
AJAX Integration Approach for Collaborative Calendar-Server Web Services

Ahmet Fatih Mustacoglu1, 2, and Geoffrey Fox1, 2

1Community Grids Lab, Indiana University, Bloomington, IN, 47404, USA
2Department of Computer Science, Indiana University

{amustaco, gcf}@cs.indiana.edu

ABSTRACT

 The proliferation of the impressive web technologies
provides developers with a way to produce performance
efficient, usable, rich and interactive web based
applications. A set of new technologies called AJAX
(Asynchronous JavaScript and XML) for the browser
based applications is gaining the web developer’s interest.
In this paper we present a generic and performance
efficient framework for integrating AJAX models into the
iCalendar based Collaborative Calendar-Server Web
Services system.

1. INTRODUCTION

AJAX [1] is getting more popular for the web based
application developments. It is not a single technology
that does the magic for applications. It is a combination of
technologies for the web based applications. Some of the
standard technologies that composed the AJAX model are
JavaScript, XML, CSS, DOM and XSLT. Gmail [2] and
Google Maps [3] for example are the high performance
AJAX applications developed by Google.

Web Services [4] increase the level of interoperability

between different applications running on different
platforms. Web Services are self-descriptive, self-
contained and modular systems, and they are defined by
the Web Services Description Language (WSDL) [5].
Web Service systems support XML based message
exchange mechanism, which enable us to be able to
develop loose coupled distributed systems all around the
world. They use Simple Object Access Protocol (SOAP)
[6] for message exchanging. We believe that the AJAX
model and the Web Service Systems could support and
improve each others strength since they are both using
XML based messaging structures.

In this paper, we first give some background
information regarding to the technologies that we have
been using in our proposed frame work. These
technologies consist of the AJAX model, the Web
Services, Grid Services, and iCalendar [7] based

Collaborative Calendar-Server (CCS) Web Services [8].
In Section 3 we mention about our design and
architecture for our proposed framework. Next, we are
going to give a comprehensive explanation of our
implementation details in Section 4. Then, we are going
to present our performance test results using the AJAX
model and traditional model in Section 5. Finally, we are
going to give the future work and conclusion in Section 6.

2. BACKGROUND

Rich applications are getting more popular due to their

impressive features including high performance
(compared to earlier systems), responsiveness, and
interactive capabilities. Traditional web applications are
generally suffer from slow performance and limited
interactivity compared to the AJAX based applications.
AJAX based applications are shows a better performance
since it can add or retrieve a requested data without
reloading the page. For example, AJAX-based Google
Maps beta updates the page almost instantly when it
receives the request from users. With, a standard web
application, the page need to be reloaded to update the
page and meanwhile users need to stare at a blank page
[9]. In AJAX model, asynchronous data retrieval is done
through the XMLHttpRequest, interactions and dynamic
display nature is succeed by using the Document Object
Model (DOM). XHTML and CSS provide a mechanism
for standards-based presentation of the system, and data
modification and exchange is done by using XML and
XSLT. Finally, JavaScript binds everything together in an
AJAX based application system.

After Google Maps, Yahoo [10] has also released its

AJAX-based Map. This two giant’s impressive
developments with Google Maps and Yahoo Map are
triggering web based application developers’ attention.

AJAX-based systems can be implemented in client

applications by writing JavaScript codes that directly use
the XMLHttpRequest protocol’s API to communicate
with the server or the Web Service. However, there is
some compatibility issues with the browser, so these

issues should be keep in mind during the design and
development period.

Our proposed AJAX-based framework is a

calendaring and scheduling services implementation
model that provides users with the ability of using
services provided by the iCalendar based CCS Web
Services System [8]. Web Services can be accessed
through the message exchange mechanism in SOAP
format. By combining Web Services, which use SOAP
over HTTP, with the XML based structure AJAX-model
in our framework, we are planning to improve the
performance and to leverage the level of interoperability
for different kind of applications running on a different
platform for our proposed system.

3. DESIGN AND ARCHITECTURE
OVERVIEW

Our proposed system has been designed to interact
with CCS Web Services from an AJAX-based interface to
provide calendaring and scheduling services over the
internet. In our framework, users interact with the Web
Services through the pure JavaScript codes. User
interface is implemented by using HTML and JavaScript.
The CCS’s Web Services can be executed from our
JavaScript file called “calendarservice.js”, and we have
used “ws.js” from IBM Corporation [11] and
“prototype.js” framework by Sam Stephenson [12] for
generating WS.Call object. In our framework, users first
need to be authenticated with the system in order to post
or retrieve calendar information from the CCS system.
Having successfully authenticated with the CCS system,
users can access and post an event into their private
calendar, which can only be seen by its owner. They can
also schedule a meeting into the public calendar, which
can be accessed by the entire registered user with the CCS
system. All the access to the calendars has been
synchronized. An overview of our framework
architecture design is depicted in Figure 1.

Users’ login information is stored in MySQL Database

[13], and this information is used for authenticating the
users with the CCS system. Basically, our JavaScript
called “calendarservice.js” code executes the coming
request from users by using “ws.js” and “prototype.js”
JavaScript files to setup the WS.Call object to call the
associated Web Service of the CCS. Each service of the
CCS system first tried to authenticate the user login
information. If users’ login information is correct, then
the requested service is provided and the result is returned
to the client. Otherwise, called Web Service of the CCS
returns a warning message to the users to let them know

that they need to register in order to gain access into the
CCS Web Services.

With the AJAX-based friendly user interface, users’
requests and Web Service responses can be displayed by
just updating the requested information within the
browser almost instantly without reloading the entire
page, which basically reduces the performance of the
whole system.

WEB BROWSER

USER INTERFACE
JAVASCRIPT, HTML,

CSS,XHTML

WS.JS

WS.CALL

SOAP.ENVELOPE

XMLHttpRequest

Collaborative Calendar-Server
WEB SERVICES

DATABASE

Figure1. Invoking the CCS Web Services from the
AJAX Application

4. IMPLEMENTATION DETAILS

Our AJAX-based interface [14], which interacts with
the CCS Web Services, has been implemented by using
the HTML, and JavaScript technologies. CCS Web
Services are being called from the pure JavaScript code
based on the users’ request, and results displayed within
the browser almost instantly without reloading the entire
page.

In our calendarservice.js file, we have currently

implemented “doregister, publicCalendar,
privateCalendar, addEvent, scheduleMeeting” methods to
communicate with the CCS Web Services. These methods
generate the WS.Call object and WS.Call invokes the
CSS Web Services in RPC style. Sample code for
generating WS.Call object to invoke the CCS Web
Service is as follow:

- var call = new
WS.Call('http://gf8.ucs.indiana.edu:18086/AJA
XWSCalendar/services/IcalCalendarServer?wsdl
'

- call.invoke_rpc(qn_op, new
Array({name:'username',value:username},{name
:'password',value:password},{name:'name',value:
name},{name:'lastname',value:lastname},{name:'
email',value:email}),null,function(call,envelope)
{var ret =
envelope.get_body().get_all_children()[0].get_al
l_children()[0].get_value();});

doregister: This functionality allows users to register

with the CCS framework. When users click on this
functionality, a popup window is opened. In this popup
window, users need to enter the username, password,
name, last name, and email information in order to
register with the system. Once users click on the “Click to
register” button, doregister method is being called. After
generating WS.Call object in doregister operation, the
users’ registration process is completed by inserting those
fields into the Database.

publicCalendar: This method, shows the

public/collaborative calendar within the browser. It
receives username, password, and container variables,
and executes the associated Web Services of the CCS to
retrieve the public calendar. If the login procedure with
the system is successful, this function sets the associated
container with the requested calendar data within the
browser to show the public calendar information to the
user. Otherwise, returns a warning to the users so that
they can register with the system first in order to gain
access to the system.

privateCalendar: Users can access their private

calendar via this option of the AJAX-based interface.
This menu item receives username, password, container
parameters, and brings the user’s private calendar via the
necessary service calls, if the login information is correct.
If users login is not authenticated by the CCS Web
Services, then users asked to register before accessing the
system.

addEvent: Via this method, users can add/insert new

events into their private calendar. This method receives
username, password, event start date, start hour, start
minute, start time am/pm value, event end date, end hour,
end minute, end time am/pm value, public or private
value for this event, first name, last name, email, event
name, event location, and event description information
from the users. Users can complete the operation by
pressing on the “Add Event” button.

scheduleMeeting: Users can schedule a meeting into

the collaborative/public calendar via this option, and
results displayed within the browser. This method
requires, username, password, event start date, start hour,

start minute,start time am/pm value, event end date, end
hour, end minute, end time am/pm value, first name, last
name, email, event name, event location, and event
description information. Once, the users click on the
“Schedule a Meeting” button, this JavaScript method
from our calendarservice.js is called, and it executes the
related Web Service based on the request.

5. TEST RESULTS

We have performed several tests to evaluate our
proposed framework, and we have calculated turnaround
time, standard deviation, and standard error values for our
proposed AJAX model and traditional request/response
systems. The comparison of two systems and
environment settings are given as below. And calendar
file size user for these tests is 32KB.

In each time, our web service has been called 100
times to measure the turn around time, and it has been
called 1000 times as a total. Summary of testing
environments is depicted in Table 1.

Table 1. Summary of Environment and Machine

Configurations

Axis: Running on GridFarm8
Processor Intel® XeonTM CPU (2.40 GHZ)
RAM 2GB total
Bandwidth 100Mbps
OS GNU/Linux (kernel release 2.4.22)
Java
Version

Java 2 platform, Standard Edition(1.5.0_01)

SOAP
Engine

AXIS 1.2 and Tomcat 5.0.28

AJAX-based Service Client

Processor Intel Pentium 4 CPU 3.40GHz
RAM 1.00 GB total
Bandwidth 100Mbps
OS Windows XP Professional
Browser Internet Explorer 7.0

Traditional-based Service Client
Processor Intel Pentium 4 CPU 3.40GHz
RAM 1.00 GB total
Bandwidth 100Mbps
OS Windows XP Professional
Browser Internet Explorer 7.0

In Figure 2, we have calculated the average turnaround
time for our proposed AJAX-based framework for
retrieving the users’ private calendar, which is 32KB in
size. In each test case, our service returns the requests
most of the time in 0 millisecond time. We have also

measured the Standard Deviation and Standard Error
values for our proposed AJAX-based framework.
Standard Deviation test results are given in Figure 3, and
Standard Error test results are given in Figure 4.

In Figure 5, we have calculated the average turnaround
time for the traditional framework, which works request
and response based, for retrieving the users’ private
calendar, which is 32KB in size. In each test case, the
CCS Web Service returns the requests average in 367
milliseconds. We have also measured the Standard
Deviation and Standard Error values for the traditional
framework. Standard Deviation test results are given in
Figure 6, and Standard Error test results are given in
Figure 7.

Average Turnaround Time

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Number of Times

T
im

e
[m

se
c]

Series1

Figure2. Average Turnaround Time for AJAX Model

Standard Deviation

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 2 3 4 5 6 7 8 9 10

Number of Times

T
im

e
[m

se
c]

Series1

Figure3. Standard Deviation for AJAX Model

Standard Error

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 2 3 4 5 6 7 8 9 10

Number of Times

T
im

e
[m

se
c]

Series1

Figure4. Standard Error for AJAX Model

Average Turnaround Time

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

Number of Times

T
im

e
[m

se
c]

Series1

Figure5. Average Turnaround Time for Traditional
Model

Standard Deviation

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 2 3 4 5 6 7 8 9 10

Number of Times

T
im

e
[m

se
c]

Series1

Figure6. Standard Deviation for Traditional Model

Standard Error

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50

1 2 3 4 5 6 7 8 9 10

Number of Times

Ti
m

e
[m

se
c]

Series1

Figure7. Standard Error for Traditional Model

When we compare the turnaround time as a

performance issue, our proposed AJAX-based frame
work is much faster than the traditional model for
retrieving users’ private calendar from the CCS.

6. CONCLUSION AND FUTURE WORK

We have developed a calendar server model called
Collaborative Calendar-Server Web Services [8] to
provide calendaring and scheduling services over the
internet. CCS has been implemented as a pure Web
Services by using Java Language and Java Servlet
Technology. We have integrated a calendaring and
scheduling client into the GlobalMMCS Portal [16]
developed by Community Grids Laboratory at Indiana
University to access the CCS’s Web Services in
GlobalMMCS portal for calendaring and scheduling
needs.

Web Service Technology provides a new level of
interoperability between different platforms and
languages. By taking advantage of Web Service
Technology, we have developed and implemented a
calendaring and scheduling client, which can
communicate with CCS’s Web Services via AJAX
Technology. In our proposed framework here, we have
proved that our Collaborative Calendar-Server Web
Services can also be accessed via AJAX based models by
simply calling the associated CCS Web Service’s
interfaces in JavaScript by using calendarservice.js”
written by us, “ws.js” from IBM Corporation [11] and
“prototype.js”. We have also measured turnaround time,
standard deviation, and standard error values for our
proposed AJAX model and traditional request/response
systems. As expected, AJAX based model brings the
result faster than the traditional request/response model.

As a result, our proposed performance efficient AJAX
based framework can be integrated into the CCS Web
Services [8] system, and the CCS Web Service [8] system
is provides a framework for implementing calendaring

and scheduling applications to access its services from
different languages and platforms.

RERERENCES

[1 Tom Noda, Shawn Helwig, Rich Internet Applications
http://www.uwebc.org/docs/final_1.pdf

[2] GMail Website
http://www.gmail.com

[3]Google Maps Beta Website
http://maps.google.com/

[4] Booth, D., Haas, H., McCabe, F., Newcomer, E.,
Champion, M., Ferris, C., and Orchard, D. “Web Service
Architecture.” W3C Working Group Note, 11 February
2004. Available from http://www.w3c.org/TR/ws-arch

[5] Erik Christiensen, Francisco Curbera, Greg Meredith,
Sanjiva Weerawarana, Web Service Description Language
(WSDL) Version 1.1, March 2001. Available at
http://www.w3.org/TR/wsdl

[6] Don Box, David Ehnebuske, Gobal Kakivaya, Andrew
Layman, Dave Winer, Simple Object Access Protocol (SOAP)
Version 1.1, May 2000. Available at
http://www.w3.org/TR/2000/NOTE-SOAP-20000508

[7] Internet Calendaring and Scheduling Core Object
Specification Web Site:
http://www.ietf.org/rfc/rfc2445.txt

[8] Ahmet Fatih Mustacoglu, Wenjun Wu, and Geoffrey Fox
Internet Calendaring and Scheduling Core Object Specification
(iCalendar) Compatible Collaborative Calendar-Server (CCS)
Web Services IEEE 2006 International Symposium on
Collaborative Technologies and Systems CTS 2006 conference
Las Vegas May 14-17 2006

[9] Jesse James Garret, Ajax: A New Approach to Web
Applications
http://www.adaptivepath.com/publications/essays/archives/0003
85.php

[10] Yahoo Website
http://www.yahoo.com

[11] IBM Corporation
http://www.ibm.com

[12] Prototype JavaScript framework
http://prototype.conio.net

[13]MySQL Website
http://www.mysql.com/

[14] Proposed framework interface
http://gf8.ucs.indiana.edu:18086/AJAXWSCalendar/index.jsp

[15] Collaborative Calendar-Server Project web site
http://www.opengrids.org/wscalendar/

[16] Global Multimedia Collaboration System Web Site:
http://www.globalmmcs.org/

