
Integration of NaradaBrokering and Audio/Video Conferencing as a Web Service
Hasan Bulut1,2, Geoffrey Fox1,2,3, Shrideep Pallickara1,Ahmet Uyar4 and Wenjun Wu1

1Community Grid Computing Laboratory, Indiana University
hbulut@indiana.edu, gcf@indiana.edu, spallick@indiana.edu, wewu@indiana.edu

2Department of Computer Science, Indiana University
3School of Informatics and Physics Department, Indiana University

4Department of Electrical Engineering & Computer Science, Syracuse University
auyar@syr.edu

Abstract
Audio/Video Conferencing Systems need communication
channels between their clients in order to transport RTP
packets from one client to another. In this paper we
investigate audio/video conferencing as a Web Service and
the deployment of publish/subscribe systems in the context
of audio/video conferencing systems. In this paper we use
our research system NaradaBrokering, which supports both
peer-to-peer and publish/subscribe paradigms, as a test bed
to investigate these ideas. We also present results from our
research system.

Keywords: audio/video (A/V) conferencing, web services,
publish/subscribe systems, middleware, RTP

1. Introduction
The most common way of transmitting multimedia (audio
and video) traffic on the Internet is to use RTP [22] (A
Transport Protocol for Real-Time Applications). Although
RTP is independent of the transport layer, the most
commonly used transport mechanisms are UDP and
multicast. TCP is also used occasionally, especially when
transferring media behind a firewall, since UDP or
multicast cannot go through firewalls in general. In this
paper we investigate transporting RTP traffic using the
publish-subscribe messaging paradigm. Though this calls
for extra latency and bandwidth requirements, we believe
there are several benefits to be accrued by such integrated
solutions.

RTP provides end-to-end network transport functions
suitable for applications transmitting real-time data, such
as audio and video. When sending media packages over
Internet, an RTP header is added to each package. This
RTP header is usually 12 bytes and contains information
about the media it is carrying such as the media codec
type, timestamp (sampling time of that package) and
source identifier. All the packages belong to the same
media stream have the same source identifier therefore the
receiver can reconstruct the stream from independent RTP
packages. RTP also figures out the correct sequence of the
packages from the timestamps of packages and sorts them
to get the original sequence of media stream. RTP uses
RTCP (RTP Control Protocol) to monitor the timely
delivery of real-time data. It provides control and
identification functionality. RTCP packages are very

similar to RTP packages but they do not contain any media
information, rather they contain information about the
identity of the sender and the quality of media transfer.
RTCP packages are usually sent every 3 seconds.

Multimedia applications mandate timely delivery of
content and generally sustain loss of media packets very
well. This makes UDP a very good choice for transporting
media, since unlike TCP it does not incorporate an error
detection/correction mechanism, which add to delays
associated with individual packets. Since UDP is point to
point, it is best to use RTP over UDP when sending
streams from one client to another directly. RTP over UDP
does not provide any support for group communication. To
hold online audio or video meetings using RTP over UDP,
one should have a media server which gets the media
streams from senders in a meeting and distributes it to the
receivers while duplicating the streams whenever
necessary.

In the case of using multicast to transport RTP packets, it
is the network’s responsibility to deliver content to the
interested recipients. Users send the RTP packages to an
agreed upon virtual multicast address and interested parties
receive content by registering an interest to the multicast
address. Deployment of multicast, though it is a
connectionless delivery mechanism similar to UDP, for
dissemination of content, has different characteristics than
that of using UDP. In multicast the network is responsible
for duplicating the streams when necessary, without
bothering the sender prior to delivery to interested parties.
The routing of media to recipients is thus delegated to
routers. It is very easy to setup audio/video conferencing in
a multicast environment. Simply agree on a multicast ip
address and port number, and you can exchange media
with other participants. There is also no need for dedicated
media server to transport content.

There are three significant issues that can curtail the
efficient deployment of multicast based multimedia
solutions. First, in multicast there is no one authority that
assigns Multicast-address/port number pairs to interested
users. Furthermore, there is no way of limiting the use of a
multicast-address/port number pair since anyone can use
any multicast-address/port number of the multicast domain
at anytime. It is thus possible to eavesdrop on meetings in

1 /6

mailto:hbulut@indiana.edu
mailto:gcf@indiana.edu
mailto:spallick@indiana.edu
mailto:wewu@indiana.edu
mailto:auyar@syr.edu

session without detection. Besides such access to media
anyone can launch a denial of service attack by sending
voluminous media streams to multicast address. Although,
it is possible to encrypt the RTP messages so that
unwanted users can not access the media, currently there is
no way of avoiding the denial of service attacks. Secondly,
multicast requires support at the router level. Although
most routers have support for multicast, it is usually
disabled. Most organizations disallow multicast traffic
since it can be very bandwidth intensive causing
applications inside an organizational domain to suffer.
Thirdly, multicast IP domain is static and limited. If there
are more people who want to use multicast frequently
multicast IP-address/port number collisions may occur
often. It is also imperative that the TTL associated with
the datagram packets in multicast needs to be used
prudently to ensure good attenuation of the multicast
traffic.

2. RTP over Messaging Systems
We suggest that transferring media over the Internet using
the publish/subscribe messaging model have several
benefits. This approach would of course be similar to
multicast in the sense that a distributed network of brokers
will handle the routing of media as opposed to routers.
This scheme would also posses an ease of use similar to
that of multicast − to create an online meeting, a user only
needs to create a topic on the broker. But this system will
not have the disadvantages of multicast.

Currently messaging systems based on the Java Message
Service (JMS) [15] publish/subscribe specification are
mostly used for asynchronous delivery of reliable data
over TCP. We propose the use of JMS style systems for
the unreliable delivery of multimedia data over UDP. In
this paper we are going to represent the results of
transporting media data using our JMS compliant
brokering system, NaradaBrokering.

In the context of a video conferencing application when a
video stream is fed to a topic, any number of clients can
receive it simply by subscribing to the topic to which the
stream is being published. The broker network handles the
software multicast of streams to relevant subscribers. The
software multicast approach ensures that the solution can
be deployed and will work anywhere. Utilization of
network resources can also be very efficient in such
systems. One problem in multicast sessions is that any
user can send streams to the virtual multicast address in
use for a given meeting. In the case of messaging systems
this can be prevented easily in the context of
publish/subscribe brokering since it is very easy to control
the subscribers and the publishers to the topics. The
brokers can easily incorporate an authentication scheme

besides efficiently controlling the subscription and
publishing rights among authenticated users.

Publish-subscribe systems can also be used for other
networking applications. In fact our Garnet [21]
collaboration environment is based on JMS and provides
application sharing, whiteboard, chat etc. Publish-
subscribe brokering can thus provide a unified framework
for a wide gamut of applications from media
communications to application sharing. Such an approach
simplifies the management of applications considerably.

A disadvantage of this scheme is that we carry additional
header information on media packets. This header is
necessary for routing messages within the messaging
system. Since the approach entails extra header
information within each media package, there is an
increase in the amount of data transferred over the
network, which in turn results in the need for more
bandwidth. In JMS based messaging, the header could be
around 200 bytes compared to 12 bytes of RTP header that
accompany the data packets encapsulating audio and video
data. In NaradaBrokering we could define a special data
type for audio/video content where the headers are
significantly smaller in size. Also, since the routing will be
done in software, it will be slower than multicast but our
results have indicated that the performance (2-4
milliseconds) is sufficient for most applications. Moreover,
with CPU performance and network bandwidth increasing
rapidly, the flexibility offered by our approach offsets the
small loss in performance. In [21] we have shown that
latencies in the order of a few milliseconds are sufficient
for most collaborative applications.

3. NaradaBrokering
NaradaBrokering [3-7] is an event brokering system
designed to run on a large network of cooperating broker
nodes. Communication within NaradaBrokering is
asynchronous and the system can be used to support
different interactions by encapsulating them in specialized
events. The NaradaBrokering scheme of automating broker
additions within a distributed cluster architecture, while
resulting in the creation of “small world networks” [1,2],
allows support for large heterogeneous client
configurations that scale to arbitrary size. NaradaBrokering
guarantees delivery of events in the presence of failures
and prolonged client disconnects, and ensures fast
dissemination of events within the system. To ensure fast
dissemination of events within the system,
NaradaBrokering relies on broker network maps hosted at
each broker to compute the fastest routes to reach a
targeted set of destinations. The routing in
NaradaBrokering is very efficient since each broker
computes shortest paths to reach a set of destinations, and
the only brokers that are involved in the route calculations

2 /6

are those that have not failed or have not been failure
suspected.

NaradaBrokering is JMS compliant and provides support
not only for JMS clients, but also for replacing [16]
single/limited server JMS systems transparently with a
distributed Narada broker network. Since JMS clients are
vendor agnostic, this JMS integration has provided Narada
with access to a plethora of applications built around JMS,
while the integrated Narada-JMS solution provides these
applications with scaling, availability and dynamic real
time load balancing. Among the applications ported to this
solution is the Anabas distance education [18]
conferencing system and the Online Knowledge Center
(OKC) portal [19] being developed at the IU Grid labs.
NaradaBrokering currently also incorporates a UDP
transport based JMS-style solution that could be used to
disseminate transient JMS messages. NaradaBrokering
also provides support for peer-to-peer (P2P)
communications [9-11] by providing support for JXTA
(from juxtaposition) [12,13] interactions. Additional
information pertaining to the integration of JXTA and
NaradaBrokering can be found in [17].

4. A/V Collaboration Web Service
The A/V Collaboration Web Service [14] developed by us
is an audio-video conferencing system in which the
Session Server, H.323 [25] Gateway, SIP [24] Gateway
and Media Server Gateway are implemented as standalone
web services. The messaging format, XML-Based General
Session Protocol (XGSP), used for communication
between these services is as the name suggests XML
based. XGSP enables WSDL-based [23] collaborating
clients to create dynamic groups and join these groups to
share various collaborative multimedia streams such as
audio, video. There are basically four sets of methods in
XGSP: Registration Method, Session Command, Session
Channel Binding and Query Method. The Registration
Method allows users to register themselves in a
registration server. Session Command is divided in two
groups: one for the session control, such as Source Select
Request, Request/Release Chairman, Request/Release/
Grant/Cancel Floor and the other group is for the
membership of the session, such as Create Session, Join
Session, Leave Session and so on. Session Channel
Binding Method is used to bind the RTP channels of a
client into the media server. Finally, using Query Method,
clients and the session server can discover various
properties of the system, such as how many sessions are
going on.

5. Integrating NaradaBrokering and A/V
Collaboration
In order to integrate the client with Narada and with the
A/V Collaboration Web Service, we need two adapters.

The Web Service Adapter will be used to communicate
with the A/V Collaboration Web Service and the Narada
Adapter will be used to communicate with Narada. One
can suggest that these adapters may be placed outside the
client computer, but because of the firewall problems and
performance issues we currently recommend that these
adapters are placed within the client computer. Figure 1
shows how this integration be achieved.

Narada Session
Server

H.323
Gateway

Web
Service
Adapter

H.323
Client

Client

Narada
Listener

Audio
Handler

Video
Handler

Narada
Adapter

Figure 1: Integration of Narada and A/V Web Service

5.1 XGSP Additions
For the purpose of the integration, we have added new
message formats, which will be used between Web Service
Adapter and A/V Collaboration Web Service. Tables 2
and 3 outline the fields (and their functions) in the newly
added XML encoded XGSP messages.

Field Explanation
Client ID A unique name for the client
IP Address The IP address of the client
Table 1: Join Request from client to A/V Collaboration Web
Service

Field Explanation
Client ID The unique name for the client
Narada System Info Server name, port number,

topic name
Listener Port numbers for audio and

video, to where the RTP
packets will be sent

Publisher Port numbers for audio and
video, from where the RTP
packets will be received

Table 2: Join-Reply message

3 /6

5.2 Web Service Adapter
A web service adapter starts the communication with the
A/V Web Service in order to make the first request to join
to the A/V session and receive the Narada parameters for
the Narada Adapter. As described above in tables 1 and 2,
XGSP protocol is updated so that the web service would
be able to define and send the Narada parameters to the
Web Service Adapter.

5.3 Narada Adapter
Web Service Adapter generates Narada Adapter to
establish the communication between the client
conferencing tool and the Narada system. The components
of the Narada Adapter are Narada Listener, Audio Handler
and Video Handler. Narada Listener subscribes to the
Narada System to receive the messages from the specified
topics for audio and video messages. Then, it extracts the
RTP packets from these messages and forwards them to
the appropriate port of the client conferencing tool, such as
an H.323 client. Audio Handler and Video Handler receive
RTP packets from the client. Then, these handlers publish
the audio and video packets received from the H.323 client
to Narada.

5.4 Communication between Client-Adapters & A/V Web
Service
Initially the Web Service Adapter sends join messages to
the Session Server. The H.323 client then initiates
connection with H.323 Gateway. This negotiation takes
place according to the H.323 protocol. Meanwhile, Session
Server receives the necessary information from the H.323
Gateway and sends a join-reply message to the Web
Service Adapter, including the NaradaBrokering session
parameters, audio and video port numbers to send and
receive the streams. Web Service Adapter generates the
Narada Adapter, whose components are Narada Listener,
Audio Handler and Video Handler. H.323 Client is told to
send the RTP packets to local ports as the destination
address and ports. H.323 client would receive the streams
as soon as the Narada Listener receives messages from
Narada system. While leaving the session, simply H.323
client sends a BYE message to the H.323 Gateway and
session server sends another message to the Web Service
Adapter to destroy the listeners and publishers and end the
session.

6. Performance
We compare the performance of the transfer of RTP
packets using the Java Media Framework and
NaradaBrokering’s UDP based JMS solution. In this
experiment we use two Red Hat 7.3 linux machines, one
for clients and one for servers. The machine hosting the
clients is a 1.80GHz Intel Pentium 4 with 512MB of
memory. The server machine is a 1.266GHz dual CPU
Intel Pentium 3 with 1024 MB of memory. The

experiments and the results that we have included in this
section are our preliminary results. We intend to continue
gathering performance numbers for the final version of this
paper.

The client machine runs the transmitter and the receiver
clients. We host both the transmitter and receiver on the
same machine to obviate the need for clock
synchronizations and the need to account for clock drifts,
while computing the delay in the delivery of individual
packets. The second machine runs a reflector server and a
NaradaBrokering broker. All processes involved in the
experimental setup use the Blackdown-1.3.1, Java 2 JRE
JVM. The transmitter client is a Java program written
using Java Media framework API. It reads a media file and
sends it over the network. The receiver client is also a Java
program written using the JMF API. It gets a media stream
over the network and plays it. The reflector server is also a
program written using JMF API. It receives a media
stream from the network and sends it to another IP address.
Our benchmark uses an H.263 video file that is a 30
second part of a movie, with an average bit-rate of
600Kbps (Kilo bits per second) and a frame-rate of 30
frames/sec. The transmitter client reads this file from the
disk and sends it to the server machine. Then reflector
server or the NaradaBrokering broker sends it back to the
receiver client, which plays it.

The reflector case corresponds to using UDP to transfer
RTP packages, while the NaradaBrokering case
corresponds to transferring RTP packets inside JMS
messages and transferring them using UDP. For every
packet that is received we compute the transit delay
associated with the delivery of RTP packets. We also
measure the Jitter J, which is defined by the RTP RFC as
the mean deviation (smoothed absolute value) of the
difference D in packet spacing at the receiver compared to
the sender for a pair of packets. The Jitter J is computed
based on the formula −
J = J + (|D(i-1, i)| - J)/16, where D(i-1, i) corresponds to
the difference between the delay for ith RTP packet and the
delay for the (i-1)th RTP packet. For the sample of packets
that are received we also compute the mean delay and the
standard deviation associated with the delays for individual
packets. For computing the standard deviation in both
cases we ignore the first 60 delays samples since they
correspond to the start up of the application. Figures 2 and
3 depict the delays and jitter (up until that point) values
associated with individual packets.

The delays and jitters at start of the video session are high
because of the JMF player initialization. In both cases
individual packets arrive on time but are not being
processed in a timely fashion by the player. We ignore
these first few samples that correspond to initialization

4 /6

latencies while computing the standard deviation and mean
delay for both cases.

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400 1600 1800

Ji
tte

r
(M

illi
se

co
nd

s)

Packet Number

JMF-RTP
NaradaBrokering-RTP

Figure 2: Comparison of Jitter in NaradaBrokering and JMF

1

10

100

1000

10000

0 200 400 600 800 1000 1200 1400 1600 1800

D
el

ay
 (

M
illi

se
co

nd
s)

Packet Number

JMF-RTP
NaradaBrokering-RTP

Figure 3: Comparison of delays for individual packets in
NaradaBrokering and JMF

As can be seen in figure 2 the jitter in Narada is very
similar to the JMF-RTP case with the exception of the
spike that exists in the JMF-RTP case. The results, in
figure 3, for delay indicate that the JMF-RTP delays are
better than those for NaradaBrokering. However the delays
in Narada are still in the range (mean=3.5millisecond)
which would facilitate development of sophisticated A/V
conferencing environments. The overheads associated with
the marshalling and unmarshalling of JMS packets along
with the additional JMS headers, associated with every
JMS message, add to the delay associated with individual
packets in the NaradaBrokering-RTP-JMS case. The delay
associated with routing individual packets while using
NaradaBrokering would be significantly reduced under
two conditions. First, as the geographic distances between
the transmitter and receiver increase the affects of

marshalling/unmarshalling and increase in packet size will
not predominate the delay (communications across 1000
miles generally tend to be in the range of 10 milliseconds
in which case the curves for JMF-RTP and
NaradaBrokering-JMS-RTP would be very close). Second,
we could construct a special Narada message for handling
audio/video packets with a significantly lower header size.
Furthermore, we do understand how a production version of the
NaradaBrokering system could give significantly better
performance – about a factor of 2-3 lower in latency than the
current research prototype. By improving the thread scheduling
algorithms and incorporating flow control (needed at high publish
rates) into the NaradaBrokering core significant gains in
performance can be achieved.

Table 3: Comparing NaradaBrokering-RTP (JMS) and JMF-
RTP
 Mean Delay

(milliseconds)
Standard Deviation
(milliseconds)

JMF-RTP 0.898 0.494
NaradaBrokering
JMS-RTP

3.282 0.877

Table 3 provides the mean delay and standard deviation
associated with our runs. These results demonstrate that
NaradaBrokering-JMS-RTP case has a comparable
performance to the JMF-RTP. Also note that in
NaradaBrokering we can support heterogeneous transport
protocols; NaradaBrokering can easily switch (like JXTA
based systems) between UDP and TCP/IP for different
hops.

7. Comparison with VRVS
VRVS (Virtual Rooms Videoconferencing System) [20] is
a web-oriented system for videoconferencing and
collaborative work over IP networks. Using VRVS, users
from disparate geographic locations can meet and
participate in MBONE, H.323 or MPEG2 multipoint
videoconferences. Participants can make use of different
collaborative tools (sharing their desktops, broadcast any
local application, participate in a chat, etc.). VRVS also
integrates MBONE and H.323 tools with AccessGrid
Virtual Venues. H.323 Clients are connected to the Virtual
Rooms by the H.323–VRVS Gateway.

Reflectors play a big role in VRVS design. A reflector is a
host that connects each client to a Virtual Room by a
permanent IP tunnel. The reflectors have many IP tunnels
among themselves. The clients multiplex these tunnels.
The reflectors and their links form a set of virtual sub-
networks through which audio, video or data flows. The
use of the reflector technology assures the quality needed
for videoconferences transmission. Reflectors are the ones
responsible for transmitting the streams. The basic
architecture of VRVS is shown in figure 4.

5 /6

Reflector Reflector

H.323
Client

AG Venues and
Virtual Rooms

(Multicast Clouds)

VRVS Web
Server

H.323 - VRVS
Gateway

MBONE
Client

Figure 4: Basic Architecture of Virtual Rooms
Videoconferencing Systems

The main difference between these two designs is, while
VRVS uses unicast streaming, our design proposed in this
paper uses event brokering systems in transmitting streams
which ensures that only clients that are subscribed to a
certain topic would receive the streams. In the event
brokering system, the adapters allow using different client
applications such as MBONE, H.323, and SIP. These
adapters render the messages specific to the client
application. In this design, different applications need
different adapters due to the nature of the messages they
accept. Finally, note that NaradaBrokering is a far more
powerful than a reflector network since it fully
incorporates the publish/subscribe paradigm.

8. Conclusion
In this paper, we have investigated the use of
publish/subscribe systems in audio/video conferencing
systems. We also discussed our strategy for integrating
A/V as a Web Service. We also presented results from our
preliminary investigations. We intend to augment these
results with further experiments in the final version of this
paper.

9. References
1. D.J. Watts and S.H. Strogatz. Collective Dynamics of

Small-World Networks. Nature. 393:440. 1998.
2. R. Albert, H. Jeong and A. Barabasi. Diameter of the World

Wide Web. Nature 401:130. 1999.
3. The NaradaBrokering System http://grids.ucs.indiana.edu/

ptliupages/projects/narada/
4. Geoffrey Fox and Shrideep Pallickara, An Event Service to

Support Grid Computational Environments, to be published
in Concurrency and Computation: Practice and Experience,
Special Issue on Grid Computing Environments.

5. Geoffrey C. Fox and Shrideep Pallickara, An Approach to
High Performance Distributed Web Brokering. ACM
Ubiquity Volume2 Issue 38. November 2001.

6. Pallickara, S., "A Grid Event Service." PhD Syracuse
University, 2001.

7. Geoffrey C. Fox and Shrideep Pallickara .The Narada Event
Brokering System: Overview and Extensions To appear in
the Procedings of the 2002 International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA'02).

8. Geoffrey Fox, Ozgur Balsoy, Shrideep Pallickara, Ahmet
Uyar, Dennis Gannon, Aleksander Slominski. Community
Grids. Proceedings of the International Conference on
Computational Science (ICCS 2002). Amsterdam,
Netherlands April 2002.

9. Geoffrey Fox, "Peer-to-Peer Networks," Computing in
Science & Engineering, vol. 3, no. 3, May2001.

10. openp2p P2P Web Site from O’Reilly
http://www.openp2p.com.

11. “Peer-To-Peer: Harnessing the Benefits of a Disruptive
Technology”, edited by Andy Oram, O’Reilly Press March
2001.

12. Sun Microsystems. The JXTA Project and Peer-to-Peer
Technology http://www.jxta.org

13. The JXTA Protocol Specifications.
http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html

14. Geoffrey Fox, Wenjun Wu, Ahmet Uyar, and Hasan Bulut A
Web Services Framework for Collaboration and
Audio/Videoconferencing

15. Mark Happner, Rich Burridge and Rahul Sharma. Sun
Microsystems. Java Message Service Specification. 2000.
http://java.sun.com/products/jms

16. Geoffrey C. Fox and Shrideep Pallickara JMS Compliance
in the Narada Event Brokering System. To appear in the
proceedings of the 2002 International Conference on
Internet Computing (IC-02).

17. Geoffrey Fox, Shrideep Pallickara, Xi Rao and Qinglin Pei.
A Scaleable Event Infrastructure for Peer-to-Peer Grids.
Under Review.

18. The Anabas Conferencing System. http://www.anabas.com
19. The Online Knowledge Center (OKC) Web Portal

http://judi.ucs.indiana.edu/okcportal/index.jsp
20. VRVS http://www.vrvs.org/
21. Geoffrey Fox et al. Grid Services For Earthquake Science.

To appear in Concurrency & Computation: Practice and
Experience. Special Issue on Grid Computing
Environments.

22. RTP: A Transport Protocol for Real-Time Applications
(IETF RFC 1889) http://www.ietf.org/rfc/rfc1889.txt.

23. Web Services Description Language (WSDL) 1.1
http://www.w3.org/TR/wsdl.

24. SIP: Session Initiation Protocol. IETF RFC 2543.
http://www.ietf.org/rfc/rfc2543.txt

25. ITU-T H.323-Packet-Based Multimedia
Communications Systems, Nov 2000

6 /6

http://grids.ucs.indiana.edu/ ptliupages/projects/narada/
http://grids.ucs.indiana.edu/ ptliupages/projects/narada/
http://www.openp2p.com/
http://www.jxta.org/
http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html
http://java.sun.com/products/jms
http://www.anabas.com/
http://judi.ucs.indiana.edu/okcportal/index.jsp
http://www.vrvs.org/
http://www.ietf.org/rfc/rfc1889.txt
http://www.w3.org/TR/wsdl
http://www.ietf.org/rfc/rfc2543.txt

	Abstract
	1. Introduction
	2. RTP over Messaging Systems
	3. NaradaBrokering
	4. A/V Collaboration Web Service
	5. Integrating NaradaBrokering and A/V Collaboration
	6. Performance
	7. Comparison with VRVS
	8. Conclusion

