3930K hexacore CPU 64 GB of RAM, a Nvidia Geforce GTX 620 (primary
device) and a Nvidia Geforce GTX 680 card with two gigabyte of RAM as a
headless compute device.

5.1 One-Dimensional Case

As an application for the one-dimensional case, we use the Perona and Malik
[9] diffusion. This filter models the physical process of diffusion described by the
PDE

It = ∇ · (c(|∇I|)∇I) (12)

where I is the image intensity function of a given grayscale image on a region
Ω. The function c is called the diffusivity. In contrast to linear diffusion which is
equivalent to convolving the image with a Gaussian the diffusion strength varies
in nonlinear diffusion over the image domain. For the diffusivities proposed by
Perona and Malik, quadrature is not necessary. However, Thuerck and Kuijper
[13,14] presented a diffusivity which leads to a well-posed process but has no
analytical integral. To implement this model, we need numerical integration and
can apply our algorithm.

The CUDA implementation of the proposed quadrature algorithm is straight-
forward. For each pixel, finite differences with its neighbors are calculated and
used to calculate the diffusivity in this point by quadrature. Essentially, Algo-
rithm 3 can be implemented in CUDA as a device function directly as there is
no further inherent parallelism. Figure 2 shows that both GPU implementations
outperform the CPU equivalents by more than one order of magnitude. We can
observe a performance increase of about 20 percent over the GPU based Simpson
algorithm as well.

Fig. 2. Performance of the modified Perona and Malik diffusion by Thuerck and
Kuijper [13] using the adaptive Simpson’s rule.

660 D. Thuerck et al.

5.2 Two-Dimensional Case

Application cases of 2D integration are quite prominent in fluid simulations
and financial mathematics. Especially in the field of option pricing using the
Black-Scholes [5] equation, quadrature of a Gaussian kernel is required when the
influence of other options is included in the calculation.

To evaluate the key aspects we developed a simplified prototype for perfor-
mance evaluation. As input data, we take an image of a given size. The CUDA
kernel then reads the intensity of each pixel in the whole image and performs a
quadrature of an Gaussian bell in the region [0, 0] to [i, i] where i is the inten-
sity to ensure that the threads operate on different data. The difference to a
Black-Scholes implementation is thus only a constant for runtime purposes.

The algorithm is split up into three phases. First, one CUDA thread calcu-
lates the samples for the first dimension as needed by Fubini’s theorem. After-
wards, each thread can use the 1D implementation concurrently to execute inte-
gration in the second dimension, which results in a grid as shown in Fig. 1(b).
Upon finish, each thread writes its result to shared memory and, after parallel
reduction, the final result is written to global memory.

By executing the integration in each of the dimensions in sequence, we reduce
the complexity to O(dimensions) rather than O(x-samples). Hence, we observe
a much higher speed up than in the 1D case. While in this case, the speed up is
only a result of the reduced number of integration steps, the 2D case generates
enough workload to satisfy the GPU and a better performance is achieved by
doing a large number of integration steps in parallel in addition to each 1D inte-
gration being less complex. However, there is room for improvement: A carefully
designed 2D heuristic could improve thread utilization and enable us to execute
integration in two/dimensions at least partly concurrent. Nevertheless, the per-
formance evaluation shows that the given heuristic algorithm effectively enables
us to use the GPU for quadrature, which usual methods cannot do.

Fig. 3. Performance of the two dimensional case.

Efficient Heuristic Adaptive Quadrature on GPUs: Design and Evaluation 661

In the two dimensional case the adaptive Simpson’s rule’s performance is
similar to both CPU implementations, as seen in Fig. 3. Our presented algorithm
outperforms all three comparison implementations with one order of magnitude.

Naturally, the speed-up in the 2D case is dramatically higher than in the
1D case. This is due to the quadratic number of integrations in the 2D case
compared to the linear number of integrations in the 1D case.

6 Conclusion and Future Work

In this paper, we showed that heuristic adaptive integration can speed up CPU as
well as GPU implementations while keeping the accuracy constant when choosing
suitable bounds h∗, h∗. In the GPU case, the performance evaluation resulted
in a strong recommendation to use the heuristic on the GPU as sensible speed
ups cannot be achieved with traditional Simpson quadrature. The prototypical
implementations confirm this fact. Furthermore, the presented algorithm can be
extended to n dimensions using Fubini’s theorem.

Most of our future plans are already mentioned above. Currently, when inte-
grating in n dimensions, we first create the sampling coordinates and interval
sizes for n− 1 dimensions and use the nth dimension for the actual integral cal-
culation. The sampling process in each dimension can be parallelized. However,
as the result of every dimensions depend on the previous dimensions, the algo-
rithm scales linear with the number of dimensions for fixed grid sizes. Therefore,
we wish to improve this behaviour in the future. Second, we would like to fully
implement a Black-Scholes option pricing kernel to determine the speed-up in
a non-artificial application. Although a reference implementation from NVIDIA
exists [11], it is restricted to 1D quadrature. Lastly, we consider developing suited
heuristics for the multidimensional case so there is no need to revert to the one-
dimensional heuristic via Fubini’s theorem.

References

1. Tse, A.H.T., Chow, G.C.T., Jin, Q., Thomas, D.B., Luk, W.: Optimising perfor-
mance of quadrature methods with reduced precision. In: Choy, O.C.S., Cheung,
R.C.C., Athanas, P., Sano, K. (eds.) ARC 2012. LNCS, vol. 7199, pp. 251–263.
Springer, Heidelberg (2012)

2. Arumugam, K., Godunov, A., Ranjan, D., Terzic, B., Zubair, M.: An efficient
deterministic parallel algorithm for adaptive multidimensional numerical integra-
tion on GPUs. http://on-demand.gputechconf.com/gtc/2013/poster/pdf/P0237
KameshArumugam.pdf (2013)

3. Berntsen, J.: Practical error estimation in adaptive multidimensional quadrature
routines. J. Comput. Appl. Math. 25(3), 327–340 (1989)

4. Berntsen, J., Espelid, T.O., Sørevik, T.: On the subdivision strategy in adaptive
quadrature algorithms. J. Comput. Appl. Math. 35(1), 119–132 (1991)

5. Black, F., Scholes, M.: Taxes and the pricing of options. J. Finan. 31(2), 319–332
(1976)

662 D. Thuerck et al.

6. Gander, W., Gautschi, W.: Adaptive quadrature revisited. BIT Numer. Math.
40(1), 84–101 (2000)

7. McKeeman, W.M., Tesler, L.: Algorithm 182: nonrecursive adaptive integration.
Commun. ACM 6(6), 315 (1963). http://doi.acm.org/10.1145/366604.366640

8. NVIDIA: CUDA Compute Unified Device Architecture. www.nvidia.com/object/
cuda home new.html

9. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.
IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

10. Piessens, R., Doncker-Kapenga, D., Überhuber, C., Kahaner, D., et al.: Quad-
pack, A Subroutine Package for Automatic Integration, 301 p. Springer, Heidelberg
(1983)

11. Podlozhnyuk, V.: Black-scholes option pricing. Part of CUDA SDK documentation
(2007)

12. Shapiro, H.D.: Increasing robustness in global adaptive quadrature through interval
selection heuristics. ACM Trans. Math. Softw. (TOMS) 10(2), 117–139 (1984)

13. Thuerck, D., Kuijper, A.: Cosine-driven non-linear denoising. In: Kamel, M.,
Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 245–254. Springer, Hei-
delberg (2013)

14. Thuerck, D., Kuijper, A.: Lazy nonlinear diffusion parameter estimation. In: Pet-
rosino, A. (ed.) ICIAP 2013, Part I. LNCS, vol. 8156, pp. 211–220. Springer, Hei-
delberg (2013)

15. Windisch, A., Alkofer, R., Haase, G., Liebmann, M.: Examining the analytic struc-
ture of greens functions: Massive parallel complex integration using GPUs. Com-
put. Phys. Commun. 184, 101–116 (2012)

An Efficient Representation on GPU for
Transition Rate Matrices for Markov Chains

Jaros�law Bylina(B), Beata Bylina, and Marek Karwacki

Institute of Mathematics, Marie Curie-Sk�lodowska University, Lublin, Poland
{jaroslaw.bylina,beata.bylina}@umcs.pl, marek.karwacki@gmail.com

Abstract. The authors present a novel modification of the HYB for-
mat — known from the CUSP library. The new format is suitable for
sparse Markovian transition rate matrices and enables processing two
times bigger matrices on single GPU, also improving computation per-
formance at the same time. Particularly, the SpMV operation — that is
the multiplication of a sparse matrix by a vector — is analyzed for this
format on one GPU and two GPUs. Numerical experiments for transi-
tion rate matrices of Markov chains from [18] show that the proposed
format allows to process matrices of sizes about 3.6 × 107 rows with the
use of single GPU (3 GB RAM). When the plain HYB format is used
the matrices of these sizes do not fit in one GPUs memory. Moreover,
the use of the modified HYB format can give the speedup even up to 13
times in comparison to multi-threaded CPU (12 cores).

Keywords: GPU · SpMV · Markov chains · Transition rate matrix ·
CUSP · Sparse matrices

1 Introduction

Markov chains are a tool for modeling various computer appliances and net-
works, as well as other natural processes and systems. Recently, they have been
used to model wireless networks [2,7,8] and they often appear in computational
biology [3].

An efficient usage of Markov chains for modeling such systems is quite difficult
because of computational problems. There are two aspects of these problems —
the first is the size of the matrix (and the memory requirements) and the second
is a usually long time of computations (needed to find solutions of Markov chain).

To speed up computations associated with Markov chains we can use accel-
erators — such as GPUs [3,5,6,12]. GPUs have possibilities to accelerate the
scientific and engineering computations because they are equipped with a big
number of quite independent processing units.

Any Markov chain can be described in terms of linear algebra with the use
of a square matrix — which is a matrix of probabilities or a matrix of transition
rates. We will be interested in the latter.

A transition rate matrix Q describing a Markov chain which models a system
or a phenomenon has some particular traits. It is a square singular matrix with

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 663–672, 2014.
DOI: 10.1007/978-3-642-55224-3 62, c© Springer-Verlag Berlin Heidelberg 2014

664 J. Bylina et al.

a weak row-dominant diagonal. All the diagonal elements are negative and all
the off-diagonal ones are not negative. The sum of every row is zero. Usually,
the matrix is a huge one and very sparse.

Sparse matrices are stored in special data structures and special algorithms
are used to process these structures optimally. We can find descriptions of many
such storage schemes in the literature (e.g. [1,4,11]). The sparse storage schemes
designed for CPU works also for GPU, but because of different properties of these
architectures, different schemes are preferred.

Some sparse storage schemes for GPU and the performance of the matrix-
vector multiplication were described thoroughly in [1]. In [4] the authors inves-
tigated the following storage formats for Markovian transition rate matrices:
COO, CSR, ELL and HYB from the CUSP library. After some tests for huge
Markov chain transition rate matrices the HYB format appeared to be the best.
GPUs are not intended to make computations on large sets of data — as large as
a typical matrix Q. So, in [6], details of an implementation of the HYB format
on two GPUs were presented to fit bigger matrices in the GPU memory and to
make the operations on bigger matrices possible.

In [12] other sparse storage formats were presented which are used in of the
probabilistic model checking algorithms.

Currently, the performance of algorithms strongly depends not only on the
arithmetic operations, but also — and what is even more important nowadays
— on the number of references to the memory. That is because the arithmetic
operations are cheap (that is: fast) in comparison with memory reading/writing.
Moreover, the computer memory is hierarchically structured in layers of differ-
ent speeds and sizes. Thus, one of the aims of designing new algorithms is to
reorganize data to be able to use smaller but faster type of memory.

The contribution of this paper is HYBIV: a novel modification of an existing
sparse storage format — namely HYB from the CUSP library [14]. The HYBIV
format is adapted to sparse transition rate matrices. Besides, in the HYBIV
format the amount of data read from the slower memory is less than in the HYB
format.

The main motivation for this modification was the desire to put the biggest
possible transition rate matrix in the GPU memory — and (if only possible) to
speed up the computation at the same time.

Additionally — to the HYBIV format — the paper presents the sparse
matrix-vector multiplication (SpMV) for the modified format (HYBIV) for one
GPU and two GPUs. The numerical experiment was carried out for two groups
of transition rate matrices (for NCD and MUTEX models from [18]) — to com-
pare the HYB format from the CUSP library with the new HYBIV format for
one GPU and for two GPUs. A comparative analysis was also done with the
CSR format from the MKL library (on CPU).

The structure of the article is following. Section 2 presents the problem of
sparse matrix storage on GPUs and the HYB format from the CUSP library
[14]. Section 3 contains a description of the proposed modification of the HYB
format (that is, the HYBIV format) which takes advantage of some properties of

An Efficient Representation on GPU for Transition Rate Matrices 665

transition rate matrices. Section 3 describes the numerical experiments. Section 4
shows some conclusions.

2 Sparse Matrices on GPU

One of the main directions of numerical algorithms development on GPUs is
construction of data structures and algorithms which uses all of the advantages
of GPUs. It is quite hard to build an efficient algorithm fulfilling this condition
from the scratch. That is why it is good to use existing libraries. Some examples
of them include: CUBLAS [13], CUSP [14], Thrust [19], MAGMA [17].

The sparse matrix-vector multiplication (SpMV) y ← Ax — where A is a
sparse matrix and x is a dense vector — is the most commonly used operation
in sparse matrix computations. Performance of many scientific and engineering
applications highly depends on operation SpMV. Among others, this operation
is used in various algorithms that find both the stationary and transient states
of Markov chain [5,6,11].

The matrix-vector multiplication for dense linear algebra is easily imple-
mented with the use of many threads of GPU. However, for sparse matrix com-
putations, implementing it on a GPU is a big problem because of the irregularity
in accessing the elements which are unordered. That is why it is very important
to prepare and use an adequate format to store sparse matrices on GPU.

The CUSP library is written in C++ and it is an open library of generic
parallel algorithms for sparse matrix operations computed on CUDA devices.
CUSP includes a highly efficient interface to manipulate sparse matrices. Both
the sparse storage formats and the algorithms on them are defined. Among the
algorithms, the sparse matrix-vector multiplication is defined as well.

The HYB format in the CUSP library is a hybrid format between the ELL
format (known from ELLPACK [15]) and the COO format (well-known coordi-
nate list sparse format). So the matrix in the HYB format is stored as two parts
— one in the ELL format (two two-dimensional arrays) and another in COO
format (three one-dimensional arrays):

– ell data stores values of non-zero elements of the original matrix — as a two-
dimensional rectangular array of the size N ×M , where N is the number of
rows and M is a mode of the number of non-zero elements in a row (highest in
their histogram); rows which are originally shorter than M are complemented
with zeros;

– ell indices stores column indices of the respective non-zero elements stored in
ell data;

– coo data stores values of non-zeros that do not fit in ell data;
– coo col stores column indices of the respective non-zero elements stored in

coo data;
– coo row stores row indices of the respective non-zero elements stored in

coo data.

Figure 1 shows a square matrix of size 5. Figure 2 shows the same matrix
stored in the HYB format from the CUSP library.

666 J. Bylina et al.

2.1 HYBIV: The HYB with Indexed Values Format

The motivation for the new format was:

– very large matrices,
– quite limited set of different values in Markov chain transition rate matrix —

it is caused by the fact that Markov chains often consist of repetitive patterns
of behaviors and the transitions implied by them have the same values,

– ease of modification of the existing format and existing functions (the matrix-
vector multiplication, among others) in the CUSP library.

The HYBIV format is an extension of the HYB format from the CUSP
library. To limit the amount of memory needed to store the matrix:

– all the different values of the elements of the matrix Q are stored in a separate
array — named data (every value only once);

– both the arrays containing original values of the matrix Q (as floating point
numbers) are replaced by arrays containing indices of the real values of the
element of the matrix — in the array data; that is:

• the array ell data is replaced by an array ell iv,
• the array coo data is replaced by an array coo iv.

In the GPU implementation we put the data vector in the constant memory
or in the texture memory (it depends on its size) and the values in data are
stored in double precision. These types of memory are intended only for reading
and they provide low latency. Moreover, they are accessible from all running
threads simultaneously.

The arrays ell iv, ell indices, coo iv, coo col, coo row are stored in the global
memory of the GPU and their values are normally 4-byte integers. However, for

A =

⎡
⎢⎢⎢⎢⎣

14 0 0 0 11
0 21 0 19 0
0 0 0 15 0
11 13 0 12 11
0 0 0 0 18

⎤
⎥⎥⎥⎥⎦

Fig. 1. A not compressed square matrix

ell data =

⎡
⎢⎢⎢⎢⎣

14 11
12 19
15 ∗
11 13
18 ∗

⎤
⎥⎥⎥⎥⎦

ell indices =

⎡
⎢⎢⎢⎢⎣

0 4
1 3
3 ∗
0 1
4 ∗

⎤
⎥⎥⎥⎥⎦

coo data = 12 11 coo col = 3 4 coo row = 3 3

Fig. 2. A square matrix stored in the HYB format

An Efficient Representation on GPU for Transition Rate Matrices 667

a smaller array data, the indices in the arrays ell iv and coo iv are stored as
2-byte integers, what makes the HYBIV format even more memory-saving.

Figure 3 presents matrix from Fig. 1, but in the HYBIV format.

data = 14 11 21 19 15 13 12 18

ell iv =

⎡
⎢⎢⎢⎢⎣

0 1
2 3
4 ∗
1 5
7 ∗

⎤
⎥⎥⎥⎥⎦

ell indices =

⎡
⎢⎢⎢⎢⎣

0 4
1 3
3 ∗
0 1
4 ∗

⎤
⎥⎥⎥⎥⎦

coo iv = 6 1 coo col = 3 4 coo row = 3 3

Fig. 3. A square matrix stored in the HYBIV format

2.2 HYBIV on Many GPUs

The HYBIV format is also suitable for data distribution between many GPUs.
The method of the partitioning is quite analogous to the one presented in [6]
(however, that one concerned HYB). Authors also considered column-wise 1D
and 2D blocks partitioning, but both schemes are not suitable for ELLPACK
format, because right side of ELLPACK matrix is less dense then left, which
leads to significantly uneven distribution.

Namely, the original n × n matrix QT (we store transposed transition rate
matrices because they are more suitable for our algorithms — but the principles
are identical) is partitioned among many GPUs, with each GPU storing contigu-
ous block of complete rows of the matrix (row-wise 1D partitioning) — every
row in only one GPU.

For our purposes — the sparse matrix-vector multiplication y ← QT x — we
need also a whole n × 1 vector x in each of z GPUs. Since each GPU performs
computations with the use of a n

z × n matrix and the n × 1 vector x, therefore
after the multiplication each GPU holds a partial y vector of the size n

z × 1.

3 Numerical Experiments

In this section we tested the memory requirements, the time and the performance
of the SpMV operation using:

– the CUSP library with the HYB storage format (on one GPU and two GPUs),
– the CUSP library with our modification of HYB — the HYBIV storage format

(on one GPU and two GPUs),
– and MKL [16] with the CSR storage format (on CPU).

668 J. Bylina et al.

Our intention was to investigate and compare memory requirements on one
GPU and on two GPUs for the original HYB format and for the modification —
HYBIV format. We also wanted to compare the SpMV operation for the HYB
and HYBIV formats on one and two GPUs (with the CUSP library) and for the
CSR format on CPU (with the MKL library). We also wanted to check, what
the speed up of GPU over CPU in this computational problem is — that is why
we used MKL as a CPU representative.

We tested the SpMV operation on CPU and GPU under Linux with gcc and
NVIDIA nvcc compilers. The input matrices are generated (by the authors) from
two classical Markovian models [18]: NCD (nearly completely decomposable) [10]
and MUTEX (mutual exclusion) [9].

Table 1 shows the specification of the hardware and the software used in the
experiment.

Table 1. Hardware and software used in the experiment

CPU 2× Intel Xeon X5650 2.67 GHz (2 × 6 cores)
Host memory 48 GB DDR3 1333 MHz
GPU 2× Tesla M2050 (515 Gflops DP, 3 GB memory)
OS Debian GNU Linux 6.0
Libraries CUDA Toolkit 4.0, CUSP 0.2

3.1 Size and GPU Memory Requirements

Tables 2 and 3 present details about test matrices, where:

– n is the number of rows,
– nz is the number of non-zero elements,
– nz/n represents the matrix density,
– uv is the number of unique values of matrix’ elements,
– HYB and HYBIV are memory usages by the respective format in the algo-

rithm run on one GPU,
– HYB2 and HYBIV2 are memory usages by the respective format in the

algorithm run on two GPU (left on the first GPU, right on the second GPU).

Memory usage was checked by the function cudaMemGetInfo.
HYBIV format on larger matrices required almost twice less memory than

HYB. Memory usage per GPU was smaller in HYB2 and HYBIV2 than in HYB
and HYBIV but it was higher than half because vector x was stored on each
GPU. Performance of HYBIV was a little better than HYB, because in HYBIV
less data is stored in slow global memory. Using 2 GPUs we almost doubled the
performance in comparison to single GPU. On smaller matrices HYBIV and
splitting data across two GPUs did not bring benefits.

An Efficient Representation on GPU for Transition Rate Matrices 669

Table 2. Properties of the matrices for the MUTEX model and their memory usage
(in MB) on GPU

n nz nz/n uv HYB HYB2 HYBIV HYBIV2
gpu1 + gpu2 gpu1 + gpu2

3 797 47 381 12.5 1 872 64 65 + 65 65 65 + 65
63 019 1 049 483 16.6 29 772 74 71 + 70 68 68 + 67

4 194 050 96 458 530 23.0 348 710 1166 726 + 694 630 450 + 418
8 386 560 201 242 020 24.0 398 635 – 1438 + 1374 1246 862 + 798

Table 3. Properties of the matrices for the NCD model and their memory usage (in
MB) on GPU

n nz nz/n uv HYB HYB2 HYBIV HYBIV2
gpu1 + gpu2 gpu1 + gpu2

2 667 126 18 480 126 6.93 2 249 276 240 + 220 179 187 + 166
15 390 826 107 124 226 6.96 4 048 1295 1090 + 972 737 782 + 664
21 084 251 146 835 251 6.96 4 497 1751 1470 + 1309 987 1048 + 887
36 361 101 253 442 301 6.97 5 397 – 2490 + 2212 1657 1854 + 1712

3.2 Time

All the processing times are reported in seconds. The time is measured with an
MKL function dsecnd.

Tables 4 and 5 show the time in seconds for double precision SpMV using
the HYB and HYBIV storage formats on one GPU and two GPUs and the CSR
storage format from the MKL library on CPU. The bolded values denote the
fastest computation times.

Table 4. SpMV run-time (in seconds) on CPU (CSR, SpMV from MKL); on one GPU
(HYB and HYBIV); on two GPUs (HYB2 and HYBIV2) — MUTEX

n CPU-CSR-MKL HYB HYB2 HYBIV HYBIV2

3 797 0.0052 0.0004 0.0021 0.0004 0.0020
63 019 0.0063 0.0005 0.0005 0.0005 0.0004

4 194 050 0.1673 0.0840 0.0425 0.0813 0.0413
8 386 560 0.4777 – 0.0854 0.1662 0.0839

For bigger Markov matrices, the best format for storing them (counting
the performance time and the memory) is HYBIV in its 2-GPU form (that
is, HYBIV2). The HYB storage scheme does not perform very well in many
potentially suitable cases. The reason is that the HYB SpMV granularity is not
sufficient (one thread per row) and the matrix needs to be large enough to uti-
lize the GPU. For comparison in CSR kernel one row is processed by a warp (32
threads).

670 J. Bylina et al.

Table 5. SpMV run-time (in seconds) on CPU (CSR, SpMV from MKL); on one GPU
(HYB and HYBIV); on two GPUs (HYB2 and HYBIV2) — NCD

n CPU-CSR-MKL HYB HYB2 HYBIV HYBIV2

2 667 126 0.0234 0.0059 0.0032 0.0051 0.0030
15 390 826 0.1077 0.0369 0.0196 0.0330 0.0174
21 084 251 0.1790 0.0512 0.0267 0.0452 0.0237
36 361 101 0.2445 – 0.0475 0.0803 0.0426

Table 6. SpMV run-time (in seconds) on one GPU (HYBIV) for the NCD model —
comparison of data storage in constant memory and in texture memory

n HYBIVconst HYBIVtex HYBIVtex
HYBIVconst

2 667 126 0.0051 0.0052 1.01
15 390 826 0.0330 0.0351 1.06
21 084 251 0.0452 0.0506 1.12
36 361 101 0.0803 0.0914 1.14

Table 6 shows the processing time of the SpMV operation (in seconds) in the
HYBIV format on one GPU for two cases:

– data stored in the constant memory,
– data stored in the texture memory.

This comparison is done only for the NCD model — because the array data for
the MUTEX model was too big to fit in the constant memory (too many distinct
values in matrix Q).

3.3 Performance

Figure 4 shows performance results for double precision SpMV on one GPU and
on two GPUs using the CUSP library with the HYB and HYBIV storage formats,

 0

 1

 2

 3

 4

 5

 6

 1000 10000 100000 1e+06 1e+07

G
flo

p/
s

n

MUTEX

CPU
HYB

HYB2
HYBIV

HYBIV2

 0

 2

 4

 6

 8

 10

 12

 14

 1e+06 1e+07 1e+08

G
flo

p/
s

n

NCD

CPU
HYB

HYB2
HYBIV

HYBIV2

Fig. 4. Performance of SpMV for MUTEX (left) and for NCD (right)

An Efficient Representation on GPU for Transition Rate Matrices 671

as well as the MKL library with the CSR storage scheme on CPU. In all examined
examples we find that SpMV on one GPU gives much better performance than
on CPU and SpMV on two GPUs gives two times better performance than on
one GPU.

4 Conclusion and Future Work

In this paper we proposed HYBIV — a new modification of an existing
sparse storage scheme, namely HYB — to enable storing bigger transition rate
matrices. The original format HYB is implemented in the CUSP library and
the new format is a plain extension to the old one. Thus, the new format
can be implemented very easily, allowing computations with two times bigger
matrices.

Large matrices needed almost twice less memory in HYBIV than in HYB.
In very sparse matrices with less unique values it is also possible to store data
values in constant memory (as in the NCD model), which is, as shown, faster
than texture memory. Moreover, for both the models there exist matrices which
do not fit in the GPU memory with the use of the HYB format, but they can be
placed in the GPU memory when we use HYBIV — without any degradation of
the performance.

The sparse matrix-vector multiplication (SpMV) is faster in the HYBIV for-
mat than in HYB. Moreover, on two GPUs it is almost twice as fast as on one
GPU — irrespective of the matrix and the format. In comparison to CPU com-
putations it can be up to 13 times faster on one GPU and 26 times faster on
two GPUs.

For very sparse matrices (NCD) two GPUs perform the best irrespective of
storage scheme. For the MUTEX model the results are not so clear. The structure
and the size of the matrix affect the performance.

Generally, bigger matrices achieve better performance.
Our format not only requires less memory, but it also speeds up the com-

putations and can be used for more than one GPU. The numerical experiments
done for transition rate matrices from two classical Markovian models confirms
usefulness of the proposed HYBIV storage scheme — at least for one GPU and
two GPUs.

Furthermore, the HYBIV format can be applied not only to matrices arising
from Markov chains, but also to other sparse problems — for example, to the
finite element method (FEM).

Acknowledgments. This work was partially supported within the project N N516
479640 of the Ministry of Science and Higher Education (MNiSW) of the Polish
Republic “Modele dynamiki transmisji, sterowania zat�loczeniem i jakości ↪a us�lug w
Internecie”.

672 J. Bylina et al.

References

1. Bell, N., Garland, M.: Efficient Sparse Matrix-Vector Multiplication on CUDA.
NVIDIA Technical Report No. NVR-2008-004 (2008)

2. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination
function. IEEE J. Sel. Areas Commun. 18, 535–547 (2000)

3. Bustamam, A., Burrage, K., Hamilton, N.A.: Fast parallel Markov clustering
in bioinformatics using massively parallel computing on GPU with CUDA and
ELLPACK-R sparse format. IEEE/ACM Trans. Comput. Biol. Bioinform. 9, 679–
692 (2012)

4. Bylina, B., Bylina, J., Karwacki, M.: Computational aspects of GPU-accelerated
sparse matrix-vector multiplication for solving Markov models. Theor. Appl.
Inform. 23, 127–145 (2011)

5. Bylina, B., Karwacki, M., Bylina, J.: A CPU-GPU hybrid approach to the uni-
formization method for solving Markovian models – a case study of a wireless
network. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2012. CCIS, vol. 291, pp.
401–410. Springer, Heidelberg (2012)

6. Bylina, B., Karwacki, M., Bylina, J.: Multi-GPU implementation of the uniformiza-
tion method for solving Markov models. In: Proceedings of Federated Conference
on Computer Science and Information Systems (FedCSIS), pp. 533–537 (2012)

7. Bylina, J., Bylina, B.: A Markovian queuing model of a WLAN node. In: Kwiecień,
A., Gaj, P., Stera, P. (eds.) CN 2011. CCIS, vol. 160, pp. 80–86. Springer, Heidel-
berg (2011)

8. Bylina, J., Bylina, B., Karwacki, M.: A Markovian model of a network of two
wireless devices. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2012. CCIS, vol.
291, pp. 411–420. Springer, Heidelberg (2012)

9. Fernandes, P., Plateau, B., Stewart, W.J.: Efficient descriptor-vector multiplication
in stochastic automata networks. J. ACM 45, 381–414 (1998)

10. Philippe, B., Saad, Y., Stewart, W.J.: Numerical methods in Markov chain mod-
elling. Oper. Res. 40, 1156–1179 (1992)

11. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Prince-
ton University Press, Princeton (1994)

12. Wijs, A.J., Bošnački, D.: Improving GPU sparse matrix-vector multiplication for
probabilistic model checking. In: Donaldson, A., Parker, D. (eds.) SPIN 2012.
LNCS, vol. 7385, pp. 98–116. Springer, Heidelberg (2012)

13. CUBLAS. https://developer.nvidia.com/cublas
14. CUSP. http://code.google.com/p/cusp-library/
15. ELLPACK. http://www.cs.purdue.edu/ellpack/
16. Intel Math Kernel Library. http://software.intel.com/en-us/articles/intel-mkl/
17. MAGMA. http://icl.cs.utk.edu/magma/index.html
18. Stewart, W.J.: MARCA Models: a collection of Markov chain models. http://

www4.ncsu.edu/∼billy/MARCA Models/MARCA Models.html
19. Thrust. http://code.google.com/p/thrust/

Eigen-G: GPU-Based Eigenvalue Solver
for Real-Symmetric Dense Matrices

Toshiyuki Imamura1,3(B), Susumu Yamada2,3, and Masahiko Machida2,3

1 RIKEN Advanced Institute for Computational Science,
7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan

imamura.toshiyuki@riken.jp
2 CCSE, Japan Atomic Energy Agency, Kashiwa-shi, Chiba 277-8587, Japan

3 CREST, Japan Science and Technology Agency, Tokyo, Japan

Abstract. This paper reports the performance of Eigen-G, which is a
GPU-based eigenvalue solver for real-symmetric matrices. We confirmed
that Eigen-G outperforms state-of-the-art GPU-based eigensolvers such
as magma dsyevd and magma dsyevd 2stage implemented in the MAGMA
version 1.4.0. Applying the best-tuned CUDA BLAS libraries and the
GPU-CPU hybrid DGEMM yields an even better performance improve-
ment. We observe an approximately 2.3 times speedup over magma dsyevd

on a Tesla K20c.

Keywords: Eigenvalue solver · GPGPU · CPU-GPU collaborative
model

1 Introduction

The theoretical computational performance of a flagship GPU card such as an
NVIDIA GeForce TITAN or an AMD Radeon HD8000 series card has exceeded
1 TFLOPS for not only single-precision but also double-precision floating point
arithmetic. What is more, GPU cluster systems such as Titan and Tianhe-1A
take first place in the 40-th and 36-th editions of the top 500 list of the world’s
most powerful supercomputers, respectively. This is evidence that GPGPU tech-
nology has already been popularized.

In the field of numerical linear algebra, GPGPU has big advantages due to the
hardware features of GPUs, especially higher computing power and wider mem-
ory bandwidth, as well as low power consumption. Particularly, the severe prob-
lem that matrix–vector multiplication is adversely affected by the poor memory
bandwidth of CPUs can be resolved by the utilization of a GPU. Furthermore,
the computation of matrix–matrix products, which is often used for performance
benchmarking of systems, can be performed very efficiently on GPUs. In fact,
the performance of a matrix–matrix product routine is a couple of times faster
than the total performance of a single multicore processor.

The main purpose of the present study is to develop the GPU-based eigen-
value solver Eigen-G in order to take advantage of these points, namely, the wider

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 673–682, 2014.
DOI: 10.1007/978-3-642-55224-3 63, c© Springer-Verlag Berlin Heidelberg 2014

674 T. Imamura et al.

Block Householder tridiagonalization

Block Householder backtransformation

Cuppen’s Divide and Conquer

Matrices enclosed by boxes are on GPU.

Fig. 1. Details of the standard three-step algorithm for SEV

memory bandwidth and higher performance. The code for Eigen-G has been
extensively optimized for CUDA GPGPU. We adopt the collaborative model
to execute GPU kernel codes and introduce a supervisor thread to establish
concurrent processing on both a GPU and a CPU. Furthermore, we select the
best-tuned CUDA BLAS in order to improve the performance of Eigen-G.

The rest of this paper is organized as follows. In Sect. 2, we briefly present
two eigenvalue solvers, MAGMA and Eigen-G. In Sect. 3, details of the GPU
implementation are described. In Sect. 4, preliminary benchmark results on three
types of GPUs are described. In Sect. 5, summaries are presented and future
research is discussed.

2 Eigenvalue Solver on a Single GPU

The standard algorithm of the standard eigenvalue computation (SEV) for a real
symmetric dense matrix is divided into three steps. The first step and the second
step are the Householder tridiagonalization and the eigenvalue computation for

Eigen-G: GPU-Based Eigenvalue Solver for Real-Symmetric Dense Matrices 675

the tridiagonal format, respectively. In the present study, Cuppen’s divide and
conquer algorithm is employed. The last step is back-transformation of the com-
puted eigenvectors to the original matrix. Figure 1 presents the details of the
steps enhanced for GPGPU.

2.1 MAGMA

MAGMA [1] is an enhancement of LAPACK for multiple GPUs and multicore
processors. MAGMA is implemented by introducing the effective implementation
of native BLAS codes and task scheduling onto heterogeneous/hybrid architec-
tures. The eigenvalue driver routine of the MAGMA library is magma dsyevd,
which consists of three routines corresponding to the three steps of the above-
mentioned algorithm, magma dsytrd [2], magma dstedx [3], and magma dormtr.
These subroutines call GPU kernel functions of MAGMABLAS such as
magmablas dgemm and magmablas dsymv. Furthermore, the MAGMA library is
designed to reduce the cost of data transfer by a DAG-based tool.

2.2 Eigen-G

Eigen-G is a newly developed eigensolver for GPGPU. The numerical algorithm
adopted in Eigen-G is similar to that of magma dsyevd, a three-step scheme
comparable to Householder tridiagonalization, Cuppen’s divide and conquer,
and back-transformation. We modified the source code of Eigen-s [4,5], which
was developed for peta-scale supercomputer systems. Details of the design and
the CUDA implementation are described in the next section.

3 CUDA Implementation

3.1 Offload Execution Model

In the present study, we offload particular linear algebraic operations by CUDA
BLAS calls, DGEMM and DSYMV, which are the most time-consuming parts
in Eigen-G. There are several offload execution models for GPGPU. We consider
the following typical models (Fig. 2);

1. offload model is a simple GPU-call mechanism. In this model, CPU cores wait
until the GPU kernel completes. This model uses only one-side resource.

2. In the collaborative model, the supervisor thread on the CPU is dedicated
to handling the GPU at the expense of a single core of the CPU, and the
other threads run on the rest of cores. Thus, both CPU and GPU work
simultaneously. Furthermore, asynchronous data transfer is performed behind
the computation.

In order to utilize both the CPU and GPU efficiently, we mainly adopt the
collaborative model to implement Eigen-G.d

676 T. Imamura et al.

program

Result

data

data

return

Start up

Result

program

offload

wait

return

data

data

Fig. 2. Typical execution model for GPGPU: offload model (left) and collaborative
model (right)

3.2 Thunking Mode

The simplest way to offload the CUDA BLAS routines is to introduce a thunk-
ing mode wrapper. Generally, thunking mode wrappers remap the internal data
layout automatically, and they allow the API to be used without any changes to
the application. In the case of the CUDA programming model, an extra array
in the device memory is allocated and data transfer between host and device
memory is issued automatically by the thunking wrapper.

3.3 Best-Tuned CUDA BLAS Libraries

In the present study, it is obvious that the performance of Eigen-G depends
strongly on the performance of CUDA BLAS libraries. The most successful
CUDA BLAS libraries are CUBLAS, MAGMABLAS [1], ASPEN.K2 [6], and etc.
We must select the best-tuned CUDA BLAS routines from CUBLAS, MAGMA-
BLAS, and ASPEN.K2 in terms of the performance of DGEMM and DSYMV.
Table 1 shows the performance of DGEMM and DSYMV on a Tesla K20c, a
GeForce GTX580, and a Tesla C2050. The results suggest that we should select
CUBLAS and ASPEN.K2 for DGEMM and DSYMV, respectively.

3.4 GPU+CPU Hybrid DGEMM

The DGEMM call can be divided using a block style such as AX = A[X1,X2] =
[AX1, AX2]. In this representation, we consider a hybrid task assignment so that
AX1 and AX2 are mapped onto a CPU and a GPU, respectively.

We assume a simple cost model of DGEMM as follows:

T = tother + max
{

tGPU · M
N
, tCPU · N −M

N

}

. (1)

Here, M refers to the number of vectors computed on the GPU, and tCPU =
2N3/FLOPSCPU and tGPU = 2N3/FLOPSGPU hold. The optimal solution is
obtained when tGPU ·M/N = tCPU · (N −M)/N holds. Thus,

Mopt

N
=

tCPU

tCPU + tGPU
=

(FLOPSCPU)−1

(FLOPSCPU)−1 + (FLOPSGPU)−1
(2)

Eigen-G: GPU-Based Eigenvalue Solver for Real-Symmetric Dense Matrices 677

Table 1. Performance (GFLOPS) of the DGEMM-NN kernel in the case of square
matrices (N = M = L) (top) and the DSYMV-U kernel (bottom) on a Tesla K20c, a
GeForce GTX580, and a Tesla C2050. In addition, results with a CPU (Corei7-3930K)
is presented.

Matrix dimension
1088 2112 3136 4160 5184 6208 7232 8256 9280

K20c MAGMABLAS 1.4 554.3 593.3 597.2 590.8 587.6 584.0 585.8 586.5 587.0
CUBLAS 5.5 901.5 1016 1015 1035 1039 1044 1044 1045 1046

GTX580 MAGMABLAS 1.4 178.2 186.3 187.8 188.4 188.6 188.8 188.9 — —
CUBLAS 5.0 189.4 192.0 192.4 192.6 192.6 192.6 192.6 — —

C2050 MAGMABLAS 1.4 283.2 292.7 293.8 294.9 295.1 295.1 295.3 295.5 295.7
CUBLAS 5.0 304.6 312.7 314.9 315.0 308.3 306.6 304.4 289.3 300.8

CPU MKL 11.0 98.34 28.95 143.8 147.5 149.4 150.0 150.2 151.7 151.4

Matrix dimension
1088 2112 3136 4160 5184 6208 7232 8256 9280

CUBLAS 5.5 9.0 13.0 14.8 15.9 16.6 17.0 17.4 17.7 17.8
K20c MAGMABLAS 1.4 10.4 21.9 31.6 34.6 37.0 40.0 42.3 44.0 45.2

ASPEN.K2 24.8 36.6 44.4 50.0 53.2 54.7 56.2 56.7 57.0

CUBLAS 5.0 12.6 17.9 21.1 21.9 22.8 23.7 24.1 23.9 24.5
GTX580 MAGMABLAS 1.4 17.4 31.0 36.4 39.4 43.3 45.5 46.8 46.3 48.9

ASPEN.K2 29.3 39.5 50.3 56.9 61.5 63.7 66.2 67.3 68.8

CUBLAS 5.0 9.1 13.4 14.5 14.8 15.7 16.3 16.3 15.8 16.6
C2050 MAGMABLAS 1.4 13.0 23.3 26.9 28.9 31.2 32.8 33.5 32.3 34.9

ASPEN.K2 18.1 26.2 31.9 35.2 37.2 38.4 39.5 39.7 40.7

CPU MKL 11.0 0.46 14.8 7.68 7.80 7.71 7.81 7.52 7.03 7.25

minimizes the computational time as

T opt = tother +
2N3

FLOPSCPU + FLOPSGPU
. (3)

This implies that we can utilize both the CPU and GPU almost perfectly by
adopting the optimal task assignment. We benchmark a DGEMM code and
use the average FLOPS values; FLOPS (Core i7-3930(K), Core i7-860, K20c,
GTX580, C2050) = (100G, 30G, 1000G, 180G, 290G).

3.5 Other Issues of a CUDA Implementation

Householder Tridiagonalization is designed to reduce the load of data trans-
fer in eigensolvers. As described previously, we introduce a supervisor thread
dedicated to handling a GPU. The supervisor thread watches data transfers and
exclusive execution control of the GPU. This enables us to take advantage of
both the CPU and GPU concurrently by concealing data transfer between host
and device behind the computation.

678 T. Imamura et al.

Let us explain in more detail about the data transfer. The matrix and vector
data enclosed by boxes in Fig. 1 are stored on the device memory. Matrix data
A is transferred from host memory to device memory in advance of entering the
main iteration. The panel data W is transferred from the device to the host at
step (0). After the calculation of u in step (1), the data u is transferred back to
the device. Then DSYMV at step (2) is offloaded to the GPU, and the result v
is moved to the host memory. Following steps (3) and (4), v is transferred back
to the device behind the computation steps (5) and (1). At step (6), DGEMM
is offloaded to the GPU.

The Divide and Conquer Method exhibits very natural parallelism in the
internal processes and can also be applied to subproblems recursively, as in line
2 in the bottom left of Fig. 1. The computationally most dominant part of the
algorithm is the matrix–matrix multiplication (Q = (Q1 ⊕ Q2)[q1, q2 . . .]) at
step 6. Here, we will make a GPGPU modification such that we offload the
DGEMM call to a GPU card. In the general implementation of LAPACK, a
large working array is reused flexibly in internal subroutines. Although a similar
working array can be introduced on the GPU and mirrored on the host side, the
GPU has a severely limited memory capacity. Therefore, we adopt the thunking
call of DGEMM. A small modification is made in dlaed3() by replacing the
DGEMM calls with CUDA-BLAS calls.

Householder Back-Transformation is the inverse one-sided procedure of the
Householder transformation matrices, such as (I−βkuku

T
k) · · · (I−β2u2u

T
2)(I−

β1u1u
T
1). The eigenvectors are transformed by multiplying this matrix from the

left. Since two consecutive operations of the Householder transformation are
written as

I − UCUT = (I − β2u2u
T
2)(I − β1u1u

T
1) (4)

(U = [u1, u2]), the compact WY representation is applied successively. In the
general case, we compute C and update X with U = [u1, . . . , uk] by the following
implicit scheme (the notation tril is borrowed from the Matlab script language):

C = (diag−1(β1, . . . , βk)− tril(UTU,−1))−1 (5)
= (D−1 − S)−1 = (I −DS)−1D. (6)

These calculations comprise only the multiple matrix–matrix multiplications.
Therefore, as described in the previous subsection, GPU+CPU hybrid DGEMM
performs well and we expect to take advantage of both the CPU and GPU.

4 Preliminary Benchmark Results for Single-GPU
Environments

4.1 Configuration of Hardware and Software

We benchmarked Eigen-G on three [Intel-CPU]+[NVIDIA-GPU] platforms: (i)
a Core i7-3930 (3.2 GHz, 6 cores, AVX) + a Tesla K20c (1.17 TFLOPS in the

Eigen-G: GPU-Based Eigenvalue Solver for Real-Symmetric Dense Matrices 679

DP mode, 2496 CUDA cores), (ii) a Core i7-3930K (3.2 GHz, 6 cores, AVX) + a
GeForce GTX580 (790 GFLOPS in the DP mode, 512 CUDA cores), and (iii) a
Core i7-860 (2.8 GHz, 4 cores, SSE3) + a Tesla C2050 (515 GFLOPS in the DP
mode, 448 CUDA cores).

On the host side (denoted by CPU, hereinafter), thread parallelization is
carried out by OpenMP and 6 or 4 threads perform on a CPU where one thread
is assigned to the supervisor thread. On the other hand, GPU codes are written
in CUDA 5.0 and 5.5. Appropriate CUDA BLAS libraries already mentioned
above run on a GPU. The BLAS and LAPACK libraries installed on the host
computers are Intel MKL 11.0, and the latest MAGMA library 1.4.0 is employed
on GPUs.

4.2 Results and Discussions

Table 2 presents the elapsed time and the time breakdown for each step in the
eigenvalue computation on a Tesla K20c, a GeForce GTX580 and a Tesla C2050.
In the second column, ‘tridi’, ‘D&C’, and ‘back’ refer to the Householder tridiag-
onalization, divide and conquer, and the back-transformation, respectively. We
summarize the benchmark results as follows.

1. We see a 1.25 to 3 times speedup over LAPACK.
2. Eigen-G outperforms MAGMA version 1.4.0 in terms of the total time and

the first step of the Householder tridiagonalization, seen especially in x2.3 on
a Tesla K20c when the matrix dimension is 8256.

3. The results on the second and the third steps look quite similar on a Tesla
K20c and a GeForce GTX580. However, MAGMA performs 20 % faster on a
Tesla C2050.

Figure 3 presents an additional performance result of the brand new MAGMA
2-stage solver (magma dsyevd 2stage) on a Tesla K20c and a GeForce GTX580.
The 2-stage algorithm is known as one of the prominent algorithms to resolve the
severe problem of the Householder transformation mentioned in the introduction.
The remarkable point is that Eigen-G and the 2-stage solver perform comparably
on K20c. Since it is known that the 2-stage algorithm has a big overhead in the 2-
stage back-transformation (it is equivalent to twice the cost of the 1-stage back-
transformation algorithm), Eigen-G performs comparably while still adopting
the 1-stage algorithm. This result suggests that the 1-stage algorithm is still
powerful when we compute all the eigenpairs.

Figure 4 shows the hybrid performance of the back-transformation by varying
M/N , which is the ratio of the number of vectors handled by the GPU to the
total number. As shown in Table 1 and the theoretical peak performance, the
optimal performance is seen at a high M/N ratio on a Tesla GPU, whereas the
GeForce GPUs perform at the same speed as the CPUs. Taking the relation (2)
into consideration, a great performance improvement is achieved in the hybrid
computation. The relation (3) also suggests that this is especially true when

680 T. Imamura et al.

Table 2. Elapsed time and time-breakdown (in units of seconds) of Eigen-G, MAGMA
(magma dsyevd), and LAPACK (dsyevd) for each step on an NVIDIA Tesla K20c (top),
an NVIDIA GeForce GTX580 (middle), and an NVIDIA Tesla C2050 (bottom).

Matrix dimension
1088 2112 3136 4160 5184 6208 7232 8256

tridi 0.10 0.35 0.82 1.56 2.67 4.16 6.22 8.83
Eiegn-G D&C 0.04 0.15 0.34 0.64 0.74 1.07 1.48 1.98

M/N = 29/32 back 0.02 0.06 0.15 0.28 0.47 0.72 1.07 1.52
total 0.15 0.56 1.32 2.48 3.88 5.96 8.77 12.33
tridi 0.04 0.58 1.63 3.51 6.50 10.79 16.68 24.49

K20c MAGMA D&C 0.04 0.13 0.28 0.48 0.77 1.13 1.57 2.07
1stage back 0.02 0.07 0.13 0.28 0.50 0.78 1.20 1.65

total 0.10 0.79 2.07 4.31 7.82 12.78 19.57 28.36
tridi 0.04 0.28 1.14 2.96 6.16 10.69 17.30 26.68

LAPACK D&C 0.09 0.37 1.84 1.67 2.82 4.40 6.36 8.88
back 0.03 0.17 0.54 1.20 2.28 3.91 6.03 9.10
total 0.16 0.84 3.56 5.88 11.35 19.13 29.86 44.89

tridi 0.09 0.35 0.88 1.72 2.97 4.74 7.06 10.09
Eiegn-G D&C 0.04 0.17 0.41 0.79 1.24 1.92 2.82 3.95

M/N = 20/32 back 0.03 0.11 0.30 0.64 1.17 1.91 2.94 4.31
total 0.15 0.63 1.59 3.16 5.38 8.57 12.82 18.35
tridi 0.04 0.48 1.35 3.00 5.32 8.80 13.58 20.77

GTX580 MAGMA D&C 0.04 0.16 0.39 0.77 1.31 2.05 3.04 4.27
1stage back 0.03 0.14 0.42 0.89 1.67 2.80 4.34 6.37

total 0.11 0.79 2.19 4.69 8.36 13.73 21.07 31.56
tridi 0.04 0.28 1.02 2.62 5.97 9.45 15.39 24.33

LAPACK D&C 0.08 0.35 0.99 1.57 2.82 4.04 5.97 8.37
back 0.03 0.17 0.53 1.10 2.29 3.56 5.70 8.64
total 0.14 0.82 2.58 5.34 11.17 17.16 27.22 41.55

tridi 0.12 0.50 1.24 2.44 4.25 6.82 10.32 15.03
Eiegn-G D&C 0.07 0.33 0.84 1.68 1.85 2.80 4.00 5.52

M/N = 29/32 back 0.03 0.14 0.37 0.78 1.41 2.30 3.59 5.29
total 0.23 0.98 2.45 4.91 7.52 11.93 17.92 25.85
tridi 0.08 0.69 1.97 4.35 7.83 13.03 20.23 31.75

C2050 MAGMA D&C 0.07 0.25 0.56 1.02 1.62 2.43 3.44 4.64
1stage back 0.02 0.13 0.32 0.65 1.17 1.92 3.05 4.45

total 0.18 1.07 2.86 6.03 10.63 17.40 26.74 40.87
tridi 0.07 0.99 3.72 10.23 21.93 35.52 57.06 95.20

LAPACK D&C 0.12 0.56 1.49 2.93 5.80 8.29 12.60 18.39
back 0.07 0.54 1.63 3.54 7.33 11.32 17.94 27.59
total 0.23 2.10 6.87 16.74 35.13 55.21 87.72 141.34

the performance difference between a CPU and a GPU is small. In fact, the
performances on a K20c with the hybrid DGEMM mode and the GPU-oly mode
(M/N) are 780 and 710 GFLOPS, respectively. On the other hand, they perform
270 GFLOPS and 175 GFLOPS on a GTX580, respectively.

Eigen-G: GPU-Based Eigenvalue Solver for Real-Symmetric Dense Matrices 681

0

10

20

30

40

50

60

1088 2112 3136 4160 5184 6208 7232 8256 9280 10304

Matrix Dimension

MAGMA 2stage MAGMA 1stage Eigen-G LAPACK

0

10

20

30

40

50

60

1088 2112 3136 4160 5184 6208 7232 8256 9280 10304

Matrix Dimension

MAGMA 2stage MAGMA 1stage Eigen-G LAPACK

Fig. 3. Elapsed time of Eigen-G, MAGMA 1stage algorithm (magma dsyevd), MAGMA
2-stage algorithm (magma dsyevd 2stage), and LAPACK (dsyevd) for each step on an
NVIDIA Tesla K20c (left) and an NVIDIA GeForce GTX580 (right).

1088

6208
0

200

400

600

800 G
FL

O
PS

M/N

Hybrid Performance run on a K20c

0-200 200-400 400-600 600-800

1088

6208
0

50

100

150

200

250

300 G
FL

O
PS

M/N

Hybrid Performance run on a GTX580

0-50 50-100 100-150 150-200 200-250 250-300

Fig. 4. Effect of the GPU-CPU hybrid scheduling of DGEMM in the backtransforma-
tion, K20c (left) and GTX580 (right).

5 Conclusion

In this paper, we have presented our developed GPU-based eigenvalue solver
Eigen-G. We adopt the collaborative offload model. Concurrent processing on
both the CPU and GPU is realized by introducing a supervisor thread which
is dedicated to handling the GPU. In the code optimization, we selected the
best-tuned BLAS implementation from CUBLAS, MAGMABLAS, and
ASPEN.K2. The GPU-CPU hybrid DGEMM also performs in the present code.
The approach yields a good performance improvement, especially for House-
holder tridiagonalization.

As a more advanced implementation for multiple GPUs has already been
reported [7], the present study on a single GPU is limited to small eigenvalue
problems. However, since the tuning techniques in the present study are applica-
ble to multiple GPUs, it is indispensable that Eigen-G be developed for multiple
GPUs in the near future.

Acknowledgment. This research was supported in part by the Ministry of Education,
Scientific Research on Priority Areas, 21013014.

682 T. Imamura et al.

References

1. Agullo, E., Demmel, J., et al.: Numerical linear algebra on emerging architectures:
the PLASMA and MAGMA projects. J. Phys. Conf. Ser. 180(1), 012037 (2009)

2. Tomov, S., Nath, R., Dongarra, J.: Accelerating the reduction to upper Hessenberg,
tridiagonal, and bidiagonal forms through hybrid GPU-based computing. Parallel
Comput. 36(12), 645–654 (2010)

3. Vömel, C., Tomov, S., Dongarra, J.: Divide and conquer on hybrid GPU-accelerated
multicore systems. SIAM J. Sci. Comput. 34, 70–82 (2012)

4. Yamada, S., Imamura, T., Kano, T., Machida, M.: High-performance computing for
exact numerical approaches to quantum many body problems on the earth simula-
tor. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing SC06
(2006)

5. Imamura, T., Yamada, S., Machida, M.: Development of a high performance eigen-
solver on the peta-scale next generation supercomputer system. Prog. Nucl. Sci.
Technol. AESJ 2, 643–650 (2011)

6. Imamura, T.: ASPEN-K2: automatic-tuning and stabilization for the performance
of CUDA BLAS level 2 kernels. In: 15th SIAM Conference on Parallel Processing
for Scientific Computing (2012)

7. Yamazaki, I., Dong, T., et al.: Tridiagonalization of a dense symmetric matrix on
multiple GPUs and its application to symmetric eigenvalue problems. Concurrency
Comput. Pract. Exper. (2013). doi:10.1002/cpe.3152

A Square Block Format for Symmetric Band
Matrices

Fred G. Gustavson1,2, José R. Herrero3(B), and Enric Morancho3

1 IBM T.J. Watson Research Center, New York, USA
fg2935@hotmail.com

2 Ume̊a University, Ume̊a, Sweden
3 Computer Architecture Department, Universitat Politècnica de Catalunya,

BarcelonaTech, Barcelona, Spain
{josepr,enricm}@ac.upc.edu

Abstract. This contribution describes a Square Block, SB, format for
storing a banded symmetric matrix. This is possible by rearranging “in
place” LAPACK Band Layout to become a SB layout: store submatrices
as a set of square blocks. The new format reduces storage space, provides
higher locality of memory accesses, results in regular access patterns, and
exposes parallelism.

Keywords: Upper Square Block Band Format · Banded Cholesky fac-
torization · New data storage format · Locality · Parallelism

1 Introduction

A banded matrix A can be stored as a dense matrix (Fig. 1a). However, this
implies the storage of null elements outside of the band. LAPACK [1] specifies
a format for storing a band matrix using a rectangular array AB. The elements
outside of the band are not stored. We consider the case where the matrix is
symmetric. Thus, we only need to store either the lower or the upper part. In
this paper we consider the former case, i.e. uplo = ‘L’ (Fig. 1b).

In Dense storage, value Ai,j is referenced in the code as A(i, j). Thus, the
jth diagonal element is stored in A(j, j). In LAPACK Lower Band storage, uplo
= ‘L’, the j-th column of A is stored in the j-th column of AB such that the
diagonal element A(j, j) is stored in AB(1, j). Consequently, in LAPACK lower
band codes Ai,j is referenced as AB1+i−j,j . This means that the correspondence
is written in the code as AB(1+ i− j, j) = A(i, j) for j <= i <= min(n, j +kd).
This makes the code less readable than it could be. Figure 2 highlights the details
of the storage of a panel, a set of contiguous columns.

However, when kd, the half bandwidth, is small, the difference between dense
and LAPACK storage requirements can be very large, clearly in favor of LAPACK

This work was supported by the Spanish Ministry of Science and Technology
(TIN2012-34557) and the Generalitat de Catalunya, Dep. d’Innovació, Universitats
i Empresa (2009 SGR980).

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 683–689, 2014.
DOI: 10.1007/978-3-642-55224-3 64, c© Springer-Verlag Berlin Heidelberg 2014

684 F.G. Gustavson et al.

1a. Dense Storage 1b. LAPACK Storage

Fig. 1. Band matrix storage in dense (left) and LAPACK (right) formats

2a. Dense Storage 2b. LAPACK Storage

Fig. 2. Storage of a panel within the band in dense (left) and LAPACK (right) formats

storage. For a symmetric matrix of dimension n and half bandwidth kd, dense
storage requires the storage of n2 values. Using LAPACK storage the banded
matrix is stored in a rectangle containing kd+1 by n values. The rectangle holds
a parallelogram P of dimension kd + 1 by n − kd; and an isosceles triangle T
of side equal to kd. The rightmost white isosceles triangle seen in Fig. 1b within
the rectangle corresponds to data allocated but not used. Clearly, this storage
scheme incurs in space overhead, wasting about half the storage allocated to T .

1.1 Goals

Our goals include improving programmability and reducing storage requirements
when operating on banded symmetric matrices. At the same time, we improve
data locality and make parallelization more efficient. To do so, we are willing to
rearrange the data so that:

– Space requirements are close to the optimum
– No further data copies or transformations are necessary at computation time
– Data management is more efficient
– Parallelization is easier and more efficient.

1.2 Related Work

Improved Programmability. In [2] the authors describe a minor data format
change for storing a symmetric band matrix AB using the same array space

A Square Block Format for Symmetric Band Matrices 685

specified by LAPACK [1]. In LAPACK lower band codes ABi,j is referenced in
its code as ABi−j+1,j . This makes the code less readable than it could be as one
would like to reference the (i, j) element of a matrix AB as ABi,j . Furthermore,
the layout of lower AB in the LAPACK’s user Guide, page 142 of [1] shows
the user a rectangular matrix with the diagonal of AB residing in the first row.
Clearly, a layout description where the diagonal of AB resides on the main diag-
onal of AB, see again page 142 of [1], is more suggestive and other things being
equal is preferable. In [2] the authors improve Programmability of LAPACK
Lower Band Cholesky by changing the Leading Dimension of AB from LDAB
to LDAB − 1 in the array declaration of AB. This tells the compiler that the
distance in the 2nd dimension is one less. As a result one can write AB(i, j) to
access value A(i, j). Also, in the layout description of AB the diagonal of AB is
depicted as laying on the diagonal of AB.

Improved Data Locality and Parallelization. In [3] the authors propose
Lower Blocked Column Packed and Upper Square Blocked Packed Formats, also
known as Lower and Upper Block Packed Format (BPF) respectively. Both ver-
sions of BPF are alternatives to the Packed storage of a matrix used traditionally
to conserve storage when that matrix has special properties. Two examples are
symmetric and triangular matrices. By using BPF we may partition a symmetric
matrix where each submatrix block is held contiguously in memory. This gives
another way to pack a symmetric matrix and it avoids the data copies, that are
inevitable when Level-3 BLAS are applied to matrices held in standard Column
Major (CM) or Row Major (RM) format as well as in standard packed format.

3a. Lower Blocked Packed Format

0
1 9

2 10
3 11

16
17 23

4 12
5 13

18 24
19 25

28
29 33

6 14
7 15

20 26
21 27

30 34
31 35

36
37 39

3b. Upper Blocked Packed Format

0 2
3

4 6
5 7

8 10
9 11

12 14
13 15

16 18
19

20 22
21 23

24 26
25 27

28 30
31

32 34
33 35

36 38
39

Fig. 3. Lower and Upper Blocked Packed Formats of a triangular matrix

We define lower and upper BPF via an example in Fig. 3 with varying length
rectangles of width nb = 2 and SB of order nb = 2 superimposed. Figure 3 gives
the memory addresses of the array that holds the matrix elements of BPF. The
rectangles making up the array of Fig. 3 are in standard Fortran format and
hence BPF supports calls to level-3 BLAS. The rectangles in Fig. 3a are not
further divided into SB as these SB are not contiguous. Figure 3 is a collection
of N = �n/nb� rectangular matrices concatenated together. The rectangles in
Fig. 3b are the transposes of the rectangles in Fig. 3a and vice versa. Figure 3b

686 F.G. Gustavson et al.

rectangles have a major advantage over the rectangles of Fig. 3a: the ith rectangle
consists of N − i order nb SB. This gives two dimensional contiguous granularity
for GEMM calls using upper BPF which lower BPF cannot possess. Lower BPF
is not a preferred format over upper BPF as it does not give rise to contiguous
SB. Another advantage of using upper BPF is one may at factor stage i call
GEMM (N− i−1)(i−1) times where each call is a parallel SB GEMM update.

This approach was used by LAPACK multicore Cholesky implementations [4,5]
among others. This implies that a BPF layout supports both traditional and
multicore LAPACK implementations. Upper BPF is the preferred format. For
further details see [3] and the references therein.

2 Upper Square Block Band Format

We could store a band matrix using Upper BPF (see Fig. 4). If we did so, we
would be unnecessarily storing elements marked with * in the figure.

0 2
∗ 3

4 6
5 7

∗ ∗
9 ∗

∗ ∗
∗ ∗

16 18
∗ 19

20 22
21 23

∗ ∗
25 ∗

28 30
∗ 31

32 34
33 35

36 38
∗ 39

Fig. 4. A band matrix stored in Upper Blocked Packed Format

Trying to reduce the unused space we can avoid storing those SB which only
store null elements outside of the band. With this we could reduce the storage
considerably. In the example in Fig. 4 we could avoid the storage of the top
rightmost SB. However, we want to reduce further the storage of the part of
the matrix which stores the parallelogram P . Let us observe in Fig. 4 the blocks
which keep the boundaries of the band. Blocks which keep the main diagonal
store a lower triangle L which is not used. For instance, for the blocks of size
nb = 2 in Fig. 5 we can observe that memory address 1 is not used. Similarly,
blocks which include the outermost diagonal store an upper triangle U which is
not used at all. We can only observe that memory address 9 is the only one being
used within the block that contains it. From this observations we conclude that
we could save space by storing in address 1 the value originally hold in address
9. The same could be done with the value in memory address 25 which could
be stored in the unused space in address 17. If we did so, the blocks containing
the values in memory addresses 9 and 25 would not be needed. In general, in
each block row holding a slab of P we could avoid storing the lower triangle

A Square Block Format for Symmetric Band Matrices 687

originally stored in the rightmost non-null block by storing it in the unused
space corresponding to the lower triangle of the leftmost block in that slab. We
refer to this new format as Upper Square Block Band Format (USBBF). The
final triangular part T can just be stored in Upper BPF, which is compatible
with USBBF.

0 2
1 3

4 6
5 7

∗ ∗
∗

∗ ∗
∗ ∗

16 18
17 19

20 22
21 23

∗ ∗
∗

28 30
∗ 31

32 34
33 35

36 38
∗ 39

Fig. 5. A band matrix stored in Upper Blocked Packed Format

2.1 Data Transformation Process

Figure 61 shows graphically the transformation process from a panel within the
band (P part) stored in LAPACK format into a slab in USBBF. The panel needs
to be transposed and the bordering triangles joined in a single block.

Fig. 6. From LAPACK Lower Band Format into Upper Square Block Band Format

It is possible to perform these data transformations fast in-place based on
the work published in [6] and [7]. The process implies partitioning the matrix
into submatrices and transposing them. This is achieved with a series of Shuf-
fle/Unshuffle, and Transposition operations described in [7].

2.2 Final Layout

The new layout for uplo = ‘L’ consists of two geometric figures; a parallelogram
P and a lower isosceles triangle T of side equal to kd. P and T must be stored
in compatible formats:
1 Readers can get a color version of the figures via email to the authors.

688 F.G. Gustavson et al.

– P is stored in Upper Square Block Band Format (USBBF)
– T is stored in Upper Square Block Packed Format (Upper BPF).

The final layout stores P and T as shown in Fig. 7.

Fig. 7. Final Layout of a Band Matrix transformed to USBBF.

We must note that kd is arbitrary while nb is not. This means the boundary
between the band ending and the blocked T beginning is not necessarily on a
multiple of nb as Fig. 7 suggests. This issue can be handled in general. However,
for clarity of presentation we make the simplifying assumption that kd + 1 is a
multiple of nb. Then Fig. 7 is accurate. This also eases the programming effort.

The parallelogram is partitioned into slabs of width nb. Each slab of P is
also a parallelogram Pi of size kd + 1 by nb. Pi consists of two isosceles triangles
of sizes nb and nb− 1 and a rectangle Ri of size kd + 1−nb by nb. Now the two
triangles concatenate to form a SB of order nb. Hence, Pi also consists of just a
SB and Ri. By transposing Ri in-place Ri becomes �(kd + 1)/nb− 1� SB’s plus
a leftover rectangular block. We note that transposing AB gives an uplo = ‘U’
LAPACK implementation starting from the uplo = ‘L’ implementation. Thus,
to get our SB formulation we follow this procedure. Triangle T now becomes an
upper isosceles triangle. We also map T into upper blocked packed format [3] so
it becomes “compatible” with the transposed parallelogram P .

The band in P can be stored with minimal storage. Using full format to
store the final triangle T as in LAPACK requires that LDA ≥ KD + 1. Clearly,
this wastes about half the storage allocated by Fortran or C to T . On the other
hand, for each SB, LDA = nb. This means minimal storage is wasted for large
KD when T is stored in Upper BPF. Therefore, this implies space savings w.r.t.
LAPACK band storage.

3 Ongoing Work

We are currently implementing an optimized parallel band Cholesky factoriza-
tion based on USBBF. As we have shown in this paper, the new format stores
submatrices as a set of square blocks. This provides higher locality of mem-
ory accesses, results in regular access patterns, and exposes parallelism. Conse-
quently, this allows for efficient execution of kernels working on square blocks
in parallel:

A Square Block Format for Symmetric Band Matrices 689

– No further data copies or transformations are necessary at computation time;
– Data off-loading is more efficient;
– Can use regular BLAS or LAPACK codes, or Specialized kernels [8,9];
– Can be parallelized more easily with Dynamic Task Scheduling based on a

Task Dependency Graph [10].

4 Conclusions

The new Upper Square Block Band Format (USBBF) stores submatrices as a set
of square blocks. This reduces storage space, provides higher locality of memory
accesses, results in regular access patterns, and exposes parallelism. The data
transformation can be done very efficiently in-place and in parallel.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J.J., Du
Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadel-
phia (1999)

2. Gustavson, F.G., Quintana-Ort́ı, E.S., Quintana-Ort́ı, G., Remón, A., Waśniewski,
J.: Clearer, simpler and more efficient LAPACK routines for symmetric positive
definite band factorization. To appear in: PARA’08. IMM-Technical Report-2008-
19. Technical University of Denmark, DTU Informatics, Building 321 (2008)

3. Gustavson, F.G., Waśniewski, J., Dongarra, J.J., Herrero, J.R., Langou, J.: Level-3
Cholesky factorization routines improve performance of many Cholesky algorithms.
ACM Trans. Math. Softw. 39(2), 9:1–9:10 (2013)

4. Kurzak, J., Buttari, A., Dongarra, J.: Solving systems of linear equations on the
cell processor using Cholesky factorization. IEEE Trans. Parallel Distrib. Syst.
19(9), 1175–1186 (2008)

5. Quintana-Ort́ı, G., Quintana-Ort́ı, E.S., Remón, A., Geijn, R.A.: An algorithm-
by-blocks for supermatrix band Cholesky factorization. In: Palma, J., Amestoy,
P.R., Daydé, M., Mattoso, M., Lopes, J. (eds.) VECPAR 2008. LNCS, vol. 5336,
pp. 228–239. Springer, Heidelberg (2008)

6. Gustavson, F.G., Karlsson, L., K̊agström, B.: Parallel and cache-efficient in-place
matrix storage format conversion. ACM TOMS 38(3), 17:1–17:32 (2012)

7. Gustavson, F.G., Walker, D.W.: Algorithms for in-place matrix transposition. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013,
Part II. LNCS, vol. 8385, pp. 105–117. Springer, Heidelberg (2014)

8. Herrero, J.R., Navarro, J.J.: Compiler-optimized kernels: an efficient alternative
to hand-coded inner kernels. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan,
C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol.
3984, pp. 762–771. Springer, Heidelberg (2006)

9. Herrero, J.R.: New data structures for matrices and specialized inner kernels: low
overhead for high performance. In: Wyrzykowski, R., Dongarra, J., Karczewski,
K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 659–667. Springer,
Heidelberg (2008)

10. Herrero, J.R.: Exposing inner kernels and block storage for fast parallel dense linear
algebra codes. To appear in: PARA’08

Workshop on Models, Algorithms,
and Methodologies for Hierarchical

Parallelism in New HPC Systems

Transparent Application Acceleration
by Intelligent Scheduling of Shared Library

Calls on Heterogeneous Systems

João Colaço, Adrian Matoga, Aleksandar Ilic, Nuno Roma,
Pedro Tomás, and Ricardo Chaves(B)

INESC-ID / IST, Rua Alves Redol, 9, 1000-029 Lisboa, Portugal
ricardo.chaves@inesc-id.pt

Abstract. Transparent application acceleration in heterogeneous sys-
tems can be performed by automatically intercepting shared libraries
calls and by efficiently orchestrating the execution across all processing
devices. To fully exploit the available computing power, the intercepted
calls must be replaced with faster accelerator-based implementations and
intelligent scheduling algorithms must be incorporated. When compared
with previous approaches, the framework herein proposed does not only
transparently intercepts and redirects the library calls, but it also incor-
porates state-of-art scheduling algorithms, for both divisible and indivisi-
ble applications. When compared with highly optimized implementations
for multi-core CPUs (e.g., MKL and FFTW), the obtained experimental
results demonstrate that, by applying appropriate light-weight schedul-
ing and load-balancing mechanisms, performance speedups as high as
7.86 (matrix multiplication) and 4.6 (FFT) can be achieved.

Keywords: Transparent acceleration · Heterogeneous computing ·
Automatic scheduling · Load balancing

1 Introduction

Over the past decade, Graphics Processing Units (GPUs) have evolved into
general-purpose computing devices, offering a substantial performance boost for
highly parallel applications. Together with other types of accelerators, includ-
ing high-end Field-Programmable Gate Arrays (FPGAs) or parallel coprocessors
(such as Intel Xeon Phi), GPUs have become widely used in the High-
Performance Computing (HPC) domain, and their share is still growing.

However, the adoption of these powerful accelerators in heterogeneous envi-
ronments often requires a substantial amount of work by skilled programmers to
identify the parallelizable kernels and optimize them for specific architectures.
In contrast, many application developers usually use different software packages
or computing environments (such as Matlab, Octave, R, etc.) to perform the
computations, mainly focusing on the algorithm correctness and efficiency, and
not on optimizing the code for any specific device architecture. In fact, highly

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 693–703, 2014.
DOI: 10.1007/978-3-642-55224-3 65, c© Springer-Verlag Berlin Heidelberg 2014

694 J. Colaço et al.

optimized computational libraries are often adopted to attain high performance
on different devices, such as BLAS, LAPACK and FFTW (for general-purpose
CPUs), or cuBLAS, CULA and cuFFT (for GPUs). However, additional speed-
ups can be achieved by effectively selecting the most efficient library implemen-
tation on a per device basis or even by dividing the work load and simultaneously
executing it across multiple devices.

Beisel et al. [1], proposed an interposition scheme to intercept calls to shared
libraries and delegate them to one of the existent library implementations, allow-
ing to transparently accelerate applications in heterogeneous systems without
changing the original code. To effectively select which library is called at each
time, a static scheduling algorithm was used, based on pre-defined performance
models. However, this approach does not take into account the performance dif-
ferences in software implementations, hardware devices or even real-time system
usage. Furthermore, to fully exploit the computational power of modern het-
erogeneous systems, it is absolutely crucial to provide the means for efficient
cross-device execution.

In this paper, the idea of transparently accelerating existing applications by
replacing the kernels that are implemented as library functions is further investi-
gated. The original idea is extended and further improved by adding intelligence
to the system. Two approaches are considered: (a) when the problem cannot
be divided due to data/control dependencies, the system selects the best avail-
able accelerator; (b) when the problem can be divided into multiple parallel
computations, the system automatically assigns each device with different com-
putation portions, thus achieving a collaborative execution. To perform this task,
a dynamic load balancing algorithm is adopted that relies on partial estimations
of performance models for multiple devices in the heterogeneous system, which
are built and updated in real-time. By relying on the proposed framework, it is
possible to exploit the full computing capacity of the system, without requiring
any special intervention on the system or on the original code by the end-user.

The remaining of this paper is organized as follows. The next section presents
the architecture of the proposed framework to transparently accelerate exist-
ing applications. Section 3 describes the adaptive scheduling algorithms for both
indivisible and divisible load problems. Section 4 presents the experimental
results obtained with the adopted transparent acceleration approach and dis-
cusses the achieved speed-ups for two case-study applications. The last section
concludes and addresses some future work directions.

2 Framework Architecture

The architecture of the developed framework, illustrated in Fig. 1, is based on
the model proposed in [1]. Accordingly, the LD PRELOAD environment vari-
able is used to specify the wrapper library which transparently redirects the
function execution to one or more of the available plugins. An one-to-one map-
ping between plugins and the underlying devices is assumed.

In the execution environment illustrated in Fig. 1, an application natively
using the BLAS library is accelerated using more efficient implementations, such

Transparent Application Acceleration by Intelligent Scheduling 695

Fig. 1. Architecture of the proposed framework.

as MKL for CPU or cuBLAS for GPU (see Plugins module). Other similar
examples could also be devised using other widely used libraries, such as the
FFTW/cuFFT or the LAPACK/CULA libraries.

2.1 Selection and Partitioning Policies

Upon a call to a library function, the wrapper library first determines the prob-
lem size based on the function arguments and classifies the requested computa-
tion as divisible or indivisible in the Intelligent scheduling module. If the consid-
ered function has an implementation that allows work load partitioning across
multiple devices, the configured divisible load partitioning policy is queried in
order to find a balanced distribution of the loads given to each device. If the call
is recognized as indivisible, the fastest plugin for the detected problem size is
selected using the configured selection policy.

Subsequently, the appropriate function is executed by the selected plugin(s)
via Plugin Interface. For indivisible work loads, the plugin usually only calls an
equivalent function of the accelerated library, such as MKL or cuBLAS, trans-
lating the arguments and results where appropriate. Divisible work loads require
partitioning of the computation according to the previously computed distribu-
tion. The partitioning depends on the actual function that was called and must
be implemented separately for individual functions. All available plugins are
called with a different portion of the computation and the results are combined
accordingly. After the execution, the wrapper requests the used policy to update
its performance model according to the actual measured performance.

Section 3 presents two policies based on run-time updated performance mod-
els. However, the proposed framework is not limited to these two strategies, as
it allows integrating different selection and partitioning policies.

2.2 Library Generation

The adopted library generation procedure is described in more detail in [6] along
with the developed application profiling framework that transparently collects

696 J. Colaço et al.

Fig. 2. Generation procedure of the wrapper library and plugins.

extensive profile information (e.g., processor performance counter values and
the estimation of the amounts of data to be transferred to and from the accel-
erator). The approach differs from [1] in what concerns the micro-generators
concept [3]. Each micro-generator is defined as a class that generates pieces of
code related to a specific feature, which are inserted at several distinct scopes
in the generated source, such as: global declarations, global definitions, library
initialization, library finalization, wrapper function prefix, and wrapper function
postfix. Multiple micro-generators can be combined and their options adjusted
by the framework user, in order to produce a library dedicated and optimized
for a specific purpose. A special kind of micro-generator was considered to allow
the programmer to specify external definition files containing portions of code
to be inserted at different scopes of the generated library, without modifying the
generator itself. This feature is used to insert the code required to estimate the
problem size.

The adopted procedure to generate the described wrapper library is pre-
sented in Fig. 2. The library generator tool finds and parses the library binary
and header files installed in the system and produces the wrapper library incorpo-
rating the basic logic that manages the available scheduling policies and plugins.
The generated plugin stubs can be used to add support for new accelerators to
the system.

Once the above configuration is complete, the programmers and the applica-
tion users can automatically benefit from the heterogeneous computing resources,
without even being aware of their existence.

3 Adaptive Multi-Device Task Scheduling

A selection policy and a partitioning policy are also herein proposed, which use
performance models for the available plugins, built at run time. An individual
performance model is constructed for each function of each plugin. Each model
is stored as an ordered map which associates the problem size N with the per-
formance s expressed as the ratio between the size of computation assigned to
a plugin and the time taken to perform computation and communication. The
definition of the problem size depends on the function. For example, for the
multiplication of two square matrices, the problem size N may be defined as the
matrix dimension M or the number of scalar multiplications involved, i.e. M3.

Transparent Application Acceleration by Intelligent Scheduling 697

3.1 Best Performance Selection Policy

In the most general case, each function call is considered as an indivisible work
that must be executed by a single plugin. The goal is therefore to choose the
fastest plugin for a particular call, based on the problem size. Assuming that
the performance characteristics of the available plugins are not known a-priori,
the proposed algorithm dynamically builds the performance models during run
time. If, for a given problem size and model, the fastest plugin is not yet known,
all plugins are simultaneously executed and their performance is recorded. As
soon as the collected information is sufficient to determine the best choice for a
particular call, only the fastest plugin is executed, and the model is updated with
its last achieved performance. This way, the scheduling scheme is not only self-
learning, but is also adaptable to the changing characteristics of the system, such
as concurrent application execution that might compete for shared resources.

Given the problem size of N , the detailed procedure to determine the fastest
plugin for a particular call uses the two existing neighboring points (left and
right) in the performance model (nL and nR), such that nL ≤ N ≤ nR:

1. INITIALIZE maximum performance variables for nL and nR : sL:=0, sR:=0.
2. LOOP: for the performance model of each plugin i, 1 ≤ i ≤ p:

(a) Find nL and nR defining the narrowest range, such that nL ≤ N ≤ nR;
(b) If nL is found and performance at nL is greater than sL, then bestL:=i;
(c) If nR is found and performance at nR is greater than sR, then bestR:=i.

3. IF both bestL and bestR are assigned and hold the same value, this value
determines which plugin should be used to execute the function.
ELSE, the optimal selection is not known and all plugins execute the function
simultaneously. The execution time for each of them is measured and the
obtained speed values used to update the models.

Additional overheads are imposed by the need to pass the function arguments
to the several threads in which the plugins are concurrently run, as well as to
allocate temporary buffers for the results (in order to isolate the plugins from
each other) and to copy the results back to the application buffer upon the fastest
plugin completes its execution.

While the overheads mentioned above may be significant, generally they only
play a role during the first few executions of a given function within the appli-
cation run time, and further calls will choose the optimal implementation with
a minimum overhead. The actual costs related to this approach will be precisely
measured and discussed in the experimental evaluation section of this paper.

3.2 Load Balancing Policy

Whenever the intercepted function call allows work load partitioning across mul-
tiple devices, a divisible load partitioning policy is used to partition and balance
the load given to each plugin. The problem that arises here is how to partition
the problem size N across several heterogeneous devices i (1 ≤ i ≤ p), such that
the overall cross-device execution (computation and communication) is finished

698 J. Colaço et al.

in the shortest possible time. In detail, each device i should process a certain
number of independent parcels ni of the problem size, such that load balanc-
ing is achieved. In contrast to other usual approaches in heterogeneous systems,
where the speed si of each device is described with constants, a more realistic
Functional Performance Modeling (FPM) principle [5] is used. In this model the
performance of each device i is modeled as a continuous function of the assigned
fraction of the problem size ni, and defined within the interval [0, N].

The shortest parallel processing time is attained when all devices finish their
execution and communicate the results back at the same time (load balancing
condition), such that:

n1

s1(n1)
=

n2

s2(n2)
= · · · = np

sp(np)
;

p∑

i=1

ni = N (1)

Since ni must be integers, Eq. (1) is solved by using a two step algorithm.
The first step starts by defining the upper and lower bounds of the solution
search space, converging towards the optimal distribution by bisecting the angle
between these two boundaries, assigning such bisection to one of the search
limits in each iteration. Then, it approximates the load distributions by round-
ing down to the nearest integers. With such preliminary distribution, the algo-
rithm proceeds to the second step (refinement), which iteratively redistributes
the remaining load to the processing devices according to the devices speed si,
until assigning the total problem size N to all processors. This results in an
algorithm with O(p logN) complexity, whose formal proof can be found in [5].

However, the process of building the full performance models for each appli-
cation and device in the system (i.e., the model for a full range of problem sizes)
might be very time consuming. Hence, the adaptive load balancing approach
proposed in [2] is adopted, which builds the partial estimations of the full FPMs
during the application run-time. For each device, the partial FPMs are built by
applying piecewise linear approximations on a set of points, which are obtained
from previous application runs according to the number of performed loads and
the time taken to process them [2]. Since the performance models are not known
a-priori, the adaptive load balancing starts by assigning each device with an
equal amount of loads to process. Hence, in the first iteration, the total problem
size N is evenly partitioned, such that each device is assigned with ni = N/p.
This part of the load balancing is referred to as the initial phase. The subse-
quent iterative phase, used to obtain the new load distributions, consists of two
steps: (i) update of the partially built FPMs; and (ii) determination of the new
load distributions, by applying the previously described algorithm to the newly
approximated FPMs [2].

4 Experimental Results

Computationally intensive mathematical applications are particularly suitable to
evaluate the proposed framework. For such purpose, GNU Octave was naturally

Transparent Application Acceleration by Intelligent Scheduling 699

selected since it relies on several libraries to execute different types of mathe-
matical operations. From all the Octave required libraries we selected two of the
most commonly used: BLAS, for double-precision dense matrix multiplication
(DGEMM), and double-precision complex to complex Fast-Fourier Transforms
(FFTs). The following subsections describe the experimental setup and present
the obtained application acceleration when using these two example libraries.

4.1 Experimental Setup

For the purpose of evaluating the proposed framework, a machine with a Quad-
core Intel i7-950 CPU (3.07 GHz), with 12 GB DDR3-1033, and two NVIDIA
GTX 580 GPUs were used. Given the limited performance of the native GNU
Octave BLAS library (cBLAS), the conducted analyses uses the highly optimized
MKL multi-threaded library for the BLAS baseline and the FFTW library [4]
as the reference for the FFT performance.

To improve Octave performance, the mechanisms provided by the proposed
framework were used to automatically create the plug-in wrappers [6] for the
accelerated libraries, namely MKL, cuBLAS, FFTW and cuFFT [7,8]. It should
be noticed that while all the considered libraries adapt the algorithms to the work
load and underlying architecture, for the FFT plugins, the micro-generation is
more challenging. In detail, the computation of the FFT is split into two phases,
planning and execution, which were incorporated into the framework.

4.2 Performance Characterization

In order to evaluate the efficiency of the proposed Best Performance Selec-
tion policy (BPS), we executed multiple calls and with different problem sizes
for the DGEMM and FFT libraries within Octave. The obtained experimental
results for the DGEMM function, depicted in Fig. 3, show the execution time
obtained when using the BPS policy. As can be observed, BPS was capable
of selecting in all cases the plugin with the best performance. In the specific
DGEMM case, the MKL library delivers better performance for matrix sizes of
up to 350× 350, after which the cuBLAS library becomes faster. This is mainly
due to the fact that for smaller problem sizes the data transfer overheads are
too large and the GPU computing potential is under-used. Naturally, for other
libraries the selection point will be different, according to the characteristics of
the algorithm. For example, for the considered 1D FFT problem sizes (65 k to
4.2 M) the best performance is always achieved with cuFFT library (see Fig. 4).

For the specific cases of divisible problems, additional speed-ups can still be
achieved by relying on the Load Balancing (LB) policy. When applying the LB
policy to the DGEMM function, we consider the basic column based matrix par-
titioning algorithm, where each plugin computes a different set of columns of the
resulting matrix. In this scope, the source matrix B is divided into column-sets
according to the partial estimations of the full performance model of the avail-
able plugins (which are constructed in run-time). Figure 5 presents the speed-up
values regarding the highly optimized, multi-threaded MKL implementation,

700 J. Colaço et al.

Fig. 3. DGEMM execution time. Fig. 4. 1D FFT execution time.

Fig. 5. DGEMM speed-up. Fig. 6. 2D FFT speed-up

running on all four cores. It can be concluded that the adaptive LB policy not
only delivers a performance which greatly surpasses a single device, but it also
allows executing the DGEMM function on problem sizes that do not fit on the
GPU memory (see right side of Fig. 5). Figure 6 presents the speed-ups obtained
when collaboratively performing 2D FFT across all four CPU cores and a sin-
gle GPU. The results herein reported reflect the performance of parallel 2D
FFT CPU + GPU implementation which performs 1D FFT on different matrix
dimensions, each of them followed by a matrix transposition (performed with
Eigen linear algebra library). Experimental results for the 2D FFT, show that
despite the matrix transposition overhead, speed-up of up to 4.6 can be achieved,
regarding the original FFTW 2D implementation.

A temporal diagram of DGEMM execution is presented in Fig. 7, where not
only it can be observed the achieved load balancing between the devices, but
also the insignificant overhead of the function call interception, as discussed in
the following subsection.

Overhead. To evaluate the scheduling overhead that is introduced by the pro-
posed framework, the amount of time required by the several steps of the imple-
mented algorithm were properly characterized, as presented in Table 1.

The first component corresponds to the function call interception, redirection
and return. As can be observed, it represents a rather insignificant amount of

Transparent Application Acceleration by Intelligent Scheduling 701

Fig. 7. Temporal diagram of BLAS dgemm execution after load-balancing for a
8703×8703 matrix multiplication case.

Table 1. Framework overheads, considering C function calls of a given work size, using
D devices.

Overhead Amount Time

Library interception, Redirection and return C 0.16 µs
BPS: Model update 1 0.34 µs

Thread dispatch D 36 µs
Fastest selection C − 1 3.16 µs

LBTPS: Model update C 0.42 µs
Partition distribution C 25.05 µs
Thread dispatch C × D 36 µs

GPU INIT: cuFFT 1 1.3 s
cuBLAS 1 0.273 s

time, independent of the problem size. This overhead must be considered once
per function call.

Then, when the Best Performance selection policy (BPS) is used and it is not
possible to find the fastest plugin for a given problem size, all implementations
are run at the same time. This implies an added overhead to dispatch a thread
to each of the D devices and a consequent model update. As soon as the infor-
mation regarding a given problem size is collected and stored in the model, the
only overhead for consequent calls in the scheduler will be the plugin selection.
Therefore, in a best case scenario, the total overhead of BPS is just 3.327 µs.
In the case of the Load-Balancing policy (LB) the incurred overhead for each
function call is related to partition distribution and model update. Although
the model update overhead is stable, the partition distribution depends on the
information already gathered in the model (hence, the presented values represent
average values).

Finally, since several implementations run in parallel, there is an average of
36 µs per plugin overhead for spawning threads. This parcel occurs only once
with BPS (for each device), while LB imposes this overhead at every execution.

702 J. Colaço et al.

The last two entries in this table represent the library initialization phases.
They are independent of the scheduling framework and have to be considered
only once, before the actual scheduling takes place. In the considered experimen-
tal procedure, both cuFFT and cuBLAS imply large overheads. To mask these
CUDA libraries initialization times, they can be executed asynchronously. As
such, provided that the target application does not use them at start-up time,
this overhead component can be completely hidden. As a consequence, these
initialization times were ignored in the presented benchmark tests.

5 Conclusions

A new application acceleration framework based on a transparent redirection of
shared-library function calls to the several existing devices in a heterogeneous
system was proposed in this paper. The adoption of dynamically constructed
performance models allowed this framework to reduce the overheads and to
quickly adapt to the user application behaviour, without the need to modify
the program source code. By recording the actual performance of the available
devices for different library functions and problem sizes, intelligent scheduling
mechanisms were implemented in order to allow divisible work loads to be parti-
tioned across all devices in the system, achieving the best balance and attaining
the maximum performance. Indivisible work loads are redirected to the fastest
single-device implementation that is available, based on the corresponding prob-
lem size. The framework was evaluated by comparing the attained performance
with state-of-the art single-device implementations, i.e. Intel MKL and FFTW.
The obtained results have shown that speedups as high as 7.86 for matrix mul-
tiplication and 4.6 for FFT can be obtained, with negligible overheads imposed
by the proposed call interception and scheduling mechanisms.

Acknowledgments. This work was partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) under projects , “Threads” (ref. PTDC/
EEA-ELC/117329/2010), “P2HCS” (ref. PTDC/EEI-ELC/3152/2012), “HELIX” (ref.
PTDC/EEA-ELC/113999/2009), “TAGS” (PTDC/EIA-EIA/112283/2009) and
project PEst-OE/EEI/LA0021/2013.

References

1. Beisel, T., Niekamp, M., Plessl, C.: Using shared library interposing for transparent
acceleration in systems with heterogeneous hardware accelerators. In: Proceedings
of the ASAP (2010)

2. Clarke, D., Lastovetsky, A., Rychkov, V.: Dynamic load balancing of parallel com-
putational iterative routines on highly heterogeneous HPC platforms. Parallel Proc.
Lett. 21(02), 195–217 (2011)

3. Fetzer, C., Xiao, Z.: A flexible generator architecture for improving software depend-
ability. In: Proceedings of the ISSRE. pp. 102–113 (2002)

4. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005)

Transparent Application Acceleration by Intelligent Scheduling 703

5. Lastovetsky, A., Reddy, R.: Data partitioning with a functional performance model
of heterogeneous processors. Int. J. High Perform. Comput. Appl. 21(1), 76–90
(2007)

6. Matoga, A., Chaves, R., Tomás, P., Roma, N.: A flexible shared library profiler for
early estimation of performance gains in heterogeneous systems. In: Proceedings of
the HPCS (2013)

7. NVIDIA: CUBLAS Llibrary : User Manual (2012). http://docs.nvidia.com/cuda/
pdf/CUDA CUBLAS Users Guide.pdf

8. NVIDIA: CUFFT Llibrary : User Manual (2012). http://docs.nvidia.com/cuda/
pdf/CUDA CUFFT Users Guide.pdf

A Study on Adaptive Algorithms for Numerical
Quadrature on Heterogeneous GPU

and Multicore Based Systems

Giuliano Laccetti1, Marco Lapegna1(B), Valeria Mele1, and Diego Romano2

1 Department of Mathematics and Applications, University of Naples Federico II,
Complesso Universitario Monte S. Angelo, Via Cintia, Naples, Italy

{giuliano.laccetti,marco.lapegna,valeria.mele}@unina.it
2 ICAR-CNR, Via P. Castellino 111, Naples, Italy

diego.romano@na.icar.cnr.it

Abstract. In this work, a parallel adaptive algorithm for the computa-
tion of a multidimensional integral on heterogeneous GPU and multicore
based systems is described. Two different strategies have been combined
together in the algorithm: a first procedure is responsible for the load
balancing among the threads on the multicore CPU and a second one
is responsible for an efficient execution on the GPU of the computa-
tional kernel. The performance is analyzed and experimental results on
a system with a quad-core CPUs and two GPUs have been achieved.

Keywords: Hierarchical parallelism · Hybrid algorithms · Adaptive
algorithms · Multidimensional integration

1 Introduction

Modern HPC systems are today characterized by hybrid computing nodes, where
traditional multicore CPUs live together with special purpose hardware such as
Graphical Processing Units (GPUs) used as floating point accelerator. These
components have very different features and require different algorithmic devel-
opment methodologies, so that, in order to efficiently use such emerging hybrid
hardware, the development of algorithms and scientific software implies a suit-
able combination of several methodologies to deal with the various forms of
parallelism corresponding to each device.

The aim of our work is to study a special class of algorithms for numerical
quadrature for such hybrid computing nodes. More precisely we deal with the
numerical computation of multidimensional integrals:

I(f) =
∫

U

f(t) dt =
∫

U

f(t1, ..., td) dt1 · · · dtd, (1)

where U = [a1, b1] × · · · × [ad, bd] is a d-dimensional hyperrectangular region.
In the last thirty years, several efficient routines have been developed for the

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 704–713, 2014.
DOI: 10.1007/978-3-642-55224-3 66, c© Springer-Verlag Berlin Heidelberg 2014

A Study on Adaptive Algorithms for Numerical Quadrature 705

solution of this problem on traditional CPUs. Most of them (see for example
[3,15]) are based on adaptive algorithms, that allow high accuracy with a rea-
sonable computational cost.

2 Parallelization of Adaptive Algorithms on Hybrid
Nodes

Given a family of hyperrectangular subdomains s(k) (k = 1, ..,K) of a partition
S of U , a basic multidimensional quadrature rule r(k) and an absolute error
estimate procedure e(k) defined on s(k), an adaptive algorithm for the com-
putation of (1) is an iterative procedure that, at each iteration j, evaluates an
approximation Q(j) of I(f) and an estimate |E(j)| of the error |Q(j) − I(f)|:

Q(j) =
∑

s(k)∈S
r(k) � I(f) |E(j)| =

∑

s(k)∈S
e(k) � |Q(j) − I(f)|

To achieve this, the algorithm computes a sequence Q(j) of composite quadra-
ture rules approaching I(f) and a sequence |E(j)| of approximations of the error
|Q(j) − I(f)| approaching 0, until a stopping criterion is satisfied. For our pur-
poses we remark that the basic quadrature rules r(k) are based on a summation
such as:

r(k) =
n∑

i=1

Ai f(ti) (2)

For dimension up to dimension d = 15 there are several methods to compute the
basic rules r(k) and the absolute errors e(k) in standard regions s(k) [2,6].

Since the convergence rate of this procedure depends on the behaviour of
the integrand function (presence of peaks, oscillations, etc.), in order to reduce
as soon as possible the error, at the iteration j, the subdomain ŝ ∈ S with
maximum error estimate ê is split in two parts s(λ) and s(μ) that take the place
of ŝ in the partition S, that is S = S − {ŝ} ∪ {s(λ) , s(μ)}. In a similar way
the approximations Q(j) and E(j) are updated, evaluating the (2) in the new
subdomains.

Algorithm 1.
Initialize H, Q(0) and E(0)

while (stopping criterion not satisfied) do iteration j
1) select ŝ ∈ H such that ê = maxk=1,..,K e(k)
2) divide ŝ in two parts s(λ) and s(μ)
3) compute r(λ) , e(λ) , r(μ) and e(μ)
4) sort the subdomains according to their errors
5) update H, Q(j) and E(j)

endwhile

706 G. Laccetti et al.

To implement an adaptive algorithm for numerical quadrature, it is necessary
to store all the subdomains s(k) of the partition S in a suitable data structure,
where the subdomain with maximum error estimate ê can be found with a small
computational cost. This can be achieved by storing the data related to the
subdomains s(k) in a partially ordered binary tree H called heap, where the sub-
domain with the largest error estimate is in the root. The computational cost to
sort a heap is log2K, where K is the number of subdomains in H. A framework
for a sequential global adaptive algorithm for the computation of multidimen-
sional integrals is therefore the Algorithm 1 [14]. There are several approaches
to introduce parallelism in adaptive algorithms [14]. The main strategies are the
following:

– Integrand Level Parallelism: the degree of parallelism is given by the number
of integrand functions that have to be eventually computed at the same time.
Since the integrals are distinct, this is an pleasingly form of parallelism [18],
and is well suited to computer systems that do not require frequent com-
munications and/or synchronizations between tasks, such as geographically
distributed systems;

– Subdivision Level Parallelism: the degree of parallelism is given by the number
of subdomains that are subdivided at the same time, so that it is possible to
process several subdomains at each iteration. This is a high form of parallelism
suited for a SPMD programming model such as that one used for clusters or
MPP systems;

– Subregion Level Parallelism: in this case only one subdomain is divided in
several parts concurrently processed , and the degree of parallelism is given
by the number of these parts. This is a more tight form of parallelism with
respect to the previous level.

– Integration Formula Level Parallelism: the degree of parallelism is given by
the number of integrand functions required by the integration rule (2). This is
a low level form of parallelism that does not require MIMD based computing
systems, because the function evaluations all have the same expression. So it
is well suited to SIMD or GPU accelerated systems.

– Integrand Function Level: the degree of parallelism is given by the simulta-
neous calculation of different tasks of the integrand function, so it depends
strongly by its analytical form.

For our aims, consider then an environment represented by a computing node
(e.g. a cluster node or a blade in a server) with a node main memory, one o more
host multicore CPUs and one or more floating point accelerator devices such as
the NVIDIA’s GPUs or the Intel Xeon Phy. Furthermore the acceleration device
has a private memory and cannot access directly the node main memory, so
that the data have to be moved from the host memory to the device memory
and viceversa. From the above, the best strategy to develop a hybrid algorithm
for this environment is then to use a combination of the Subdomain Level Par-
allelism for the subdomains management on the host multicore CPU, and an
Integration Formula Level Parallelism to evaluate the basic rule (2) on the GPU
device.

A Study on Adaptive Algorithms for Numerical Quadrature 707

2.1 The Host Algorithm

To introduce a Subdomain Level Parallelism in Algorithm 1, consider a multicore
based computing environment, where N threads Ti (i = 0, .., N − 1) are in
execution, one on each core, sharing the node main memory.

In a such environment it is then possible to processN subregions concurrently
by different threads. This can be achieved by storing the data related to the
subdomains s(k) in a shared heap H stored in the node main memory. But, in
this centralized approach, where all threads access a single shared heap with a
global synchronization, all the basic operations on the heap must be carried out
in a critical section, so that the synchronization cost depends on the number of
threads N , with a strong scalability degradation [10].

In order to avoid global critical sections, we give up the idea of a single cen-
tralized heap, and we split the heap H in N separate heaps Hi, one for each
thread, each of them accessing its private data structure without synchroniza-
tions with other threads. However also this approach has a side effect: since of
the N items ŝi with the largest error, resident in the heap roots of Hi are not
those that globally have the highest priority, some threads can process unim-
portant items with a slow numerical convergence. At this regard note that the
sequence of items with large error is unpredictable, so that it is impossible to
distribute the subdomains ŝi with large errors uniformly among the heaps Hi

before the computation.
In order to combine fast convergence with high efficiency, in our approach,

at each iteration j, the threads compare the maximum error êi in the roots of
Hi and, if the critical items are not equally distributed among the heaps, they
attempt to reorganize the subdomains in a more suitable way.

To this aim we propose a loosely coordinated approach, where the N threads
are logically organized according to a 2-dimensional periodical mesh M2. This
structure is a grid of Λ0 × Λ1 = N threads, arranged along the points of a
2-dimensional space with integer non negative coordinates in which a shared
memory between each couple of connected nodes is established. The shared
memories are used as buffer to exchange data between two threads according
to a producer-consumer protocol. In addition, the corresponding threads on the
opposite faces of the mesh are connected too, so that the mesh is periodical.

In a 2-dimensional periodical mesh, each thread Ti has 4 neighbors: 2 for
each direction. In the horizontal direction (dir = 0), we define T (0)

i− and T
(0)
i+

respectively the leftmost and the rightmost thread of Ti in M2. Analogously in
the vertical direction (dir = 1) we define T (1)

i− and T
(1)
i+ the lowermost and the

uppermost threads of Ti.
We then define H∗ a loosely coordinated heap as a collection of heap Hi i =

0, .., N − 1, where the roots are connected among them according to the M2

topology.
With the described threads organization, at the iteration j, each thread Ti

attempts to share its item ŝi ∈ Hi, with largest error êi, only with the neighbor
thread T

(dir)
i+ alternatively in the two directions horizontal and vertical. More

precisely, in a fixed direction dir, let êi êi+ and êi− be respectively the errors of

708 G. Laccetti et al.

the subdomains in the heap root of Hi, H(dir)
i+ and H(dir)

i− . If êi > êi+ then the
item ŝi ∈ Hi with largest error êi is moved forward to the heap Hi+ along the
direction dir, using a producer-consumer protocol on the shared space. In the
same way if êi− > êi the item ŝi− ∈ Hi− with largest error êi− is moved to the
heap Hi. In this way, the critical items with large error are shared among the
heaps with a faster convergence.

Furthermore, it should be noted that in this proposed data redistribution,
at each iteration j, there are not global synchronizations among threads Ti and
each of them exchanges data only with the two threads T (dir)

i+ and T
(dir)
i− with

dir = mod(j, 2), so that the cost of threads synchronization is constant and it
does not depend on the number of threads N , so that the resulting algorithm
can be considered scalable [10].

2.2 The Device Algorithm

Modern GPUs are designed to efficiently deal with problems in the field of com-
puter graphics. In this field, it is typically necessary to perform the exact same
operations on all pixels in the image where you want to recreate the same effect.
For this reason, modern GPUs provide a SIMD type parallelism where hundreds
of single computing elements work synchronously on different data, under the
control of a single Control Unit. On the other hand, each computing element
is designed as simple as possible in order to keep its production cost low, so
that the power of the single elements is much lower in comparison to those of
the traditional CPUs. These characteristics mean that only some algorithms are
suitable for an efficient implementation on these devices. More precisely only a
fine grained parallelism on many data is able to unleash the computing power
of these devices.

From this point of view, the computation of (2) is well suited for an execution
on a GPU because of the large value of the number of nodes n, so that the n
products Aif(ti) are evaluated concurrently by the GPU computing elements
according to the Integration Formula Level Parallelism.

It should be noted, however, that the use of these environments involves a
heavy overhead. For example in CUDA (the computing platform and program-
ming model created by NVIDIA for its GPUs), the computing elements cannot
directly access the data stored in the node memory, so that it is necessary to allo-
cate space on the memory graphics card and to transfer data in it. This transfer
is a tremendous bottleneck for the computation: just think that the NVIDIA
Tesla C1060 has a peak performance p∗ = 933 Gflops (single precision) and a
memory bandwidth of only m∗ = 102 GByte/s (i.e. 25.5 Gwords/s, about 3 % of
the peak performance). For such a reason, a key parameter for the development
of efficient algorithms for such computing device is the ratio Θ = p∗/m∗, which
gives a measure of the number of floating point operations required for each data
transferred, in order to support the peak performance. For the NVIDIA Tesla
C1060 we have Θ � 35.

To this aim we observe that the integrand formula (2) requires the transfer
from the host memory to the device memory of 2 d-dimensional array (the center

A Study on Adaptive Algorithms for Numerical Quadrature 709

of the region and the length of its edges) and it is based on n independent function
evaluations where d3 < n < d4 (see for example [11]), large enough to support
the parameter Θ.

In any case it is important to observe that in a sum-based formula (2), after
the parallel evaluation of the n products Ai f(ti), it is necessary to collect these
values together, by summing pairs of partial sums in parallel. Each step of this
pair-wise summation cuts the number of partial sums in half and ultimately
produces the final sum after log2 n steps. This procedure that computes a single
value from a set of data by using an associative operation (e.g. sum or maximum)
is called reduction, and its optimization is a key problem in the development of
algorithms for the GPUs, due to a decreasing number of active threads in the
cascade scheme required to calculate a single value from data produced by several
processing units. For such a reason we use the optimization strategies described
in [13] to compute (2).

Algorithm 2.
initialize Hi, Q

(0)
i and E

(0)
i

while (local stopping criterion not satisfied) do iteration j
define dir = mod(j, 2)
if êi > êi+ then

remove (ŝi) from Hi

produce (ŝi) for T (dir)
i+

endif
if êi− > êi

consume (ŝi−) produced by T (dir)
i−

insert (ŝi−) in Hi

endif
1) select ŝi ∈ Hi such that êi = maxk=1,..,K e(k)
2) divide ŝi in two parts si(λ) and si(μ)
3) compute ri(λ) , ei(λ) , ri(μ) and ei(μ) on the GPU device
4) sort the subdomains according to their errors
5) update Q(j)

i and E
(j)
i

endwhile

We conclude this section reporting, in Algorithm 2, the description of the
hybrid algorithm obtained by integrating the two described methods. More pre-
cisely, using the programming model SPMD, we describe the subdomains man-
agement based on the parallelization at Subdivision Level between the threads
Ti, and at the same time we remark the section of the algorithm with the evalu-
ation of the quadrature formula in step 3) executed in SIMD mode on the GPU
using a Formula Level Parallelism.

3 Test Results

In this section we present the experimental results achieved on a system com-
posed by a quad-core CPU, an Intel Core I7 950 operating at 3.07 Ghz, and two

710 G. Laccetti et al.

NVIDIA’s C1060 GPUs (Tesla). Each NVIDIA C1060 GPU has 240 streaming
processor cores operating at 1.3 Ghz with a peak performance of 933 Gflops in
single precision arithmetic (78 Gflops in double precision arithmetic). The host
main memory is 12 GBytes large and the bandwidth between the host memory
and the device memory is 102 GByte/s.

In this computational environment we implemented our hybrid Algorithm 2
in double precision using C language, with the CUDA library for the implemen-
tation of the step 3) on the GPU, and POSIX thread library and semaphores
for the redistribution of the subdomains among the threads in the host algo-
rithm. For the experiments we used a standard procedure based on the well
known Genz package [12]. This package is composed by six different families of
functions, each of them characterized by some issues making the problem (1)
hard to integrate numerically (peaks, oscillations, singularities...). Each family
is composed by 10 different functions where the parameters αi and βi change
and average test results are computed (execution time, error,). Here we report
the results for the following three families:

f (1)(x) = cos(2πβ1 +
∑d

i=1 αixi) Oscillating functions
f (2)(x) = (1 +

∑d
i=1 αixi)−d−1 Corner peak functions

f (3)(x) = exp(−∑d
i=1 αi|xi − βi|) C(0) functions

(3)

on the domain U = [0, 1]d with dimension d = 10. We selected these functions
because their different analytical features. However, for other functions in the
Genzs package we achieved similar results. We remark that in our algorithm we
use the Genz and Malik quadrature rule with φ = 1, 245 function evaluations so
that at each iteration 2φ = 2, 490 function evaluations are computed in the two
new subdomains sλ and sμ.

A first set of experiments is aimed to study the parallelization at the sub-
division level implementing only the host algorithm. In these experiments we
measured

– the Scaled Speed-up SSN and the Scaled Efficiency SEN [10] with N=1, 2, 3
and 4 threads.

– The minimum (MinErr) and the maximum (MaxErr) relative error |I(f) −
Q(f)|/|I(f) on the 10 functions of each family.

To compute SSN we set F = 10×106 function evaluations in each threads, so
that the total number of function evaluations is FV AL = N×10×106 when the
number of threads increases. The local stopping criterion is based on a maximum
allowed number of iterations in each thread Maxit = F/2φ = 4016.

Table 1 refers to the experiments executed only on the CPU and it reports
the Scaled Speed-up for the three families of functions by using 1, 2, 3 and 4
threads . We observe a good scalability when the number of threads increases.
As already remarked, the evaluation of the multidimensional integration rules
are tasks with a favorable ratio of floating point computation on data movement
so that the data can be easily stored in the core caches and reused in the next
iterations with an extensive use of cached data.

A Study on Adaptive Algorithms for Numerical Quadrature 711

Table 1. Scaled Speed-up and Scaled Efficiency for the three families of functions
f (1), f (2) and f (3) with 1, 2, 3 and 4 cores. The workload in each processing unit is
F = 10 × 106 when the number of core increases. The average execution times with 1
core for the three families of functions are: Time(f (1)) = 0.27 s, Time(f (2)) = 0.22 s
and Time(f (3)) = 0.28 s.

N = 1 N = 2 N = 3 N = 4

Family f (1)

SSN 1 1.9 2.8 3.4
SEN 1 0.95 0.93 0.85

Family f (2)

SSN 1 1.9 2.8 3.6
SEN 1 0.95 0.93 0.90

Family f (3)

SSN 1 1.9 2.7 3.4
SEN 1 0.95 0.90 0.85

Table 2. Execution time and number of function evaluations per second with N = 4
threads without the use of GPU, when the number of node n in the basic rule changes.
The total number of function evaluations is F = 4 × 10 × 106.

n = 1245 n = 2585 n = 9385 n = 37384

Family f (1)

exec. time 0.079 0.071 0.064 0.055
FV AL/time 506 × 106 563 × 106 625 × 106 727 × 106

Family f (2)

exec. time 0.059 0.054 0.048 0.041
FV AL/time 677 × 106 740 × 106 833 × 106 975 × 106

Family f (3)

exec. time 0.082 0.074 0.066 0.057
FV AL/time 487 × 106 540 × 106 606 × 106 701 × 106

A second set of experiments is aimed to investigate the performance gain
using a GPU device as a floating point accelerator. In this case the quadrature
formula (2) has been implemented in the CUDA programming environment for a
scheduling on the GPU, as described in previous section. More precisely, for our
experiments, we have been used several quadrature formulas belonging to the
family of Genz and Malik [11] with number of nodes n = 1245, 2585, 9385, 37389
respectively. This is because the utilization of the GPU involves a high overhead
due to the data transfer between the host memory and device memory, which is
balanced only by an intensive use of its computational capabilities.

In Tables 2 and 3 are reported the performance results of the hybrid algorithm
by using only the quad-core CPU and by using also the GPU devices as a floating
point accelerator respectively. As a performance measure, we used the number
of function evaluations per second. Also in this case the local stopping criterion
is based on the maximum function evaluations in each thread F = 10× 106, so

712 G. Laccetti et al.

Table 3. Execution time and number of function evaluations per second with N = 4
threads with the use of GPU, when the number of node n in the basic rule changes.
The total number of function evaluations is F = 4 × 10 × 106.

n = 1245 n = 2585 n = 9385 n = 37384

Family f (1)

exec. time 0.080 0.053 0.031 0.018
FV AL/time 500 × 106 754 × 106 1290 × 106 2222 × 106

Family f (2)

exec. time 0.065 0.049 0.028 0.015
FV AL/time 615 × 106 816 × 106 1428 × 106 2666 × 106

Family f (3)

exec. time 0.085 0.056 0.033 0.020
FV AL/time 470 × 106 714 × 106 1212 × 106 2000 × 106

that the total number of function evaluations is FV AL = N × 10× 106 (N = 4
is the number of threads) for all test.

From these Tables it is evident that a basic rule with a small number of
function evaluations (n = 1245 and n = 2585) is unable to exploit the computing
power of the GPU used in these experiments. More precisely, we can observe that
the performance gain obtained with the use of the GPU is wasted because of the
overhead related to the memory device allocation and the data transfer, without
significant benefit for the performance. Only with a large number of nodes in the
basic rule (n = 9385 and n = 37384) we report a significant performance gain.
Compared with the value in Table 2, the performance gain reported in Table 3
is about 3×.

4 Conclusions

We presented a hybrid multicore CPU/GPU approach that can exceed 3× the
performance of traditional quadrature adaptive algorithms running just on cur-
rent homogeneous multicore CPUs. In any case we report a significant perfor-
mance gain only with a large number of function evaluations of the basic rule
(n > 104), because the overhead introduced by the memory device management.
In any case our approach demonstrates the utility of graphics accelerators for
multidimensional quadrature problems in a large number of dimensions. Further-
more we remark that our approach can be combined with other hybrid strategies
for multidimensional quadrature, such as that described in [16] or [8], as well as
for other on going works [1,4,5,7,9,17].

References

1. Antonelli, L., Carracciuolo, L., Ceccarelli, M., D’Amore, L., Murli, A.: Total vari-
ation regularization for edge preserving 3D SPECT imaging in high performance
computing environments. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra,
A.G. (eds.) ICCS-ComputSci 2002, Part II. LNCS, vol. 2330, pp. 171–180. Springer,
Heidelberg (2002)

A Study on Adaptive Algorithms for Numerical Quadrature 713

2. Berntsen, J.: Practical error estimation in adaptive multidimensional quadrature
routines. J. Comput. Appl. Math. 25, 327–340 (1989)

3. Berntsen, J., Espelid, T., Genz, A.: Algorithm 698: DCUHRE - an adaptive multi-
dimensional integration routine for a vector of integrals. ACM Trans. Math. Softw.
17, 452–456 (1991)

4. Boccia, V., D’Amore, L., Guarracino, M.R., Laccetti, G.: A grid enabled PSE for
medical imaging: experiences on MediGrid. In: Proceedings of the IEEE Sympo-
sium on Computer Based Medical Systems, pp. 529–536 (2005)

5. Carracciuolo, L., D’Amore, L., Murli, A.: Towards a parallel component for imag-
ing in PETSc programming environment: a case study in 3-D echocardiography.
Parallel Comput. 32, 67–83 (2006)

6. Cools, R., Rabinowitz, P.: Monomial cubature rules since “Stroud”: a compilation.
J. Comput. Appl. Math. 48, 309–326 (1993)

7. D’Amore, L., Casaburi, D., Galletti, A., Marcellino, L., Murli, A.: Integration of
emerging computer technologies for an efficient image sequences analysis. Integr.
Comput. Aided Eng. 18, 365–378 (2011)

8. D’Alessio, A., Lapegna, M.: A scalable parallel algorithm for the adaptive multidi-
mensional quadrature. In: Sincovec, R., et al. (eds.) SIAM Conference on Parallel
Processing for the Scientific Computing, pp. 933–936. SIAM (1993)

9. D’Amore, L., Murli, A.: Image sequence inpainting: towards numerical software
for detection and removal of local missing data via motion estimation. J. Comput.
Appl. Math. 198, 396–413 (2007)

10. Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L., White, A.:
Sourcebook of Parallel Computing. Morgan Kaufmann, San Francisco (2003)

11. Genz, A., Malik, A.: An embedded family of fully symmetric numerical integration
rules. SIAM J. Numer. Anal. 20, 580–588 (1983)

12. Genz, A.: Testing multiple integration software. In: Ford, B., Rault, J.C., Thom-
maset, F. (eds.) Tools, Methods and Language for Scientific and Engineering Com-
putation. North Holland, New York (1984)

13. Harris, M.: Optimizing parallel reduction in CUDA. Technical report, presentation
packaged with CUDA Toolkit, NVIDIA Corporation (2007)

14. Krommer, A.R., Ueberhuber, C.W.: Numerical Integration on Advanced Computer
Systems. LNCS, vol. 848. Springer, Heidelberg (1994)

15. Laccetti, G., Lapegna, M.: PAMIHR. A parallel FORTRAN program for multi-
dimensional quadrature on distributed memory architectures. In: Amestoy, P.R.,
Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.) Euro-Par
1999. LNCS, vol. 1685, pp. 1144–1148. Springer, Heidelberg (1999)

16. Laccetti, G., Lapegna, M., Mele, V., Romano, D., Murli, A.: A double adaptive
algorithm for multidimensional integration on multicore based HPC systems. Int.
J. Parallel Prog. 40, 397–409 (2012)

17. Maddalena, L., Petrosino, A., Laccetti, G.: A fusion-based approach to digital
movie restoration. Pattern Recogn. 43, 1485–1495 (2009)

18. Murli, A., D’Amore, L., Laccetti, G., Gregoretti, F., Oliva, G.: A multi-grained
distributed implementation of the parallel Block Conjugate Gradient algorithm.
Concurrency Comput. Pract. Experience 22, 2053–2072 (2010)

Improving Parallel I/O Performance
Using Multithreaded Two-Phase I/O
with Processor Affinity Management

Yuichi Tsujita1,4(B), Kazumi Yoshinaga1,4, Atsushi Hori1,4, Mikiko Sato2,4,
Mitaro Namiki2,4, and Yutaka Ishikawa1,3

1 RIKEN Advanced Institute for Computational Science, Kobe, Japan
yuichi.tsujita@riken.jp

2 Tokyo University of Agriculture and Technology, Tokyo, Japan
3 The University of Tokyo, Tokyo, Japan

4 JST CREST, Tokyo, Japan

Abstract. I/O has been one of the performance bottlenecks in parallel
computing. Using a parallel I/O API such as MPI-IO is one effective
approach to improve parallel computing performance. The most popular
MPI-IO implementation, ROMIO, utilizes two-phase I/O technique for
collective I/O for non-contiguous access patterns. Furthermore, such two-
phase I/O is frequently used in application oriented parallel I/O libraries
such as HDF5 through an MPI-IO interface layer. Therefore performance
improvement in the two-phase I/O may have a big impact in improving
I/O performance in parallel computing. We report enhancements of the
two-phase I/O by using Pthreads in order to improve I/O performance
in this paper. The enhancements include overlapping scheme between file
I/O and data exchanges by multithreaded operations and the processor
affinity for threads dedicated for file I/O and data exchanges. We show
performance advantages of the optimized two-phase I/O with an appro-
priate processor affinity management relative to the original two-phase
I/O in parallel I/O throughput evaluation of HDF5.

Keywords: MPI-IO · HDF5 · Two-phase I/O · Multithreaded I/O ·
Processor affinity management

1 Introduction

MPI [10] is currently the de facto standard communication interface in parallel
computing. With the increase in the number of MPI processes in recent paral-
lel computing, the size of data which are read or written by MPI processes is
increasing dramatically. I/O for huge-scale data is one of the performance bottle-
necks in parallel computing. MPI-IO in the MPI standard [10] provides a variety
of parallel I/O API in order to achieve scalable I/O operations. A well-known
MPI-IO library, ROMIO [14], has the two-phase I/O performance optimization
scheme [15] (hereinafter, TP-IO), which is used in collective I/O for handling

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 714–723, 2014.
DOI: 10.1007/978-3-642-55224-3 67, c© Springer-Verlag Berlin Heidelberg 2014

Improving Parallel I/O Performance Using Multithreaded Two-Phase I/O 715

non-contiguous access patterns. TP-IO consists of repetitions of contiguous file
I/O and communications for the purpose of I/O performance improvement. Since
I/Os and communications are carried out in a sequential manner, room remains
to overlap I/O with communications regarding performance improvement. We
have already implemented such a scheme in TP-IO by using Pthreads [5] in a
multithreaded manner, and this multithreaded TP-IO outperformed the original
one [17].

In scientific applications, application-oriented I/O libraries such as HDF5 [16]
have been widely used. HDF5’s parallel I/O interface is built upon an MPI-IO
interface layer, and collective I/O for non-contiguous access patterns by using
derived data types is frequently used. Therefore performance improvement in
TP-IO may lead to performance improvement in HDF5.

In this paper, we describe enhancements of the TP-IO to have the manage-
ment of CPU core bindings for threads which participate in the multithreaded
TP-IO. The multithreaded TP-IO without the processor affinity management
outperforms the original TP-IO with about 4.5 % minimization in I/O time mea-
surements. Furthermore the processor affinity management in the multithreaded
TP-IO minimizes I/O time about 2.9 % compared with the multithreaded TP-IO
without the processor affinity management. Consequently the processor affinity
management indicates effectiveness in I/O performance improvement through
the I/O time measurements.

2 Multithreaded Two-Phase I/O

The TP-IO consists of I/O and communication phases in order to improve par-
allel I/O performance. A typical collective read scheme in the original TP-IO is
illustrated in Fig. 1. The entire data file including data gaps is divided evenly
between the MPI processes which take part in file I/O. File I/O and commu-
nications are carried out using a temporary buffer referred to as the collective
buffer (hereinafter, CB).

Fig. 1. Collective read in TP-IO

716 Y. Tsujita et al.

(a) Original case (b) Multithreaded case

Fig. 2. TP-IO read scheme consisting of file I/O and communication

In general, an assigned data space is larger than the CB. As a result, a com-
bination of file I/O and communications is repeated until the entire assigned
data space has been accessed as shown in Fig. 2(a). Each I/O request num-
bered from 0 includes information about not only an assigned CB but also other
parameters, such as offset and size of the assigned data region. In contrast, our
multithreaded implementation shown in Fig. 2(b) can overlap an I/O phase with
a communication phase. It is noted that this figure depicts a very ideal case.
In general, communication and I/O costs are not equal, thus overlapping effect
may decrease compared with the case in Fig. 2(b).

A functional diagram of the multithreaded TP-IO is shown in Fig. 3. An
I/O thread is invoked by a main thread in each process using pthread create
when MPI File open is called. The main and I/O threads are deployed on a
specified CPU core through an MPI Info object with the help of processor
affinity management by using a CPU core affinity API for Pthreads such as
pthread attr setaffinity np. We also have prepared our own function set to
extract process information from a /proc file system to know a current CPU
core ID.

Once an MPI-IO function such as MPI File write all is called, associated
I/O requests are firstly enqueued in a read queue. The I/O thread periodically
checks the status of the queue, and dequeues one request and then executes file
I/O according to the request. After the file I/O has completed, the I/O thread

Fig. 3. Multithreaded TP-IO by using Pthreads

Improving Parallel I/O Performance Using Multithreaded Two-Phase I/O 717

enqueues the I/O request in an exchange queue. The main thread checks the
exchange queue periodically and dequeues a request; this is followed by data
exchanges with other MPI processes according to the request. This sequence is
repeated until all the requests have been carried out. Every MPI process can
buffer multiple I/O requests in order to minimize idle times due to congestion in
communications and I/O operations. The maximum number of I/O requests in
queues can be specified through an MPI Info object. Good CPU core bindings
based on communication and I/O patterns also improve I/O performance too.
For example, a main thread might be placed on a CPU socket which manages
network interfaces in a communication intensive case.

3 Performance Evaluation

A performance evaluation was carried out on a PC cluster system of the Infor-
mation Technology Center, the University of Tokyo (hereinafter, T2K-Todai).
Its node specification is shown in Table 1. We used 32 PC nodes of the T2K-
Todai, which were dedicated only for our system software development. Each
node has four quad-core AMD Opteron processors, and thus we had 16 cores
per node. Every processor had four HyperTransport links, one for 8 GiB DDR2-
667 memory accesses and the other three for connections to the other processors
on the same node. Network connections between nodes were established with two
1 Gbps Ethernet links for control and two Myrinet 10 Gbps links [12] for MPI
communications. In addition to the nodes, we utilized a Lustre file system [8]
dedicated to the 32 nodes, where the file system consisted of 1 MDS and 4 OSTs,
via one Myrinet 10 Gbps link.

We used an MPICH2 library [11], version 1.4.1p1, in order to implement
our proposed scheme in ROMIO. For the evaluation of the various CPU core
bindings, we deployed one MPI process per node to maintain CPU core resource
availability on each node, and thus 32 MPI processes executed I/O operations.
An I/O thread was invoked by a main thread, and then both threads were
deployed on the specified CPU core on the same node. Here MPI communications
between nodes were established with IP over Myrinet for the modified MPICH2
library. I/O operations were performed on the Lustre file system with 1 MiB
striping among the four OSTs.

In this paper, we focus on collective I/O for non-contiguous patterns which
include data of other MPI processes in addition to own data on each MPI process

Table 1. Node specification of T2K-Todai

CPU AMD Opteron 8356 Barcelona (2.3 GHz, 4 cores, L2
cache: 512 KiB/core, L3 cache: 2 MiB/CPU) × 4

Memory 32 GiB (8 GiB × 4)
Interconnect Myrinet 10 Gbps × 2, 1 Gbps Ethernet × 2
OS Linux kernel 2.6.18-53 with glibc version 2.5
Parallel file system Lustre version 1.8.1

718 Y. Tsujita et al.

...
dataset1 = H5Dopen2(fid1, "Data1", H5P_DEFAULT);
file_dataspace = H5Dget_space(dataset1);
ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride,

count, NULL);
mem_dataspace = H5Screate_simple(2, count, NULL);
xfer_plist = H5Pcreate(H5P_DATASET_XFER);
ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);

io_time = MPI_Wtime();
ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,

xfer_plist, &(data_array1[0][0]));
io_time = MPI_Wtime() - io_time;

H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
H5Pclose(xfer_plist);
H5Dclose(dataset1);
...

Fig. 4. Pseudo code using an HDF5 collective read API for parallel I/O performance
evaluation

because this kind of access pattern is commonly used in applications and TP-IO
is used in such access pattern.

We used the most recent version of HDF5 (version 1.8.10); however, a bench-
mark program named IOR [6] which included HDF5 benchmark codes (version
2.10.3) did not support some newly implemented HDF5 functions. Therefore, we
used a performance evaluation program in the HDF5 release with some modi-
fications. Figure 4 shows a pseudo code of part of the I/O performance evalua-
tion program. We evaluated collective I/O by using HDF5’s H5Dread for non-
contiguous I/O accesses. We invalidated the file system cache by remounting the
Lustre file system prior to every I/O performance evaluation. In order to measure
I/O times and give some hints such as CB size or the number of I/O requests to
an MPI-IO layer, we slightly modified it to manage them through an MPI Info
object. Since our multithreaded TP-IO supported only the read operation at the
time of the evaluation, we measured only collective read performance. In this
evaluation, two-dimensional data with 24,320 integers in both row and column
(2.2 GiB in total) was read by all 32 MPI processes on the Lustre file system. In
order to have TP-IO, data was split evenly along with a column index, where
non-contiguous access patterns were generated for every process. In this paper,
we show mean values for every measured time.

Figure 5 shows I/O times of HDF5 collective read operations in terms of total
CB size. Total CB size was calculated as a product of the number of I/O requests
and CB size, which gives the total utilized memory size for all the CBs in queues.
For example, we indicated 64 MiB in total when we had a 16 MiB CB with 4
I/O requests. Note that a shorter time is better in terms of I/O performance.
“original” in Fig. 5(a) stands for parallel I/O using the original ROMIO. “ior-2,”
“ior-4,” and “ior-8” denote multithreaded collective I/O with at most 2, 4, and
8 I/O requests in queues.

Figure 5(a) shows I/O times without processor affinity management. We can
see that the “ior-8” case outperformed other cases with more than 32 MiB in total

Improving Parallel I/O Performance Using Multithreaded Two-Phase I/O 719

Fig. 5. Collective read times for approximately 2.2 GiB with 32 MPI processes by using
an HDF5 collective read API on a Lustre file system, where “main” and “I/O” in (b),
(c), and (d) denote assigned CPU core IDs for main and I/O threads, respectively

CB size. Compared with the “original” case, we have achieved 4.5 % improvement
with 32 MiB in total CB size.

On the other hand, Fig. 5(b)–(d) shows I/O times of multithreaded TP-IO
with the CPU core binding by using our processor affinity management function.
Note that the CPU core IDs from 0 to 3 were given to a CPU socket 0, and so
forth in the T2K Todai case. A main thread was placed on the CPU core 0 in
both Fig. 5(b) and (c) while deploying an I/O thread on the CPU cores 1 and
15, respectively. Figure 5(d) shows the combination opposite to the (c) case. The
“ior-8” case also outperformed other cases with more than 32 MiB in total CB
size.

Overall of the evaluation results in Fig. 5, only the results in Fig. 5(c) min-
imized I/O times relative to the associated results in Fig. 5(a) regarding the
number of I/O requests. For instance the “ior-8” case in Fig. 5(c) minimized
about 2.9 % relative to the same case in Fig. 5(a) with 32 MiB in total CB size.
While the I/O times of the same case in both the Fig. 5(b) and (d) were longer
than those in the Fig. 5(a).

We interpret this performance difference as coming from the CPU core bind-
ing effect. From the point of view of inter-node MPI communications, it might
be better to place a main thread as close as possible to network interface cards

720 Y. Tsujita et al.

in a communication-intensive case. In our evaluation environment, the first CPU
socket, which had CPU cores numbered from 0 to 3, managed the Myrinet inter-
face card. Thus performance results in Fig. 5(b) and (c) were expected to be
better than those in Fig. 5(d).

Figure 5(b), which deployed the main and I/O threads on the same CPU
socket, was expected to be better than Fig. 5(c) in terms of cache effectiveness.
However the CPU cache was not effective in our evaluation since each thread
had multiple CBs larger than the CPU cache size. Furthermore the both threads
used computing resources of the same CPU socket. As a result, we had I/O
performance degradation. In contrast, the threads were separated into two CPU
sockets in Fig. 5(c), and, as a result, this case could minimize resource utilization
per CPU somehow and so I/O times were minimized in Fig. 5(c).

In order to examine the behavior of the TP-IO in the optimized HDF5,
we checked communication and I/O times inside the TP-IO scheme as shown in
Fig. 6. We show only the 8 I/O request case in the figure because this case outper-
formed others. In this figure, “comm” and “read” stand for communications and
read operations inside TP-IO, respectively. “calculated” denotes multithreaded
TP-IO times calculated by max(tcomm, tread) ·(1−SCB/Sdata)+(tcomm +tread) ·
SCB/Sdata, where tcomm and tread denote mean communication and read times,
respectively, and SCB and Sdata stand for the sizes of CB and amount of accessed
data per process, respectively. In addition, the number of TP-IO cycles is also
shown in every figure for reference.

The case of Fig. 6(c) shows shorter communication times than the case of
Fig. 6(a) when total CB size is smaller than 32 MiB, while the times in the cases
of Fig. 6(b) and (d) are longer than the case of Fig. 6(a). Read times in Fig. 6(c)
are almost the same with the times in Fig. 6(a), while the times in Fig. 6(b)
and (d) are longer than the times in Fig. 6(a). As a result, calculated times in
Fig. 6(b), and (d) are longer than those in Fig. 6(a), while the times in Fig. 6(b)
are shorter than the times in Fig. 6(a).

The more the number of MPI processes we have, the more communication
times we may have. Data exchanges in the current TP-IO including our multi-
threaded TP-IO are done by nonblocking point-to-point communications among
MPI processes. Besides, small CB size leads to an increase in the number of
TP-IO cycles. Thus it means an increase in communication times proportional
to the number of TP-IO cycles and squared the number of MPI processes.

As a consequence of this performance evaluation, we note that it is better to
deploy main and I/O threads on different CPU sockets. Furthermore placing a
main thread on a CPU core which is close to a network interface card is preferable
when communication times are comparable with or higher than file I/O times.

4 Related Work

Parallel netCDF (PnetCDF) [7] is also a well-known application-oriented parallel
I/O library, which is also built on an MPI-IO layer as same as the HDF5 library
is. PnetCDF also frequently utilize derived data types for non-contiguous access

Improving Parallel I/O Performance Using Multithreaded Two-Phase I/O 721

Fig. 6. Times for communication and file reading by main and I/O threads, respec-
tively, during I/O operations by H5Dread in addition to calculated times of the I/O
operations and the number of TP-IO cycles in terms of total CB size

patterns, thus TP-IO is used in collective I/O for such access patterns. Our
multithreaded TP-IO is also expected to improve parallel I/O performance of
PnetCDF.

Both [4] and [9] showed excellent overlapping strategies by using a multi-
threaded scheme. However, they overlapped computations with file I/O. There-
fore their approaches differ from ours in terms of technical target and strategy.

View-based I/O [3] is addressing to optimize TP-IO by eliminating the extra
communication cost of generating both file and memory access patterns. Every
client MPI process exchanges information to adjust assigned data region dynam-
ically in the original TP-IO. In contrast, the view-based I/O sends file view data
to every I/O aggregators prior to I/O operations. Thus the view-based I/O avoids
communication costs to exchange information as the original TP-IO does.

In the extended TP-IO evaluated here, every process communicates once just
before its I/O accesses in order to achieve higher performance. Blas et al. [2] uti-
lized a GPFS file system [1] to realize background writing and read-ahead
techniques. In the proposed TP-IO, a multithreaded method is used to overlap.
In addition, optimization of MPI-IO implementations on a GPFS provided over-
lapped manner of I/O operations against data communications by using a double

722 Y. Tsujita et al.

buffering scheme [13]. Although our proposal is similar to this idea, this idea is
tightly coupled with the nature of GPFS, and thus it is file system dependent.
While our proposal is independent of underlying file systems, making it usable on
any kind of file system for which POSIX I/O and Pthreads are available.

5 Concluding Remarks

We have reported our performance optimization approach using processor affin-
ity management in the TP-IO through performance evaluation for parallel I/O
of HDF5. We evaluated non-contiguous accesses by using an HDF5 collective
read API on a PC cluster system with a Lustre file system.

The multithreaded implementation without the processor affinity manage-
ment minimized I/O times about 4.5 % relative to the times of the original TP-IO
implementation at 32 MiB in total CB size, for instance. Moreover, the multi-
threaded TP-IO with the processor affinity management minimized I/O times
about 2.9 % relative to the times of the multithreaded one without processor
affinity management at the same total CB size. The improvement was realized
by a good CPU core binding. Main and I/O threads were deployed on CPU cores
0 and 15, respectively, where the core 0 was closer to a Myrinet interface card
compared with the core 15, in the evaluation. It is also noted that the perfor-
mance was degraded when we had inappropriate CPU core bindings, where a
main thread was on the CPU core 15, which was far from the Myrinet interface
card or main and I/O threads were on the same CPU socket. The same effect
was also observed in further examinations for communication and I/O operation
times inside ROMIO.

Consequently it is remarked that placing the main thread on a CPU core
which is close to the Myrinet interface card is preferable when communication
times were comparable with or higher than file I/O times like the performance
evaluation. Furthermore the I/O thread should be placed on a different CPU
socket apart from a CPU socket on which a main thread is running.

I/O performance evaluation with different CPU core binding patterns that
we have not measured is our future work for further analysis. Besides, a more
detailed evaluation by using, e.g., system resource monitoring such as CPU and
I/O utilization, also remains as future work.

Acknowledgment. This research work is partially supported by JST CREST. The
authors would like to thank the Information Technology Center, the University of
Tokyo for their assistance in using the T2K-Todai cluster system.

References

1. General Parallel File System. http://www-03.ibm.com/systems/software/gpfs/
2. Blas, J.G., Isaila, F., Carretero, J., Singh, D., Garcia-Carballeira, F.: Implementa-

tion and evaluation of file write-back and prefetching for MPI-IO over GPFS. Int.
J. High Perform. Comput. Appl. 24, 78–92 (2010)

Improving Parallel I/O Performance Using Multithreaded Two-Phase I/O 723

3. Blas, J.G., Isaila, F., Singh, D.E., Carretero, J.: View-based collective I/O for
MPI-IO. In: CCGRID, pp. 409–416 (2008)

4. Dickens, P., Thakur, R.: Improving collective I/O performance using threads. In:
Proceedings of the Joint International Parallel Processing Symposium and IEEE
Symposium on Parallel and Distributed Processing, pp. 38–45 (1999)

5. Institute of Electrical, Electronic Engineers: Information Technology – Portable
Operating Systems Interface – Part 1: System Application Program Interface (API)
– Amendment 2: Threads Extensions [C Languages] (1995)

6. IOR. http://sourceforge.net/projects/ior-sio/
7. Li, J., Liao, W.K., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham,

R., Siegel, A., Gallagher, B., Zingale, M.: Parallel netCDF: a high-performance
scientific I/O interface. In: Proceedings of the 2003 ACM/IEEE Conference on
Supercomputing. SC ’03, p. 39. ACM, Nov 2003

8. Lustre. http://wiki.lustre.org/index.php/Main Page
9. Ma, X., Winslett, M., Lee, J., Yu, S.: Improving MPI-IO output performance with

active buffering plus threads. In: Proceedings of the 17th International Parallel and
Distributed Processing Symposium (IPDPS’03), p. 68b. IEEE Computer Society,
Apr 2003

10. MPI Forum. http://www.mpi-forum.org/
11. MPICH. http://www.mpich.org/
12. Myricom Inc. http://www.myricom.com/
13. Prost, J.P., Treumann, R., Hedges, R., Jia, B., Koniges, A.: MPI-IO/GPFS, an

optimized implementation of MPI-IO on top of GPFS. In: SC ’01: Proceedings
of the 2001 ACM/IEEE Conference on Supercomputing, p. 58. IEEE Computer
Society (2001)

14. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with
high performance. In: Proceedings of the Sixth Workshop on Input/Output in
Parallel and Distributed Systems, pp. 23–32 (1999)

15. Thakur, R., Gropp, W., Lusk, E.: Optimizing noncontiguous accesses in MPI-IO.
Parallel Comput. 28(1), 83–105 (2002)

16. The National Center for Supercomputing Applications. http://hdf.ncsa.uiuc.edu/
HDF5/

17. Tsujita, Y., Muguruma, H., Yoshinaga, K., Hori, A., Namiki, M., Ishikawa, Y.:
Improving collective I/O performance using pipelined two-phase I/O. In: Proceed-
ings of the 2012 Symposium on High Performance Computing. HPC ’12, pp. 7:1–
7:8. Society for Modeling and Simulation International, CD-ROM, Mar 2012

Storage Management Systems
for Organizationally Distributed Environments

PLGrid PLUS Case Study

Renata S�lota1(B), �Lukasz Dutka2, Micha�l Wrzeszcz2, Bartosz Kryza2,
Darin Nikolow1, Dariusz Król2, and Jacek Kitowski1,2

1 Department of Computer Science, Faculty of Computer Science,
Electronics and Telecommunications, AGH University of Science and Technology,

Al. Mickiewicza 30, 30–059 Krakow, Poland
2 ACC Cyfronet AGH, AGH University of Science and Technology,

Ul. Nawojki 11, 30–950 Krakow, Poland
{rena,dutka,wrzeszcz,bkryza,darin,dkrol,kito}@agh.edu.pl

Abstract. With the increasing amount of data the research community
is facing problems with methods of effectively accessing, storing, and
processing data in large scale and geographically distributed environ-
ments. This paper addresses major data management issues, in partic-
ular use cases and scenarios (on the basis of Polish research community
organized around the PLGrid PLUS Project) and discusses architectures
of data storage management systems available in both PL-Grid and other
similar federated environments. On that basis, a concept of a new meta
storage system, named VeilFS, is presented. The proposed system unifies
file access methods for geographically distributed large scale systems and
hides complexity of data access and management in such environments.
However, it should be emphasized that the main purpose of this article
is identification and discussion about users’ requirements and existing
solutions. The VeilFS system will be described in detail in the future.

Keywords: Storage system · Data management · Organizationally
distributed environment · Grid · Cloud

1 Introduction

Modern scientific research is guided by several paradigms including theoreti-
cal methods, experimental science, simulation and most recently an emerging
4th paradigm. The 4th paradigm relates to scientific research based on process-
ing and analysis of large amounts of data, which is believed to be the most
important research paradigm in the coming years [10]. Applications ranging
from natural science research, bioinformatics, mathematics, economy as well as
social sciences require more and more computational and data processing and
storage capabilities to handle increasingly complex algorithms and applications.
Such data intensive applications [4] are highly heterogeneous in terms of their

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 724–733, 2014.
DOI: 10.1007/978-3-642-55224-3 68, c© Springer-Verlag Berlin Heidelberg 2014

Storage Management Systems for Organizationally Distributed Environments 725

architecture (e.g. some use simple files others use complex centralized databases),
data complexity (e.g. some use raw measurements while other process complex
data structured), time constraints (e.g. real time processing vs batch processing)
and several other aspects.

In the near future the research community will be faced with major problems
concerning access, store, search and sharing data generated either by sensors
or through simulations and needed as input to complex processing jobs and
workflows. This is often referred to in the literature as the ‘Big Data’ revolution
[15], often defined not only through overall data volume, but also such aspects
as variety of data and the processing speed required in order to actually use the
potential of access to such amount of information. the Polish research community
organized around the PL-Grid infrastructure [13] in the frame of the PLGrid
PLUS project [17]. It is worth to emphasize that the topic of data management
in Grid environment is investigated by our team for many years [8,20]. The rest of
the paper is organized as follows. Section 2 presents PLGrid PLUS project use-
cases of user data management. The main data storage management systems
used in the PL-Grid infrastructure are described in Sect. 3. Section 4 suggests
other possible solutions, in the form of state of the art, to enable provision of
storage resources in grid environments. Section 5 summarizes the use cases that
need to be supported by a new system solution in our opinion and presents our
vision on this issue. Finally, Sect. 6 concludes the paper.

2 Data Access Requirements of Domain Grids –
Use Cases

PLGrid PLUS is a continuation of the PL-Grid project which provided basic
Grid infrastructure spanning 5 major supercomputing centers in Poland. The
follow-up project is focused on integrated domain specific research communi-
ties and helping them use the distributed high performance computing resources
to improve their everyday research activities. These 13 domain specific Grids
include such diverse scientific communities as for example Ecology, High
Energy Physics, Bioinformatics, Nanotechnology, Material Science, Acoustics
and Astronomy.

Table 1 presents the results of research on users’ requirements concerning
typical data use cases. The results were obtained from a questionnaire distributed
among the representatives of each of the domains and highlights the current
problems with typical data management use cases.

The Importance column reflects the number of specific scientific domains
adopted in the PLGrid PLUS project for which this use case is significant and
the Difficulty column shows whether currently most users find it easy or not to
perform such a use case.

Currently, the existing data management approach in PL-Grid shows up some
inconveniences for both the users and the administrators, due to: heterogeneous
solutions between different computer centres, various long term storage policies
in computer centres, difficult block access to files managed by Grid storage and

726 R. S�lota et al.

Table 1. PLGrid PLUS user data management use cases.

Use case Importance Difficulty Comment

Archivization High High Archivization is only available outside of
the Pl-Grid infrastructure through PLATON
infrastructure [2]

Temporary
files access

High Low Temporary files are stored locally at sites
using NFS or Lustre, however different sites
have different data deletion policy and differ-
ent paths

Permanent
files access

High Average Files can be accessed through DPM [24],
LFC [5], Unicore [6]. Block access is possible
through RFIO protocol. However DPM still
requires specific commands for data manage-
ment, which makes many users fall back to
manual transfers

Data staging High Average Users can specify necessary job input files in
the job description file, provided these files
are already registered in the permanent Grid
storage (e.g. LFC)

Data transfer
from/to Grid

High Easy Users can use simple SSH/SCP commands

Data transfer
between sites

Average Average Users can manually transfer files between
sites, either using Grid middleware (e.g.
LFC) or manually over SSH based protocols.

Relational
database
access

Average Easy Users can create a custom database on a cen-
tral MySQL server, this however poses cer-
tain performance and scalability issues

Metadata Low Average Users can only search using the files logical
names, however no mechanism for structured
metadata descriptions is available

lack of advanced metadata support. One of the major problems faced by these
users is the lack of uniform and transparent methods of data management, which
result in non-optimal usage of storage and computing resources by manually
managed data transfers using SSH based protocols for both file sharing and
staging before job execution.

In the next sections we present our considerations on systems capable of pro-
viding storage resources in the context of the presented use cases and scenarios.

3 Data Storage in PL-Grid Infrastructure

Variety of storage management systems are used by the PL-Grid infrastructure.
The reason for such high heterogeneity of storage originates from the following
facts:

Storage Management Systems for Organizationally Distributed Environments 727

– users need storage resources which have different characteristics depending
on the nature of applications,

– the local sites providing computational resources make autonomic decisions
about the storage hardware and software, which should be used, depending
on the requirements of their key users,

– the sites adopt some of the spare storage resources which already exist at the
given location.

The storage hardware is not used directly by the PL-Grid users but via some
storage software layers which arrange the storage resources into file systems. The
mostly used ones are presented below.

3.1 Lustre

Lustre [7,14] is a parallel distributed filesystem for computational clusters.
The Lustre filesystem within the PL-Grid infrastructure is typically used

for a high performance scratch filesystem. There are different Lustre instances
on the different sites, which means that the data stored on this filesystem can
only be shared within the local cluster of the given site. In order to keep these
data from deleting they should be copied to a permanent storage outside of the
local cluster, e.g., the home directory or LFC (described below). Cyfronet are
shown in Table 2. The measured Lustre instance consists of disk array volumes
attached via FC 8 Gbps interfaces to a set of servers which further provides the
Lustre filesystem to the worker nodes of the cluster via InfiniBand interfaces.
Sequential reads and writes have been tested using the Linux tool dd to measure
the performance.

3.2 QStorMan

QstorMan [22,23], developed in PL-Grid project [12], is aimed at delivering
storage QoS and resource usage optimization for applications which use the
Lustre filesystem. QStorMan fulfills these goals by continuous monitoring of
the Lustre nodes and dynamically forwarding data access requests to the most
appropriate storage resources. The forwarding is done by defining storage pools
containing selected storage resources and forcing the Lustre system to use the
best storage pool for the given request taking into account the provided storage
QoS requirements. QStorMan supports two types of usage [21]: via its API in
the cases when small changes to the application’s source code can be made or via
switching the system libraries to use the QStorMan code for legacy applications.
The usage of QStorMan has been proved to improve the data access efficiency
of PL-Grid data-intensive applications.

3.3 LFC

LFC (LCG File Catalog) [5] is a storage software for meta-data management
which provides common filesystem functionality for distributed storage resources.

728 R. S�lota et al.

Table 2. Performance of Lustre and LFC filesystems in Cyfronet’s PL-Grid site

Test no. Filesize [MB] Lustre transfer rate LFC transfer rate
Read [MB/s] Write [MB/s] Read [MB/s] Write [MB/s]

1 128 20.7 15.8 40.1 110
2 512 18.9 26.4 99.7 109
3 1024 17.9 23.7 60.8 58.4
4 2048 25.6 35.5 59.5 27.4

LFC supports user initiated file replication for better data protection and avail-
ability. The common way of using LFC is via the command line utilities [26].
Another less popular way is by using the GFAL API [9] to access LFC directly
from the application’s source code. Finally, a FUSE-based implementation of a
filesystem called GFAL-FS [9] can be used to provide access to the data in the
same manner as to a regular Unix-like filesystem. Unfortunately this is the least
efficient (compared to the previous two methods) way. Only read-only mode
is currently supported by GFAL-FS. Typical performance data for the LFC
filesystem using the storage resources installed at Cyfronet are shown in Table 2.
Sequential reads and writes have been tested using the LCG utility lcg-cp to
measure the performance.

4 Alternative Proposed Solutions - State of the Art
and Discussion

Besides the tools presented in the previous section a number of data manage-
ment systems have been developed for organizationally distributed environments.
These systems can be categorized based on supported use cases. In this section, a
few data management systems oriented on different use cases are discussed. The
standard POSIX filesystem interface is arguably a preferable interface to any
data management system for most applications. Hence, many efforts have been
undertaken to develop various tools, which would allow to abstract any specific
interface with the POSIX interface. Parrot [25] is a tool for attaching existing
programs to remote data management systems, which expose other access pro-
tocols, e.g. HTTP, FTP or XRootD, through the filesystem interface. It utilizes
the ptrace debugging interface to trap system calls of the program and replace
them with remote I/O operations. As a result, remote data can be accessed in the
same way as local files. However, using ptrace can generate significant overhead
[25], which can be unacceptable for HPC applications.

Another integrating tool, developed for Grid environments is iRODS [11,18],
which operates at a much higher level. It is a service for distributed storage
resources integration with metadata support and rule-oriented management. It
is often referred to as an adaptive middleware, since its data management behav-
iour can be adjusted to administrators/users needs using rules. It has an extend-
able modular architecture, which can be divided as follows:

Storage Management Systems for Organizationally Distributed Environments 729

– A metadata catalog called iCAT, which handles metadata information about
actual data stored in the system, e.g. filename, size, or location. In addition,
user defined metadata can be stored as well. Then, the user can search for
data, which have been tagged. An administrator can query the metadata cat-
alog directly using an SQL-like language to provide an aggregated information
about the system. However, iCAT constitutes a central point of information
about the system, thus it can be treated as a single point of failure.

– Rule Engine is responsible for tracking users actions and executing predefined
rules. Each rule is a chain of activities provided by low-level modules, e.g.
data replication or checksum calculation, built in or supported by the users
or administrators to provide required functionality. Rules are triggered by
various system events, e.g. putting/getting data or authentication.

– Data Servers are resources for actual data storage. In a basic setup, iRODS
can store data using designated folders on any number of servers. In addition,
by using plugin mechanism, iRODS can be integrated with external data man-
agement systems, e.g. GridFTP-enabled systems, SRM-compatible systems,
or even Amazon S3 service. Hence, iRODS can provide a coherent view of
user data stored in different systems.

– User interface for exposing the service to external clients. iRODS provides
multiple user interfaces, starting with iCommands, which are counterparts of
common unix commands, e.g. ls, cp, cd etc., web-based browser and Explorer
for Windows. In addition, iRODS provides a FUSE-based file system, which
can be mounted on any FUSE-compatible Unix system [1] and utilized with
the POSIX interface.

The iRODS system has a built-in support for federalization, i.e. connecting
organizationally distributed installations of iRODS. In such a case, users from
one iRODS installation (referred to as Zone) can access data located in another
Zone. Special user accounts can be created in a remote Zone with a pointer to
the home Zone of the user, hence during the authentication process the user is
challenged with the home Zone. Each iRODS Zone is a separated entity that can
be managed in a different way and can include different storage resources. data
access and federalization. However, it also has some drawbacks. iCAT, which is
involved in most requests, is implemented as a relational database, hence it can
be considered as a bottleneck of the whole system. Moreover, iRODS does not
provide location transparency of data stored across multiple federated iRODS
installations. In such a case, the user has to manage the location of data among
different installations on his own. which requires fast and scalable storage sys-
tems. Hadoop Distributed File System (HDFS) [19] is a distributed file system
designed to support the map-reduce framework called Hadoop. HDFS intends to
store large data sets reliable, which have to be streamed at high bandwidth to
user computation processes. Similarly to other distributed file systems, HDFS
stores metadata and actual data separately. Hence, storage resources for actual
data can be scaled easily just by adding more servers. HDFS takes care of dis-
tribution and replication data among available storage resources. On the other
hand, the metadata server can be considered as a single point of failure, which

730 R. S�lota et al.

constraints scalability of the system and decreases its fault-tolerance. Due to
increasing popularity of the map-reduce paradigm, other tools are also devel-
oped. Tachyon [3] is a relatively new project, which provides a high performance
for map-reduce applications by using memory aggressively.

In the PLGrid PLUS project heterogeneity is a very important issue so Cloud
storage has been also investigated. It is designed to deliver many online storage
services, whereas traditional storage systems are primarily designed for high per-
formance computing and transaction processing. It places great importance on
data security, reliability, and efficiency. Moreover, Cloud storage systems also
support mass data management for providing public service support functions,
and maintaining data in the background [27]. For our research, we have chosen
OpenStack Object Store, known as Swift [16]. Swift is able to provide common
file names within Grid and Cloud infrastructure of PLGrid PLUS project which
is a very important feature for the users. We have compared it to LFS which is
also able to provide common file names. Even at very small testbed (4 nodes) we
have achieved transfer rates similar to LFC deployed on the PL-Grid infrastruc-
ture. We have verified that Swift can be used to stream files directly to process
memory. However, Swift file sharing mechanism that is base on an API access
key sharing or a session token, is more difficult to use for most of PL-Grid users
than LFC file sharing mechanism based on Unix permissions. Moreover, the
users have a lot of data stored at LFC so although, for some cases Swift would
be better that LFC, it would be difficult to replace LFC with Swift. Results of
this analysis confirm that choice of one type of storage for the PLGrid PLUS
project is inconvenient.

5 Distributed Data Sources Veil - VeilFS

The proposed VeilFS system (see Fig. 1) unifies access to files stored at heteroge-
neous data storage management systems that belong to geographically distrib-
uted organizations. It is currently being developed by ACC Cyfronet AGH under
PLGrid PLUS project. VeilFS addresses the main users’ requirements described
in Sect. 2. It provides a user space file system (FUSE) that wraps several types
of storage that are used for archivization and storing of temporary and perma-
nent files. To make use of VeilFS as simple as possible, the users do not have
to choose type of storage they want to use. The files’ locations are chosen by
the system. The users operate only on logical names of files. node accesses files
through FUSE. FUSE is connected with user account so many FUSE systems
may exist at one worker node if processes of many users are running on it. Each
FUSE cooperates with VeilFS which indicates location of files on the basis of
their logical names. Information about users’ files is stored in the distributed
database so any user has coherent view of his/her data regardless the location
where he connects to the system. Moreover, the user is always able to access
his/her data - if the file is stored in other computing center, it is downloaded if
needed. In the database, user defined metadata may be also stored.

To avoid creation of single points of failure and bottlenecks, no function is
assigned to machines used by VeilFS. FUSE may send request to any machine

Storage Management Systems for Organizationally Distributed Environments 731

Fig. 1. VeilFS scheme

and it will be redirected to appropriate one. If one of the machines fails, the
other one takes its functionality. The data in the database may be replicated
to many physical machines and various directories (home, scratch, archive) may
use redundant storage. All connections with VeilFS are encrypted, GSI authen-
tication is used. All of that makes the proposed system secure.

Rules defined by administrators are used by VeilFS to select location for
created files and to control the system in the center. On the basis of these
rules files are migrated (e.g., least used files are archived) and user’s activity is
monitored (e.g., quote is controlled). VeilFS instances in computing centers are
independent. However, the organization-wide rules are used to coordinate their
cooperation. For instance, if user processes in one center often use a file that is
stored in other center, this data may be permanently migrated.

6 Conclusions

Data processing and managing in large scale environments is the major problem
which the research community will face in the near future. Our users’ require-
ments analysis has shown that access to files is too complicated for many of
them. Variety of used storage solutions confuses users. Users expect that data
access will be simple using one tool - preferably based on standard POSIX filesys-
tem interface. In short, the actual users expect access to the data in large scale
computational environment in the same way as they do on their own personal
computers. The fact of the distribution of the large scale computational environ-
ments they work with in computer centres should not bring more barriers, but
be the opportunity for intra-community data sharing and collaboration. exist.
However, they are still full of complexity and barriers for their users if we come
to globally distributed environments. There is no transparency in data center
selection in multiple data centres scenarios.

732 R. S�lota et al.

The proposed meta-filesystem - VeilFS unifies data access despite the geo-
graphical distribution of computational resources or heterogeneity of the actual
storages used by the computing centers. The decision where files will be stored
is made by the system - the user may only provide advisory information. Fur-
thermore, the system migrates files when their usage profile changes which is
completely transparent to the user. We believe that managing real file location
by the system (the user operates only on logical names) is the right approach
because the users are not always aware of the specificity of storage management
systems so their choices may not be optimal.

Acknowledgments. This research is supported partly by the European Regional
Development Fund program no. POIG.02.03.00-00-096/10 as part of the PLGrid PLUS
project and AGH-UST grants no. 11.11.230.015 and 15.11.230.097.

References

1. FUSE: Filesystem in Userspace. http://fuse.sourceforge.net/ (2013). Accessed 21
April 2013 (Online)

2. PLATON Storage Service U4. http://www.storage.pionier.net.pl/ (2013). Accessed
21 April 2013 (Online)

3. Tachyon Project. http://tachyon-project.org/ (2013). Accessed 21 April 2013
4. Atkinson, M., et al.: Data-intensive research workshop report. Technical Report,

e-Science Institute. http://research.nesc.ac.uk/files/DIRWS.pdf (2010)
5. Baud, J.P.B., Caey, J., Lemaitre, S., Nicholson, C., Smith, D., Stewart, G.: LCG

data management: from EDG to EGEE. In: UK e-Science All Hands Meeting,
Nottingham, UK (2005)

6. Benedyczak, K., Rekawek, T., Rybicki, J., Schuller, B.: UNICORE data man-
agement: recent advancements. In: Romberg, M., Bala, P., Mller-Pfefferkorn, R.,
Mallmann, D. (eds.) UNICORE Summit 2011 Proceedings, Torun, Poland, 7–8
July 2011. IAS Series, vol. 9, pp. 24–27, Forschungszentrum Jülich (2011)

7. Braam, P.J., Schwan, P.: Lustre: the intergalactic file system. In: Ottawa Linux
Symposium, June 2002

8. Dutka, �L., Kitowski, J.: Application of component-expert technology for selection
of data-handlers in CrossGrid. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J., Volk-
ert, J. (eds.) PVM/MPI 2002. LNCS, vol. 2474, pp. 25–32. Springer, Heidelberg
(2002)

9. Grid File Access Library 2.0 official page. https://svnweb.cern.ch/trac/lcgutil/
wiki/gfal2 (2013). Accessed 14 April 2013

10. Hey, A., Tansley, S., Tolle, K.: The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Research, Redmond (2009)

11. Hunich, D., Muller-Pfefferkorn, R.: Managing large datasets with iRODS: a per-
formance analysis. In: Proceedings of the 2010 International Multiconference on
Computer Science and Information Technology (IMCSIT), pp. 647–654 (2010)

12. Kitowski, J., et al.: Polish computational research space for international scientific
collaborations. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski,
J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 317–326. Springer, Heidelberg
(2012)

Storage Management Systems for Organizationally Distributed Environments 733

13. Kitowski, J., Tura�la, M., Wiatr, K., Dutka, �L.: Pl-grid: foundations and perspec-
tives of national computing infrastructure. In: Bubak, M., Szepieniec, T., Wiatr,
K. (eds.) PL-Grid 2011. LNCS, vol. 7136, pp. 1–14. Springer, Heidelberg (2012)

14. Lustre. http://www.whamcloud.com/lustre/ (2013). Accessed 10 January 2013
15. Mills, S., Lucas, S., Irakliotis, L., Rappa, M., Carlson, T., Perlowitz, B.:

DEMYSTIFYING BIG DATA: a practical guide to transforming the busi-
ness of Government. Technical report. http://www.ibm.com/software/data/
demystifying-big-data/ (2012)

16. OpenStack Object Storage (“Swift”). https://wiki.openstack.org/wiki/Swift
(2013). Accessed 14 April 2013

17. PLGrid Plus project. http://www.plgrid.pl/en#section-1t (2013). Accessed 14
April 2013

18. Roblitz, T.: Towards implementing virtual data infrastructures a case study with
iRODS. Comput. Sci. 13(4), 21–33 (2012). http://journals.agh.edu.pl/csci/article/
view/43

19. Shafer, J., Rixner, S., Cox, A.L.: The Hadoop distributed filesystem: balancing
portability and performance. In: ISPASS, pp. 122–133, March 2010

20. S�lota, R., Nikolow, D., Skita�l, �L., Kitowski, J.: Implementation of replication meth-
ods in the grid environment. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld,
A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 474–484. Springer, Heidel-
berg (2005)

21. S�lota, R.: Storage QOS provisioning for execution programming of data-intensive
applications. Sci. Program. 20(1), 69–80 (2012)

22. S�lota, R., Król, D., Ska�lkowski, K., Orzechowski, M., Nikolow, D., Kryza, B.,
Wrzeszcz, M., Kitowski, J.: A toolkit for storage QOS provisioning for data-
intensive applications. Comput. Sci. 13(1), 63–73 (2012). http://journals.agh.edu.
pl/csci/article/view/26

23. S�lota, R., Nikolow, D., Kitowski, J., Król, D., Kryza, B.: FiVO/QStorMan seman-
tic toolkit for supporting data-intensive applications in distributed environments.
Comput. Inform. 31(5), 1003–1024 (2012)

24. Stewart, G.A., Cameron, D., Cowan, G.A., McCance, G.: Storage and data man-
agement in EGEE. In: Proceedings of the fifth Australasian Symposium on ACSW
frontiers, ACSW’07, Australia, vol. 68, pp. 69–77. Australian Computer Society
Inc, Darlinghurst (2007)

25. Thain, D., Livny, M.: Parrot: an application environment for data-intensive com-
puting. J. Parallel Distrib. Comput. Pract. 6(3), 9–18 (2005)

26. Worldwide LHC Computing Grid. http://wlcg.web.cern.ch/ (2013). Accessed 10
April 2013

27. Zhou, K., Wang, H., Li, C.: Cloud storage technology and its application. ZTE
Commun. 16(4), 24–27 (2010)

The High Performance Internet of Things: Using
GVirtuS to Share High-End GPUs with ARM

Based Cluster Computing Nodes

Giuliano Laccetti1, Raffaele Montella2(B), Carlo Palmieri2,
and Valentina Pelliccia2

1 Department of Mathematics and Applications, University of Naples Federico II,
Complesso Universitario Monte S. Angelo, Via Cintia, Naples, Italy

giuliano.laccetti@unina.it
2 Department of Science and Technologies, Centro Direzionale di Napoli,

Parthenope University of Napoli, Isola C4, 80143 Naples, Italy
{raffaele.montella,carlo.palmeiri,valentina.pelliccia}@uniparthenope.it

Abstract. The availability of computing resources and the need for high
quality services are rapidly evolving the vision about the acceleration
of knowledge development, improvement and dissemination. The Inter-
net of Things is growing up. The high performance cloud computing
is behind the scene powering the next big thing. In this paper, using
the GVirtuS, general purpose virtualization service, we demonstrate the
feasibility of accelerate inexpensive ARM based computing nodes with
high-end GPUs hosted on x86 64 machines. We draw the vision of a pos-
sible next generation of low-cost, off the shelf, computing clusters we call
Neowulf characterized by high heterogenic parallelism and expected as
low electric power demanding and head producing.

Keywords: Hyerarchical parallelism · Hybrid algorithms · Adaptive
algorithms · Multidimensional integration

1 Introduction

The Cloud Computing is an internet-based model in which virtualized and stan-
dard resource are provided as a service over the Internet. It provides a minimal
management effort or service provider interaction and users interact with a vir-
tual and dynamically scalable set of resources that can manage depending on
their needs. Cloud Computing providers differ for the service provisioned and
for the kind of the cloud architecture. The main consolidated service models are:
Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure
as a Service (IaaS).

The High Performance Computing (HPC) is one of the leading edge dis-
ciplines in information technology with a wide range of demanding applica-
tions in science [12,13], engineering, economy, medicine [1] and creative arts [7].

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 734–744, 2014.
DOI: 10.1007/978-3-642-55224-3 69, c© Springer-Verlag Berlin Heidelberg 2014

The High Performance Internet of Things 735

The High Performance Cloud Computing (HPCC) model might offer a solution
applying the elasticity concept of cloud computing to HPC resources, resulting
in an IaaS delivery model. The cloud computing approach promises increased
flexibility and efficiency in terms of cost, energy consumption and environmental
friendliness [11] changing the point of view on performance contract systems [3].

Researchers and developers have become interested in harnessing this power
for general-purpose computing, an effort known collectively as GPGPU (for
General-Purpose computing on the GPU). Especially in the field of parallel
computing applications, virtual clusters instanced on cloud infrastructures suf-
fers from the poorness of message passing performances between virtual machine
instances running on the same real machine and also from the impossibility to
access hardware specific accelerating devices as GPUs. Recently, scientific com-
puting has experienced on general-purpose graphics processing units to accel-
erate data parallel computing tasks. Presently, virtualization allows a transpar-
ent use of accelerators as CUDA based GPUs, as virtual/real machines and
guest/host real machines communication issues rise serious limitations to the
overall potential performance of a cloud computing infrastructure based on elas-
tically allocated resources using split-driver based components as GVirtuS [6].

The Internet of Things (IoT) services are build on the top of other services as
a sort of construction game thanks to well documented public interfaces strongly
leveraging on different web services technologies. IoT generally refers to uniquely
identifiable objects and their virtual representations in an Internet-like structure.
It is interesting consider a large number of this low power, low-performance
processors teamed up to build a data center with similar processing power than
regular CPUs, but smaller energy consumption. ARM processors, designed for
the embedded mobile market, operate at about 1 GHz frequencies and consume
just 0.25 W. There is already a significant trend towards using ARM processors
in data servers and cloud computing environments. Those workloads are lim-
ited by the I/O and memory systems, not by the CPU performance. Recently,
ARM processors are also taking significant steps towards increased double pre-
cision (DP) floating point (FP) performance, making them competitive with
state-of-the-art server performance. The ARM Cortex-A15, targeted as the com-
puting unit in the Barcelona Supercomputing Center Mont Blanc project, will
increase super-scalar issue to two arithmetic instructions per cycle, and has a
fully pipelined FMA unit, delivering 4 GFLOPS at 1 GHz, on potentially the
same 0.25 W budget, achieving 16 GFLOPS/W. The new ARMv8 instruction
set, which will be implemented in future generations of ARM cores, features a
64-bit address space, and adds DP to the NEON SIMD ISA1, allowing for 8
ops/cycle on an A15 pipeline: 8 GFLOPS at 1 GHz, for 32 GFLOPS/W.

In this paper we present our preliminary results in accelerating inexpensive
HPC clusters, known as Beowulf clusters, made by off the shelf computing com-
ponents using of low power ARM based computing nodes grouped in sub-clusters
leveraging on one or more high-end GPGPU devices hosted on accelerator nodes.
We perform some really promising experiments setting up a controlled testing
environment imitating the core of a more complex architecture.

736 G. Laccetti et al.

The rest of this paper is organized as follows: in the section two we draw
out our vision of the next generation of really hybrid HPC clusters accelerated
by Internet of Things based components and high-end GPUs; the third section
deals with design and technical issues of the hybrid GPU/x86 64/ARM software
architecture using GVirtuS as transparent bridge between the ARM living appli-
cations and the GPUs. The section number four is on implementation details,
while in the one number five some tests and preliminary results are described
and discussed. Finally, the last section, the sixth, is about the usual conclusions
and future directions on those promising issues.

2 Vision and Contextualization

In the world of supercomputing the two top charts, Top 500 and Green 500,
show, we have two trends: the number of core increases thanks the use of dedi-
cated accelerators (GPUs, CPU array boards) and the compute/cost efficiency
is increasing its important in the technology development, so, in the future the
two charts will merge in just one considering the environmental (and economical)
footprint of a HPC iron giant as a primary requirement. For many applications
as operational computations [10] or for the cloud hosting providers the energy
saving is no more a freak item but a mandatory issue. In the recent past a
good amount of the world spread computing power has been achieved using
the low/medium costs off the shelf Beowulf commodity clusters. A Beowulf is
a cluster of machines interconnected by a high performance network employing
the message-passing model for parallel computation. The key advantages of this
approach are high performance for low price, system scalability and rapid adjust-
ment to new technological advances. The latter point is the key for the next step
of the Beowulf evolution in the vision described in this paper. As the now days
CPU computing power increases, the need for electric power rises needing more
cooling. The availability of Internet of Things derived ARM CPUs in their high
performance incarnation (64 bit, multicore) lead the HPC world to ARM based
clusters powered with on chip or on board GPUs. The idea we show here is
dedicated to the low-end / middle-end in house solutions designing what could
be defined as Neowulf the next generation of Beowulf clusters (Fig. 1).

The computing nodes of a regular old-style cluster behave as input/output
nodes for ARM based inexpensive sub-clusters. In this way the amount of heat
producers decrease while the high computing power demanding applications have
to be refactored in order to fit this new heterogenic approach. Tanks to the
software component we show in this paper, these devices are seen by each of
the ARM based sub-cluster computing nodes as directly connected to them in
a transparent way. This vision permits to gain more computing power reduc-
ing the expensive, power hungry and heat producer x86 64 based computing
nodes, increase the parallelism at the sub-cluster level and, last but not the
least, unchain the high-end GPGPU power to ARM based computing nodes.

The High Performance Internet of Things 737

Fig. 1. The “Neowulf” big picture.

3 Design and Technical Issues

We use the GVirtuS framework model in order to design of our split driver
implementation classically parted in front-end, communicator and back-end.

The front-end is a kernel module that uses the driver APIs supported by the
platform. The interposer library provides the familiar driver API abstraction to
the guest application. It collects the request parameters from the application
and passes them to the back-end driver, converting the driver API call into a
corresponding frontend driver call. When a callback is received from the frontend
driver, it delivers the response messages to the application. In GVirtuS the front-
end runs on the virtual machine instance and its implemented as a stub library.

The communicator maps the request parameters from the shared ring and
converts them into driver calls to the underlying wrapper library. Once the driver
call returns, the backend passes the response on the shared ring and notices the
guest domains. The wrapper library converts the request parameters from the
backend into actual driver API calls to be invoked on the hardware. It also
relays the response messages back to the backend. The driver API is the ven-
dor provided API for the device. The back-end is a component serving frontend

738 G. Laccetti et al.

Fig. 2. The GVirtuS on ARM block diagram.

requests through the direct access to the driver of the physical device. This
component is implemented as a server application waiting for connections and
responding to the requests submitted by frontends. In an environment requir-
ing shared resource the back-end must offer a form of resource multiplexing.
Another source of complexity is the need to manage multithreading at the guest
application level (Fig. 2).

3.1 GVirtuS on ARM

The GVirtuS porting on arm idea raised from different application fields such as
High Performance Internet of Things (IPIoT) and HPC. In HPC infrastructures
the ARM processors are used as computing nodes often provided by tiny GPU
on chip or integrated on the CPU board. We developed the idea to share one or

The High Performance Internet of Things 739

more regular high-end GPU devices hosted on a small number of x86 machines
with a good amount of low power/low cost ARM based computing sub-clusters
better fitting into the HPC world.

From the architectural point of view this is a big challenge because involving
word size, endianness and programming models. For our prototype we used the
32 bits ARMV6K processor supporting both big and little endian so we had to
set the little endian mode in order to make data transfer between the ARM and
the x86 full compliant. Due to the prototypal nature of the system all has been
set to work using 32 bits. The solution is the full recompilation of the framework
with a specific reconfiguration of the ARM based system. As we will migrate on
64 bits ARMs this point will be revise.

In a previous work we used GVirtuS as nVidia CUDA virtualization tool
achieving good results in terms of performances and system transparency [5]. In
order to fit the GPGPU/x86 64/ARM application into our generic virtualization
system we mapped the back-end on the x86 64 machine directly connected to
the GPU based accelerator device and the front-end on the ARM board(s) using
the GVirtuS tcp/ip based communicator.

We chose to design and implement a GVirtuS plugin implementing OpenCL.
This have been strongly motivated by several issues:

1. Since the CUDA version 4 the library design appears to be made not fitting
with the split driver approach on which leverages GVirtuS and other similar
products [];

2. The OpenCL is intrinsically open and all interfaces are public and well doc-
umented and, above all, work with nVidia devices, but is not limited to a
particular vendor or architecture as GVirtuS itself;

3. OpenCL applications can be compiled directly on the ARM board without
any installation of ad hoc libraries.

3.2 GVirtuS - OpenCL Plugin

OpenCL (Open Computing Language) is an open standard and royalty-free
allowing to perform multi/single core generale purpose programming on highly
heterogeneous systems. OpenCL allows developers to write their code once and
run on CPUs and GPUs and different accelerator boards as mic based Intel Phi.
In order to access a GPU in a virtual environment has been developed a wrapper
for libOpencl.so. The virtualized library has the same interface of the original
one and the independence from the communicator is guaranteed. The compati-
bility between the virtualized interface and libOpenCL.so allow the users to get
a transparent virtualization system to run OpenCL applications. It is possible
to run any of OpenCL applications without writing or recompile anything. Each
GVirtuS OpenGL plugin components participate as follows:

Front-end side: For each OpenCL routine a stub method has been imple-
mented with the same interface of the original one. All the stubs method have
a common implementation consisting in the next five steps:

740 G. Laccetti et al.

– Create a connection between back-end and front-end and flush all the buffers;
– Each parameters will be sent to the back-end through the input buffer;
– Request the execution of a routine using its name as parameter;
– Get and Use the exit code only if the execution is successful;
– Return the exit code the same one as the OpenCL routine.

Back-end side: Back-end has a stub method for each OpenCL routine in order
to handle the frontend requests. All the handlers method have a common imple-
mentation consisting in the next five steps:

– Deserialize all the parameters from the input buffer;
– Execute the OpenCL routine and store the exit result;
– Insert the output parameters in a new buffer;
– Create an object Result containing the previous created buffer and the exit

code;
– Exit and deliver the result to the frontend.

There are tree main input parameters types available:

– Host Pointer: back-end and front-end have different addressing space so a valid
pointer on the front-end is invalid on the back-end and vice-versa. Aligning
the addressed region makes the address translation.

– Device Pointer: the memory address is sent to the back-end or front-end.
There is no need for translation because both, be and fe, refer to the device
addressing space.

– Variables: It is really simple to add a scalar variable as a parameter.

In order to make the implementation effective and high performance, but
with a good trade off in development straightforwardness we deeply used an
OOP coding approach.

4 Implementation

The implementation, in C++ for all components, on the back-end side is related
to an x86-based multi-core hardware platform with multiple accelerators attached
via PCIe devices, running Linux as both host and guest operating system. In
the font-end we used the same core running in a similar, but ARM based, Linux
environment.

4.1 OpenCLFrontend

The OpenCLFrontend class establishes connections with the back-end and exe-
cutes the OpenCL routine through the compiled library libGvirtus-frontend. The
constructor method creates an object of the class Frontend from the libGvirtus-
frontend library using the method GetFrontend using a factory/instance design
pattern. All the stubs methods have a common schema. Every stub follows the

The High Performance Internet of Things 741

same interface of the handled OpenCL routine. The first step is to get the unique
instance of the GVirtus Frontend class. This task is accomplished by the con-
structor method. The Prepare method reset the input buffer that will contain the
parameters to send to the back-end. After that all the parameters are inserted in
to the input buffer. The execute method forward the request for the routine using
the name of the routine as parameter. If the method is successfully executed so
we can get the output parameters. At last the method GetExitCode returns the
exit code of the routine executed by the backend. The clGetDeviceIDs routine
can be used to obtain the list of available devices on a platform. This simple
explicative schema is common to all the stubs coded.

4.2 OpenCLBackend

The main task of GVirtuS back-end is to start a communication in server mode
and waiting then accepting new incoming connections. It handles the loading of
plugins previously installed. GVirtuS back-end invokes the GetHandler method
in order to create a new instance of OpenclHandler class containing all the
methods needed in order to serve the requests of OpenCL routine execution. In
this class its possible to find all the methods to handle the execution of OpenCL
routines. In the OpenclHandler class there is a table, mpsHandlers, associating
function pointers to the name of the routines, so any routine can be handled
in the right way. As in the front-end there is a stub method for each OpenCL
method, in the back-end there is a function managing the execution of each
method.

5 Evaluation

We set a prototypal hardware environment in order to evaluate the performance
on ARM acceleration using external x86 64 GPUs, the GVirtuS overhead and
the result reliability of a software testing suite. That evaluation process has
two specific goals: (1) check the software stack accountability; (2) gather results
on performance test. The OpenCL SDK provides a software suite which each
component performs computations in bot CPU and GPU modes checking the
result coherence and showing the brute performance results. All tests available on
the standard OpenCL SDL have been successfully run using the GVrtuS-OpenCL
SDK. We used a Raspberry Pi Mod.B rev.2 ARM 11 equipped with Wheezy
Raspbian Linux as computing node and a Genensis GE-i940 Tesla powered by
an i7-940 2.93 GHz fsb, Quad Core HT 8 Mb cache with one nVIDIA Qudro
FX5800 4 Gb as GP device and two nVIDIA Tesla C1060 4 Gb as GPGPU device
as accelerator node. For those tests no I/O node has been provided and the setup
is related on a single node sub-cluster. In this context the GVirtuS fron-end was
run on the ARM computing nodes while the back-end has been executed on the
acceleration node. We used the OpenCL version of the testing software known as
MatrixMul, DotProduct and Histogram (Fig. 3). ScalarProd computes k scalar
products of two real vectors of length m. Notice that an OpenCL thread on

742 G. Laccetti et al.

Fig. 3. ARM CPU without (up) and with (down) GPU acceleration.

the GPU executes each product so no synchronization is required. MatrixMul
computes a matrix multiplication. The matrices are m n and n p, respectively. It
partitions the input matrices in blocks and associates a OpenCL thread to each
block. As in the previous case, there is no need of synchronization. Histogram
returns the histogram of a set of m uniformly distributed real random numbers in
64 bins. The set is distributed among the OpenCL threads each computing a local
histogram. The final result is obtained through synchronization and reduction

The High Performance Internet of Things 743

Table 1. Performance tests results.

Test Input size (MB) Relative (%)

MatrixMul 8 0.04 %
DotProduct 16 0.27 %
Histogram 64 0.65 %

techniques. The Table 1 is a synthesis of the obtained results considering the
regular ARMV6K as the reference:

During the DotProduct testing process we change the problem dimension
from 220 to 222. The ARM performance are varying with the same problem
dimension trend. The wall clock remains almost constant when is used the GPU
acceleration. This demonstrates that the GVirtuS-OpenCL is fine working and
the performances are not affected by the communication time. In the MatrixMul
test the problem dimension has been varied in this steps 26 × 29, 29 × 212 and
210 × 211. The performance results are pretty similar to the previous case with
the GPU version having wall clock times almost unchanged. The Histogram has
been used varying the problem size to 24, 25 and 26. The results are trivially
the same.

6 Conclusions and Future Directions

In this paper has been presented our preliminary results about the design and the
implementation of an OpenCL wrapper library as GVirtuS framework plugin.
The most challenging result achieved by our work is the implementation of a base
tool unchaining the development of really distributed and heterogenic hardware
architectures and software applications. The experiments we performed validate
our promising vision. The incredible performance results we achieved, the wall
clock using acceleration is less than the 1 % compared with the non-accelerated
ARM board, have been affected by the computing power of the ARM side: they
need for more investigation and developments. The next step will be setup a sub-
cluster made by high performance ARM based boards provided by multicore
ARM 64 bit CPUs and high bandwidth network interfaces. We expect some
improvements from the ARM side, but even a better scalability because a more
performing communication. In this scenario some other actors will get playing
as the use of MPICH [2] for ARM to ARM and ARM to x86 64 message passing,
the OpenMP for intra ARM board parallelism and, above all, one or more GPU
devices hosted on the accelerator node have to be multiplexed by several ARM
processes. As long range future directions we planned a complete reverse of the
point of view has been planned: using GVirtuS components in order to abstract
and virtualize the ARM HPC sub-cluster acting as an accelerator board for
x86 64 machines and applications on instruments shared on the cloud [4,8].

744 G. Laccetti et al.

References

1. Boccia, V., D’Amore, L., Guarracino, M.R., Laccetti, G.: A grid enabled PSE for
medical imaging: experiences on MedIGrid. In: Proceedings - IEEE Symposium on
Computer-Based Medical Systems, pp. 529–536 (2005)

2. Gregoretti, F., Laccetti, G., Murli, A., Oliva, G., Scafuri, U.: MGF: a grid-enabled
MPI library. Future Gener. Comput. Syst. 24(2), 158–165 (2008)

3. Caruso, P., Laccetti, G., Lapegna, M.: A performance contract system in a grid
enabling, component based programming environment. In: Sloot, P.M.A., Hoek-
stra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470,
pp. 982–992. Springer, Heidelberg (2005)

4. Di Lauro, R., Lucarelli, F., Montella, R.: SIaaS-sensing instrument as a service
using cloud computing to turn physical instrument into ubiquitous service. IEEE
10th International Symposium on Parallel and Distributed Processing with Appli-
cations (ISPA), 2012, pp. 861–862. IEEE (2012)

5. Giunta, G., Montella, R., Laccetti, G., Isaila, F., Blas F.J.G.: A GPU accelerated
high performance cloud computing infrastructure for grid computing based vir-
tual environmental laboratory. In: Dr. Constantinescu, Z. (ed.) Advances in Grid
Computing. ISBN: 978-953-307-301-9, InTech (2011)

6. Giunta, G., Montella, R., Agrillo, G., Coviello, G.: A GPGPU transparent vir-
tualization component for high performance computing clouds. In: D’Ambra, P.,
Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part I. LNCS, vol. 6271, pp. 379–
391. Springer, Heidelberg (2010)

7. Maddalena, L., Petrosino, A., Laccetti, G.: A fusion-based approach to digital
movie restoration. Pattern Recogn. 42(7), 1485–1495 (2009)

8. Montella, R., Agrillo, G., Mastrangelo, D., Menna, M.: A globus toolkit 4 based
instrument service for environmental data acquisition and distribution. In: Pro-
ceedings of the 3rd International Workshop on Use of P2P, Grid and Agents for
the Development of Content Networks, pp. 21–28. ACM (2008)

9. Montella, R., Coviello, G., Giunta, G., Laccetti, G., Isaila, F., Blas, J.G.: A general-
purpose virtualization service for HPC on cloud computing: an application to
GPUs. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.)
PPAM 2011, Part I. LNCS, vol. 7203, pp. 740–749. Springer, Heidelberg (2012)

10. Montella, R., Giunta, G., Laccetti, G.: Multidimensional environmental data
resource brokering on computational grids and scientific clouds. In: Furht, B.,
Escalante, A. (eds.) Handbook of Cloud Computing, pp. 475–492. Springer, New
York (2010)

11. Montella, R., Foster, I.: Using hybrid grid/cloud computing technologies for
environmental data elastic storage, processing, and provisioning. In: Furht, B.,
Escalante, A. (eds.) Handbook of Cloud Computing, pp. 595–618. Springer, New
York (2010)

12. Murli, A., Boccia, V., Carracciuolo, L., D’Amore, L., Laccetti, G., Lapegna, M.:
Monitoring and migration of a PETSc-based parallel application for medical imag-
ing in a grid computing PSE. In: Gaffeny, P.W., Pool, J.C.T. (eds.) Grid-Based
Problem Solving Environments. IFIP, vol. 239, pp. 421–432. Springer, Boston
(2007)

13. Pham, Q., Malik, T., Foster, I., Di Lauro, R., Montella, R.: SOLE: linking research
papers with science objects. In: Groth, P., Frew, J. (eds.) IPAW 2012. LNCS, vol.
7525, pp. 203–208. Springer, Heidelberg (2012)

Workshop on Power and Energy
Aspects of Computation

Monitoring Performance and Power
for Application Characterization

with the Cache-Aware Roofline Model

Diogo Antão, Lúıs Taniça, Aleksandar Ilic, Frederico Pratas,
Pedro Tomás, and Leonel Sousa(B)

INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
las@inesc-id.pt

Abstract. Accurate on-the-fly characterization of application behav-
iour requires assessing a set of execution-related parameters at runtime,
including performance, power and energy consumption. These parame-
ters can be obtained by relying on hardware measurement facilities built-
in modern multi-core architectures, such as performance and energy
counters. However, current operating systems (OSs) do not provide the
means to directly obtain these characterization data. Thus, the user
needs to rely on complex custom-built libraries with limited capabilities,
which might introduce significant execution and measurement overheads.
In this work, we propose two different techniques for efficient perfor-
mance, power and energy monitoring for systems with modern multi-core
CPUs. Here we propose two monitoring tools that allow capturing the
run-time behaviour of a wide range of applications at different system
levels: (i) at the user-space level, and (ii) at kernel-level, by using the OS
scheduler to directly capture this information. Although the importance
of the proposed monitoring facilities is patent for many purposes, we
focus herein on their employment for application characterization with
the recently proposed Cache-aware Roofline model.

Keywords: Power and performance monitoring · Application charac-
terization · Power and performance counters

1 Introduction

Modern computing systems are complex heterogeneous platforms capable of
sustaining high computing power. While in the past designers have been able to
improve processing performance by applying power hungry techniques, e.g., by
increasing the pipeline depth and, therefore, the overall working frequency, such
techniques have become unbearable due to the well known power wall. To over-
come this issue, processor manufacturers turned to multi-core designs, typically
by replicating a number of identical cores on a single die to increase performance,
where each core includes a set of private coherent caches and dedicated execu-
tion engines, and in some cases hardware support for multiple threads. Although

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 747–760, 2014.
DOI: 10.1007/978-3-642-55224-3 70, c© Springer-Verlag Berlin Heidelberg 2014

748 D. Antão et al.

these solutions are able to provide extra processing power, they also introduce
additional complexity into the design, making it harder for application designers
to fully exploit the available processing power. In particular, all cores share the
access to a common higher level memory organization, typically containing the
last level cache and the main memory, and the contention caused by multiple
cores competing for the shared resources can drastically affect the execution
efficiency. In addition to the these issues, current trends show us that future
processors and applications will have to consider novel techniques to improve
power and energy efficiency, potentially leading to extra architectural complex-
ities.

In order to characterize and understand the behaviour of such complex com-
putational systems, we require accurate real-time monitoring tools. These allow,
for example, to identify application and architectural efficiency bottlenecks for
real-case scenarios, thus giving both the programmer and the computer architect
hints on potential optimization targets. While many profiling tools have been
developed in the latest years, e.g., PAPI [1] and OProfile [2], it is not always
easy to convert the acquired data into insightful information. This is particu-
larly true for modern processors, which comprise very complex architectures,
including deep memory hierarchy organizations, and for which several architec-
tural events must be analysed.

Taking into account the complexity of modern processor architectures and
the effects of having different applications running concurrently in multiple cores,
Ilic et al. [3], proposed a Cache-aware Roofline model to unveil architectural
details that are fundamental in nowadays application and architectural opti-
mization. The Cache-aware Roofline Model [3] is a single-plot model that shows
the practical limitations and capabilities for modern multi-core general-purpose
architectures. It shows the attainable performance of a computer architecture as
an upper-bound, by relating the peak floating-point performance (Flops/s), the
operational intensity (Flops/byte), and the peak memory bandwidth for each
cache level in the memory hierarchy (Bytes/s), all in the same plot. The model
considers data traffic across both on-chip and off-chip memory domains, as it is
perceived by the core [3].

In this paper we propose two monitoring methods that combine the advan-
tages of the recently proposed Cache-aware Roofline Model [3], with real-time
accurate monitoring facilities in a way that allows application developers to easily
relate the application behaviour with the architecture characteristics, thus foster-
ing new application optimizations. The two different monitoring tools proposed
herein rely on the Hardware Performance Measurement Counters (HPMCs) and
are able to extract in real-time important power and performance characteris-
tics of the running application. While the first of these tools (SpyMon) aims
at providing a simple environment that can be used from the user-space, it is
complemented by a second tool (KerMon) which allows accurate application
profiling by measuring application execution at the kernel level. Both tools are
designed to be lightweight, easily adjusted for the user needs, and do not require
changing the application code. It thus eases the monitoring of complex parallel

Monitoring Performance and Power for Application Characterization 749

applications that spawn multiple threads, e.g., OpenMP or OpenCL applications
running on the CPU.

The results reported in this paper illustrate the differences between the two
proposed monitoring tools, and show the importance of using such monitoring
techniques for the understanding and characterization of application execution
on modern general-purpose processors. Overall both monitoring methods are
able to provide insightful information about the behaviour of the applications
and how its execution is affected by the processor architectural limitations.

2 Performance Monitoring

Most modern processors contain HPMCs that can be configured to count micro-
architectural events such as clock cycles, retired instructions, branch miss-
predictions and cache misses. To count these events, a small set of Model-Specific
Registers (MSRs) is provided by each architecture, which limits the total number
of events that can be simultaneously measured. For example, on the Intel Sandy
Bridge and Haswell architectures, the HPMC facility provides three MSRs types:

– the IA32 PERFEVTSELx MSRs, which allow selecting and configuring an event
to be monitored by a corresponding IA32 PMCx MSR HPMC;

– the IA32 PMCx, which contains the actual counter value;
– the MSR OFFCORE RSPx MSR, which allows selecting and configuring other

events such as the amount of DRAM traffic.

To setup an event, one needs to determine the adequate configuration word
for that event, which needs to be written into one IA32 PERFEVTSELx MSR.
In order to read the counter value it is necessary to read the corresponding
IA32 PMCx MSR. Optionally, it is possible to set an initial value into the counter
by writing the desired value into the corresponding IA32 PMCx MSR, which is
particularly useful to avoid register overflows. If the configured event is an uncore
event, it is also necessary to determine the adequate uncore configuration word
and write it into the corresponding MSR OFFCORE RSPx MSR [4].

On the Intel architectures, HPMC does not provide energy or power con-
sumption measurements. In order to assess this information, the Running Aver-
age Power Limit (RAPL) interface must be used. This allows simultaneously
obtaining real-time energy consumption readings for several different domains,
such as cores, package, uncore or DRAM.

The configuration and the reading procedures on these monitoring interfaces
are not trivial and require special permissions to be accessed. In order to over-
come the referred constraints from the user-space perspective, an MSRDriver
library was developed, which provides low level routines for reading and writing
to MSRs, allowing us to configure, reset and read the HPMCs. However, for the
kernel-space monitoring tool (KerMon) it is possible to directly read and write
the MSRs directly. In such a case the MSRDriver tool is not required.

750 D. Antão et al.

2.1 Related Work

Many tools can be found in the literature that allow monitoring applications
using the above referred HPMCs, e.g., PAPI [5], OProfile [2], PerfCtr [6], Per-
mon2 [7], Intel PCM [8] and LIKWID [9].

Here we present a set of two different tools: SpyMon, which targets appli-
cation monitoring from the user-space, and KerMon, which monitors processor
events directly from the kernel-space. The main difference between most of the
previously described tools and SpyMon is the fact that the latter follows a
core-oriented topology, instead of process-oriented. Thus, it allows monitoring
any given application thread, running at any given time, not worrying on which
process may have launch them. This allows reducing overheads on the filtering
process, keeping the tool simple and headed to its purpose. Furthermore, Spy-
Mon allows for real-time reconfiguration of the HPMCs to be read. Although
LIKWID is also one of the few tools which is core-oriented, that tool was designed
as a wrapper to the user application and, so far, does not take power consump-
tion into account. Moreover, it does not allow plotting the information according
to the Cache-Aware Roofline Model.

Some of the above referred tools, do not access the HPMCs directly. They
invoke a Linux kernel subsystem called “Perf Events” (originally “Performance
Counters for Linux”) that provides support for performance events monitoring
on the user-space. It is available from Linux 2.6.31 [10] and it is still the only
available framework native to the standard Linux kernel to support reading
the HPMCs. Since this subsystem is available, user-space tools started to use
it in detriment of other drivers, due to the latter requiring kernel or module
compilation and installation. PAPI is an example of such a tool that nowadays
uses “Perf Events” instead of another drivers such as the PerfCtr or Permon2 [5].

The “Perf Events” subsystem, although residing in the kernel, is designed to
be invoked by user-space applications. It cannot be called in kernel space with-
out several modifications. Furthermore, on restricted contexts, e.g. an interrupt
handler or the task scheduler (where the functions must be fast, simple and
cannot sleep), it is impossible to use “Perf Events” due to its inner complexity.

KerMon uses an approach different than SpyMon. It allows accurate pro-
filing by measuring application execution at the kernel level. This allows trans-
parent monitoring of an application even when it is scheduled to a different core.
It thus has a wider range of scenarios where it can be used, providing a novel
solution to the existing state-of-the-art.

3 User-Space Application Monitoring (SpyMon)

The proposed SpyMon tool is developed for monitoring CPU performance and
power consumption. It is designed to be lightweight, simple and adjustable for the
user needs. In contrast to most of the state-of-the-art tools, SpyMon follows
a core-oriented approach, monitoring the behaviour of each logical CPU and
therefore being able to capture the information of all running applications.

Monitoring Performance and Power for Application Characterization 751

L1

L2

L1

L2

L3

L1

L2

L1

L2

Physical Core 0 Physical Core 1 Physical Core 2 Physical Core 3

SpyMon monitor (master) SpyMon spy (slave)LC - Logical Core

LC0 LC4 LC1 LC5 LC2 LC6 LC3 LC7
App. 0

(Thread 0)
App. 1

(Thread 0)
App. 0

(Thread 1)
App. 0

(Thread 3)
App. 2

(Thread 1)

Fig. 1. Spacial perception of SpyMon while monitoring 5 threads from 3 applications.

The proposed tool is composed of a “monitor” and several “spies”, following
a master-slave methodology. The monitor (master) is the main process of the
tool and is responsible for all the required initializations, for data analysis and
processing and for controlling the flow of the whole tool. The spies (slaves) are
lightweight processes bonded to a pre-defined logical core and have the sole
purpose of configuring and fetching the performance counter readings.

The typical SpyMon configuration is to launch a spy to monitor each of
the logical cores and to pin the monitor to the last logical core, as shown in
Fig. 1. The communication is made by means of signals and communication
pipes and it is minimized in order to reduce the cache pollution, thus reducing the
SpyMon interference with the running applications. The pipes are bidirectional,
allowing the master to change, at run-time, the events to be monitored in a logical
core (e.g., because a running application changed state, or because it changed
logical core). Moreover, other configurations are possible, e.g., if the user requires
the monitoring of an application pinned to a specific logical cores, a single spy
configuration can be adopted.

According to the user needs, the tool can also be configured regarding the
performance events to monitor (e.g., retired instructions, L1 misses and number
of loads), the time between samples and the number of samples, thus defining
the execution time of the tool. The number of events is limited by the number of
HPMCs and the number of events available on the architecture. The performance
events configuration of each logical core is stored in temporary files during the
tool execution. This allows the user to reconfigure the counters of a specific
logical core at run-time.

SpyMon follows the steps shown in Fig. 2. When the application is launched,
the master initializes the required drivers (step 1), namely the MSRDriver and
RAPL (even though other drivers could be used, as long as they give the tool
access to the special purpose registers). Then, the master creates and binds a
process (spy) for each logical core to be monitored (step 2), where each spy is

752 D. Antão et al.

Initiate
required
drivers

HPMCs

Launch and
pin spies to
each target

core

HPMCs
readings and
read energy

counters

Terminate
spies and

drivers

N

(1) (2)

(3) (4)

(5) (7)
Monitor

Spy

HPMCs

Wait for signal
HPMCs

according to
request

Send HPMCs
readings

(6) (8)

signal 1 signal 2 pipe communication

N

N number of iterations

Request

Fig. 2. SpyMon execution diagram.

responsible for configuring the HPMCs of its logical core (step 3). The config-
uration is sent by the master through a communication pipe. When the config-
uration is done, each spy gets into a sleep state until its action is required by
the monitor (step 4). The monitor has two possible requests (step 5): it may ask
for the counter readings (step 6) or for a reconfiguration of the HPMC events
to monitor in a specific (or several) logical core (step 7). In step 6, the master
signals each spy with signal 1. Each spy reads the raw values of the HPMCs and
sends them to the master using the established pipe. Then, the monitor reads
the energy HPMCs and derives power consumption, thus completing a sample.
In step 7, the monitor signals the corresponding spy (or spies) with signal 2 and
sends the required configuration through the pipe. The default request is the
one represented in step 6. However, before sending a request, the master checks
the time stamp of the performance events configuration files and, if any of them
has been updated since the last configuration, step 7 is executed. This procedure
is repeated periodically for each sample. During the time between samples, all
SpyMon processes are suspended in order to reduce the interference of the tools
with the running applications.

4 Kernel-Space Application Monitoring (KerMon)

KerMon follows a different approach than SpyMon; it uses a process-oriented
approach by monitoring applications directly from the kernel scheduler. Thus, it
allows getting accurate power and performance readings for all individual threads
spawn by a monitored application, at the cost of requiring kernel modification
by means of a patch. Naturally, the performance readings may still be affected
by other running applications, since some HPMCs are not specific to a logical
core (e.g., uncore events and energy consumption are shared between multiple
logical cores). In other cases, it is possible to get individualized readings, but
these are still influenced by other running threads (e.g., L1 and L2 cache misses
from logical core 0 are likely to be influenced by the thread executing on logical
core 4, as depicted in Fig. 1).

Monitoring Performance and Power for Application Characterization 753

Fig. 3. Algorithm to pick a task to be executed. The dashed elements are implemented
by the KerMon patch.

The Linux task scheduler is currently implemented in a manner that provides
a set of classes that can be expanded to design different scheduling levels, orga-
nized by priority. The levels that co-exist in standard Linux distributions are,
from highest to lowest priority, Real-Time scheduler and Completely Fair Sched-
uler (CFS). According to the task scheduler algorithm, each running process is
assigned with a specific scheduling level and is scheduled by distributing proces-
sor run time to all processes in a fair manner, but taking into account the
scheduling levels priority.

Thus, when the task scheduler is invoked, it will iterate over the scheduling
classes until one of the classes returns a task to be executed, as shown in Fig. 3.
That implies that the class order in this iterative process reflects its priority.
Since the real-time class is the first in the task scheduler order, no CFS task can
be executed while there is a real-time task in a runnable state [11].

Taking advantage of the existing scheduling algorithm, a KerMon class was
introduced with a priority level between real-time and CFS (see Fig. 3). This
allows reducing the interference of Linux system applications (e.g. daemons and
terminals) on applications being monitored and provides implicit isolation for
accurate benchmarking.

The new KerMon class is based on modifying a copy of the CFS class
to enable power and performance measurement whenever a task is scheduled
in/out or a schedule tick occurs. Since within the Operating System (OS) task
scheduler interrupts and preemption are disabled, the implementation must be
fast, lightweight and cannot go into sleep mode. Due to those strict restrictions,
KerMon must rely on raw low-level Central Processing Unit (CPU) interfaces.
Thus, for configuring and reading event counters, it uses the HPMC interface;
to obtain a measure of time, it simply accesses the Time-Stamp Counter (TSC)

754 D. Antão et al.

Fig. 4. KerMon task lifecycle. The dashed elements are implemented by the KerMon
patch and the grey elements are performance monitoring actions.

register, reading the number of cycles since the system boot; energy consumption
is obtained through the RAPL interface.

To monitor an application, one needs to use the standard Linux system call
sched setscheduler in order to change the application’s scheduler class into
KerMon. Then, the new system call set events must be invoked to instruct
KerMon which events need be monitored in this application. The KerMon
scheduling class then works as depicted in the task life-cycle in Fig. 4. When a
task is created (1) and becomes runnable (2), it is put on a logical core runnable
list. Thus, when the scheduler picks this task among the runnable ones (3),
KerMon configures and starts the event counters by writing to the appropriate
HPMCs (4), just before the logical processor is assigned to the task execution
(5). The KerMon will then read the HPMCs, forming a monitoring sample and
storing it in a task associated buffer, in any of the following occasions:

(7) When a scheduler tick occurs1 (6) and at least 50 ms of continuous unsampled
runtime has occurred.

(8) When the scheduler is called for preemption purposes, either because the
running time has expired or because the task goes into sleep mode while
waiting for some event.

When the task is scheduled out, depending on the reason why the scheduler is
invoked (9), the task can: go back to the runnable state (2) if it was preempted;
sleep waiting for an event to occur (10); or exit, ending its life cycle.

An user-space application can then retrieve the samples of a monitored appli-
cation through the new system call read event log, that fetches the samples from
1 A scheduler tick is a periodic interruption to update the execution statistics and to

check if is necessary to preempt the running task.

Monitoring Performance and Power for Application Characterization 755

Read performance counters and go to sleep

TaskA
(KerMon)

TaskB
(CFS)

Running

Running Preempted
(lower priority)

TASK A -

Running
Sleeps

(waiting for a
resource)

Setup hardware performance counters and start execution

TASK A -

TASK B - Start execution

TASK B - Resuming execution

TASK B - Preemption

Running Preempted
(lower priority)

TASK A - Task awake, performance counters setup and resuming execution
TASK B - Preemption

TASK A - Scheduler tick occurs
since <50ms have elapsed, nothing occurs

TASK A -

TASK A -

TASK A - Task completes and the final counter values are read

Scheduler tick occurs
since >50ms have elapsed, the performance counters are read

Scheduler tick occurs
since >50ms have elapsed, the performance counters are read

Running
Task

terminated

Fig. 5. Example of a timeline of two tasks sharing a CPU, where task A executes on
KerMon while B executes on CFS. For simplification, in this figure, the tick period
is 25 ms.

the buffer associated with the application. The samples can be post-processed
for any purpose such as benchmarking. By having one buffer per monitored
application, it is possible to monitor multiple applications in a simultaneous
and independent manner. Moreover, it is possible to define different events for
various applications.

Figure 5 presents an example timeline of two tasks executing on the same
logical processor, where task A executes on KerMon scheduling class, while
task B executes on the default CFS scheduling class. As it can be observed,
applications scheduled on the KerMon class have higher priority than those on
the CFS class. Thus, task A forces task B to be preempted whenever it goes
to the runnable state. Also, monitoring of task A is triggered whenever it is
preempted or whenever a tick occurs and more than 50 ms have elapsed since
the last sampling event.

5 Experimental Results

As stated before, in order to assess the potential of the proposed methods, we
show the outcome of combining them with the Cache-aware Roofline Model [3].
For that we have executed a group of floating-point applications, selected from
the SPEC CPU 2006 benchmark set, on an Intel i7 3770 K processor2.
2 The Intel i7-3770 K is an Ivy Bridge based micro-architecture with 4 cores. It oper-

ates at 3.5 GHz and its memory organization comprises 3 cache levels of 32 KB,
256 KB and 8192 KB, respectively. The DRAM memory controllers support up to
two channels (8 B) of DDR3 operating at 2 × 933 MHz.

756 D. Antão et al.

Table 1. Sets of monitoring events used to characterize the execution.

Event Even Description
Set

0 IVY FP COMP OPS EXE SSE FP SCALAR SINGLE Number of SSE single-precision
FP scalar µops executed

IVY FP COMP OPS EXE SSE PACKED SINGLE Number of SSE single-precision
FP packed µops executed

IVY SIMD FP 256 PACKED SINGLE Number of AVX 256-bit packed

single-precision FP

instructions executed
IVY SIMD FP 256 PACKED DOUBLE Number of AVX 256-bit packed

double-precision FP
instructions executed

1 IVY FP COMP OPS EXE SSE SCALAR DOUBLE Number of SSE double-precision
FP scalar µops executed

IVY FP COMP OPS EXE SSE FP PACKED DOUBLE Number of SSE double-precision
FP packed µops executed

IVY MEM UOP RETIRED ALL LOADS Qualify any retired memory
µops that are loads

IVY MEM UOP RETIRED ALL STORES Qualify any retired memory
µops that are stores

2 IVY L1D REPLACEMENT Number of lines brought into
the L1 data cache

IVY LLC REFERENCE Last level cache references
IVY L2 RQSTS CODE RD MISS Number of instruction fetches

that missed the L2 cache
IVY OFF CORE MISSES 0 Number of L3 Misses

SSE - Streaming SIMD Extensions; FP - floating-point; AVX - Advanced Vector Extensions;
µops - micro-operations

Moreover, since the Intel i7 3770 K processor only supports simultaneous access
to 4 HPMCs, our experimental test set required repeating the execution of every
application for each set of 4 events as specified in Table 1. The monitoring results
obtained for the different events’ sets were combined a posteriori by using as ref-
erence the number of instructions executed in each time interval (the number of
instructions was obtained from the fixed counter IINSTRUCTION:RETIRED [4]).

Figure 6 shows the performance results for each SPEC CPU 2006 benchmark
application as obtained with the two proposed monitoring methods. The results
are plotted as points representing the overall (average) performance results,
superimposed to the roofline model derived in [3]. Moreover, the points are plot-
ted against different lines that represent the maximum achievable performance
of the Intel 3770 K processor for double-precision MUL and ADD arithmetic
instructions of different vectorization widths: scalar, Streaming SIMD Extensions
(SSE) and Advanced Vector Extensions (AVX). Aside from calculix, which we
analyse further below, all other applications show a similar performance behav-
iour in both cases. Moreover, we also show the overall power and energy results
in Fig. 7 obtained with both monitoring methods. As for performance, also for

Monitoring Performance and Power for Application Characterization 757

DBL (MAC) Roofline

GemsFDTD

gromacs
calculix

games
lbm
milc

namd
povray
soplex

sphinx3
tonto

DBL SSE AVX

Operational Intensity [flops/bytes]
2-5 2-4 2-3 2-2 2-1

2-3

2-2

2-1

20

21

22

23

24

25
P

er
fo

rm
an

ce
 [G

Fl
op

s/
s]

AVX MAC Roofline

SSE (MAC) Roofline
AVX (ADD,MULL) Roofline

SSE (ADD,MULL) Roofline

DBL (ADD,MULL) RooflineAVX/SSE L1 LOAD Roofline

DBL L1 LOAD Roofline

(a) KerMon

DBL (MAC) Roofline

GemsFDTD

gromacs
calculix

games
lbm
milc

namd
povray
soplex

sphinx3
tonto

DBL SSE AVX

Operational Intensity [flops/bytes]
2-5 2-4 2-3 2-2 2-1

2-3

2-2

2-1

20

21

22

23

24

25

P
er

fo
rm

an
ce

 [G
Fl

op
s/

s]

AVX MAC Roofline

SSE (MAC) Roofline
AVX (ADD,MULL) Roofline

SSE (ADD,MULL) Roofline

DBL (ADD,MULL) RooflineAVX/SSE L1 LOAD Roofline

DBL L1 LOAD Roofline

(b) SpyMon

Fig. 6. Application roofline model plot for i7 3770 K, showing the floating-point SPEC
2006 benchmarks; the application colour characterization was made according to aver-
age classification (double, SSE or AVX)

0

5

10

15

20

25

30

GemsFDTD

calculix

gamess

gromacs

lbm milc
namd

povray

soplex

sphinx3

tonto

0

2000

4000

6000

8000

10000

12000

14000

P
ow

er
 [W

]

E
ne

rg
y

[J
]

Power Energy

(a) KerMon

0

5

10

15

20

25

30

GemsFDTD

calculix

gamess

gromacs

lbm milc
namd

povray

soplex

sphinx3

tonto

0

2000

4000

6000

8000

10000

12000

14000

P
ow

er
 [W

]

E
ne

rg
y

[J
]

Power Energy

(b) SpyMon

Fig. 7. Average power and energy consumption for the execution of the different bench-
marks

power and energy we observe the same trends for both methods, although Spy-
Mon incurs in a small constant overhead due to the active monitoring threads.

In order to explore the potential of the features introduced in the proposed
tools we show a more thorough analysis for two applications, calculix and tonto.
A more fine-grained analysis of the application behaviour is important because,
in many cases, the same application may show different behaviours during the
execution. Events that may affect the execution over time are: fluctuations of
the pressure on the memory subsystem, different types of instructions may be
executed simultaneously creating bottlenecks in different points of the micro-
architecture, overflow of HPMCs, system changes, execution uncertainties and
other non-deterministic behaviours, just to name a few. The outcome of these
effects is clearly depicted for calculix that gives a different result for each mon-
itoring method. In fact, just by observing the results depicted in Fig. 6 would
lead us to classify calculix as a memory-bound (KerMon) or as a compute-bound
(SpyMon). Nevertheless, these effects are also valid for other applications, for

758 D. Antão et al.

2-12

2-8

2-4

20

24

2-16 2-14 2-12 2-10 2-8 2-6 2-4 2-2 20

Operational Intensity [flops/byte]

P
er

fo
rm

an
ce

 [G
Fl

op
s/

s] DBL SSE AVX

(2) AVX (ADD,MULL) / SSE (MAC) Roofline

(2)
(1)

(4)
(3)

(1) AVX (MAC) Roofline

(3) SSE (ADD,MULL) / DBL (MAC) Roofline
(4) DBL (ADD,MULL)Roofline

(a) Roofline (KerMon)

2-12

2-8

2-4

20

24

2-16 2-14 2-12 2-10 2-8 2-6 2-4 2-2 20

Operational Intensity [flops/byte]

P
er

fo
rm

an
ce

 [G
Fl

op
s/

s] DBL SSE AVX

(1)

(4)
(3)
(2)

(2) AVX (ADD,MULL) / SSE (MAC) Roofline
(1) AVX (MAC) Roofline

(3) SSE (ADD,MULL) / DBL (MAC) Roofline
(4) DBL (ADD,MULL)Roofline

(b) Roofline (SpyMon)

20

22

24

26

28

30

0 20 40 60 80 100 120 140 160

P
ow

er
 [W

]

Time [s]

DBL SSE AVX

(c) Power consumption (KerMon)

 20

 22

 24

 26

 28

 30

 0 20 40 60 80 100 120 140 160

P
ow

er
 [W

]

Time [s]

DBL SSE AVX

(d) Power consumption (SpyMon)

Fig. 8. Monitoring performance and power of Calculix; for simplification purposes,
the L2, L3 and DRAM load rooflines for AVX, SSE and DBL instructions are not
represented in plots (a) and (b)

which the single observation of the average point may be misleading, thus requir-
ing a more detailed analysis. However, when the execution is broken into smaller
samples (50 ms) one can perform a more accurate analysis. This is illustrated
for calculix in Fig. 8(a, b), where we can observe that the application comprises
two very distinct behaviours, which are now consistent across both methods: (i)
on the bottom-left of the roofline plot a significant number of samples appears
in the memory-bound region, and (ii) on the top-right side of the roofline we
observe two patterns of points, one for AVX instructions, and a second for simple
double-precision instructions, both more towards the compute-bound region. In
particular, in (ii) we can observe that the program sections where AVX instruc-
tions are more predominant tend to be more affected by the memory execution
than the program sections dominated by scalar double-precision instructions.
Moreover, Fig. 8(c, d) shows the power results sampled over time.

The characterization of tonto is depicted in Fig. 9(a). In this case we also
observe two distinct regions in the roofline, namely corresponding to scalar
instructions and to SSE instructions. In contrast to the calculix case, here the
application shows a memory-bound behaviour, although near the compute bound
region.

The results obtained for the power consumption over time are also depicted
in Fig. 9(b). In this case, the results show that the distinct regions observed on

Monitoring Performance and Power for Application Characterization 759

SSE (ADD,MULL) / DBL (MAC) Roofline

DBL (ADD,MULL) Roofline

AVX (ADD,MULL) / SSE (MAC) Roofline

DBL SSE AVX
2-1

20

21

22

23

2-5 2-4 2-3 2-2 2-1

Operational Intensity [flops/byte]

P
er

fo
rm

an
ce

 [G
Fl

op
s/

s]
24

(a) Roofline

20

22

24

26

28

30

0 20 40 60 80 100 120 140 160

P
ow

er
 [W

]

Time [s]

DBL SSE AVX

(b) Power consumption over time

Fig. 9. Monitoring performance and power of tonto using KerMon

0
40

80 120 160 200 2-5

2-4

2-320

21

22

23

Operational Intensity

[flops/byte]Time [s]

Performance
[GFlops/s]

DBL SSE AVX

Fig. 10. Temporal representation of the roofline for tonto (KerMon)

the roofline plot, are also clearly differentiated in time, showing a heterogeneous
execution pattern. We can conclude from this analysis that tonto uses different
parts of the architecture more intensively in very distinct time instants. In order
to better illustrate this behaviour, we combined the results shown in Fig. 9(a)
with the execution over time and have created a temporal representation of the
application Roofline. The plot in Fig. 10 eases the visualization of the different
program sections over time.

6 Conclusions

In this paper we propose two new tools for application monitoring and char-
acterization, which extract runtime information at different OS levels, namely:
SpyMon at user-space level and KerMon at kernel-space level (OS scheduler).
These tools combine the accuracy of hardware measurement facilities, which are
integrated in modern multi-core architectures, with the Cache-Aware Roofline
Model. This allows run-time characterization of application execution and allows
extracting important guidelines for application optimization.

760 D. Antão et al.

The experimental results presented in this paper show that both KerMon and
SpyMon obtain similar performance characterization results. However, SpyMon,
which performs core-oriented characterization, may show an increased power-
usage if set to monitor cores which are not being used by any of the running
applications. On the other hand, since KerMon requires changing the OS sched-
uler, it is harder to install in a system and requires root access. Despite these
differences, in overall, both monitoring methods allow a user/programmer to
get a clear picture of the behaviour of the application and how its execution is
affected by the processor architectural limitations.

Acknowledgments. This work was partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) under projects P2HCS (ref. PTDC/EEI-
ELC/3152/2012), Threads (ref. PTDC/EEA-ELC/117329/2010), and project PEst-
OE/EEI/LA0021/2013.

References

1. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming
interface for performance evaluation on modern processors. Int. J. High Perform.
Comput. Appl. 14(3), 189–204 (2000)

2. OProfile: About oprofile. http://oprofile.sourceforge.net/about/ (2012)
3. Ilic, A., Pratas, F., Sousa, L.: Cache-aware roofline model: upgrading the loft. IEEE

Comput. Architect. Lett. 99, 1 (2013)
4. Intel: Intel 64 and ia-32 architectures software developer’s manual: volume 3b,

pp. 120–251. http://download.intel.com/products/processor/manual/253669.pdf
(2012)

5. PAPI: Papi: Supported platforms: Currently supported. http://icl.cs.utk.edu/
papi/custom/index.html?lid=62&slid=96

6. Curtis-Maury, M., Nikolopoulos, D., Antonopoulos, C.: Pacman: A performance
counters manager for intel hyperthreaded processors. In: 3rd International Con-
ference on Quantitative Evaluation of Systems, 2006. QEST 2006, pp. 141–144
(2006)

7. Eranian, S.: Perfmon2: a flexible performance monitoring interface for linux, Cite-
seer (2006)

8. Intel: Intel performance counter monitor - a better way to measure cpu utiliza-
tion. http://software.intel.com/en-us/articles/intel-performance-counter-monitor-
a-better-way-to-measure-cpu-utilization (2012)

9. Treibig, J., Hager, G., Wellein, G.: Likwid: a lightweight performance-oriented tool
suite for x86 multicore environments. In: 2010 39th International Conference on
Parallel Processing Workshops (ICPPW), pp. 207–216. IEEE (2010)

10. LWN.net: Perfcounters added to the mainline. http://lwn.net/Articles/339361
(2009)

11. Molnar, I.: Goals, design and implementation of the completely fair scheduler.
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt

Energy and Deadline Constrained Robust
Stochastic Static Resource Allocation

Mark A. Oxley1(B), Sudeep Pasricha1,2, Howard Jay Siegel1,2,
and Anthony A. Maciejewski1

1 Department of Electrical and Computer Engineering, Fort Collins, CO 80523, USA
2 Department of Computer Science, Colorado State University,

Fort Collins, CO 80523, USA
{mark.oxley,sudeep,hj,aam}@colostate.edu

Abstract. In this paper, we study the problem of energy and deadline
constrained static resource allocation where a collection of independent
tasks (“bag-of-tasks”) is assigned to a heterogeneous computing system.
Computing systems often operate in environments where task execution
times vary (e.g., due to data dependent execution times), therefore we
model the execution time of tasks stochastically. This research focuses
on the design of energy-constrained resource allocation heuristics that
maximize robustness against the uncertainties in task execution times.
We design and evaluate a new resource allocation heuristic based on Tabu
Search that employs dynamic voltage and frequency scaling (DVFS) and
exploits heterogeneity by incorporating novel local search techniques.

Keywords: Heterogeneous computing · Static resource allocation ·
Power-aware computing · DVFS · Robustness

1 Introduction

The electricity used by data centers has increased by 56 % worldwide between
the years 2005 and 2010 [10]. This increase highlights the need for energy-aware
resource management for these data centers. Many of these data centers form het-
erogeneous computing environments that utilize a mixture of different machines
to execute workloads with diverse computational requirements. In this work, we
assume that nodes are heterogeneous in both performance and power consump-
tion, where the performance of individual nodes in the cluster are inconsistent
in the following sense: if machine A is faster than machine B for a given task,
machine A may not be faster for all tasks.

Resource allocation decisions often rely on estimated values for task execu-
tion times where actual values may differ from available estimates (e.g., due to
data dependent execution times). To account for these variations, we model task
execution times stochastically using random variables.

This research addresses the problem of statically allocating a workload of
independent (non-communicating) tasks to a high-performance heterogeneous

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 761–771, 2014.
DOI: 10.1007/978-3-642-55224-3 71, c© Springer-Verlag Berlin Heidelberg 2014

762 M.A. Oxley et al.

computing cluster. We aim to develop and analyze resource management tech-
niques that maximize robustness, the probability that our workload finishes by
a common deadline, while maintaining a specified probability that the energy
consumed is within a given energy budget.

We make three main contributions in this work. Our first contribution is the
design of three new intelligent local search techniques that maximize robustness
within an energy constraint for a heterogeneous computing environment. The
second contribution is an analysis of the impact of each local search technique’s
ability to improve a solution and the benefits associated with combining the
local search techniques. The third contribution is the design and analysis of two
global search techniques and the effects of combining global and local search into
a new Tabu Search heuristic.

2 Related Work

Robust resource allocation has been previously studied (e.g., [2,3,13,14]). We
adopt the system model from [2], however that work addresses the problem of
minimizing energy consumption with a robustness constraint, where in our work
we attempt to maximize robustness under an energy constraint and change the
robustness calculation to be more generally applicable. The other studies listed
do not consider energy when optimizing for robustness. Our work uses energy-
aware resource allocation techniques and DVFS to balance the tradeoff between
performance and energy consumption to maximize robustness under an energy
constraint.

The use of DVFS to balance performance and energy consumption has been
studied widely (e.g., [5,11,15]). In [5], the focus is on minimizing energy con-
sumption, rather than maximizing performance, and considers deterministic
rather than stochastic execution times as we do in our work. DVFS is used
to tradeoff between energy consumption and makespan in [11], where the work-
load consists of precedence-constrained applications represented by a directed
acyclic graph (DAG). Scheduling is performed on a task-by-task basis using a
novel objective function that considers both energy consumption and the esti-
mated finishing time of a task, using DVFS to exploit slack times from precedence
constraints. Our work considers stochastic execution times, robustness, the prob-
ability of meeting an energy budget, and the overhead energy consumption of
compute nodes. Using DVFS to schedule tasks with uncertain execution times is
addressed in [15], however the system model is homogeneous and the work does
not consider an energy constraint.

3 System Model

3.1 Compute Nodes

Our compute cluster model, adopted from [2], consists of N heterogeneous com-
pute nodes where the performance and power consumption of each node may

Energy and Deadline Constrained Robust Stochastic Resource Allocation 763

vary substantially. Nodes are also heterogeneous in their processor configuration.
Each compute node i consists of ni multicore processors, and each multicore
processor j in compute node i has nij cores. We assume that all cores and mul-
ticore processors in a given compute node are homogeneous. We use the triple
ijk to denote core k on multicore processor j in compute node i.

We assume the processors are DVFS-enabled to use the Advanced Configura-
tion and Power Interface (ACPI) performance states (P-states) [7] that allow
the processor to change operating voltage and frequency. We assume each core
has a set of five P-states, denoted P , available: P0, P1, P2, P3, and P4. Each core
in the system can operate in an individual P-state, and our resource allocation
techniques are designed such that P-states do not switch during task execution.
Lower-numbered P-states consume more power, but provide better performance.
The power consumption of a core within compute node i in P-state Pπ is ρ

(π)
i .

3.2 Workload

The workload in this environment consists of a collection of T independent tasks
to be completed before a given system deadline δ. Such a collection of indepen-
dent tasks is known as a bag-of-tasks [6], the primary workload in various types
of distributed computing systems [9]. We assume the task execution times fol-
low a Gaussian distribution, and the means and variances are known a priori
so that we can perform a static (i.e., off-line) mapping. The use of Gaussian
distributions allows us to sum task execution times using a closed-form equa-
tion rather than having to perform convolution, however our proposed resource
management techniques are applicable for task execution times that follow any
distribution with a calculable mean (expected value). In an actual system, the
means and variances of the execution time distributions can be obtained by his-
torical, experimental, or analytical techniques [13]. We work closely with Oak
Ridge National Labs, and in their environment, as well as others, similar types of
tasks are executed frequently allowing for the collection of historical information
of the execution times of tasks on machines.

For a given resource allocation, let the set Tijk denote tasks in T that have
been assigned to core ijk and let txijk ∈ Tijk. Let PS(tx

ijk) denote the assigned
P-state for task txijk. We denote the mean execution time associated with task
txijk in P-state π as μ(tx

ijk ,π), and the associated variance as V (tx
ijk ,π).

3.3 Energy Constraint Calculation

The energy required to execute tasks in a single core can be calculated as the
product of the power consumption of the core in each P-state and the amount of
time the core spends in each P-state. Let Tπ

ijk denote the subset of tasks assigned
to core ijk in P-state π. The energy consumed is calculated as the product of
execution time (a random variable) and average power (a deterministic value).
Multiplying a random variable with a known value has the effect of multiplying

764 M.A. Oxley et al.

the expected value by that value and the variance by the square of that value.
For core ijk, the expected value (Sπ

ijk) and variance (V arπ
ijk) are

Sπ
ijk =

∑

tx
ijk∈T π

ijk

ρ
(π)
i μ(txijk, π) (1)

and
V arπ

ijk =
∑

tx
ijk∈T π

ijk

(ρ(π)
i)2V (txijk, π). (2)

We also account for the overhead power consumption at the processor level
(e.g., for interference in shared caches) and the node level (e.g., for disk drives,
fans, and memory). Overhead power provides a constant power that is not
affected by DVFS, thus the greater execution times resulting from low-power
P-states can result in greater energy consumption than when just executing
the task as fast as possible in P-state P0. We assume multicore processors can
deactivate when all of their cores have finished their assigned workload, and
compute nodes are able to shut down when all of their multicore processors are
deactivated. We assume deactivated processors and deactivated compute nodes
consume negligible power. For our static resource allocation problem with inde-
pendent tasks, nodes do not have idle time as nodes are active when processing
tasks then deactivate when finished with their assigned workload.

Let Fij be the maximum expected completion time among cores in multicore
processor j on node i, and σ2

ij be the associated variance. Also, let Fi be the
maximum expected completion time among multiprocessors in node i, and σ2

i

be the associated variance. Let ωMP
i be the power overhead for each multicore

processor in compute node i, and ωnode
i be the power overhead for compute node

i. We calculate the expected energy required to process the entire workload across
all compute nodes, denoted ζ, as

ζ =
N∑

i=1

⎛

⎝Fi ∗ ωnode
i +

ni∑

j=1

(Fij ∗ ωMP
i) +

ni∑

j=1

nij∑

k=1

∑

∀π∈P

Sπ
ijk

⎞

⎠ . (3)

The variance of the energy required to process the entire workload, denoted γ,
is calculated similarly to ζ, with the exceptions of using the associated variances
(σ2

i , σ2
ij , and V arπ

ijk) instead of the expected values (Fi, Fij , and Sπ
ijk) and

squaring the constants.
The distribution of the energy used to process the workload can be expressed

as N (ζ, γ). Given an energy budget of Δ, we can compute the probability that
N (ζ, γ) is less than Δ (i.e., P(N (ζ, γ) ≤ Δ)) by converting N (ζ, γ) to its associ-
ated cumulative density function (cdf). We denote this probability as φ, and we
require resource allocations to meet an energy constraint of φ ≥ η. The values
for Δ and η are set by the system administrator.

3.4 Robustness Calculation

We define a “robust” resource allocation as one that can mitigate the impact of
uncertain task execution times on our performance objective of finishing all tasks

Energy and Deadline Constrained Robust Stochastic Resource Allocation 765

by deadline δ. The calculation of the completion time of core k when using a
stochastic model for task execution times is performed by taking the sum of the
random variables for each task assigned to core k. The sum of two independent
normally distributed random variables α and β produces a normally distributed
random variable with its mean being the sum of the means of α and β and the
variance being the sum of the variances of α and β.

For core ijk, the expected finishing time (Fijk) and variance (σ2
ijk) are

Fijk =
∑

∀tx
ijk∈Tijk

μ(txijk,PS(txijk)) (4)

and
σ2

ijk =
∑

∀tx
ijk∈T x

ijk

V (txijk,PS(txijk)). (5)

Thus, the completion time distribution of ijk can be expressed as N (Fijk, σ
2
ijk).

Given deadline δ, we can compute the probability that N (Fijk, σ
2
ijk) is less than

δ (i.e., P(N (Fijk, σ
2
ijk) ≤ δ)) by converting N (Fijk, σ

2
ijk) to its associated cdf.

We define the overall system robustness, denoted Ψ , as the minimum probability
across all cores: Ψ = min

∀i∈N
(min
∀j∈ni

(min
∀k∈nij

P(N (Fijk, σ
2
ijk) ≤ δ))).

3.5 Combining Performance Metrics

In this study, we use a penalized objective function to incorporate the energy
constraint into our optimization techniques. The idea behind a penalized objec-
tive function is to reduce the objective function value of infeasible solutions based
on the solution’s distance from feasibility, but still allow infeasible solutions to
be considered when searching for an optimal feasible solution. A solution is a
complete mapping of tasks to machines. Recall that φ is the probability that
the energy consumption of a resource allocation is less than Δ and a solution is
considered feasible if φ ≥ η. The distance from feasibility for a solution, denoted
d, is the difference of φ from η: d = η − φ.

When d > 0, it indicates that φ < η, and we penalize the objective function
by subtracting a weighted value of the distance from feasibility. Our penalized
objective function, denoted ψ, is: ψ = Ψ − c ∗ d, where c indicates a constant
used to control how strongly the constraint will be enforced. A high value of
the coefficient c can restrict exploration, however c must be large enough that a
feasible solution is found. A value of d ≤ 0 indicates the energy constraint has
been met and we do not need to penalize the solution, and our objective function
becomes: ψ = Ψ .

4 Heuristics

4.1 Overview

In this section we describe two heuristics: Min-Min Balance and our Tabu Search.
Due to lack of space, we omit descriptions for genetic and memetic algorithms,
although these are considered in the experiments we conduct.

766 M.A. Oxley et al.

4.2 Min-Min Balance

Inspired by the greedy iterative maximization heuristic proposed by [14], we
create the Min-Min Balance heuristic. Min-Min Balance starts with an initial
solution created using the well-known Min-Min Completion Time (Min-Min CT)
heuristic [4,8,12] and tries to improve the solution using greedy modifications.
The min-robustness core, denoted coreminR, refers to the core that has the
least probability of finishing its assigned workload by the deadline, that is, the
core that determines the robustness metric of the solution. The max-robustness
core, denoted coremaxR, refers to the core that has the greatest probability of
finishing its workload by the deadline. Min-Min Balance starts by generating
an initial mapping using Min-Min CT with all tasks assigned in P4 (the lowest
energy P-state) to ensure the energy constraint is met. The solution is then
modified using two steps that reassign tasks and P-states, keeping moves that
result in a greater robustness value without violating the energy constraint. The
first step iteratively reassigns arbitrary tasks from coreminR to coremaxR with
the goal of increasing robustness by balancing the workload until no tasks from
coreminR can be reassigned without improving the solution. After the first step,
the second step attempts to raise robustness by changing the P-states of tasks
on coreminR to lower-numbered (i.e., better performing) P-states until no tasks
on coreminR can change P-states without improving the solution.

4.3 Tabu Search

Overview: The distinguishing feature of Tabu Search is its exploitation of mem-
ory, generally through the use of a Tabu List. We use a Tabu List to store regions
of the search space that have been searched and should not be searched again.
Our implementation of Tabu Search combines intelligent local search (“short
hops”) with the global search (“long hops”) in an attempt to find a globally
optimal solution.

Local search is performed using three short-hop operators: (1) task swap,
(2) task reassignment, and (3) P-state reassignment. One short-hop consists of
one iteration of all three operators. Long-hops are performed when local search
terminates, with the purpose of jumping to a new neighborhood in the search
space, while avoiding areas already searched. After each long-hop, short-hops
are again performed to locally search the region near the long-hop solution. The
Tabu List stores unmodified long-hops (i.e., starting solutions) that indicate
neighborhoods that have been searched before, and may not be searched again.
A new solution generated by a long-hop must differ from any solution in the Tabu
List by 25 %, otherwise a new long-hop is generated. The heuristic terminates
after a given number of long-hops are performed.

To evaluate potential task to node allocations we make use of a mean
execution time rank matrix (MET rank matrix) that contains the rank of
each heterogeneous node for each task, based on mean execution times. That is,
for a given task, the nodes are ranked by how fast the nodes can execute the
task (e.g., if node i can execute task t faster than node j, node i is given a better

Energy and Deadline Constrained Robust Stochastic Resource Allocation 767

rank for task t). Let the rank of task t on node i be rank(ti). When comparing
the rank of any two tasks A and B on node i, task A is ranked lower (better)
than task B if rank(Ai) is less than rank(Bi).

Long-hops: The initial solution (first long-hop) in our heuristic is generated
using a Min-Min CT allocation with all tasks running on cores in P-state P4

(to help ensure the energy constraint is met). Subsequent long-hop solutions are
generated by first unmapping an arbitrary 25 % of tasks, and then reassigning the
tasks randomly (i.e., to random cores with random P-states) or heuristically. We
try both approaches: one that randomly generates new solutions (random long-
hops) and one that uses Min-Min CT in P4 to generate new solutions (Min-Min
long-hops). The three short-hop operators are now described in more detail.

Task Swap: The goal of the task swap short-hop operator is to swap tasks
that are assigned to poorly ranked nodes to better ranked nodes, a move that can
potentially improve both robustness and energy consumption. We first choose
an arbitrary core k and create a task list consisting of all tasks assigned to
core ijk, recalling that the notation for such a task list is Tijk. Tijk is sorted in
descending order by the rank of each task for node i (e.g., the worst-ranked task
is first). We select the first task in the task list, denoted taskA, and find the
best-ranked node for the task, denoted nodebest. Within nodebest, an arbitrary
core z is chosen. The task from core z that has the best rank for node i, taskB , is
selected for swap. The core assignments for taskA and taskB are swapped, and
the best P-state combination (according to the objective function ψ) is found
and assigned to the tasks. If the solution improves (higher ψ), the swap is kept
and task swap ends. Otherwise, the swap is not kept, taskA is removed from
Tijk, and task swap repeats until the solution improves or Tijk is empty.

Task Reassignment: It can also be useful to transfer tasks from one core
to another instead of swapping task assignments, thus we implement a task reas-
signment operator to transfer tasks. The goal of task reassignment is to improve
robustness (Ψ) by removing tasks from the min-robustness core. We start by
choosing the min-robustness core (core k) and create a task list consisting of
all tasks assigned to the min-robustness core (Tijk). Tijk is sorted in descending
order by the rank of each task for node i. We select the first task in the task list
(taskA), and find the best-ranked node for the task (nodebest). Within nodebest,
the max-robustness core is selected as the target core (core z), and taskA is
assigned to core z. The best P-state (according to ψ) is found to run core z in
when executing taskA. If the solution improves (higher ψ), the new assignment
is kept and task reassignment ends. Otherwise, the new assignment is not kept,
task A is removed from Tijk, and task reassignment repeats until the solution
improves or Tijk is empty.

P-state Reassignment: Depending on whether or not the energy constraint
has been met, P-state reassignment increases or decreases the P-states of tasks to
either reduce energy consumption or improve robustness. If the energy constraint
is satisfied (i.e., φ ≥ η), the min-robustness core (core k) is chosen, and a task
list is generated consisting of all tasks assigned to the min-robustness core (Tijk).
A task is chosen arbitrarily from the task list (taskA), and the P-state of the

768 M.A. Oxley et al.

task is decreased by 1 if not already currently assigned to execute in P0. If the
energy constraint has not been met, the max-robustness core (core k) is chosen,
and a task list is generated consisting of all tasks assigned to the max-robustness
core (Tijk). A task is chosen arbitrarily from the task list (taskA), and the P-
state of the task is increased by 1 if not currently assigned to execute in P4. If
the solution improves, the new P-state is kept and P-state reassignment ends.
Otherwise, the new P-state is not kept, task A is removed from Tijk, and P-state
reassignment repeats until the solution improves or Tijk is empty.

5 Results

The cluster we simulate consists of 250 compute nodes (N), where the number of
multicore processors in a node can vary from one to four (ni), and the number of
cores in a multicore processor can vary from two to sixteen (nij), giving a total of
613 multicore processors and 5,430 cores. We conducted 100 distinct simulation
trials, with the means and variances of the task execution times varying among
trials. These trials simulate numerous diverse heterogeneous workload/system
environments. The figures presented in this section show data collected over the
100 simulation trials by displaying the mean values and 95 % confidence interval
error bars around the mean. The workload of each trial consisted of 40,000 tasks.
The mean and variance values of the task execution times for each P-state in
each node were generated using the Coefficient of Variation (COV) method [1]
and a scaling procedure.

Power consumption values of cores for each node in each P-state (ρ(π)
i) were

generated by sampling a normal distribution for P-states P4 and P0 and inter-
polating the intermediate states using a quadratic curve. Power overhead val-
ues (ωnode

i and ωMP
i) were generated by sampling a uniform distribution with

bounds chosen such that the total average overhead power comprised approxi-
mately 30 % of the total power consumed by the system. We have simulated two
different-sized heterogeneous platforms to demonstrate the efficacy of our heuris-
tics. Our primary contribution is not to determine a universally applicable set of
parameters, but rather show how parameters for resource allocation heuristics
can be calibrated for any given platform through our simulation experiments.

To show the benefits and weaknesses of each local search operator in our
Tabu Search heuristic, we tested each operator’s performance separately when
improving a Min-Min CT P4 solution over time. Figure 1 shows a comparison of
each operator separately, as well as all operators working together when improv-
ing the Min-Min CT P4 solution, with repeated applications of each operator
over the execution time specified on the x-axis. We observed that the improve-
ment when applying the task reassignment and P-state reassignment operators
saturates quickly, whereas the task swap operator continues to improve the solu-
tion slowly. Task reassignment and P-state reassignment take greedy approaches
by only considering the min-robustness core for task and P-state reassignments,
giving strong initial performance but causing the operators to reach local max-
ima quickly. The task swap operator is able to swap assignments on all cores,

Energy and Deadline Constrained Robust Stochastic Resource Allocation 769

Fig. 1. Local search operator comparison. The figure shows how each operator can
improve the robustness of a Min-Min CT P4 solution over time.

taking a less greedy approach that allows a broader search. Local search per-
forms the best when all operators are used, thus all operators are used in our
Tabu Search heuristic when comparing with other heuristics.

Figure 2a shows a comparison of Tabu Search when using random long-hops
versus Min-Min long-hops. Random long-hops can potentially search more of the
solution space at the expense of generating poor initial solutions, whereas Min-
Min long-hops can generate good solutions but limit the search space. Results
are shown using varying numbers of long-hop and short-hop iterations to try and
understand the tradeoffs between global search and local search, with the number
of iterations of each chosen such that the total combined heuristic execution
times were the same for the different iteration values. In our environment, we
can see that using Min-Min long-hops in our Tabu Search provided significantly
better robustness values than using random long-hops, as random long-hops
generate poor initial solutions. One conclusion from Fig. 2a is that our local
search is not improved by global hops for our problem domain when the long-hops
are performed randomly, however, global hops become beneficial when performed
intelligently using Min-Min.

Figure 2b shows the results obtained from the Min-Min Balance and Tabu
Search heuristics, as well as genetic and memetic algorithms (GA and MA)
adapted for this environment. The GA is similar to that from [2], and we created
the MA by executing the three local search operators from Tabu on offspring
chromosomes before they are added to the general population of a GA. The
numbers inside the bars indicate the heuristic execution times. The superior
performance of Tabu Search and the MA compared to the GA and Min-Min
Balance within the computation times given further demonstrate the significance
of the local search operations.

We experimented with the heuristics on a smaller system consisting of 25 het-
erogeneous nodes, 178 total cores, and 4,000 tasks. For that system we observed

770 M.A. Oxley et al.

Fig. 2. Comparison of (a) random long-hops and Min-Min long-hops and (b) robustness
of Min-Min Balance, Tabu Search, GA, MA. All solutions meet the energy constraint.

similar relative performance among the heuristics (as in Fig. 2b), with the Tabu
Search and MA outperforming the GA and Min-Min Balance when Tabu Search,
GA, and MA are given 24 h to execute. Though we observed similar relative per-
formances for the two different-sized systems, we leave scalability analysis for
future work.

6 Conclusions

In this paper, we study the problem of statically allocating a bag-of-tasks to
a heterogeneous computing system. We proposed new local search techniques
that use knowledge of the problem and model to maximize robustness under an
energy constraint. We also evaluated and compared Tabu Search short-hop and
long-hop techniques, and then combined the local and global search techniques
to create a new Tabu Search heuristic. These local search techniques can be
adapted to other models and problem domains to enhance Tabu Search, GAs,
and other search heuristics with the performance of our Tabu Search heuris-
tic and MA demonstrating the significance of the local search operators in the
resource allocation problem domain.

Acknowledgments. The authors thank T. Hansen, M. Amini Salehi, J. Potter, and
G. Pfister for their valuable comments. This research was supported by NSF grants
CNS-0905399 and CCF-1302693, and by the CSU Abell Endowment. This research
used the CSU ISTeC Cray System supported by NSF grant CNS-0923386.

References

1. Ali, S., Siegel, H.J., Maheswaran, M., Hensgen, D.: Representing task and machine
heterogeneities for heterogeneous computing systems. Tamkang J. Sci. Eng., Spe-
cial 50th Anniversary Issue 3(3), 195–207 (2000)

Energy and Deadline Constrained Robust Stochastic Resource Allocation 771

2. Apodaca, J., Young, D., Briceño, L., Smith, J., Pasricha, S., Maciejewski, A.A.,
Siegel, H.J., Bahirat, S., Khemka, B., Ramirez, A., Zou, Y.: Stochastically robust
static resource allocation for energy minimization with a makespan constraint in a
heterogeneous computing environment. In: International Conference on Computer
Systems and Applications (AICCSA ’11), pp. 22–31, December 2011

3. Boloni, L., Marinescu, D.: Robust scheduling of metaprograms. J. Sched. 5(5),
395–412 (2002)

4. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L., Freund, R.F., Hensgen, D., Mah-
eswaran, M., Reuther, A.I., Robertson, J.P., Theys, M.D., Yao, B.: A comparison
of eleven static heuristics for mapping a class of independent tasks onto heteroge-
neous distributed computing systems. J. Parallel Distrib. Comput. 61(6), 810–837
(2001)

5. Chang, P.C., Wu, I.W., Shann, J.J., Chung, C.P.: ETAHM: an energy-aware task
allocation algorithm for heterogeneous multiprocessor. In: Design Automation Con-
ference (DAC ’08), pp. 776–779 (2008)

6. Cirne, W., Brasileiro, F., Sauv, J., Andrade, N., Paranhos, D., Santos-neto, E.,
Medeiros, R., Gr, F.C.: Grid computing for bag of tasks applications. In: IFIP
Conference on E-Commerce, E-Business and E-Government, September 2003

7. Hewlett-Packard, Intel, Microsoft, Phoenix Technologies, and Toshiba: Advanced
Configuration and Power Interface Specification, rev. 5.0, http://www.acpi.info
(2011)

8. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. J. Assoc. Comput. Mach. 24(2), 280–289 (1977)

9. Iosup, A., Sonmez, O., Anoep, S., Epema, D.: The performance of bags-of-tasks in
large-scale distributed systems. In: International Symposium on High Performance
Distributed Computing (HPDC ’08), pp. 97–108, June 2008

10. Koomey, J.: Growth in data center electricity use 2005 to 2010. Technical report,
Analytics Press, http://www.analyticspress.com/datacenters.html (2011)

11. Lee, Y.C., Zomaya, A.Y.: Minimizing energy consumption for precedence-
constrained applications using dynamic voltage scaling. In: IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid (CCGRID ’09), pp. 92–99,
May 2009

12. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic map-
ping of a class of independent tasks onto heterogeneous computing systems. J.
Parallel Distrib. Comput. 59(2), 107–131 (1999)

13. Shestak, V., Smith, J., Maciejewski, A.A., Siegel, H.J.: Stochastic robustness metric
and its use for static resource allocations. J. Parallel Distrib. Comput. 68(8), 1157–
1173 (2008)

14. Sugavanam, P., Siegel, H.J., Maciejewski, A.A., Oltikar, M., Mehta, A., Pichel,
R., Horiuchi, A., Shestak, V., Al-Otaibi, M., Krishnamurthy, Y., Ali, S., Zhang,
J., Aydin, M., Lee, P., Guru, K., Raskey, M., Pippin, A.: Robust static allocation
of resources for independent tasks under makespan and dollar cost constraints. J.
Parallel Distrib. Comput. 67(4), 400–416 (2007)

15. Xian, C., Lu, Y.H., Li, Z.: Dynamic voltage scaling for multitasking real-time
systems with uncertain execution time. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 27(8), 1467–1478 (2008)

Performance and Energy Analysis
of the Iterative Solution of Sparse Linear

Systems on Multicore and Manycore
Architectures

José I. Aliaga1, Hartwig Anzt2(B), Maribel Castillo1, Juan C. Fernández1,
Germán León1, Joaqúın Pérez1, and Enrique S. Quintana-Ort́ı1

1 Dpto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I,
12.071 Castellón, Spain

{aliaga,castillo,jfernand,leon,al001566,quintana}@uji.es
2 Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

hanzt@icl.utk.edu

Abstract. In this paper we investigate the performance-energy balance
of a variety of concurrent architectures, from general-purpose and digi-
tal signal multicore systems to graphics processors (GPUs), representa-
tive of current technology. This analysis employs the conjugate gradient
method, an important algorithm for the iterative solution of linear sys-
tems that is basically composed of the sparse matrix-vector product and
other (minor) vector kernels. To allow a fair comparison, we leverage sim-
ple implementations of the numerical methods and underlying kernels,
and rely only on those optimizations applied by the target compiler.

Keywords: Energy efficiency · High-performance computing · Sparse
linear algebra · Multicore processors · Low-power processors · GPUs

1 Introduction

Competing for the world’s first exascale system, many high performance
computing (HPC) initiatives have identified the power wall as a key challenge
that will have to be confronted, resulting in an unmistakable call for power-
efficient systems [5,9]. At the other end of the spectrum, energy-efficient com-
ponents are essential for extended battery life of mobile appliances like smart
phones and tablets, and hardware companies devote considerable effort to inte-
grating sophisticated energy-saving mechanisms into embedded devices. These
two trends seem to be converging, though, and a small number of recent HPC
research prototypes aim at delivering high performance-power ratios by adopting
technology originally designed for the mobile market [1,2].

Although most manufacturers advertise the power-efficiency of their products
by providing theoretical energy specifications, an equitable comparison between
different hardware architectures remains difficult. The reason is not only that

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 772–782, 2014.
DOI: 10.1007/978-3-642-55224-3 72, c© Springer-Verlag Berlin Heidelberg 2014

Performance and Energy of the Solution of Sparse Linear Systems 773

distinct devices are often designed for one particular type of computation, but
also that they are tailored for either performance or power efficiency. New energy-
related metrics have been recently proposed to analyze the balance between these
two key figures [7], but the situation becomes increasingly difficult once the dif-
ferent levels of optimization applied to an algorithm enter the picture. In par-
ticular, extensive software optimization that results in significant performance
and power improvements for one specific hardware are also likely to hamper the
portability of the code to other architectures.

In this paper we provide a map of the energy-performance landscape of a
variety of general-purpose and specialized hardware architectures using the con-
jugate gradient (CG) method, a key algorithm for the numerical solution of
symmetric positive definite (SPD) sparse linear systems [12]. The cornerstone of
this iterative method is the sparse matrix-vector product, which is also a crucial
operation for many other numerical methods [4]; the significance of the results
carries beyond the scope of this inspection. To avoid promoting one particular
hardware architecture, we develop and evaluate simple implementations of the
CG method and the sparse matrix-vector product, either using the CSR or the
ELLPACK sparse matrix formats [12]. A motivation for not applying optimiza-
tions to the code, other than those intrinsic to the compilation process, stems
from the fact that many complex numerical codes running on large HPC facil-
ities —e.g., for CFD applications, weather or economic simulations— are used
out-of-the-box without hands-on optimization.

The rest of the paper is structured as follows. In Sect. 2 we briefly introduce
the mathematical formulation of the CG method as well as the implementation
and basic storage formats for the sparse matrix-vector operation. In Sect. 3 we
present the benchmark matrices. In Sect. 4 we review the main characteristics
of the different architectures: four general-purpose multicore processors (Intel
Xeon E5504 and E5-2620, and AMD Opteron 6128 and 6276); a low-power mul-
ticore digital signal processor (Texas Instruments C6678); two low-power multi-
core processors (ARM Cortex A9 and Intel Atom D510); and three GPUs with
different capabilities (NVIDIA Quadro M1000, Tesla C2050 and Kepler K20).
Section 5 contains the main contribution of this paper, namely, the practical
evaluation of these architectures, from the point of view of both performance
and energy efficiency. Finally, in Sect. 6 we offer a few concluding remarks.

2 Solving Sparse SPD Linear Systems

2.1 Krylov-Based Iterative Solvers

The CG method [12] is among the best known Krylov subspace methods for the
solution of linear systems Ax = b, where A ∈ R

n×n is SPD, b ∈ R
n contains the

independent terms, and x ∈ R
n is the solution. The method is mathematically

formulated in Fig. 1, where the user-defined parameters maxres and maxiter set
upper bounds, respectively, on the relative residual for the computed approxi-
mation to the solution xk, and the maximum number of iterations.

774 J.I. Aliaga et al.

x0 := 0 // or any other initial guess
r0 := b − Ax0, d0 := r0

β0 := rT
0 r0, τ0 := r0 2=

√
β0, k := 0

while (k < maxiter) & (τk > maxres)
zk := Adk

ρk := βk/dT
k zk

xk+1 := xk + ρkdk

rk+1 := rk − ρkzk

βk+1 := rT
k+1rk+1

αk := βk+1/βk

dk+1 := rk+1 + αkdk

τk+1 := rk+1 2= βk+1, k := k + 1
end

Fig. 1. Mathematical formulation of the CG method.

In practical applications, the computational cost of the CG method is dom-
inated by the matrix-vector multiplication zk := Adk. Given a sparse matrix
A with nz nonzero entries, this operation roughly requires 2nz floating-point
arithmetic operations (flops). Additionally, the loop body contains several vec-
tor operations (for the updates of xk+1, rk+1, dk+1, and the computation of ρk

and βk+1) that cost O(n) flops each.

2.2 The Sparse Matrix-Vector Product

The sparse matrix-vector product is ubiquitous in scientific computing, being a
key operation for the iterative solution of linear systems and eigenproblems [12]
as well as the PageRank algorithm [11], among others [4]. For sparse matrices,
the irregular memory access pattern of this operation and the limited memory
bandwidth of current general-purpose architectures has resulted in a consider-
able number of efforts proposing specialized matrix storage layouts as well as
optimized implementations for a variety of architectures; see, e.g., [6,10,14].

In our implementation of the sparse matrix-vector product for the CG
method, matrix A is stored either in the compressed sparse row (CSR) format,
for multicore architectures, or the ELLPACK format for the GPUs.

In general, ELLPACK incurs some storage overhead, but the aligned struc-
ture allows for a more efficient hardware usage when targeting streaming proces-
sors like GPUs [8,13]. Figures 2 and 3 sketch, respectively, the two sparse matrix
formats and the corresponding actual algorithms that we utilize for the sparse
matrix-vector product. In both routines, n refers to the matrix size; the matrix
is stowed using arrays values, colind and, in the case of routine spmv csr, also
array rowptr (see Fig. 2); the input and output vectors of the product y := Ax
are, respectively, x and y; finally, nzr refers to the number of entries per row

Performance and Energy of the Solution of Sparse Linear Systems 775

Fig. 2. Dense and sparse matrix storage formats. The memory demand corresponds to
the grey areas.

1 void spmv_csr(int n,
2 int * rowptr , int * colind , float * values ,
3 float * x, float * y) {
4 int i, j; float tmp;
5
6 #pragma omp parallel for private (j, tmp)
7 for (i = 0; i < n; i++) {
8 tmp = 0.0;
9 for (j = rowptr [i]; j < rowptr [i+1]; j++)

10 tmp += values [j] * x [colind[j]];
11 y[i] = tmp;
12 }
13 }
14 // ---
15 __global__
16 void spmv_ell(int n, int nzr ,
17 int * colind , float * values ,
18 float * x, float * y) {
19 int i, j, k; float tmp;
20
21 i = blockDim.x * blockIdx.x + threadIdx.x;
22 i f (i < n){
23 tmp = 0.0;
24 for (j = 0; j < nzr; j++) {
25 k = n * j + i;
26 i f (values[k] != 0)
27 tmp += values [k] * x [colind [k]];
28 }
29 y[i] = tmp;
30 }
31 }

Fig. 3. Sparse matrix-vector product using the CSR and ELLPACK formats (spmv csr

and spmv ell, respectively).

in the ELLPACK-based routine. Although other formats exist that are more
appealing for specific architectures or sparsity patterns —e.g., jagged diagonal
storage format [12]— we choose CSR and ELLPACK here for their simplicity.
Also, no attempt is made to exploit the symmetric structure of matrix A.

776 J.I. Aliaga et al.

Table 1. Description and properties of the test matrices.

Source Acronym Matrix #nonzeros (nz) Size (n) nz/n

Laplace A159 A159 27,986,067 4,019,679 6.94

UFMC audi audikw 1 77,651,847 943,645 82.28
bmw bmwcra1 10,641,602 148,770 71.53
crank crankseg 2 14,148,858 63,838 221.63
F1 F1 26,837,113 343,791 78.06
inline inline 1 38,816,170 503,712 77.06
ldoor ldoor 42,493,817 952,203 44.62

2.3 Vector Operations

For multicore architectures, we employed the legacy implementation of BLAS
from netlib1 for the level-1 (vector) operations. No attempt was made to paral-
lelize the vector operations of the CG method on these architectures. For GPUs
we instead used the implementation in NVIDIA’s CUBLAS. We consider this
a fair comparison since (i) in general, the time cost of the vector operations is
significantly lower than that of the sparse matrix-vector product; and (ii) due to
their reduced cost, there is very little opportunity to benefit from a concurrent
execution of vector operations on multicore processors.

3 Matrix Benchmarks

We have selected six SPD matrices from the University of Florida Matrix Collec-
tion (UFMC)2, corresponding to finite element discretizations of several struc-
tural problems arising in mechanics, and an additional case derived from a finite
difference discretization of the 3D Laplace problem; see Table 1. In the linear sys-
tems, vector b was initialized so that all the entries of the solution x were equal
to 1, and the CG iteration was started with the initial guess x0 ≡ 0. All tests
operated with single-precision (SP) floating-point arithmetic. While the use of
double precision (DP) arithmetic is mandatory for the solution of sparse linear
systems of equations, in [3] we show how the use of mixed SP-DP combined with
iterative refinement improves execution time and energy consumption.

4 Hardware Setup and Compilers

Table 2 lists the main hardware features of the systems and compilers involved
in the experimentation. We used the GNU C compiler (gcc) in as many platforms
as possible, with similar versions, and the optimization flag -O3 in all cases.
For each multi-core processor we also report the different frequencies that were
evaluated in the experimentation.
1 http://www.netlib.org
2 http://www.cise.ufl.edu/research/sparse/matrices.

Performance and Energy of the Solution of Sparse Linear Systems 777

Table 2. Architectures with their corresponding idle power characteristics. For the
GPU systems (fer, kep and qdr), the idle power includes the accelerator.

Acron. Architecture Total Frequency (GHz) RAM size, Compiler

#cores – Idle power (W) type

ail AMD Opteron 6276 8 1.4–167.29, 1.6–167.66 64GB, gcc 4.4.6

(Interlagos) 1.8–167.31, 2.1–167.17 DDR3 1.3GHz

2.3–168.90

amc AMD Opteron 6128 8 0.8–107.48, 1.0–109.75, 48GB, gcc 4.4.6

(Magny-Cours) 1.2–114.27, 1.5–121.15, DDR3 1.3GHz

2.0–130.07

iat Intel Atom D510 2 0.8–11.82, 1.06–11.59, 1GB, gcc 4.5.2

1.33-11.51, 1.6–11.64 DDR2 533MHz

inh Intel Xeon E5504 8 2.0–280.6, 2.33–281.48, 32GB, gcc 4.1.2

(Nehalem) 2.83–282.17 DDR3 800MHz

isb Intel E5-2620 6 1.2–93.35, 1.4–93.51, 32GB, gcc 4.1.2

(Sandy-Bridge) 1.6–93.69, 1.8–93.72, DDR3 1.3GHz

2.0–93.5

arm ARM Cortex A9 4 0.62–11.7, 1.3–12.2 2GB, DDR3L gcc 4.5.2

fer Intel Xeon E5520 8 1.6–222.0, 2.27–226.0 24GB, gcc 4.4.6

NVIDIA Tesla C2050 (Fermi) 448 1.15 3GB, GDDR5 nvcc 4.2

kep Intel Xeon i7-3930K 6 1.2–106.30, 3.2–106.50 24GB, gcc 4.4.6

NVIDIA Tesla K20 (Kepler) 2,496 0.7 5GB, GDDR5 nvcc 4.2

qdr ARM Cortex A9 4 0.102–11.2, 1.3–12.2 2GB, DDR3L gcc 4.5.2

NVIDIA Quadro 1000 M 96 1.4 2GB, DDR3 nvcc 4.2

tic Texas Instruments C6678 8 1.0–18.0 512MB, DDR3 cl6x 7.4.1

In order to measure power, we leveraged a WattsUp?Pro wattmeter, con-
nected to the line from the electric socket to the power supply unit (PSU), with
an accuracy of ±1.5 % and a rate of 1 sample/sec, and results were collected on a
separate server. All tests were executed for a minimum of 3 min (in case the solver
converged in a shorter time, the same process was repeated till the minimum
time was reached), after a warm up period of 5 min. Since the platforms where
the processors are embedded contain other devices (e.g., disks, network interface
cards, and on iat even the LCD display), on each platform we measured the
average power while idle for 30 s, and then subtracted the corresponding value
(see Table 2) from all the samples obtained from the wattmeter to get a base-
line reading of the system components at idle. We expect this setup renders a
fair comparison of the energy-efficiency of the different architectures, as we only
evaluate the power that is drawn to do the actual work.

5 Experimental Results

Tables 3 and 4 and Fig. 4 collect the results of the experimental study. For each
platform and benchmark case, we evaluated the performance, net energy (i.e.,
energy after subtracting the cost of idle power), and total energy for different
combinations of the number of cores and processor frequency. For brevity, we
only report the results that correspond to the best case from the perspectives of
time and net energy and the corresponding pairs (net energy, total energy) and

778 J.I. Aliaga et al.

Table 3. Optimal configuration, time and energy for general-purpose architectures. c
denotes the #cores, f the frequency (in MHz), T the time per iteration (in seconds),
and Enet and Etot the net and total energy, respectively, per iteration (in Joules).

Optimized w.r.t time Optimized w.r.t net energy

Matrix c f T Enet Etot c f T Enet Etot

ail A159 8 2300 7.52e−02 2.06e+01 3.33e+01 8 2100 7.65e−02 1.24e+01 2.52e+01

audi 8 2300 1.94e−01 5.16e+01 8.44e+01 8 2100 2.80e−01 4.29e+01 8.97e+01

bmw 8 2300 1.46e−02 3.92e+00 6.38e+00 8 2100 1.92e−02 3.05e+00 6.27e+00

crank 8 2300 2.47e−02 6.66e+00 1.08e+01 8 2100 3.56e−02 5.52e+00 1.15e+01

F1 6 2300 4.99e−02 1.13e+01 1.98e+01 6 2100 6.84e−02 9.82e+00 2.12e+01

inline 8 2300 6.59e−02 1.76e+01 2.87e+01 8 2100 9.15e−02 1.43e+01 2.96e+01

ldoor 8 2300 7.50e−02 1.99e+01 3.26e+01 8 2100 9.15e−02 1.43e+01 2.96e+01

amc A159 8 2000 8.57e−02 9.92e+00 2.20e+01 8 2000 8.57e−02 9.92e+00 2.20e+01

audi 8 2000 3.03e−01 2.78e+01 7.05e+01 8 2000 3.03e−01 2.78e+01 7.05e+01

bmw 8 2000 2.11e−02 2.39e+00 5.36e+00 8 2000 2.11e−02 2.39e+00 5.36e+00

crank 8 2000 3.57e−02 3.85e+00 8.87e+00 8 2000 3.57e−02 3.85e+00 8.87e+00

F1 6 2000 6.98e−02 7.65e+00 1.75e+01 6 2000 6.98e−02 7.65e+00 1.75e+01

inline 8 2000 9.67e−02 1.06e+01 2.42e+01 8 2000 9.67e−02 1.06e+01 2.42e+01

ldoor 8 2000 9.88e−02 1.13e+01 2.53e+01 8 2000 9.88e−02 1.13e+01 2.53e+01

iat A159 2 1600 4.59e−01 2.53e+00 7.87e+00 1 800 1.46e+00 1.79e+00 1.90e+01

bmw 2 1600 1.03e−01 5.40e−01 1.74e+00 1 800 3.73e−01 3.73e−01 4.78e+00

crank 2 1600 1.48e−01 7.15e−01 2.44e+00 1 800 4.82e−01 4.63e−01 6.16e+00

F1 2 1600 3.38e−01 1.69e+00 5.62e+00 2 800 6.36e−01 1.20e+00 8.71e+00

inline 2 1600 3.81e−01 1.99e+00 6.43e+00 1 800 1.34e+00 1.37e+00 1.72e+01

ldoor 2 1600 5.04e−01 2.60e+00 8.47e+00 1 800 1.73e+00 1.85e+00 2.23e+01

inh A159 4 2830 1.04e−01 8.86e+00 3.81e+01 4 2000 1.06e−01 7.40e+00 3.72e+01

audi 6 2830 1.94e−01 1.79e+01 7.27e+01 4 2000 2.10e−01 1.39e+01 7.29e+01

bmw 8 2333 2.19e−02 2.02e+00 8.18e+00 4 2000 2.23e−02 1.59e+00 7.85e+00

crank 6 2830 2.96e−02 2.79e+00 1.11e+01 4 2000 3.20e−02 2.17e+00 1.12e+01

F1 6 2333 6.25e−02 5.21e+00 2.28e+01 4 2000 6.66e−02 4.55e+00 2.32e+01

inline 6 2830 8.13e−02 7.72e+00 3.07e+01 4 2000 8.40e−02 5.85e+00 2.94e+01

ldoor 4 2830 1.04e−01 9.01e+00 3.85e+01 4 2000 1.06e−01 7.60e+00 3.74e+01

isb A159 6 2000 4.61e−02 2.36e+00 6.67e+00 4 1200 9.47e−02 1.68e+00 1.05e+01

audi 6 2000 1.48e−01 6.39e+00 2.02e+01 6 1200 2.42e−01 4.32e+00 2.69e+01

bmw 6 2000 1.13e−02 5.56e−01 1.61e+00 4 1400 2.32e−02 4.71e−01 2.64e+00

crank 6 2000 1.93e−02 8.70e−01 2.67e+00 6 1200 3.17e−02 6.20e−01 3.58e+00

F1 6 2000 3.11e−02 1.51e+00 4.41e+00 6 1200 5.08e−02 1.27e+00 6.02e+00

inline 6 2000 4.84e−02 2.26e+00 6.79e+00 6 1200 7.91e−02 1.61e+00 8.99e+00

ldoor 6 2000 5.27e−02 2.62e+00 7.54e+00 6 1200 8.59e−02 1.94e+00 9.96e+00

(time, total energy), respectively. As the tables and figure convey a considerable
amount of information, we limit the following analysis to some central aspects.

Optimization with Respect to Time. If run time (or, analogously, perfor-
mance) is the figure of merit, the Tesla K20 (kep), followed by the Tesla C2050
(fer), are the architectures of choice (see the top-left plot of Fig. 4). For all
test cases, they outperform all other systems by almost an order of magnitude.
However, their performance strongly depends on the matrix structure, and the
distinct test cases exhibit flop rates that differ by a factor of 6.32. This sensitiv-
ity to the matrix sparsity pattern is also shared by the Quadro 1000 M (qdr),
which outperforms the C6678 DSP (tic) only for those cases where the use of
the ELLPACK format does not incur significant overhead on GPUs. While tic
shows some variation on performance as well as the performance-per-watt ratio

Performance and Energy of the Solution of Sparse Linear Systems 779

Table 4. Optimal configuration, time and energy for specialized architectures. c
denotes the #cores, f the frequency (in MHz), T the time per iteration (in seconds),
and Enet and Etot the net and total energy, respectively, per iteration (in Joules).

Optimized w.r.t time Optimized w.r.t net energy

Matrix c f T Enet Etot c f T Enet Etot

arm A159 4 1300 8.20e−01 2.54e+00 1.25e+01 1 620 2.12e+00 9.75e−01 2.58e+01

audi 4 1300 7.90e−01 2.86e+00 1.25e+01 2 1300 8.20e−01 1.69e+00 1.17e+01

bmw 4 1300 1.10e−01 3.86e−01 1.73e+00 1 620 3.20e−01 1.41e−01 3.88e+00

crank 4 620 1.30e−01 5.28e−01 2.05e+00 1 620 4.20e−01 2.02e−01 5.12e+00

F1 4 1300 2.90e−01 1.04e+00 4.58e+00 1 620 9.10e−01 4.00e−01 1.10e+01

inline 4 1300 3.80e−01 1.38e+00 6.01e+00 1 620 1.15e+00 5.64e−01 1.40e+01

ldoor 4 1300 5.00e−01 1.92e+00 8.02e+00 1 620 1.41e+00 6.49e−01 1.71e+01

fer A159 1 2270 5.43e−03 9.58e−01 2.18e+00 1 1600 5.43e−03 9.15e−01 2.12e+00

audi 1 2270 2.95e−02 5.28e+00 1.20e+01 1 1600 2.95e−02 5.08e+00 1.16e+01

bmw 1 2270 4.05e−03 6.97e−01 1.61e+00 1 1600 4.05e−03 6.58e−01 1.56e+00

crank 1 2270 1.69e−02 2.85e+00 6.68e+00 1 1600 1.70e−02 2.69e+00 6.46e+00

F1 1 2270 1.49e−02 2.65e+00 6.02e+00 1 1600 1.49e−02 2.51e+00 5.83e+00

ldoor 1 2270 7.73e−03 1.46e+00 3.21e+00 1 1600 7.74e−03 1.39e+00 3.11e+00

kep A159 1 3200 3.93e−03 5.85e−01 1.00e+00 1 1200 3.96e−03 4.14e−01 8.35e−01

audi 1 3200 1.75e−02 2.66e+00 4.52e+00 1 1200 1.75e−02 1.91e+00 3.77e+00

bmw 1 3200 2.86e−03 4.09e−01 7.14e−01 1 1200 2.89e−03 2.87e−01 5.94e−01

crank 1 3200 1.08e−02 1.49e+00 2.64e+00 1 1200 1.09e−02 1.04e+00 2.19e+00

F1 1 3200 8.20e−03 1.22e+00 2.09e+00 1 1200 8.23e−03 8.57e−01 1.73e+00

inline 1 3200 1.81e−02 2.51e+00 4.43e+00 1 1200 1.81e−02 1.73e+00 3.65e+00

ldoor 1 3200 5.42e−03 8.41e−01 1.42e+00 1 1200 5.45e−03 6.07e−01 1.19e+00

qdr A159 1 1300 3.42e−02 9.39e−01 1.36e+00 1 1300 3.42e−02 9.39e−01 1.36e+00

bmw 1 1300 3.39e−02 8.47e−01 1.26e+00 1 1300 3.39e−02 8.47e−01 1.26e+00

crank 1 1300 1.49e−01 3.63e+00 5.44e+00 1 102 1.57e−01 3.54e+00 5.30e+00

F1 1 1300 1.19e−01 3.15e+00 4.60e+00 1 102 1.27e−01 3.03e+00 4.46e+00

ldoor 1 1300 4.69e−02 1.31e+00 1.88e+00 1 1300 4.69e−02 1.31e+00 1.88e+00

tic A159 8 1000 2.43e−01 6.66e−01 5.04e+00 1 1000 5.28e−01 4.86e−01 9.99e+00

bmw 8 1000 1.90e−02 7.04e−02 4.13e−01 8 1000 1.90e−02 7.04e−02 4.13e−01

crank 8 1000 2.64e−02 9.15e−02 5.66e−01 4 1000 3.60e−02 9.00e−02 7.38e−01

F1 8 1000 9.10e−02 2.68e−01 1.91e+00 8 1000 9.10e−02 2.68e−01 1.91e+00

depending on the matrix structure, its energy efficiency is unmatched by any
other architecture. The two other low-power processors, arm and Atom (iat),
show better ratios than the conventional general-purpose processors (Interla-
gos ail, Magny-Cours amc, Nehalem inh, and Sandy-Bridge isb), but only for
some matrix cases higher energy-efficiency than the GPUs. For fer and qdr,
it is interesting to notice that, although they yield very different performance,
their performance-per-watt ratios are almost equal.

Optimization with Respect to the Net Energy Efficiency. The first gen-
eral observation is that, in many cases, reducing the operating voltage and fre-
quency pays off. Interestingly, this is not always the case for the GPU-accelerated
architectures (see, e.g., the results for qdr in Table 4): For those test cases where
the vector and matrix-vector operations are fast, a host that operates at low
frequency becomes a bottleneck from the point of view of performance, and
the associated energy overhead blurs the power savings. However, for all GPU
implementations, rescaling frequency (and voltage) of the host system has only

780 J.I. Aliaga et al.

Fig. 4. Comparison of performance (left) and performance/watt (right) when optimiz-
ing with respect to run time (top) or net energy (bottom), measured respectively in
terms of GFLOPS and GFLOPS/W (1 GFLOPS=109 flops/s).

a negligible impact on performance and energy. This is very different for the
low-power processors, where rescaling voltage and frequency can improve the
energy efficiency by a wide margin; see example values of the results for arm
and iat in Tables 3 and 4. These architectures provide not only higher optimiza-
tion potential, but also exhibit superior energy efficiency compared with the
conventional general-purpose CPUs or GPUs. When optimizing for net energy,
tic is again the absolute winner, followed by arm, with the latter still exhibiting
higher performance-per-watt rates than the GPUs or the general-purpose CPUs,
see Fig. 4. iat is, in terms of energy efficiency, competitive with the fer and qdr
GPU-based systems. Unfortunately, the factors gained when improving energy
efficiency translate into the related run time as the reduced watt-per-iteration
values for tic, arm, and iat come at the price of significantly higher execu-
tion times (see Tables 3 and 4). Finally, while differences of that scale are not
attained by any of the general-purpose CPUs, optimizing with respect to net
energy is not necessarily equivalent to optimization for the total energy con-
sumption. For instance, the net energy consumption for the audi matrix on inh
can be reduced by decreasing frequency (and voltage), at the cost of an increase
of the total energy (see Table 3).

Performance and Energy of the Solution of Sparse Linear Systems 781

6 Summary and Future Work

Alternative directions are taken today by hardware manufacturers to lower the
resource cost of numerical operations. In order to provide a broad overview about
the potential of different approaches, we have analyzed the performance and
energy efficiency of a large variety of architectures. We observed that the flops-
per-watt rate of manycore systems, like the graphics processors from NVIDIA,
can be matched by low-power devices such as the Intel Atom, the ARM A9
or a digital signal processor from Texas Instruments. While GPUs tradition-
ally achieve a high power efficiency through outstanding performance, the low-
power architectures provide it with less cores, a lower power dissipation and/or
smaller memories. This reduces the suitability of these inexpensive architectures
for general-purpose computing, but makes them appealing candidates for mobile
and embedded appliances (their original target) as well as specific applications.
Despite the fact that conventional general-purpose processors attained neither
the performance nor the performance-per-watt rates of the GPUs, they were the
only architectures able to process all test cases due to their superior memory
capacity. Future research should increase the scope of the study complexity by
adding problems not directly related to linear algebra, e.g., sorting algorithms
or image processing.

Acknowledgements. This work was supported by the CICYT project TIN2011-
23283 and FEDER, and by EU FET grant “EXA2GREEN” 318793.

References

1. CRESTA: collaborative research into Exascale systemware, tools and applications.
http://cresta-project.eu

2. The Mont Blanc project. http://montblanc-project.eu
3. Anzt, H., Heuveline, V., Aliaga, J., Castillo, M., Fernández, J., Mayo, R., Quintana-

Ort́ı, E.S.: Analysis and optimization of power consumption in the iterative solu-
tion of sparse linear systems on multi-core and many-core platforms. In: Green
Computing Conference and Workshops (IGCC), pp. 1–6 (2011)

4. Asanovic, K., et al.: The landscape of parallel computing research: a view from
Berkeley. Technical Report UCB/EECS-2006-183, University of California at
Berkeley, Electrical Engineering and Computer Sciences (2006)

5. Ashby, S., et al.: The opportunities and challenges of Exascale computing. Sum-
mary Report of the Advanced Scientific Computing Advisory Committee (ASCAC)
Subcommittee, November 2010

6. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear Sys-
tems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)

7. Bekas, C., Curioni, A.: A new energy aware performance metric. Comput. Sci. Res.
Dev. 25, 187–195 (2010). doi:10.1007/s00450-010-0119-z

8. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA.
NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, December 2008

782 J.I. Aliaga et al.

9. Bergman, K., et al.: Exascale computing study: Technology challenges in achieving
exascale systems. DARPA IPTO ExaScale Computing Study (2008)

10. Buluç, A., Williams, S., Oliker, L., Demmel, J.: Reduced-bandwidth multi-
threaded algorithms for sparse matrix-vector multiplication. In Proceedings of the
IPDPS, pp. 721–733 (2011)

11. Langville, A., Meyer, C.: Google’s PageRank and Beyond: The Science of Search
Engine Rankings. Princeton University Press, Princeton (2009)

12. Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia (2003)

13. Vázquez, F., Fernández, J.J., Garzón, E.M.: A new approach for sparse matrix
vector product on nvidia gpus. Concurrency Comput. Pract. Experience 23(8),
815–826 (2011)

14. Williams, S., Bell, N., Choi, J., Garland, M., Oliker, L., Vuduc, R.: Sparse matrix
vector multiplication on multicore and accelerator systems. In: Kurzak, J., Bader,
D.A., Dongarra, J. (eds.) Scientific Computing with Multicore Processors and
Accelerators. CRC Press, Boca Raton (2010)

Measuring the Sensitivity of Graph Metrics
to Missing Data

Anita Zakrzewska(B) and David A. Bader

Georgia Institute of Technology, Atlanta, GA, USA
azakrzewska3@gatech.edu

Abstract. The increasing energy consumption of high performance com-
puting has resulted in rising operational and environmental costs. There-
fore, reducing the energy consumption of computation is an emerging
area of interest. We study the approach of data sampling to reduce the
energy costs of sparse graph algorithms. The resulting error levels for sev-
eral graph metrics are measured to analyze the trade-off between energy
consumption reduction and error. The three types of graphs studied,
real graphs, synthetic random graphs, and synthetic small-world graphs,
each show distinct behavior. Across all graphs, the error cost is initially
relatively low. For example, four of the five real graphs studied needed
less than a third of total energy to retain a degree centrality rank corre-
lation coefficient of 0.85 when random vertices were removed. However,
the error incurred for further energy reduction grows at an increasing
rate, providing diminishing returns.

Keywords: Graphs · Graph algorithms · Sensitivity analysis · Missing
data · Energy consumption · Power

1 Introduction

Power consumption has become a critical issue in computing. This is a concern
both for supercomputers, where massive energy use poses a financial and an envi-
ronmental cost, and for embedded in-the-field processing systems, which have
a limited energy supply or battery lifetime. Achieving maximum computational
capabilities on embedded systems while limiting power use is an important task.

We address energy reduction for irregular, sparse graph algorithms through
data sampling or removal. Sparse networks often represent relationships, com-
munication, or information flow. For example, a graph may represent an online
social network, network traffic, biological networks, or financial transactions.
Often such graphs are constructed from a massive, and constant, stream of data,
which leads to large graphs and energy-expensive computations. However, in
cases where an approximate solution suffices, it is not always necessary to store
and use the entire graph. For example, when calculating distances, approximate
results for shortest paths may be acceptable for a given application. If the goal

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 783–792, 2014.
DOI: 10.1007/978-3-642-55224-3 73, c© Springer-Verlag Berlin Heidelberg 2014

784 A. Zakrzewska and D.A. Bader

is to find the most influential, or important, vertices, it is only necessary to
calculate top scores correctly since low-scoring vertices are of no interest. Since
approximations are often satisfactory for real-world graph metrics, a certain
degree of error in the underlying graph data, such as missing or incorrect edges
and vertices, may be tolerated. Real-time streams of data may also amass too
much information to be stored or lead to over-saturation, in which case certain
vertices and edges may need to be removed over time.

Vertex and edge removal can also be performed intentionally with the goal
of reducing energy consumption. Sampling results in a smaller graph, with fewer
memory accesses, fewer compute operations, and a shorter overall running time,
all of which contribute to less energy use. However, in order for this to be a
feasible approach, it is necessary to determine the resulting level of error. We
investigate the sensitivity of several graph metrics to missing vertices and edges,
which can be used to set tolerable error level thresholds.

Previous work has compared the sensitivity of scale free and random networks
to vertex removal [1]. Sampling and contraction methods have been used to
reduce the size of internet topology graphs [13]. Graph analytic sensitivity to
noisy data has been addressed by Borgatti et al. [5]. However, that work only
considers vertex centrality measures on Erdős-Rényi random graphs [9], whose
structure differs from that of real networks. Because the authors focus on errors
in the data due to noise instead of conscious data sampling for power reduction,
many of the errors analyzed, such as false positive edges, are not as applicable
to the goal of energy reduction. Kossinets [12] studies the effects of missing data
in social networks by analyzing a bipartite scientific collaboration network of
authors and papers as well as bipartite random graphs. Our work differs because
we focus on filtering methods for the purpose of decreasing the size of the graph
and therefore the energy needed to compute various analytics.

2 Energy Model

The energy consumption of an algorithm can be modeled in terms of the energy
per memory operation, energy per arithmetic operation, and constant energy
that must be expended until the computation terminates, as given in Eq. (1),
where W is the number of memory operations, εflop is the fixed energy cost of a
compute operation, Q is the number of arithmetic operations, εmem is the fixed
energy cost of a memory operation, T is the duration of the algorithm, and π0

is the fixed constant energy cost, which may be idle energy or leakage [7,11].

E = Wεflop +Qεmem + Tπ0 (1)

Because sparse graph algorithms tend to exhibit a low arithmetic intensity and
are memory bound,we focus on the number of memory operations and energy per
memory operation. Many real-world graphs have a low diameter and irregular
structure with little or no locality in the data access pattern. Sparse graph
algorithms tend to exhibit low data reuse and focus on traversing the graph

Measuring the Sensitivity of Graph Metrics to Missing Data 785

structure [15]. Therefore, focusing on memory cost is an appropriate proxy for
the energy consumption of sparse graph algorithms.

Dynamic power management is a technique used to reduce power consump-
tion in which system components are switched to a low-performance, or idle,
state when load demands are low [4]. Memory power reduction can be achieved
by dynamically adjusting memory voltage and frequency based on bandwidth
utilization [8]. We describe three possible situations in which energy considera-
tions can cause analytics to be run on incomplete graphs. From the algorithmic
perspective, all have the same result. A subset of the vertices and edges of a
graph are not used when calculating a graph analytic.

1. The system may choose not to access a subset of the graph in memory. This
reduces the number of memory accesses.

2. Portions of memory may be turned to a low power mode to conserve energy,
resulting in some data being unavailable. In-the-field embedded systems, for
example, may do this after having detected low energy supplies.

3. The system may have insufficient storage for the entire graph and so a subset
of the graph must be removed or never stored in the first place.

3 Methodology

Our approach to measuring sensitivity to missing data is as follows. We start
with a true, base graph G and compute the value of a metric, called the true
metric value. For each sampling level k, the graph is sampled in several ways
and a subset of the vertices and edges is removed, creating the sampled graph
Gk,sampled. The metric is recomputed on Gk,sampled, which gives the observed
metric value. We then compare the true metric value to the observed metric
value, resulting in a metric error. The energy required is calculated as the ratio
of energy needed for Gk,sampled to the energy needed for G. The relationship
between the average metric error and energy required for each sampling level can
then be examined. This process is repeated for all sampling methods described
in Sect. 3.2.

3.1 Datasets

Testing is performed on both real and synthetic networks, listed in Table 1.
The real graphs come from the 10th DIMACS Implementation Challenge [2] and
include citation networks, collaboration networks, a graph of users of the Pretty-
Good-Privacy algorithm for secure information interchange, and a graph of the
structure of the Internet from 2006. The synthetic graphs used were produced
by an RMAT generator [6]. These include both Erdős-Rényi random graphs
and small-world graphs that have many properties of real-world social networks,
such as a power law degree distribution and low diameter [3,10,14]. We used
parameters α = 0.25, β = 0.25, γ = 0.25, δ = 0.25 for the Erdős-Rényi random
graph and α = 0.55, β = 0.1, γ = 0.1, δ = 0.25 for the small-world graph.

786 A. Zakrzewska and D.A. Bader

Table 1. Graph instances used in testing

Name Vertices Edges

citationCiteseer 268,495 1,156,647
coAuthorsCiteseer 227,320 814,134
coAuthorsDBLP 299,067 977,676
as-22july06 22,963 48,436
PGPgiantcompo 10,680 24,316
SmallWorld EF 8 32,768 237,523
SmallWorld EF 16 32,768 456,626
SmallWorld EF 32 32,768 861,878
Random EF 8 32,768 262,085
Random EF 16 32,768 524,031
Random EF 32 32,768 1,047,549

3.2 Graph Sampling Methods

The four approaches used to sample data are listed below for a graph with n
vertices. For each one, we consider values of p = 0.01, 0.05, 0.1, 0.15, . . . , 0.8, 0.85.

– RandEdge: Edges in the graph are chosen to be removed with equal proba-
bility p so that the error is distributed evenly across the network.

– RandVertex: Each vertex in the graph is chosen to be removed with equal
probability p. When a vertex is removed, all of its incident edges are removed
as well.

– HighDegVertex: The highest degree vertices and incident edges are removed.
The top p ∗ n vertices are selected.

– LowDegVertex: The p∗n lowest degree vertices and their edges are removed.

3.3 Metrics Evaluated

We evaluate the graph connectivity, clustering coefficients, and degree centrality.
The degree centrality of a vertex measures the number of edges incident on it
and is the most basic centrality measure. We evaluate the sensitivity of degree
centrality by measuring how much the rank of vertices’ degree centrality changes
when data is removed. For a given sampling level, the degree centrality rank
is calculated for each vertex present in both the original and sampled graphs,
resulting in two vectors. The Spearman correlation coefficient of these two rank
vectors is then measured.

A connected component of a graph is a set of vertices linked by paths of
edges. As vertices and edges are removed, the connected components of a graph
may disconnect. While the number of components may increase, measuring the
error in the number of connected components offers little information about
how the structure of the graph has changed. A component splitting in half is a
very different scenario from a few vertices disconnecting. We define the error in

Measuring the Sensitivity of Graph Metrics to Missing Data 787

connectivity as the proportion of pairs of vertices that were in the same com-
ponent in the original graph and remain in the same component in the sampled
graph. Only vertices with nonzero degree in the sampled graph are considered.
Let c(G, u, v) be an indicator function whose value is one when vertices u and
v are in the same component in graph G and zero otherwise. The connectivity
retained is then given by Eq. (2). Using the Shiloach-Vishkin algorithm [16], the
estimated cost of computing connected components is mlog(n) where m is the
number of edges and n vertices.

ConnectivityRetained =

∑
v,u∈Gsampled

c(Gsampled, u, v)
∑

v,u∈Gsampled
c(G, u, v)

(2)

The clustering coefficient measures the density of triangles in a graph and is
one measure of the degree to which the graph is clustered. The local cluster-
ing coefficient of v is the ratio of closed triplets to open triplets of v and the
global clustering coefficient is the ratio of total triangles to total triplets in the
graph. High clustering coefficients suggest a small-world graph [17]. The global
clustering coefficient can be used to characterize the entire graph, while local
coefficients can reveal entities that engage in the most or least clustered activity.
We measure the absolute and relative error in global clustering coefficient. To
measure the sensitivity of local clustering coefficients, we calculate the Spear-
man correlation coefficient of the per-vertex rank in local clustering coefficient.
Each vertex compares its list of adjacent vertices with the adjacency list of each
of its neighbors, searching for intersections. Thus, the adjacency list of vertex v
is accessed dv + 1 times, once for itself, and once for each neighbor. Thus, the
energy cost is given by E = εmem ∗

∑
v d

2
v.

4 Results

The proportion of connectivity retained for each graph against energy required
is plotted in Fig. 1. For each dataset, the energy value on the x-axis is the ratio
of energy needed for Gsampled to the energy needed for G. For all sampling types,
the connected components of synthetic graphs are far more robust to missing
data than those of real ones, which can be explained by the regular structure of
RMAT graphs. Of the synthetic graphs, random graphs are the most robust with
almost no error, while small-world graphs behave more similarly to real data.
Removing low degree vertices causes the least amount of error across datasets.
Removing high degree vertices, random vertices, and random edges provides
diminishing returns as can be seen by the change in slope of the curves in Fig. 1.

The clustering coefficient of a graph also affects the sensitivity of its con-
nected components. Among datasets studied, networks with a high global clus-
tering coefficient require a higher proportion of energy to retain their connec-
tivity structure. Figure 2 plots the clustering coefficient against the proportion
of energy necessary to retain a connectivity of 0.85 and 0.95. For random edge,
random vertex, and high degree vertex removal, the connected components of
highly clustered graphs are least robust.

788 A. Zakrzewska and D.A. Bader

Fig. 1. The connectivity retained, or proportion of pairs of vertices that remain in the
same connected component after sampling

Fig. 2. Graph global clustering coefficient versus percentage of energy needed for 0.85
and 0.95 connectivity

Figure 3 plots the local clustering rank correlation coefficient against energy
required. Real graphs are least sensitive to low and high degree vertex removal
and most sensitive to random edge and vertex removal. In order to achieve a
correlation coefficient of at least 0.85, the real graphs, in order listed in Table 1,
need a 0.28, 0.47, 0.45, 1.0, and 0.13 proportion of energy with high degree
vertex removal and 0.47, 0.48, 0.48, 0.2, and 0.86 with low degree vertex removal.

Measuring the Sensitivity of Graph Metrics to Missing Data 789

Fig. 3. Clustering coefficient rank correlation

With random edge and vertex removal, the real graphs need from 0.81 to 0.9
and from 0.62 to 0.73 energy, respectively. These relatively narrow bands show
that random missing data may produce more consistent results, but at the cost
of more energy usage. Random graphs are least sensitive to missing low degree
vertices, requiring 0.61 to 0.7 energy for 0.85 correlation and most to missing
random edges, requiring 0.81 to 0.9. Unlike random or real graphs, synthetic
small-world graphs showed the most sensitivity when low degree vertices are
removed. Despite these differences between the three network categories, Fig. 3
shows similar behavior for all types. As with connectivity error, data removal
provides diminishing returns across the graphs studied. As the removal rate
increases and the energy use decreases, the rate at which the clustering rank
correlation coefficient falls increases. This suggests that significant energy savings
could be achieved at relatively low error levels. It is interesting to note that for
all graphs, this behavior is least prominent with random edge removal, where
the curves are closer to linear.

Figure 4 plots the degree centrality rank correlation coefficient against energy
used. A clear distinction can be seen between the sensitivity of real graphs, syn-
thetic small-world graphs, and synthetic random graphs. Synthetic small-world
graphs are most robust to all sampling methods, random graphs are the least
robust, and the behavior of real graphs is in between the two. The robustness of
small-world graphs compared to random ones can be explained by their skewed

790 A. Zakrzewska and D.A. Bader

Fig. 4. Degree rank correlation

Fig. 5. Graph density versus energy needed to retain degree rank correlation of 0.95
using random edge removal (left) and random vertex removal (right)

degree distribution. Since there is little variation in vertex degree centrality in
random graphs, this metric is very sensitive to missing data. Small-world graphs
exhibit a large variation in degree centrality and so more data must be removed
to change the metric. However, the results cannot be explained solely by a skewed
degree distribution. The top 1 % of vertices contain a greater proportion of net-
work edges in the real graphs than in the synthetic small-world graphs. Thus,
the real graphs may have the most skewed degree distribution, but their degree

Measuring the Sensitivity of Graph Metrics to Missing Data 791

centrality is not most robust. Although the real datasets come from a variety
of sources, their degree centrality values are affected similarly by missing data.
As with connected components and local clustering coefficients, the gradient of
the curves across datasets increases from right to left, suggesting that significant
energy savings can be initially achieved with relatively low error, but that the
error cost grows as more data is removed. Four of the five real graphs use less
than a third of total energy to retain a degree centrality rank correlation coeffi-
cient of 0.85 with random vertex removal and less than 0.55 energy with random
edge or high degree vertex removal.

The density of a graph, its ratio of edges to vertices, does affect its sensi-
tivity to random edge and vertex sampling. In Fig. 5, density is plotted against
the energy required to retain a degree centrality rank correlation coefficient of
0.95. Red stars denote synthetic small-world graphs and blue circles denote real
graphs. For both of these categories, as the graph density increases, the propor-
tion of energy needed decreases. This trend does not hold for random graphs,
which are represented in the scatter plots with black diamonds.

5 Conclusion

We have investigated an approach for reducing the energy consumption of sparse
graph algorithms with edge and vertex sampling. Such data removal will nat-
urally result in errors which may or may not be tolerable, depending on the
metric and application. We have examined the sensitivity of clustering coeffi-
cients, degree centrality, and connected components to various sampling strate-
gies and analyzed the trade-off between energy reduction and error. Synthetic
random graphs, synthetic small-world graphs, and real small-world graphs each
tended to react distinctly. The structure of the graph is important in predict-
ing the sensitivity to missing data and in choosing the best sampling technique
and conclusions drawn from synthetic graphs may not be applicable to real data.
Although the real networks came from a variety of sources, they tended to exhibit
similar behavior that was distinct from that of either type of synthetic graph.
Structural features such as the degree of clustering and density also have an
effect on a network’s robustness. It is interesting to note that in most cases, a
similar pattern exists in the trade-off between energy savings and metric error.
The gradient of the curve increases as energy use decreases, showing that the
error cost of power saving is initially low, but grows at an increasing rate. This
pattern suggests that significant energy savings might be achieved with relatively
low error levels.

Acknowledgement. The work depicted in this paper was partially sponsored by
Defense Advanced Research Projects Agency (DARPA) under agreement #HR0011-
13-2-0001. The content, views and conclusions presented in this document do not nec-
essarily reflect the position or the policy of DARPA or the U.S. Government, no offi-
cial endorsement should be inferred. Distribution Statement A: “Approved for public
release; distribution is unlimited.”

792 A. Zakrzewska and D.A. Bader

References

1. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex net-
works. Nature 406(6794), 378–382 (2000)

2. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D.: Graph partitioning and
graph clustering. In: Proceedings of the 10th DIMACS Implementation Challenge
Workshop. AMS (2013)

3. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

4. Benini, L., Bogliolo, A., De Micheli, G.: A survey of design techniques for system-
level dynamic power management. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 8(3), 299–316 (2000)

5. Borgatti, S.P., Carley, K.M., Krackhardt, D.: On the robustness of centrality mea-
sures under conditions of imperfect data. Soc. Netw. 28(2), 124–136 (2006)

6. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph
mining. In: SIAM International Conference on Data Mining (2004)

7. Choi, J., Bedard, D., Fowler, R., Vuduc, R.: A roofline model of energy. In: Pro-
ceedings of the IEEE International Parallel and Distributed Processing Symposium
(IPDPS) (2013)

8. David, H., Fallin, C., Gorbatov, E., Hanebutte, U.R., Mutlu, O.: Memory power
management via dynamic voltage/frequency scaling. In: Proceedings of the 8th
ACM International Conference on Autonomic Computing, pp. 31–40. ACM (2011)

9. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar.
Acad. Sci. 5, 17–61 (1960)

10. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the inter-
net topology. In: Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, SIGCOMM ’99, pp.
251–262. ACM (1999)

11. Korthikanti, V.A., Agha, G.: Towards optimizing energy costs of algorithms for
shared memory architectures. In: Proceedings of the 22nd ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’10, pp. 157–165. ACM (2010)

12. Kossinets, G.: Effects of missing data in social networks. Soc. Netw. 28(3), 247–268
(2006)

13. Krishnamurthy, V., Faloutsos, M., Chrobak, M., Lao, L., Cui, J.-H., Percus,
A.G.: Reducing large internet topologies for faster simulations. In: Boutaba, R.,
Almeroth, K.C., Puigjaner, R., Shen, S., Black, J.P. (eds.) NETWORKING 2005.
LNCS, vol. 3462, pp. 328–341. Springer, Heidelberg (2005)

14. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining,
pp. 177–187. ACM (2005)

15. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.: Challenges in parallel graph
processing. Parallel Process. Lett. 17(1), 5–20 (2007)

16. Shiloach, Y., Vishkin, U.: An o(logn) parallel connectivity algorithm. J. Algorithms
3, 57–67 (1982)

17. Watts, D., Strogatz, S.: Collective dynamics of small world networks. Nature 393,
440–442 (1998)

The Energy/Frequency Convexity Rule:
Modeling and Experimental Validation

on Mobile Devices

Karel De Vogeleer1(B), Gerard Memmi1, Pierre Jouvelot2, and Fabien Coelho2

1 TELECOM ParisTech – INFRES – CNRS LTCI - UMR, 5141 Paris, France
2 MINES ParisTech – CRI, Fontainebleau, France

{karel.devogeleer,gerard.memmi}@telecom-paristech.fr,
{pierre.jouvelot,fabien.coelho}@mines-paristech.fr

Abstract. This paper provides both theoretical and experimental evi-
dence for the existence of an Energy/Frequency Convexity Rule, which
relates energy consumption and CPU frequency on mobile devices. We
monitored a typical smartphone running a specific computing-intensive
kernel of multiple nested loops written in C using a high-resolution power
gauge. Data gathered during a week-long acquisition campaign suggest
that energy consumed per input element is strongly correlated with CPU
frequency, and, more interestingly, the curve exhibits a clear minimum
over a 0.2 GHz to 1.6 GHz window. We provide and motivate an ana-
lytical model for this behavior, which fits well with the data. Our work
should be of clear interest to researchers focusing on energy usage and
minimization for mobile devices, and provide new insights for optimiza-
tion opportunities.

Keywords: Energy consumption and modeling · DVFS · Power
consumption · Execution time modeling · Smartphone · Bit-reverse algo-
rithm

1 Introduction

The service uptime of battery-powered devices, e.g., smartphones, is a sensitive
issue for nearly any user [9]. Even though battery capacity and performance are
hoped to increase steadily over time, improving the energy efficiency of current
battery-powered systems is essential because users expect right now communica-
tion devices to provide data access every time, everywhere to everyone. Under-
standing the energy consumption of the different features of (battery-powered)
computer systems is thus a key issue. Providing models for energy consumption
can pave the way to energy optimization, by design and at run time.

The power consumption of Central Processing Units (CPUs) and external
memory systems is application and user behavior dependent [2]. Moreover, for
cache-intensive and CPU-bound applications, or for specific Dynamic Voltage

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part I, LNCS 8384, pp. 793–803, 2014.
DOI: 10.1007/978-3-642-55224-3 74, c© Springer-Verlag Berlin Heidelberg 2014

794 K. De Vogeleer et al.

and Frequency Scaling (DVFS) settings, the CPU energy consumption may dom-
inate the external memory consumption [15]. For example, Aaron and Carroll [2]
showed that, for an embedded system running equake, vpr, and gzip from the
SPEC CPU2000 benchmark suite, the CPU energy consumption exceeds the RAM

memory consumption, whereas crafty and mcf from the same suite showed to
be straining more energy from the device RAM memory.

Providing an accurate model of energy consumption for embedded and, more
generally, energy-limited devices such as mobile phones is of key import to both
users and system designers. To reach that goal, our paper provides both theo-
retical and first experimental evidence for the existence of an Energy/Frequency
Convexity Rule, that relates energy consumption and CPU frequency on mobile
devices. This convexity property seems to ensure the existence of an optimal
frequency where energy usage is minimal.

This existence claim is based on both theoretical and practical evidence. More
specifically, we monitored a Samsung Galaxy SII smartphone running Gold-
Rader’s Bit Reverse algorithm [7], a small kernel based on multiple nested loops
written in C, with a high-resolution power gauge from Monsoon Solutions Inc.
Data gathered during a week-long acquisition campaign suggest that energy
consumed per input element is strongly correlated with CPU frequency and,
more interestingly, that the corresponding curve exhibits a clear minimum over a
0.2 GHz to 1.6 GHz window. We also provide and motivate an analytical model of
this behavior, which fits well with the data. Our work should be of clear interest
to researchers focusing on energy usage and minimization on mobile devices, and
provide new insights for optimization opportunities.

The paper is organized as follows. Section 2 introduces the notions of energy
and power, and how these can be decomposed in different components on elec-
tronic devices. Section 3 describes the power measurement protocol and method-
ology driving our experiments, and the C benchmark we used. Section 4 intro-
duces our CPU energy consumption model, and shows that it fits well with
the data. Section 5 outlines the Energy/Frequency Rule derived from our exper-
iment and modeling. Related work is surveyed in Sect. 6. We conclude and discuss
future work in Sect. 7.

2 Power Usage in Computer Systems

The total power Ptotal consumed by a computer system, including a CPU, may
be separated into two components: Ptotal = Psystem + PCPU, where PCPU is
consumed by the CPU itself and Psystem by the rest of system. In a battery-
powered hand-held computer device Psystem may include the power needed to
light the LCD display, to enable and maintain I/O devices (including memory),
to keep sensors online (GPS, gyro-sensors etc.), and others.

The power consumption PCPU of the CPU we focus on here can be divided
into two parts: PCPU = Pdynamic+Pleak, where Pdynamic is the power consumed by
the CPU during the switching activities of transistors during computation. Pleak

is power originating from leakage effects inherent to silicon-based transistors, and

The Energy/Frequency Convexity Rule 795

is in essence not useful for the CPU’s purposes. Pdynamic may be split into the
power Pshort lost when transistors briefly short-circuit during gate state changes
and Pcharge, needed to charge the gates’ capacitors: Pdynamic = Pshort+Pcharge. In
the literature Pcharge is usually [17] defined as αCfV 2, where α is a proportional
constant indicating the percentage of the system that is active or switching, C
the capacitance of the system, f the frequency at which the system is switching
and V the voltage swing across C.

Pshort originates during the toggling of a logic gate. During this switching,
the transistors inside the gate may conduct simultaneously for a very short
time, creating a direct path between VCC and the ground. Even though this
peak current happens over a very small time interval, given current high clock
frequencies and large amount of logic gates, the short-circuit current may be
non-negligible. Quantifying Pshort is gate specific but it may be approximated
by deeming it proportional to Pcharge. Thus the power Pdynamic stemming from
the switching activities and the short-circuit currents in a CPU is thus Pcharge +
(η−1)Pcharge, i.e., η ·αCLfV

2, where η is a scaling factor representing the effects
of short-circuit power.

Pleak originates from leakage currents that flow between differently doped
parts of a metal-oxide semiconductor field-effect transistor (MOSFET), the basic
building block of CPUs. The energy in these currents are lost and do not con-
tribute to the information that is held by the transistor. Some leakage cur-
rents are induced during the on or off -state of the transistor, or both. Six
distinct sources of leakage are identified [12]. Despite the presence of multiple
sources of leakage in MOSFET transistors, the sub-threshold leakage current,
gate leakage, and band-to-band tunneling (BTBT) dominate the others for sub-
100 nm technologies [1]. Leakage current models, e.g., as incorporated in the
BSIM [12] micro models, are accurate yet complex since they depend on mul-
tiple variables. Moreover, Pleak fluctuates constantly as it also depends on the
temperature of the system. Consequently Pleak cannot be considered a static
part of the system’s power consumption. Given the different sources of power
consumption in a MOSFET based CPU, the portal power can be rewritten as
Ptotal = Psystem + Pleak + Pdynamic.

The relationship between the power P (t) (Watts or Joules/s) and the energy
E(Δt) (Joules) consumed by an electrical system over a time period Δt is
given by

E(Δt) =
∫ Δt

0

P (t) dt =
∫ Δt

0

I(t) · V (t) dt , (1)

where I(t) is the current supplied to the system, and V (t) the voltage drop over
the system. Often V (t) is constant over time, hence dP (t)/dt only depends on
I(t). If both current and voltage are constant over time, the energy integral
becomes the product of voltage, current and time, or alternatively power and
time.

796 K. De Vogeleer et al.

3 Power Measurement Protocol on Mobile Devices

A Samsung Galaxy S2 is used in our testbed sporting the Samsung Exynos 4
Systems-on-Chip (SoC) 45 nm dual-core. The Galaxy S2 has a 32 KB L1 data
and instruction cache, and a 1 MB L2 cache. The mobile device runs Android
4.0.3 on the Siyah kernel adopting Linux 3.0.31. The frequency scaling governor
in Linux was set to operate in userspace mode to prevent frequency and voltage
scaling on-the-fly. The second CPU core was disabled during measurements. The
smartphone is booted in clockwork recovery mode to minimize noisy side-effects
of the Operating System (OS) and other frameworks.

During the experiments, the phone’s battery was replaced by a power supply
(Monsoon Power Monitor) that measures the power consumption at 5 kHz with
an accuracy of 1 mW. The power of the system and the temperature of the CPU
were simultaneously logged. The kernel was patched to print a temperature
sample to the kernel debug output at a rate of 2 Hz.

The bit-reverse algorithm is used as benchmark kernel. This is an important
operation since it is part of the ubiquitous Fast Fourier Transformation (FFT)
algorithm, and rearranges deterministically elements in an array. The bit-reversal
kernel is CPU intensive, induces cache effects, and is economically pertinent.
The Gold-Rader implementation of the bit-reverse algorithm, often considered
the reference implementation [7], is given below:

void bitreverse_gold_rader (int N, complex *data) {

int n = N, nm1 = n-1; int i = 0, j = 0;

for (; i < nm1; i++) {

int k = n >> 1;

if (i < j) {

complex temp = data[i]; data[i] = data[j]; data[j] = temp;

}

while (k <= j) {j -= k; k >>= 1;}

j += k;

}

}

The input of the bit-reversal algorithm is an array with a size of 2N ; the
elements are pairs of 32 bit integers, representing complex numbers. Note that
array sizes up to 29 fit in the L1 cache, while sizes over 218 are too big to fit in
the L2 cache.

During the measurements, N is set between 6 and 20 in steps of 2, while
varying the CPU frequency from 0.2 GHz to 1.6 GHz in steps of 0.1.

To minimize overhead, 128 copies of the kernel are run sequentially. For time
measurement purposes, this benchmark is repeated 32 times for at least 3 s each
time (this may require multiple runs of the 128 copies). For the power and
temperature measurements, the benchmark is repeated in an infinite loop until
32 samples can be gathered. The benchmark is compiled with GCC 4.6, included
in Google’s NDK, generating ARMv5 thumb code.

Data was fitted using R and the nls() function employing the port algorithm.

The Energy/Frequency Convexity Rule 797

4 Modeling Energy Consumption

Energy is the product of time by power. We look at each of these factors in turn
here.

4.1 Execution Time

Since applications run over an OS, we need to take account for it when estimat-
ing computing time. Indeed, an OS needs a specific amount of time, or clock
cycles, to perform (periodical) tasks, e.g., interrupt handling, process schedul-
ing, processing kernel events, managing memory etc. When the processor is not
spending time in kernel mode, the processor is available for user-space programs,
e.g., our benchmark. From a heuristic point of view, it can be assumed that the
OS kernel needs a fixed amount of clock cycles cck per time unit to complete
its tasks. Thus, we propose to model the amount of clock cycles to complete a
benchmark sequence of instructions ccb as t(fβ−cck), where cck are the number
of clock cycles spent in the OS, t the total time needed to complete the pro-
gram, f the system’s clock frequency and β an architecture-dependent scaling
constant, to be fitted later on with the data. The definition of ccb is rewritten
to isolate the execution time:

t =
ccb

fβ − cck . (2)

Note that t tends to zero for f →∞ and there is a vertical asymptote at β
√
cck.

Table 1 shows the fitting errors of Eq. 2 on the execution time measurement
data, averaged over all tested input sizes. The fitting exhibits a vertical asymp-
tote around 115 MHz. This may indicate the minimum amount of clock cycles
required by the OS of the phone to operate. The measurement data for input
sizes 26 up to 216 are well described by Eq. 2. However, sizes 218 and 220, too
large to fit within cache L2, seem to operate under different laws. Therefore,
from now on, the attention is focused on data that fit in the cache of the CPU.

4.2 Power Consumption

If dynamic power modeling is rather easy (see Sect. 2), the case for leakage is
more involved, and warrant a longer presentation. In particular, leakage power is

Table 1. Average absolute execution time (t), power (P), and energy (E) fitting errors
(%) of Eq. 2, 4 and 5 respectively, on the measured data given different CPU frequencies
(f) at a 37 ◦C core temperature.

f (GHz) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

error t 1.18 2.71 1.55 0.55 0.56 4.21 0.62 1.63 4.71 3.68 1.86 0.44 5.87 0.75 2.61
error P 2.94 1.00 0.20 0.99 1.31 1.46 1.24 0.49 0.02 0.70 0.86 0.82 0.03 7.40 0.58
error E 18.39 0.83 0.92 2.93 3.31 1.34 2.73 2.37 4.69 4.68 3.01 1.46 5.83 8.02 3.27

798 K. De Vogeleer et al.

heavily temperature-dependent [12]. For example, our CPU at 1.3 GHz shows an
inflated power consumption of around 5 % between a CPU temperature of 36 ◦C
and 46 ◦C. You et al. [18] shows similar results for a 0.1 µm processor; a temper-
ature increase from 30 ◦C to 40 ◦C leads to a 3 % power increase. On the other
hand, the power Pcharge required for a given computation does not change with
regards to the CPU temperature. The Berkeley Short-channel IGFET Model
(BSIM) [12] shows that the leakage current micro models depend on a multitude
of variables. The temperature itself appears several times in the sub-threshold
and BTBT leakage models; the gate leakage however is not temperature depen-
dent. Mukhopadhyay et al. [13] showed via simulation that for 25 nm technology
the sub-threshold leakage current is dominant over the BTBT leakage current,
but the latter cannot be neglected. Under normal conditions, the temperature of
the CPU’s silicon varies continuously depending on the load of the CPU and the
system’s ambient temperature. Therefore, to have a fair comparison of energy
consumption between different code pieces one needs to compare the measure-
ments at a reference temperature.

Finding a temperature scaling factor for the leakage current is however not a
straightforward task. Nevertheless, approximative scaling factors have been ana-
lytically obtained or experimentally defined via simulations (mainly SPICE) [5,
11,16]. After analysis on our data, we discovered that none of the cited approxi-
mations would fit well. This is because the rationale on which these approxima-
tions are based assume conditions, which are not entirely realistic, to simplify
the leakage current micro models. Most previous research works focus solely on
the sub-threshold leakage effect, neglecting other leakage effects. This may be
appropriate for technologies larger than the 45 nm technology we use.

Skadron et al. [14] studied the temperature dependence of Ileak as well.
Skadron et al. deducted a relationship between the leakage power Pleak and
dynamic power Pdynamic based on International Technology Roadmap for semi-
conductors (ITRS) measurement traces (variables indexed with 0 are reference
values):

RT =
Pleak

Pdynamic
=

R0

V0T 2
0

e
B
T0 V T 2e

−B
T . (3)

If the temperature T is stable across different operating voltages, then the value
of RT is a function of V multiplied by a constant γ, which includes the temper-
ature dependent variables and other constants. Total power Ptotal is thus:

Ptotal = Psystem + Pleak + Pdynamic

= Psystem + γV Pdynamic + Pdynamic

= Psystem + (1 + γV) · ηαCfV 2. (4)

This formulation of Ptotal incorporates three parameters: Psystem, γ, and ηαC.
The values of these variables can be obtained via fitting power traces on Eq. 4.
V and f are linked via the DVFS process inherent to the Linux kernel and the
hardware technicalities. Experimental values for our CPU are found inside the
Siyah kernel; they are shown in Table 2. The power fitting errors are shown in

The Energy/Frequency Convexity Rule 799

Table 2. Frequency and voltage relationship for the Dynamic Voltage and Frequency
Scaling (DVFS) process in the default Siyah kernel.

f (MHz) 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

V (mV) 920 950 950 950 975 1000 1025 1075 1125 1175 1225 1250 1275 1325 1350

Table 1 for a 37 ◦C CPU temperature. The fitting errors are on the average not
larger than 3 % except for the measurement point at 1.5 GHz. This measurement
point was obtained at different independent occasions but appears, for obscure
reasons, to disobey persistently the model in Eq. 4.

4.3 Energy Consumption

Typical compute-intensive programs incur approximately a constant load on the
CPU and system, barring user interactions. Moreover, if the time to complete
one program is also much smaller than the sampling rate of the power gauge,
then P (t) in Eq. 1 is constant. Hence, it suffices to sample the power Pbench

of a benchmark at a given CPU temperature and multiply this value by the
execution time of the benchmark tbench to get an energy estimate. As a result
the definition of time in Eq. 2, and power in Eq. 4, can be used to model the
energy of one benchmark kernel. The energy consumed by the CPU ECPU is
given by

ECPU = Eleak + Edynamic

= Pbench · tbench

=
(
(1 + γV) · ηαCfV 2

) · ccb
fβ − cck . (5)

Constants γ, ηαC, ccb, and cck in this formulation were evaluated before via
fitting the power and time traces.

5 The Energy/Frequency Convexity Rule

Using the testbed and models described above, Fig. 1 shows the measured and
modeled energy ECPU for our benchmark kernel over the different frequencies;
data have been normalized over the benchmark input size. Table 1 shows the
average absolute energy error between our fitted model and the measured data.
The average fitting error stays below 6 % except for measurement points 1.5 GHz
and 200 MHz. The large fitting error in the 200 MHz case stems from the large
execution time that amplifies the power measurement fitting error (see Table 1).
It can also be seen that, for larger benchmark input sizes, on the average more
energy is required. This is the result of higher level cache utilization.

Figure 1 exhibits a clear convex curve, with a minimum at Frequency fopt,
suggesting the existence of an Energy/Frequency Convexity Rule for compute-
intensive programs. Why is the energy consumption curve convex? The energy

800 K. De Vogeleer et al.

frequency (GHz)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

en
er

g
y

p
er

a
rr

ay
el

em
en

t
(n

J
)

3
0

4
0

5
0

6
0

7
0

Input size (2N)

N= 6

N= 8

N= 10

N= 12

N= 14

N= 16

measured

model

Fig. 1. Energy required by the CPU at 37 ◦C to complete our benchmark kernel given
an input size. The dashed lines denote the theoretical curve as per Eq. 5.

consumption of the benchmark kernel scales approximately linearly with the
number of instructions. The time Δt it takes to execute an instruction sequence
increases more than linearly with decreasing operating frequency. Pleak is inde-
pendent of the type of computation, and Eleak builds up linearly with time:
Eleak = PleakΔt. Pleak becomes increasingly important in the part where the
CPU frequency f is smaller than fopt. For the part where f > fopt, the inflated
ECPU can be attributed to the increasing supply voltage VCC affecting Pdynamic

quadratically. Furthermore, had Psystem been incorporated in the picture, then
fopt would have moved to a higher frequency because the additional consumed
energy of the system could have been minimized by a faster completion of the
computations on the CPU.

Our proposal for the existence of an Energy/Frequency Convexity Rule can
be further supported using our previous models. Indeed, we can model the rela-
tionship in Table 2 between the frequency (GHz) and voltage (V) in the Linux
kernel with a linear approximation: V = m1f +m2. Now the derivative of ECPU

defined in Eq. 5 over f or V can be computed. The energy curve shows a global
minimum ECPU,min for fopt when its derivative is equal to zero (∂ECPU/∂f = 0)
and its second derivative is positive.

Given that ECPU only shows one minimum, fopt is the global minimum if
the following equality holds:

(1 + γV)V fββ

fβ − cck = fm1(3γV + 2) + (1 + γV)V. (6)

Four parameters appear in this formulation that affect the optimal frequency
fopt: β and cck, which are related to the execution time of the benchmark, m1

The Energy/Frequency Convexity Rule 801

the slope between V and f , and γ related to the leakage current ratio. Simulations
show that, if β or cck decreases, ECPU,min will shift to a higher frequency, and,
if m1 or γ decreases, fopt will decrease as well. γ is temperature dependent; if
the temperature increases, γ will increase accordingly. Hence, ECPU,min and fopt

increase with temperature as well. For the presented measurements Eq. 5 shows
a minimum on the average around 700 MHz. This holds for all input sizes of the
benchmark between 26 and 216. As a result, this implies that there exists an
operating frequency, which is neither the maximum nor the minimum operating
frequency, at which the CPU would execute a code sequence on the top of the
OS in the most energy efficient way.

6 Related Work

The convex property of the energy consumption curve has been hinted at before
in the literature. A series of papers, approaching the problem from an architec-
tural point of view, have shown a convex energy consumption curve with respect
to DVFS [4,10,15]. The authors put forward some motivation, but do not pro-
vide an analytical framework. Other studies, e.g., Hager et al. [8] and Freeh et
al. [6], discuss what the consequences are of said behavior and how to exploit
them, from a high-level point of view. A detailed explanation or an analytical
derivation, as presented here, is however not highlighted.

7 Conclusion

We provide an analytical model to describe the energy consumption of a code
sequence running on top of the OS of a mobile device. The energy model is para-
meterized over five parameters abstracting the specifics of the Dynamic Voltage
and Frequency Scaling (DVFS) process, the execution time related parameters,
and the power specifications of the CPU. Measurement traces from a mobile
device were used to validate the appropriately fitted model. It is shown that
the model is on the average more than 6 % accurate. The importance of power
samples obtained at a reference temperature is also pointed out.

It is also shown that the analytical energy model is convex (representing what
we call the Energy/Frequency Convexity Rule) and yields a minimum energy
consumption of a code sequence for a given CPU operation frequency. This
minimum is a function of the temperature, execution time related parameters,
and technical parameters related to the hardware. A more in depth analysis of
the Energy/Frequency Convexity Rule can be found in our technical report [3].

Future work includes checking the validity of our model and its parame-
ters over a wide range of compute-intensive benchmarks. Also, extending the
presented model to better handle memory access operations, in particular the
impact of caches, is deserved. Finally a generalization of the model to encom-
pass the impact of other programs running in parallel with benchmarks or system
power effects would be useful.

802 K. De Vogeleer et al.

References

1. Agarwal, A., Mukhopadhyay, S., Kim, C., Raychowdhury, A., Roy, K.: Leakage
power analysis and reduction: models, estimation and tools. IEEE Proc. Comput.
Digital Tech. 152(3), 353–368 (2005)

2. Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In:
Proceedings of the USENIX Conference on USENIX, Berkeley (2010)

3. De Vogeleer, K., Memmi, G., Jouvelot, P., Coelho, F.: Energy consumption mod-
eling and experimental validation on mobile devices. Technical Report 2013D008,
TELECOM ParisTech, December 2013

4. Fan, X., Ellis, C.S., Lebeck, A.R.: The synergy between power-aware memory sys-
tems and processor voltage scaling. In: Falsafi, B., VijayKumar, T.N. (eds.) PACS
2003. LNCS, vol. 3164, pp. 164–179. Springer, Heidelberg (2005)

5. Ferre, A., Figueras, J.: Characterization of leakage power in cmos technologies. In:
1998 IEEE International Conference on Electronics, Circuits and Systems, vol. 2,
pp. 185–188 (1998)

6. Freeh, V.W., Lowenthal, D.K., Pan, F., Kappiah, N., Springer, R., Rountree, B.L.,
Femal, M.E.: Analyzing the energy-time trade-off in high-performance computing
applications. IEEE Trans. Parallel Distrib. Syst. 18(6), 835–848 (2007)

7. Gold, B., Rader, C.M.: Digital Processing of Signals. McGraw-Hill, New York
(1969)

8. Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploring performance and
power properties of modern multicore chips via simple machine models. CoRR
abs/1208.2908 (2012)

9. Ickin, S., Wac, K., Fiedler, M., Janowski, L., Hong, J.H., Dey, A.: Factors influenc-
ing quality of experience of commonly used mobile applications. IEEE Commun.
Mag. 50(4), 48–56 (2012)

10. Le Sueur, E., Heiser, G.: Dynamic voltage and frequency scaling: the laws of dimin-
ishing returns. In: Proceedings of the 2010 International Conference on Power
Aware Computing and Systems, HotPower’10, Berkeley, pp. 1–8 (2010)

11. Liao, W., He, L., Lepak, K.M.: Temperature and supply voltage aware performance
and power modeling at microarchitecture level. Trans. Comp. Aided Des. Integ. Cir.
Sys. 24(7), 1042–1053 (2006)

12. Liu, W., Jin, X., Kao, K., Hu, C.: BSIM 4.1.0 MOSFET model-user’s manual.
Technical Report UCB/ERL M00/48, EECS Department, University of California,
Berkeley (2000)

13. Mukhopadhyay, S., Raychowdhury, A., Roy, K.: Accurate estimation of total leak-
age current in scaled cmos logic circuits based on compact current modeling. In:
Proceedings of the Design Automation Conference 2003, pp. 169–174, June 2003

14. Skadron, K., Stan, M.R., Sankaranarayanan, K., Huang, W., Velusamy, S., Tarjan,
D.: Temperature-aware microarchitecture: modeling and implementation. ACM
Trans. Archit. Code Optim. 1(1), 94–125 (2004)

15. Snowdon, D.C., Ruocco, S., Heiser, G.: Power management and dynamic voltage
scaling: Myths and facts. In: 2005 WS Power Aware Real-time Comput. New Jer-
sey, September 2005

16. Su, H., Liu, F., Devgan, A., Acar, E., Nassif, S.: Full chip leakage estimation
considering power supply and temperature variations. In: Proceedings of the 2003
International Symposium on Low power Electronics and Design, ISLPED ’03, pp.
78–83. ACM, New York (2003)

The Energy/Frequency Convexity Rule 803

17. Weste, N.H.E., Eshraghian, K.: Principles of CMOS VLSI Design: A Systems Per-
spective. Addison-Wesley Longman Publishing Co. Inc., Boston (1985)

18. You, Y.-P., Lee, Ch., Lee, J.-K.: Compiler analysis and supports for leakage power
reduction on microprocessors. In: Pugh, B., Tseng, C.-W. (eds.) LCPC 2002.
LNCS, vol. 2481, pp. 45–60. Springer, Heidelberg (2005)

Author Index

AbouEisha, Hassan II-531
Affronte, Marco II-428
Albach, Carl H. II-237
Aliaga, José I. I-490, I-772
Alperovich, Alexander I-36
Andonov, Rumen II-278
Angel, Sebastian G. II-237
Antão, Diogo I-747
Antkowiak, Michał II-418, II-438
Anzt, Hartwig I-772
Araujo, Filipe I-96
Arbenz, Peter II-291
Artés, Tomàs II-151
Ashby, Thomas J. II-227
Atkinson, David I-469
Audenaert, Pieter II-268
Augonnet, Cédric I-593

Baboulin, Marc I-124
Bader, David A. I-783
Bała, Piotr I-237
Balis, Bartosz I-293
Barasiński, Artur II-448
Battoo, Gagan II-130
Beck, Philip-Daniel II-582
Bečka, Martin I-57
Běhálek, Marek II-95
Bellini, Valerio II-428
Benitez, Domingo II-163
Berljafa, Mario II-395
Bethune, Iain I-106
Bezbradica, Marija II-699
Blaheta, Radim I-114
Blecic, Ivan II-761
Blocho, Miroslaw I-191
Böhm, Stanislav II-95
Bolikowski, Łukasz II-510
Boltuc, Agnieszka II-322
Borcz, Marcelina I-237
Borkowski, Janusz I-302
Borysiewicz, Mieczyslaw II-407
Bouvry, Pascal I-361
Bo _zejko, Wojciech II-207
Breitbart, Jens II-75

Brzostowski, Bartosz II-428, II-448
Bubak, Marian I-251, I-272, I-293
Bugajev, Andrej II-301
Bukáček, Marek II-669
Burak, Dariusz II-364
Bylina, Beata I-663
Bylina, Jarosław I-663

Cao, Zhen I-523
Carpentieri, Bruno II-520
Carson, Erin I-15
Castillo, Maribel I-772
C�atalyürek, Ümit V. I-559, II-174
Cecchini, Arnaldo II-761
Cencerrado, Andrés II-151
Chapuis, Guillaume II-278
Chaves, Ricardo I-693
Chiarini, Alessandro I-447
Čiegis, Raimondas II-301, II-322
Ciznicki, Milosz I-155
Codreanu, Valeriu I-447
Coelho, Fabien I-793
Colaço, João I-693
Corbin, Tyler I-327
Cortés, Ana II-151
Costanza, Pascal II-227
Crane, Martin II-699
Cygert, Sebastian I-500
Czarnul, Paweł I-261
Czech, Zbigniew J. I-191
Czoków, Maja I-412
Czy _zewski, Andrzej I-237

Dallmann, Alexander II-582
Davidović, Davor I-490
De Meuter, Wolfgang II-227
De Vogeleer, Karel I-793
De Witte, Dieter II-268
Deelman, Ewa I-251
Demeester, Piet II-268
Demmel, James I-15
Dhoedt, Bart II-268
Di Napoli, Edoardo II-395
Dietrich, Felix II-659
Dimitrakopoulou, Katerina A. I-214

Djidjev, Hristo II-278
Dong, Feng I-447
Dongarra, Jack I-571
Dorronsoro, Bernabé I-361
Druinsky, Alex I-36
Dryja, Maksymilian II-461
Duda, Jerzy II-591
Dukhan, Marat I-86
Dutka, Łukasz I-237, I-724
Dymova, Ludmila II-634
Dytrych, Tomáš I-178
Dzwinel, Witold II-731

Eberl, Hermann J. I-134, II-311
Emeras, Joseph II-26
Engblom, Stefan I-480
Escobar, José M. II-163
Esposito, Filippo II-438

Fernández, Juan C. I-772
Figiela, Kamil I-251
Flasiński, Mariusz I-338
Florek, Wojciech II-438
Fohry, Claudia II-75
Fostier, Jan II-268
Franz, Wayne II-140
Fras, Mariusz I-283
Fujii, Akihiro I-622
Fukudome, Daiki I-67
Funika, Wlodzimierz I-371

Gabryel, Marcin I-423, I-433
Gates, Mark I-571
Gatteschi, Dante II-418, II-438
Gepner, Pawel I-155, I-582
Gepner, Stanislaw II-541
Goesele, Michael I-652
Goetz, Michael I-106
Gokieli, Maria II-510
Goll, Christian II-258
Götze, Jürgen I-534
Goudin, David I-593
Grabiec, Tomasz I-293
Gratton, Serge I-124
Grekioti, Anastasia II-3
Grotendorst, Johannes I-26
Grycuk, Rafał I-433
Gudenberg, Jürgen Wolff von II-582
Gurgul, Piotr II-531
Gustavson, Fred G. I-1, I-683, II-105
Gutheil, Inge I-26

Haglauer, Monika II-438
Haidar, Azzam I-571
Hargreaves, Felix Palludan II-118
Hasegawa, Hidehiko I-622, I-643
Hava, Michael I-317
Heintz, Alexei II-499
Herrero, José R. I-683
Herzeel, Charlotte II-227
Hetmaniok, Edyta I-402
Hill, Christopher M. II-237
Hishinuma, Toshiaki I-622
Hladík, Milan II-573, II-613
Horáček, Jaroslav II-573, II-613
Hori, Atsushi I-714
Hrabák, Pavel II-669
Hunold, Sascha II-13
Hupp, Daniel II-291

Ilic, Aleksandar I-693, I-747
Imamura, Toshiyuki I-673
Ishikawa, Yutaka I-714
Ishiwata, Emiko I-643

Jakl, Ondřej I-114
Jankowska, Malgorzata A. II-644
Jia, Yulu I-571
Jouvelot, Pierre I-793
Jurek, Janusz I-338

Kabir, Khairul I-571
Kågström, Bo I-76
Kancleris, Žilvinas II-301
Karbowski, Andrzej II-86
Karlsson, Lars I-76
Karpiński, Michał II-207
Karwacki, Marek I-663
Katou, Ken’ichi I-196
Kaya, Kamer I-559, II-174
Khan, Samee U. I-361
Kikkawa, Satoko I-643
Kikoła, Daniel I-500
Kino, Issei II-196
Kitowski, Jacek I-237, I-724, II-741
Kjelgaard Mikkelsen, Carl Christian I-76
Klawe, Filip Z. II-489
Kłos, Jarosław S. II-377
Kluszczyński, Rafał I-237
Knight, Nicholas I-15
Kopański, Damian I-302
Koperek, Pawel I-371
Kopka, Piotr II-407

806 Author Index

Kopta, Piotr I-155
Korytkowski, Marcin I-423, I-433
Köster, Gerta II-659
Kotus, Józef I-237
Kowalczyk, Piotr II-499
Kowalik, Grzegorz Tomasz I-469
Kozikowski, Grzegorz II-600
Kozłowski, Piotr II-418, II-438
Krbálek, Milan II-669
Król, Dariusz I-724
Krukowski, Stanislaw II-551
Kryza, Bartosz I-724
Kryza, Tomir II-731
Krzyzanowski, Piotr II-479
Kubica, Bartłomiej Jacek II-600, II-623
Kuchta, Jarosław I-261
Kuczynski, Lukasz I-613
Kuijper, Arjan I-652
Kulczewski, Michal I-155
Kurkowski, Mirosław I-224
Kurowski, Krzysztof I-155
Kustra, Piotr I-237
Kuzelewski, Andrzej II-322
Kuźnik, Krzysztof II-531
Kwiatkowski, Jan I-283, II-215
Kwolek, Bogdan I-458

Laccetti, Giuliano I-704, I-734
Lacroix, Rémi I-124
Lagaris, Issac E. II-343
Lančinskas, Algirdas II-354
Langr, Daniel I-178
Lapegna, Marco I-704
Laskowski, Eryk I-302
Latu, Guillaume II-185
Laub, Alan J. I-124
Lavenier, Dominique II-278
Le Boudic - Jamin, Mathilde II-278
León, Germán I-772
Leppänen, Ville I-513
Leutgeb, Alexander I-317
Liao, Jia II-520
Liljeberg, Pasi I-513
Liu, Baoquan I-447
Liu, Jing I-480
Liu, Yongchao II-247
Luszczek, Piotr I-571

Machida, Masahiko I-673
Maciejewski, Anthony A. I-761
Maciejewski, Michał II-751

Mahdian, Babak I-447
Majewski, Jersy II-541
Malawski, Maciej I-251, I-272
Manghi, Franca II-428
Mansour, Ahmad I-534
Mantovani, Filippo II-385
Marcinkowski, Leszek II-469, II-551
Margalef, Tomàs II-151
Marowka, Ami II-65
Maśko, Łukasz I-302, I-348
Matoga, Adrian I-693
Matuszek, Mariusz I-261
Matysiak, Ryszard II-448
Meca, Ondřej II-95
Meizner, Jan I-272
Mele, Valeria I-704
Memmi, Gerard I-793
Merkle, Daniel II-118
Meyer, Norbert I-237
Miękisz, Jacek I-412
Mijares Chan, Jose Juan II-130
Milenin, Andriy I-237
Millot, Daniel II-49
Missirlis, Nikolaos M. I-214
Miziołek, Jan Krzysztof I-327
Montella, Raffaele I-734
Montenegro, Rafael II-163
Morancho, Enric I-683
Moshkov, Mikhail II-531
Mosurska, Zofia I-237
Moszyński, Krzysztof II-561
Mróz, Hubert II-679
Mukunoki, Daichi I-632
Müldner, Tomasz I-327
Münchhalfen, Jan Felix I-26
Musiał Grzegorz II-418, II-438
Muthurangu, Vivek I-469

Nabrzyski, Jarek I-251
Nagel, Kai II-751
Nalepa, Jakub I-191
Namiki, Mitaro I-714
Neves, Samuel I-96
Niewiadomski, Artur I-392
Nikolow, Darin I-724
Nowak, Tomasz I-423
Nowakowski, Piotr I-272

Obrist, Dominik II-291
Okša, Gabriel I-57
Olas, Tomasz I-166

Author Index 807

Olszak, Artur II-86
Oxley, Mark A. I-761

Pacut, Maciej II-207
Pająk, Robert I-237
Palmieri, Carlo I-734
Papageorgiou, Dimitrios G. II-343
Parrot, Christian II-49
Pasricha, Sudeep I-761
Paszyńska, Anna II-531
Paszyńska, Maciek II-531
Pavlidis, Pavlos II-258
Pelliccia, Valentina I-734
Penczek, Wojciech I-392
Pérez, Joaquín I-772
Peszek, Tomasz I-338
Piech, Henryk I-224
Pinel, Frédéric I-361
Pinheiro, Vinicius II-26
Pissis, Solon P. II-258
Pivanti, Marcello II-385
Płaczek, Bartłomiej II-721
Plosila, Juha I-513
Pop, Mihai II-237
Porter-Sobieraj, Joanna I-500
Pratas, Frederico I-747
Pujols, Agnès I-593

Quintana-Ortí, Enrique S. I-490, I-772

Radziunas Mindaugas II-322
Rahman, Kazi I-134
Rahman, Talal II-469
Rauch, Łukasz I-237
Rodríguez, Eduardo II-163
Roerdink, Jos B.T.M. I-447
Rojek, Krzysztof I-145, I-582
Rokicki, Jacek II-541
Roma, Nuno I-693
Roman, Jean II-185
Romano, Diego I-704
Romanowski, Jakub I-433
Rozar, Fabien II-185
Ruskin, Heather J. II-699
Russek, Paweł I-545
Rymut, Boguslaw I-458
Rzadca, Krzysztof II-26, II-38

Saito, Tsubasa I-643
Sakowski, Konrad II-551
Saravakos, Petros II-689

Sato, Mikiko I-714
Saule, Erik I-559
Scherer, Rafał I-423, I-433
Schifano, Sebastiano Fabio II-385
Schmidt, Bertil II-247
Seitz, Michael II-659
Sesques, Muriel I-593
Sevastjanov, Pavel II-634
Shakhlevich, Natalia V. II-3
Siebert, Christian I-202
Siedlecka-Lamch, Olga I-224
Siegel, Howard Jay I-761
Sikorski, Jan I-500
Šimeček, Ivan I-178
Sirakoulis, Georgios Ch. II-689
Skalna, Iwona II-591
Skaruz, Jaroslaw I-392
Skowron, Piotr II-38
Šlekas, Gediminas II-301
Słodkowski, Marcin I-500
Słota, Damian I-402
Słota, Renata I-724
Smyk, Adam I-302, I-381
Sobczak, Paweł II-448
Sommer, Jens U. II-377
Sosonkina, Masha II-520
Sousa, Leonel I-747
Stamatakis, Alexandros II-258
Starý, Jiří I-114
Steeden, Jennifer Anne I-469
Sterzel, Mariusz I-237
Stokłosa, Dominik I-237
Stpiczynski, Przemysław I-603
Sudarsan, Rangarajan II-311
Šukys, Jonas I-47
Šurkovský, Martin II-95
Szałkowski, Dominik I-603
Szepieniec, Tomasz I-237
Szustak, Lukasz I-145, I-582
Szymoniak, Sabina I-224

Takahashi, Daisuke I-632
Takami, Toshiya I-67
Tanaka, Teruo I-622
Taniça, Luís I-747
Taylor, Andrew I-469
Tenhunen, Hannu I-513
Thuerck, Daniel I-652
Thulasiram, Ruppa K. II-130, II-140
Thulasiraman, Parimala II-130, II-140

808 Author Index

Toledo, Sivan I-36
Tomás, Pedro I-693, I-747
Tomecka, Daria M. II-428
Tomov, Stanimire I-571
Topa, Paweł II-679, II-711
Tripiccione, Raffaele II-385
Troiani, Filippo II-428
Trunfio, Giuseppe A. II-761
Trystram, Denis II-26
Tsujita, Yuichi I-714
Tudruj, Marek I-302, I-348, I-381
Tvrdík, Pavel I-178

Uçar, Bora II-174

Van Bel, Michiel II-268
Vandepoele, Klaas II-268
Verbrugge, Clark I-523
Voglis, Costas II-343
von Sivers, Isabella II-659
Vuduc, Richard I-86

Wada, Koichi II-196
Walker, David W. II-105
Wąs, Jarosław II-679
Wawrzynczak, Anna II-407

Welsch, Torsten I-317
Wiatr, Kazimierz I-237, I-545
Widmer, Sven I-652
Williams, David I-447
Wodecki, Mieczysław II-207
Wojciechowski, Michał II-428
Woźniak, Dariusz II-448
Wozniak, Marcin I-613
Wrzeszcz, Michał I-741, II-724
Wyrzykowski, Roman I-145, I-613

Xu, Thomas Canhao I-513

Yamada, Susumu I-673
Yang, Po I-447
Yasar, Burhan I-447
Yonezawa, Naoki II-196
Yoshinaga, Kazumi I-714

Zakrzewska, Anita I-783
Zenesini, Luca II-385
Zhao, Xia I-447
Zielonka, Adam I-402
Zieniuk, Eugeniusz II-322
Žilinskas, Julius II-354

Author Index 809

	Blank Page

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020005800200028003100300029000d000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b00200050004400460020005000720069006e0074002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200061006e0064002000500069007400530074006f00700020005300650072007600650072002000200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

		2014-04-30T14:26:19+0530
	Preflight Ticket Signature

