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1 

1.0 Summary 

This report covers the results associated with the research and development of concepts, 

methodologies, tools, and techniques for using sensor clouds for providing operational 

situational awareness to the 21st century warfighter.  

The goal of the research described herein was to conduct research, develop technology and 

components, and integrate the results for prototyping scalable cloud computing and advanced 

sensor management services into a Multi-Layered Sensor Grid testbed. In turn, the Sensor Grid 

testbed provides an environment for conducting advanced trustworthiness related research 

associated with multi-layered sensor systems operating in urban operation scenarios. 

Specifically, this research leveraged the efforts of previous sensor grid technology research 

accomplished under related Air Force Research Laboratory (AFRL) Sensors Directorate 

(AFRL/RY) research efforts to develop a Sensor Grid Testbed with technologies that will, in 

turn, be used to support a cross-directorate research project called Live, Virtual, and Constructive 

(LVC) Sensors Integration for Data Fusion in Operations and Training (SIDFOT). 

The research and development (R&D) accomplished on this Adaptive Multi-Layered Sensing 

Architectures (AMSA) Task Order (TO) 4 encompassed four major research thrusts: (1) 

enhancing the Core Infrastructure Sensor Grid Middleware; (2) developing an enhanced sensor 

grid application; (3) researching and implementing trustworthiness algorithms; and (4) 

prototyping, developing, integrating and demonstrating the resulting technologies. Additional 

detail on the research associated with these individual projects is provided in the following 

sections.  

The research team, composed of Ball Aerospace & Technologies Corporation (BATC), Indiana 

University (IU), and Anabas research personnel, worked closely with AFRL/RYW personnel to 

complete the AMSA TO 4, Advanced Technology for Sensor Clouds, research. The IU and 

Anabas researchers focused primarily on the R&D associated with enhancing the Core 

Infrastructure Sensor Grid Middleware to function using cloud computing features, along with 

other key enhancements. The BATC researchers built the Sensor Grid Testbed functionality on 

top of the Sensor Grid Middleware and built the application components required for the LVC 

SIDFOT program. 

This Final Report documents the research completed on the AMSA TO 4 effort, along with 

lessons learned, recommendations and conclusions.  
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2.0 Introduction 

2.1 Advanced Technology for Sensor Clouds Research Overview 

As the 21st century warfighter becomes increasingly dependent on improved situational 

awareness while operating in complex urban environments, there will be an increased use of 

multi-layered sensor systems that include public and commercial sensors with sensor image 

processing capabilities provided through cloud computing services. These trends have given rise 

to the need to research not only the vulnerabilities of these public and commercial sensors, but 

also the need to investigate techniques and methods for alerting multi-layered sensor system 

users when cyber attacks have occurred. In addition to the fundamental sensor cloud research 

and corresponding results obtained from this effort, the Sensor Grid Testbed will provide the 

Distributed Collaborative Sensor Systems Technology Branch (AFRL/RYWC) and the Trusted 

Avionics Systems Network Branch (AFRL/RYWB) of the Integrated Electronic & Net-centric 

Warfare Division (AFRL/RYW) with a venue to further explore sensor grid vulnerabilities, as 

well as develop trust and trustworthiness algorithms for alerting Global Information Grid (GIG) 

users of cyber attacks. 

2.2 Program and Project Objectives 

This task order is part of the larger AMSA research program that encompasses a broader scope 

of R&D focused on trustworthiness research in accordance with the AMSA contract Statement 

of Work (SOW). The overall objective of the broader AMSA program is to research, develop, 

and demonstrate advanced (evolutionary and revolutionary) technologies integral to building an 

integrated information and knowledge-centric testbed for exploring the development of decision 

support solutions for 21st century warfighter operational challenges.  

The more focused objective of this AMSA TO 4 effort was to conduct research, develop 

technology and components, and integrate the results for prototyping scalable cloud computing 

and advanced sensor management services into a Multi-Layered Sensor Grid testbed. The intent 

of the Sensor Grid testbed is to provide a framework for conducting advanced trustworthiness 

related research associated with network centric operations in urban operation scenarios. The 

specific purpose of this research was to leverage the design and development of Multi-Layered 

Sensor Grid technologies accomplished under related AFRL/RYW research efforts. These 

related efforts encompassed research that prototyped next generation technologies for integrating 

and facilitating sensor interoperability, data-mining, geographic information system (GIS) and 

archiving grids using publish-subscribe based mediation services. Using the results from the 
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earlier research, the AMSA TO 4 research team was able to investigate the incorporation of 

cloud computing technologies and examine the penetration vulnerabilities of these technologies. 

Specifically, this research leveraged and used prototypes developed for the Sensor-Centric 

Collaboration Grid Middleware Management System (SCGMMS) with User-Defined 

Operational Picture capability (UDOP) and a Community Collaboration Grid Building Tool. 

Coincidental with the start of this research effort, another cross-directorate research program 

entitled LVC SIDFOT was started that would leverage the results of the AMSA TO 4 research. 

While the initial intent was to have the Sensor Grid testbed completed prior to the start of the 

LVC SIDFOT program, a delay in the start if AMSA TO 4 prevented this from happening. 

Nevertheless, LVC SIDFOT requirements were used to influence the development of a realistic 

operational scenario application, including sensor interfaces and clients. While evolving during 

the course of this research effort, the Sensor Grid testbed prototype was also used on the LVC 

SIDFOT program. At the conclusion of the AMSA TO 4 research, the Sensor Grid testbed was 

delivered in place to continue supporting the LVC SIDFOT cross-directorate program.  

2.3 Document Overview 

This document covers the overall AMSA TO 4 accomplishments in the main task areas of 

AMSA development and AMSA support research. Under the AMSA TO 4 effort, specific 

research and development was performed in the areas of (1) Enhancing the Core Infrastructure 

Sensor Grid Middleware, (2) Developing an Enhanced Sensor Grid Application, (3) Researching 

and Implementing Trustworthiness Algorithms, and (4) Prototype Development, Integration, and 

Demonstration. 

This document provides a detailed discussion of the research accomplishments achieved under 

this TO. The document also includes lessons learned from performing this research effort, 

recommendations for future efforts, and conclusions related to the research performed on this 

TO. 
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3.0 Methods, Assumptions, and Procedures 

3.1 Background 

Grid computing continues to evolve into cloud computing where real-time scalable resources are 

provided as a service over a network or the Internet to users who need not have knowledge of, 

expertise in, or control over the technology infrastructure (“in the cloud” as an abstraction of the 

complex infrastructure) that supports them. A sensor network can be a wired or wireless network 

consisting of spatially distributed autonomous devices using sensors to cooperatively provide 

data from different locations and multiple altitudes if appropriate. A sensor grid integrates 

multiple sensor networks with grid infrastructures to enable real-time sensor data collection and 

the sharing of computational and storage resources for sensor data processing and management. 

It is an enabling technology for building large-scale infrastructures, integrating heterogeneous 

sensor, data and computational resources deployed over a wide area, to undertake complicated 

tasks such as Intelligence Surveillance and Reconnaissance (ISR). A sensor web is an amorphous 

network of spatially distributed sensor platforms that synchronously communicate and are 

router-free. Cloud computing offers an expanded avenue for sensor webs to evolve into sensor 

clouds. There is a growing need for multi-layered sensing with hundreds, even thousands of 

sensors providing their inputs as military operations require increased, real-time situational 

awareness in a variety of operational scenarios. The real-time monitoring, processing, exploiting 

and analyzing of a large number of sensors and the corresponding data is quickly giving rise to 

the need for a better understanding of sensor clouds, multi-layered sensor system vulnerabilities 

and research into the trust and trustworthiness of these complex systems. 

During previous research efforts, the development of the SCGMMS capability included the Net-

Centric Collaboration Grid Middleware, the Collaboration Community Grid Builder and a 

UDOP tool, as well as a Common Operations Picture (COP) Tool. It used the Grid of Grids 

architecture as a baseline to prototype a set of Net-Centric Enterprise Services (NCES) as the 

Core Enterprise Services. SCGMMS is an Extensible Collaborative Sensor-Centric Grid 

Framework that supports UDOP/COP using a Sensor as a Service implementation mechanism.  

This Advanced Technology for Sensor Clouds research supports the overall research focus in the 

Sensor Directorate’s AFRL/RYW to conduct basic research, exploratory and advanced 

development programs to develop and deliver integrated electronic and net-centric warfare 

technologies and systems. Furthermore, the research helps to demonstrate autonomic, distributed, 

collaborative, and self organizing systems for integrated electronic and net-centric warfare. It 

also enables the government personnel to develop trusted avionics system architectures in 
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support of secure and assured information operations. In particular, it helps with demonstrating 

sensor system data links necessary to connect both tightly and loosely coupled sensing oriented 

architectures’ to modern service oriented architectures in support of electronic and net-centric 

warfare. The results of the research also helps with performing system vulnerability analysis 

supporting integrated electronic and net-centric warfare technology development.  

Furthermore, the result of this research supports the AFRL/RYWB mission related to conducting 

basic research, exploratory and advanced development programs to plan, develop, validate and 

deliver secure avionics and related system bus/network/backplane integration technology. It also 

supports the development and demonstration of system bus and associated data link technology 

to facilitate reliable trusted system interactions. It helps AFRL/RYWB personnel to conduct 

research and development in technologies supporting identification and tracking of threats to 

integrated weapon system networks. Finally, it helps with the overall performance of research 

and conducting avionics system experimentations and demonstrations for integrated system 

vulnerability analyses with an end to isolate and protect blue systems.  

And finally, the result of this research supports the AFRL/RYWC mission related to conducting 

basic research, exploratory and advanced development programs to plan, develop, validate and 

deliver autonomic, distributed, collaborative sensor systems and sensor grids in support of 

electronic combat, support, and protection technologies. The resulting Sensor Grid Testbed 

enables the AFRL/RYWC personnel to perform basic research, exploratory and advanced 

development of predictive analytic technologies to optimize objective driven, self-organizing, 

collaborative sensor systems and generate anticipatory intelligence from vigilant sensing. 

Furthermore, it helps them to perform research and development in technologies supporting 

identification and tracking of critical sensor knowledge in self-organizing sensor webs.  

The research associated with this task order effort investigated architectures for convenient 

scalable deployment of large sensor networks to support trusted sensor grids including sensor 

clouds, enhanced fault tolerance, and extended sensor management services.  The outcome of the 

task is technical research documented in presentations, an enhanced prototype sensor grid 

testbed, and a final report addressing the subjects as identified below. 

3.2 Research Overview 

The research associated with this task order focused on investigating, developing, evaluating, 

and integrating the appropriate sensor grid technologies required to extend the SCGMMS for the 
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new sensing technologies required for future sensor directorate research. The following subtasks 

outline the research activity that was accomplished to support this task order. 

3.2.1 Enhance Core Infrastructure Sensor Grid Middleware 

The AMSA TO 4 research team worked with AFRL personnel to determine the enhancements 

for the next generation Sensor Grid based on previous AFRL accomplishments and future 

research efforts. Extensions considered included new cloud computing technology to enable 

convenient scalable deployment for large sensor networks for Department of Defense (DoD) and 

commercial use; new services from the Open Grid consortium and other open system 

architectures, industry standards; and new technology capabilities needed for potential 

operational use. 

3.2.2 Develop Enhanced Sensor Grid Application 

The AMSA TO 4 research team developed and implemented some illustrative military 

applications of the enhanced Sensor Grid in a multi-layered sensing urban scenario involving 

defense related, homeland security, and commercially available sensors. Some considerations for 

inclusion in the military application were a capability to dynamically task and configure groups 

of sensors for selected layered sensing architectures. Additionally, applications that could link to 

other AFRL research on trust in complex systems were given a high priority. The former 

considerations included applications related to services for trusted data exchange among 

heterogeneous devices, secure connectivity across multiple sites, and the ability to depict trust 

within the COP. As part of coordinating with AFRL personnel, the determination was made to 

ensure that the key focus of an enhanced sensor grid application was to feed technology, and 

support the overriding requirements of the cross-directorate LVC SIDFOT program. 

3.2.3 Research and Implementation of Trustworthiness Algorithms 

The AMSA TO 4 research team also worked with AFRL personnel to research, assess, and 

evaluate possible collective trust algorithms and services that use cross validation to enhance 

trust and concatenate security, reliability, and other data from sensors.  Specifically, this research 

activity extended previous research efforts associated with a database of trust metrics and 

analysis services for current and projected trust estimates.  

3.2.4 Prototype Development, Integration, and Demonstration 

Finally, the AMSA TO 4 research team integrated the methodologies, technologies, and software 

resulting from the above sub-tasks into an enhanced Sensor Grid Testbed prototype. After 
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consulting with the AFRL/RYWC personnel, it was determined that instead of installing the 

Sensor Grid Testbed prototype into an AFRL/RYWC facility, the Sensor Grid Testbed would be 

delivered in place and incorporated into the LVC SIDFOT system for use in the cross-directorate 

research program. The capabilities of the Sensor Grid Testbed, including the sensor cloud, was 

demonstrated to show a multi-layered sensing urban scenario involving defense related, 

homeland security, and commercial sensors. 

3.3 Research Terminology, Methodology and Approach 

The emergence of cloud technology has raised a renewed emphasis on the issue of scalable on-

demand computing. Cloud back-end support of small devices such as sensors and mobile phones 

is one important application. A preliminary study completed by the Anabas and IU members of 

the research team reports measured characteristics of distributed cloud computing infrastructure 

for collaboration sensor-centric applications on the FutureGrid [1, 2]. The study describes the 

team’s understanding of the characteristics of the underlying network and its impact on 

multipoint, distributed cloud scalability. The report includes findings in areas of performance, 

scalability and reliability at the network level using standard network performance tools. The 

research team has also measured data at the message level using the NaradaBrokering (NB) 

system [3-8] by the Indiana University Community Grids Laboratory which supports a large 

number of practical communication protocols. Results are also presented at the collaboration and 

communication applications level using the Anabas sensor-centric grid framework [9], a 

message-based sensor service management and sensor-centric application development 

framework.  

Geographically distributed and heterogeneous clouds in the FutureGrid are used because of their 

support for scalable simulations. The preliminary data indicates that a heterogeneous cloud 

infrastructure like FutureGrid coupled with a flexible collaborative sensor-centric grid 

framework is suitable for the study and development of new, scalable, collaborative sensor-

centric system software and applications. 

Some technical terms could have different meaning when used by researchers in different 

communities or applications. This is particularly evidential in inter-disciplinary and emerging 

fields. For clarity and consistency, several key terminologies used throughout this report are 

discussed next.  

For this report, collaboration is defined as the general sharing of digital objects, and a sensor 

broadly as a source of a time-dependent stream of information. And the definition of real-time is 
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application-specific. In the case of a voice over internet protocol (VoIP) application, for instance, 

a round-trip latency of less than 300 milliseconds is considered acceptable timeliness while other 

collaborative applications could have more stringent real-time requirements. Grids have been 

extensively discussed in the literature. For this report grids represent the system formed by the 

distributed collections of digital capabilities that are managed and coordinated to support some 

sort of enterprise [11]. Clouds are commercially supported data-center models competing with 

compute grids and general-purpose computing centers [12]. Clouds do not supplant data grids. 

In an earlier study of collaborative applications [10] on Amazon’s Elastic Compute Cloud (EC2), 

research team members devised a methodology to study the characteristics of distributed cloud 

computing infrastructure at the network, transport messages, and message-based collaboration 

applications levels. They were able to measure performance at the network layer and modeled 

typical multipoint VoIP application-level traffic at the transport layer. The researchers had access 

to two clouds only, those at the Amazon EC2 US-East and Europe-West. 

This research team adopted the same methodology in the study on FutureGrid. However, several 

significant differences exist between the study on the FutureGrid and that on the Amazon EC2. 

In the Future Grid study, researchers were able to conduct performance measurements on the 

network, transport messages, and message-based collaboration applications levels. They also 

extend their experiments on a homogeneous, 2-point, EC2 clouds to a heterogeneous, 4-point, 

Nimbus and Elastic Utility Computing Architecture Linking Your Programs To Useful Systems 

(Eucalyptus) clouds.    

The overall approach for the accomplishment of the AMSA TO 4, Advanced Technology for 

Sensor Clouds, research was to investigate and implement enhancements to the core 

infrastructure Sensor Grid Middleware. This included the investigation, development and 

integration of several innovative technical capabilities into the core infrastructure sensor grid 

middleware, and delivery of several sensor grid middleware iterations for use in the development 

of the Sensor Grid Testbed to be used in the LVC SIDFOT program. 
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4.0 Results and Discussion 

4.1 Enhance Core Infrastructure Sensor Grid Middleware (SensorCloud Architecture) 

4.1.1 Sensor Cloud Overview  

4.1.1.1 Introduction 

The Sensor Cloud middleware is based on the Sensor Centric Grid Middleware Management 

System created by Anabas, Inc. The research team extends a sincere thanks to Anabas, Inc. and 

its CEO, Alex Ho for developing the SCGMMS and acknowledge that many of the ideas in this 

section are based on that work. 

The objective of the Sensor Cloud Project was to provide a general-purpose messaging system 

for sensor data called the Sensor Grid Server, and a robust Application Program Interface (API) 

for developing new sensors and client applications. The key design objective of the Sensor Grid 

API is to create a simple integration interface for any third party application client or sensor to 

the Sensor Grid Server. This objective was accomplished by implementing the publish/subscribe 

(pub/sub) design pattern which allows for loosely-coupled, reliable, scalable communication 

between distributed applications or systems. 

4.1.1.2 Publish/Subscribe Architecture 

The pub/sub design pattern describes a loosely-coupled architecture based message-oriented 

communication between distributed applications. In such an arrangement applications may fire-

and-forget messages to a broker that manages the details of message delivery. This is an 

especially powerful benefit in heterogeneous environments, allowing clients to be written using 

different languages and even possibly different wire protocols. The pub/sub provider acts as the 

middle-man, allowing heterogeneous integration and interaction in an asynchronous (non-

blocking) manner. 

The pub/sub architecture uses destinations known as topics. Publishers address messages to a 

topic and subscribers register to receive messages from a topic. Publishers and subscribers are 

generally anonymous and may dynamically publish or subscribe to the content hierarchy. The 

system takes care of distributing the messages arriving from a topic’s multiple publishers to its 

multiple subscribers. Topics retain messages only as long as it takes to distribute them to current 

subscribers. Figure 1 illustrates pub/sub messaging. 
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Message publication is inherently asynchronous in that no fundamental timing dependency exists 

between the production and the consumption of a message. Messages can be consumed in either 

of two ways: 

 Synchronously. A subscriber or a receiver explicitly fetches the message from the 
destination by calling the receive method. The receive method can block until a message 
arrives or can time out if a message does not arrive within a specified time limit. 

 Asynchronously. A client can register a message listener with a consumer. A message 
listener is similar to an event listener. 

 

Figure 1. Elements of a Publisher/Subscribe System 

A pub/sub system can be conveniently implemented using a Java Messaging Service (JMS) 

compliant Message-Oriented Middleware (MOM) such as NaradaBrokering, ActiveMQ, 

SonicMQ etc. to handle message mediation and delivery. 

4.1.1.3 Sensor Cloud Overview 

The Sensor Cloud implements the pub/sub design pattern to orchestrate communication between 

sensors and client applications which form an inherently distributed system.  

 Sensor Cloud Server creates Publisher-Subscribe Channels (Represented as a JMS 

Topic) 

 Sensors acting as publishers create TopicPublishers to send messages to  a Topic 

 Client applications acting as subscribers create TopicSubscribers to receive messages on 

a topic 
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 Narada Broker is used as the default underlying MOM but any other JMS style broker 

could be used instead. 

Figure 2 shows a high-level schematic of a typical deployment scenario for the Sensor Grid. 

Sensors are deployed by the Grid Builder into logical domains; the data streams from these 

sensors are published as topics in the sensor grid to which client applications may subscribe. 

 

Figure 2. Schematic of the Sensor Cloud 

Examples of physical devices implemented at the outset of this research include: 

 Web/IP Cameras 

 Wii Remotes 

 Lego MindStorm NXT Robots 

 Bluetooth Global Positioning System (GPS) Devices 

 Radio Frequency Identification (RFID) Readers 

 

However Sensors can be made from chat clients, Power Point presentations, web pages virtually 

anything which produces data in a time-dependent stream can be implemented as a Sensor Grid 

sensor.  
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4.1.1.4 High-Level Sensor Cloud Architecture 

One of the key goals of the Sensor Cloud Project was to design and develop an enabling 

framework to support easy development, deployment, management, real-time visualization and 

presentation of collaborative sensor-centric applications. The Sensor Grid framework is based on 

an event-driven model that utilizes a pub/sub communication paradigm over a distributed 

message-based transport network. 

The Sensor Grid is carefully designed to provide a seamless, user-friendly, scalable and fault-

tolerant environment for the development of different applications which utilize information 

provided by the sensors. Application developers can obtain properties, characteristics and data 

from the sensor pool through the Sensor Grid API, while the technical difficulties of deploying 

sensors are abstracted away. At the same time, sensor developers can add new types of sensors 

and expose their services to application developers through Sensor Grid’s Sensor Service 

Abstraction Layer (SSAL). NB is the transport-level messaging layer for the Sensor Grid. The 

overall Sensor Grid architecture concept is shown in Figure 3.  

  

Figure 3. Sensor Grid Components 
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As this research matured and the Sensor Grid software was ported to a cloud, the terminology of 

Sensor Cloud and Sensor Grid are used somewhat interchangeably. Hence, the Sensor Cloud 

Middleware shown in Figure 3 is also called Sensor Grid Middleware. Furthermore, the Sensor 

Cloud Controller in Figure 3 is also interchangeable with Sensor Grid. And finally, the Web 

Service API shown on the right side of Figure 3, interfacing to the blue Client Box is also called 

the Application API; and the Web Service API shown on the left side of Figure 3 is also called 

the SSAL . 

4.1.1.5 Sensor Grid Server (SG) 

The SG mediates collaboration between sensors, clients (or applications) and the Grid Builder 

(GB). Primary function of SG is to manage and broker sensor message flows. 

 Sensor/SG flow - The SG keeps track of the status of all sensors when they are deployed 

or disconnected so that all applications using the sensors will be notified of changes. 

Sensor data normally does not pass through SG. 

 Application/SG flow - Applications communicate through the application API, which in 

turn communicates with the SG internally. Applications can define their own filtering 

criteria, such as location, sensor id, and type to select which sensors they are interested 

in. These filters are sent to SG for discovering and linking appropriate sensors logically 

for that application, and forwarding messages among the relevant sensors and that 

application. SG must always check which sensors meet the selected filter criteria and 

update the list of relevant sensors accordingly. It then sends an update message to the 

application if there are any changes for the relevant sensors. 

 Sensor - Sensors’ properties are defined by each sensor itself. Applications have to obtain 

this information through SG. 

 Application/Sensor flow – The SG provides each application with the sensor information 

that it needs according to the filtering criteria. The application then communicates with 

sensors through the application API for receiving data and sending control messages. 

4.1.1.6 Application API 

The SG aims to support a large amount of applications for users and service providers of 

different industries (e.g., financial, military, logistics, aerospace etc.). The SG provides a 

common interface which allows any kind of application to retrieve information from the sensor 

pool managed by the Sensor Cloud Middleware (SCMW). The API also provides a filtering 

mechanism which provide applications with sensors matching their querying criteria only.  
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4.1.1.7 Sensor 

As noted earlier, the definition of sensor is a time-dependent stream of information with a geo-

spatial location. A sensor can be a hardware device (e.g., GPS, RFID reader), a composite device 

(e.g., Robot carrying light, sound and ultrasonic sensor), Web services (e.g., Really Simple 

Syndication (RSS), Web page) or task-oriented Computational Service (e.g., video processing 

service). 

4.1.1.8 Sensor Client Program 

A sensor needs a Sensor Client Program (SCP) to connect to the Sensor Grid. The SCP is the 

bridge for communication between actual sensors and the SCMW. On the sensor side, SCP 

communicates with the sensor through device-specific components such as device drivers. On 

the Sensor Grid side, SCP communicates with the Sensor Grid through the SSAL. 

4.1.2 Sensor Cloud Middleware 

As noted earlier while discussing the SG in general, the SCMW Management System is 

carefully designed to provide a seamless, user-friendly, scalable and fault-tolerant environment 

for the development of different applications which utilize information provided by the sensors. 

Application developers can obtain properties, characteristics and data from the sensor pool 

through the Application API, while many of the technical difficulties of deploying sensors are 

abstracted away. At the same time, sensor developers can add new types of sensors and expose 

their services to application developers through SCMW’s SSAL (see Section 4.1.5.2.2 for 

details). 

NB is the underlying transport-level messaging layer for SCMW. It is a distributed message-

based transport network based on the pub/sub messaging model. 

By using NB as the transport layer, different components of SCMW can be deployed and 

work collaboratively in a distributed manner. 

The overall architecture of SCMW is shown in Figure 4. Internally SCMW is composed of two 

main modules—SG and GB—which serve different functions. The major elements of the 

SCMW pictured in Figure 4, and the data flow associated with these elements, are discussed in 

section 4.1.2.1 through 4.1.2.5. 
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Figure 4. Sensor Cloud Middleware 

4.1.2.1 Grid Builder (GB) 

Given the large amount of sensors, GB is a sensor management module which provides 

mechanism and services to do the following: 

1.  Define the properties of sensors. 

2.  Deploy sensors according to defined properties. 

3.  Monitor deployment status of sensors. 

4.  Remote Management – Allow management irrespective of the location of the 

sensors. 

5.  Distributed Management – Allow management irrespective of the location of the 

manager / user. 

GB itself posses the following characteristics: 

1.  Extensible – the use of Service Oriented Architecture (SOA) to provide 

extensibility and interoperability. 
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2.  Scalable – management architecture should be able to scale as number of 

managed sensors increases. 

3.  Fault tolerant – failure of transports OR management components should not cause 

management architecture to fail. 

The details of GB are discussed in Section 4.1.3. 

4.1.2.2 Sensor Grid (SG) 

SG communicates with a) sensors, b) applications, and c) GB to mediate the collaboration of the 

three parties. Primary functions of SG are to manage and broker sensor message flows. 

4.1.2.2.1 Sensor/Sensor Grid flow 

SG keeps track of the status of all sensors when they are deployed or disconnected so that all 

applications using the sensors will be notified of changes. Sensor data normally does not pass 

through the SG except when it intentionally has to be recoded. In this case, SG will subscribe to 

data of that particular sensor. 

4.1.2.2.2 Application/Sensor Grid flow 

Applications communicate with SCMW through the Application API, which in turn 

communicates with SG internally. Applications can define their own filtering criteria, such as 

location, sensor id, and type to select which sensors they are interested in. These filters are sent to 

SG for discovering and linking appropriate sensors logically for that application, and forwarding 

messages among the relevant sensors and that application. SG must always check which sensors 

meet the selected filter criteria and update the list of relevant sensors accordingly. It then sends an 

update message to applications if there are any changes for the relevant sensors. 

4.1.2.2.3 Grid Builder/Sensor Grid flow 

Sensors’ properties are defined in GB, and applications obtain this information through SG. 

Moreover, filtering requests are periodically sent to GB for updating the lists of sensors needed 

for each application according to their defined filter parameters. Much of the information will be 

stored in a SG to minimize queries to GB. 

4.1.2.2.4 Application/Sensor flow 

SG provides each application with sensor information that the application needs according to the 

filtering criteria. The application then communicates with sensors through the Application API 

for receiving data and sending control messages. The details of SG are discussed in Section 4.1.4. 
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4.1.2.3 SCMW API 

As noted earlier, the SCMW supports user and service provider applications for multiple 

domains (e.g., financial, military, logistics, aerospace etc.). SCMW provides an application API 

which allows any kind of application to retrieve information from the sensor pool managed by 

SCMW. The API also provides a filtering mechanism which provides applications with sensors 

matching only their designated querying criteria. Details of the SCMW API are discussed in 

Section 4.1.5.1. 

4.1.2.4 Sensor 

The sensor component of the SCMW is described in section 4.1.1.7. 

4.1.2.4.1 Sensor Client Program 

As noted earlier for the SG Server, an SCP is also required to connect to SCMW. In the case of 

the SCMW, SCP communicates with SCMW through SSAL (refer to Section 4.1.5.2 for details). 

Figure 5 shows a physical sensor and the corresponding structure of the component 

compromising the SCP. 

 
 

Figure 5. Structure of a Sensor Client Program 
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4.1.2.4.2 Computational Service 

Computational Service is a special kind of sensor which does not take input from the 

environment. Instead, it takes the output of other sensors as its input, performs various 

computations on the sensor data, and outputs the processed data. Since a Computational Service 

also produces a time-dependent stream of data it matches the definition of a sensor. 

Figure 6 shows the data flow of how environmental data is transformed by processing data 

through a sensor and a Computational Service. The architecture of SCMW allows the data source 

to be assigned and reassigned dynamically. 

 
Figure 6. Computational Service 

4.1.2.5 Sensor Service Abstraction Layer (SSAL) 

SCMW can potentially support large number of different sensor types. Ease of adding new 

sensors by different sensor developers without internal knowledge of SCMW is one of the most 

important requirements. SSAL provides a common interface for adding new sensors to the 

system easily. Sensor developers can write simple programs utilizing SSAL libraries for 

connecting sensors to SCMW. Afterwards, the sensor will be available for all applications 

immediately. A more technical description of the SSAL is discussed in Section 4.1.5.2. 

4.1.3 Grid  Builder (GB) Design Discussion 

4.1.3.1 Grid Builder Architecture Overview 
Figure 7 depicts the top-level overview of the GB architecture. GB is originally designed for 

managing Grid-of-Grids. For this project, GB was extended to include the management of a 

generalized sensor-centric grid of grids. The following discussion of GB will focus on this 

specialized version. CGL-developed hpsearch is adopted and extended for this work [20]. 

The Grid which GB manages is arranged hierarchically into Domains. Each domain is started by 

its Bootstrapping Service and is typically, but not necessarily, a single PC which manages sensors 

which are closely related. Sensors can be deployed from any PC which is accessible from one of 

the domains. There can be only one root node in the grid known as the Root Domain. Within 

each domain, there exist some basic components as described next. 
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Managers and Resources  

GB manages grids and resources through a manager-resource model. Each type of Resource 

which does not have a Web Service interface should be wrapped by a Service Adapter (SA). Each 

kind of SA is managed by a corresponding Manager. 

Since the grid contains sensors, a Sensor Manager is responsible for managing sensors through 

Sensor Service Adapters (SSA). Each SSA has its own set of defined Sensor Policy. This policy 

tells the Sensor Manager how the SSA is to be managed, and defines the properties of the sensor 

bound to the SSA. 

Health Check Manager 

The Health-check Manager is responsible for checking the health of the whole system (ensures 

that the registry and messaging nodes are up and running and that there are enough managers for 

resources). 

Bootstrapping Service 

This service ensures that bootstrap processes of the current domain are always up and running. 

For example, it periodically spawns a health-check manager that checks the health of the system. 

Registry 

All data about registered services and service adapters are stored in memory called Registry. 

Registry is used to process messages so it can manage new SA, renew SA and update SA status. 

4.1.3.2 Significant Classes 

4.1.3.2.1 Class Diagram 

A detailed class diagram for the GB is shown in Figure 8. This class diagram shows all of the 

significant classes in the GB. They are categorized into five main categories: Messaging Layer, 

Domain Management, Managers, Resource Management, and Registry. Each of these class 

categories will be discussed in detail. 

Messaging Layer 

GB is built on top of a message-based architecture. All modules in GB such as BootstrapService, 

ForkDaemon, Managers, Registry and ServiceAdapters are standalone and communicate with 

one another by message passing. With this model, separate modules can be deployed as 

distributed services. 



Distribution authorized to Department of Defense and U.S. DoD contractors only. 
Data subject to restrictions on cover and notice page. 

20 

 
Figure 7. An overview of the Grid Builder architecture 

GB has a set of classes dedicated for message passing. Each module has a unique universally 

unique identifier (UUID) and one or more Universal Locator(s) (UL). UL provides all the 

information necessary to identify a module in the network, including transport type, host address, 

port and path. Four transport types are supported: user datagram protocol (UDP), transmission 

control protocol (TCP), hypertext transfer protocol (HTTP) and NB. Each UL is responsible for 

message of one transport type. 
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TransportSubstrate is responsible for sending and receiving messages to and from a module. It 

automatically serializes the message content according to the transport type of destination. Once 

created, it spawns a thread which keeps waiting for incoming messages and notifies the 

associated MessageProcessor upon message arrival. 

 

Figure 8. Class Diagram of Grid Builder
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Modules which want to receive messages should implement the MessageProcessor interface and 

associate itself with a TransportSubstrate. Important modules which implement this interface 

include BootstrapService, Registry, SystemHealthChecker, Manager, ServiceAdapter and 

UserTools. 

Communications between SensorManager and SensorServiceAdapters use the Web Service (WS) 

interface. WS in GB is built on top of this messaging layer. 

Domain Management 

Domain management in GB is done by BootstrapService. Each domain has one BootstrapService 

which constantly communicates with the BootstrapServices of other domains. Each domain 

hierarchy contains one Root node. Each domain connects with at most one parent node and any 

number of child nodes. For now the hierarchy is defined using a configuration file 

(mgmtSystem.conf). The operation flow of domain management is depicted in Figure 9. 

 

Figure 9. Domain Management 
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To keep the whole hierarchy up and running, each domain periodically sends a heart beat 

message to its parent domain. It also has to spawn the BootstrapService of all child domains if 

any of them is not sending a heart beat for some time. 

Managers 

In GB there are two levels of managers. The lowest level is ResourceManager, which manages 

resource specific modules. For example, SensorManager is responsible for managing a 

SensorServiceAdapter through the Web Service interface and performs operation such as sending 

policies to the adapters.  

The upper level is Manager, which manages ResourceManagers and ServiceAdapters. The 

Registry keeps checking whether there are ServiceAdapters which have been registered but do 

not have a Manager during the health check sequence. If there is one, the Manager is notified and 

creates a SAMModule which in turn creates a ResourceManager for the particular resource in the 

ServiceAdapter. SensorClientAdapter is an adapter inside SensorManager for communication 

with the associated SensorServiceAdapter inside the Service Adapter. The interaction between 

the managers and service adapters is shown in Figure 10. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Manager and Service Adapter 
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Resource Management 

These classes are at the resource level, where resource specific tasks are performed. Each sensor 

is treated as a resource in GB, and each sensor has a corresponding client program (represented 

by SensorClient) responsible for interfacing the sensor with SCMW. 

SSAL is the interface for connecting all types of sensor client programs with GB. The class 

diagram only shows part of SSAL which resides in GB. 

Communication between resource managers (i.e., SensorManager) and Resources (i.e., SSA) uses 

the WS interface for message passing. SSA therefore conforms to the WS “Put,” “Get,” “Delete,” 

and “Create”. “Get” is used for getting SensorPolicy of the sensor and initiates connection with 

SG. “Delete” is used for disconnecting connection with SG. 

Registry 

Each domain has a Registry which maintains the state of the entire domain, such as the Universal 

Locator of every module, how many Service Adapters have been registered, the status and policy 

of each sensor, which SA is assigned to which Manager, etc. 

RegisteredServiceAdapter is a class which contains information of ServiceAdapter such as 

UniversalLocator, SensorPolicy and current status. RegisteredService contains information of 

non-SA modules such as Managers and MessagingNodes. 

Registry can work with or without persistent storage. By default all information is stored in 

memory using hash tables. The user has an option whether to write all information to persistent 

storage so that it can be retrieved later on even if the domain is restarted. The persistent storage 

used is compliant to WS-Context specification [21]. 

Figure 11 shows the overall architecture of the Domains, Registry and WS-Context modules in 

Grid Builder. To use WS-Context, an Axis server and a MySQL server should be running in each 

domain for WS communication and storage. All domain related information in the Registry is 

stored in WS-Context and shared with other domains through NaradaBrokering’s topic-based 

publish-subscribe messaging service. 

Although the current implementation does not use WS-Context as a centralized database for 

service discovery, it can be easily enhanced to provide such service since the system is already 

WS compliant. 
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Figure 11. Registry and WS-Context 
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4.1.3.2.2 Class Description 

This section provides brief description of each important class in GB. 
 

Class name: MessageProcessor 
Package name: cgl.hpsearch.core.transport 
Description: Interface for classes which use GB’s messaging layer to receive messages 
Important 
interface: 

processMessage() 

 
Class name: MessagingNode 
Package name: cgl.hpsearch.core.services.messagingNode 
Description: Manages the GB’s transport layer components (such as NB) 

 
Important 
interface: 

setBootstrapLocator(), startBrokerNode() 

 
Class name: TransportSubstrate 
Package name: cgl.hpsearch.core.transport 
Description: Responsible for receiving and sending messages to and from 

MessageProcessor using different transport protocols 
Important 
interface: 

register(), send(), getUniversalLocatorForTransport(), close() 

 
Class name: Message 
Package name: cgl.hpsearch.core.messages 
Description: Superclass of all types of messages in GB. Different types of message has 

different characteristics and serves different functions 
Important 
interface: 

getType(), getMessageId(), getTo(), getFrom(), getTimeStamp() 

 
Class name: UniversalLocator 
Package name: cgl.hpsearch.core.transport 
Description: A locator which lets different modules to identify one another for messaging 

passing. Records the host, port, and transport type of a module 
Important 
interface: 

getHost(), getPort(), getPath(), getTransportType() 

 
Class name: UserTools 
Package name: cgl.hpsearch.core.services.user 
Description: Responsible for forwarding different user operations (e.g., deploy sensors) to 

different modules in GB 
Important 
interface: 

getServiceData(), putServiceData(), retrieveStatus(), sendPolicyMessage(), 
sendRunMessage(), sendFilterMessage(), sendForkMessage()
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Class name: Manager 
Package name: cgl.hpsearch.core.services.manager 
Description: Manages all Resource Managers 

 
Important 
interface: 

processMessage(), startSAMManagementThread(), 
removeSAMManagementObject(), send() 

 
Class name: SystemHealthChecker 
Package name: cgl.hpsearch.core.services.manager 
Description: Responsible for checking whether all modules are up and running in a domain 
Important 
interface: 

processMessage() 

 
Class name: BootstrapService 
Package name: cgl.hpsearch.core.services.bootstrap 
Description: Responible for starting up all modules during domain initialization. 

Periodically spawns SystemHealthChecker and sending heart beat to parent domain 
 

Class name: ForkDaemon 
Package name: cgl.hpsearch.core.services.fork 
Description: Responsible for creating different modules locally as processes 

 
Important 
interface: 

process() 

 
Class name: SAMModule 
Package name: cgl.hpsearch.core.services.manager 
Description: Manages resources (sensors). Has one to one mapping to each 

Service Adapter and the corresponding Resource Manager. 
Important 
interface: 

send(), checkIfOwner(), getServiceData(), putServiceData(), 
spawnProcess(), sendMessage() 

 
Class name: SensorManager 
Package name: cgl.hpsearch.sensor 
Description: Resource manager for managing SensorServiceAdapter 

 
Important 
interface: 

processMessage(), getServicePolicy(), putServicePolicy(), 
runService() 

 
Class name: SensorClientAdapter 
Package name: cgl.hpsearch.sensor 
Description: The adapter of SensorManager for communication with 

SensorServiceAdapters using Web Service 
Important 
Interface: 

getServicePolicy, putServicePolicy(), runService()
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Class name: ServiceAdapter 
Package name: cgl.hpsearch.core.services.sa 
Description: Associated with a Resource Manager to manage the corresponding resource 
Important 
interface: 

start(), close(), publishData() 

Class name: SensorServiceAdapter 
Package name: cgl.hpsearch.sensor 
Description: Responsible for brokering the communication between a Resource 

Manager and sensor client program using Web Service 
Important 
interface: 

start(), close(), publishData(), handleSensorGridConnectionLoss(), 
setSensorProp(), processWxMGMT_Rename(), processWxfDelete(), 
processWxfPut(), processWxfCreate(), processWxfGet() 

Class name: SensorClientServiceAdapter 
Package name: cgl.hpsearch.sensor 
Description: Responsible for brokering the communication between a Resource 

Manager and service sensor client program using Web Service 
 

Important 
interface: 

start(), close(), publishData(), handleSensorGridConnectionLoss(), 
setSensorProp(), sendControl(), setFilter(), subscribeSensorData(), 
unsubscribeSensorData(), processWxMGMT_Rename(), 
processWxfDelete(), processWxfPut(), processWxfCreate(), 
processWxfGet() 

Class name: SensorPolicy 
Package name: cgl.hpsearch.core.policies 
Description: Holds resouce specific policy, that is the property of a sensor 

 
Important 
interface: 

getType(), getSensorProperty() 

Class name: WSManClient 
Package name: cgl.hpsearch.wsmgmt 
Description: Client interface for communicating with WSManProcessors (end points) using 

Web Service messaging 
Important 
interface: 

getMyEndPoint(), getServiceEndPoint(), setServiceEndPoint(), 
setWsEventingClient(), processMessage(), executeOneWay(), 
executeRequestReply(), sendOut(), CreateAndMarshallMessage() 

Class name: WSManProcessor 
Package name: cgl.hpsearch.wsmgmt 
Description: End point for receiving Web Service Message 

 
 
 
Important 
interface: 

setMessageSender(), setMyEndPoint(), processSOAPMessage(), 
processWxMGMT_Rename(), processWxfDelete(), processWxfPut(), 
processWxfCreate(), processWxfGet() 
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4.1.3.3 Important Features 

4.1.3.3.1 System Health Check 

Every module in GB is deployed in a distributed manager and linked together by different 

network protocols. A health check system is therefore fundamental to ensure every modules is 

indeed deployed and working properly. GB performs periodic System Health Check (SHC) to 

ensure that everything is up and running. SHC can be divided into three stages: Initialization, 

Detect Changes, and Maintain System State. These stages of operation will be described next. 

Initialization 

A block diagram of the SHC initialization is shown in Figure 12. To start a new Domain X, a 

user executes a script to perform a Primary Health Check Sequence. This action creates a 

Permanent Messaging Node, which is responsible for communication between all modules within 

a domain, and communication with other domains. After that, a Fork Daemon is created. Every 

module of Grid Builder (e.g., Registry, Service Adapters, Sensor Service Adapters, etc.) is 

executed as a separate process in the operating platform. Fork Daemon is responsible for creating 

modules as separate processes. 

 

 
 

Figure 12. System Health Check (SHC) Initialization 

After primary health check, the domain is now capable of receiving messages from other 

domains. The Bootstrap Service is launched when a message is received from the root domain. 

The Bootstrap Service is responsible for making sure that every module is up and running in a 

domain. It periodically spawns a System Health Checker to check the health of the system. 
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After Bootstrap Service has been initialized, it creates the Registry. The system then checks if all 

modules are up and running for every minute. If not, create the module that is missing (for details 

please refer to Section 4.1.3.4.3). 

Detect Changes 

When a user introduces a change (see Figure 13) to the system, such as deploying a sensor, SHC 

automatically detects and reacts to the change. For example, a user deploys a sensor by starting 

the corresponding sensor client program. The program automatically creates a new SA for the 

sensor which in turn creates an SSA. If no Manager is present in the domain, a Manager process 

is created by ForkDaemon to manage the sensor through the SA. 

 
 

Figure 13. Adding Service Adapter 
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Maintain System State 

To make sure that every resource is up and running, each module periodically notifies its 
manager and the registry of its presence (see Figure 14). This process implements the Maintain 
System state phase of operation. 

 

  
Figure 14. System Health Check (SHC) Maintaining System State 

4.1.3.3.2 Classification Scheme 

Classification defines all properties which are shared by all sensors supported by SCMW. 

Classification serves the following functions: 

1.  Allows GB to differentiate among different sensors for visualizing sensor’s policies 

2.  Defines what can be filtered 

3.  Allows meaningful visualization of sensor data at application side 

4.  Allows application to differentiate different sensors 
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Figure 8 shows the class diagram of classification. It can be divided into 3 categories: Sensor 

Property, Sensor Data, and Message Sterilization. These categories will be described next. 

Sensor Property 

In order to introduce a new sensor to SCMW, several properties have to be defined in class 

SensorProperty. Table 1 shows the sensor properties that need to be defined. 

Table 1. Fields of Sensor Property 

 
Property Description
sensorId A human readable ID for identification which does not have to be 

unique 

groupId Sensors can be assigned to different logical groups for easier 
management. GroupId identifies the group 

sensorType Textual description of the type of a sensor 

sensorTypeId An integer which helps identifying the sensor type. Application 
has to compare this together with field sensorType to uniquely 
identify the type of a sensor 

location Textual description of the location of a sensor, including street, 
city, state/province and country 

historical Defines whether to archive collected sensor data in SG. Currently 
this feature is not implemented 

sensorControl An array of  integers which uniquely identifies each control 
message 

controlDescription A string array of textual description of control messages. Should 
align with sensorControl array 

userDefinedProperty A class which defines any user-defined properties specific for 
each type of sensor 

 
SCMW comes with a set of predefined types. Class PredefineType contains information for 

generating predefined SensorProperty. UserDefinedProperty contains properties which are 

essential for the sensor but may not be common for all sensors (e.g., for deploying a RFID reader, 

it needs the COM port for hardware interfacing). A set of user-defined properties for predefined 

sensors are implemented as subclasses of UserDefinedProperty. 

For location, class PredefinedLocation contains a list of predefined mapping of city names and 

GPS latitude-longitude for easy visualization on a map. 
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Sensor Data 

For each type of sensor, its data format is usually quite different from other sensors. In SCMW 

(Class Diagram shown in  

Figure 15), a class which extends SensorData should be created which defines how to decode 

and use data from a sensor. 

Message Serialization 

Each time before the property of a sensor is sent among modules (e.g., passing from 

GPSManager to SensorServiceAdapter and Registry), it is serialized into Extensible Markup 

Language (XML) format. Class SensorClassificationUtil provides operation for message 

serialization and deserialization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 15. Class diagram of classification scheme in SCMW 
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4.1.3.3.3 Filtering Mechanism 

At the application level, filtering is essential for retrieving only the required sensors from a 

possibly huge sensor pool. Filtering is done based on the SensorProperty of each sensor, which is 

defined according to “based on” rules in classification.  

Figure 16 illustrates this concept. 

 
 

Figure 16. SCGMlv.IS sensor filtering mechanism in a distributed architecture. 
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Defining a Filter 

Applications have to define filtering criteria according to their UDOP requirements. The criteria 

are encapsulated in a SensorFilter object. A SensorFilter is composed of a set of properties 

defined in SensorProperty connected with Boolean “and” or “or” operators. Please refer to 

Section 4.1.3.3.2 for the definition of SensorProperty. Given that a list of sensor properties in a 

sensor filter are connected together with the “and” operator, only sensors which have properties 

that are an exact match in string comparison with ALL the properties defined in the filter should 

get through. Similarly sensors which have properties with an exact match in string comparison 

with ANY of the properties defined in a sensor filter with sensor properties connected together 

with the “or” operator should get through. 

The list of “and” and “or” sensor properties are represented as a 2D string array in SensorFilter. 

For example, if someone wants to get a list of SA IDs which have policy ((sensorType=GPS and 

location=“Hong Kong”) or (sensorType=RFID and location=“New York” and historical=true)), 

set the filter like this: 

SensorFilter filter=new SensorFilter(); String[][] comp=new String[2][]; comp[0]=new String[2]; 

comp[1]=new String[3]; comp[0][0]=“sensorType=GPS”; comp[0][1]=“location=Hong Kong”; 

comp[1][0]=“sensorType=RFID”; comp[1][1]=“location=New York”; 

comp[1][2]=“historical=true”; filter.setOrComparison(comp); 

Data Flow 

Filtering is done in three stages: Application to SG, SG to GB, and SG to application. These 

stages will be described next. 

Application to SG 

A filter query request is initiated from the application. For each filter query, fields which exist in 

SensorProperty can be combined using the “and” or “or” operator to form a query string. This 

string is then sent to SG. 

SG to GB 

SG forwards the request to GB. At this stage, GB searches through the registry of all domains and 

aggregates the unique id of sensors which match the query in a response message. The response 

message is then sent back to SG. SG periodically checks if the filter request from application 

changes. If it does, the application is notified in the same manner. 
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SG to application 

SG releases the resources (e.g., unsubscribe sensor’s NB topic) used by sensors which are 

no longer in the list, and initiates resources for new sensors. Then SG notifies the client for 

all changes made. 

4.1.3.4 Detailed Description 

In this section, message flow of various GB operations will be discussed at the Class level using 

unified modeling language (UML) collaboration diagrams. 

4.1.3.4.1 Starting a Domain 

The following Figure 17 diagram shows the events happening when a domain is started. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. Event flow when starting a sensor grid domain 

 
1.  A user starts the domain by executing “runPrimaryHealthCheck.bat” 

2.   ManagementSystem.BootStrap() is called to initialize all system properties, environment 

variables and various user-defined properties from configuration files 

3.  Send a PingRequestMessage to the expected locator(s) of messaging node(s) registered in 

configuration files. If any messaging node does not respond with PingResponseMessage within 5 

seconds, go to 3.1. Otherwise go to 4 
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3.1. For each messaging node not responding, send a request to ProcessRunner to start   

 a PermanentMessagingNode process 

3.2. ProcessRunner starts the messaging node process 

3.3.  Spawns a thread which continuously monitors the presence of itself by using UDP 

messages (ping request and response). Starts a BrokerNode (NB) according the 

configuration provided by configuration file (defaultMessagingNode.conf) 

4. Send a PingRequestMessage to the expected locator(s) of ForkDaemon(s) registered in 

configuration files. If any ForkDaemon does not respond with PingResponseMessage within 5 

seconds, go to 4.1. Otherwise go to 5 

4.1. For each ForkDaemon not responding, send a request to ProcessRunner to start a 

ForkDaemon process 

4.2. ProcessRunner starts the ForkDaemon process 

5. PrimaryHealthChecker sleeps for 10 seconds to allow any pending processes to  instantiate. 

Then it checks whether all messaging nodes and ForkDaemons are up and running. If yes, it 

sleeps for 30 seconds. Afterwards, it goes to step 3 and checks everything again 

4.1.3.4.2 Starting BootstrapService of a Domain 

When a domain is started, it undergoes the Bootstrap sequence shown in Figure 18. 

1.  Initialize the Bootstrap node from config file, including domain hierarchy and locators of 

ForkDaemons, RegistryForkDaemon, MessagingNodeDaemons. NB transport is initialized for 

NB communications with other domains 

2.  If the current domain is not a leaf node, register all sub-domains locally 

3.  If the current domain is not the root node, runs a thread that periodically sends a 

RegisterRenewMessage to the BootstrapService of its parent telling this domain’s 

BootstrapService is running. If the domain is a leaf node, go to 3.1. Else go to 4 

3.1. Starts a thread that periodically spawns a SystemHealthCheck process for each 

registered ForkDaemon. 

3.2. Spawns a SystemHealthChecker process by sending a ForkProcessMessage to 

ForkDaemon with the “healthcheck” parameter 

3.3. ForkDaemon spawns the Manager process with the “healthcheck” parameter. 
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3.4. Manager starts the SystemHealthChecker thread. System undergoes Normal Health 

Check Sequence (Please refer to Section 4.1.3.4.3 f o r  details). BootstrapService waits 10 

seconds for the reply from SystemHealthChecker 

3.5. The replied status from SystemHealthChecker is either COMPLETE, UNKNOWN or 

RUNNING. Repeat 3.1 after some sleep 

4.  If the node is not a leaf node, spawn a thread that periodically checks the status of ALL 

RegisteredSubDomains (RSD). Under the Health Check mechanism, all RegisteredSubDomains 

are supposed to send a RegisterRenewMessage to its parent. 

5. If no RegisteredRenewMessage is received from a SubDomain within a specified amount of 

time, the thread spawns a BootstrapService of the SubDomain remotely by sending a 

ForkProcessMessage to its ForkDaemon 

6. ForkDaemon creates the BootstrapService of the SubDomain 

 

  

Figure 18. Starting BootstrapService of a Domain 
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4.1.3.4.3 Normal Health Check Sequence (Stage 1) 

System Health Check has a number of stages. During the first stage (Figure 19), Bootstrap 

Service checks if the Registry is present. If not, creates a Registry process using the Fork 

Daemon. 

1. After NB transport is initialized, a thread is started that automatically kills the the health 

checker if it is still running after 60 seconds 

2.  A thread is started that automatically notifies the BootstrapService at an interval of 2 seconds 

that the health checker is running 

3. Checks if there is a Registry running in the domain by sending a RegistryQueryMessage to the 

defined Registry locator. If a RegistryQueryResponse message is received, go to 4. If no, go to 3.1 

3.1. Try spawning a Registry process by sending a ForkProcessMessage to ForkDaemon. 

Max retries = 5. After each retry, repeat 3. If number of retries reached, health checker 

terminates with abnormal exit status 

3.2. ForkDaemon creates the Registry process. Registry checks if persistent storage is 

used in configuration file (mgmtSystem.conf). If yes, go to 3.2.1. Otherwise persistent 

storage won’t be used and everything will be saved in memory. Proceed to 3.3 

3.2.1. Registry asks PersistantStoreFactory for an instance of WSContextStore, which is 

responsible for storing and retrieving settings from persistent storage (e.g., relational 

database) 

3.2.2. WSContextStore is initialized by making connections to various components 

defined in WSContext and removing all previous entries (e.g., registered service adapters, 

service policy, service status etc.). If any errors occur during initialization, go to 3.3 and 

everything will be saved in memory 

3.2.3. Registry loads all settings from WSContextStore to in memory hash tables 
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Figure 19. Normal Health Check Sequence (Stage 1) 

 

3.3. Registry initializes NB transport by subscribing to two topics – one common to all 

registries and one uniquely identify itself. Registry spawning process has been finished. 

Go back to 3 

4. Registry responds to SystemHealthChecker with the number of managers and service adapters 

expected in the domain. 

5.  System now enters health check stage 2.  

4.1.3.4.4 Normal Health Check Sequence (Stage 2) 

During the second stage of the System Health Check (show in  

Figure 20), Bootstrap Service checks if enough Managers are spawned as defined in the 

configuration file. 
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Figure 20. Normal Health Check Sequence (Stage 2) 

1.  The Registry responds to SystemHealthChecker with the number of managers and service 

adapters expected in the domain. If there are enough managers for all RegisteredServiceAdapters, 

go to 2. Otherwise go to 1.1 

1.1. For each Manager lacking, create a Manager process without the “healthcheck” 

parameter sending a ForkProcessMessage to ForkDaemon 

1.2. ForkDaemon creates the Manager process 

1.3. Request system configuration from BootstrapService, including locator of Registry, 

ForkDaemon 

1.4. BootstrapService replies with system configuration 

1.5. Initialize NB transport support. Starts a SAFinderThread which keep sending 

FindSAToManageMessage to Registry requesting corresponding ServiceAdapters to 

manage. If no reply from Registry, the request is repeated periodically at 2 second 

intervals. For details of this part, please refer to Section 4.1.3.4.6.  
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1.6. The Manager periodically sends a RegisterRenewMessage to the Registry to notify its 

presence 

2.   SystemHealthChecker sleeps for 10 seconds to allow any pending processes to instantiate. 

Then it checks whether all expected processes are up and running. If yes, it sends a 

SystemHealthCheck message to BootstrapService, notifying that System Health Check is 

completed and then terminates itself. Otherwise, it checks the system’s health from stage one 

again (Section 4.1.3.4.3)  and tries spawning the missing process(es). 

4.1.3.4.5 Registered Service Adapter Health Check Sequence 

SAMModule notifies the Service Adapter which Manager (Figure 21) that it should send heart 

beat messages to. The following sequence is followed by the Registered Service Adapter (RSA). 

 

Figure 21. RSA Health Check Sequence 

1. Checks if the associated RSA has sent a HEARTBEAT within the specified interval. If yes, 

sleep for a while and do 1 again. Else go to 2 

2.  Sends a GetCurrentManager message to the associated RSA to check if it is the RSA’s current 

owner. If RSA replies, go to 3. Else go to 4 

3.  If UUID of RSA’s current owner matches with this SAMModule, go to 3.1. Else go to 4. 
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3.1. Sends a HEARTBEAT message to the RSA and wait. If RSA replies within a time 

limit, sleep for a while and do 1 again. Else go to 4 

4.  Ask ResourceManager(RM) whether to release the RSA. 

5.  If RM knows that the RSA is up and running, go to 7. Else go to 6 

6.  Notifies the Manager that the associated RSA is unreachable. 

6.1. Sends a UPDATE_SA_STATUS message to the Registry, saying that the RSA is 

UNREACHABLE 

6.2. Registry performs status update 

7.  Re-register with the RSA by sending a HEARTBEAT to it. Sleep for a while and do 1 again 

4.1.3.4.6 Service Adapter Discovery 

System Health Check (see Figure 22) checks if every Service Adapter is associated with its 

Manager.  

1. SAFinderThread sends a FindSAToManageMessage to Registry. If persistent storage is used in 

the Registry, go to 1.1. Otherwise go to 1.2. 

1.1. Registry retrieves the information of a list of Registered Service Adapters from 

WSContextStore 

1.2. Registry replies with ServiceAdapterToManageMessage to the Manager if there is at 

least one SA which does not have an associated SAMModule. Status of the SA is set to 

MANAGED. At most one SA will be replied for each request. If there are no SA to 

manage, the Manager shutdowns itself. 

2. For each SA, the Manager creates a SAMModule which manages the SA. 

3. SAMModule creates a specific type of ResourceManager specified in the SA (in 

ServiceAdapterInfo), and starts the ResourceManager in a new Thread. For sensors, a 

SensorManager (ResourceManager for sensors) is instantiated 
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Figure 22. Message flow of service adapter discovery in a sensor grid 

4. A SensorClientAdapter is instantiated. The SAMModule of SensorManager is passed as 

message sender and the locator of the associated SA is set as message destination 

5. SAMModule starts a HeartBeatCheckerThread that periodically checks 1) if SA is up and 

running 2) if SA is still associated with this SAMModule (possibly taken control by other 

Managers) 

6. Sends a setHeartBeatLocator message to SA to associate the SA with this SAMModule and 

tells SA the locator of Manager which heart beat messages should be sent to. Afterwards, 

HeartBeatCheckerThread enters the loop of SA health check (please refer to Section 4.1.3.4.5 - 

Registered Service Adapter Health Check Sequence) 

7.  Sends a GetServicePolicyMessage to SAMModule, request for the policy of the associated 

resource (i.e., sensor) 

8.  Forwards the request to SensorManager by calling getServicePolicy() 

9.  Invokes the associated SensorClientAdapter’s getServicePolicy() 
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10. Sends a Wxf_Get message to the associated SensorServiceAdapter through SAMModule 

11. Wraps the message with ServiceSpecificMessage and forwards it to the associated 

ServiceAdapter 

12. Invokes processSOAPMessage of the associated SSA 

13. If SensorPolicy has been defined, serialize it with PolicyManager. Otherwise, just create an 

empty message 

14. If this is the first time SSA is assigned to a Manager, starts a SensorGridBroker which notifies 

SG of its presence 

15. Sends back a response message with the serialized policy (if any) 

16. Forwards the response to SAMModule 

17. Forwards the response to Manager 

18. Forwards the response to Registry 

19. Updates the policy of the SA to the corresponding RSA in Registry. If persistent storage is 

used, go to 19.1; otherwise, go to 19.2 

19.1. The RSA is stored in WSContextStore 

19.2. The RSA is stored in memory 

4.1.3.5 Deploying and Disconnecting sensors 

4.1.3.5.1 Deploying a GPS Sensor 

The message flow of deploying any sensors in a sensor grid is similar. For illustrative purposes, 

the message flow of deploying a GPS sensor is shown in Figure 23. 

1. User chooses a domain and clicks “deploy” 

2. UserUI creates a DeployDialog 

3. User defines the policies of the sensor and clicks “ok”. A ForkProcessMessage is sent    to the 

Registry to spawn a sensor client program 

4. The message is forwarded to BootstrapService 

5. The message is forwarded to ForkDaemon 

6. ForkDaemon starts the type of sensor client program according to policy defined. Suppose user 

needs a GPS sensor. ForkDaemon creates a GPSManager process 
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Figure 23. Deploying a GPS Sensor 

7. Creates an instance of SensorPolicy according to the type of sensor and classification. 

8. Creates an instance of SensorAdapter, passing in a SensorAdapterListener, 

SensorGridControlListener and SensorPolicy 

9. Creates an instance of SA with parameters 

“saType=cgl.hpsearch.sensor.SensorServiceAdapter” and 

“manType=cgl.hpsearch.sensor.SensorManager” 

10. Subscribes to the SA’s own NB topic. Instantiates a SensorServiceAdapter according to 

“saType” 

11. Sends a RegisterRenewMessage to the Registry 

12. If the SA is new to the Registry, it registers the SA, set SA’s status to REGISTERED and 

replies to the SA with the new instanceId. If the SA is already registered, renew the status of SA 

according to its instanceId  

13. Subscribes to a new NB topic according to the returned instanceId. Starts a new thread 

responsible for sending RegisterRenewMessage (heart beat) to the Registry. SA enters a state that 

keep tracking if NB connection is down. If yes, try to reconnect 
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14. GPSManager makes physical connection to the sensor, and starts a WatchDog which monitors 

the physical connection 

After the new SA is registered in the registry, the Normal Health Check Sequence for Managers 

(Stage 2) will discover the new SA is not yet managed. A Manager will be assigned to it. For 

details please refer to section 4.1.3.4.4.  

4.1.3.5.2 Disconnecting a Sensor 

There are two ways to disconnect a sensor. The first way is to terminate the Sensor Client 

Program explicitly. The second way is to do it through GB’s management console. The diagram 

provided at Figure 24 shows the message flow of disconnecting a sensor through GB’s 

management console. 

 

Figure 24. Disconnecting a sensor by using the Grid Builder management console 

 

1. User selects a sensor in GB’s management console and clicks “Stop.” UserUI invokes 

sendRunMessage() of UserTools 
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2. UserTools creates a RunServiceMessage with parameters indicating the message is for 

disconnecting a sensor. The message is sent to Registry 

3. Registry locates the Manager of the corresponding RegisteredServiceAdapter and forwards the 

message to it 

4. Manager locates the corresponding SAMModule responsible for managing the ServiceAdapter 

and forwards the message to it 

5. SAMModule forwards the message to the associated SensorManager 

6. SensorManager forwards the message to the associated SensorClientAdapter 

7. SensorClientAdapter sends a Wxf_Delete message to the associated SensorServiceAdapter 

through SAMModule 

8. Wraps the message with ServiceSpecificMessage and forwards it to the associated 

ServiceAdapter 

9. Invokes processSOAPMessage of the associated SSA 

10. SensorServiceAdapter stops the sensor through SSAL. 

11. An error report message is replied indicating if any error exists. 

12. Forwards the reply to SensorClientAdapter. 

13. Wraps the reply with a RunServiceResponse message, and sends it back to Registry through 

SAMModule. 

14. Forwards the response to Manager. 

15. Forwards the response to Registry. 

16. Registry does not do anything to the response. 

4.1.3.5.3 Deploying a Sensor using Container Service 

 

Sensor Container Management Services 

Prior to the implementation of Sensor Container Management Services (SCMS), every Sensor 

invoked used to live in its own Java Virtual Machine (JVM), hence there by consuming a lot of 

memory due to the overhead of individual “Run Times,” “Garbage Collectors,” etc. Due to 

limitation of system resources in a given Domain, the total number of Sensors that could be 

hosted/supported in a given Leaf Domain was limited by the degree of available system 
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resources and not by the capacity of the underlining Broker. This was leading to Broker 

starvation. The SCMS implementation worked towards eliminating this issue. The new SCMS 

Architecture Diagram, presented in Figure 25, shows the architecture that was implemented to 

address this issue. 

 

Figure 25. New SCMS Architecture Diagram 

To support a huge number of Sensors in a single domain, the research team looked towards 

possible use of inter-process communication, and came up with the Container managed services 

approach. Using this approach, a container provides space for multiple sensors to live and service 

within a single JVM process and thereby share a single JVM resources. This results in huge 

decrease in the consumption of system resources. The Flow Diagram presented in Figure 26 

shows the inner working of SCMS. These are also mentioned below: 

 SCMS is invoked using a script. 

 SCMS brings up the first Container and provides the service Lock to the same. 
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 Once the container holding up the Service Lock is filled out, the same container shuts 

down its external services and releases the Lock. 

 SCMS at that instance brings up another Container and provides the new container with 

the service lock. 

 At any given instance if a few sensors have been shut down from a given container, the 

container registers to obtain the Service Lock and the same is handed over to the 

requesting Container by the SCMS once the current container holding the Service Lock is 

filled up and releases the Lock. 

 SCMS also helps in cleaning up empty containers.  

 

Figure 26. Architecture of the Container Service 
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A sensor invoke request is generated either directly by a script or by the User Management tool 

via ForkDeamon for a given Domain. In either case, it forks a new process containing the Sensor 

Invoke Client code. The Sensor Invoke Client repeatedly sends a request to the Sensor Service 

hosted by the Locked in Container until it receives a success response. 

Once the Sensor Service receives the request it brings up a Sensor of a specific type requested 

within the container which holds the lock at that instance. Hence, multiple sensors could coexist 

within a single Container. 

4.1.4 Sensor Grid Design Discussion 

4.1.4.1 Overall Architecture of Sensor Grid and Related Modules 

The SG is the brokering module of SCMW connecting the sensors, application clients and GB. 

The overall architecture for the SG is shown in  

Figure 27. It serves two major functions: Message Brokering and Application Management. 

These are discussed next. 

4.1.4.1.1 Message Brokering 

Message Brokering enables the flow of messages among all parties including: 

1.  sensor data 

2.  sensor control messages 

3.  filtering requests and results 

4.  changes of sensor status 

5.  sensor policies 

The following modules are essential for communication among the parties. 

Application API 

All kinds of applications communicate with SCMW through the same API. The Application API 

(shown at the top of  

Figure 27) provides libraries for applications to: 

1.  access data and metadata of sensors 

2.  send control messages to sensors 
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3.  notify change of sensor status 

4.  send filter requests to SCMW 

 
 

Figure 27. Overall Architecture of Sensor Grid and related Modules 
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These actions are done with the help of the following modules in the API:  

Application Client Broker 

Interface (shown as part of Application API in  

Figure 27) used by application clients to send requests to SG, such as sending filter requests to 

SG and control messages to sensors (through SSAL). 

Sensor Change Listener 

Interface (shown as part of Application API in  

Figure 27) used by application clients to receive messages from SG such as sensor status change. 

Sensor Data Listener 

Interface (shown as part of Application API in  

Figure 27) used by application clients to receive data from sensors. 

To support different applications, Application API in  turn communicates with SCMW. For more 

detailed description of Application API, pleased refer to Section 4.1.2.5 above and section 

4.1.5.2. 

SSAL 

All sensors communicate with SCMW through SSAL (shown at the bottom of Figure 27). 

Remember each sensor has a corresponding SCP to communicate with SCMW. SSAL provides 

libraries for sensors to do the following through SCP: 

1.  publish data. 

2.  receive control messages. 

3.  receive stop request from SCMW. 

4.  subscribe to data of another sensor. 

5.  listen to status change of subscribed sensor. 

Not all kind of sensors have to use all the functions listed above. Remember, sensors can be 

further classified into normal sensors and Computational Service. In fact these two categories 
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utilize different subset of classes in SSAL. Some of the important modules of SSAL are listed 

and discussed below. Note: These are shown from left to right at the bottom of Figure 27. 

 

Sensor Adapter Listener 

An interface for listening to stop requests from SCMW. The SCP should terminate upon 

receiving the request. 

Sensor Data Listener 

An interface for listening to data from subscribed sensors. Used by Computational Service. 

Sensor Client Adapter 

An interface for publishing data. 

Sensor Grid Control Listener 

The Sensor Grid Control Listener is an interface which sensors listen to for message control. 

For more detailed description of SSAL please refer to Section 4.1.2.5 above.  

Sensor Change Listener 

The Sensor Change Listener is an interface for being notified when the subscribed sensor has any 

status change. Used by Computational Service. 

4.1.4.1.2 Application Management 

In SCMW, SG is responsible for maintaining the state of the whole system. For each deployed 

sensor and running application, SG caches down their presence and their relationships with one 

another.   Figure 28 below shows a scenario in which two applications and five sensors are 

connected to SG. The four tables show how SG maintains the state of the system, they include: 

A list of online sensors (Table S) 

SG maintains a list of online sensors which dynamically changes with the deployment status of 

the sensor. 

Application to sensor mapping (Table A_S) 

Each application needs a different set of online sensors according to its filtering criteria. This is 

to make sure that sensors which are not a concern of the application do not hold unnecessary 

resources. A table is maintained to remember this mapping. 
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Application to filter mapping (Table A_F) 

Each application has its own filter, which are the criteria that define which sensors are needed by 

the application. The filter can be modified by the application at any time. 

Sensor to sensor policy mapping (Table S_P) 

Sensor Policies defines the characteristics of sensors. It is defined by GB before deployment. The 

sensor policy is obtained from GB and cached whenever a sensor is being deployed. 

 

Figure 28. SG System Management 

4.1.4.2 Significant Classes 

4.1.4.2.1 Class Diagram 

The class diagram for the sensor grid, sensor and application client is show in  

Figure 29. The class descriptions for the classes shown in Figure 29 are provided in the next 

section. 
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Figure 29. Class Diagram of SG, Sensor and Application Client 
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4.1.4.2.2 Class Description 

This section provides brief description of important classes of SG and SSAL. 
 

Class name: ClientGridBroker 

Package name: com.anabas.sensorgrid.client 

Description: Part of the Application API. Provides the interface for external applications to 
communicate with SG and sensors. 

Important 

interface: 

setFilter(), sendControl(), subscribeSensorData(), unsubscribeSensorData() 

 

Class name: ClientGridChangeListener 

Package name: com.anabas.sensorgrid.client 

Description: Part of the Application API. Provides the interface for receiving sensor status change due 
to sensor deployment, disconnection and filtering 

Important 

interface: 

handleSensorInit(), handleSensorChange() 

 

Class name: SGClientView 

Package name: com.anabas.sensorgrid.session.sharedlet 

Description: Contains most of the application-client-side logic for the communication with SG and 
sensors, such as receiving sensor change, sending filter to SG and sending control 
messages to sensors. All NB topic and streams are handled here 

Important 

interface: 

setChangeListener(), startConnection(), subscribeSensorData(), 
unsubscribeSensorData(), setFilter(), sendControl() 

 

Class name: ClientGridDataListener 

Package name: com.anabas.sensorgrid.client 

Description: Part of the Application API, responsible for notifying the application on sensor data 
arrival. If the application clients wants to receive data from a particular sensor, it has to 
create a ClientGridDataListener for that sensor. Afterwards, the listener will be notified 
for data arrival 

Important 

interface: 

handleSensorData() 

 

Class name: SGSensorView 

Package name: com.anabas.sensorgrid.session.sharedlet 

Description: Contains most of the sensor-side logic for the communication with applications, such as 
publishing data and receiving control messages. All NB topics and streams are handled 
here 

 

 

Important 

interface: 

setControlListener(), publishData() 
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Class name: SensorGridBroker 

Package name: com.anabas.sensorgrid.sensor 

Description: Brokers communication between SSAL, SG and sensors. 
 

Important publishData(), close() 

interface: 
 

Class name: SensorClientGridBroker 

Package name: com.anabas.sensorgrid.sensorclient 

Description: Brokers communication between SSAL, SG and service  sensors.  
 

Important     
interface: 

publishData(), sendControl(), setFilter(), subscribeSensorData(), unsubscribeSensorData() 

 

Class name: SensorGridControlListener 

Package name: com.anabas.sensorgrid.sensor 

Description: Part of the SSAL. Provides the interface for receiving control messages 

Important 
interface: 

handleSensorControl() 

 

Class name: SensorAdapter 

Package name: com.anabas.sensor.sensoradapter 

Description: Part of SSAL. Provides the interface for sensors to publish data to     applications 

Important 
interface: 

publishData(), start(), close() 

 

Class name: SensorAdapterListener 

Package name: com.anabas.sensor.sensoradapter 

Description: Part of SSAL. Responsible for receiving termination commands from 

 GB 

Important 
interface: 

handleSensorConnectionLoss(), handleSensorStopRequest() 

 

Class name: FilterMonitor 

Package name: com.anabas.sensorgrid.session.sharedlet 

Description: Inner class of SensorManager responsible for periodic checkup to update the set of sensors for each 
application according to their corresponding filter 

Important None 

interface:                           
 

Class name: SensorManager 

Package name: com.anabas.sensorgrid.session.sharedlet 

Description: Part of SG. Contains the logic for managing all connected applications and sensors. Maintains 
HashSets and HashMaps to cache sensor policies, applications’ filters and sets of sensors mapped to 
each application. 

Important 

interface: 

addSensor(), removeSensor(), addClient(), startClient(), removeClient(), setFilter() 
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4.1.4.3 Important SG Features 

4.1.4.3.1 NB Data Flow and Topic Management 

Communication between applications, sensors and SG relies on NB for communication. This 

section provides a brief description of data flow between the three parties. 

Each sensor creates a topic for publishing data and a topic for subscribing control messages. 

When an application is notified by SG for a new sensor, it subscribes to the two topics of the 

corresponding sensor directly for receiving data and publishing control messages. 

For the communication between applications and SG, each application creates its own topic 

using its unique id for receiving sensor change notification. SG also creates a topic to receive 

filter requests from all applications. 

The list of message streams and the related NB topic are shown in Table 2. The message flow 

between the SG, sensors and applications is shown in  

Figure 30. 

Table 2. NB Message Stream and Topics 

Stream NB Topic 

T_SG application/x-sharedlet-sensorgrid/private 

T_CY application/x-sharedlet-sensorgrid/client/CY 

T_CX application/x-sharedlet-sensorgrid/client/CX 

T_S1_Data application/x-sharedlet-sensorgrid/sensordata/S1 

T_S1_Control application/x-sharedlet-sensorgrid/sensorcontrol/S1 

T_S2_Data application/x-sharedlet-sensorgrid/sensordata/S2 

T_S2_Control application/x-sharedlet-sensorgrid/sensorcontrol/S2 

 

4.1.4.4 Detailed Description 

In this section, message flow of various SG operations will be discussed at the Class level 

using UML collaboration diagrams. 
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Figure 30. Message flow between a Sensor Grid (SG), applications and sensors 

4.1.4.4.1 Sensor Grid Startup 

The Sensor Grid startup sequence for a perpetual session is shown in Figure 31Error! Not a 

valid bookmark self-reference..  The descriptions of the steps for this startup sequence are:  

1 An instance of SGSessionLogic is created by the framework 

2 An instance of SensorManager is created, which is responsible for handling sensor- 

application interaction 

3 An instance of GridBuilderBroker is created, which is responsible for obtaining 

 SensorPolicy from GB 

4 A thread is created to provide filtering for different application-clients every 5 

 seconds. 
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Figure 31. A Sensor Grid startup sequence 

4.1.4.4.2 Deploying a Sensor 

When deploying a sensor through the GB, a sequence of messages is invoked to enable the 

management of deployed sensors, as well as mechanisms to filter sensors based on sensor 

policies. The details of the message flow that occurs when a sensor is deployed through Grid 

Builder is illustrated in Figure 32. 

 
Figure 32. Message flow when deploying a sensor through the Grid Builder 
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A description of the sequence steps for this message flow is as follows: 

1. The sensor client program instantiates SensorAdapter when it is started by GB 

2. SA instantiates ServiceAdapter, which is later on managed by GB 

3. SA instantiates SensorServiceAdapter, which resides in SSAL for 

communication with SensorManager of GB 

4. SensorServiceAdapter instantiates SensorGridBroker, which communicates with  SG 

5. SensorGridBroker initializes all parameters needed for the sensor to join the Sensor Grid, 

including sensorId and system configuration, then instantiates AppletVCMain with all the 

parameters which tells the framework to prepare for a sensor client. It then sleeps for 5 

seconds. 

6. A SGSensorView is instantiated by the framework, which is responsible for message 

passing between application clients, sensors and SG. A unique NB stream is created 

for publishing sensor data and another one created for subscribing control messages. 

SensorGridBroker obtains a reference to SGSensorView from the framework and 

registers the SensorGridControlListener 

7. The framework notifies that a new sensor has joined through the SessionListener interface 

of SGSessionLogic (userJoined()). 

8. Invokes addSensor() of SensorManager. SensorManager caches the sensor in 

HashSet and its Policy in HashMap 

9. Asks GB for SensorPolicy of the sensor through the GridBuilderBroker  interface 

(getPolicy()) 

10. FilterMonitor Thread will notify all application-clients the presence of new sensor if it 

matches with the Filter.  

4.1.4.4.3 Periodic Filtering 

SG periodically checks the status of sensors and whether there are changes for each filter 

defined by applications. Figure 33 shows the message flow associated with sensor filtering. The 

description of the message flow steps is as follows: 

1.  Every 5 seconds, the FilterMonitor Thread performs a filtering sequence. For each 

registered application-clients, the corresponding Filter object is obtained from a 

HashMap. Invokes doFiltering() of SensorManager. 

2.  Send a request to GB acquiring a list of sensors which matches the filtering criteria 

defined by the Filter. 

3.  GridBuilderBroker returns a list of sensors fulfilling the criteria. 
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4.  Compare the list of returned sensors with the currently cached list of sensors for 

the application-client. Notifies the application-client all changes by sending a 

SENSOR_CHANGE message through a application-client specific NB stream. 

5.  Updates the cached list of online sensors in HashSet. Invokes handleSensorChange() of  the 

registered ClientGridChangeListener (Sensor Change Listener). 

6.  ClientGridChangeListener notifies application client of sensor change. Application 

client performs corresponding actions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 33. Sensor Grid message flow during periodic sensor filtering 

4.1.4.4.4 Application Client Joining a Sensor Grid (SG) 

When a sensor grid application client joins an SG, the message flow is as illustrated in 

Figure 34. Furthermore, a discussion of this message flow is as follows: 

1. The application-client which implements the ClientGridChangeListener (Sensor 

Change Listener) interface, instantiates an instance of ClientGridBroker 

(Application Client Broker) 

2. ClientGridBroker initializes all parameters needed for the application to join the 

Sensor Grid, including a generated client id which is unique to the system and 

client’s system configuration, then instantiates AppletVCMain with all the 

parameters which tells the framework to prepare for an application client. Sleeps 

for five seconds. 
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Figure 34. Message flow when an application joins a sensor grid 

3. Updates the cached list of online sensors in HashSet. Invokes handleSensorInit() 

of the registered ClientGridChangeListener. 

4. ClientGridChangeListener notifies application client of sensor change. 

Application client performs corresponding actions. 

5. A SGClientView is instantiated by the framework, which is responsible for 

message passing between application clients, sensors and Sensor Grid. A unique 

NB stream is created for subscribing messages from Sensor Grid (e.g., sensor 

change information). ClientGridBroker obtains a reference to SGClientView from 

the framework and registers the ClientGridChangeListener. 

6. The framework notifies that a new application client has joined through the 

SessionListener interface of SGSessionLogic (userJoined()). 

7. Invokes addClient() of SensorManager. SensorManager initializes NB streams for 

communication with application client. 

8. Registers application client’s ClientGridChangeListener. Invokes 

SGClientView’s startConnection(). 
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9. Sends a START_CLIENT message with its client id. 

10. Forwards the request to SensorManager. 

11. Creates a HashMap which maps the id of all online sensors to SGResource 

instances wrapping the policy and status of the sensors. 

12. Sends a INIT_SENSOR message to the client, containing the created HashMap. 

4.1.4.4.5 Sensor Publishing Data 

After a sensor is deployed in a sensor grid, a real-time stream of sensor data and metadata will 

be published to the sensor grid. The application clients which have subscribed to the live 

streams are notified of this data. The details of the message flow that occurs is illustrated in 

Figure 35. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 35. Message flow from deployed sensors to applications in a sensor grid 

The description of the message flow steps is as follows: 

1. SensorClient publishes data by calling publishData() of SensorAdapter 

2. SensorAdapter forwards the data to SensorServiceAdapter by calling publishData() 

3. SensorServiceAdapter forwards the data to SensorGridBroker by calling publishData() 

4. The data is forwarded to SGSensorView 

5. Broadcast the data through the unique NB stream for the sensor 

6. For ALL the SGClientViews which have subscribed to data from this sensor, the 

registered ClientGridDataListeners (Sensor Data Listener) is located. 

7. Each ClientGridDataListener found is notified of the data arrival by invoking 

handleSensorData(). 

8. Notifies the application for data arrival. 
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4.1.4.4.6 Subscribing Sensor Data 

Applications that implement the SCMW API could receive relevant live sensor streams in 

the sensor grid by subscribing to them. The message flow that occurs when an application 

receives a live data stream of a deployed sensor for which it has subscribed is shown below 

in Figure 36. 

 

 

 
 
 
 
 
 

Figure 36. Message flow from a sensor grid to a subscribing application 

The description of the message flow steps is as follows: 

1. After application client knows the presence of a sensor, it creates an instance of 

ClientGridDataListener (Sensor Data Listener) for the sensor 

2. Call subscribeSensorData() and provides the sensor id and ClientGridDataListener as 

parameter 

3. Forwards the call to SGClientView 

4. Register the ClientGridDataListener so that when sensor data arrives the listener will be 

notified. If this is the first request of subscribing data from this sensor, subscribes to the 

NB stream unique to the sensor 

4.1.4.4.7 Setting a Filter 

The design of SCMW supports filtering of sensor streams in a sensor grid to facilitate 

construction of UDOP for situational awareness. The message flow of an application setting up a 

filter query is shown in Figure 37. The description of the message flow steps is as follows: 

1. Application client instantiates a SensorFilter object according to application-specific 

filter criteria. 

2. Initiates a setFilter() request to ClientGridBroker, using the SensorFilter as parameter. 

3. Forwards the request to SGClientView. 

4. Sends a FILTER_MSG message to SG through NB, together with the SensorFilter object 

5. Pass the SensorFilter object to SensorManager. 
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6. Send a request to GB acquiring a list of sensors which matches the filtering criteria defined 

by the Filter. 

7. GridBuilderBroker returns a list of sensors fulfilling the criteria. 

8. Compare the list of returned sensors with the currently cached list of sensors for the 

application-client. Notifies the application-client of all changes by sending a 

SENSOR_CHANGE message through a application-client specific NB stream. 

9. Updates the cached list of online sensors in HashSet. Invokes handleSensorChange() of 

 the registered ClientGridChangeListener (Sensor Change Listener). 

10. ClientGridChangeListener notifies application client of sensor change. Application 

client performs corresponding actions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37. Message flow of filter setup in a sensor grid 

4.1.4.4.8 Sending Control to a Sensor 

Some sensors do not only send live streams to a sensor grid. They could receive control 

information from users or applications and respond with sensor information that corresponds to 

received control information. The message flow of an application sending a control message to a 

sensor is illustrated in Figure 38. The description of the message flow steps is as follows: 

1. Application client invokes sendControl() of ClientGridBroker with the specified sensor id 

and control message recognizable by the sensor 

2. Forwards the request to SGClientView 

3. Sends the SENSOR_CONTROL to the sensor through a unique NB stream for the sensor 

4. Forwards the control message to the registered SensorGridControlListener by 

handleSensorControl() 
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5. Notifies SensorClient that a control message is received. The sensor client performs the 

corresponding actions 

 

 

 

 

 

Figure 38. Message flow of control messages from applications to sensors in a sensor grid 

4.1.4.4.9 Disconnecting a Sensor 

To disconnect a sensor, one of the ways is to stop the sensor client program through GB’s 

management console. The diagram shown in Figure 39 presents the message flow of 

disconnecting a sensor this way. 

The description of the message flow steps is as follows: 

1. A disconnection request is received from GB (please refer to section 4.1.3.5.2 f o r  details). 

The processWxfDelete() of SensorServiceAdapter is invoked. 

2. Reports the running status of the associated sensor client program by sending a 

Wxf_DeleteResponse message to SensorServiceAdapter. If the sensor client program is 

running, go to 3. Otherwise, it does nothing and exits. 

3. Invokes close() of SensorGridBroker. 

4. Notifies the framework to dispose resource allocated to the sensor by calling 

allWindowsClosed() of AppletVCMain. 

5. Notifies the associated SensorAdapterListener to terminate the sensor client program  by 

calling handleSensorStopRequest(). 

6. SensorClient disconnect all connections and exits. 

7. The framework notifies SGSessionLogic that the sensor has disconnected by invoking 

userLeft(). 

8. Invokes removeSensor() of SensorManager. 

9. Removes the cached SensorPolicy and status for this sensor. For each application client, 

removes the sensor from the cached list of sensors associated with it, then notifies the 

application client by sending a SENSOR_CHANGE message through the unique NB stream 

for the client. 
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Figure 39. Message flow when disconnecting a deployed sensor from a sensor grid 

10. Updates the cached list of online sensors in HashSet. Invokes handleSensorChange() of the 

registered ClientGridChangeListener (Sensor Change Listener). 

11. ClientGridChangeListener notifies application client of sensor change. Application 

client performs corresponding actions. 

4.1.5 SCMW Application Program Interface (API) and Sensor Service Abstraction Layer 
(SSAL) 

4.1.5.1 Overview of the SCMW API 

The SCMW Application Program Interface (API) allows any third party application to connect 

and utilize functions provided by SCMW. A graphical depiction of the API is shown in  

Figure 40.  
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Figure 40. SCMW Application Programming Interface 

 

An application can do the following through the SCMW API: 

1. Obtain the policies and data of all sensors which are currently up and running 

2. Selectively subscribe to sensors with their policies fulfilling filtering criteria defined by the 

application 

3. Send control messages to sensors 

4. Dynamically be notified for new sensors which fulfill the filtering criteria, and for sensors 

which have been disconnected 

To use the SCMW API, an application has to instantiate an Application Client Broker 

(ClientGridBroker) and implement the Sensor Change Listener (ClientGridChangeListener) 

interface. Moreover, a Sensor Data Listener (ClientGridDataListener) has to be created for 

subscribing to the data stream of each sensor. 
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4.1.5.2 Sensor Service Abstraction Layer (SSAL) 

4.1.5.2.1 Overall Sensor Service Abstraction Layer Architecture 

The SSAL provides a common interface for all kinds of sensors. A high-level architecture view 

of the SSAL is shown in Figure 41. Sensor developers add new sensors to SCMW by writing an 

SCP which connects to SCMW through libraries in the SSAL. 

Internally, SSAL communicates with GB for sensor management (e.g., creation, registration, 

definition) and SG for run-time management (e.g., data publishing, receiving control messages). 

In SSAL, sensors are categorized into two categories: 

Normal Sensors – Sensors which take input from external environment. The input data is 

external to SCMW. 

Computational Service – Sensors which do not take input from the environment. Instead, they 

take output of other sensors as input, perform various computations on the data, and output the 

processed data finally 

  
Figure 41. A high-level architecture of the Sensor Service Abstraction Layer (SSAL) 
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Functionally, the two different categories of sensors are supported by two different sets of classes 

in SSAL. Some classes are shared between the two categories for common function. 

4.1.5.2.2 SSAL Architecture for General Sensor Services 

Figure 42 shows the SSAL architecture for general sensors to be wrapped and deployed as 

sensor services. The following subsections explain the message flow for some basic operations. 

 
Figure 42. A detailed SSAL architecture for general sensor services 
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4.1.5.2.2.1 Sensor Deployment 

To deploy a sensor, the corresponding SCP has to instantiate an SA which, in turn, notifies 

SCMW of its presence and data publishing. It also has to implement a Sensor Control Listener 

(for receiving control messages) and a Sensor Adapter Listener (for actions such as terminating 

SCP). The SCP can either be started by a manner decided by the sensor developer (e.g., run a .bat 

script), or it can be embedded in SCMW so that it can be started by GB’s Management Console.  

4.1.5.2.2.2 Data Publishing 

SCP is responsible for collecting data from the sensor, and then publishing it through the SA. SA, 

in turn, forwards the data to the corresponding SSA, and finally to all applications that have 

subscribed to its data.  

4.1.5.2.2.3 Performing Actions on Sensor Client Program 

Sometimes the user may want to perform some actions remotely on the SCP, such as pausing or 

terminating the SCP. SCP listens for these actions through the Sensor Adapter Listener. 

Currently, there is only one action supported by SCMW – terminating the SCP. 

4.1.5.2.3 SSAL Architecture for Computation as a Sensor Service 

Architecturally SSAL for Computational Service combines SSAL for normal sensors and SCMW 

API since it needs functionalities from both sides. Figure 43 shows SSAL for Computational 

Service. As shown, components of the SCMW API are integrated with components of the 

original SSAL and some new modules to form the SSAL for Computation as a Sensor Service. 

The extension of SSAL to cover computation as a sensor service significantly broadens the 

applicability of the Sensor- Centric Grid of Grids and eases the integration of new or legacy 

system of systems with sensor-centric applications. 

The following subsections explain the message flow for some operations of Computational 

Services. 

4.1.5.2.3.1 Sensor Deployment 

To deploy a Computational Service, the corresponding SCP has to instantiate a Sensor Client 

Adapter which notifies SCMW of its presence and of various sensor related operations such as 

data publishing, subscribing data from source sensors and sending control messages to source 

sensors. It also has to implement a Sensor Control Listener (for receiving control messages) and a 

Sensor Adapter Listener (for actions such as terminating SCP) as what normal sensors do. 
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Figure 43. A detailed SSAL architecture for computation as a sensor service 
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4.1.5.2.3.2 Subscribe Sensor Data 

Since Computational Services take input from other sensors (source sensor), they have to 

subscribe data from other sensors in a similar way to applications. To subscribe data, the SCP of 

a Computational Service has to invoke functions of Sensor Client Adapter which in turn setup the 

connections. SCP has to implement the Sensor Change Listener and Sensor Data Listener 

interfaces. Whenever the state of source sensor changes (e.g., online to offline) the SCP will be 

notified through Sensor Change Listener. Similarly SCP will be notified for data arrival through 

Sensor Data Listener. 

While the previous sections (4.1.1 through 4.1.5) describe the results and accomplishments 

associated with the Sensor Cloud implementation, the following sections (4.1.6 through 4.1.8) 

describe the R&D related to the baseline SCGMMS enhancements that supported the sensor 

cloud implementation. 

4.1.6 Core SCGMMS Enhancement 

4.1.6.1 Interim Standalone Rich-Client  

The initial AFRL SBIR Phase I and Phase II efforts “Grid of Grids for Information 

Management” and “Net-centric Sensor Grids” resulted in the design and development of a 

research prototype for SCGMMS with a UDOP and a Community Collaboration Grid Building 

Tool.  

The original demonstration client software for the collaborative sensor grid application 

developed to prove the concept of SCGMMS was based on Anabas proprietary collaboration 

technology, interfaces and software. To support IU, that led a major subtask to enhance the core 

SCGMMS, Anabas initiated an effort to isolate the dependency of the former demonstration 

client on Anabas proprietary collaboration technology, interfaces and software; and developed an 

interim, standalone, rich-client for sensor grid demonstration that uses the SCGMMS but not the 

Anabas proprietary collaboration technology and interfaces. There were two objectives 

associated with this de-coupling effort. One was to reduce code complexity for IU by removing 

certain code that was incorporated for the purposes of demonstration but not needed for core 

SCGMMS and its further enhancement. The other objective was to maintain exactly the same 

look-and-feel, graphical user-interfaces and layout, and SCGMMS demonstrable features, 

including the initial support of UDOP, sensor filtering and hierarchical sensors, in the interim, 

standalone, rich-client so that there was a demonstration client available throughout the research. 
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4.1.6.2 Sensor Streams Support for Web Clients  

To augment rich SCGMMS clients like the original standalone demonstration application which 

illustrates some level of support for sophisticated features like UDOP and sensor property 

filtering; agile, light-weight Web clients running on mobile platforms (like tablets or 

smartphones) was an important class of devices to be supported. For this purpose the research 

team developed an illustrative support for Asynchronous JavaScript and XML (AJAX)-based 

Web client interactions with SCGMMS sensor services as a preliminary demonstration of one 

way to add such capability in the context of SCGMMS and associated sensor APIs. This was 

done to serve as an example for IU regarding how Web servers could be integrated with 

SCGMMS. 

AJAX is the use of the XML HTTP Request objects to communicate with server-side scripts. 

AJAX can send as well as receive information in a variety of formats, including JavaScript 

Object Notation (JSON), XML, Hypertext Mark-up Language (HTML), and even text files. 

AJAX’s most appealing characteristic, however, is its “asynchronous” nature. It enables clients 

to asynchronously poll for server-side events. By polling, server events can be queued and 

delivered to the browser on each poll interval, which emulates server initiated communications 

and provides real-time message delivery within the bounds of the poll interval. 

Comet, which is also known as AJAX Push or Reverse AJAX, introduces techniques that depart 

from the HTTP communications model by enabling a “push”-style of communications over 

HTTP. Comet defines several techniques that allow the server to send information to the browser 

without prompting from a client. With the help of an additional HTTP connection, Comet can 

even facilitate bi-directional communications over two HTTP connections. Comet attempts to 

deliver “push” communications by maintaining a persistent connection or long-lived HTTP 

request between the server and the browser. This connection allows the server to send events, 

initiated by the client to the browser. Upstream requests can be issued by the browser to the 

server, and made over an additional HTTP connection. Thus, Comet can facilitate bi-directional 

communications over two HTTP connections. However, the maintenance of these two 

connections introduces overhead in terms of resource consumption on the server. 

For the purpose of illustrating a viable architecture for integrating Web servers with SCGMMS, 

researchers chose to extend a Comet-capable Web Server, using the Apache Tomcat Comet 

module, as a sensor application. An AJAX client that could receive GPS sensor streams was 

developed to verify the approach successfully.  In the preliminary illustrative implementation, 

researchers developed sensor stream retrieval but not control data communication. The code was 

submitted to IU as a sample implementation. 
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4.1.7 Collaborative Sensor-Centric Grid Framework 

In order to generate and measure collaborative sensor-centric grid application traffic on 

distributed clouds, researchers first needed tools to build a sensor-centric grid, and to deploy and 

manage sensors. Instead of developing new tools and technology for building a sensor-centric 

grid and deploying and managing sensors, the team reused some of those capabilities developed 

for an earlier project, namely a collaborative sensor-centric grid framework [9]. The framework 

supports the integration of a sensor-centric grid with collaboration and other grids, and provides 

a sensor interface and sensor-centric application interface. The framework also includes GB, a 

grid builder tool, for building, deploying, discovering and managing grid services and local and 

remote sensors.  

GB follows the idea of constructing grids of grids, which assembles a multitude of subgrids into 

a mission-specific grid application.  GB is a sensor management module which provides services 

for (a) defining sensor properties, (b) deploying sensors according to defined properties, (c) 

monitoring deployment status of sensors, (d) remote management irrespective of the locations of 

deployed sensors, and (e) distributed management irrespective of the location of the 

operator/user. Sensor streams are being shared in real-time with any sensor-centric applications 

that are developed using the API provided by the framework. A deployed sensor-centric grid 

communicates with (a) deployed sensors irrespective of sensor locations, (b) deployed sensor-

centric applications irrespective of application locations, and (c) Grid Builder to mediate the 

collaboration among these three modules. In this framework, a primary function of a sensor-

centric grid is to manage and broker message flows for sensor data and controls. 

A typical scenario of a collaborative sensor-centric application using the framework 

encompasses a global deployment of a large number of sensors of different types. Each sensor 

(for examples, video, GPS, video/audio, sound, light, temperature, gyroscope, ultrasonic, or 

RFID) gathers data from its environment and publishes it in real-time to a sensor-centric grid via 

a sensor adapter architecture. Some types of sensors can subscribe to other sensors’ published 

data in the sensor-centric grid and provide filtering services, the results of which are published to 

the sensor-centric grid like any other sensors. A collaborative sensor-centric application provides 

the application logic and user-interface to orchestrate and manage real-time collaboration among 

only those sensors of interest for timely decision-support. 

A demonstrative illustration of a sensor-centric application over the public Internet for 

collaborative, real-time sensor control and video motion detection was described in [9]. The 

demonstrative scenario involved the deployment of sensors in California, Indiana and Hong 

Kong. We summarily depict the scenario as shown in Figure 44 and Figure 45. Figure 44 shows 
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some sensors and a robot with the sensor payload deployed in Hong Kong for a collaborative 

sensor-centric application demo, where one of the sensors is a Lego NXT Tribot. Figure 45 

shows a snapshot of the Hong Kong-deployed Tribot being controlled in real-time by a 

California-deployed WiiMote (Wii remote control) sensor. The sensor data is superimposed with 

the live filtering of the video stream from the Hong Kong-deployed webcam sensor by the 

Indiana-deployed software-based video motion detection sensor, which draws a bounding box 

around the area where motion is detected. 

 

Figure 44. Collaborative Sensor-Centric Application Demo 

 

Figure 45. Real-Time Collaborative Tribot Control and Motion Sensing 



Distribution authorized to Department of Defense and U.S. DoD contractors only. 
Data subject to restrictions on cover and notice page. 

79 

To lay the foundation for implementing a sensor cloud, another aspect of this research examined 

heterogeneous and distributed clouds running on commercial Amazon EC2 clouds, FutureGrid 

cyber-infrastructure, and private clouds. The research team developed another sensor-centric 

application using the framework. Researchers also ported GB to FutureGrid which enabled them 

to build a sensor-centric grid, deploy sensors and sensor-centric applications to generate, 

measure and analyze specific application-level performance on FutureGrid distributed clouds.  

This phase of the Sensor Grid research has been very valuable in laying the foundation to 

building a robust functioning sensor grid that incorporates various aspects of trustworthiness. 

Some practical achievements were made with working with the sensor grid middleware and key 

feedback to the middleware developers was used to make significant improvements in the 

mobility and portability of the sensor grid middleware interface for more efficient operation on 

mobile devices such as smartphones, mobile and stationary sensors, small portable processors 

(e.g., GumStix), etc. The next section describes some of the accomplishments related to porting 

GB to Future Grid. Some of the members of the AMSA TO4 research team were also part of the 

FutureGrid research team. This relationship facilitated the use of FutureGrid for experiments 

related to porting the Sensor Grid Middleware to FutureGrid for the sensor cloud experiment. 

4.1.8 Cloud Infrastructure for Sensor Grids 

4.1.8.1 FutureGrid– A National Cloud Infrastructure 

FutureGrid [2] is a part of the TeraGrid [13].  The aim of FutureGrid is to support the 

development of new system software and applications that can be simulated in order to 

accelerate the adoption of new technologies in scientific computing. The project has several 

computing clusters at different locations with a sophisticated virtual machine and workflow-

based simulation environment to support research on cloud computing, multicore computing, 

new algorithms and software paradigms. 

Unlike production cloud systems like the Amazon EC2, Microsoft Azure or Google App Engines 

for commercial applications, or TeraGrid for scientific computing, FutureGrid, by contrast, is 

oriented towards developing tools and technologies rather than providing production 

computational capacity [14]. 

FutureGrid is an infrastructure comprising currently approximately 4,000 cores at six sites - 

Indiana University (11 Teraflop IBM 1024 cores, 7 Teraflop Cray 684 cores, 5 Teraflop Disk 

Rich 512 cores), University of Chicago (7 Teraflop IBM 672 cores), University of California San 

Diego Supercomputing Center (7 Teraflop IBM 672 cores), University of Florida (3 Teraflop 

IBM 256 cores), Purdue University (4 Teraflop Dell 384 cores) and Texas Advanced Computing 
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Center (8 Teraflop Dell 768 cores) - connected by a high-speed, network which is dedicated 

except for a public link the to Texas Advanced Computing Center. It is an experimental testbed 

that could support large-scale research on distributed and parallel systems, algorithms, 

middleware and applications. Figure 46 shows the connectivity of the six sites. 

 

Figure 46. FutureGrid Connectivity and Capacity (courtesy of FutureGrid) 

FutureGrid includes services accessible to users to run High Performance Computing (HPC) jobs 

such as MPI or OpenMP. It also supports several Grid and Cloud environments including the 

Eucalyptus and Nimbus Clouds.  

Eucalyptus [15, 16] is an open source software platform that implements an Infrastructure-as-a-

Service (IaaS)-style cloud computing. Eucalyptus provides an Amazon Web Services (AWS)-

compliant, EC2-based web service interface for interacting with the cloud service. Additionally, 

Eucalyptus provides Walrus, an AWS storage-compliant service, and a user interface for 

managing users and images.  

Nimbus is an open source toolkit that allows one to turn a cluster into an IaaS cloud [17]. 

Nimbus on FutureGrid allows users to run virtual machines on FutureGrid hardware. A Nimbus 

account user can easily upload custom-built virtual machine (VM) image or customize an image 

provided by FutureGrid. When a VM is booted, it is assigned a public Internet Protocol (IP) 

address (and/or an optional private address). The VM is accessible by logging in as root via 
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Secure Shell (SSH). Users can then run a service, perform computations, or configure the system 

as desired. After using and configuring the VM, the modified VM image can be saved to the 

Nimbus image repository. 

4.1.8.2 Amazon EC2 Cloud– A Global Commercial Cloud Infrastructure 

Amazon EC2 is a Web service that delivers resizable, scalable, pay-as-you-go compute capacity 

in the cloud. It is a central part of the commercial AWS cloud computing platform. The Amazon 

EC2 uses Xen for its underlying virtualization technology. In August 2008, the Amazon EC2 

was released as full product for public release. It is the first commercial cloud infrastructure 

provider in the industry. 

Amazon EC2 uses data centers in several countries, thus, providing some level of location 

optimization and fault-tolerance possibilities to its users. Except in the U.S. where Amazon EC2 

has 3 data centers – US West (North California), US West (Oregon), US East (Virginia), there is 

also one data center each in Asia Pacific (Tokyo, Japan), Asia Pacific (Singapore), South 

America (Sao Paulo, Brazil) and Europe East (Dublin, Ireland). Anabas completed cloud 

characterization experiments for this research effort in US West (North California), EU East 

(Ireland), Asia Pacific (Japan), Asia Pacific (Singapore) and South America (Brazil). The 

Amazon EC2 is an evolving infrastructure, yet it is the most mature commercial offering that has 

a Web-scale global coverage.  

Experiments on characterizing performance, reliability and scalability in a globally distributed 

configuration help to improve understanding of potential issues on how globally deployed sensor 

grids may perform in real-world settings. 

4.1.8.3 Private clouds– Single Organization-owned Cloud Infrastructure 

There are roles for both a private cloud, which is managed and owned by an organization for its 

own use, and a public cloud, which is a shared infrastructure operated by other enterprises or 

providers. For many organizations a major advantage of using private cloud over public cloud is 

the ability to maintain the control and implementation of security and compliance solutions that 

augment current cloud capabilities of other cloud solution providers. Private clouds could be 

deployed as on-premise to gain maximum control of security, or in data centers using dedicated 

resources. 

There is no existing single open standard or a de-facto standard for building a private cloud 

computing platform. The Amazon AWS API is a market leader in the real-world production-

level deployment. Compatibility to the Amazon AWS API is an important consideration for 
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portability. OpenStack, developed and open sourced by NASA and Rackspace, has been adopted 

by IBM and HP for enterprise business cloud initiatives. OpenStack is experiencing increased 

visibility in the cloud developers and users communities. While VMware is an industry leader in 

virtualization software, HP’s private cloud solution favors the use of Kernel-based Virtual 

Machine hypervisor for virtualization. Citrix is pushing CloudStack within the Apache Software 

Foundation to establish Xen as the virtualization technology of choice on top of its support of 

OpenStack as an IaaS technology. On the other hand, Rackspace’s private cloud solution uses 

OpenStack as the cloud operating system and VMware for virtualization. Eucalyptus is another 

IaaS software that support building public and private clouds. Eucalyptus (standing for Elastic 

Utility Computing Architecture Linking Your Programs To Useful Systems) was once the 

default cloud module for Ubuntu Linux. Since mid-2011 OpenStack has replaced Eucalyptus as 

the default cloud module for Ubuntu. 

4.1.8.4 Hybrid Cloud on Heterogeneous Cloud Technologies 

Each organization has different combination and level of operation requirements such as 

security, scalability, and QoS for its overall IT needs. Where the use of cloud solutions is 

appropriate these requirements could be best served by leveraging private cloud, community 

cloud, public cloud or some combinations of them. Private cloud is an infrastructure solely 

operated by or for a single organization. Community cloud is a shared infrastructure among 

several organizations, coming from specific community of interest and with common goals or 

concerns. Public cloud is generally the Web-scale commercial cloud infrastructure operated for 

and use by the public under commercial terms.  

A hybrid cloud is a composition of multiple clouds that remain unique entities but are integrated 

together at some levels to meet particular operation requirements of organizations. The concept 

of a hybrid cloud is starting to establish itself as the de-facto enterprise cloud computing model 

in which some form of private clouds, community clouds, and public clouds will be leveraged 

together with traditional IT resources.  

The team’s research focus was on measuring the characteristics of hybrid clouds that uses a 

plethora of heterogeneous cloud technologies for SCGMMS-type of applications. 

4.1.8.5 Cloud Experiments 

Without loss of generality for the objectives of the research the team chose to perform the cloud 

experiments on the national-scale FutureGrid as a community cloud, Web-scale Amazon EC2 as 

a public cloud, and a small organization-scale OpenStack-based infrastructure as a private cloud. 
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Experiments were performed on each of the cloud choices as well as some configuration of inter-

clouds to form scenarios of a hybrid cloud.  

To ensure acceptable precision of timing measurements in a distributed environment, the team 

used the network time protocol (NTP) date command to synchronize the cloud instances 

launched in the experiments with a time server in Chicago. In a Linux environment, which is the 

case for these experiments, the use of the NTP algorithm can usually maintain time 

synchronization to within 10 milliseconds over the public Internet. 

For network-level measurement, the team used the ping [18] and iperf [19] commands, both are 

commonly used by network administrators to monitor network characteristics. Ping is used to 

test the reachability of a host on an IP network and measure round-trip transmission time for 

Internet Control Message Protocol (ICMP) echo request packets to and an ICMP response from 

the target host. In the process ping records any packet loss. Iperf is used to create TCP and UDP 

data streams, and measure network throughput.   

For transport-level measurement, the team used NB messages modeled after typical multipoint 

video conferencing traffic. NB servers work as an overlay transport layer to applications by 

taking care of all the communication among nodes composing the application using it  NB is a 

middleware working as a glue connecting remote parts of a distributed application. 

For application-level traffic generation and data gathering, the team used the collaborative 

sensor-centric grid framework and the grid builder tool. To investigate scalability issues, it was 

not practical to deploy real sensors in a large scale. Instead, the team deployed virtual sensors.  

The collaborative sensor-centric grid framework supports development and deployment of real 

and/or virtual sensors. As an initial study on a multi-point distributed cloud, the team deployed 

virtual GPS sensors only, even though they had developed virtual sensors for RFID and 

WiiMote. 

4.1.8.5.1 FutureGrid As A Representative Community Cloud 

In the study, the team used up to four clouds on FutureGrid. The clouds that were used were the 

Hotel (in University of Chicago running Nimbus), Foxtrot (in University of Florida running 

Nimbus), India (in Indiana University running Eucalyptus) and Sierra (in San Diego 

Supercomputing Center running Eucalyptus). The distributed clouds scenario setup either 

involves pairs of clouds or a group of four clouds. The team chose m1.xlarge instances in the 

Eucalyptus cloud (each m1.xlarge instance is approximately equivalent to a 2-core Intel Xeon 

X5570 with 12 GB RAM) and 2 cores with 12 GB RAM in Nimbus. The selection of m1.xlarge 
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VM in Eucalyptus is to ensure the Eucalyptus VMs were used for heterogeneous distributed 

cloud experiments were about the same level of computing resource as those in Nimbus. 

4.1.8.5.1.1 FutureGrid Network-Level Measurement 

The team ran two types of experiments. They were (a) single-pair of cloud instances, one 

instance on each cloud, using iperf for measuring bi-directional throughput between all 2-

combination distributed clouds of the set of four clouds selected (Hotel, Foxtrot, India, and 

Sierra); and (b) single-pair of cloud instances, one instance on each cloud, using the ping 

command together with the iperf command for measuring packet loss and round-trip latency 

under loaded and unloaded network between all 2-combination of the set of four clouds selected. 

Figure 47 shows measured total bi-directional throughput using a range of one to sixty-four iperf 

connections for all 2-combination distributed clouds of the set of four selected clouds. The 

legend of Figure 47 shows all six combinations of 2-combination distributed clouds in the setup. 

 

Figure 47. Throughput Between Distributed Clouds. 
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While the maximum bi-directional throughput between any 2-combination ranges from 900 

Mbps (on Sierra/Foxtrot pair) to 1,400 Mbps (on India/Hotel pair), the team found the total iperf 

throughput in FutureGrid was over 800 Mbps when they connected any pair of cloud instances 

on distinct clouds with more than 16 connections in each direction. 

The team used the ping tool to measure network latency and packet loss between two clouds. 

Figure 47 shows the throughput between any two clouds in the experiments either levels off or 

start to level off at 32 iperf connections for all but the connection between India and Hotel.  

For comprehensiveness, the number of iperf connections should be increased up to the point the 

network is saturated to explore the elasticity of the current state of the FutureGrid network. The 

team used iperf with 32 connections only to generate relatively heavy traffic of a loaded network 

for their initial study. They reported measured network latency and packet loss in the 

connections between all 2-combination distributed clouds for both loaded and unloaded 

networks. 

The results (see Table 3) show ping packet loss rates in unloaded network for all the 2-

combination of clouds were 0%; while the highest ping packet loss rate was 0.67% between the 

India/Hotel pair. The results indicate a highly reliable FutureGrid network under the 

experimental conditions. 

Table 3. Inter-cloud Ping Packet Loss Rate 

Instance Pair Unloaded Packet Loss Rate Loaded Packet Loss Rate 

India-Sierra 0% 0.33% 

India-Hotel 0% 0.67% 

India-Foxtrot 0% 0% 

Sierra-Hotel 0% 0.33% 

Sierra-Foxtrot 0% 0% 

Hotel-Foxtrot 0% 0.33% 

 

For baseline information, the team measured ping round-trip latency between 2 cloud instances 

on Sierra for the unloaded case and loaded cases with 16 and 32 connections before conducting 
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the same experiment on distributed clouds. They found latencies for the unloaded and the two 

loaded cases between two virtual machines communicating on the same cloud no higher than 

1.18 milliseconds. Thus, they reasonably assumed for the ping experiments on distributed clouds 

the measured round-trip latencies were mainly due to the distance between clouds. Virtual 

machine overhead was negligible in these experiments. 

Ping round-trip latency for all six combinations of pairs of clouds was measured. The team found 

the lowest average round-trip latency of about 18 milliseconds between India and Hotel in a 

loaded condition (see Figure 48). India and Hotel had the shortest distance between any two of 

the four clouds; and thus, was expected to show the lowest round-trip latency. 

The team observed the highest ping round-trip latency in a loaded network condition was about 

145 milliseconds on the Sierra and Foxtrot connection (see Figure 49). Although the inter-cloud 

latency between Sierra and Foxtrot was the highest due to its longest distance between any two 

of the four selected clouds, the team noted that a round-trip latency below 300 milliseconds still 

met a requirement for acceptable quality of service for collaboration applications with stringent 

network requirement like that of VoIP [19]. 

Overall, the limited initial results indicated that FutureGrid can sustain at least near 1 Gbps inter-

cloud throughput and is a reliable network with low packet loss rate. 

 

Figure 48. Ping Round-trip Latency between India and Hotel 
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Figure 49. Ping Round-Trip Latency Between Sierra and Foxtrot 

4.1.8.5.1.2 FutureGrid Message-Level Measurement 

In one set of experiments, extensive measurements were taken to evaluate the performance, 

stability and reliability characteristics for an increasingly larger collaboration session by 

injecting NB messages. The team selected the Foxtrot and Hotel, both running Nimbus 

environment, for the 2-cloud distributed experiments. An NB instance ran on Foxtrot. Simulated 

multiple meetings with groups of 20 participants were run on Hotel.  

Even though there was an actual multipoint video conferencing application in the Impromptu 

conferencing suite that could have been used to generate real video traffic, it is easier and more 

practical to scale the number of users/participants at the message-level using NB clients than at 

the application level using real cameras and people for modeling a large-scale video session. 

Figure 50 shows latency data on the inter-cloud connection between Foxtrot and Hotel. The 

average latency incurred in a single meeting with up to about 2,400 participants was below 50 

milliseconds. Average latency jumped rapidly when the number of participants in a single 

meeting was more than 2,400. However, if a large meeting was divided into multiple smaller 

ones, the team found that distributed clouds could sustain a higher aggregate total number of 

participants. In these experiments, the team found the average latency could be maintained below 

50 milliseconds with 150 meetings, each of which had 20 participants; that is, a total of 3,000 

participants.  
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The average latency result indicated that multiple smaller meetings balance the work of a NB 

broker better. Also reflected from the experiments was that there is message backlog on a single 

broker when there were more than 2,400 participants in a single meeting or 3,000 participants in 

multiple meetings. When there is message backlog on a message broker, latency will increase 

rapidly. Of course NB can support multiple distributed brokers to control a collaboration or 

sensor network, so limits shown in Figure 50 represent limits of a single broker and not of the 

system. Clouds are attractive as they support the auto-scaling needed to add brokers on demand. 

 

Figure 50. Average Latencies of Single and Multiple Video Meetings 

 

Overall, these limited initial results of message-based experiments indicated that FutureGrid can 

sustain a throughput close to its implemented capacity of 1 Gbps between Foxtrot and Hotel. The 

multiple meetings experiment also showed that clouds can support publish-subscribe brokers 

effectively. Note the limit of around 3000 clients in Figure 50 was reported as 800 in earlier 

work [5]; this showed that any degradation in server performance from using clouds is more than 

compensated by improved server performance. 
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4.1.8.5.1.3 SCGMMS Application-level Measurement 

In this section, the report discusses measurements of the scalability of multipoint distributed 

clouds on FutureGrid for collaborative sensor-centric applications. While a main objective of the 

research plan was to quantify the central processing unit (CPU), memory and communication 

requirements of a broad class of naturally distributed and highly scalable collaborative sensor-

centric grid applications on the underlying distributed cloud architectures, the our initial 

observations of one such application, namely the collaborative sensor-centric grid framework 

[3], running on several distributed cloud scenarios on FutureGrid infrastructure is discussed here.  

The team developed and used virtual GPS sensors that they modeled after real GPS sensors. 

These are functional virtual sensors with reasonable design but their implementations were not 

optimized in any way. Each virtual GPS sensor streams information to the sensor-centric grid at 

a rate of 1 message per second. A sensor-centric grid application consumed all the sensor streams 

and computed message latency and jitter for a range of deployed sensors. 

The research team first established a performance baseline by deploying as many virtual GPS 

sensors as possible in one cloud instance without hitting any critical bottlenecks in CPU or 

RAM. When they deployed 100 virtual GPS sensors in an instance in the India cloud,  the team 

observed the sensors continued running even though both idle CPU and unused RAM were at a 

critically low level, with idle CPU at 7% and unused RAM at 1 GB. Since the primary focus was 

on distributed cloud communication characteristics for scalable collaborative real-time sensor-

centric applications, the team wanted to avoid running into CPU or RAM bottlenecks in the 

scalability experiment.  When the number of deployed sensors in a single cloud instance was 

lowered to 60, the team observed idle CPU at about the 35% level. 

The team conducted 2 different experiments. They were (a) establishing a baseline measurement 

within a single instance in one cloud only by deploying as many virtual sensors as possible; and 

(b) measurements of the communication characteristics by deploying up to 50 virtual GPS 

sensors in a single instance in each of the four selected clouds; that is, a total of up to 200 virtual 

GPS sensors were deployed in the experiment. 

There were three important observations related to scalability that could be made. Firstly, as 

shown in Figure 51, in the case of using a single instance in one cloud only for deploying 

sensors, the maximum number of virtual GPS sensors that could be stretched in a deployment 

was 100, but the instance shows a critically high CPU and RAM utilization. Such low levels of 

unused resources in an instance had a high risk of running out of resources and becoming 

unstable.  In the case of running a single instance in each of the four selected distributed clouds, 
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the team observes a much lower level of resource utility.   This provided a more stable and 

suitable environment for long running simulations. 

 

Figure 51. Comparing Average Latency of a Single Cloud and 4-point Distributed Cloud 

 

Secondly, even though the case of using a single instance on a single cloud could have been 

pushed to deploy 100 virtual GPS sensors, the average latency started to grow rapidly after 

deploying 60 sensors. At the level of 80 deployed sensors, the average latency was higher than 

that of the case of the 4-point distributed cloud at the level of 200 deployed sensors. The team 

noticed that in the distributed case, the average latency was relatively constant and sufficiently 

low, even for demanding network applications like VoIP [18], and with small variations only 

when sensor deployment was scaled up from 20 to 200. Thirdly, a similar pattern was observed 

in the comparison of the average jitter for the two cases (see Figure 52). In the case of sensor 

deployment in a single instance in one cloud only, average jitter was low until after deploying 60 

sensors. At the level of 80 deployed sensors, the average jitter was already higher than that of the 

distributed case for 200 deployed sensors. 

Overall, the limited initial results indicated that distributed clouds have an encouraging potential 

to support scalable collaborative sensor-centric applications that have stringent throughput, 

latency, jitter and reliability requirements. 
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Figure 52. Comparing Average Jitter of a Single Cloud and 4-point Distributed Cloud 

4.1.8.5.2 Amazon EC2 as a Representative Public Cloud 

The Amazon EC2 cloud includes several regions and zones in different countries and continents. 

Experiments were performed on acombination of regions and zones to represent international 

and inter-continental scales. 

4.1.8.5.2.1 Amazon EC2 Network-Level Measurement 

For baseline information, the team measured ping round-trip latency, packet loss and jitter 

between clouds in different regions. They selected EC2 clouds in US-West (North California), 

Asia Pacific (Tokyo, Japan), Asia Pacific (Singapore), South America (Sao Paulo, Brazil) and 

EU East (Dublin, Ireland). Figure 53 is an illustration of the pair-wise cloud connectivity map 

that was used for the runs. Five pairs of EC2 cloud regions were selected to give a Web-scale 

perspective forthe experiments. The five pairs were North California (U.S.A.) and Tokyo 

(Japan); Tokyo (Japan) and Singapore; Singapore and Sao Paulo (Brazil); Sao Paulo (Brazil) and 

Dublin (Ireland); and Dublin (Ireland) and North California (U.S.A). 
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Figure 53. Web-Scale Inter-Cloud Connectivity 

 

The Web-scale experiment results are summarized in Table 4. 

Table 4. Web-scale Inter-cloud Latency 

 

 

Ping round-trip time (RTT) and packet loss rate for all five links between cloud regions were 

measured, and average RTT and jitter calculated. The lowest average RTT of 80.21 milliseconds 

between Tokyo and Singapore was observed, corresponding to the shortest region to region 

distance of 3,306 miles for the links. The highest average RTT of 362.51 milliseconds was found 

between Singapore and Sao Paulo, corresponding to the longest region to region distance of 

9,945 miles. These observations are consistent with those observed within national-scale 

FutureGrid. Further, as shown in the scatter plot of round-trip latency between pair-wise clouds 

within FutureGrid and Amazon EC2, respectively, in Figure 54, preliminary data indicated 

round-trip latency has a relatively linear relationship with physical distance between clouds. It 

was noted that in general the pair-wise clouds within Web-scale Amazon EC2 showed higher 

round-trip latency than that of the national-scale FutureGrid due to longer physical distance 

between clouds. 
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Figure 54. FutureGrid and Amazon EC2 Round-Trip Latency 

For the purpose of comparison between inter-cloud throughput within FutureGrid and Amazon 

EC2, respectively, the earlier results obtained on EC2 throughput [10] are summarized here. 

Amazon EC2 has three cloud regions in the U.S. and one in Ireland. As shown in Figure 55. The 

red link connects the two regions, US-East (Virginia, U.S.) and EU-East (Dublin, Ireland), 

selected for the experiments. 

Iperf, a commonly used network performance tool for creating TCP and UDP data streams and 

measuring network throughput was used with the team’s EC2-US East (Virginia) and EC2-EU 

West (Dublin, Ireland) images. Bi-directional throughput data across the cloud trans-Atlantic 

link was measured and the aggregate throughput for the instance recorded. 

 

Figure 55. Amazon EC2 Regions in the U.S. and Europe 
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In the case when only one instance of Iperf pairs was launched in the EC2-US and EC2-EU 

clouds, the sub-cases of 1, 2, 4, 8, 16, 32, 64 and 128 connections were measured, accordingly.  

Figure 56 shows how the inter-cloud, trans-Atlantic throughput in mbps (megabits per second) 

scales with the number of Iperf connections. 

 

Figure 56. Throughput between 2 Trans-Atlantic Clouds 

 

In another scenario, the number of Iperf connections was fixed at 64 while the number of 

instance pairs of Iperf was scaled up. Figure 57 shows the scalability graph for up to four 

instances. The virtually linear scalability confirms the isolation of network resources for each 

instance in the cloud. Even at four instances only, the inter-cloud, trans-Atlantic throughput was 

already measured at nearly 500 mbps. This very large network capacity could enable large-

scaled, collaboration sensor grid applications between the U.S. and Europe. 

As a comparison of throughput measurements shown in Figure 47 for FutureGrid and the US-

East and EU-West regions in the Amazon EC2, the maximum bi-directional throughput between 

any 2-combination of FutureGrid clouds ranged from 900 mbps (Sierra/Foxtrot) to 1,400 mbps 

(India/Hotel). Amazon’s US-East and EU-West inter-cloud sustained a throughput of 126 mbps 

at 128 Iperf connection. However, the team noted that the maximum sustainable throughput had 

not been reached in the EC2 experiments reported in [10]. 
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Figure 57. Scalability of Total Inter-Cloud Throughput 

4.1.8.5.2.2 Amazon EC2 Message-Level Measurement 

The research team compared message-level measurements taken on FutureGrid as shown in 

Figure 50 to some similar earlier experiments taken on Amazon EC2 as reported in [10]. In the 

Amazon EC2 experiments, the team also mimicked some characteristics of VoIP conferencing 

traffic at the message level in a conservative manner. The experiments were performed on EC2 

US-East (Virginia) and EU-West (Dublin, Ireland). 

An NB server was launched on EC2 EU-West while VoIP conferencing participants who were 

message publishers and subscribers were launched on EC2 US-East. Since all VoIP participants 

were in US-East, each modeled VoIP message had to traverse twice the distance between US-

East and EU-West in order before arriving at a participant. Round-trip message latencies were 

captured. Minimum, maximum, and average round-trip message latency as well as average 

round-trip jitter were calculated.  

As reported in [3], small audio packets of the same size evenly distributed in time at 30 

milliseconds interval were used. In this research, case large size 1 KB packets at a shorter time 

interval of 12.5 milliseconds were used to observe inter-cloud quality of service characteristics. 

As stated in [32],Cisco’s guideline on QoS of networks for the high quality demanding VoIP 

application requires networks to sustain at most 300 milliseconds round-trip latency, and average 
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round-trip jitter of lower than 60 milliseconds, with packet-loss rate of less than 1%. The EC2 

US-East/EU-West experimental results are summarized in Table 5. 

As compared to the FutureGrid multi-meeting scenario discussed in Section 4.1.8.5.1.2 above in 

which a total of 150 meetings, each with 20 participants, shows an average round-trip latency 

below 50 milliseconds, the EC2 US-East/EU-West experiments simulated 12 meetings, each 

with 200 participants, showed a higher average round-trip latency of slightly above 90 

milliseconds, which is still sufficiently below the maximum 300 milliseconds prescribed on 

Cisco network guideline for VoIP applications. 

Table 5. Amazon EC2 Inter-cloud Quality of Service 

Total Users 
Min. RTT 

(milliseconds) 

Max. RTT 

(milliseconds) 

Average RTT 

(milliseconds) 

Average Jitter 

(milliseconds) 

200 90.15 124 99.51 16.70 

400 91.09 133.81 108.38 26.92 

600 90.61 155.79 109.80 28.67 

800 91.21 183.69 107.56 29.67 

1200 91.87 189.82 110.79 35.48 

1400 92.18 165.74 106.39 38.69 

1600 94.40 235.14 118.94 50.63 

1800 93.56 197.89 110.80 33.77 

2000 91.25 270.44 110.93 31.98 

2200 108.30 318.08 151.66 74.33 

2400 93.2 682.01 141.82 57.92 

4.1.8.5.3 Hybrid Cloud – OpenStack, FutureGrid and Amazon EC2 Clouds 

The study of hybrid cloud for sensor grid applications was preliminary. The focus was on 

understanding the viability and reliability of scaling up server resources for large-scale sensor 

deployment in different cloud regions that are operated by different providers using different 

cloud environments and technologies that encompass a combination of deployed private, 

community and public clouds; yet maintaining interoperability among the different services of an 

SCGMMS-type real-time, message-based sensor grid application in a heterogeneous and 

distributed cloud technology environment. An SCGMMS-type sensor grid application essentially 

boils down to independent message-capable service components interacting via messages. The 
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current state of the interfaces and procedures that support launching virtual machines in cloud 

instances, and connecting to and monitoring individual instances is tedious and inconvenient 

even for the case of a single region by a single provider. The task to perform larger scale hybrid 

cloud experiments using heterogeneous environments across cloud providers and in different 

cloud regions or clusters will be even more tedious and cumbersome. For simplicity but without 

loss of generality, the research team modeled an SCGMMS-type sensor grid application by 

reducing it to a distributed, service-oriented application in which all the launched service 

components communicated via messages with representative message payload and frequency in 

an architecture that resembled an SCGMMS application. 

The research team developed an NB application called SensorDataStreamer that streamed 256 

bytes of data per second to an NB server. They also developed an NB application called 

SensorApp that consumed data streamed by SensorDataStreamer. It is worth noting that the 

objective in this set of experiments was not to exhaust the computing power in each instance but 

to understand the viability and reliability of scaling up and aggregating large on-demand 

computing resources in a distributed heterogeneous cloud environment to support large-scale 

SCGMMS applications. The particular choices of placement of NB, SensorDataStreamer and 

SensorApp on which type of cloud was not considered at this stage of the hybrid cloud research. 

An NB server was deployed in Amazon EC2 US-East (Virginia) public cloud. A 

SensorDataStreamer was deployed in an instance on FutureGrid Sierra community cloud 

(University of California, San Diego) using Nimbus. A Nimbus instance has computing power 

equivalent to a 2-core Intel Xeon X5570 with 12 GB RAM. The level of computing power of a 

Nimbus instance is similar to that of the EC2 instance reported in [10] which could support at 

least 2,400 VoIP application clients. Similar to the way SensorDataStreamer was deployed, each 

SensorApp was hosted in a separate cloud instance. A total of one hundred and eleven (111) 

cloud instances were launched for deploying SensorApp. One hundred and eight (108) of the 111 

cloud instances were run on FutureGrid as a community cloud. The remaining three (3) instances 

on a private cloud using OpenStack. Among the 108 FutureGrid cloud instances, 88 were 

running at Alamo (Texas Advanced Computing Center, University of Texas) on Nimbus, 10 at 

Foxtrot (University of Florida) on Nimbus, and 10 at Sierra (University of California, San 

Diego). The OpenStack clouds were in Purdue. 

A total of over 1.6 million 256-byte messages were communicated reliably over a duration of 

four hours among 112 distributed, heterogeneous cloud instances in a hybrid cloud setting. Table 

6 below summarizes the experimental setup. 
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Table 6. Hybrid Cloud Experimental Setup 

 

4.2 Develop Enhanced Sensor Grid Application 

While the Sensor Grid Middleware provides the fundamental capability for sharing sensor data 

after sensors are registered and begin publishing their data, applying this technology in a 

practical, operationally relevant application required the building and integration of some 

additional capabilities. This section of the report describes the R&D associated with building a 

set of clients and software components that use the Sensor Grid Middleware and provide an 

application that can be demonstrated and used in an operationally relevant scenario. During the 

early part of the research, the LVC SIDFOT program was identified as the focus for the 

development of an AMSA TO 4, Advanced Technology for Sensor Clouds research project 

application. To that end, the goal was to build a prototype application and demonstrate an 

enhanced Sensor Grid Application that would integrate individual sensors and provide a more 

complete picture of a designated environment with increased situational awareness that would be 

scalable and able to stand up to live and chaotic situations. Since the LVC SIDFOT program’s 

target personnel of interest was a first responder, the Enhanced Sensor Grid Application software 

was developed with a first responder’s mindset, and with the ability to be stood up on a remote 

site to help enable collaborators and first responders to more accurately and quickly assess the 

situation and maximize situational awareness.  

The LVC SIDFOT program required the integration of live sensors with virtual and constructive 

sensors to provide a robust, large scale emergency response scenario in which the sensors (live, 

virtual and constructive) would provide situational awareness. The LVC SIDFOT concept is 

shown in Figure 58.  

This figure shows that the LVC SIDFOT concept required the integration of live sensors with 

virtual and constructive sensors that were a part of a simulation or game environment. These 

virtual and constructive simulation constructs included multiple level fidelity simulations, 

training/rehearsal capability, simulations/game environments, viewers, Distributed Interactive 

Simulation (DIS) capable interactions, synthetic audio/images/videos, virtual/constructive 
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simulation gateway(s), and the ability to provide connectivity and flexibility. These constructs 

are represented on the Virtual/Constructive side of Figure 58. The “Live” side of Figure 58 

shows a representation of the live sensors located at the training site that are connected to the 

sensor grid. The “Live” side also represents the field demonstration/experimentation site, the 

instrument locations/activity at site (e.g., audio, video, human loc/status/activity), the 

communication mechanisms/devices, the digital/Internet connectivity, as well as the data 

collection and storage. 

 

Figure 58. LVC SIDFOT Concept 

 

The R&D required for supporting the LVC SIDFOT project encompassed building software that 

worked with the Sensor Grid Middleware to support the integration of live, virtual and 

constructive sensors; as well as provide a capability to investigate how to access and report trust 

and trustworthiness associated with sensor grids.  

The research team started with the basic Sensor Grid Middleware, an overview of which is 

illustrated in Figure 59. The Sensor Grid is the entire network of interconnected Sensor Grid 

nodes, the attached sensors “publishing” to the grid, and the listening clients “subscribing” to the 

sensors that are connected to the grid to support an operational scenario, the LVC SIDFOT 

scenario in particular. The Enhanced Sensor Grid Application consists of the Sensor Grid 

Testbed, which in turn consists of Sensor Grid Nodes, Sensors, Clients, and Operators. These 

will be described in the following paragraphs. 
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Figure 59. Sensor Grid Overview Map 

4.2.1 Sensor Grid Testbed 

The basic Sensor Grid Middleware software provides the interface and communication venue for 

sensors to share sensor data, but the basic software did not provide the fundamental tools to 

support researching trust and trustworthiness technologies for multi-layered sensor grids. To 

address this need, the research team decided to research, develop and integrate the tools to build 

a Sensor Grid testbed. 

The purpose of the Sensor Grid testbed is to provide a researcher-friendly environment that 

enables and accommodates R&D of trust and trustworthiness concepts for multi-layered sensor 

grids. The tools developed for the Sensor Grid testbed, built on top of the Sensor Grid 

Middleware software package, are geared towards letting the researcher design and set up a 

network unique to their own multi-layered sensor requirements, and can be modified to provide 

functionality in various research testing scenarios. The Sensor Grid testbed is made up of several 

components providing different capabilities required for trust and trustworthiness 

research/testing, and can be modified individually.  

The Sensor Grid testbed supports the establishment and instantiation of sensor grid “nodes” or 

“servers,” which run the Sensor Grid middleware software; a collection of sensor grid “sensors” 
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which send data to the sensor grid nodes; and the sensor grid “clients” which receive data from 

the sensor grid nodes passed to them from the sensor grid sensors. The unique aspect of the 

Sensor Grid testbed is the inclusion of two special clients that support the archival and real-time 

rendering of the sensor data. The two special clients that the research team deemed necessary to 

support sensor grid research are the SensorGrid Archive Collector (SACK) and the SensorGrid 

Client for Operational Awareness (SCOPE). These two clients are depicted as they interface to 

the Sensor Grid in Figure 60. 

 

Figure 60. Sensor Grid Architecture with SACK and SCOPE 

The SACK interfaces to the Sensor Grid Middleware to collect data from the registered sensors 

and store the data from the sensors in a database for future retrieval. The SCOPE interfaces to the 

Sensor Grid Middleware to provide a real-time rendering of sensor data to sensor grid users. The 

SCOPE’s real-time rendering shows the geospatial location of sensors, along with pertinent 

information about the sensors and a user friendly view of the sensor data. Additional design 

details for each of these components are provided in the following paragraphs. 

4.2.2 SensorGrid Archive Collector (SACK) 

A Sensor Grid data client, termed “the SACK,” was developed as an interface for data 

persistence, replay, and analytics. The SACK subscribes to all data being published by sensors 

on the sensor grid and thus serves as a data sink for the Sensor Grid. The SACK uses a relational 
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database for the archival storage of the sensor data. The startup screen interface for the SACK is 

shown in Figure 61. This SACK startup screen shows a Java graphical user interface (GUI) that 

implements replay and query capabilities that were developed and serve as a proof of concept for 

future data exploitation tools.  

 

Figure 61. SACK Interface Diagram 

 

A Java Graphical User Interface shown as the Observation Animator screen in Figure 62 

implements replay. The Observation Animator, coupled with the query capability shown in 

Figure 6161 above, was developed and serves as a proof of concept for future sensor data 

exploitation tools. The Observation Animator interface shown in Figure 6262 was developed to 

display time correlated SACK records. Temporal filtering may be applied by the user to restrict 

the dataset for observation. The small, sliding blue time scroll button located on the top of Figure 

6262 permits the user to scroll either forward or backward in time while keeping the images from 

the four sensor data panels synchronized and time correlated. 
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Figure 62. SACK Observation Animator Screen 

 

The SACK interfaces directly to the Sensor Observation Service (SOS) and serves as the broker 

between the Sensor Grid and the Sensor Observation Service. The SACK is directly responsible 

for the integration between the SACK and the SOS operators. Integration to the SOS is 

significant because the SOS supports industry standard formats, protocols, and ontologies. 

Support for the SOS allows for the direct utilization of a variety of industry tools and algorithms. 

The SACK’s sensor data storage interface between the Sensor Grid and SOS is depicted in 

Figure 63. When a query is issued for archived data, the SACK services the query by interfacing 

with the SOS.  The SACK’s sensor data access interface to provide for user friendly sensor data 

retrieval between the Sensor Grid and SOS is depicted in Figure 64. 
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Figure 63. SACK Sensor Grid Data Storage Interface 

 

 

Figure 64. SACK Sensor Data Retrieval Interface 

4.2.3 SensorGrid Client for Operational Awareness (SCOPE) 

SCOPE, the other key client developed to support this research effort, is a situational awareness 

tool for the sensor grid. It provides a common, yet customizable view of each sensor on the grid. 

The SCOPE provides sensor grid users with quick insight into the state of all sensors on the grid. 

It is architected into two main components: a back end that generates Keyhole Markup Language 
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(KML) representations of sensors on the grid and a Google-earth based front-end for viewing the 

KML representations generated by the back end.  

The SCOPE back-end runs within the context of a web application server such as Apache 

Tomcat. It consists of a series of “SCOPE Collectors” that generate KML representations of all 

sensors that a particular user wishes to view in the SCOPE client. SCOPE Collectors for each 

logged-in user are managed by a “SCOPE Manager”, and are each instantiated with a username, 

password and a set of filter criteria (e.g., a geospatial bounding area, sensor types, etc.). Each 

Collector becomes a sensor grid client, logged in with the specified username and password so 

that the user it is designated for only sees sensors that are permitted for that authenticated user. 

As it recognizes new sensors on the grid or data updates from existing registered sensors, it will 

update the appropriate KML object for that sensor. 

The KML generated by these clients consists of a top-level KML file that has links to other KML 

files for each sensor type. Each link in this top-level file is set to refresh the contents of the 

linked files at a defined frequency so that clients will periodically refresh their views to reflect 

updates made to all of the KML objects by the SCOPE collector. In order for each type of sensor 

to be presented in the KML in customizable ways, the “Sensor Properties Generator” plugins can 

be written for each sensor type. Such plugins return a set of properties for a given sensor (i.e, its 

name, coordinates, icon, etc.) that are used to generate a KML object and require only the 

implementation of a Java interface containing a single method. 

The SCOPE front-end is presented within a web page. Before gaining access to this web page, a 

login page is displayed to receive the user’s username and password. Upon successful 

authentication, a web page with three sections is displayed as shown in the Figure 65 screenshot 

below. In the left section of the page is a tree containing all of the sensors meeting the user’s 

filter criteria and to which that user has permission to see. This tree is automatically updated with 

Java script to represent the latest state of the sensor grid. On the right side of the page is the 

Google Earth display that will show the relative geospatial location for all of the KML objects 

created by the SCOPE Collector for the user’s session. Since, as mentioned above, the top-level 

KML contains refreshable links to other KML files containing all the actual sensor definitions, 

the Google Earth display will dynamically update the locations and display of each sensor to 

represent their latest state within the sensor grid. Clicking on any object in the tree will “zoom 

in” the Google Earth display to the data for that sensor. Clicking on any sensor within the Google 

Earth display will display a pop-up with information generated from that type of sensor’s plugin 

described above. Some of these pop-ups may have links to more detailed views of that sensor’s 

data (e.g., webcams have a link to live video feeds). At the top of the page is a series of links to 
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perform various actions such as defining a new region to display, change the filter criteria, or 

logging out of the client.  

 

Figure 65. SCOPE Client Screenshot 

While the SCOPE interface is currently used mainly to provide for sensor grid situational 

awareness, it is also envisioned to potentially provide a command and control interface. For 

example, clicking on a sensor could provide options to control a sensor’s connection to the grid 

or to provide links to interfaces for sending control commands to the sensor. 

4.2.4 Lightweight Directory Access Protocol (LDAP) 

The purpose of Authentication is to limit an unauthorized users access to critical sensor data, and 

restrict that user to only be able to view or edit authenticated sensor data. Lightweight Directory 

Access Protocol (LDAP) was chosen as the means of authentication due to its widespread use in 

the computing world today, as well as its very powerful and robust libraries and integration with 

a vast number of software suites. Being open source, LDAP is widely accepted as being the best 
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free solution, with many different implementations, depending on the need. Indiana University 

successfully integrated LDAP with the Sensor Grid Middleware software and the Ball research 

team independently tested it thoroughly. Everyone who has an active LDAP account is 

“authenticated.” Thus the distinction between unauthenticated and authenticated is unnecessary 

because those not listed are inherently and explicitly unauthorized. The LDAP Schema Tree is 

shown in Figure 66. Authenticated, on the other hand, is different than authorized. Authenticated 

means credentials (username and password) were cleared through the LDAP system. Authorized 

means one is able to access a given resource (e.g., someone in the imaging group can access web 

cams).  

 

 

Figure 66. LDAP Schema Tree 
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As seen in Figure 66 above, the LDAP schema has two main schema segments, “groups” and 

”people.” Within the people segment (upper half of the left side of Figure 6666) are listed the 

end-users who possess accounts and passwords. And the groups segment (lower half of the left 

side of Figure 66) represents logical groupings of people. 

There is no folder hierarchy within the “people” or “groups” segment of the tree. Within the 

“groups” segment, there are all the groups needed to specify what type of sensor or what amount 

of authority will be given to specific peoples’ accounts within each group. While it is understood 

that LDAP supports setting up groups of groups, the research team was unsuccessful in 

implementing this feature. 

As a new user logs in using their LDAP credentials and attempts to start up a client or sensor, the 

group they have designated their sensor to start in is checked against their LDAP username to see 

if they have access to that group. If they have access, they are allowed to proceed and start the 

client or sensor, and register it with the Sensor Grid. If they do not have access permission, then 

access will fail and they are not allowed to start the software. Once a user is logged in, their 

sensors or clients can only see other sensors or clients in the groups that the user has access to. 

For instance, given a user in group A and group B, that user would only be able to see clients or 

sensors if the clients or sensors are either in group A, group B, or anonymous (unauthenticated) 

groups.  

Sensors, when provisioned, set their role or group. Credentials must be passed when the sensor is 

instantiated that satisfy the set forth role or group. For example, consider the user “trodabaugh” 

in Figure 66 along with a sensor that specifies a role of “imaging.” When the sensor is 

instantiated, the credentials for “trodabaugh” are used. If “trodabaugh” is in the “imaging” group, 

then the sensor is instantiated. If “trodabaugh” is not in the “imaging” group, the sensor is not 

permitted to join the sensor grid 

Clients, when provisioned, specify credentials (not a group) in the form of a username and a 

password. And any sensors allowed to be used with the specified credentials will be visible to the 

client. Anonymous sensors can be instantiated. Anonymous clients can be instantiated. 

Anonymous client see only anonymous sensors. 

4.3 Research and Implementation of Trustworthiness Algorithms 

As noted in Section 3.2.3 above, part of this research focused on investigating supporting 

technologies associated with sensor trust and trustworthiness. The research team worked with 

AFRL personnel to identify areas of research related to development of possible collective trust 

algorithms. Specifically, this research team extended previous research efforts associated with a 
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database of trust metrics and analysis services for current and projected trust estimates and 

looked at applying these technologies to sensor grid cloud architectures. 

Later on during the second year of the research effort, the research team identified some services 

to enhance trust and ensure a higher level of security for the sensor grid middleware. 

Additionally, the team developed several sensor vulnerability vignettes that were could be used 

with the sensor grid testbed for use in operational applications. The Secure Cloud Computing 

and Sensor Vulnerability Vignettes will be discussed in the following sections. 

4.3.1 Secure Cloud Computing 

The AMSA TO 4 research team explored how to implement secure cloud computing while 

operating on a brokered, trusted sensor network. The team investigated a model for large-scale 

smartphone based sensor networks, with sensor information processed by clouds and grids, 

where a mediation layer accomplished processing and filtering via a brokering network. In this 

proposed scenario, they assumed that aggregate results are sent to users through traditional cloud 

interfaces such as browsers. They conjectured that such a network configuration would include 

significant sensing applications. As part of this research they performed some preliminary 

system definition and considered threats to the system. Then, the core part of their research 

focused on solving three portions of the overall security architecture:  i) Risk Analysis relating to 

the possession and environment of the smart-phone sensors, ii) New malware threats and 

defenses installed on the sensor network proper, and iii) An analysis of covert channels being 

used to circumvent encryption in the user/cloud interface. 

As a result of this part of the research, the AMSA TO 4 research team outlined a high-level  

architecture that should both be realizable, and provide  for the ability to perform on- demand 

analysis and processing of data from a large number of heterogeneous and globally  placed 

sensors. The network is structured so that it is feasible to consider real or near-real time 

processing and interpretation of the data with appropriate resources. [They determined that there 

are still challenges with determining how to assure privacy, integrity and provenance of the data 

from its collection, through its life-cycle of processing to final consumption.] The research 

concluded that the largest research questions based on their architecture model lie at the tail ends 

of the data life-cycle. They identified several open research questions associated with data-

collection by smartphone sensors and in the final delivery of a processed data-consumable. Their 

research identified specific directions aimed at solving these problems which are summarized in 

Table 7. The entire paper related to the results of this part of the research, titled Secure Cloud 

Computing with Brokered Trusted Sensor Networks, is provided at Appendix A. 
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Table 7. Summary of the Three Threats, Associated Dangers and Mitigation Strategies. 

Threat Danger Mitigation 

Sensor Abduction. Malicious Sensor Data. Detection of Non-regular Usage.

Side-channel 

Information Leakage. 

Communication encryption 

is circumvented by analysis 

of packet sizes and spacing. 

Flow Analysis and Padding. 

Sensor Malware. Sensor Data Theft. Sensor Access Control Models. 

 

4.3.2 Sensor Vulnerability Vignettes 

About mid-way through the research project timeline, the LVC SIDFOT research team 

performed a vulnerability analysis of the overall Sensor Grid middleware being hosted on the 

recommended server configuration. The complete results of this analysis is documented in the 

Warfighter Interface Research and Technology Operations (WIRTO) Task Order (TO) 40 LVC 

SIDFOT Spiral 1 Interim Report, which can be obtained through the 711th Human Performance 

Wing (HPW) Warfighter Interface Division (711th HPW/RHC). The key vulnerability that this 

research team identified as being critical to address was the lack of authentication for sensors 

associated with the sensor grid. In response to this identified shortfall, the AMSA TO 4 research 

team decided to add an authentication capability to the Sensor Grid middleware software. To 

provide an authentication capability, the LDAP feature was added. The LDAP capability was 

discussed in detail earlier in Section 4.2.4. 

To further investigate the ability to perform sensor trust and trustworthiness concepts, the team 

researched, developed and implemented two cyber-related attacks on the Sensor Grid testbed. 

The first attack was a Denial of Service (DOS) attack. The second attack was a sensor spoofing 

attack. These two attacks were developed and executed to prototype the usefulness of the sensor 

grid testbed for future trust and trustworthiness research on sensors operating in a grid. 

4.4 Prototype Development, Integration, and Demonstration 

Much of the preceding discussion covers the overall concept for the Enhanced Sensor Grid 

Application, along with the architecture and interfaces for the Sensor Grid Testbed, the SACK 

and the SCOPE. Furthermore, the LDAP discussion identified the rationale for, and some 

implementation details for the user and sensor authentication scheme. The following sections 

will describe the development of the sensors or sensor interface software, and sensor clients.  
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4.4.1 Development Phase 

4.4.1.1 Sensors 

For the purpose of this report, in most all cases the term sensor is synonymous with sensor 

interface software. For every sensor, live or virtual, there is a need for software that registers the 

sensor and publishes the sensor data as it becomes available through the sensor hardware. 

4.4.1.1.1 Weather Station Sensor 

The purpose of the weather station sensor is to collect weather data from the location where it is 

deployed. The research team decided to incorporate a weather station sensor into the Enhanced 

Sensor Grid Application because it is a valuable sensor aiding first responders in emergency 

situations. The local weather conditions dictate how hazardous materials and chemicals are 

atmospherically dispersed in an emergency scenario. The research team acquired a weather 

station sensor (shown in Figure 67) and developed the appropriate interface software to connect 

the sensor to the sensor grid. 

 

Figure 67. Weather Sensor on Tripod 

The Weather Station Interface software interacts with the sensor grid middleware by registering 

the weather sensor with the sensor grid, querying the weather station and publishing the weather 

data to the sensor grid. The Weather Station Interface software queries the weather station 

periodically via a web service call to the Weather Station Microserver. The Weather Station 

Microserver is a small stand-alone networked computing device that logs all data from the 

weather station itself. The web service call returns XML containing the latest weather data 
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readings from the weather station. The XML is parsed and published to the grid. The diagram 

shown in Figure 68 illustrates how data is collected from the weather sensor and published to the 

sensor grid. 

Weather Sensor

Zigbee Radio

Zigbee Radio

Weather Station 
Microserver

Weather Station 
Sensor Manager

Sensor Grid

Wireless

Serial

Web Service XML

Publishes

Serial

 

Figure 68. Weather Sensor Data Flow 

While the weather data can be accessed directly without using the sensor grid by logging into the 

Weather Microserver (see Figure 69), the research team developed a Weather Sensor Client 

Data viewer for use with the SCOPE.  
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Figure 69. Web-based Columbia Weather System Realtime Display 

4.4.1.1.2 GPS Sensor 

While a GPS sensor provides latitude and longitude data associated with the actual location of 

the sensor, the purpose of the GPS Sensor software interface is to be able to read in data from a 

physical GPS device and to publish this data to the Sensor Grid. An overhead rendering of the 

GPS sensor location through the SCOPE, and associated GPS data is show in Figure 70. The 

callout window shows on the SCOPE display when the GPS sensor icon is selected by the 

mouse. 

The data available from the GPS sensor will be in a specific format (NMEA) and will need to be 

accessible to the computer hosting the sensor in some fashion, such as bluetooth or USB. This 

data can also be supplied to the sensor software virtually when you start up the sensor program. 

When the data is supplied virtually it will update the output to the exact same location every 

second. 
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Figure 70. GPS Sensor Data View 

4.4.1.1.3 AndroidCamCapture Sensor 

The purpose of the AndroidCamCapture Sensor software interface is to support the publishing of 

pictures from an Android device to the sensor grid. The AndroidCamCapture Sensor software 

first registers the Android camera with the sensor grid, and then publishes the captured picture to 

the sensor grid. The rendering of data captured and published by an Android camera sensor is 

shown in Figure 71. 

 

Figure 71. Rendering of Android Camera Sensor Data 
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The AndroidCamCapture sensor is architecturally different from other sensor grid sensors. Since 

computing power and resources are limited on Android devices, Android devices must connect 

to the sensor grid at a much lower level via the Narada Brokering communication software. 

Thus, the AndroidCamCapture software serves not only as a traditional sensor grid sensor but 

also as a proxy which elevates published data from the Narada Broker level to the sensor grid 

level. The raw pictures bytes are received from the Android device and then repackaged and 

republished at the traditional sensor grid level.  

4.4.1.1.4 IP Camera Sensor 

An IP Camera Sensor provides video or Joint Photographic Experts Group (JPEG or JPG) 

streams from the place where they are located based on the direction they are pointing at. The 

purpose of the IP Camera sensor software is to be able to collect video or JPG streams from 

cameras on the local network or even on the Internet. The IP Camera Sensor software registers 

the sensor, then collects data from the sensor and publishes the sensor data to the sensor grid for 

use by sensor grid clients. An overhead rendering of an IP camera sensor location through the 

SCOPE, and associated location data is shown in Figure 72. Selecting the “latest Image” or 

“Video” link on the IP Camera Sensor data popup initiates a new window showing the selected 

data item. 

 

Figure 72. SCOPE Rendering of IP Camera Sensor Data 
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The IP Camera sensor must be fed a URL to the direct JPG image, and then the sensor software 

will poll the URL at a specified rate, continually updating the latest JPG image. The sensor can 

also be set to only update on the user’s request. Each image is then individually published to the 

Sensor Grid.  

4.4.1.1.5 Mobile Platform Sensor 

The purpose of the Mobile Platform sensor software is to collect data from the mobile platform 

hardware and publish it to the Sensor Grid. Its secondary purpose is to receive commands sent 

from the Mobile Platform client software and to execute them in hardware. A view of a mobile 

sensor platform is shown in Figure 73.  

 

Figure 73. Mobile Platform Sensor View 

 

The Mobile Platform sensor software exists as a web service on the mobile platform itself. The 

wireless router mounted on the top of the Mobile Platform allows it to roam around freely and 

send its data back to the client, as well as receive commands and execute them immediately. The 

mobile platform sensors shown in Figure 73 include an IP video webcam, a GPS sensor and a 

pair of oscillating mounted ultrasonic sensors. 
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4.4.1.1.6 DIS Sensor 

The purpose of the Distributed Interactive Simulation (DIS) sensor is to collect state data from 

simulated entities, and publish the DIS state data through the sensor grid. The published DIS data 

is entity state data primarily associated with simulated entity movement. DIS is commonly used 

by the military and Department of Defense for training during Distributed Mission Operations 

Training (DMOT) exercises. A view of the SCOPE interface for a DIS sensor (simulated entity) 

is shown in Figure 74. In this case, the DIS data is latitude and longitude, as shown in the sensor 

popup window in the bottom right portion of Figure 74.  

 

Figure 74. SCOPE Screen Shot for DIS Sensor 

 

The DIS sensor listens for and ingests DIS Entity State Protocol Data Unit (PDU) data. The 

Entity State PDU contains positional data (linear velocity and acceleration, latitude, longitude, 

angular velocity and orientation data) and allows for tracking of virtual and live DIS assets. The 

DIS sensor is capable of filtering the data in a variety of ways to ensure only data deemed 

interesting by the operator is passed through the sensor grid. The DIS sensor dynamically 

provisions and creates new sensors when a new asset is discovered. Similarly, if the entity is 

already provisioned as a sensor grid sensor, then the DIS sensor publishes relevant data through 

the already existing sensor. The location, DIS entity geographical data and the simulated sensor 

data for a simulated chemical sensor is shown in Figure 75. 
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Figure 75. SCOPE View of Simulated Chemical Sensor 

4.4.1.2 Clients 

In the same manner that there are sensors and corresponding sensor interface software 

components, there are also sensors and corresponding sensor clients. However, in the case of 

sensor clients, the sensor client software registers with the sensor grid and subscribes to receive 

sensor data and then renders that data for sensor grid users. 

4.4.1.2.1 Android Client 

The purpose of the Android application is to track, using GPS, the application operator. 

Secondarily, the application allows for the capture of geotagged and annotated images. Both the 

images and the GPS data are published to the sensor grid. A view of the SCOPE interface for an 

Android client is shown in Figure 76. 
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Figure 76. SCOPE View of Android Client Data 

 

Once a GPS fix is obtained, the GPS information is continually published to the grid. Pictures 

can be taken on demand. If GPS is available, the pictures are geotagged with location 

information. An optional annotation is added to the image. All image metadata is embedded in 

the image file itself using Exchangeable image file format (or Exif) data. Connection settings and 

device names can be changed by way of a settings dialog. 

4.4.1.2.2 Weather Station Client 

The weather station client displays data from the weather station. The SCOPE provides a 

rendering that shows the geospatial location for the weather station and displays the data 

associated with the weather station. The SCOPE weather station client interface is shown in 

Figure 77. 

The weather station client subscribes to weather station data. When weather station is received 

by the client, the data is parsed and displayed on the command line. The weather station client 

was completed merely as a proof of concept that the weather station sensor was operating 

correctly. The inclusion of the weather station in the Google Earth client outmoded the weather 

station client.  

Processing the data published by the weather sensor allows for real-time weather data to be 

available through the sensor grid and be graphically depicted through a SCOPE window when 

the “Real Time Display” link is selected. A user friendly rendering of weather data is provided 

when this link is selected as shown in Figure 78. 
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Figure 77. SCOPE View for a Weather Station Client 

 

 

Figure 78. Real Time Rendering of Weather Sensor Data 
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4.4.1.2.3 Google Earth Client 

The purpose of the Google Earth Client is to subscribe to GPS sensors’ data and to output a 

KML file that may be viewed through Google Earth. The SCOPE Google Earth Client interface 

is shown in Figure 79. 

 

Figure 79. SCOPE View of the Google Earth Client 

 

This client allows the user to visualize the GPS sensors in a geospatial display and provided the 

basis and prototype for the development of the SCOPE. The Google Earth client was only 

designed to subscribe and display GPS sensors from the Sensor Grid. This client also allows for 

a ten-step history tracking visualization, to allow the users to see historical data.  

4.4.1.2.4 IP Camera Client 

The purpose of the IP Camera client is to render the IP Camera sensor data that is being 

published to the Sensor Grid. The SCOPE IP Camera client interface is shown in Figure 80. 



Distribution authorized to Department of Defense and U.S. DoD contractors only. 
Data subject to restrictions on cover and notice page. 

122 

 

Figure 80. SCOPE View of an IP Camera Client 

 

This client subscribes to all of the publishing IP Camera sensors, and includes a dropdown menu 

to select the different camera JPG streams. It also gives options to change the refresh rate of the 

IP Camera sensor, as well as send commands to the camera itself to move the direction of the 

camera if it is a pan/tilt/zoom (PTZ) type camera. 

4.4.1.2.5 Mobile Platform Client 

Early on in the research effort, the research team explored building a client that would enable the 

user to control a sensor. The Mobile Platform client is a software tool that allows the user to 

receive data from the platform and to enable them to send discrete commands to the Mobile 
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Platform. There are two versions of the client, one for the PC, and one for the Android tablets. 

The function of the two sensors is identical, however they differ in form. 

4.4.1.3 Proxies 

4.4.1.3.1 Android GPS Proxy 

The purpose of the AndroidGPS proxy is to allow GPS data from Android devices to be 

published to the sensor grid. The AndroidGPS sensor is architecturally different from other 

sensor grid sensors. Since computing power and resources are limited on Android devices, 

Android devices must connect to the sensor grid at a much lower level via Narada Brokering. 

Thus, the AndroidGPS proxy serves not only a traditional sensor grid sensor but also as a proxy 

which elevates published data from the Narada Broker level to the sensor grid level. The raw 

bytes containing the GPS data are received by the proxy repackaged and published at the sensor 

grid level. A single instance of the proxy is capable of elevating data from multiple devices 

simultaneously. The proxy is aware of each Android device publishing GPS data. If the device 

publishes GPS data for the first time, a new sensor grid sensor is provisioned using the device 

name and the data is published. If an already provisioned device publishes data, then the existing 

sensor grid sensor is used. Stated another way, the proxy is capable of dynamically and 

intelligently provisioning sensor grid sensors whilst publishing their data.  

4.4.2 Integration Phase 

From the beginning of the Sensor Grid project, the focus was to take the Sensor Grid 

Middleware that the IU members of the team developed and integrate it together with the Ball 

team member’s developments, and create unique tools with special purposes. The first few 

developments from IU were mostly trivial sample programs that displayed the usefulness of the 

Sensor Grid in a contrite manner. These programs included a simple file transfer program, whose 

usefulness was actually underestimated, various bluetooth sensors, an earthquake sensor, and a 

few others. The file transfer program was interesting due to the fact that it used the Sensor Grid 

to multicast out a file to multiple clients.  

Of this first batch of sensors, almost none of them were used in the final demo. The team decided 

to develop a set of sensors (identified by the LVC SIDFOT user) and integrate them into the 

Sensor Grid itself. The process of integration was difficult at first. The first sensor developed 

was the IP Webcam sensor, along with the IP Webcam client.  

When developing a sensor or client for the Sensor Grid, it is often helpful to start with an 

example sensor, so that you can follow its design and implementation in the new model. When 
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developing sensors or clients, it is also beneficial to build the opposite piece of the puzzle at the 

same time. That is to say, when developing an IP Webcam sensor, write the IP Webcam client at 

the same time. This allows the software to be tested at varying stages along the way without the 

need to rewrite a bunch of code if errors are found. This incremental development also enables 

testing to begin before the development is complete on both services to ensure that the sensor 

and client do indeed talk correctly together. 

When developing a network of computers, thought needs to be paid towards security. Everything 

must be secure; the protocols, the ports, and the data must all be protected somehow. There was 

much discussion on security with IU. In the early stages, no thought was given to security. This 

was because it was a test network, in an ideal environment, where the only requirement was for it 

to work. When development on this network began, the team to realized that the test computers 

were being exposed to attacks by running this software. When the team began sitting down with 

IU researchers and talking about security, there was an initial backlash as they didn’t agree that it 

was necessary. Once convinced of its importance, IU personnel implemented some security 

measures.  

The first measure integrated into the Sensor Grid was encryption. There was no point in trying to 

lock anything down without secure computer transactions going on. This was implemented by 

adding a flag in the sensor properties that would specify the use of encrypted traffic. This 

encrypted traffic would connect between the sensors and the server and then between the server 

and the client. The data traffic is now fully SSL encrypted. 

The second capability implemented to help lock down the Sensor Grid network was the 

incorporation of LDAP authentication into the Sensor Grid software. This was a little bit more 

work in terms of an integration process. The team needed to go back and rewrite several services 

and create an authentication mechanism that was not intended to exist in the original 

specification. Once this key piece was written, the application developers (Ball) went back 

through the sensors and clients that had already been written and updated them to enable LDAP 

authentication. Through forethought in the implementation approach, the IU developers set up 

the LDAP authentication in the Sensor Grid system so that only a difference in the command line 

string is required to start up the sensor in an LDAP authentication mode, or if it would be 

considered an “Anonymous” sensor or client. This allowed all of the LVC SIDFOT sensors and 

clients to be updated very rapidly and significantly reduced the need for excessive rework to 

capitalize on the new LDAP authentication capability.  
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4.4.3 Demonstration Phase 

The Sensor Grid Test bed is a tool that is being used for the integration of Live, Virtual and 

Constructive sensors for the LVC-SIDFOT program. Inherently the Sensor Grid collects data 

from live sensors and shares it with those that have an interest and need for that data. LVC-

SIDFOT uses the Cry Engine to simulate a scenario in an area that can overlap a real world 

location that is already covered by real sensors. Integrating the technologies developed for the 

Sensor Grid Testbed and the LVC SIDFOT program provides a research tool that can be used to 

investigate trust and trustworthiness algorithm development in conjunction with “First 

Responder” training research in a safe and repeatable fashion. 

4.4.3.1 Mid-Review Demonstration 

At the mid project review demo the focus was on a verifying form and validating trustworthiness 

of a sensor. 

A scenario was set up where an object would travel through the scene in which there were 

system overlapping camera views along the path of the object. The object would come to rest 

behind an obstructing object. The camera pointing at the obstructing object could only see the 

entrance on the left and the exit from the obstructing object on the right. The point of the demo 

was to see if the operator could trust the implication that the object of interest was still behind the 

obstructing object. 

To achieve a higher level of trustworthiness research, several tools in the sensor grid arsenal 

were added, including the use of IP webcams, PTZ IP webcams, the SACK tool and the mobile 

platform. During the live action of the demo, the team tracked the object of interest through the 

view path of the webcams that have a view of the path of the object. Then, given that the final 

location of the object can be estimaged, the PTZ webcam was moved to cover that location and 

confirm the object was there. For a second confirmation, the SACK tool was used to query the 

sensor’s historical data in the area of interest during the time frame of concern. The resulting 

data was assembled and sorted by time allowing the user to view the data. Additionally this 

allowed for replaying the data in normal speed, fast forward, stop, back up, and to scroll through 

manually. Using this tool, the user was able to track the object through the viewing areas of the 

various sensors to where it came to rest behind the obstructing object. Finally, the mobile 

platform, with IP webcam, was directed so it has a field of view of what is behind the obstructing 

object. This supported either confirming or rejecting the trustworthiness of the earlier data. 
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4.4.3.2 Final-Review Demonstration 

SCOPE - Sensors 

 Cry DIS – These are sensors in the virtual world of the Cry engine created for various 

scenarios. These sensors can be of the various sensors that are valid for the Sensor Grid 

test bed. 

 Weather Station – Is a portable weather station from Columbia Weather Systems that is 

typically carried by first responders to disaster and hazardous situations. It will supply 

various weather data like temperature, relative humidity, dew point, heat index, wind 

chill, barometric pleasure and wind speed and direction. This data can be fed into plume 

calculation software to calculate an area of coverage of a potentially hazardous smoke 

cloud or chemical cloud. 

 Android 

o GPS – An android tablet in the hands of a first responder can be used to track the 

location of that responder and verify their location is clear of a hazardous 

situation or see if they are close to a location that needs to be checked. 

o Picture – The Android device enables the first responder to send important picture 

data of the situation for evaluation that is Geo Located. 

 Simulated Chemical Sensor – This is a simulated sensor that relates to the chemical issue 

of the scenario of interest. 

 IP Web Cameras – Are devices that take image data of an area of interest and supplies it 

up for viewing via a TCP/IP based network. Several cameras were used in this research: 

o Four (4) Local cameras – At Ball’s Dayton/Fairborn office, PT2cameras were 

used.  Static cameras provide a set field of view and PTZ cameras have a much 

wider field of view because the direction of the camera can be changed through a 

much bigger field of view. They can also be mad to focus in an area and give 

more detail of the desired area. 

o Two (2) Calamity Ville Cameras – These cameras are mounted at fixed points on 

the side of the silos of the Calamityville facility. 

o Virtual Cameras – These are cameras that share images from the virtual world 

depicted in the Cry engine tool that match the real world. These cameras can take 

on some characteristics; they can look like static IP webcams or they can be 
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attached to moving objects in the scenario and provide images that the host 

objects would see as they move around the virtual world. 

 SACK – This tool is a historical collection of all the data captured by the various sensors 

connected to the sensor grid test bed. 

Vignettes 

 SCOPE General Usage – In the first vignette, to the demonstrated capability shows the 

general abilities of the SCOPE tool. It shows how the sensors cover an area and provide 

situational awareness of the area encompassing the area if interest for the scenario. The 

tool shows what sensors are available, and how to jump to the area where sensors are 

located and to see details of the data being shared. 

 SCOPE Timeout – This vignette demonstrated a feature of the SCOPE related to what 

happens when a sensor stops transmitting data or the grid stops receiving it. The vignette 

shows a sensor timing out, and how the resulting graphical depiction of the data shared 

by that sensor flag the data as out of date. 

 Android Live GPS and Picture – This vignette demonstrated the correlation of live GPS 

data with the camera view of an Android device. 

 SCOPE – Authenticated User and Un-Authenticated User– This vignette shows what an 

authenticated user can seed and do, versus what an un-authenticated user can’t see or do. 

 SACK – Observer Animator – This vignette demonstrated the ability to animate archived 

data retrieved from the SACK tool. 

 Spoof Sensor – This vignette demonstrated a situation where a sensor can be spoofed thus 

allowing the researcher to run various trustworthiness experiments on a compromised 

sensor grid. 

 Denial of Service Sensor – This vignette demonstrated the use of a denial of service 

sensor to support running trustworthiness experiments. For this vignette, the team created 

a tool to monitor the sensor grid. The demonstration used that tool to feed into a control 

element of the grid for managing such an attack. Next, the demonstration showed denial 

of service detection of the attack. This capability, like the Spoof Sensor, showed how 

these types of trustworthiness experiments can be imagined, realized and tested. 
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4.5 Final Sensor Cloud Performance and Results 

4.5.1 Analysis of Single Message Broker Performance 

The Sensor Cloud is supported by an underlying NB messaging system. NB is capable of being 

deployed in a distributed fashion (i.e., with multiple messaging nodes each carrying a fraction of 

the total system traffic). This section will discuss the results of analyzing the messaging 

performance of a single broker. Once the performance of a single message broker was 

understood, the team examined how the system performance scales by adding more brokers.  

Using OpenStack, the team deployed the SensorCloud software to the FutureGrid cloud testbed 

(as illustrated in Figure 81). The team provisioned the Cloud controller with a single NB 

message broker and a single GB domain to host test sensors. Finally, multiple instances were 

launched to host a variable number of sensor clients. 

 

Figure 81. Futuregrid Set up for the Experiment. 

The research team hosted the SGX 1.4 Sensor Grid middleware on the FutureGrid in four “large” 

instances. 

 2 cpu 

 6000MB ram 

 10GB disk 

As a test case, the team simulated a video sensor publishing a typical real-time video stream. 

They selected the popular TRENDnet TV-IP422WN IP camera as the baseline. The TV-
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IP422WN camera publishes audio/video data over an Real-time Streaming Protocol (RTSP) 

stream at a rate of approximately 1800Kbps when using the following encoding: 

Video: codec MPEG4; width: 640; height: 480; 

format: YUV420P; frame‐rate: 30 frames/sec 

 

Audio: codec PCM_MULAW; sample rate: 8000; 

channels: 1; format: FMT_S16 

 

In order to simulate video sensors of this type, the team published randomized data an average 

package size of 7680 bytes and an average publication rate of 30 packets per second (see Figure 

82, Figure 83 and Figure 84). 

 

Figure 82. Performance Plot for a High-End Video Sensor with a Single Broker. 

 

Figure 83. Average Jitter for a High-End Video Sensor with a Single Broker. 

If only message delivery times are considered, one would conclude that a single broker is 

capable of supporting approximately 200 clients participating in a simulated video conferencing 
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application. However, in real-time collaborative video applications, message latency is not the 

only factor; uniformity of the message latency must also be considered. In order to achieve a 

satisfactory user experience the video packets must also be delivered in a uniform (i.e., non-

jittery) manner.  

Considering this, the team also saw acceptable jitter until approximately 150 clients were 

reached. This figure is a better estimate of the true number of clients a single broker can 

effectively support. Finally, to further test this conclusion, the team also examined the jitter as a 

function of time (packet number).  

 

 

Figure 84. Jitter vs. Time for a High-End Video Sensor with a Single Broker. 

As shown in Figure 84, the experiment demonstrated that a single broker is capable of supporting 

150 clients participating in a real-time video conferencing application (where 640x480 video is 

streamed at 30 frames per second.)   

Scalability Tests 

Scaling can be achieved by deploying additional brokers to support larger client loads. Next, the 

team examined how Sensor Cloud performance scaling cases where multiple message brokers 

are used to load balance the messaging traffic. The results of these tests are shown in Figure 85. 

Refer to the NB Distribution User Guide for configuration details.  

1

10

100

1000

0 50 100 150 200 250 300 350

Ji
tt
e
r 
in
 m

s

Packet Number

10 Clients

50 Clients

100
Clients
200
Clients



Distribution authorized to Department of Defense and U.S. DoD contractors only. 
Data subject to restrictions on cover and notice page. 

131 

In the scalability tests, the team used the same high-end video sensor from the previous section, 

but also examined the case of GPS and standard video sensors. These three scenarios are: 

 High-end Video Sensor: 30fps, 7680 byte packet (Figure 86) 

 Video Sensor: 10fps, 1024 byte packet (Figure 87) 

 GPS: 1fps, 1760 byte packet (Figure 88) 

The results, summarized in Figure 86 - Figure 88, demonstrated how the Sensor Cloud can 

successfully scale to large sensor/client deployments by using a distributed broker scheme. For 

example, in the case of the High-end video sensors, one message broker can support ~200 

clients, two message brokers will support ~400 clients, and five message brokers can handle 

~1000 clients. 

 

Figure 85. Multiple NB Brokers Load Balancing Sensor Messages. 
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Figure 86. High-End Video Sensors with Multiple Brokers. 

 

Figure 87. Standard Video Sensors with Multiple Brokers. 
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Figure 88. GPS Sensors with Multiple Brokers. 

4.5.2 Middleware Analysis 

This section discusses certain network factors which influence Sensor Cloud performance. With 

high-end video sensors, each sensor transmits ~2Mbps of data, therefore a message broker with a 

100Mbps connection can, at best, only support 50 high-end video sensors. Correspondingly, a 

broker with a 1Gbps connection can theoretically support 500 high-end video sensors; however, 

in practice it can only support half that number. 

Figure 89 compares the performance for a single message broker, running on the same physical 

hardware and virtual machine configuration. When sensor data saturates the underlying network 

this is the limiting factor in messaging performance. In cases where the network pipe is 

sufficiently large, system performance is a function of messages per second. 
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Figure 89. 1Gbps versus Infinand Over IP (10Gbps) Performance. 

Another important networking consideration is the distance, and number of network hops 

between publishers and subscribers. These results were discussed earlier in section 4.1.8.5.  

In Figure 90 we determine the effect of distance and message latency. The distance between 

“India” and “Hotel” is 158 miles. The distance between “India” and “Sierra” is 1784 miles. The 

increase in Sensor Cloud message latency due to distance is seen to be just as predicted in earlier 

examination. 

 

Figure 90. Geometric Effect on Message Latency. 
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5.0 Conclusion 

5.1 Summary 

This final report details the overall R&D activity accomplished on AMSA TO 4. The overall 

objective of the AMSA contract was to develop techniques, and an architecture, to help develop 

additional experiments aimed at ensuring trustworthiness and semantically correct 

interoperability among distributed sensor networks in support of multi-layered sensing. The 

primary focus of the TO 4 research, entitled “Advanced Technology Sensor Clouds,” was to 

conduct research, develop technology and components, and integrate the results for prototyping 

scalable cloud computing and advanced sensor management services into a Multi-Layered 

Sensor Grid testbed. 

5.1.1 Sensor Cloud Research Summary 

Early in the research effort, the research team conducted three types of experiments on 

FutureGrid, Amazon EC2 and an OpenStack-based private cloud and hybrid cloud to understand 

their respective network and performance characteristics in distributed clouds setting to support 

scalable collaborative sensor-centric applications.  For these experiments, the team ported the 

Grid Builder to FutureGrid and developed virtual GPS sensors for managing the scaling of 

application-level deployed sensors to a large number.  The team measured certain distributed 

clouds characteristics at the network, transport and application levels.  The insight gained 

working through the complexity of the current state of cloud procedures, interfaces, platforms 

and virtualization technologies helped to lay a better foundation for the development phase of the 

work.  The details of these early sensor cloud experiments are discussed in Section 4.1.8.5. 

Later, toward the final segment of this research effort, additional experiments were completed to 

collect performance data for the final sensor cloud implementation.  These results are discussed 

in Section 4.5. 

5.2 Lessons Learned 

5.2.1 Sensor Cloud Research Lessons Learned 

Although this study is preliminary due to resource limitation, we observed satisfactory 

performance characteristics for network, CPU and memory demanding simulations that were 

used as research tools in the experiments.  The coupling of a flexible sensor-centric grid 

framework with a heterogeneous distributed hybrid clouds infrastructure like a private cloud, a 

community cloud (e.g., FutureGrid), and Amazon or other commercial public clouds has the 
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potential to effectively support the study of large-scale, collaborative sensor-centric applications 

that have stringent real-time and quality of service requirements.  

Cloud technology and systems of various natures have gained popularity in the last twelve 

months, mostly for small non-mission critical departmental or enterprise applications looking for 

a cost-effective way of deployment.  These applications generally need to deploy one instance 

only, or for a minority of organizations they may need to deploy a few independently running 

instances.  Sensor grid applications have a much more stringent latency, performance, scalability, 

reliability and fault-tolerance requirement. 

Latency 

Cloud systems introduce and assemble a number of technologies that user applications rely on.  

For certain classes of sensor grid applications that include sensors with tight data streaming 

delivery requirements, it was not clear before this research what the major contributors to latency 

were.   The team was able to isolate cloud system level latency from network level latency in all 

three cloud types; organization-scale private cloud, national-scale FutureGrid, and Web-scale 

Amazon cloud.  It was observed that cloud system software latency was sub-millisecond in 

unloaded cases and low milliseconds in loaded cases.  Latency of sharing sensor streams was 

primarily due to the distance between sensor services and sensor applications.  As a first order 

approximation, measured latency had a linear relationship with distance.  From national-scale to 

Web-scale, the FutureGrid and Amazon EC2 exhibited attractively low network latency that 

could support some of the most demanding low-latency sensor grid applications.  For instance, 

real-time sensor streams from GPS, remote robots, Webcams, or VoIP sensors are necessary for 

certain mission-critical deployment and tasks. 

Bandwidth 

National-scale clouds like the FutureGrid and Web-scale clouds like the Amazon EC2 offer on-

demand bandwidth capacity that is better that 100 mbps LAN.  Such bandwidth availability 

allows bandwidth-demanding sensor streams to be served effectively and on a timely manner.   

Coupled with the low latency observed, the current network characteristics of these clouds did 

not appear to be a potential bottleneck for larger scale sensors and sensor application 

deployments. 

Scalability 

Being able to scale up computing and network capabilities on-demand is an important 

requirement for large-scaled sensor grid applications.  No organizations will want to over-reserve 

computing capabilities for estimated peak demand when most of the times the demand will be 
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dynamic and sub-peak.  The team’s experiments did not attempt to push the limits of FutureGrid, 

but were meant for understanding the viability of scaling up computing resources on-demand.  

The results show that a national-scale cloud infrastructure such as FutureGrid could scale up 

from 1 Nimbus instance (equivalent to a 2-core Xeon X5570 with 12 GB RAM) to 111 instances 

(equivalent to 111 2-core Xeon X5570 with an aggregate 1.32 TB RAM) rapidly.  This indicates 

that cloud technology and systems could be a natural fit for sensor grid applications, many of 

which are dynamic in nature. 

Interoperability 

In order to support Web-scale sensor grid application in the real world, the underlying sensor 

grid middleware and framework such as the Anabas SCGMMS must be able to support 

heterogeneity by design.  In this study, the team assembled and worked with a heterogeneous 

experimental setting comprising of hybrid clouds and a plethora of cloud technologies.  The 

results of the experiments with sensor grid applications and systems building that interoperability 

among heterogeneous and distributed components could be efficiently and effectively supported 

by abstracting every capability as a service, and communicating among services and applications 

via service message interfaces. 

5.2.2 Sensor Grid Application Lessons Learned 

Authentication 

Authentication credentials for LDAP were specified in a central file. This approach was 

cumbersome and inflexible. A better approach and potential modification is to allow both clients 

and sensors to specify credentials dynamically at run time. 

For sensors that use the sensor grid JAR file (the majority of sensors), any change to the 

authentication credentials means the sensor grid JAR files must be rebuilt and distributed to each 

sensor. Allowing sensors and clients to dynamically specify credentials at run time eliminates the 

need to redistribute the JAR files. 

For clients that use LDAP authentication, the sensor grid, effectively, must be installed on each 

machine where the client executes. Allowing sensors and clients to dynamically specify 

credentials at run time eliminates the need to install the sensor grid on client machines. 

Sensor and Client Provisioning 

Both sensor and clients, when created, are created in a separate thread.  Calling code should be 

aware that creation of sensors and clients is done asynchronously.  Care should be taken when 

shared resources are accessed by the caller and the creator so that resource contention is avoided. 
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Sensors, when provisioned, read their connection information from a location labeled 

“%SENSORCLOUD_HOME%\config\mgmtSystemPrimary.conf” or possibly from the 

corresponding JAR file. 

Development 

Before beginning development, install and build the sensor grid so that the maven artifacts are 

stored on the local machine's repository.  Then, one can use Netbeans and/or Eclipse to begin 

development.  To develop a new project, it is recommended that the developer copy an existing 

project that is closest in similarity to the target project. 

If one chooses to start a new Maven project, one should, whenever possible, add artifacts through 

Maven. 

If one chooses to start a new standard Java project, then the traditional method of JAR files 

stored in a lib folder relative to the project should be used. 

When sensible, it is a good idea to multi-thread sensor code so that, for example, if the sensor is 

busy publishing data, it can still respond to command and control requests. 

Debugging and stopping at breakpoints for an extended period of time can cause a sensor's 

and/or client's connection to the grid to timeout.  When a connection time out occurs, the sensor 

and/or client is typically shut down.   

Doing 64-bit development requires a change be made to a sensor grid configuration file.  32-bit 

development with Java 1.6 has proven to be stable and is recommended. 

Maven 3.0.x is recommended. 

Ensure the development machine does not have multiple Java virtual machines installed. 

The Grid Builder persists sensors in the Graphical User Interface even when they are de-

provisioned.  After a period of time, the stale sensor will read as UNREACHABLE in the GUI 

when selected.  This anomaly in Grid Builder does not affect the messaging to client and sensors. 

Grid Configuration 

If one wishes to change the IP address to which sensors will connect, one can edit the file named 

“%SENSORCLOUD_HOME%\config\mgmtSystemPrimary.conf.”  Do a search and replace of 

the dated IP address with the new IP address.  The developer then needs to run the startLocal.bat 

script from the machine on which the change was made before attempting to provision sensors as 

“startLocal.bat” copies the “mgmtSystemPrimary.conf” file. 
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LDAP connection information is hard-coded in the LDAPAuthentication.java file.  Changes to 

LDAP information requires the alteration of this file and rebuilding of the grid.  Distribution of 

the new JAR file to sensors and/or clients may also be necessary.  When updating the host name 

or IP address in the LDAPAuthentication.java file, do not use 127.0.0.1 or localhost.  Rather, one 

should use the actual host name or IP address of the machine so that if other machines attempt to 

read this information, it will remain valid. 

Sensor Integration 

When looking for sensors to integrate, it was difficult to find sensors that had the interface 

already integrated into the device package that could communicate with computers and the 

sensor grid. Usually it was the raw device that needed to be connected to a processor along with 

a way to communicate, ie Ethernet, WiFi, Blue Tooth, etc. This usually translated into the face 

that some type of hardware integration with the sensor was necessary before it could be added to 

the list of sensors integrated into the grid. 

5.3 Recommendations 

5.3.1 Sensor Cloud Recommendations 

Future work for improvement includes a better understanding of how to fully utilize the potential 

of a single instance to confidently simulate the optimal or near-optimal number of sensors 

possible without worrying about system abnormality due risks of running out of resources in an 

instance. Scalability in terms of using more instances per cloud should be incorporated to 

augment scalability in the number of distributed clouds. 

The underlying messaging system that was used for Grid of Grids and Sensor Grid to Sensor 

Cloud studies was the NaradaBrokering system developed by Indiana University. The 

NaradaBrokering system is well-designed and mature.  It has been serving the research need very 

well.  However, there are some other on-going open-source messaging systems that incorporate 

the latest technology and receive more supporting resources and feedback.  It will be a 

worthwhile effort to try to substitute NaradaBrokering with more modern messaging system. 

5.3.2 Sensor Grid Application Recommendations 

Authentication 

The team recommended adding an additional interface that would support an authentication 

approach which allows dynamic credential specification as outlined in the Lessons Learned – 
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Authentication section above. The interface would not change the current capability, but would 

add a new interface that could be used going forward so as to not break legacy code. 

Grid Configuration 

One aspect of the Grid configuration issue that leaves a legacy of a significant influence is the 

SYSTEM Environment variable. By using the environment variables you force a more 

complicated and involved installation on a computer or hand held device to access the sensor 

grid. As the implementation moves forward, the design needs to move toward interfaces that 

either don’t require a significant installation process or no installation process at all. 

Sensor Integration 

Moving forward it would be helpful to select a small embedded platform that would allow 

sensors to be simulated on the device until actual sensors can be integrated with adequate 

hardware to allow real integration into the Sensor grid. 

Create a standard software interface, to the sensor grid, that is based upon the hardware chosen to 

perform the sensor simulation previously discussed. 

5.4 Conclusion 

5.4.1 Sensor Cloud Conclusions 

The initial results obtained in this research were encouraging in helping to lay a better foundation 

to build large scale, high-performance, low-latency, real-time collaborative sensor grid 

applications in clouds. The model of hundreds of millions of deployed sensors all over the world 

requires scalable, on-demand computing and communication capabilities in order to be able to 

harness into supporting the vision of multi-layer sensing to provide timely, actionable, trusted, 

and relevant situation awareness to decision makers at all levels of commands. The integration of 

distributed sensors and sensing systems operated and owned by different stakeholders will be 

best facilitated by exploring distributed and heterogeneous clouds.  
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

Acronym Description 
AMSA Adaptive Multi-Layered Sensing Architectures 
AFRL Air Force Research Laboratory 
AFRL/RY Sensors Directorate  
AFRL/RYW Integrated Electronic & Net-centric Warfare Division 
AFRL/RYWB Trusted Avionics Systems Network Branch 
AFRL/RYWC Distributed Collaborative Sensor Systems Technology Branch 
AJAX Asynchronous JavaScript and XML 
API Application Programming Interface 
AWS Amazon Web Service 
BATC Ball Aerospace & Technologies Corp. 
CONOPS Concept of Operations 
COP Common Operational Picture 
COTS Commercial-off-the-Shelf 
CPU Central Processing Unit 
DIS Distributed Interactive Simulation 
DMOT Distributed Mission Operations Training 
DNS Domain Name System 
DoD Department of Defense 
DTIC Defense Technical Information Center 
EAR Export Administration Regulation 
EC2 Elastic Compute Cloud 

Eucalyptus 
Elastic Utility Computing Architecture Linking Your Programs To Useful 
Systems 

GB Grid Builder 
GIG Global Information Grid 
GIS Geographic Information System 
GOTS Government-off-the-Shelf 
GPS Global Positioning System 
GUI Graphical User Interface 
HSN Heterogenous Sensor Network 
HPC High Performance Computing 
HTML Hypertext Mark-up Language 
HTTP HyperText Transfer Protocol 
IaaS Infrastructure as a Service 
ICMP Internet Control Message Protocol 
IP Internet Protocol 
ISR Intelligence Surveillance and Reconnaissance 
ITAR International Traffic in Arms Regulation 
IU Indiana University 
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Acronym Description 
JMS Java Messaging Service 
JPEG or JPG Joint Photographic Experts Group 
JSON JavaScript Object Notation 
JVM Java Virtual Machine 
KML Keyhole Markup Language 
LDAP Lightweight Directory Access Protocol 
LRF Laser Range Finder 
LVC Live, Virtual, and Constructive 
M&S Modeling & Simulation 
MOM Message-Oriented Middleware 
NB Narada Broker 
NCES Net-Centric Enterprise Services 
NTP Network Time Protocol 
P2P Peer-to-peer 
Pub/Sub Publish/Subscribe 
RFID Radio Frequency Identification 
R&D Research & Development 
RSA Registered Service Adapter 
RSS Really Simple Syndication 
RTT Round-Trip Time 
SA Service Adapter 
SACK SensorGrid Archive Collector 
SCGMMS Sensor-Centric Collaboration Grid Middleware Management System 
SCMS Sensor Container Management Services 
SCMW Sensor Cloud Middleware 
SCOPE ScensorGrid Client for Operational Awareness 
SCP Sensor Client Program 
SG Sensor Grid Server 
SHC System Health Check 
SIDFOT Sensors Integration for Data Fusion in Operations and Training 
SSA Sensor Service Adapter 
SSAL Sensor Service Abstraction Layer 
SSH Secure Shell 
SOW Statement of Work 
TCP Transmission Control Protocol 
TO Task Order 
VM Virtual Machine 
VoIP Voice over Internet Protocol 
UDOP User-Defined Operational Picture 
UDP User Datagram Protocol 
UL Universal Locator 
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Acronym Description 
UML Unified Modeling Language 
UUID Universally Unique Identifier 
WBS Work Breakdown Structure 
WiiMote Wii Remote Controller 
WPAFB Wright-Patterson Air Force Base 
WS Web Service 
XML Extensible Markup Language 
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ABSTRACT 

 
We propose a model for large-scale smartphone based sen- sor 
networks, with sensor information processed by clouds and 
grids, with a mediation layer for processing, filtering and 
other mashups done via a brokering network. Final aggregate 
results are assumed to be sent to users through traditional 
cloud interfaces such as browsers. We conjecture that such a 
network configuration will have significant sensing 
applications,  and perform some preliminary work in both 
defining the system, and considering  threats to the system as a 
whole from different perspectives. We then discuss our current, 
initial approaches to solving three portions of the overall 
security architecture:  i) Risk Analysis relating to the 
possession and environment of the smart- phone sensors, ii) 
New malware threats and defenses in- stalled on the sensor 
network proper, and iii) An analysis of covert channels being 
used to circumvent encryption in the user/cloud interface. 

 
 
 
 

KEYWORDS: Sensor Network, Brokered Network, Se- 
curity, Wireless. 

 
 
1.  INTRODUCTION 

 
We consider systems in which there are large groupings of 
sensors reporting  exorbitant  quantities of potentially sensi- tive 
data, and the need to perform  large amounts of process- ing or 
computation on this data with multiple large grid and cloud 
computing installations. The processing may need to be done 
in real or near-real time. Further, we consider that there are 
adversaries that have a vested interest in ei- ther learning 
information  from the system, modifying the results finally 
output from the system (be it through modi- fication of the 
sensor input, filtering or processing of data), or denying  access 
to the system. Therefore maintaining 

data provenance, secrecy and trust is of paramount importance 
throughout  the data life-cycle (i.e, from the point of data 
collection  by the sensors, to its final consumption by an 
individual  or process). All data-transformation and filtering, 
networking and sensor aspects of these systems are assumed to be 
susceptible to attack. Similarly the environment in which some 
parts of the system operate is assumed to be potentially under 
adversarial control. In our modeling we assume the actual cloud-
computing facility to be secure. Our goal is to be able to provide 
reliable results computed from sensor data in a manner that enables 
one (be it the user or the system) to make educated decisions on the 
reliability of that data based on trust metrics, while 
simultaneously preventing the loss of data-secrecy or integrity. 
Further, maintenance of system integrity and security is 
considered a core requirement.  Issues such as anonymity are 
beyond the scope of our current research. Herein we provide a 
for- mal description of the networking architecture we antici- 
pate and the security threats. We delineate between threats and 
security holes for which conventional security technology 
suffices to solve the problem, those threats for which 
modifications to conventional technology are required, and those 
which are new and somewhat specific to the problem at hand. We 
next outline a largescale feasible research pro- gram to solve the 
many associated problems. We conclude by highlighting several 
of the aspects of this program for which we are actively  
engaged in producing solutions, and the architectures for our 
solutions. 
 
1.1. Roadmap 
 
In Section 2. we provide a high-level  specification of the type 
of systems we are considering.  This is followed, in Section 3., 
by a high-level  threat model that depicts ways adversaries can 
manipulate  such systems and their mal- leable environments.  
In Section 4., we provide more in depth discussions on three 
specific  subsets of security prob- lems from Section 3. for which 
we are currently developing solutions. In Section 5. we provide 
related work for these 
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problems. Section 6. finishes off with discussion and con- 
clusions. 

 

 
2. COMPUTATION,  NETWORKING  & 

SENSING MODEL 
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We consider a model  in which there are potentially  mil- 
lions of deployed  sensors. The sensors may be (but are not 
necessarily) organized by some principle into different 
hierarchical layers or partitions. These sensors may be con- 
tinuously publishing their observations, or supply their ob- 
servations on request. In either event the observations are 
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relayed through  a brokering  and filtering network, where 
sensor data is eventually  consumed by a  cloud or grid- 
computing  infrastructure;  alternatively  the data can be fil- tered 
or processed, and stored. Importantly, we do not con- 
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sider traditional  low-power  sensors such as motes, RFIDs and 
smartdust,  where  a great preponderance  of wireless sensor-
network  research has been done. Rather, we con- sider 
potentially high throughput  sensors attached to a — in 
comparison — large amount of computational  and net- 
working power, e.g., in the cloud. Specifically, we con- 
sider smartphone-class devices with reliable cellular net- 
work connectivity (with hundreds of Kbps throughput  as 

Tower-mount 
Antenna 

 
 

Wireless Bridge 

Router 

 
 
Router 

Router 

 
 
Router 

 
Tower-mount 

Antenna 

opposed to tens of Kbps available on motes) and frequent 
recharging (e.g., nightly) that supports more computation- ally 
intensive applications than motes. Yet, this model still leaves 
open a large number of security issues that must be solved. 
In Fig. 2. we visualize the different components of the 
networked system. Android smartphones denote the sen- sors in 
the system, and are in the possession of individu- als. The 
smartphones have some computational  capacity, and transmit 
through WiFi or cellular services to a broker- ing network, 
running over traditional TCP/IP services. The brokering service 
can itself have computers performing fil- tering, processing 
and/or creating other mashups of sensor data. 

 
2.1. The Sensor 

 
Herein, we consider the sensors to be modern smartphones. These 
devices  are diversely  deployed in the field, con- tain a large 
number  of sensors, and have moderate com- putational ability. 
Further, they are fully networked, and with modern 3G 
networks have reasonable bandwidth (e.g., 
100–1000kbps). Additionally, most sensors have 802.11 
WiFi radios, and may have sporadic or continuous WiFi 
connections in urban environments, with bandwidth of 1- 
50Mbps. These phones may be in the control of trusted (or 
semi-trusted) individuals, or be located in some poten- tially 
untrusted environment. Further, they have a reason- able 
processing capability  on modern low-power  proces- 

Figure 106. A Depiction of the Different Components of 
the Sensor and Cloud-Computing Network. 

 

 
sors,  such  as an ARM architecture processor running  at 
500–800MHZ. It is assumed that the phones have standard sensors 
including,  eGPS, 802.11x, Bluetooth v2 (Class 1, 
2 or 3), temperature, orientation,  acceleration, audio mi- 
crophone, and camera (stills or video). In particular, our 
project focuses on the use of HTC G1 Android (v1.6) de- 
velopment  phones, due to the ease of programming  and their 
ability to multi-task (unlike the iPhone). Such plat- forms 
can perform  a full host of cryptographic operations, but also 
have security issues relating  to the fact that they are multi-
purpose computing platforms. Thus OS secu- rity issues are 
larger, and it is difficult to construct  a small OS, such as 
TinyOS [19] designed for motes, which can be more easily 
hardened to withstand attack. While the smart- phones are 
capable of more standard cryptographic proto- cols, a large 
number  of such sensors in a region  that are broadcast could 
overwhelm  communications  channels, and battery life is still a 
concern  — if not as pressing.  There- fore, low bandwidth and 
energy usage requirements are still a concern. However,  one can 
easily port low-energy and bandwidth  secure networking   
stacks, such as those pro- vided by TinySec [17] or MiniSec 
[21]. 
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2.2. The Brokering Network 
 

With potentially millions of smartphone sensors producing data 
at any given time, the need for a high performance networking 
infrastructure that is capable of self-filtering unimportant  
data feeds before they are transmitted for pro- cessing becomes 
apparent. Further, the need to funnel po- tentially very large 
amounts of bandwidth to a few collec- tion points for 
processing is also evident. The communi- cation between the 
sensors and the computing infrastruc- ture is mediated by a 
brokering  network  that uses a pub- lish/subscribe model. In 
such a model,  each sensor can publish the data it is collecting  
on a continuous basis, along with appropriate meta-data that 
depict the content, prove- nance and trustworthiness  of the data. 
Requests for specific information at the cloud or grid 
computing interface will drive the request for specific types and 
trustworthinesses of data from the sensors. Such requests will 
further invoke the subscription to different forms of data both 
real-time and stored. Typical forms of data cleaning and 
processing can, of course, be performed by dedicated servers who 
indepen- dently subscribe to sensor feeds, and then publish their 
own mashed data feeds for consumption by others. In such cases 
provenance and trustworthiness  must be maintained. Ul- 
timately,  there will be many different  parallel consumers of 
data, and thus the network  must be as responsible as is possible 
to prevent duplication of effort, redundant routing, streaming 
and processing of data. 

 
For this project, the Narada Brokering  network1  is being used. 
The network can provide basic secrecy and integrity 
requirements, but does not by default provide any informa- tion 
regarding provenance or trustworthiness. While other suitable 
brokering  networks can be used (e.g., Solar [?]) we chose Narada 
because of local expertise and support avail- able to our project. 

 
 

2.3. Computing Model 
 

We assume that the final consumers of data will be cloud or 
grid computations,  as will many of the filtering and pro- cessing 
modules. While each cloud or grid  may see its out- put as the 
final consumable, the desire to recycle computa- tion means that 
the data may itself become simply another input to an alternate 
computation upstream. The study of securing cloud and grid 
computation  are separate research fields in their own right, and 
so our model simply assumes that these computations do not leak 
information,  break in- tegrity of the data nor provide covert 
channels to the data. Computational power and storage is 
considered to be more or less limitless  to within reasonable 
bounds. 

 
1 See www.Naradabrokering.org 

3. SECURITY,  PRIVACY  &  TRUST  IS- 
SUES 

 
The computing environments of a sensor grid are fraught with 
different kinds of threats, which endanger the security and 
privacy  assurance the system can provide. Mitigation of these 
threats relies  on establishing trust on individual system layers 
through proper security control. In this sec- tion, we survey the 
security and privacy risks on each layer of senor-grid computing  
and the technical challenges for controlling them. 
 
A sensor grid interacts with its operating environment through  
a set of sensors.  Those sensors work either au- tonomously or 
collaboratively to gather data and dispatch them to the grid. 
Within the grid, a brokering  system fil- ters and routes the data 
to their subscribers, the clients of the sensor grid. We now 
describe the security and privacy issues on each layer of such 
an operation. This includes the environment the sensors are 
working in; the sensors; the grid; the clients; and the 
communications  between the sensor and grid, and the grid and 
clients. 

 
The Environment. An adversary could compromise the 
sensors’  working environments  to contaminate the data they 
collect. For example, one can add ice around individ- ual sensors 
to manipulate the temperatures they measure; alternatively, one 
could imagine that GPS signals were be- ing spoofed in an area. 
Detection  of such a compromise can be hard, when the adversary 
has full control of the en- vironment. A possible approach is to 
check the consistency of the data collected  from multiple 
sensors and identify anomalous environmental changes as 
indicated by the data. 

 
Sensors.   Sensors can be tampered with by the adversary who can 
steal or modify  the data they collect. Mitigation of this threat 
needs the techniques that detect improper opera- tions on the 
sensors and protect its sensitive data. Since we assume sensors are 
smartphones, they also are susceptible to a large number of 
security concerns of traditional  PCs, which includes viruses and 
malware. 

 
Cloud or Grid.  Information flows within the grid can be 
intercepted and eavesdropped on by malicious code that is 
injected into the system through its vulnerabilities. Authen- 
tication and information-flow  control need to be built into the 
brokering system to defend against such a threat. 

 
Client. The adversary can also manage to evade the secu- rity and 
privacy protection of the system through exploit- ing the 
weaknesses of the clients’ browsers. The current design of 
browsers is well known to be insufficient for fending off 
attacks such as cross-site scripting  (XSS)  and 
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cross-site request forgery (XSRF). Such weaknesses can be used 
by the adversary to acquire an end user’s privileges to wreak 
havoc on the grid. Defense against the threat relies on design 
and enforcement of a new security policy model that improves 
on the limitations of the same origin policy adopted in all of 
the mainstream browsers. 

 

 
Communication Channels. The communications be- tween 
the sensors and the brokering  network,  the broker- ing network 
and the cloud or grid, and the cloud or grid and the client, are 
subject to both passive (e.g., eavesdrop- ping) and active (e.g., 
man-in-the-middle) attacks. Coun- tering this threat depends 
on proper cryptographic proto- cols that achieve both data 
secrecy and integrity. In each case, different engineering  
requirements  based on differ- ing scarce resources require 
different  solutions. In the case of the wireless connection between 
the sensor network and the brokering network, bandwidth and 
power-usage are key requirements. Once on the brokering 
network, data prove- nance becomes a key challenge. Traditional 
cryptographic protocols would seemingly suffice from the 
cloud to the user. However,  a tricky issue here is the 
information  leaks through side channels. For example, packet 
sizes and se- quences. Our preliminary research shows that such 
infor- mation reveals the state of web applications, which can 
be further utilized to infer sensitive  data within the applica- 
tion. Understanding and mitigating  the problem needs fur- ther 
investigation. 

 
4.  PROBLEMS TO BE ADDRESSED 

 
While there are a large number of potential security issues to be 
addressed, as partially  scoped and enumerated in the previous 
section, the investigators are working  on the fol- lowing 
specific problems. 

 
4.1. Detection of anomalous use of sensors 

 
A key issue involved  in trusting  data from the sensors in the 
described network is to ensure that the sensors themselves can be 
trusted. That is, either they are in the possession of individuals 
who are trustworthy,  or they have not been tampered with in 
their environment if not possessed by an individual. 

 
In our model if the sensor is in the possession of a trusted 
individual, it is more likely that its sensors are reporting an 
honest or legitimate environment, and not one that has been 
manipulated with the goal of producing faulty results that get 
incorporated in to final computation. Smartphones, however, can 
be easily stolen, misplaced or temporarily in- tercepted and 
reprogrammed  by adversaries. If stolen or misplaced, the 
environment  that the sensors report may be 

altered, and thus the data collected may be untrustworthy. The 
use of traditional authentication technologies to ensure a 
legitimate  user is in control of the smartphone sensor is not 
practical, as said users cannot be queried to authenticate every time 
the sensor-net needs to report readings. 
 
We propose a system in which a phone attempts  to deter- mine 
if it is or is not in the possession of a legitimate  user. In cases 
where the phone determines it is in questionable hands it 
deauthenticates itself. Deauthentication either re- moves it from 
the sensor network, or forces its sensor read- ings to be tagged as 
untrustworthy, with risk measurements being included in 
provenance data to ensure that the risk of improper readings is 
communicated down stream and taken into account on further 
processing. In order for the phone to determine whether it is 
under legitimate  possession, we are developing a risk assessment 
system based on the inputs from the sensors of the phone itself. 
Thus the sensors are used directly to determine if the sensors’ 
readings should be trusted. We are implementing  a prototype of 
this system on the HTC/Google G1 Android (v1.6) Phone. 
 
We are taking different  approaches with different  sensors on 
the phones. Note we are using these sensors to de- termine 
risk of improper possession independent of which sensors are of 
interest to the sensor network. Further, we make two broad 
classifications of the use of sensor input for risk determination. 
First, environmental  sensors attempt to measure properties of the 
environment  around the phone, or of the user. Second, social-
networking sensors measure “friendly” or “unfriendly” people 
that surround the phone. 
 
 
4.1.1. Environmental  Sensors 
 
Positioning Information. Android smartphones can de- 
termine their position  using a combination of several differ- ent 
information  sources, which includes cellular transmis- sions (in 
particular, tower location), GPS positioning and WiFi 
positioning. The combination of all of these pieces of 
information is often called eGPS, and frequently provides 
position far more accurately than any of the technologies alone. 
Our high-level goal is for the phone to learn certain geographic 
locations and routines that correspond to either a safe or 
dangerous state. 
 
We extend the work of Farrahi and Gatica-Perez [14]. We are 
using a third-order  Hidden  Markov Model (HMM) to 
determine the risk of misuse of a phone based on current 
positional information. Farrahi and Gatica-Perez consid- ered 
the problem of determining location for contextual ap- plication  
purposes, but without specific interest in authen- tication and 
security mechanisms. A day is divided into blocks of 30 
minutes. In any given period the phone is con- 
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coming frustrated with risk-calculation delays. 

sidered to be in one of four specified places (e.g., Home, 
Work, Aux 1, No Location Reading) or in a generic  un- 
labeled place (Other). Thus the location of an individual 
through a time period is being converted into a string,  as is 
depicted in Fig. 2. Currently, we are considering  a super- vised 
learning case where a user specifically  defines these five 
locations, with the goal of using clustering algorithms to 
eventually learn popular locations. Traces of individ- uals’ 
positions  are then collected,  and the HMM iterative Viterbi 
training  and Forward algorithm  are used for train- ing on this 
past annotated data sequences and predicting risk. Based on a 
trained HMM, and a recent history  of the phones’ positions, 
the forward algorithm is used to deter- mine the likelihood of 
the recent history, and this estimate is used to determine the risk 
associated with the phone’s current position. Of clear 
importance is the efficiency with which both training and 
evaluation can be performed. Due to the need to only 
occasionally  perform training  (say daily or weekly to update the 
movement model with the most re- cent trends), its efficiency is 
of lesser importance than that of real-time risk evaluation 
which needs to be performed on demand in real-time in order 
to prevent users form be- 
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A hierarchical HMM model is used to learn users schedules. At the outer 
layer we in essence have a node for each 3 hour block of time in the day. 
 

Each node contains within 
it a 3rd order multi-state 
HMM to learn the 
schedule over the 
corresponding hours. 

 
 
 

Figure 108. A Depiction of the Constructed HMM for 
Predicting Position. 

 
 
risk analysis we have no preference for any specific termi- nal 
state, and so we are interested in Pr[M  → x1 , . . . , xt ]. A simple 
modification  that sums the probabilities  over all final states 
runs in O(n3  · t), and returns the value of in- terest. Given 
the running time is cubic in the number of states and we need 
near real-time  evaluations of the algo- rithm, we need to 
minimize  the state space. To minimize 

(O)ther 
 

 
 
 
(W)ork 

 
(A)ux the state space we actually construct 8 individual HMMs to learn 

patterns of behavior during different 3-hour periods of the day, 
and link them together through a simple state- machine.2  The 
model is depicted in Fig. 3. 

 
 
 

Location recorded every 30-Min. for 24 Hrs. producing the string 

 
HOWAAA..... 

 
String is parses starting on each letter into triplets for 3rd order HMM 

 
H     O     W     W     A 
O     W     A      A      A 
W     A      A      A      A 

 
 

Figure 107. A Depiction of How Positional Data Through the 
Day is Converted in to a String Over a Small Alphabet. 

 
As previously mentioned, risk evaluation is based on the use 
of the forward algorithm. The forward algorithm runs in O(n2  

· t) where n is the number of states and t is the 

We justify this construction  as a reasonable model because the 
risk of one’s current geographic position is a function of both 
one’s current position and recent historical position relative to 
the current time, as opposed  to one’s longterm schedule. We are 
currently in the process of experimentally determining the correct 
recent history window that will de- liver the best ability to 
detect abnormal behavior. 
 

 
Temperature    Temperature of the phone can be used to 
determine information  relating to whether the phone is cur- 
rently in someone’s physical possession. If the phone reads 
approximately body temperature (37o C ) then it is reason- able 
to assume that is in a person’s possession.3   Similarly, if the 
phone is at approximately room temperature or the outdoor 
ambient temperature, then the phone is likely ei- ther not 
directly on the person and is likely to have either 

number of time-blocks being analyzed; given an HMM M    
the forward  algorithm  returns the probability  that a given 
sequence of positions x1 , .., xt is output by an HMM, given that 
it terminates in state σt . More formally, Pr[M   → x1 , . . . , xt 

|σt ], for a given x1 , ..., xt , and σt . However, for 

2 This construction  could be viewed as a Hierarchical  HMM in which the 
transition distribution in the high-level HMM are all Kronecker δ- 
functions. 

3 There may need to be some invalidation  of this metric at times when the 
ambient temperature is the same as body temperature. 
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been put down or remain in a bag. 
 

While we believe there is strong potential to help use the 
phone’s current temperature to monitor risks, our initial test of 
the Android phone is that the delay in converging to new 
temperatures by the phone’s sensor makes this data unus- able 
for our intended applications. We found that when moving 
the phone in a pocket  at body temperature and moving it 
onto a desk, it took on the order of tens of min- utes to 
converge to anywhere near the ambient room tem- perature. 
Further, in the same scenario it took several min- utes to 
decisively report non-body temperature readings. 

 
 

Acceleration Acceleration  measurements can be used in several 
manners to help determine risk. Techniques have been 
developed  to measure a person’s  gait using the ac- celerometer 
in phones,  assuming  they are placed in an individual’s  
pocket, or otherwise carried on the person [30, 15, 1]. 
While we do not intend to implement  such a scheme ourselves, 
we are looking at the possibility  of in- cluding the results of 
these works  to deploy  such a tech- nique in our larger sensor 
scheme. Further, we plan to use techniques that include 
simpler measurements but are based on other contexts. For 
example, if a user does ex- plicitly authenticate to the device, 
then at this point in time we know that the device is trusted. If 
the device stays in motion for the next several minutes,  then 
one can assume that the correct user is still in possession of the 
device. In contrast if the phone becomes stationary  for a 
prolonged period of time, the phone probably has been put down, 
and now alternative risk measurements must be used. 

 
4.1.2. Social Networking  Sensor Risk Measurement 

 
One key aspect of our system is to use a form of social net- 
working for authentication and risk measurement. Imagine a 
scenario  where  a phone finds itself in a previously  un- visited  
location,  and other sensors are providing question- able risk 
data. However,  imagine that the device can find the presence of 
a number of other phones that it frequently observes when in 
known low-risk states. The presence of these phones should 
indicate that the risk that an individual does not have proper 
possession of the phone is low: the phones of colleagues, friends 
and family members are near, so either the entire group is at risk 
(unlikely or the phone is simply in a new environment). Our 
system will employ a combination  of white and black listing 
of other phones, which will alter the risk assessments made by 
the system. Additionally, we will learn “friendly” phones by 
determin- ing which other phones are frequently  in the 
presence of the user in non-risky situations. This assessment 
will be done by considering both Bluetooth  and 802.11 
wireless networks. 

Bluetooth. General Bluetooth frames are much more dif- ficult 
to detect than corresponding 802.11x frames with the standard 
radio hardware built in to phones.4 There are two options 
to bypass this problem. The first is that the phones broadcast 
themselves in so called “Bluetooth  dis- covery mode”, this 
will make the phone visible to all, but can result in higher 
battery usage. The second is to pair specifically with those 
phones that are whitelisted to be considered friendly; pairing 
requires a one-time user inter- vention. In this case, the phones 
could attempt to pair when they are in close contact. 
 
More problematically, our current implementation platform 
(Android v1.6) does not provide an API to interface with the 
Bluetooth  infrastructure. Thus Bluetooth  can only be accessed 
by the user, and not a risk-analysis program. An- droid (v2.0) 
does provide the implementation  of such API, but there is 
currently no firmware upgrade for our reference platform (HTC 
G1 development). 

 
WiFi (802.11x). Much of the widely deployed  smart- 
phones allow their WiFi radios to operate in promiscu- ous 
mode, which permits the radio to listen to and com- municate 
the existence of frames that it can receive, even if the radio was 
not the target for the frame in question. This mode allows 
802.11x radios to detect the presence of nearby devices. The 
only requirement to instantiate our social-networking risk 
measurement is to ensure that all the participating  phones are 
broadcasting their position by sending beacons on regular 
intervals. It is yet to be deter- mined if the development platform 
supports such modes of operation. 

 
4.1.3. Combining Risk Measurements. 
 
A more sensitive risk measurement can be constructed if one 
does not require each sensor to independently gener- ate a risk 
metric in our risk model. However, in order to make our 
scheme flexible  for different  uses, and in devices with different 
subsets of sensors,  we consider an archi- tecture that treats the 
sensor measurements independently, and then produces a global 
risk measurement. Note that this separation does not prevent 
the global risk measure- ment from learning co-dependencies 
between risk profiles of different  sensors, and making use of 
such dependencies. There is a fair amount of research on 
methods for aggre- gating risk measurements in a number  of 
different scenar- ios (e.g., Financial, Credit, Insurance, Intrusion 
Detection). Currently we are determining which, if any, of the 
current models provides a similar  or appropriate model on which 
to base an aggregation  of our sensor work. In the mean time, 
 

4 Relatively inexpensive hardware is available to capture general Blue- tooth 
packets, but it is not standard on known phones. 
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we use an expected value of the different risk metrics that is 
weighted with high-degrees to the positional and social 
networking schemes. 

 
 

4.2. “Sensory Malware” threats and defenses 
 

To fully understand the threat space of malware on smart- 
phones, we are exploring  various attack scenarios. While 
traditional malware defenses focus on protecting  resources on 
the computer (or as we would expect, on the smart- phone), 
we are specifically  interested in the new class of at- tacks where 
sensory malware  uses onboard sensors to steal information from 
the user’s physical environment [5]. For example, the user 
carries  around  a video and audio sen- sor (microphone) at all 
times, and thus immense amounts of information such as 
sensitive  conversations,  spoken passphrases or biometrics,  
keyboard acoustic emanations when placed next to a keyboard,  
and broader surveillance becomes possible. Video “sensors” can 
gather visual infor- mation about a user’s private environment  
such as pictures of colleagues [38], which may be sensitive 
with military and intelligence-gathering agencies. 
Accelerometers  and GPS sensor information  can be used to 
infer location and activity patterns of users such as soldiers, thus 
compromis- ing military secrecy. 

 
While generic architectures [10, 23] have been proposed to 
control access to the network, for example, after soft- ware has 
accessed certain sensor information, various vec- tors exist for 
leaking garnered information. Overt channels between 
components on the smartphone (Android  provides very little 
security against communicating applications, for example), or 
covert channels between related malware ap- plications (through 
a storage channel, for example) are cur- rently viable vectors for 
leaking sensitive data to adver- saries. It is even possible to 
leverage other “blessed” ap- plications on the phone to act as a 
carrier  for such informa- tion (by invoking  a web-browser with 
an encoded URL, for example). Thus we are interested in 
building  a unified ar- chitecture for controlling access to sensor 
data, and limiting what information  can be gleaned from the 
user’s environ- ment unless he or she is making  use of 
legitimate appli- cations. We are currently building  a software 
prototype of one instance of sensory malware to demonstrate the 
reality of the threat, and to better understand defensive techniques 
to limit such malware. 

 
We aim to study types of sensory malware that are stealthy and 
thus use few resources on the mobile device. For ex- ample, 
speech-based malware may use several heuristics  to target analysis 
at only specific portions of the audio sample. Such targeted 
analysis can drastically  reduce the amount of resources needed to 
analyze audio samples, thus decreasing 

the observability of such malware. To conserve power, such 
malware can also target its offline processing to when the 
mobile device is connected to a power source for charging. Under 
such circumstances the malware uses few precious resources and 
does not detract from the user’s experience. Speech malware of 
this type may even operate using more general “profiles” that 
tune the malware to recognize sev- eral different situations, or 
contexts, such as a recognized phone number that is dialed. 
Based on the context, the speech malware can, for example, 
detect a credit card cus- tomer service line and target analysis to 
credit card number extraction. Calls to financial  institutions  
such as banks of- ten require portions of the user’s social 
security number, which could be extracted similarly. Such 
profiles can make use of other clues such as audio or video 
triggers to better target surveillance and transmit specific 
information. 
 
To counter such threats, therefore, we need a framework that is 
better equipped to deal with sensory malware threats. Research is 
needed to understand the threat space of sen- sory malware, so 
that effective  defenses can be deployed. As mentioned earlier, 
existing solutions are unable to deal with situations in which 
malware communicates through covert channels, and thus such 
work must also take into ac- count anomalous resource usage to 
detect such covert chan- nels. Being low-powered devices makes 
the job of defen- sive software much more challenging, and thus 
lightweight detection techniques are necessary. It is even 
possible that the mobile platform can leverage computation in 
the cloud for “outsourced intrusion detection,” which might 
strike  a tradeoff between the time to detection and power 
consump- tion. 
 
 
4.3. Side-channel detection and mitigation 
 
It is well known that the contents of encrypted traffic can be 
disclosed by its attributes observable to a eavesdrop- per, for 
example, packet sizes, sequences, inter-packet  tim- ings. Such 
attributes, often referred to as side-channel  in- formation, often 
pose a grave  threat  to the confidential- ity of the 
communication  under the protection of cryp- tographic 
protocols. Side-channel leaks have  been  ex- tensively studied  
for decades,  in the context of secure shell (SSH) [27],  
video-streaming  [26],  voice-over-IP (VoIP) [37], web 
browsing and others. As an example,  a line of research 
conducted by various research groups stud- ied anonymity  issues 
in encrypted web traffic. It has been shown that because each 
web page has a distinct  size, and usually loads some resource 
objects (e.g., images) of differ- ent sizes, the attacker can 
fingerprint  the page so that even when a user visits it through 
HTTPS, the page can still be re-identified [9, 29]. This 
vulnerability is known to be a serious concern for anonymity  
channels such as Tor [31], 
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which are expected to hide users’ page-visits from eaves- 
droppers. 

 
A sensor grid system can also be highly susceptible to the threat 
of side-channel leaks. As described  before,  such a system 
collects data through distributed  sensors, processes it within a 
cloud, and delivers the data and related services to end clients. 
This highly distributed computing paradigm is fraught with the 
hazards of information  leaks, when con- fidential  data are 
transmitted between the sensors and the cloud, and between the 
cloud and the clients, despite the protection of the state-of-the-
art cryptographic techniques. Such privacy  risks are described as 
follows: 

 

 
Wireless Sensor Communication. The wireless channel 
connecting  the sensors to the cloud is extremely vulnerable to the 
eavesdropping attack. The sensitive data delivered through this 
channel can be easily intercepted and analyzed by the adversary. 
Though encryption  can prevent a direct disclosure of the data, it 
does not cover the side-channel in- formation,  which,  under some 
circumstances, can be used to infer the content of the sensitive 
data. As an example, collaborating with Microsoft Research 
(MSR),  we recently discovered that even for the organization 
deploying up-to- date WPA/WPA2  Wi-Fi encryptions, it 
cannot prevent an unauthorized party from collecting the query 
words its em- ployees enter into Google/Yahoo/Bing  Search. 
This is be- cause the suggestion-list  features of these search 
engines makes the sizes of the packets generated in response to 
different query letters distinct. As a result,  the adversary who 
observes these packets, despite not gaining  access to their 
contents, can map their sizes to the different letters one types 
into the search engines. 

 

 
Cloud–consumer Communication. The encrypted data 
exchanged between the cloud and its customers are equally 
subject to the side-channel threat. Cloud computing is built upon 
the infrastructure of software  as a service  (SaaS), through 
which web applications are delivered as services to web clients. 
Unlike its desktop counterpart, a web applica- tion is split into 
browser-side and server-side components. As a result,  a subset of 
its internal information flows (i.e., data flows and control 
flows) are inevitably  exposed on the network, which reveal 
application  states and state transi- tions. Our collaborative 
research with MSR reveals that the side-channel weakness of 
SaaS is fundamental, which can be used to infer a large amount 
of information from many high-profile, extremely popular 
web applications. The sen- sor grid system also faces the same 
threat: it offers services and data to its customers through web 
applications, whose side-channel information  could lead to the 
disclosure of the data, even when the communication  has been 
protected by the cryptographic protocols like HTTPS. 

The seriousness of the side-channel threat varies from case to case, 
depending on the features of the data and the way in which they 
are transmitted. An important research, there- fore, becomes 
how to design  a systematic  way to detect the side-channel 
vulnerabilities  within sensor/cloud inter- actions and the web 
applications  that serve the sensor grid’s customers. A possible 
solution is to use information-flow analysis [28], when the 
source code of related software is available. The software  
developer can first label taint sources within a program, e.g., 
variables that contain sen- sitive user data, and then run a 
detection tool to analyze its source code and track the propagation 
of taint data through both data flows and control flows. 
Whenever taint data are found to be transmitted across the 
network between the ap- plication’s client and server 
components,  an information- leak evaluation is performed to 
understand whether side- channel information,  such as packet 
sizes, sequences and timings,  can be linked back to the content of 
the data. When the source code is unavailable, we can use the 
techniques like fuzz testing to evaluate sensor-cloud interactions 
and cloud-client interactions on different  data sets, to identify 
the correlation  between the attributes of encrypted traffic and 
the content of the data. 
Control of side-channel leaks can also be highly nontriv- ial, 
particularly  when web applications are involved. Our 
collaborative  research with MSR reveals that conventional 
defenses  like  packet padding  and adding noise can be less 
effective and more costly than expected, without  con- sidering 
the specific properties of individual applications. This problem 
comes from the difficulty in hiding the side- channel 
information  related to state transitions specific to each 
application, and the limited information an application has about 
the attributes of the web traffic it generates, due to the extension 
or compression made by the web server. This vulnerability 
calls for a change in the current way of developing web 
applications to include the collaborations among multiple 
related parties:  as an example, we could let the software 
developer specify the policies for padding packets at different 
program states, and the web-server ven- dor enforce the policies 
within the web server that actually generates the packets. 
 
 
5.  RELATED WORK 
 
Kapadia et al. [16] list several security challenges for sim- ilar 
smartphone based sensing environments.  While their work 
focuses mainly on an opportunistic  sensing model where 
sensors are tasked for readings sent back as reports to other 
users or applications in urban sensing environ- ments, we 
focus on environments  where sensors push mas- sive amounts of 
data to a compute  cloud. We now list re- lated work for the 
three specific problems discussed in Sec- tion 3.. 
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5.1. Mobile phone security and privacy 
 
 

There  has been some work in using  sensors to establish context 
for different  purposes on smartphones. The work of Peddemors 
et al. [24] uses past networking  and sensor events to predict 
future network events. They give exam- ples of predicting 
network availability. The ability to pre- dict events is distinct 
from deviating from normal or pre- scribed behavior. 
Nonetheless they use the prediction of being at home or work, 
and for durations. Therefore, the system should be considered. 
Of particular problem is the complexity of computing predicted 
events, which would be too slow in our scenario. 

 
 

The work of Tanviruzzaman et al. [30] is most similar to that 
discussed here. In their work, they suggest the use of a hierarchy  
of sensor information  to establish authentica- tion, and show 
some work on using accelerometer data on an iPhone to produce 
a biometric  that can be used to au- thenticate to the phone. 

 
 

Other work by Jong-Kwon and Hou [18] has predicted user 
behavior  and movements from the perspective of a large WiFi 
network, for the purposes of assigning  scarce resources 
appropriately.  However,  we do not rely on one overarching 
network for our positioning system. Yet, the possibility  exists 
that such work could be used to have the network aid in 
performing risk analysis. 

 
 

The field of  smartphone  security and the security of 
cellphone infrastructure is now being widely researched. 
Traynor [32] gives a short overview  of infrastructure pos- 
sibilities and problems. Traynor et al. [34] consider the 
potential effect of a malnet  of smartphones on the cellular 
network’s infrastructure. Enck et al. [13] discuss exploits in 
the SMS-network infrastructure, and Traynor et al. [33] discuss 
mitigation  strategies for such exploits. 

 
 

Relating  to mobile phone security, there has been recent in- terest 
in maintaining their security. The potential to attack these 
devices, and that they would suffer similar security fates to 
personal computers, such as viruses and malware, has been long 
understood [8]. Specific approaches to con- sidering defense 
against such software on smartphones has been considered by 
Cheng et al. [7]. The specific strengths and weaknesses of the 
Android security model are explored by Ongtang et al. [23]. The 
ability to securely determine if software downloads are trusted 
on such devices is explored by Enck et al.[11]. Enck et al. 
[12] give an introduction to understanding the Android security 
model specific to the smartphones we are using for 
implementation. 

5.2. Sensory malware threats and defenses 
 
As mentioned  earlier, researchers are already investigating attacks 
and defenses related to sensory malware [5]. Xu et al. [38] 
provide  a proof-of-concept  implementation  of video-capture 
malware. Their malware captures video and transmits this video 
after suitable compression to lessen the burden on the network. 
These malware do not appear to be stealthy enough because of the 
large amounts of video data transferred on the network. We thus 
seek to develop and evaluate solutions where malware is even 
more stealthy, by limiting the network communication. In fact, 
we would like to study situations  where network  access is 
limited com- pletely using techniques such as Kirin, a 
lightweight  secu- rity certification  mechanism for applications 
on Android. Even in cases where  a system such as Saints [23] 
is used to control the interaction between applications, we 
would like to study the use of covert channels to circumvent 
such mechanisms. 
 
Detection techniques such as behavioral detection of mal- ware 
by monitoring system calls [3], and power consump- tion [20] 
already attempt to detect malware on mobile plat- forms. We 
aim to study the limits of such detection tech- niques since 
resources are limited, and how malware can circumvent 
detection because of the inherent limitations on the detection 
techniques. 
 
 
5.3. Side-channel information leaks 
 
Side-channel leaks have been known  for decades:  a doc- 
umented  attack  has been dated back to 1943 [22]. The threat 
has been extensively  studied  in different contexts: information 
is found to be exposed through electromag- netic signals (e.g., 
keystroke emanation [35]), shared mem- ory/registers/files  
between processes (e.g., the recent dis- covery of the side-
channel weakness in Linux process file systems [39]), CPU 
usage metrics, etc. Recently, such in- formation  leaks are found 
to threaten cloud computing plat- forms like Amazon EC2 [25]. 
 
Encrypted communications  are often subject to the side- 
channel attacks, which leverage such information as packet 
timings  and sizes to infer the contents of encrypted data. 
Prominent examples include Brumley et al.’s attack on the 
RSA secret keys used in OpenSSL [4], Song et al.’s work on 
keystroke inference from SSH [27], Wright et al. and others’ 
analysis of phrases and sentences from  the variable- bit-rate 
encoding in VoIP [37], and Saponas et al.’s detec- tion of movie 
titles in an encrypted video-streaming  system (Slingbox Pro) 
[26]. Encrypted web communication  has also been found to be 
vulnerable to the side-channel attack. Prior research shows that a 
network eavesdropper can often 
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fingerprint web pages using their side-channel characteris- tics 
to identify the pages the victim visits. This idea first appeared 
in the personal communication  among Wagner, Schneier and 
Yee in 1996 [36], and was later demonstrated in a course project 
report in 1998 by Cheng et al. [6]. Sun et al. [29] and Danezis 
[9] both indicated the impacts of the attack on anonymity 
channels like Tor, MixMaster and WebMixes. It was also 
discussed by Bissias et al. [2], who studied WPA and IPSec, 
instead of SSL/TLS in other re- search. 

 
 
 
6.  SUMMARY 

 

 
We have outlined a high-level  architecture that should both be 
realizable, and provide  for the ability to perform on- demand 
analysis and processing of data from a large num- ber of 
heterogeneous and globally  placed sensors. The net- work is 
structured so that it is feasible to consider real or near-real time 
processing and interpretation of the data with appropriate 
resources. However, challenges remain in de- termining how to 
assure privacy, integrity and provenance of the data from its 
collection, through its life-cycle of pro- cessing to final 
consumption. The authors’ belief is that the largest research 
questions based on our model lie at the tail ends of the data life-
cycle;  namely, there are open research questions at data-
collection by smartphone  sensors and in the final delivery of a 
processed data-consumable. Specific directions aimed at solving  
these problems have been dis- cussed, along with initial 
development of solutions. We summarize this in Table 1 

 
 

Table 1. Summary  of the Three Threats,  Associated 
Dangers and Mitigation  Strategies We Actively Address. 
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Appendix B  

Overview of Status of Clouds 

1. Introduction  
The importance of simulation is well established with large programs, especially in Europe, USA, Japan 

and China supporting it in a variety of academic and government initiatives. The requirements and 

consequent architecture of large scale supercomputers is well understood although there are important 

challenges in meeting performance goals seen by international drives to reach first petascale (starting 15 

years ago) and now exascale performance. Performance on closely coupled parallel simulations drives 

both hardware (low latency high bandwidth networks, high flop CPU’s) and software that can exploit it. 

Grids covered both the linkage of such computers and broader computing facilities. This has spurred rise 

in high throughput computing, workflow and service oriented architectures (Software as a service); 

concepts of lasting value. Major data intensive applications like LHC data analysis highlighted the many 

important pleasingly parallel applications that these were a major driver of Grid and many task systems. 

Now the strong commercial interest is driving clouds and we can ask how they fit in? Clouds offer on-

demand service (elasticity), economies of scale from sharing, a plethora of new jobs making clouds 

attractive for students & curricula and several challenges including security. Clouds lie in between grids 

and HPC supercomputers in their synchronization costs so all the high throughput jobs run on grids 

should perform well on clouds. In this paper, we suggest that there is a class of explicitly parallel jobs that 

do not need the highest performance interconnect and will have good performance and good user 

experience on clouds. We describe this in an application analysis in section2. Of course, HPC 

supercomputers can do “all applications” subject to reservations about limited I/O (disk) capabilities. 

However, they are overkill for many problems and it seems better to reserve such machines for the high-

end applications that require them and use commodity cloud environments when appropriate. 

We stress that clouds offer not just a new humongous data center architecture but striking new software 

models spurred by the competitive Platform as a Service PaaS market. In section 3 we focus on the 

possibilities suggested by MapReduce. 

The term cloud is being in many ways so let’s first define a public data center model that describes the 

major offerings of Microsoft, Amazon and Google. Their data centers are composed of containers of 

racks of servers which number between 10,000 and a million. Each server has 8 or more cpu cores and 

around 64GB of shared memory and one or more terabyte local disk drives. GPUs or other accelerators 

are not common. There is a network that allows messages to be routed between any two servers, but the 

bisection bandwidth of the network is very low and the network protocols implement the full TCP/IP 

stack so that every server can be a full Internet host with optimized traffic between users on the Internet 

and the servers in the cloud.  In contrast supercomputer networks minimize interprocessor latency and 

maximize bisection bandwidth. Application data communications on a supercomputer generally take 

place over specialized physical and data link layers of the network and interoperation with the Internet is 

usually very limited. 
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2. A Cloud Defined   
Each server in the data center is host to one or more virtual machines and the cloud runs a “fabric 

controller” which manages large sets of VMs fort scheduling and fault tolerance across the servers and 

acts as the operating system for the data center. An application running on the data center consists of one 

or more complete VM instances that implement a web service.  The  basic unit of scheduling involves the 

deployment of one or more entire operating systems, which is much slower than installing and starting an 

application on a running OS.  Most large scale cloud services are intended to run 24x7, so this long start-

up time is negligiblen although running a “batch” application on a large number of servers can be very 

inefficient because of the long time it may take to deploy all the needed VMs. Data in a data center is 

stored and distributed over many spinning disks in the cloud servers. This is a very different model than 

found in a large supercomputer, where data is stored in network attached storage. Local disks on the 

servers of supercomputers are not frequently used for data storage. 

There are more types of clouds than is described by this public data center model. For example, to address 

a technical computing market, Amazon has introduced a specialized HPC cloud that uses a network with 

full bisection bandwidth and supports GPGPUs. The major commercial clouds offer higher level 

capabilities -- commonly termed Platform as a Service PaaS – built on a basic scalable IaaS Infrastructure 

as a Service. For technical computing, important platform components include tables, queues, database, 

monitoring, roles (Azure), and the cloud characteristic of elasticity (automatic scaling). MapReduce, 

which is discussed below, is another major platform service offered by these clouds. Currently the 

different clouds have different platforms although the Azure and Amazon platforms have many 

similarities. The Google Platform is targeted at scalable web applications and not as broadly used in 

technical computing community as Amazon or Azure, but it has been used on some very impressive 

projects. We expect more academic interest in PaaS as the value of platform capabilities become clearer. 

“Private clouds” are small dedicated data centers that have various combinations of the properties above 

and typically use one of the four major open source (academic) cloud environments Eucalyptus, Nimbus, 

OpenStack and OpenNebula (Europe) which focus at the IaaS level with interfaces similar to Amazon. 

FutureGrid is an NSF research testbed for cloud technologies and it operates a grid of cloud deployments 

running on modest sized server clusters with support for all four academic IaaS. Private clouds do not 

fully support the interesting platform features of commercial clouds. Open source Hadoop and Twister 

offer MapReduce features similar to those on commercial cloud platforms and there are open source 

possibilities for platform features like queues (RabbitMQ, ActiveMQ) and distributed data management 

system (Apache Cassandra). However, there is no complete packaging of PaaS features available today 

for academic or private clouds. Thus interoperability between private and commercial clouds is currently 

only at IaaS level where it is possible to reconfigure images between the different virtualization choices 

and there is an active cloud standards activity. The major commercial virtualization products such as 

VMware and Hyper-V are also important for private clouds but also do not have built-in PaaS 

capabilities. 

3. Mapping Applications to Clouds 
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Figure 109: Forms of Parallelism and their application on Clouds and

Previously we discussed 

mapping applications to 

different hardware and 

software in terms of 5 

“Application 

Architectures”[1] mainly 

aimed at simulations and 

extended it to data 

intensive computing [2, 

3]. One category, 

synchronous, was 

popular 20 years ago but 

is no longer significant. It 

describes applications 

that can be parallelized with each decomposed unit running the identical machine instruction at each time. 

Another category, asynchronous is typically not important in practical computational science and 

engineering. There was also a category of metaproblems, which describe the domain supported by 

workflow with coarse grain interlinked components. The other categories were pleasingly parallel 

(essentially independent) and loosely (bulk) synchronous which are critical application classes that 

possibly combined in metaproblems describe the bulk of eScience. As mentioned above, pleasingly 

parallel problems whether parameter searches for simulations or analysis of independent data chunks (as 

in LHC events) are very suitable for clouds. Loosely synchronous problems include partial differential 

equation solution and particle dynamics and after parallelization, consist of a succession of compute-

communication phases.  

Clouds naturally exploit parallelism from multiple users or usages. The Internet of things will drive many 

applications of the cloud. It is projected that there will soon be 50 billion devices on the Internet. Most 

will be small sensors that send streams of information into the cloud where it will be processed and 

integrated with other streams and turned into knowledge that will help our lives in a million small and big 

ways. It is not unreasonable for us to believe that we will each have our own cloud-based personal agent 

that monitors all of the data about our life and anticipates our needs 24x7.  The cloud will become 

increasing important as a controller of and resource provider for the Internet of Things. As well as today’s 

use for smart phone and gaming console support, “smart homes” and “ubiquitous cities” and the current 

AFRL project build on this vision. We expect a growth in these areas with emergence of cloud 

supported/controlled robotics. 

Looking at data intensive applications we can re-examine the pleasingly parallel and loosely synchronous 

category as shown in figure 1 above. This introduces map-only (identical to pleasing parallel), and 

separates off MapReduce and Iterative MapReduce classes from the large loosely synchronous class 

whose remaining members are the last sub category d) on the right of figure 1. This area requires HPC 
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architectures with low latency high bandwidth interconnect. The MapReduce class b) consists of a single 

map (compute) phase followed by a reduction phase such as gathering together the results of queries 

following an Internet search or LHC data analysis (histogram) of different datasets. As implemented in 

Hadoop, one would normally communicate between Map and Reduce phases by writing and reading files. 

This leads to excellent fault tolerance and dynamic scheduling features. At SC11, there was some buzz in 

favor of data analytics and Hadoop but that this is not clearly reasonable as many data analysis (mining) 

applications involve kernels that do not fit Map only or MapReduce categories. Many algorithms 

including those with linear algebra (needing to be parallelized) fall into the category c) Iterative 

MapReduce in figure 1. Problems in this category consist of multiple (iterated) Map phases followed by 

reduction or collective operation communication phases. They do not have the many local communication 

messages typically needed in parallel simulations shown in fig 1d) but rather larger collective operations 

mixing compute and communication. We do not expect traditional MapReduce to be broadly useful but 

the Iterative extension is much more promising but the breadth of its applicability needs much more 

study. Iterative MapReduce is a programming model that can have the performance of MPI and the fault 

tolerance and dynamic flexibility of the original MapReduce. Open source Java Twister[4, 5] and 

Twister4Azure[6, 7] have been released as an Iterative MapReduce framework. Figure 2 compares 

Twister4Azure with Amazon and a classic HPC configuration on a map-only case while figure 3 shows 

Azure4Twister having a smooth execution structure and modest communication overhead (the uncolored 

gaps) on a parallel data analytics algorithm. We expect the commonly used expectation maximization 

(EM) approach used for example in Multidimensional Scaling MDS application of fig 3, to be particularly 

attractive for iterative MapReduce as EM can have large compute/communication ratios. Category c) 

extends the clear value of clouds in the categories a) and b) of figure 1. 

3. CLOUDS AND REPOSITORIES 
It is traditional to set up data repositories for large observational projects. Examples are EOSDIS (Earth 

Observation), GenBank (Genomics), NSIDC (Polar science), and IPAC (Infrared astronomy). The fourth 

paradigm implies an increase in data mining (analytics) based on such data and this implies repositories 

need computing as well as data. We also expect that one should bring the computing to the data and not 

vice versa. Thus we do not expect researchers to download large petabyte data samples to their local 

cluster; rather we expect repositories to be associated with cloud resources (as cheapest and elastic) that 

Figure 110: A Map Only example pairs sequence 

Figure 111: Parallel MDS on Azure4Twister showing 

communication (white) and two compute map phases
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allow data analytics on demand. Again further work is needed here. Some questions include the data 

storage architecture (database or NOSQL) and how one supports mining of multidisciplinary science 

involving data from different fields stored in different clouds. 

4. Cloud Research Issues 
We list areas where is substantial research activity and where we can expect major changes. 

 New applications such as Biomedical and bioinformatics applications where cloud architecture brings 

special challenges in the area of privacy (see later). Furthermore, Clouds have been attractive 

platforms for these applications as they are emerging big data areas and there is less history in using 

existing platforms. 

 Sensor webs studied in this project are another emerging area where elastic nature of Clouds is well 

suited for the often bursty nature of sensor data.  

 Big data applications based on new MapReduce or Iterative MapReduce environments are attractive 

on Clouds and result in broad research areas include addressing both programming and storage 

challenges. Latter include SQL and NOSQL models and the reconciliation of distributed data and 

centralized cloud computing 

 Scheduling models optimized for MapReduce and for other Cloud usage modes such as scalable 

sensor webs (Sensor Grids or Clouds) where one has Clouds controlling and supporting a distributed 

Grid of sensors. 

 Optimizing the run time features and performance for MapReduce and Iterative MapReduce. This 

includes new reduction primitives, polymorphic implementation on different systems with for 

example, exploitation of high performance networks as in classic MPI research. 

 Support of federation of clouds and cloud bursting (typically the linkage of private and public Clouds) 

and on-demand cloud federation. 

 New storage models such as data parallel HDFS and Hbase (Bigtable). 

 NOSQL table structures such as Cassandra and commercial approaches such as Amazon SimpleDB 

and Azure Table. 

 Economic models for an ecosystem with multiple cloud systems and CI. 

 Research on Cloud software stacks. There is research at all levels of the software stack with two 

rather different emphasis areas. Research on systems that provide basic virtual machine provisioning, 

deployment and management. This includes Eucalyptus, Nimbus, OpenStack and OpenNebula with 

virtual networking as a distinct activity. At the other end are integration of capabilities to provide rich 

Platform-as-a-Service as offered by major commercial systems. Concepts such as appliances provide 

novel ways of delivering these capabilities. 

 Clouds tend to achieve scalability by allowing faults. Research is needed on both, how to expose 

faults to users as well as services to build fault tolerant applications. Most research in HPC tends to be 
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on forbidding faults; however Clouds highlight a different philosophy with resilient applications 

running on faulty systems. 

 Green IT is naturally synergistic with Clouds and related research includes examining the impact of 

Cloud features on power use, including the cost of powering idle machines supporting elastic clouds 

as well as a application aware approaches to power management. 

Security policies and mechanisms: Clouds tend to emphasis the need for quality security mechanisms 

due to the sharing of storage and computing. One research area investigates hybrid architectures with 

algorithms broken into two; a low cost but non privacy preserving part running on an intrinsically secure 

private clouds, and a time consuming but privacy preserving part executing on a public cloud. Genomic 

data (human) and other health records are demanding here. The concept of differential privacy and health 

data anonymization is an active research topic. As well as basic security for computing and storage there 

is research on privacy preserving search with the elegant but time consuming concept of Homomorphic 

Encryption which allows encrypted data to be searched by encrypted queries. 

Standards: There are many important standard activities, from those specifying the basic virtual machine 

structure to higher-level standards defining the PaaS environment, for example, queue and table 

structures. Although there is some support for these standards – such as OCCI (from OGF) in 

OpenNebula and OpenStack – this area is still under development. NIST and IEEE are playing leadership 

roles. 
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