

Event-based Infrastructure for Reconciling Distributed Annotation

Records

Ahmet Fatih Mustacoglu

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science,

Indiana University

July 2008

ii

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Doctoral Committee ________________________________

Dr. Geoffrey C. Fox (Principal Advisor)

Dr. Andrew Lumsdaine

Dr. Kay Connelly

Dr. Steven D. Johnson

iii

Abstract

Information is spread all over the Web in various locations including centralized

repositories, web servers and user desktops. Centralized repositories represent the old

fashion techniques for resource sharing, whereas completely decentralized systems such

as P2P systems allow users to share information without depending on a third party

repository. The necessities to find and share information led to development of emergent

Web 2.0 applications. These new Web 2.0 applications such as social bookmarking tools

introduce a new way of sharing information rather than the old fashion and P2P systems

do. Social bookmarking tools address the challenging problems of finding and sharing

information among small groups, teams and communities. Various types of social

bookmarking tools developed their own systems to support different kind of resources.

Flickr, for example, allows the tagging and the sharing of photos, del.icio.us the tagging

and the sharing of bookmarks, Bibsonomy, CiteULike and Connotea the tagging and the

sharing of scholarly publications, YouTube the tagging and the sharing of video, and

43Things the tagging and the sharing of goals in private life. Social bookmarking tools

for sharing of scholarly publications among these solutions are not interoperable with

each other. Furthermore, they have limitations for representing the complete metadata of

scientific documents and providing timestamp information for updated records.

In this dissertation, we present service enabled Event-based Infrastructure to

provide an efficient, scalable, flexible and modular architecture to represent and reconcile

metadata of scholarly publications coming from various sources. The system utilizes

Event-based Infrastructure and adopts an optimistic replication approach to represent the

content of scientific documents located at several annotation tools consistent with each

iv

other with the added metadata fields and capabilities. We also present an empirical

evaluation of the system to demonstrate applicability of this architecture to handle with

the issues that exist in the annotation tools for scholarly publications.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 1

1.1 MOTIVATION ... 4
1.2 STATEMENT OF RESEARCH PROBLEMS ... 6
1.3 WHY EVENT-BASED INFRASTRUCTURE AND CONSISTENCY FRAMEWORK FOR DISTRIBUTED

ANNOTATION RECORDS? ... 7
1.4 THESIS CONTRIBUTIONS ... 9
1.5 METHODOLOGY ... 11
1.6 THESIS ROADMAP .. 12

CHAPTER 2 BACKGROUND AND SURVEY OF TECHNOLOGIES 14

2.1 WEB 2.0 AND ANNOTATION TOOLS ... 14
2.1.1 Related Projects .. 21

2.1.1.1 Connotea ... 21
2.1.1.2 BibSonomy .. 24
2.1.1.3 ShaRef ... 25
2.1.1.4 ReMarkables ... 27

2.2 EVENT SYSTEMS ... 28
2.2.1 Event Representation .. 29
2.2.2 Events Classification .. 32
2.2.3 Related Projects .. 35

2.2.3.1 JEDI .. 35
2.2.3.2 NaradaBrokering ... 37

2.3 CONSISTENCY MAINTANENCE ... 38
2.3.1 Data-Centric Consistency Models ... 38
2.3.2 Client-Centric Consistency Models .. 42
2.3.3 Update Propagation and Consistency Protocols ... 45
2.3.4 Related Projects .. 45

2.3.4.1 CVS .. 45
2.3.4.2 Wooki: Collaborative Editing System .. 46

2.4 TECHNOLOGIES .. 47
2.4.1 Apache Axis 1.x ... 47
2.4.2 Jakarta Commons HttpClient .. 49
2.4.3 XML Parsers ... 51

2.5 SUMMARY .. 53

CHAPTER 3 EVENT-BASED INFRASTRUCTURE .. 54

3.1 DESIGN OVERVIEW ... 54
3.2 CONTENT OF A DIGITAL ENTITY (DE) .. 61
3.3 STORAGE OF A DOCUMENT AS A DE ... 62
3.4 DUPLICATE DETECTION .. 63
3.5 EVENT-BASED INFRASTRUCTURE UPDATE MODEL ... 63

vi

3.6 SUPPORTED ANNOTATION TOOLS .. 64
3.6.1 Annotation Tools Schema Semantics .. 64

3.7 OVERVIEW OF THE ARCHITECTURE COMPONENTS ... 65
3.7.1 Uniform Access Interface .. 65
3.7.2 Event-based Infrastructure Services ... 66
3.7.3 Digital Entity Manager .. 68

3.7.3.1 Events and Dataset Management ... 68
3.7.3.1.1 Events and Dataset Creation... 68
3.7.3.1.2 Event Processing Engine ... 70

3.7.3.2 Digital Entity Update Management .. 72
3.7.3.3 Periodic Update Management .. 73
3.7.3.4 History and Rollback Management ... 74

3.7.4 Timestamp Generator ... 75
3.7.5 Data Manager ... 75

3.8 SUMMARY .. 75

CHAPTER 4 CONSISTENCY FRAMEWORK FOR DISTRIBUTED ANNOTATION RECORDS 77

4.1 DESIGN OVERVIEW ... 78
4.2 CONSISTENCY CRITERIA ... 80
4.3 EXCEPTIONS IN CONCURRENT UPDATES .. 81
4.4 CONSISTENCY FRAMEWORK.. 83

4.4.1 Duplicate Detection and Handling Concurrent Updates 84
4.4.2 Overview of the Architecture Components ... 91

4.4.2.1 Annotation Tools ... 92
4.4.2.2 Communication Manager ... 93

4.4.2.2.1 Gateway .. 94
4.4.2.2.2 Parser .. 95
4.4.2.2.3 Web API ... 96

4.4.2.3 Annotation Tools Update Manager .. 97
4.4.2.4 Digital Entity Manager .. 99

4.5 SUMMARY .. 100

CHAPTER 5 THE PROTOTYPE IMPLEMENTATION OF EVENT-BASED INFRASTRUCTURE
AND CONSISTENCY FRAMEWORK ... 101

5.1 IDIOM SYSTEM IMPLEMENTATION OVERVIEW .. 102
5.2 EVENT-BASED INFRASTRUCTURE .. 105

5.2.1 Annotation Tools ... 110
5.2.2 IDIOM Web Services .. 111
5.2.3 Session and Event Management Module ... 111
5.2.4 Digital Entity Management Module ... 114
5.2.5 Search Tools .. 117
5.2.6 Authentication and Authorization .. 118
5.2.7 Other ... 118
5.2.8 Timestamp Generator ... 118

vii

5.2.9 Data Manager ... 119
5.3 CONSISTENCY FRAMEWORK.. 119

5.3.1 Digital Entity Update Management .. 120
5.3.2 Communication Manager ... 120
5.3.3 Annotation Tools Update Manager .. 121
5.3.4 Update Propagation .. 123

CHAPTER 6 PROTOTYPE EVALUATION AND DISCUSSIONS 124

6.1 TESTING ENVIRONMENT .. 125
6.2 SYSTEM RESPONSIVENESS EXPERIMENTS ... 127

6.2.1 System Responsiveness Experiment Results ... 129
6.3 SCALABILITY EXPERIMENT .. 134

6.3.1 Scalability Experiment Results .. 136
6.4 SUMMARY .. 141

CHAPTER 7 CONCLUSION AND FUTURE WORK ... 142

7.1 THESIS SUMMARY ... 142
7.2 ANSWERING THE RESEARCH QUESTIONS .. 146
7.3 FUTURE RESEARCH .. 150

REFERENCES ... 151

viii

LIST OF FIGURES

Figure 1-1: Research Tools with added capabilities for Sharing and Managing Scientific

Documents .. 3
Figure 2-1: Bibsonomy User Interface showing Bookmarks and Publications

Simultaneously (image taken from document [40]) ... 24
Figure 3-1: General Architectural Design for the Event-based Infrastructure and

Consistency Framework for Distributed Annotation Records .. 55

Figure 3-2: Document Representation in Event-based Infrastructure 57
Figure 3-3: Content of a Digital Entity ... 62
Figure 3-4: The Architectural Design for the Event-based Infrastructure and Consistency

Framework for Distributed Annotation Records .. 66
Figure 3-5: Digital Entity Manager ... 68

Figure 3-6: Retrieving the latest digital entity metadata ... 71

Figure 3-7: Update Event Parameters ... 73
Figure 4-1: General View of a Distributed Annotation Record (DAR)............................ 78

Figure 4-2: Design choices regarding operation propagation (image is taken from [124]).

... 89
Figure 4-3: Choices regarding consistency guarantees (image is taken from [124]). 90

Figure 4-4: Popular Tags in del.icio.us ... 93
Figure 4-5: CFDAR Communication Manager .. 94
Figure 4-6: Gateway ... 95

Figure 4-7: Web API Response .. 97
Figure 4-8: Annotation Tools Update Manager .. 99

Figure 5-1: Internet Documentation and Integration of Metadata (IDIOM) Architecture

... 103

Figure 5-2: The Content of a Digital Entity .. 106
Figure 5-3: Schema of DE Content ... 109

Figure 5-4: Current Metadata of a DE .. 112
Figure 5-5: Content of a Minor Event... 113
Figure 5-6: Application of a Selected Minor Event to a DE ... 113

Figure 5-7: MoreInfo of a DE ... 115
Figure 5-8: Update Metadata of a DE ... 117

Figure 6-1: Testing Cases for System Responsiveness Experiment 128
Figure 6-2: Download a record ... 130
Figure 6-3: Upload a record .. 131
Figure 6-4: Latency and STDev values for More Info standard operation with database

access .. 132

Figure 6-5: Latency and STDev values for More Info standard operation with memory

utilization .. 133

Figure 6-6: Latency and STDev values for Update DE standard operation 134
Figure 6-7: Testing cases of scalability experiment for More Info and Update DE requests

... 136
Figure 6-8: More Info message rate with DB access .. 137
Figure 6-9: More Info message rate with memory utilization .. 138
Figure 6-10: Update DE message rate .. 140

ix

LIST OF TABLES

Table 2-1: A summary of the features of Delicious, CiteULike, Connotea and Bibsonomy

... 20
Table 3-1: Stored Metadata Comparison in Annotation Tools ... 58
Table 5-1: Summary of Technologies... 122
Table 6-1: Summary of Cluster Nodes – (gf12-15).ucs.indiana.edu 125
Table 6-2: Summary of Cluster Node - gf16.ucs.indiana.edu .. 126

Table 6-3: Statistics of the experiment depicted in Figure 6-2 130
Table 6-4: Statistics of the experiment depicted in Figure 6-3 131
Table 6-5: Statistics of the experiment depicted in Figure 6-4 132
Table 6-6: Statistics of the experiment depicted in Figure 6-5 133
Table 6-7: Statistics of the experiment depicted in Figure 6-6 134

Table 6-8: Statistics of the experiment results depicted in Figure 6-8. Time units are in

milliseconds .. 138
Table 6-9: Statistics of the experiment results depicted in Figure 6-9. Time units are in

milliseconds .. 139
Table 6-10: Statistics of the overhead calculations for database and memory utilization to

improve the performance. Time units are in milliseconds .. 139

Table 6-11: Statistics of the experiment results depicted in Figure 6-10. Time units are in

milliseconds .. 140

CHAPTER 1

INTRODUCTION

One of the major challenges that people facing with is to remember and access

information that they have found earlier and tought could be useful for them later.

Propobably the most common approach to re-finding information on the web is to use

personal bookmarks provided by several web browsers. For instance, Mozilla Firefox

browser supports the creation of collections of URLs. Furthermore, URLs can be

annotated by using keywords or free-form text. These collections can also be sorted based

on a various things such as keyword, last visited, location or time. People created

bookmarks depend on their personal interests in the information and quality of the

resource, possibility of future use, current necessities as explained in [1].

Information is spread all over the Web in various locations including centralised

repositories, web servers and user desktops. Centralised repositories represent the old

2

fashion techniques for resource sharing, whereas completely decentralised systems such

as P2P systems allow users to share information without depending on a third party

repository. The necessities to find and share information led to development of emergent

Web 2.0 applications. These new Web 2.0 applications such as social bookmarking tools

introduce a new way of sharing information rather than the old fashion and P2P systems

do.

Social bookmarking tools address the challenging problems of finding and sharing

information among small groups, teams and communities. Various types of social

bookmarking tools developed their own systems to support different kind of resources.

Flickr, for example, allows the tagging and the sharing of photos, del.icio.us the tagging

and the sharing of bookmarks, Bibsonomy, CiteULike and Connotea the tagging and the

sharing of scholarly publications, YouTube the tagging and the sharing of video, and

43Things the tagging and the sharing of goals in private life. Social bookmarking tools

for sharing of scholarly publications among these solutions are not interoperable with

each other and they have limitations for representing the complete metadata of scientific

documents and providing timestamp information for updated records.

There are several common features for social bookmarking systems. First of all,

these tools provide their users with ability to create their personal bookmarks and share

them with other users instantly. These personal bookmarks are stored centrally in these

systems and can be accessible from any computer that has an internet connection.

Second, these systems enable entering personal keywords called tags explicitly by the

user for each bookmark. Using tags for the resources allows users to organize and display

their collections in a meaningful way. Furthermore, assigning multiple keywords for a

3

bookmark make it belongs to multiple categories. The final common feature of social

bookmarking tools is the social way of their use. The collection of bookmarks created by

users is also visible to other users. For instance, when a user name is clicked on, then the

collection of bookmarks for that user is viewable to other users. Similar transparency is

also valid for tags. So, one can retrieve similar resources that fall into same interest of

other users by clicking on an interested tag.

Windows Live

Academic Search

CiteSeer

Google Scholar

Delicious

CiteULike

Connotea

Bibsonomy

etc.

Existing User Interface

Existing Research ToolsWeb Service

Wrappers

Export RSS,

Bibtex, Endnote

etc.

Bibliographic

Database

Users’

Research

Database

Community Tools

Integration/

Enhancements of User

Interface

New Research Tools

Figure 1-1: Research Tools with added capabilities for Sharing and Managing

Scientific Documents

4

Search tools have been developing rapidly and supporting the collection of

documents and metadata about scientific documents. The most famous of the search tools

are the Google Scholar and Windows Live Academic Search. Google Scholar, for

instance, provides various types of metadata about scholarly publications such as number

of cited, conference name etc.

Figure 1-1 illustrates a model of building a system hierarchy where search tools

and existing services of social bookmarking tools can be used with added capabilities to

collect and manage metadata and data for scientific content. Our goal is to define the

practical extent of existing annotation tools for scholarly publications based on

information retrieveal and management in a consistent way.

1.1 Motivation

As the web-based social bookmarking services have gained popularity, an

emerging need has appeared for methodologies to retrieve, represent, share and manage

information that are stored in these annotation tools for scholarly publications. As these

services enable storing, tagging and sharing documents, another emerging need has also

appeared for supporting these tools by using their existing services via Web Service

wrappers with added capabilities. In this thesis, we are particularly interested in

investigating, managing, sharing and reconciling scholarly publications that are stored in

several social bookmarking tools in a Service Oriented Architecture.

We identify the following limitations of current annotation tools for supporting

the management and sharing of scientific documents.

First, there has been increasing number of annotation tools, each having their own

structure and design, their own interface, their own format of their holdings. Even though

5

these tools provide common features to their users such as tagging, storing and sharing

metadata and data, they do not have complete metadata support to represent the whole

content of a scientific document. Because of this, users are forced to save their interested

publications or documents into several annotation tools.

Second, annotation tools are lack of support for communication with each other to

exchange or share information. Hence, users of these systems suffer from having the

same documents in several tools and not being able to form a whole document by

combining the pieces from various annotation tools.

Third, these tools are also missing services for uploading, extracting and

importing documents from/to various locations. Users of these systems will not have any

choice to extract the content of their documents stored at annotation tools into a specified

repository or to store their metadata and data from a specified repository into these

annotation tools. As a result of these, users of these systems can keep their documents on

a shared place provided by these tools, and use their services to share, store new

documents or modify existing documents, and tag their documents by using these tools’

user interfaces.

Fourth, annotation tools do not provide timestamp information for their updated

records. Users of these tools and services can share, update or modify content of

documents without timestamp information. Because of this, the same documents can be

updated inconsistently with unknown precise timestamps and spread around in existing

annotation tools with different versions resulting in inconsistencies. In order to keep all

replicas of the same document at several annotation tools, there is a need for

reconciliation of distributed annotation records located at various annotation tools.

6

Fifth, existing annotation tools to store, tag, share scientific documents, and find

similar groups or documents can be supported by using these tools’ existing services in a

uniform interface with additional tools (such as Google Scholar, CiteSeer, and Windows

Live Academic etc.) and capabilities for collecting, sharing, tagging and managing

scholarly publications for scientific research. To do so, there is a need for an

infrastructure to represent content of scientific documents and their metadata coming

from various sources. This infrastructure should also enable keeping track of changes to

documents and metadata.

1.2 Statement of research problems

In this thesis, we mainly focused on investigating a novel approach of building

consistent, Event-based Infrastructure to reconcile multiple sources of publications

coming from various sources. In order to build such framework, we particularly identify

the following research questions.

1. Can we implement an infrastructure that handles data and metadata

coming from various sources in Service Oriented Architecture? Can this

infrastructure unify and federate various existing online annotation tools

for publications, which stores replicas of the same documents, and use

their services? What is the efficient and flexible data model for such

framework?

2. How can we support a flexible architecture that allows users to easily track

documents?

7

3. How can we provide a consistency mechanism between the online

replicated documents stored at annotation tools for scholarly publications

and document located on a central server?

4. How can we achieve an information management architecture that can

provide more metadata support than the current annotation tools do for

scholarly publications?

5. Can we support communication between annotation tools for scholarly

publications?

6. How can we provide users with ability to access previous versions of an

updated document? Can we allow users to retrieve and apply other users’

updates for a same document? What is the flexible update model?

7. Does event-based approach scales very well?

8. Can we support services for extracting data and metadata from these

annotation tools into a specified repository? Moreover, can we support

services for uploading data and metadata from a repository to annotation

tools?

1.3 Why Event-Based Infrastructure and Consistency

Framework for Distributed Annotation Records?

There are increasing numbers of annotation tools for scholarly publications and

we are not sure that which one will survive in the future. So, one can not trust to keep

his/her research works in only one tool. Replication of the documents in other annotation

tools can be seen as a solution to keep documents safely at first glance, however none of

the tools provide complete metadata support for the documents resulting in having

8

various incomplete versions of documents in several annotation tools. Another limitation

is the support for the timestamp information in these annotation tools. They do not

provide timestamp information for the updated entries. Furthermore, these tools are lack

of interoperability to exchange data and metadata between each other. As a result, why

can not we use these existing annotation tools and their services with added extra

capabilities to provide a framework to manage documents, which are coming from

various sources and consistent with their copies? Apperantly, our proposed Event-based

Infrastructure (EBI) and Consistency Framework for Distributed Annotation Records

(CFDAR) offer a solution to manage documents in a consistent manner.

Since EBI is an event-based system, it only stores the changes that happen within

the system in a database. This reduces any additional computation to check the current

status of a document. Having an event-based model also provides easy and flexible

document tracking and navigation through the histories of documents. We never loose a

version of a document, and each modification is kept as an event in our proposed EBI.

So, we can easily rollback by undoing changes to modify the current content of a

document to a previous version of it. One major drawback of keeping every change as an

event is to have enough space. Another limitation is to necessary time to spend to process

events to build a current version of a document. But, today’s computers are fast, hard

drive and memory are cheap. So, these limitations can easily be handled by using

powerful computers with huge hard drive capacity and fast memories.

Having stored documents and keeping the modifications to them as events in a

database with additional metadata support and capabilities allow us to have complete

version of a document in a safe place with various abilities to manage them. Furthermore,

9

timestamp information for every change for each document is also provided by EBI for

tracking the changes to documents in an easy and flexible way.

 CFDAR provides a consistent view of documents between their replicas at

several annotation tools and a complete version of documents stored in a central MySQL

system database. To do so, CFDAR adopts optimistic replication approach and utilizes

several services, which communicate with annotation tools and the database, for getting

and distributing updates between the complete version of a document and its replicas.

Web Services constructs loosely coupled systems to enhance interoperability

between applications running on different platforms. Similarly, we can benefit from Web

Services to leverage the interoperability between the annotation tools to provide them

with ability to communicate with each other to exchange data and metadata.

1.4 Thesis Contributions

The main contribution of this thesis is unifying and federating major annotation

tools by proposing an Event-based Infrastructure and Consistency Framework for

reconciling Distriobuted Annotation Records coming from various sources in a consistent

manner. The implications of this thesis include, but are not limited to:

 Proposing an infrastructure for handling data and metadata coming from

various sources in a flexible manner. An example implementation of the

proposed infrastructure is presented to manage documents coming from

different sources. This approach introduces the Event-based Infrastructure

discussed in CHAPTER 3 and has been implemented and tested in IDIOM

prototype system [2-4] discussed in CHAPTER 5.

10

 Proposing a novel framework for unifying and federating various online

annotation tools, which keep the replication of same documents, and using

their existing services to benefit from them [2, 5]. This thesis introduces a

common data model and communication language to provide a common

platform where integrated annotation tools can interoperate and exchange

information. With this approach we aim to enable different annotation tools

with different capabilities to communicate with each other and utilize each

other’s services.

 Proposing a novel framework for maintaining eventual consistency between

the central server, where the primary copy of a document resides, and the

annotation tools, where the replication of a document is stored [6]. Details of

the consistency framework are discussed in CHAPTER 4.

 Proposing an update model for updated documents to provide efficient and

flexible modifications of metadata fields of a document discussed in detail in

Section 3.5.

 Identifying the key factors and design issues that affect the management of

documents coming from several sources. This framework provides a more

metadata support for publications for better representing the documents than

the major annotation tools do.

 Implementation of the proposed Event-based Infrastructure and Consistency

Framework for Distributed Annotation Records System Software and its user

interfaces [2] discussed in CHAPTER 5.

11

 Performing performance and scalability measurements to investigate the

implementation of the prototype system througly discussed in CHAPTER 6.

1.5 Methodology

To evaluate our architecture, we chose Apache Axis 1.2 [7] version to deploy

Web Services and Apache Tomcat [8] is used as a servlet container. User interfaces are

developed in Java Server Pages (JSP) in prototype system described in detail in

CHAPTER 5. We have integrated Connotea, Delicious and Citeulike annotation tools

into our prototype system as replications of documents that are located on a central server

with additional metadata. To maintain consistency among those annotation tools and

central server, we have applied our Event-based Infrastructure (EBI) and our Consistency

Framework for Distributed Annotation Records (CFDAR) that is running in the

background all the time. Our framework is developed and deployed in an open

environment.

We performed several experiments by modifying the input parameters to figure

out the behavior of EBI and CFDAR. EBI and CFDAR are able to handle multiple

clients’ requests concurrently with the database and the memory utilizations.

Furthermore, we have investigated latency metric for the major operations of EBI and

CFDAR.

Java 2 Standard Edition Edition compiler with version 1.5.0_12 is utilized. Java is

a platform independent object oriented language from Sun Microsystems [9]. Java is

preferred language for Web Service technologies due to its platform independence. As a

result, we have also selected Java as our programming language to benefit the

technologies that are already developed for Web Services.

12

1.6 Thesis Roadmap

We have presented a general introduction of the proposed research in this chapter.

First, the limitations in existing online annotation tools for scholarly publications, which

lead into the proposed research, were discussed in detail. Second, the statement of

research problems is given. Third, we have explained why we apply Event-based

Infrastructure in this research. Fourth, we have provided the contributions of the thesis.

Finally, we have explained our methodology in this thesis.

The organization of the rest of the thesis is as follows. CHAPTER 2 reviews the

background information and the underlying technologies. It provides a survey of event

systems and information about consistency maintanence. Several technologies are also

explored in the second half of the chapter.

CHAPTER 3 presents Event-based Infrastructure in detail. The big picture is

given at the beginning of the chapter, and it displays the general idea and principles of the

proposed infrastructure. The modules of the proposed infrastructure are explored in the

remainder of the chapter.

CHAPTER 4 describes the Consistency Framework for Distributed Annotation

Records (CFDAR) in detail. This chapter explores the design overview, consistency

criteria and CFDAR in detail. The modules are described in the remainder of the chapter.

We discussed a prototype system in CHAPTER 5 to demostrate the effectiveness

and applicability of Event-based Infrastructure and Consistency Framework for

Distributed Annotation Records. The prototype system is then subjected to several tests,

which are analyzed to help clarify the key features of this thesis.

13

CHAPTER 6 analyzes the performance evaluation of the Event-based

Infrastructure and Consistency Framework for Distributed Annotation Records. It

presents bencmarking on performance, and scalability of the system. Finally, in

CHAPTER 7, we present the thesis summary, answers to research questions and outline

several areas for future research directions.

14

CHAPTER 2

BACKGROUND AND SURVEY OF

TECHNOLOGIES

In this chapter, we have investigated the related work on relevant concepts

covered in this thesis, summarize several well-known projects in the research community,

which are also closely related to our work and introduced major technologies applied in

the thesis project. We will discuss Web 2.0 and Annotation Tools, Event Systems,

Consistency Maintenance, Related Projects, and Technologies in the following

subsections.

2.1 Web 2.0 and Annotation Tools

In recent years there has been a rapid development of tools and services aimed at

fostering online collaboration and sharing between users and communities [10]. Blogs

15

(blogger.com, Google Blog) [11], Wikis (Wikipedia, WikiWikiWeb, Wikitravel) [12,

13], Social Networking Tools (MySpace [14], LinkedIn [15]), Social Bookmarking Tools

(del.icio.us [16], Flickr [17], YouTube [18]), Syndication Feed Aggregators (Netvibes

[19], YourLiveWire [20]) and other related tools are quickly being embraced by an

expanding user base. The term ―Web 2.0‖ is now a widely accepted term representing

this wave of new Web-based tools and the belief that they indicate a qualitative change in

today’s Web.

This change is also apparent in the domain of scientific research, with the recent

creation of a number of online tools that enable the annotation and sharing of scientific

content, such as CiteULike [21], Connotea [22] [23], and Bibsonomy [24]. Perhaps, the

best known annotation (or, social bookmarking) web site is del.icio.us (henceforth

referred to as Delicious) [16], a tool designed to enable the annotation and sharing of

URLs. A number of other annotation tools, which support collaborative tagging [25-28],

are now in widespread use; they support annotation and sharing of a variety of resources,

such as photos (Flickr), videos (YouTube), books (LibraryThing [29]) and goals

(43things [30]). In particular, there are several online tools specializing in the annotation

of scholarly publications, including Connotea, CiteULike, and Bibsonomy. The core

service offered by these annotation tools is the capability that allows users to quickly

annotate their favorite resources (URLs, photos, or citations) using a small number of

tags (keywords) and to share their tagged content with other users. Tagging represents a

significant shift in the metadata creation methodology. Traditionally, metadata creation

has been handled by: (a) specialized professionals working with complex categorization

schemes; or (b) the authors of scholarly content. Both of these methods suffer from

16

various problems [31]. Among the cited shortcomings of professional metadata creation

are the complexity and the lack of scalability of cataloguing systems, especially when

applied to the vast amount of data in today’s Web. Author metadata creation is vulnerable

to inadequate or purposefully inaccurate descriptions by authors. The new approach of

metadata creation, namely tagging, puts the task of metadata creation in the hands of

general users. This practice of collaborative categorization (which is now commonly

referred to as folksonomy [31, 32]) aims to harness the collective intelligence of a large

number of people. It has met with widespread acceptance by the Web users, as shown by

the sharp increase in the number of subscribers to such tools. Recently, there have been

preliminary attempts to look into the cognitive underpinnings of the popularity of tagging

[33] and some dynamic discussions about the bottom-up tagging versus top-down

categorization trade-off [34, 35]. While tagging remains a new practice whose long-term

benefits are not yet well-understood, some of its advantages and disadvantages have been

already pointed out [36]. Among the benefits of tagging are: (a) the ease of use and

access of the tagging tools; (b) the ease of discovering new content; (c) the support for

the creation of niche communities. The shortcomings include: (i) the lack of a standard

set of keywords; (ii) the difficulty of dealing with misspelling errors, synonyms, and

acronyms, which are commonly found in tagging; (iii) the difficulty of inferring

hierarchical relationships between tags (i.e., creating taxonomy). Each social

bookmarking tool can be described in terms of: (a) A model of data and metadata adopted

by the tool; (b) A user interface that allows users and groups to subscribe to the service,

manage their tagged content, share it with other users, and discover new content; (c) An

input/output interface that allows the data and metadata to be exported to various formats

17

or applications, and enables programmatic interaction with the system. An overview of

these features for the case of Delicious is given next. Table 2-1 summarizes the features

of three other tools (CiteULike, Connotea, and Bibsonomy) in addition to Delicious.

a) Data and Metadata: There are two main data objects handled by Delicious:

users and URLs. Anyone can register by creating a user name and a password. Users

maintain lists of (annotated) URLs which they can share with other users. In addition to

these two data objects, there are several types of metadata:

User network: Users self-organize into a network through a simple process

whereby any user A can designate any other user B as being ―in her network‖. In this

case, user A is said to be a fan of B. This process leads to the creation of a directed graph

whose nodes denote users and where an arc (u, v) means that user v is in user u’s network

(or, that u is a fan of v).

Bookmarks: Users can add annotations to their favorite URLs, thereby expanding

URLs into bookmarks. There are three different types of annotation in Delicious:

descriptions, notes, and tags. The description of a URL is the title of the web page

addressed by that URL (i.e., the text between <title> </title> HTML tags in the source

code of that page). Notes and tags are user-defined annotations. Notes are expressions or

sentences that describe the content of a URL. Tags are single-word, freely chosen

descriptors of a URL and represent the most widely used type of annotation. A user can

assign as many tags as she likes to a URL and can even rename or delete these tags later.

There are no restrictions in choosing tags (except that a tag can’t contain a space); thus, a

tag can be an English word, an abbreviation, an acronym, a sequence of non-alphabetic

symbols, etc. A user can group her tags into bundles. A bundle should be composed of a

18

set of tags which are somehow related (the name of a bundle should reflect the way in

which its tags are related). A tag may belong to several bundles.

b) User Interface: The user interface of Delicious provides a number of ways in

which the users can add, share, and discover bookmarks.

Adding bookmarks: Each user maintains a list of favorite bookmarks. This list can

be populated in two ways: (i) by installing a bookmarklet—a button which when clicked

triggers the execution of a piece of Javascript code—in the browser and clicking it while

visiting a web page that is to be bookmarked; (ii) by manually creating bookmarks while

logged into the system.

Sharing bookmarks: A simple way in which a user can share her bookmarks is by

emailing the URL of the web page containing her favorite bookmarks to the people she

would like to share her bookmarks with (this URL has the format

http://del.icio.us/<uname>). A member can share a bookmark with a specific other

member by tagging the bookmark with the ―for: uname‖ tag; this bookmark will appear

in the ―links for you‖ page of the other member.

Discovering new bookmarks: In addition to discovering new web pages through

standard methods, such as search engines and topic directories, one can also discover

interesting pages by browsing or searching the data and metadata stored in Delicious.

Currently, Delicious provides support for the easy browsing of the recent and popular

bookmarks and tags, the bookmarks and tags of a particular user, the bookmarks tagged

with a particular tag or the ones with a certain media type. Another way of discovering

new bookmarks is to subscribe to one or more tags of interest. After you subscribe to a

set of tags, Delicious keeps track of all bookmarks subsequently tagged with those tags

19

and shows them to you under the ―subscription‖ page. A user can see the favorite

bookmarks of all users in her network. Finally, it is also possible to search for bookmarks

by keyword.

By default all information in Delicious is publicly viewable. However, it is

possible for a user to declare one or more bookmarks, or her network, as private.

c) Input/Output Interface: There are several ways in which a program can

exchange data with Delicious:

 The Delicious API is, as of this writing, in the initial phase of development.

Currently, it provides methods for (i) checking the time when a user last

posted a bookmark; (ii) obtaining the list of tags of a user, and renaming them;

(iii) obtaining the list of bookmarks of a user, modifying, or deleting them and

adding new bookmarks; (iv) obtaining the bundles (i.e., tag sets) of a user,

deleting bundles, or creating new ones. All communication with the API is

done over HTTPS. A delay between queries of at least 1s is required by the

system.

 JSON (JavaScript Object Notation) [37] feeds are available for: bookmarks,

tags, network, and fans.

 RSS [38] feeds are available on most pages within Delicious; no RSS feed is

allowed to be polled more frequently than once every 30 minutes.

http://json.org/
http://json.org/

20

Table 2-1: A summary of the features of Delicious, CiteULike, Connotea and

Bibsonomy

 Delicious CiteULike Connotea Bibsonomy

Data Model >> users

>> general URLs

>> users

>> groups

>> citations

>> users

>> groups

>> citations

>> users

>> groups

>> general URLs or citations

Metadata >> user network

>> other networks (users-tags,

bookmarks-tags, users-

bookmarks)

>> descriptions of URLs

>> tags, bundles of tags

>> notes on URLs

>> authors

>> tags

>> notes

>> tags

>> descriptions

>> comments

>> geographical metadata (by

GoogleEarth)

>> tag notes (i.e., tag

annotations)

>> network of ―friend‖ users

>> tags

>> descriptions

>> tag relations (subtag,

supertag)

User Interface >> adding bookmarks

 bookmarklet

 importing from favorites

stored in browser

 manual

>> modifying bookmarks

 add/delete/rename all

annotations

 delete bookmarks

>> sharing bookmarks

 email bookmark page’s

URL

 tag with ―for: uname‖

>> discovering bookmarks

 browse (hot now, recent,

popular, specific tag, specific

media type, history)

 for a particular tag, see

related tags, active users

 for a particular

bookmark, see common tags,

related bookmarks, posting

history

 see bookmarks of all

users in my network

 ―links for you‖ page

 subscribe to specific tags

 search:

 - by default search tags,

notes, descriptions

 - may search only tags

 - operators: AND, OR, -,

NOT, XOR

>> adding bookmarks

 bookmarklet (only for

supported publisher sites)

 manual

 import from Bibtex

>> modifying bookmarks

 can add/delete/rename

allcitations fields

 can delete citations

>> sharing bookmarks

 email bookmark page’s

URL

 automatically exported to

―Everyone’s library‖

>> discovering bookmarks

 browse

- everyone’s library

- everyone’s tags

- a specific tag

- a specific author

- a specific user

- a specific group

 create a watchlist of tags,

users, groups

 search by keyword one

of: title, author surname,

abstract, journal name, tag

>> adding bookmarks

 bookmarklet (only for

supported publisher sites)

 copy another user’s

bookmarks

 manual (supports DOIs)

 import from local file

(RIS, Bibtex, Endnote)

>> modifying bookmarks

 add/delete/rename all

citation fields

 delete citations

>> sharing bookmarks

 email bookmark page’s

URL

>> discovering bookmarks

 browse

- popular bookmarks

- popular tags

- a specific tag

- a specific user

- a specific group

- related tags

 search

can choose to search one of:

my library, user, tags, all)

>> adding bookmarks

 bookmarklet

 copy another user’s

bookmarks

 manual

 import from Bibtex

snippet

>> modifying bookmarks

 add/delete/rename all

citation fields

 delete citations

>> sharing bookmarks

 email bookmark page’s

URL

>> discovering bookmarks

 browse

- popular bookmarks

- popular tags

- a specific tag

- a specific user

- a specific group

- related tags

- suggested tags

 search

can choose to search a user’s

metadata or all users’

metadata

I/O Interface >> API

 support for tags, bundles,

bookmarks, posting times

 over HTTPS

 delay between queries >

1s

>> JSON feeds

 bookmarks, tags, user

network, user fans

>> RSS feeds

 available for most pages

 delay between polls > 30

min

>> RSS feeds

>> Export to Endnote, Bibtex

>> API

 over HTTP

 retrieve list of bookmarks

 retrieve list of posts

 retrieve list of tags

 create a new post

 edit existing post

 remove existing post

>> RSS feeds

>> Export to RIS, Endnote,

Bibtex, MODS

>> RSS feeds

>> SWRC feeds

>> Export to Endnote, Bibtex

21

 Discussion: While we expect that annotation tools will constantly improve, it

seems unlikely that all of them will ―prosper‖. This uncertainty will clearly inhibit

adoption; therefore, we adopt a philosophy that is different from the one that specializes

Delicious to scientific content in Connotea and CiteULike. We do not intend to replace

any of these systems in our research but rather add to them by building tools that add new

capabilities. We will achieve this by building wrappers (constructed as Web services)

which allow us to both extract information from these tools and to store information in

them in our thesis research. While doing that inconsistency issues rise up due to updates

in records without the time stamp information for the updated entries in these tools. To

handle inconsistencies that might occur among entries we propose our Consistency

Framework for Distributed Annotation Records (CFDAR) described in [6].

2.1.1 Related Projects

Major related projects in social bookmarking and the ones that use bookmarking

tools as a base for their design are summarized in the following sub-sections.

2.1.1.1 Connotea

Connotea is an open source free online reference management and social

bookmarking service for scientific research community [23]. It is developed by Nature

Publishing Group [39]. Connotea has currently huge and increasing number of users.

Connotea project is inspired by the general web linking management system del.icio.us

[16] to fill the gap in the field of scholarly reference management. Key features of

Connotea project can be summarized as below:

22

 Online storage of reference and bookmarks: The current reference

management systems rely on having a reference database stored to user’s

own computer locally, and modified via installed software. Having an

online database has some advantages: (a) Allow resources to be available

and accessible from any web-enabled computer; (b) It is easier to share

references; and (c) Supporting other key features of Connotea system and

direct linking of literature.

 Simple, non-hierarchical organizing: Reference data is not placed in

folders or sub-folders; instead data can be viewed from the perspective of

tags, users, or links. Tagging provides a grouping related documents and

easy navigation of material without using nested hierarchical folder

structure

 Opening the list to others: Connotea supports public and private

bookmarking concepts to allow other users to see public documents or not

to have access to private reference materials. Connotea can automatically

discover and display connection between users based on the similar stored

bookmarks.

 Auto-discovery of bibliographic information: Connotea can find and

import the bibliographic information for any article or book. This

eliminates the typing errors and reduces the amount of typing that users

need to do.

The main futures of Connotea system that implements the concepts explained

above are:

23

 Bookmarklets: Bookmarklets are the JavaScript code, and they can be

integrated into browsers to provide users with custom functionality. One

of the major Bookmarklet is the one that allows a user to save a webpage

that he/she is currently viewing into his/her Connotea account.

 Recognising URLs from common archives and importing bibliographic

data: Connotea has a built-in functionality to identify URLs if they belong

to the set of URLs that Connotea recognizes. For example, if an added

URL refer to a scholarly article, then Connotea stores the publication

name, volume, issue number, publication date and list of articles (Please

see comparison table to see available metadata field in Connotea in Table

3-1.

 Tagging: Tagging plays a crucial role in Connotea since users’

referecences can be organized and grouped by user defined meaningful

keywords called tags.

 Comments: Comments are the piece of personal data about documents.

There also exist a bookmarklet plugin in Connotea to add a new comment

about the current webpage that user viewing for an article or any

document.

 RSS: The documents/bookmarks in Connotea can be navigated through the

user, tag or the combination of user and tag. Every list of bookmarks in

Connotea provides a RSS feed with subscribed users to notify them about

newly added items.

24

2.1.1.2 BibSonomy

Bibsonomy is a web-based social bookmark and publication sharing system [40].

Data model of publication documents is based on BIBTEX [41], famous literature

management system for LATEX [42]. Bibsonomy can display bookmarks and BIBTEX

based references at the same time depicted in Figure 2-1.

Figure 2-1: Bibsonomy User Interface showing Bookmarks and Publications

Simultaneously (image taken from document [40])

25

The main architecture components of Bibsonomy are Apache Tomcat Servlet

Container [8], Java Server Pages [43], Java Servlet Technology [44], and MySQL

database.

Model View Controller (MVC) [45] programming paradigm is used for the

development of Bibsonomy system to separate the logical handling of data from the

presentation of the data. When there is a need for new output format, it can be

implemented as a JSP as a view of the model.

Bibsonomy relies on four major database tables: (a) A table for bookmarks posts;

(b) A table for publication posts; (c) A table for tag assignmenst; and (d) A table for the

relations.

Bibsonomy system provides its users with various services and main futures of

the Bibsonomy system are: (a) Relations between tags (user specific binary relation

explained in detail in Section 3 in [40]); (b) Duplicate detection (hashing BIBTEX fields

by MD5 [46] message digest algorithm to detect duplicate publication entries); (c)

Editing tags; (d) Importing resources; (e) Exporting resources; (f) Groups; and (g)

Shopping basket, which allow picking desired publications to be available for export later

in a shopping basket.

2.1.1.3 ShaRef

ShaRef is a reference management system with collaboration and lightweight

knowledge management features [47-49]. ShaRef project is funded and carried out by

Swiss Federal Institute of Technology (ETH) [50].

One of ShaRef’s major goals is to manage references in a way that seamlessly

integrates bibliographic and web references. This allows ShaRef to manage all references

26

uniformly and its knowledge management capabilities can be used for all types of

references. It enables users to go from their references directly to the library via its

OpenURL [51] service. ShaRef provides minimal but usefull support for knowledge

management. It provides two concepts: (a) keywords, which are used for identifying

references within ShaRef like tagging documents; and (b) cross-references, which

connects references. ShaRef allows users to make generic cross-references such as

creating annotations that refer to other references.

Sharef provides its user with ability to share their resources based on access

control for users and groups. It also supports messasing to improve collaboration. So,

users or member of groups can access to references via ShaRef interface. Furthermore,

ShaRef allows users to publish references, and this enable the Web-based access to the

published references. By integrating a user-defined XSLT program, any export format

can be generated for references.

ShaRef has been design based on XML data model and various XML

technologies [52]. It is implemented by using Java language for both platform and the

client to be as independent as possible from any specific operating system. The Java rich

client is client/server architecture and implemented by using Java RMI [53]. ShaRef can

work in online or offline mode. When it is working online mode, it uses pure Java DBMS

[54], where as it uses a user’s local hard drive in offline mode to store references. ShaRef

also provides a Web-based user interface that enables accessing ShaRef references via a

Web browser. The Web-based user interface does not offer the full services that Java

client does.

27

2.1.1.4 ReMarkables

ReMarkables is a Web-based research collaboration support system that uses

social bookmarking tools [55]. ReMarkables research project is developed at Nippon

Institute of Technology [56], and available from http://comweb.nit.ac.jp/ReMarkables. It

is built on existing social bookmarking tools and its main goal is to improve existing

social bookmarking tools to provide efficient collaborative support system for scientific

research communities. Members of scientific communities are mostly interested in

research topics and expert groups in those topics. In ReMarkables system, it is easy to

find research groups working on an interested topic via its topic bookmark services.

Users of research communities can share their bookmarks with specific tags;

communicate with each other using mailing lists and wiki pages associated with a topic

bookmar list. ReMarkables system’s requirement analysis is done based on Tropos

methodology [57], and main functionalities of ReMarkables system are: (a) Retrieve

online publications, search for topic bookmarks and other users’ bookmarks; (b) Explore

bookmarks; (c) Store personal bookmarks; (d) Export bibliography; (e) Manage topic

mailing list; (f) Share topic bookmarks; (g) Share topic wiki page.

In Tropos methodology [57], the system’s global architecture consists of

subsystems, which are also called actors, and the subsystems are connected to each other

via data and control flows (data dependencies). To provide the major functionalities of

the ReMarkables system, new actors are introduced in the architecture of it and the main

actor is called ―Topic recommender‖. Basically Topic recommender has three main

functions: (a) Notify users via sending email when a new topic bookmark list is created

from a search result for a specific topic; (b) Notify users via email when a new bookmark

http://comweb.nit.ac.jp/ReMarkables

28

is added; (c) Display related topics in the topic bookmark frame when a user retrieves

online publications. Finally, the whole ReMarkables system services are managed and

provided by the five major architecture components: (a) Bookmark Searcher; (b) Personal

Bookmarks Manager; (c) Bibliographer; (d) Topic Recommender; and (e) Topic

Bookmarks Manager.

2.2 Event Systems

In recent years, there has been an increasing amount of research focused on event

based systems. Their main objective is to notify the necessary entities about the changes

that occurred in the domain of interest. Today, event systems are needed and used in

several areas such as graphical user interfaces, databases, web based applications,

networking applications, distributed applications, publish-subscribe paradigm etc. Several

tools have been developed for each of these areas to satisfy their needs, and

NaradaBrokering [58-62] is an open-source messasing infrastructure, which implements

the publish-subscribe paradigm, developed in Community Grids Lab at Indiana

University [63].

There are two different approaches to the event definition. The first approach

defines an event as it is an instantaneous atomic occurrence, so it is represented as a point

in time [64-66]. Based on this approach, timestamps of event occurrences can be

categorized in three different ways:

 Absolute time point: It consists of date and time

 Relative time points: It is defined relative to a particular position

 Virtual Clocks are explained in detail in [67], and uniquie timestamp values

are assigned automatically to each event by the system.

29

The second approach defines an event as occurrence of an interval in time [68-

71]. Based on this approach, state change of an event can be specified within a specific

interval and the interval can be represented in two ways:

 As relative, absolute, or virtual time points represent starting and ending point

of an interval

 Event occurrences that represent the initial and ending points of an interval

So, first approach defines events as having no duration while the second approach

defines events by having them particular duration. Most of the previous event system

related works use the first approach in their event-based modeling and design.

 Discussion: In our research, we have choosen to use the first approach due to its

suitability to our design of the event-based infrastructure. We assign a time stamp value

to each minor or major event once they occur within the system as an absolute time point

described in [3]. This time stamps values provide us with ability to sort events based on

their occurrences and to use time stamp values for consistency maintanence described in

detail in Section 4.4.

2.2.1 Event Representation

According to [72-74], events are represented in the form of tuples. Since, any

state change of an event in a specific time point or an interval represents information,

which is defined as a data structure with several attiributes. Events are constructed in the

form of tuple structure and delivered to external entities that are listening the system for a

particular state changes. Communication model for delivering events in the form of tuple

structure to the external entities takes place in the form of messages. Message formats

30

varies based on the domain of each system. Messages in event system represent a tuple

structure and tuples genericly composed of:

 Unique Event Id

 Event attributes that caries additional information about the event

Unique event id helps an event to be separated from other events and it is a

mandatory field for event representation. Event attributes carries an extra information

related to the event such as event type, event owner, etc.

Events are described as in the form of tuples with already built in abstract data

types in previous work such as CORBA Event Notification Service [75, 76], Java AWT

delegation Event Model [77], DOM [78] interfaces for tuple representation. In database

programming, events are stored as a tuples in the form of record structures composing the

event histories.

Every system has a response unit to the state changes coming from the

environment to handle with the changes [73, 79]. Reactive applications depend on the

data that describes the current state of their environment due to changes. Each application

continuously checks any state changes happening in their environment to adopt the

changes in their interest. The process of uninterrupted checking for detecting the state

changes and retrieving the changes that represents the current environment is called

monitoring the environment. Instead of monitoring the state changes, most of the systems

prefer to be notified by the changes that happened in their domain of interest so that they

do not need to monitor the state changes to reduce the computational works. Since,

monitoring the state changes requires an additional computational overhead, and at this

point, event and event-based systems gets attention due to their nature. Use of event-

31

based systems provides applications with the state changes in their domain of interest in

the form of messages without monitoring their environment. As a result, external systems

do not need to spend any additional computation to retrieve the state changes. They can

be notified by the event-based systems once a state change occurred.

In distributed event-based systems, multiple objects at different locations can be

notified by events, which take place at any objects. To do so, they use publish-subscribe

mechanism that allow an object to generate and propagate the type of events to all

subscribed parties. Objects that are willing to receive updates from an object that has

published its events subscribe to the type of events in their domain of interest. Different

event types can point to different methods executed by the interested object. Notifications

are the objects that represent events. Events and notifications can be used in various

applications such as interactive applications, modifying a document, chat applications.

Distributed event-based systems have two main characteristics [80]:

 Heterogeneous: When event-based systems are used for communication

between distributed objects, different components that do not designed to

work together can be interoperated. It is described in detail how event-based

system can be used to interoperate different components on the internet [81].

 Asynchronous: Event generating objects send notifications to all objects that

subscribe to them so that publisher do not need to synchronize with the

subscriber objects. Project Mushroom described in detail in [82] is a

distributed event-based system that supports collaborative work.

 Discussion: In our thesis, events have unique event ids, and we have

distinguished our events as major and minor events and we have defined our events as a

32

time-stamped action on a digital document with additional information (described in

detail in [3]). In our proposed research, we have unified and federated heterogeneous

annotation tools to communicate with each other via event-based infrastructure and Web

service technology. We could not use publish-subscribe paradigm to disseminate updates

since the integrated annotation tools do not support publish-subscribe mechanism.

However, any application that require and support publish-subscribe mechanism, then

broker address and topic can be defined in a property file of our proposed system to

provide updates via publish-subscribe mechanism by connecting to the broker and

subscribing a topic. Finally, our update propagation falls into unicast communication

technology.

2.2.2 Events Classification

Events can be categorized as Primitive Events and Composite Events. Following

sub-sections overview these two categories.

1) Primitive Events: They are the ones that are predefined within the system and

originated from the publishers in the event notification service [83-85]. Some

examples to primitive events: (a) Begin of Block (BOB) and End of Block

(EOB) atomic primitive events in a multi-user DBMS system [86, 87]; (b)

Predefined set of events in an embedded system like autonomous vehicle as in

[88]. Computations can be separated into several controllers and each controller

can react based on the associated predefined set of events to prevent collisions;

(c) Incoming requests for predefined database events such as insert, update,

delete etc. in a centralized or distributed database system [89]; (d) Clock events

generated using the system clock or distributed clocking scheme [90]; (e)

33

Synchronous or asynchronous huge amount of data can be retrieved from the

sensors through an event notification service in a distributed sensor network

system [91, 92].

Primitive events can be classified into four groups:

i. System related Primitive Events: They are the basic events that are

defined and fired by the system such as events in graphical user

interface (button press or release, etc.) [93, 94], database operations

(update, delete, inset etc.), smart sensor systems (detection of

temperature increase or decrease etc.) [95].

ii. User-defined Primitive Events: They are the events that are defined by

users explicitly [96].

iii. Time related Primitive Events: These events can be categorized into

three types of events:

a. Absolute Clock Events: These types of events are fired at an

absolute time point instantenously.

b. Relative Time Events: These events represent a unique time

points that is defined by a given reference point and offset value

for that point.

c. Periodic Time Events: These events are defined with a reference

point and a period. These events are fired by the system

periodically from the defined reference point.

iv. Exceptions: They are the interrupts that occur in a system due to illegal

operations. Exceptions can be seen in various types of applications,

34

especially in security systems and operating systems when a fault

occurred in the system [97].

2) Composite Events: Primitive events are in wide use and they can satisfy the

some application needs but, some of the applications may require more

complex time pattern for their environment. At this point composite events rise

up, and a composite event is a circumstance that represents a specific state

change based on a pattern, which consists of a combination of the basic events.

Some examples to primitive events: (a) To start a session when expected users

finish their transactions in an active multi-user DBMS, a group administrator

should track the system for a particular users and their transactions [98, 99]; (b)

Tracking of the current traffic in a real time traffic control system to predict a

traffic jam [100, 101]; (c) Providing necessary services for students and

faculties in a Web-based education system [102, 103].

 Discussion: Events are particularly suited for object-sharing frameworks. They

support heterogeneity. They enable us to meet users’ requirement for highlevel awareness

information during collaborations. They also fulfil users’ requirement to inspect the

histories of objects, and not just their current state. We have used event-based framework

in our thesis research and our approach for event classification in our thesis defined in

[3]. Our events (major and minor) are primitive events and they fall into system related

primitive events since they are constructed by the system when an event occurred in the

system. Each event has a unique event id, time stamp, event type information and

payload data. That information is processed during document build-up process from

35

events to retrieve the latest or the desired version of a document and consistency

maintenance period as explained in detaill in CHAPTER 3 and CHAPTER 4.

2.2.3 Related Projects

2.2.3.1 JEDI

JEDI (Java Event-based Distributed Infrastructure) is an event-based, object-

oriented infrastructure for the development of complex distributed systems [104]. JEDI

infrastructure is based on the notion of active object (AO), which is ―an autonomous

computational unit performing an application-specific task‖ [104]. In JEDI, ―Each active

object has its own thread of control and interacts with other AOs by explicitly producing

and consuming events‖ [104]. Events are messages and they do not include any

information about their receipent. An event is ordered set of strings, which consists of

event name and other parameter values. Events are generated by AO and sent to event

dispatcher (ED). Event subscription and unsubscribe operations are provided for AO to

allow them to show their interest for receiving or not receiving the interested events

during their life cycle.

Main futures of JEDI can be summarized as below:

 Event Patterns: An event pattern is a set of ordered string, which

represents a regular expression, in JEDI and AOs subscribe either a

specific event or an event pattern. An event pattern consists of pattern

name and pattern parameters. A pattern name is the first string, and the

remaining strings are the pattern parameters in an event pattern.

36

 Reactive Objects: Reactive objects are the particular AOs that execute a

standard loop by waiting for events that they subscribe to and process

them in JEDI.

 Distribution of the Event Dispatcher: In JEDI, two versions of event

dispatchers are supported: (a) Centralized; (b) Distributed. Centralized

version consists of a single process, few AOs, running on local area

network, and is designed to handle simple systems with exchanging

limited number of events. So, centralized version can be a bottleneck for a

distributed system. However, in the distributed version of the event

dispatcher, the main goal is to support network intensive applications by

exploiting a set of dispatching servers interconnected in a tree structure.

 Preservation of Event Ordering: In distributed systems, ordering of events

ordering is a crucial issue, and none of the traditional communication

mechanism used over the internet guarantees a total ordering of events due

to variable latency. In JEDI, ordering of events is also crucial when

distributed event dispatchers are needed to be used. As a result, in JEDI

casual ordering of events are guaranteed [104].

 Mobility: Mobility is to be able to move running components of an

application easily across to nodes of a network. In JEDI, mobile AOs are

supported. So, AOs can disconnect from an event dispatcher and reconnect

to another distributed event dispatcher. To provide mobility of AO, JEDI

supports moveIn and moveOut operations [104].

37

2.2.3.2 NaradaBrokering

NaradaBrokering is an open-source event-brokering system based on the

publish/subscribe paradigm, which allows distributed systems to communicate with each

other by exchanging messages [58-62, 105, 106]. NaradaBrokering system has been

developed at Community Grids Lab [63] at Indiana University and available from

http://grids.ucs.indiana.edu/ptliupages/projects/narada.

Communication is asynchronous and events are central to NaradaBrokering

system. Events encapsulate data in various levels, and they constitute the data flow in

NaradaBrokering system. One of the main duties of NaradaBrokering system is to deal

with efficient management of data flow.

NaradaBrokering system incorporates number of services: (a) Reliable delivery;

(b) Ordered delivery; (c) Secure delivery of messages; (d) Access to globally

synchronized timestamps; (e) Reduction of jitters. It also supports various

communication protocols: (a) TCP; (b) UDP; (c) HTTP; (d) SSL; and (e) Parallel TCP.

NaradaBrokering also supports Java Message Service (JMS), JXTA to support

peer-to-peer interactions, SOAP and several Web Service specifications including WS-

Reliability, WS-Eventing, and WS-ReliableMessaging.

It has been used in various domains including collaborative applications,

audio/video conferencing applications and GIS systems. Some example applications

currently using NaradaBrokering are SERVOGrid [107], GlobalMMCS [108], the WEB-

IS research work at the Florida State University and the University of Minnesota, and the

Anabas system [109], which provides support for shared displays and online

collaborative meeting software.

http://grids.ucs.indiana.edu/ptliupages/projects/narada

38

2.3 Consistency Maintanence

Consistency is an important issue in distributed systems. Consistency means that

all copies of a same document meant to be the same. When one copy is updated, and then

it must be ensured that all copies are updated as well [110].

According to [110], consistency models can be classified into two group: (a)

Data-Centric Consistency Models; (b) Client-Centric Consistency Models. Details about

these two models, update propagation and consistency protocols are given in the

following sections respectively.

2.3.1 Data-Centric Consistency Models

A consistency model is an aggreement between processes and hosting

environment, where data is stored. As long as processes obey the rules, the hosting

environment promises to work correctly. A process that executes a read operation on a

data item expects to get a value that is a result of the last write operation on the data item.

However, in the absence of a global clock, it is difficult to say which write operation is

the last one. So to maintain consistency in different ways, there are other data-centric

consistency model definitions. Each data-centric consistency model has different

restrictions on what a read operation can return on a data item. It is easy to implement

and use consistency models with minor restrictions whereas it requires lots of effort to

use consistency models with major restrictions. But the gain is different in each model

since the one with major restrictions provide better results than the one with minor

restrictions do [110]. More information on consistency models can be found in [111,

112]. Tanenbaum classifies data-centric consistency models into seven sub-categories:

39

 Strict Consistency: It is the most strict consistency model and it is defined by the

following condition:

―Any read on a data item x returns a value corresponding to the result of the

most recent write on x‖ [110].

This model relies on absolute global time to order processes and all writes to a

data item instantenously are visible to all processes. If a data item is changed, all

read requests on that data item gets the new value, no matter how soon these

requests are made, and which process are making a request and where these

processes are located.

 Linearizability and Sequential Consistency: Sequential consistency model is a

slightly weaker consistency model than strict consistency model. It is defined by

the following condition:

―The result of any execution is the same as if the (read and write) operations

by all processes on the data store were executed in some sequential order

and the operations of each individual process appear in this sequence in the

order specified by its program‖ [110].

Linearizability consistency model is weaker than strict consistency model and

stronger than sequential consistency model. A data store is linearizable as long as

each operation has time-stamp value and the following condition is satisfied:

―The result of any execution is the same as if the (read and write) operations

by all processes on the data store were executed in some sequential order

and the operations of each individual process appear in this sequence in the

40

order specified by its program. In addition, if tsOP1(x) < tsOP2(y), then

operation OP1(x) should precede OP2(y) in this sequence‖ [110].

Linearizability is usually used in formal verification of concurrent algorithms

[113]. If a data store holds necessary conditions for linearizable consistency, it

also satisfies necessary conditions for sequential consistency. Preserving time-

stamp ordered values brings additional cost to linerizability than sequential

consistency [114].

 Casual Consistency: A casual consistency model is a weaker consistency model

than sequential consistency model, and it distinguish events as casually related or

not. So, if event X is caused or affected by an earlier event Y, than casual

consistency requires that every process first get Y then get X. A data store said to

be caually consistent if it satisfies the following condition:

―Writes that are potentially casually related must be seen by all processes in

the same order. Concurrent writes may be seen in a different order on

different machines‖ [110].

 FIFO Consistency: FIFO consistency model is less strick than casual consistency

model. FIFO consistency model requires the following condition to meet:

―Writes done by a single process are seen by all other processes in the order

in which they were issued, but writes from different processes may be seen

in a different order by different processes‖ [110].

In distributed shared memory systems, FIFO consistency is called PRAM

consistency, and is described in [115].

41

 Weak Consistency: Weak consistency is maintained by using synchronization

variables to maintain consistency [116]. Weak consistency model has three

characteristics as follow:

1. ―Accesses to synchronization variables associated with a data store, are

sequentially consistent‖ [110].

2. ―No operation on a synchronization variable is allowed to be performed

until all previous writes have completed everywhere‖ [110].

3. ―No read or write operation on data items are allowed to be performed

until all operations to synchronization variables have been performed‖

[110].

 Release Consistency: This model provides two kinds of synchronization variables

to distinguish a process whether enters or leaves a critical region. An acquire and

a release operation notify a data store that a critical region is about to be entered

or has just been exited [117]. A data store is release consistent if the following

conditions are satisfied:

1. ―Before a read or write operation on shared data is performed, all

previous acquires done by the process must have completed

successfully‖ [110].

2. ―Before a release is allowed to be performed, all previous reads and

writes done by the process must have been completed‖ [110].

3. ―Accesses to synchronization variables are FIFO consistent (sequential

consistency is not required)‖ [110].

42

Lazy release consistency is a different implementation of release consistency and

described in detail in [118].

 Entry Consistency: Entry consistency model has been designed to be used with

critical sections [119] and it works in a similar way with release consistency

model. However, unlike release consistency, in entry consistency each shared data

has to be associated with some synchronization variable such as lock or barrier

[110].

A data store is entry consistent if it satisfies all the following requirements:

1. ―An acquire access of a synchronization variable is not allowed to

perform with respect to a process until all updates to the guarded

shared data have been performed with respect to that process‖ [110].

2. ―Before an exclusive mode access to a synchronization variable by a

process is allowed to perform with respect to that process, no other

process may hold the synchronization variable, not even in

nonexclusive mode‖ [110].

3. ―After an exclusive mode access to a synchronization variable has

been performed, any other process’s next nonexclusive mode access to

that synchronization variable may not be performed until it has

performed with respect to that variable’s owner‖ [110].

2.3.2 Client-Centric Consistency Models

In the previous section, we have overview and summarized data-centric

consistency models that are all about providing a systemwide consistent view on a shared

data. On the other hand, client-centric consistency models ensure the consistent view of

43

data from a client’s perspective. They allow copies of a data to be inconsistent with each

other as long as the consistency is maintained from a single client’s point of view.

Tanenbaum classifies client-centric consistency models into five sub-categories:

 Eventual Consistency: In eventual consistency, replicas are allowed to diverge

and become inconsistent and it is guaranteed that the system can eventually

converge to a consistent state. In this model, it is easy to solve write-write

conflicts since; it is assumed that there are small numbers of processes that can

perform an update operation.

Eventual consistent data stores can perform well as long as clients always access

the same replica, however problems may occur when different replicas are

accessed. The problem can be solved via client-centric consistency that

guarantees consistent view of a datastore from a single client’s perspective [110].

Client-centric consistency models are generated (for example [120, 121]) based

on the work on Bayou [122].

 Monotonic Reads: It is the first client-centric consistency model and a data store

is monotonic-read consistent if satisfy the following condition:

―If a process reads the value of a data item x, any successive read operation

on x by that process will always return that same value or a more recent

value‖ [110].

So, monotonic-read consistency guarantess that if a process retrieves a value of a

data item A at time t1, than the process never gets an older version of data item A

at later time.

44

 Monotonic Writes: This client-centric consistency model ensures that write

operations are performed in the correct order on all copies of the data store. If a

data store is said to be monotonic-write consistent, it must satisfy the following

condition:

―A write operation by a process on a data item x is completed before any

successive write operation on x by the same process‖ [110].

 Read Your Writes: It is similar to the previous client-centric monotonic-read

consistency model, and a data store is read-your-write consistent if the following

condition is satisfied:

―The effect of a write operation by a process on data item x will always be

seen by a successive read operation on x by the same process‖ [110].

So a write operation is always completed before a successive read operation that

performed by the same process independent from where the read operation is

performed.

 Writes Follow Reads: Writes-follow-reads consistency model ensures that updates

are disseminated to replicas as the result of previous read operations. A data store

is writes-follow-reads consistent if the following condition is satisfied:

―A write operation by a process on a data item x following a previous read

operation on x by the same process, is guaranteed to take place on the same

or a more recent value of x that was read‖ [110].

45

2.3.3 Update Propagation and Consistency Protocols

An important design issue in update propagation is what to propagate to replicas.

There are three possibilities to propagate:

 Propagate only notification to replicas.

 Transfer data from one replica to another.

 Propagate the update operation to other replicas.

A promising approach to our design would be propagating the data from one copy

to another due to the nature of integrated annotation tools.

Another design issue is to decide whether updates are pulled or pushed. In a push-

based protocol, updates are disseminated to all replicas without their asking for the

updates. On the other hand, updates are retrieved from replicas by asking them at any

moment in pull-based protocol. Furthermore, unicasting or multicasting communication

approaches should also be decided to propagate updates. Because of the nature of the

annotation tools, our proposed approach is to have a push and time-based pull approaches

to propagate updates via unicast communication. Since annotation tools do not support

publish/subscribe mechanism.

2.3.4 Related Projects

2.3.4.1 CVS

CVS (Concurrent Versions System) [123, 124] is a version control system that

keeps the versions of files during their development period, allows users to edit a group

of files collaboratively and retrieve old versions of them whenever requested. CVS

allows several users to work on a shared file concurrently without loss of data. CVS has a

46

centralized communication mechanism via a single site and the repository that holds the

main copies and previous versions of files is stored in the central site.

CVS uses optimistic replication approach for data sharing. Multiple users can

have the copies of files and edit them concurrently. Each copy is private and local to each

user. After the modifications are done to the files, users commit their copies to the

repository. A commit is effective if nobody has changed the same files. If the same files

have been modified and there is no conflict (overlapping modifications), then CVS

merges those files automatically. Otherwise, users are notified that those commits need to

be done manually and recommitted. Hence, CVS supports flexible collaboration and rare

conflicts are resolved manually by the users.

CVS is a multimaster version control system since multiple users can perform

modifications to files.

2.3.4.2 Wooki: Collaborative Editing System

Wooki [125] is a P2P wiki system based on the Woot [126] algorithm that ensures

eventual consistency for linear structures in P2P environments. Main goal of the Wooki

system is to replace the centralized architecture of a current Wiki system with a P2P

network of wiki servers. In this approach, data stored on a wiki system is replicated over

the P2P wiki servers and this raises up the question how to maintain consistency among

the P2P wiki servers? Pessimistic replication approaches do not scale well compared to

optimistic approaches. Furthermore, they also do not support offline collaboration

whereas as pessimistic replication approaches do. Wooki uses optimistic replication

approach to preserve consistency among replicas.

47

A wooki network consists of dynamic sites that can join or leave the network at

any time. Each site has a unique id called ―siteid‖ and site id values are totally ordered.

Each site demands the partial knowledge of the whole network and keeps the replica of

other sites in the network. A wooki system consists of three major components:

 Wooto: It is the core component and ―it is in charge of generating and integrating

operations affecting the documents‖ [125].

 Second component is responsible for the user interface.

 Third component ―in charge of disseminating local operations and retrieving

remote operations‖ [125].

A wooki system uses wooto algorithm to ensure eventual consistency among the

replicated documents located at several sites. It uses lpbcast algorithm [127] to propagate

operations to connected nodes and combines anti-entropy algorithm [128] to handle

offline nodes.

The Wooki system has been implemented in Java as servlets in a Tomcat server

and a wooki prototype is available from http://p2pwiki.loria.fr/.

2.4 Technologies

We have overviewed the main technologies that are crucial to our design and

implementation model of our proposed thesis research in the following sub-sections.

2.4.1 Apache Axis 1.x

Axis is a Web Service container and available from http://ws.apache.org/axis/ . It

is basically a SOAP (Simple Object Access Protocol) engine as defined in [7] including:

 A simple stand-alone server,

http://p2pwiki.loria.fr/
http://ws.apache.org/axis/

48

 A server which plugs into servlet engines such as Tomcat,

 Extensive support for the Web Service Description Language (WSDL),

 Emitter tooling that generates Java classes from WSDL.

 Some sample programs, and

 A tool for monitoring TCP/IP packets.

Key features of the Apache Axis 1.x defined in [7] are:

 Speed: Axis 1.x is faster than the earlier versions of Apache SOAP since it uses

SAX (event-based) parsing.

 Flexibility: Architecture of Axis 1.x is flexible and provides developers with

ability to add extenstions into the Axis engine for custom header processing,

system management or any other custom needs.

 Stability: Axis is very stable since its defined published interfaces are change

slowly when it is compared to other parts of Axis.

 Component-oriented deployment: Common patterns can be implemented to

process custom applications in Axis 1.x by defining resusable networks of

Handlers.

 Transport framework: Core of the Axis engine is transport-independent and Axis

1.x supports various protocols including SMTP, FTP, and message-oriented

middleware.

 WSDL support: Axis 1.x supports the WSDL (Web Service Description

Language, version 1.1). Users can easily build stubs to access remote services,

and automatically export machine-readable descriptions of their deployed services

from Axis.

49

Axis 1.x provides three main interfaces: (a) Remote Procedure Calls (RPC) [129];

(b) Document/wrapped; (c) Message style communications. In the RPC style, a Java

object is serialized into XML and deserialized back into a Java object at the target point.

It is very profitable to use the RPC style if a Java program has already been written and

need to be deployed. Document and wrapped styles are similar to each other, whereas

they are different due to their use of SOAP encoding. In document/wrapped style data is

encapsulated within a plain XML document and serialization/deserialization operations

are not required, but binding is necessary in this type of deployment. Finally, message

style communication is a user-defined and it is very flexible due to its nature of being in

an XML document and not necessity of serializers/deserializers in this type of style.

 Discussion: In our implementation of our thesis research, we have used Axis 1.2

version as our Web Service container. We have followed RPC style communication to

provide access to our service interfaces as explained in 3.1. We have transferred

messages between clients and services in XML format via RPC style communication. We

preferred to use RPC style communication since we have already implemented our thesis

research in Java language and we need to deploy our implementation as a Web Service,

which is accessible from various clients running on various platforms.

2.4.2 Jakarta Commons HttpClient

HttpClient is an open source project that provides functionalities to access

resources via HTTP protocol. It is available from http://hc.apache.org/httpclient-3.x/. Its

main futures as described in detail in [130] are:

 Implementation of HTTP versions 1.0 and 1.1 in pure Java language.

http://hc.apache.org/httpclient-3.x/

50

 Implementation of the all HTTP methods (GET, POST, PUT, DELETE, HEAD,

OPTIONS, and TRACE) in an extensible OO framework.

 Supporting encryption with HTTP over SSL (HTTPS protocol).

 Providing transparent connections via HTTP proxies.

 Providing tunneled HTTPS connections through HTTP proxies, via the

CONNECT method.

 Allowing transparent connections through SOCKS proxies (version 4 & 5) using

native Java socket support.

 Provides authentication through Basic, Digest and the encrypting NTLM (NT Lan

Manager) methods.

 Ability to plug-in custom authentication methods.

 Ability to Multi-Part form POST for uploading large files.

 Pluggable secure sockets implementations, making it easier to use third party

solutions

 Support for connection management in multi-threaded applications. It allows

setting the maximum total connections and also the maximum connections per

host. Furthermore, it can detect and close stale connections.

 Ability for Automatic Cookie handling. It also allows plug-in mechanism for

custom cookie policies.

 It supports persistent connections by using KeepAlive in HTTP/1.0 and

persistance in HTTP/1.1

 It allows direct access to headers and the response code, which are sent by the

server.

51

 It allows setting connection timeouts.

 Discussion: In our design and implementation of thesis research, we need to have

a mechanism to communicate explicitly with annotation tools to retrieve data from and

send data to. Our CFDAR has been designed to work in the background as a multi-

threaded form, and HttpClient is a perfect fit to provide our needs by supporting all

HTTP methods, cookies, and authentication in a multi-threaded environment.

Implementation details can be found in CHAPTER 5.

2.4.3 XML Parsers

There exist several parsers for XML processing. DOM and SAX parsers are the

most popular ones, and DOM parser is the most widely used one for XML processing. It

reads and validates the XML document. Document Object Model (DOM) [131] provides

―a platform- and language-neutral interface that will allow programs and scripts to

dynamically access and update the content, structure and style of documents‖ [131].

Documents are represented in a tree structure in the DOM structure. Each node in the tree

structure can be one of the specified types and what they may have as their children is

specified in [131] as:

 Document: Element (maximum of one), ProcessingInstruction, Comment,

DocumentType

 DocumentFragment: Element, ProcessingInstruction, Comment, Text,

DATASection, EntityReference

 DocumentType: No children

 EntityReference: Element, ProcessingInstruction, Comment, Text,

CDATASection, EntityReference

52

 Element: Element, Text, Comment, ProcessingInstruction, CDATASection,

EntityReference

 Attr: Text, EntityReference

 ProcessingInstruction: No children

 Comment: No children

 Text: No children

 CDATASection: No children

 Entity: Element, ProcessingInstruction, Comment, Text, CDATASection,

EntityReference

 Notation: No children

Entire XML document represented in the DOM structure is kept in the memory

and this allows developers to retrieve any element of the document easily. So, it is very

profitable to use DOM parser in the case that a document needs to be accessed several

times. On the other hand, it requires large amount of memory, and it gets worsen when an

XML document gets bigger.

SAX (Simple API for XML) [132] parser does not work based on creating a

document object tree like DOM parser does. SAX parser works as a stream parser with an

event-driven API, where flow of the program is determined by events. Several methods

can be defined by users to be called when SAX events occur during parsing a document.

The SAX events include:

 XML Text nodes

 XML Element nodes

 XML Processing Instructions

53

 XML Comments

SAX parsers have some advantages and disadvantages when it is compared to

DOM parser. SAX parsers use much smaller memory than DOM parsers since DOM

parsers keep the whole document as DOM structure in the memory. So, size of the

memory that needs to be used by DOM parsers is depending on the document, whereas in

SAX parsers the amount of memory is based on the maximum depth of the XML tree. It

is always smaller than the parsed document as a tree itself. Hence, SAX parsers work

faster than DOM parsers but the document needs to be parsed again and again to re-read

the parsed data. So, it does not provide an efficient way to parse XML documents when a

document needs to be accessed many times.

2.5 Summary

This chapter discussed the background information, reviewed the related work

and surveyed the major technologies related to our research. First, an overview of Web

2.0 and Annotation Tools, and its related projects are given. Second, event systems and

the related projects are reviewed. Third, consistency maintenance approaches for

distributed systems are summarized and discussions are given throughout the chapter.

Finally, the related technologies are presented. From this, we have identified useful

strategies that we will use in our research architecture.

54

CHAPTER 3 Event-based Infrastructure

CHAPTER 2 surveyed event systems, and analyzed the existing tools and

approaches that provide web-based services to store, share, and tag various resources

among small groups, teams and communities and their limitations involved in

representing scholarly publications and communicating with each other. Based on the

analysis, this chapter particularly focuses on the modular architecture of a system by

addressing the first part of the research problems given in Section 1.2.

3.1 Design Overview

In this chapter we introduce a novel architecture that is designed to provide an

ideal approach to unify and federate major annotation tools, support collaboration,

represent and manage content of scientific documents coming from various sources in a

flexible fashion. General architectural design for the proposed Event-based Infrastructure

55

(EBI) and Consistency Framework for Distributed Annotation Records (CFDAR) appears

in Figure 3-1.

Database

Event-based Infrastructure and

Consistency Framework for Distributed

Annotation Records

Annotation Tools

Various

Clients

Data Manager

Uniform Access Interface

Figure 3-1: General Architectural Design for the Event-based Infrastructure and

Consistency Framework for Distributed Annotation Records

56

To meet the requirements for handling data and metadata coming from different

sources such as online collaboration tools, peer to peer systems, social bookmarking

websites, academic search engines, scientific databases, journal and conference content

management systems, the Event-based Infrastructure utilizes the use of event concept as

its building blocks. According to this concept, content of scientific documents originating

from various sources are represented as events. Events constitutes the base unit for our

Event-based Infrastructure, and an event is commonly defined as the act of changing the

value of an attribute of some object [133]. Storing all the events about an object enables

the actions on this object to be reviewed and undone [134]. An event may also be defined

as an action with a time stamp and a message [106]. In our Event-based Infrastructure,

we adopt the view of an event as a time-stamped action on a document, which only

maintains the modifications to an object. We distinguish between minor and major

events: insertion of a new digital entity (DE), which is a collection of metadata

representing a scholarly publication, into the system or deletion of an existing digital

entity from the system is considered a major event; modifications to existing digital

entities are considered minor events. Examples of modification are: deleting one or more

fields of a digital entity, changing the value of one or more fields of a digital entity by

adding or deleting metadata, and so on. Another concept underlying the Event-based

Infrastructure is that of dataset. A dataset is a collection of minor events related to a user.

A dataset creation is a way to group the modifications of a digital entity. There are two

important issues requiring attention during the process of dataset creation (described in

Section 3.7.3.1.1 in detail): (a) Events that are selected as members of a dataset must

belong to the same digital entity (we do not want to include into a dataset events

57

belonging to different digital entities). (b) The order of the events is a key factor in that

the events related to a DE will be applied in the order they occur. A document

representation by events is depicted in Figure 3-2. As it is seen on the figure, documents

are constructed from major and minor events. A major event represents the original entry

in the system, while the minor events are the modifications to the original entry during

the time.

Major Event Minor

Event-1

Minor

Event-N

t1 tN

t0

Figure 3-2: Document Representation in Event-based Infrastructure

To meet the uniformity requirements, Event-based Infrastructure enables the

proposed system to support one to many annotation tools interactions and their

communication protocols. This way, the system unifies different annotation tools under

one hybrid system.

To meet the federation requirements, it presents a federation capability where

different annotation tools and their services can be federated in metadata instances. To

enable this capability, we introduce annotation tools schema by integrating different

annotation tools data models. The annotation tools schema provides a common platform

to enable interaction between the annotation tools.

58

Table 3-1: Stored Metadata Comparison in Annotation Tools

Stored Metadata Citeulike Connotea Delicious

URL R R

TITLE R

DOI

PMID

ISBN/ASIN

REFERENCE TYPE R

AUTHORS

PUBLICATION

NAME

VOLUME NO

ISSUE NO

CHAPTER

EDITION

START PAGE

END PAGE

PAGES

YEAR

MONTH

DAY

PUBLICATION DATE

DATE OTHER

EDITORS

JOURNAL

BOOK TITLE

HOW PUBLISHED

INSTITUTION

ORGANISATION

PUBLISHER

ADDRESS

SCHOOL

SERIES

BIBTEX KEY

ABSTRACT

DISPLAY TITLE

TAGS
†

R

TAG SUGGESTIONS

DESCRIPTION R

MY WORK

EVERYONE’S TAG

PRIVACY SETTINGS

RELEASE DATE TO

ALL USERS

PRIORITY OF

RECORDS

NOTE
COMMENT

= Supported, R = REQUIRED, † = Adds ―no-tag‖

59

To meet the comprehensive metadata field requirements, proposed Event-based

Infrastructure support various metadata fields to represent the complete metadata about a

scholarly publication. Supported metadata fields are compatible with the one that

specified by the Dublin Core Metadata Initiative (DCMI) [135] and BibTex [41]. Table

3-1 portrays the stored metadata comparison in Connotea, Citeulike, and Delicious

annotation tools.

To meet the requirements for providing a flexible architecture to track

modifications to documents and metadata that collectively form a digital entity, Event-

based Infrastructure benefits from representing modifications to documents as events.

Events are time-stamped entities that encapsulate the changes to documents. Associated

with each digital entity, there will be an initial set of metadata. This initial set of metadata

is represented by a major event, and it may come from different sources. DE metadata of

a record at a certain point is the result of applying all the available ordered datasets to the

initial digital entity metadata. Another word, by replaying events, it is possible to

reconstruct a DE at any point in its evolution (explained in detail in Section 3.7.3.1.2).

To meet the flexible choices for version control, Event-based Infrastructure

provides an architectural component called Rollback Module. The rollback module has

been designed to retrieve the desired version of a DE by undoing the necessary events

that are already applied to a DE. The rollback mechanism is explained in Section 3.7.3.4.

To meet the requirements for providing services to extract data from annotation

tools to a specified repository and to upload data from a desired repository to an

annotation tool, Event-based Infrastructure uses Communication Manager that implement

60

the uniform access interface abstraction layer explained in Section 4.4.2.2 to

communicate with annotation tools to exchange data and metadata.

To provide convenient structure for organizing data and metadata without dealing

with the complexity of hierarchical structure, grouping and accessing related documents

easily, Event-based Infrastructure support collaborative tagging of documents.

To meet the interoperability requirements, Event-based Infrastructure has been

designed as a service-enabled system. Web Services enables the interoperability between

different software applications running on different platforms [136]. Web Services have

an interface which is described in a machine-processable format, and Web Services

support interoperable machine to machine interaction over a network. Web Services are

defined in a language called Web Services Description Language (WSDL) [137]. The

clients can communicate with a web service by exchanging messages in SOAP (Simple

Object Access Protocol) format. SOAP [138] is a platform and language independent

communication protocol for exchanging information in distributed environment. SOAP is

an XML based protocol, and consists of three parts the envelope, the encoding rules, and

the Remote Procedure Call (RPC) convention. SOAP can be used in any combination of

with some other protocols such as HTTP [139], FTP [140] etc. WSDL is specified in

XML, and it is used for describing and locating Web Services. WSDL uses four major

elements to define Web Services:

 portType: Specfies the operations performed by the web service.

 message: Message defines the data elements of an operation.

 types: Types element defines the data types used by the web service.

61

 binding: Binding specifies concrete protocol and data format specifications for the

operations and messages defined by a particular portType.

As a summary, our Event-based Infrastructure supports: (1) Representation of

data and metadata coming from various sources as events; (2) Tracking changes to data

and metadata; (3) Supporting the extraction and collection of metadata and documents

into a central repository from various sources such as online collaboration tools, peer to

peer system, social bookmarking websites, academic search engines (Google Scholar

(GS) [141] and Windows Live Academic (WLA) [142]), scientific databases, journal and

conference content management systems. So, it is inevitable to have an Event-based

Infrastructure to support and represent those multiple sources of metadata information for

digital entities in a collaborative environment; (4) Supporting unification and federation

of major annotation tools. It also provides services to upload data and metadata from a

specified repository to annotation tools; (5) Supporting sharing, modifying, and

collaboratively tagging of DEs; (6) Supporting the communication of annotation tools

with each other via Web Service technology; (7) Providing comprehensive metadata

support to be able to represent the whole metadata of a scholarly publication; (8)

Optimistic replication approach to ensure eventual consistency between replicas as

explained in detail in CHAPTER 4; and (9) Supporting flexibility to maintaining all

versions of DEs and ability to rollback to any version by undoing the related events.

3.2 Content of a Digital Entity (DE)

In our proposed arhitecture, a DE is divided into its metadata that represents a

scholarly publication. Another word is that a DE consists of several metadata fields that

hold the related metadata of a scholarly publication. In our Event-based Infrastructure,

62

each DE’s metadata is designed to be stored in a relational database (MySQL) and the

latest version of a complete DE can be generated from scratch by executing all of its

minor events and its major event in the order they are created. Figure 3-3 represents a DE

and its encapsulated metadata that represents the complete metadata of a scholarly

publication in our proposed architecture.

Metadata

Field 1
Metadata

Field N

Figure 3-3: Content of a Digital Entity

3.3 Storage of a Document as a DE

In our Event-based Infrastructure, initial metadata of a scientific document is

represented by a major event, while further updates to any metadata field of an existing

DE are represented by minor events. Both major and minor events, which forms DE and

contains the metadata fields of the document, are stored into a MySQL system database

with a unique DE id and its owner information.

Event-based Infrastructure requires associating each DE with a folder, which is a

label representing a logical repository to collect DEs into. Each DE has an owner, and an

owner is a registered user with the proposed system. Hence, each DE is tied to a user, an

owner of a DE can define access rights for his/her DEs for other users, and groups as

read, write, and execute. Moreover, an owner of a folder can also specify access rights for

his/her folders for other users, and groups as read, write, and execute. Depend on the

63

defined access rights for DEs and their belonging folders, our Event-based Infrastructure

support users or communities to collaborate on the specified DEs.

3.4 Duplicate Detection

It is a critical issue to find out if a document that is about to be inserted into the

system already exists in the system or not. Our Event-based Infrastructure defines its own

duplicate detection algorithm to decide whether two given DE is similar or not with a

defined threshold value.

Our Event-based Infrastructure’s duplicate detection algorithm has been designed

to compare a given digital entity with all the DEs from a repository to find its matching

primary copy whether it exists in the database or not. Our duplicate detection algorithm

works based on hashing (by MD5) the available metadata fields of a given document

including URL, title, authors and publication venue.

3.5 Event-based Infrastructure Update Model

Our proposed Event-based Infrastructure’s update model is built on the event-

based structure to provide flexible choices to users. Our update model uses events for

applying the updates on existing digital entities. It provides users with flexible choices to

apply the updates as minor events when faced with existing DEs within the repository as:

 Keep the existing version.

 Replace the existing version with the new one.

 Merge the existing and the new version.

Our update model supports the above update model concepts to be applied for all

matching digital entities or each existing individual digital entity in the system. By doing

64

that, updates can be applied to each individual or all digital entities as a default based on

the selected choice.

3.6 Supported Annotation Tools

The Event-based Infrastructure presents an architecture, which extends the

capabilities of the existing major annotation tools (Connotea, Citeulike, and Delicious).

This capability enables unification and federation of annotation tools in our research

framework.

To utilize the unification capability, we provided implementations of the three

annotation tools: Connotea, Citeulike and Delicious. Thus, the prototype implementation

of the Event-based Infrastructure and Consistency Framework for Distributed Annotation

Records provides a uniform access interface described in Section 3.7.1 and supports the

Connotea, Citeulike and Delicious services with added capabilities.

To utilize the federation capability, we introduced annotation tools schema

specification. With the annotation tools schema, we integrate Connotea, Citeulike, and

Delicious service data models under one unified schema. We have defined an XML

Schema to combine metadata models of the Connotea, Citeulike and Delicious annotation

tools.

3.6.1 Annotation Tools Schema Semantics

Annotation tools schema represents the merged schemas from the major

annotation tools by integrating their schemas into one. Schema integration is a

functionality of providing a unified representation of multiple data models [143]. In our

annotation tools schema specification, we have merged data model schemas from the

65

major annotation tools. The Event-based Infrastructure and Consistency Framework for

Distributed Annotation Records prototype specifies a merged schema for Connotea,

Citeulike and Delicious annotation tools.

3.7 Overview of the Architecture Components

The detailed architectural design of the Event-based Infrastructure and

Consistency Framework for Distributed Annotation Records is depicted in Figure 3-4.

Event-based Infrastructure’s modules can be categorized under five main categories: a)

Uniform access interface; b) Event-based Infrastructure services; c) Digital Entity

Manager; d) Timestamp Generator; e) Data Manager. Annotation Tools component is

explained in Section 4.4.2.1, Annotation Tools Update Manager is explored in Section

4.4.2.3, and Communication Manager is discussed in Section 4.4.2.2.

3.7.1 Uniform Access Interface

The uniform access interface presents a common access interface to the Connotea,

Citeulike, and Delicious annotation tools. Another saying is that the uniform access

interface imports API of the supported annotation tools. The Event-based Infrastructure

and Consistency Framework for Distributed Annotation Records prototype supports API

for Connotea, Citeulike and Delicious. The access interface can import more APIs, as the

new annotation tools are integrated with the proposed system. These major annotation

tools have been unified under one unified-architecture called Event-based Infrastructure

and can be accessed through the uniform access interface. The uniform access interface

layer is implemented and managed by the Communication Manager as explained in detail

in Section 4.4.2.2.

66

Digital Entity

Manager

Annotation Tools

Update Manager

Database

Timestamp

Generator

Data Manager

E
v

e
n

t-
b

a
s

e
d

 I
n

fr
a

s
tr

u
c

tu
re

 S
e

rv
ic

e
s

W
S

D
L

Connotea API

Annotation Tools

Communication Manager

Various

Clients

Citeulike RSS and

Heuristic Approach
Delicious API

Figure 3-4: The Architectural Design for the Event-based Infrastructure and

Consistency Framework for Distributed Annotation Records

3.7.2 Event-based Infrastructure Services

Event-based Infrastructure services are the Web Services that provide a

communication with the core services of the proposed architecture over HTTP protocol

through SOAP messages. It has an interface written in WSDL and it is used for

describing and locating the Event-based Infrastructure service implementations. The

67

architecture supports seamless access to archival data and metadata through standard

Web Services interfaces.

Supporting Web Service technology provides many advantages. ―A Web Service

is an interface that describes a collection of operations that are network accessible

through standardized XML messaging‖ [144]. The interface hides the implementation

logic and details from the users, and this allows the service to be used on different

platforms rather than the one it was implemented. Also any application capable of

communicating through the standard XML messaging protocol and regardless of with

which programming language it was implemented in can use the service through the

standard interface. These properties allow Web Services based frameworks to be loosely

coupled and be component oriented. Due to the standard interfaces and messaging

protocols the Web Services can easily be assembled to solve more complex problems.

One significant feature of the Web Services is that they allow program-to-program

communications. The main difference between the Web services and the other

component technologies is that, the Web services are accessed via the ubiquitous Web

protocols such as Hypertext Transfer Protocol (HTTP) and Extensible Markup Language

(XML) instead of object-model-specific protocols such as Distributed Component Object

Model (DCOM) [145] or Remote Method Invocation (RMI) [53].

Finally, the capabilities that provided by Web Service technology can be of great

benefit to the usage of our proposed Event-based Infrastructure services. Many

applications running on different platforms can access its services via its service

interfaces.

68

3.7.3 Digital Entity Manager

Digital Entity Manager is an umbrella name for a group of modules that

contributes to DE management together. Its modules are: (1) Events and Dataset

management; (2) Digital Entity Update Management; (3) Periodic Updates Management;

(4) History and Rollback Management. Figure 3-5 displays the Digital Entity Manager

and its components. The details of each module are given in the following sections

respectively.

Digital Entity Manager

Digital Entity Update

Management

History and Rollback

Management

Events and Dataset Management

Periodic Update

Management

Events and Dataset Creation

Event Processing Engine

Figure 3-5: Digital Entity Manager

3.7.3.1 Events and Dataset Management

Events and Dataset Management module is responsible for the creation of

major/minor events and datasets. It has two submodules to provide its main services:

3.7.3.1.1 Events and Dataset Creation

In order to create a new DE or to validate modifications to a DE, major or minor

events need to be created by the proposed system. Insertion of a new document and its

metadata are represented with a major event stored into a MySQL database with a unique

id in the proposed architecture. When a modification made to any metadata field of an

existing DE, then only the modification is saved into the repository (MySQL database) as

69

a minor event with a unique event id and the unique DE id that this event belongs to.

Desired minor events belonging to the same DE can be grouped together to form a

dataset with a unique dataset id assigned by the system automatically. Created events and

datasets are processed by Event Processing Engine to build a desired version of a DE at

any given time. Details of the event and dataset processing can be found in Section

3.7.3.1.2.

There are many key advantages of using events and datasets for representing data

and metadata. First, by representing data and metadata with events and datasets, our

proposed system never loose a copy of a DE for any version. Since, data and metadata are

archived as events into a MySQL database, and any version of a documents can be

rebuild from scratch by using its major event and datasets that brings collection of minor

events. Another word, using event structure for representing data and metadata enables

our proposed architecture to rollback to any version of a document in its history. Second,

timestamp information is a crucial thing for distributed and collaboration systems. Each

event has a timestamp value and this information can be used for ordering the events or

maintaining consistency among documents by defining the order of update operations on

primary copy and replicas of data and metadata. Third, events provide our architecture to

be flexible for building and retrieving a document based on the desired user’s or group’s

events. Finally, due to the nature of our documents represented by several metadata

fields, using an event structure leverages collaboration and updates on the metadata fields

of a document. Our architecture can only store the modified metadata field of a document

instead of storing the whole modified document, and the complete document can later be

constructed by using its events based on their occurrences in time.

70

3.7.3.1.2 Event Processing Engine

Main duty of the Event Processing Engine is to build a complete document by

using the document’s dataset and events for a given state. To do so, Event Processing

Engine collects all the dataset and the events belong to the requested DE from a MySQL

database. Having done that, Event Processing Engine process all the minor events sorted

by time using their timestamp on top of the major event to retrieve the final version of the

requested document. Another word, by using the initial metadata, which is a major event,

of a digital entity and by applying dataset(s) on top of it, one can retrieve any version of a

DE. Hence, in case of an error or users’ request, our architecture supports to restore the

system to a previous safe state by using the related dataset for that state.

The example in Figure 3-6 shows the process of building a document by using its

major event and datasets. Each dataset (Dataset-1… Dataset-N) is composed of a number

of minor events, and each dataset modifies the digital entity metadata based on the events

that it has. In our proposed Event-based Infrastructure, all available datasets of a digital

entity are applied on top of the initial digital entity metadata, which is the major event of

this DE, based on their increasing creation time to retrieve the latest digital entity

metadata. During the application process, we apply each dataset and its associated events

in the increasing order of their creation time.

71

Latest/Desired DE

Metadata

Event e

Event g

Event f

Event a

Event c

Event b

Time tg

Time te

Time tf

Time tc

Time ta

Time tb

Initial DE Metadata

(the major event of

the DE)

Dataset-1

Dataset-N

P
ro

c
e

s
s

in
g

 D
a

ta
s

e
ts

 o
n

 T
o

p
 o

f
a

 I
n

it
ia

l
D

E
 M

e
ta

d
a

ta
 t

o

B
u

il
d

 t
h

e
 D

e
s

ir
e

d
 V

e
rs

io
n

 o
f

it
s

 M
e

ta
d

a
ta

te < tf < tg

ta < tb < tc

Figure 3-6: Retrieving the latest digital entity metadata

As depicted in Figure 3-6, to build a digital entity metadata for a certain point, we

just apply the related dataset(s) on top of the initial digital entity metadata based on their

creation time, and the plus sign (+) in the formula indicates the application of the related

dataset(s) on top of the initial digital entity metadata. As a result, we have:

72

Current DE Metadata = Initial DE Metadata + .

3.7.3.2 Digital Entity Update Management

Our proposed Event-based Infrastructure stores data and metadata representing

metadata of scholarly publications into a MySQL database in the form of events, which

are the primary copies of the DARs stored at the annotation tools, and it supports data

exchange between the MySQL database and annotation tools. An update is specified as

either a major or a minor event in the proposed system based on what it has modified

within the system. In a major event representation, an update creates a new entry or

deletes an existing entry, while in a minor event representation an updated modifies any

metadata field of a DE [3]. Digital Entity Update Management module deals with the

updates that are made directly on the primary copy of each DE via Event-based

Infrastructure services. Its main responsibilities are: (1) Deciding the event type (major or

minor event) by using duplicate detection mechanism to find out whether this update is

trying to create a new DE or update an existing DE; (2) Creating an update event that

could be a major or minor event by setting up necessary parameters into a MySQL

database via Events and Dataset Creation module explained in Section 3.7.3.1.1; (3)

Passing the update event and its data to Communication Manager to be propagated to the

supported annotation tools to either upload a new entry in the case of major event or

reflect the changes on replica copies in the case of a minor event via Communication

Manager as explained in Section 4.4.2.2. Digital Entity Update Management module

provides a push based approach to propagate an update immediately to the integrated

annotation tools when it occurs. Updates are disseminated to the integrated annotation

73

tools via unicast communication strategy; (4) Returning a confirmation result to the

clients in XML format.

Each minor event is defined with its parameters including its unique id, its

operation type (replace, merge, delete), which DE it belongs to, its timestamp value, and

its data. These parameters are transferred as XML message to the necessary modules.

Schema of parameters of an update event is depicted in Figure 3-7.

Figure 3-7: Update Event Parameters

Finally, Digital Entity Update Management service can be accessed by any client

that capable of communicating through XML messaging via Web Service call using

SOAP messages over HTTP protocol.

3.7.3.3 Periodic Update Management

Periodic Update Management module keeps tracking the updates (minor events)

to DEs, and it is responsible for retrieving and applying all the updates made in the

system to same or similar DEs.

It has been designed to provide conveinent choices to retrieve the updates made to

DEs belong to other users in order to execute them on users’ own DEs based on our

74

proposed Event-based Infrastructure’s update model as defined in Section 3.5. It detects

the changes for updated digital entities as events and provides all available updates from

other users for a user’s all existing DEs. By keep tracking the updated events, Event-

based Infrastructure can provide the owner of the digital entities with ability to update

his/her digital entities with the new updated ones. Hence, users can collect and apply the

updates, which were made on DEs by other users, for their own DEs by the provided

Periodic Update Management service of the proposed system.

3.7.3.4 History and Rollback Management

Collaborative systems allow people to work together on a common task and share

resources to pursue their goals. A mechanism to avoid undesired changes in the system is

a critical issue in such systems. Because people work on a common set of resources, they

could modify the same resources. So, data is exposed to unintentional user mistakes.

To avoid undesired changes and to have flexible choices in the system, it is

necessary to have a mechanism for restoring the system to any previous state. There are

several existing systems that provide mechanisms for restoring the state of the system to

any previous state. For example, in the Windows XP operating system, if the system

crashes, then the tool called ―System Restore‖ can be used for restoring the system to the

last working point. As another example, many developers of the same project works on

the same source code and they use one of the versioning systems such as Concurrent

Versions System (CVS) [146] or Subversion (SVN) [147] to access and submit their

changes. They do modifications on the code and they submit their changes into the

repository. If any of the developer needs to retrieve the previous version of the code, then

they can obtain it through the versioning system that they are using in their project. As a

75

final example, Wiki systems allow their users to add, remove, change and edit a common

digital content. By using ―Recent Changes‖ page and ―Revision History‖ function from

the change log are being used for restoring the previous version of the content [12].

To allow the state of the system to be restored to any previous state, proposed

Event-based Infrastructure system supports a service that lists the history of each DE and

provide a mechanism to undo any changes (rollback) to the desired state in its history.

3.7.4 Timestamp Generator

Timestamp generator provides a service to generate unique timestamp values to

the requesting processes. These unique timestamps values are used for ordering processes

to execute them. Furthermore, events also need to be timestamped in order to impose an

order on them.

3.7.5 Data Manager

Data manager is responsible for executing read or write requests on a data item.

Data manager is not concerned about what operations it is performing. It just executes the

coming operation on a data item.

3.8 Summary

In this chapter, we explained the proposed Event-based Infrastructure, its

components and the representation of metadata of scientific documents as events. Our

Event-based Infrastructure has a moduler architecture which improves the maintanence

and simplicity of the system. The modules can be classified into five sub-groups. The

first group is Uniform Access Interface that presents a common access interface to the

Connotea, Citeulike, and Delicious annotation tools. The second group that contains the

76

service module which provides an interface to communicate with Event-based

Infrastructure services over HTTP via SOAP calls. The third group is in charge of the

Digital Entity Management. This module consists of 4 sub-groups. The first group is

Event and Dataset Management and it is responsible with the creation and management

of the events and the datasets. The second group is Digital Entity Update management

and it deals with the updates made on primary copies of a DE. The third group is Periodic

Update Management module and it provides a mechanism to collect and apply the

updates made to a DE belongs to another user. Finally, History and Rollback

Management part maintains the histories of DEs and allows users to rollback to any state

of a DE in its history. The fourth group is the Timestamp generator that generates unique

timestamp values for the requesting processes. The fifth group is the Data Manager, and

it is responsible for executing the coming requests on data items.

77

CHAPTER 4

Consistency Framework for Distributed Annotation

Records

CHAPTER 2 analyzed the major consistency maintanence approaches for

distributed systems in detail, and CHAPTER 3 explained the first part of the proposed

approach to represent, manage and deal with resources coming from various sources for

scientific research. Based on the analysis, this chapter particularly focuses on modular

architecture of a system by addressing the rest of the research problems given in Section

1.2. In the remainder of this chapter, we explain our Consistency Framework for

Distributed Annotation Records (CFDAR) that is based on optimistic replication

approach [124, 148] to ensure eventual consistency between replicas and provide the

detail explanation about its modules.

78

4.1 Design Overview

We have designed a novel consistency framework that adopts optimistic

replication approach to ensure eventual consistency between annotation tools where

replicated Distributed Annotation Records (DARs) are stored. Our proposed framework

CFDAR supports collaboration among DARs, which are replicas of the same document,

kept at various web-based annotation tools. An overview of the proposed architecture

design appears in Figure 3-4.

URL

Metadata

Title Tags Journal

Notes Description Author

Figure 4-1: General View of a Distributed Annotation Record (DAR)

Annotation tools are one of the major Web-based Web 2.0 applications that

provide a new way of sharing between users and communities. Users of those annotation

tools can have the same documents in their account in several annotation tools. Those

tools provide their users with ability to: (1) enter a new record; (2) delete an existing

record; (3) modify an existing record; (4) tag their record; (5) share the content of their

records with other users. URL value of each DAR is a mandatory attribute in these tools

79

and it is used as a unique key element for storing records in annotation tools. Figure 4-1

depicts general picture of a DAR that is held at annotation tools.

One major problem with annotation tools is that they do not provide timestamp

information for the updated records, and eventually modifications to a DAR can come

from multiple sources. The consistency concept arises when records get updated with

unknown timestamp, and multiple copies (replicas) of a same document can be existed in

different versions within the various numbers of annotation tools. Providing consistency

maintenance is a fundamental issue [149], and our thesis research focuses on how to

design a consistency framework to maintain consistency between the replicated DARs

held on those annotation tools and their primary copies with additional information

attached to them. The design of such an environment should consist of the group of

annotation tools intended to be consistent with each other, and a main system, where a

primary copy of each document from each annotation tools are stored with additional

metadata information into a relational database (MySQL database).

Another fundamental issue with them is that annotation tools are lack of services

or mechanisms to provide their clients with notification services for deleted, modified or

new entered entries into their system. Because of this, there is no way to be notified about

any changes in those systems. The only way to identify any changes in those tools is to

have a external mechanism to go and check them periodically (Pull-based approach).

We have designed the CFDAR, which benefits from having an event-based

infrastructure as its base, and timestamped events can thus be used to reconcile the

system state, to be able to: (1) Run for consistency enforcement in the background; (2)

Communicate with the integrated annotation tools periodically; (3) Retrieve records from

80

the annotation tools via pull based approach; (4) Compare records with their primary

copies coming from the central MySQL database. (5) Collect updates based on the

comparisons and put the updates for existing DEs in the system database into an update

event list as minor events. If a record does not have a primary copy, then put it into the

update event list as a major event. (6) Pass the found events to Digital Entity Update

Management module to be inserted into MySQL database as events and disseminated to

the integrated annotation tools via push based approach as explain in 3.7.3.2.

Furthermore, users can collaborate on the primary copy of each DAR with each other by

sharing the same document. And our consistency framework propagates updates made on

a primary copy of a DAR immediately to each annotation tool to reflect the changes on

all replicas via Digital Entity Update Management module explained in 3.7.3.2.

As a summary, our proposed CFDAR has been designed to adopt optimistic

replication approach, and in the background it utilizes pull and push-based mechanisms

to collect and propagate the updates to the integrated annotation tools so that the eventual

consistency among the integrated annotation tools can be preserved. We are going to

explain our CFDAR and its components in detail in the following sections of this chapter.

4.2 Consistency Criteria

The consistency maintanence issue has to do with ensuring that all copies of the

same data to be the same at a given time. Some approaches to maintain consistency are

discussed in detail in [110, 149-153]. Tanenbaum [110] differentiates consistency under

two main categories: (1) data-centric; and (2) client-centric. In data-centric approach, all

copies of data are updated whether some clients is aware of those updates or not. In

client-centric approach, consistency is maintained from a client’s perspective. Client-

81

centric consistency model allows copies of data to be inconsistent with each other as long

as the consistency is ensured from a single client’s point of view.

The implementation of the consistency models can be categorized as primary-

based protocols (primary-copy approach) and replicated-write protocols [110]. In primary

copy approach, updates are executed on a single location, and propagated replicas from

there, while in the replicated-write approach; updates can be originated from multiple

locations. For an example, techniques for maintaining consistency in P2P networks: (1)

Push: Owner-initiated Consistency: messages are propagated through the P2P overlay in

push approach; (2) Pull: Peer-initiated Consistency mechanism, individual peers polls the

owner to figure out if a file is stale or not; and (3) Hybrid Consistency mechanism. Our

approach enhances the popular consistency techniques, which had been originally

designed for the distributed replicated systems, to be applied to DARs to maintain

consistency among web-based annotation tools. Detailed background information

regarding to consistency maintenance can be found in Section 2.3.

4.3 Exceptions in Concurrent Updates

Integrated annotation tools are independent external tools. When there is a

concurrent update on both these tools and our proposed system where primary copies are

stored, one of the update has to be lost. The only way to prevent loosing an update is

having these integrated tools to have notification system such as publish/subscribe

mechanism. In our domain it has very low possibility to have concurrent updates on a

same record, and our architectural design utilizes optimistic replication approach to

ensure eventual consistency. Our design relies on the following assumptions:

82

 To provide consistency for the concurrent updates, integrated annotation tools are

required to support notification systems. Otherwise, an update made on a primary copy

through the proposed system is considered as a valid update.

 Our proposed system check updates on annotation tools periodically by utilizing a

pull approach. We assume that there can be maximum one modification to a record

between each periodic consistency maintanence managed by the proposed consistency

framework. If there are more than one updates, then our proposed system retrieves the

last one as the one during the next periodic consistency maintenance check. Hence, our

proposed system supports the updates occurred after our proposed consistency

framework’ update checking frequency. Annotation tools that require lower update

frequency need to support a notification system. Furthermore, an update operation that is

requested on a primary copy initiates an update check before starting the update

execution between the primary copy and its replicated copies located at the integrated

annotation tools to synchronize them.

 We assume that timestamp information for each updated record is the time that

our proposed consistency framework checks annotation tools for retrieving updates

periodically as specified in the configuration file.

 We assume that if there are updates coming from different annotation tool for a

same record, these updates are count as concurrent updates. And, they are subject to our

concurrent update policy. Hence, if the updates do not conflict, then they are applied on

the record. If they conflict, then they are logged and request users to manually resolve

them. Please see Section 4.4.1 for defined conflicts in our proposed system.

83

4.4 Consistency Framework

Our CFDAR has been designed to ensure eventual consistency between DARs

kept at annotation tools and a primary copy of each DAR located in a central MySQL

database. The consistency framework is a client-centric consistency model, and the

implementation protocol is the replicated-write protocol since updates can be originated

from several replicas. We have adapted the optimistic replication approach to ensure

eventual consistency between the replicas. In our proposed framework, update

propagations are carried out through pull and push based approaches. Push approach

enforces consistency model on primary copies of DARs located in a central MySQL

database. In this model; whenever updates occurred on a primary copy of a DAR, they

are being propagated immediately to each integrated annotation tool to update DARs on

their site. Push approach is handled via Digital Entity Update Management module

discussed in 3.7.3.2. However, pull approach is a time-based consistency control

approach [154]. We are periodically checking DARs from each annotation tool for any

updates. If there is any, then we are first pulling them out. Next, we are applying them

onto the primary copy of each DAR, which is stored in a relational database (MySQL)

with additional metadata. Concurrent updates on a shared document are handled based on

our concurrent access policy defined in Section 4.4.1. We have also designed a rollback

structure to help for consistency maintenance. It basically allows users to rollback to a

previous state at any time. The rollback mechanism explained in detail in Section 3.7.3.4.

Figure 3-4 represents the overall architecture of our proposed consistency framework.

Explanation of the architecture components are given in Section 4.4.2 in detail.

84

4.4.1 Duplicate Detection and Handling Concurrent Updates

In our proposed CFDAR, it is crucial to identify if two records are representing

the same document or not. During the consistency maintenance process, which is utilized

periodically in the background by the Annotation Tools Update Manager module as

explained in Section 4.4.2.3; each record is retrieved from annotation tools, and

processed to form a digital entity as explained in Communication Manager in Section

4.4.2.2. We use our duplicate detection algorithm as explained in Section 3.4 to find a

DE’s matching primary copy if it exists in the database. According to our duplicate

algorithm result, if a digital entity does not exist in the database, then this is treated as a

new update and it is passed to the DE Update Management module to be inserted into the

system as a major event, and propagated to all replicas stored at the integrated annotation

tools by DE Entity Update Management module. If we can find a matching primary copy

for this digital entity, then our Annotation Tools Update Manager compares these two

digital entities to identify that whether any metadata field of the digital entity is updated

or not. If there are any available updates, then they are processed by Digital entity

Update Management module to push the updates to the annotation tools as explained in

Section 3.7.3.2.

The main goal of concurrency control is to allow processes to work on a shared

data simultaneously in a way that the shared data left in a consistent state after

modifications. The consistency is maintained by giving processes access to shared data in

a specific order in which the final result is the same as if all processes had run

sequentially. Concurrency control algorithms can be classified as pessimistic and

optimistic approaches [110]. Pessimistic concurrency control algorithms assume that

85

conflict happens frequently and they block (synchronize) access to the data item until it is

upto date. Pessimistic concurrency control algorithms can generally be categorized based

on how the read and write operations are synchronized. Synchronization can be provided

through either mutual exclusion or ordering processes by using timestamp values [110].

Optimistic algorithms, on the other hand, assume that conflicts are rare and allow users to

access data (without synchronization), and work on their private copies independent from

each other. The conflicts are resolved after they occurred in optimistic algorithms. In our

proposed system there could be two types of conflicts:

a. Overlapping Conflicts: If two updates are updating the same metadata field of a

same DE, then this kind of conflicts are counted as Overlapping Conflicts. They

are not automatically resolved and logged into the system so that they can be

resolved by users.

b. Non-overlapping Conflicts: If two updates are modifying the different metadata

field of a same DE, then this type of conflicts are called Non-overlapping

Conflicts. These types of conflicts can be resolved automatically by the system

unless defined in the property file to be handled manually.

Based on [124], elements of our optimistic replication approach can be defined as:

 Object, Replicas, and Sites. Our minimum unit of replication is the records

located at annotation tools and a central MySQL database. A minimum unit is

called ―Object‖, which is defined as a Digital Entity (DE) in our proposed

architecture. A copy of an object is called ―Replica‖. Replicas can be stored as

read-only or writeble replicas in sites. Sites that can update a replica are called

86

master-sites. All of our sites that are the integrated annotation tools and the main

system are master-sites.

 Operations. Operation is a self-contained update to a replica. In our proposed

thesis, each operation is an event. Operations are propagated to replicas and

applied there in the background. In our proposed CFDAR, operations might come

from annotation tools or from our main system. When a record updated in main

system, then this update is applied in the main system locally, and propagated to

the integrated annotation tools in the background to be applied there. Our system

guarantees that states of the replicas will converge eventually.

 Propagation. Any update happened in the main system is logged as an event so

that it can be propagated to the replicas in the background to be applied there.

Usually epidemic propagation is used for propagation mechanism. However, our

integrated annotation tools are external tools and we do not have control over

them, hence we assume that the integrated annotation tools receive the propagated

updates by our push mechanism.

 Tentative Execution and Scheduling. When updates are propagated in the

background, all sites may not have the updates in the same order. Hence, each site

uses an appropriate ordering mechanism to order the coming updates so that the

final results are consistent with other sites. In our CFDAR, we assume that

updates happened in our main system and propagated to the integrated annotation

tools are arrive in the same order that they are created. Updates took place in

annotation tools and collected via Annotation Tools Update Manager explained in

4.4.2.3.

87

 Detecting and Resolving Conflicts. With no synchronization access to data,

multiple users can modify the same record concurrently. Conflicts should be

detected and resolved. Conflict resolution is depent on the application. Some

systems resolve conflicts automatically and some just marks them so that users

can fix them. In our CFDAR, conflicts are resolved based on the defined policy in

the properties file. Our conflict resolution can be set to ―turn-on‖, or ―turn-off‖. If

conflict resolution is set to ―turn-on‖, then non-overlapping conflicts are resolved

automatically and logged into the system, whereas overlapping conflicts are not

resolved but they are logged into the database so that users can be notified to

resolve them later. If conflict resolution is set to ―turn-off‖, then all conflicts are

just logged into the system to be resolved by users manually.

 Commitment. ―Commitment refers to an algorithm to converge the state of

replicas by letting sites agree on the set of applied operations, their final ordering,

and conflict resolution results‖ [124]. We assume that all the integrated annotation

tools and the main system agree on the set of applied updates, their final ordering,

and conflict resolutions due to the external nature of the integrated annotation

tools.

In our proposed CFDAR, it is very rare to have concurrent updates on a same

document due to the asynchronous nature of our proposed system. However, our policy

for concurrent updates is to adopt optimistic replication approach. The major goal of any

optimistic replication system is to maintain consistency between the replicas, and usually

optimistic replication systems ensure eventual consistency. In this approach, we have

selected the following optimistic replication design choices according to [124]:

88

 Number of writers. There are single-master and multi-master systems. Single-

master systems select one replica as master and all updates carried out through the

master replica and disseminated to other replicas, whereas multi-master systems

allow updates to take place at multi replicas and propagate updates in the

background. Our proposed system is a multi-master system since all records can

be updated at all annotation tools indepently. Then, updates are collected and

propagated to main system and all integrated annotation tools (replicas) in the

background periodically.

 Definition of operations. There exist two choices for definition of operations: (a)

State Transfer; (b) Operation Transfer. State transfer systems propagate only the

content of the update to the replicas while operation transfer systems define

operations more semantically. In our design, we have selected to use state transfer

due to the nature of the integrated annotation tools.

 Scheduling. The main purpose of the scheduling is to schedule operations on

replicas so that their states are consistent with each other. Scheduling can be

categorized as: (a) Syntactic; and (b) Semantic. ―Syntactic scheduling sorts

operations based only on information about when, where, and by whom

operations were submitted. Timestamp-based ordering is the most popular

example. Semantic scheduling exploits semantic properties, such as

commutativity or idempotency of operations, to reduce conflicts or the frequency

of roll-back. Semantic scheduling is used only in operation-transfer systems, since

state-transfer systems are oblivious to operation semantics by nature‖ [124]. We

have selected to use syntactic scheduling via the use of the defined priority of the

89

integrated annotation tools values in our main system. We can still use the time-

stamp values in our system to sort the updates in the history of each record.

 Handling Conflicts. Conflicts are inevitable when there is a concurrent access to

data. Pessimistic replication approaches try to prevent conflicts before they

happen by synchronizing access to the data. Some systems ignore conflicts and

somes try to resolve them after they occurred. In our proposed system, we resolve

the conflicts based on the conflict types and the defined policies on the properties

file.

 Propagation Strategies and Topologies. Each local update must be transferred

and applied on all replicas in order to ensure consistency. Each replica need to log

their modifications when they are offline, and need to decide when to

communicate and exchange updates with other replicas. ―Propagation policies can

be classified along two axes, communication topology and the degree of

synchrony‖ [124] as illustrated in Figure 4-2. According to Figure 4-2, ―The

degree of synchrony shows the speed and frequency by which sites communicate

and exchange operations‖ [124].

Figure 4-2: Design choices regarding operation propagation (image is taken from

[124]).

90

Pull-based systems work based on the idea that each site periodically or manually

checks the other sites such as PDAs for manually check and DNS for periodic

checks for new operations or updates. In Push-based systems, however, a site with

new updates propagates its updates to other sites. In our proposed system, we

have combined pull and push based update propagation strategies.

 Consistency Guarantees. Consistency guarantees vary from single-copy

consistency to eventual consistency based on the divergence of the states of

replicas in optimistic replication systems depicted in Figure 4-3.

Figure 4-3: Choices regarding consistency guarantees (image is taken from [124]).

In our consistency framework, our system guarantees eventual consistency among

replicas by adopting the optimistic replication approach.

In our proposed research, concurrent updates occurrences are very seldom, and

they may occur when:

I. A user uses an annotation tool’s own UI to update a replica record and another

user concurrently tries to update the same copy through its primary copy by

using Digital Entity Manager of the proposed system.

II. Two or more users try to update a record through the primary copy by using

Digital Entity Manager of the proposed system.

91

III. While consistency manager is working in the background to collect and

process updates on primary copies and replicas, another user tries to update a

record via its primary copy by using Digital Entity Manager of the proposed

system.

In the first case, we do not have much control how the annotation tool handles the

coming concurrent update requests. In order to handle inconsistencies, annotation tools

are supposed to notify our system once an update occurs in their system, but they do not

have such functionality. Moreover, they are independent (external) systems and we

cannot lock them during the update executions to prevent inconsistencies. For example;

let’s assume that an update (Updateprimary) coming from the replica’s primary copy is

executed before a user’s update (Updateannotation) coming from the annotation tool’s UI.

Then Updateprimary will be lost. Since, Updateannotation overwrites Updateprimary. Let’s think

the other case that Updateannotation is executed before Updateprimary. Then, Updateannotation

will disappear due to the replacement of it by Updateprimary. So, above cases are

exceptions in real life domain as explained in 4.3. In the second and third cases; users get

a copy of records to their private work space and work on their records. After they finish

their modifications, then their updates are committed into the system if the same records

have not been modified yet or there are not any conflicts. If there are conflicts, then the

conflicts are resolved based on the defined policy in the properties file and the users are

notified about these conflicts.

4.4.2 Overview of the Architecture Components

Our CFDAR modules can be placed under four umbrellas: Annotation Tools,

Communication Manager, Annotation Tools Update Manager, and Digital Entity

92

Manager. The consistency framework uses Timestamp Generator, and Data Modules

explained in Section 3.7. The detailed explanation of the CFDAR modules and their

responsibilities are explained in the following sections respectively.

4.4.2.1 Annotation Tools

Annotation tools represent the unified and federated annotation tools into our

proposed CFDAR. They hold data and metadata about documents in their systems.

Another word, they are distributed repositories that stores data and metadata in their

system with provided services. The common feature of these annotation tools is that they

allow their users to tag their content and provides different services for managing their

resources. For instance; Figure 4-4 depicts popular tags on del.icio.us, and users of these

systems can access related documents or similar research groups via the tags. These

systems are discussed in detail in Section 2.1.

In our framework, we intend to use these tools as replicas to store metadata of

scientific documents. The records in these tools called DARs are the replica copies of the

records stored in the MySQL system database. As we explain earlier in CHAPTER 3, we

represent several data and metadata coming from various sources as events in our event-

based infrastructure. The documents represented and stored in the MySQL system

database as events are the primary copies of the DARs located at the integrated

annotation tools. Main responsibility of our CFDAR is to maintain a consistency between

replica copies of data and metadata located in integrated annotation tools and their

primary copies stored in a MySQL system database.

93

Figure 4-4: Popular Tags in del.icio.us

4.4.2.2 Communication Manager

Communication manager depicted in Figure 4-5 transports the data between the

computing nodes. It is responsible for uploading or downloading data from annotation

tools through their defined gateways. It retrieves the records from annotation tools via

HTTPClient native libraries by using either: (1) Annotation tool’s API and get the

response in XML format. Records are then parsed by using a DOM parser and XPATH

[155]; or (2) HTTP GET, and POST method resulting in getting the response in RSS or

HTML format. In RSS type responses, documents are parsed by using a DOM parser and

XPATH, and in HTML type responses, data is parsed after cleaning faulty HTML by

using JTidy [156] native libraries. Having retrieved and parsed documents,

Communication Manager passes the mined data to Annotation Tools Update Manager

explained in detail in Section 4.4.2.3. Updates are disseminated to annotation tools by

Digital Entity Update Management module described in Section 3.7.3.2 via: (1)

Annotation tools API; or (2) HTTP GET, POST methods through HTTPClient [130]

94

native library unless an annotation tool provides an API. Communication Manager’s

modules are explained in the following sections respectively.

Gateway

Communication Manager

Annotation Tool-1 Web API

Annotation Tool-N Web API

DOM Parser and XPath

Pull updates via

HTTPClient

Push updates via

HTTPClient

Annotation Tool-1 RSS Feed and HTML

Annotation Tool-N RSS Feed and HTML

Annotation Tools

Figure 4-5: CFDAR Communication Manager

4.4.2.2.1 Gateway

Gateway represented in Figure 4-6 is an interface between the CFDAR and

annotation tools. It is both entrance and exit point for the incoming and outgoing

messages. Our proposed CFDAR communicates with annotation tools through their

gateways. Another word is that Gateway connects Consistency Framework to the

annotation tools by using libraries and tools of those native environments.

95

Each annotation tool provides their clients with various ways to interact with their

system: (1) Web API allows clients to retrieve, modify and post data easily to an

annotation tool; (2) RSS allows clients to retrieve data easily from an annotation tool.

However, to modify an existing DAR or to post a new one; HTPP GET and POST

methods need to be used via HTTPClient native libraries. The communications are

carried out through HTTP methods by using HTTPClient native libraries [130]. An

individual gateway is created for each interacting annotation tool, which has its own

communication structures.

Gateways
EBI and CFDAR

 Modules

EBI and CFDAR

Annotation
Tools

HTTP

Figure 4-6: Gateway

4.4.2.2.2 Parser

Parser is a native library used for parsing the responses coming from annotation

tools. There are several parsers to utilize in XML processing. DOM parser is the most

widely used one. It reads and validates the XML documents. If the document is valid,

then it returns a document object tree. We can randomly access any element since each

element is entirely kept in memory. As a result, it provides a very efficient navigation

mechanism over the parsed document. On the other hand, its drawback is that it requires

96

large amount of memory in order to hold the whole parsed document as discussed in

detail in Section 2.4.3. Most of the major annotation tools provide their Web API so that

users can communicate with their services easily. In our prototype implementation

(described in CHAPTER 5), we have used JDOM [157] parser as our parsing library. In

some annotation websites, they do not provide a Web API for their services. In order to

communicate with those annotation tools, we have used XPATH to retrieve the desired

element of the document and JTidy native libary [156], which is used for cleaning faulty

HTML and provide a DOM interface to the documents that is going to be parsed.

4.4.2.2.3 Web API

 Web API (Application Programming Interface) is a service for accessing data on

annotation tools. Most of the major annotation tools provide their Web API and RSS

feeds for an easy access to their data. Their Web API and RSS feed return a document in

XML format, which can be parsed easily by using a DOM parser, to the requester.

Document kept at annotation tools can be retrieved, modified via either their Web

API or HTTP (POST and GET) methods through HTTPClient tool by passing the

necessary parameter to HTTPClient object. Having executed their Web API for posting

or editing a document, we are going to receive a response in XML format similar to the

one displayed in Figure 4-7.

97

<posts tag="" user="user">

 <post href="http://www.weather.com/" description="weather.com"

 hash="6cfedbe75f413c56b6ce79e6fa102aba" tag="weather reference"

 time="2005-11-29T20:30:47Z" />

 <post href="http://www.nytimes.com/"

 description="The New York Times - Breaking News, World News &

Multimedia"

 extended="requires login" hash="ca1e6357399774951eed4628d69eb84b"

 tag="news media" time="2005-11-29T20:30:05Z" />

</posts>

Figure 4-7: Web API Response

However, the response is going to be in HTML format for requested operations in HTTP

methods instead of XML type format.

4.4.2.3 Annotation Tools Update Manager

CFDAR consists of pull and push based approaches to propagate the updates to

the replicas. Annotation Tools Update Manager depicted in Figure 4-8 utilizes pull based

approach to obtain the updates happened on annotation tools, whereas Digital Entity

Update Management module explained in Section 3.7.3.2 utilizes push based approach to

propagate the updates made on primary copies via the proposed system services to the

integrated annotation tools. In pull based approach, Annotation Tools Update Manager

utilizes handlers to retrieve DARs periodically from annotation tools introduced in

Section 4.4.2.1 via Communication Manager described in Section 4.4.2.2 to collect

updates occurred on annotation tools. Next, it passes the updates to Digital Entity Update

Management module explained in Section 3.7.3.2 so that updates can be disseminated to

the integrated annotation tools immediately after being applied on the primary copy of

each DAR (Push based approach). Annotation Tools Update Manager’s main

responsibilities are: (1) Obtaining DARs from annotation tools regularly via

98

Communication Manager; (2) Determining the updates by comparing DARs and their

primary copies stored in MySQL system database; (3) Passing updates to Digital Entity

Update Management module which has a embedded module to propagate updates to the

integrated annotation tools to reflect the changes on DARs.

Annotation Tools Update Manager uses a handler such as Java thread for

retrieving DARs from each annotation tools regularly as it is defined in the properties

file. Another word is that it obtains records from each annotation tool and finds out the

updates periodically. If there are any conflicting updates that are coming from different

annotation tools for a same document, Annotation Tools Update Manager processes the

updates as described in Section 4.3 and Section 4.4.1.

Collecting updates from documents that are coming from Communication

Manager requires: (1) Finding the primary copy of each replica record by using duplicate

detection algorithm discussed in Section 3.4; (2) Comparing each replica record with its

primary copy to figure out modifications if there is any. After indentifying the updates,

next step is to pass them to Digital Entitiy Update Management module so that updates

can be applied on their primary copies and disseminated to replicas located at annotation

tools. Integrated annotation tools do not support publish-subscribe mechanism forcing

Digital Entitiy Update Management module to use unicast communication to propagate

updates to replicas. However, any application that require and support publish-subscribe

mechanism, then broker address and topic can be defined in a property file to provide

updates via publish-subscribe mechanism by connecting to the broker and subscribing a

topic.

99

Annotation Tools

Update Manager

Communication Manager

Annotation

Tool Handler

Annotation

Tool Handler

Get DARs Periodically Get DARs Periodically

Figure 4-8: Annotation Tools Update Manager

4.4.2.4 Digital Entity Manager

Digital Entity Manager is an umbrella name for a group of modules that

contributes to DAR management together. Its modules are: (1) Digital Entity Update

Management; (2) History and Rollback Management; (3) Periodic Updates Management;

(4) Events and Dataset management.

Digital Entity Update Management module is used by CFDAR. In Digital Entity

Update Management module explained in Section 3.7.3.2, update propagations are

carried out through push based approach. It applies modifications on their primary copies

and disseminates the updates immediately to their replica copies kept at integrated

annotation tools. Figure 3-5 displays the Digital Entity Manager and its components.

Detailed explanation of its modules can be found in Section 3.7.3.

100

4.5 Summary

In this chapter, we explained CFDAR and its modules. Our CFDAR has a

moduler architecture which improves the maintanence and simplicity of the system. The

modules can be classified into four sub-groups. The first group that contains the

annotation tools where DARs are located. The second group is responsible for

transporting the data between computing nodes. The third group is in charge determining

the updates mades through the annotation tools. Finally, the last one is to handle the

updates made on to a primary copy of a DAR.

101

CHAPTER 5

The Prototype Implementation of Event-based

Infrastructure and Consistency Framework

This chapter represents implementation details of a prototype of the system

architectures mentioned in the earlier chapters. To demonstrate the effectiveness and

applicability of CHAPTER 3 and CHAPTER 4, we have implemented a prototype

service enabled framework based on these architectures. The prototype system is

implemented by utilizing following technologies and open source tools: (a) Java 2 SDK,

Standart Edition with version 1.5 [158], (b) Apache Axis Web Service Platform with

version 1.2 [7]; (c) Apache Tomcat Servlet Container with version 5.0.28 [8]; (d)

HttpClient Technology with version 3.0.1 [130]; (e) JTidy Tool with version

04aug2000r7 [156]; (f) JDOM with version 1.1 [157]. Our implementation called Internet

102

Documentation and Integration of Metadata (IDIOM) is an open-source and available

from [159].

In this section, we discuss the implementation details of Event-based

Infrastructure and Consistency Framework for Distributed Annotation Records (CFDAR)

prototype system. First, we review the prototype IDIOM implementation. Second, we

discuss the Event-based Infrastructure of the IDIOM system. Finally, we discuss

Consistency Framework for Distributed Annotation Records of the IDIOM system.

5.1 IDIOM System Implementation Overview

IDIOM provides a collaborative Cyberinfrastructure based scientific research

environment [2, 160]. Its tools and services are backed by a MySQL database which store

user and community specific data and metadata and is configured into three applications:

(1) A model for scientific research which links both traditional simulations and

observational analysis to the data mining of existing scientific documents; (2) A model

for a journal web site supporting both readers and the editorial function; (3) A model for

a natural collection of related documents such as those of a research group or those of a

conference.

Figure 5-1 shows the overall architecture of the prototype IDIOM system. This

system consists of five main layers: (a) the client layer; (b) the service layer; (c) the

server layer; (d) the helper layer; and (e) the data layer. The client layer of the IDIOM

system is made up of Java Server Pages (JSP) [43], which is translated into servlets by an

Apache Tomcat J2EE Web container and generates dynamic content for the browser. The

service layer provides interfaces to access the IDIOM systems’s Web Services, and the

103

client layer communicates with the Server layer over the HTTP protocol through SOAP

messages encapsulating WSDL-formatted objects. The Server layer consists of several

Storage

C
li
e

n
t

L
a

y
e

r

 User Interface

 HTTP

Browser

JSP

Internet Documentation and Integration of

Metadata (IDIOM) Web Services

Digital Entity

(DE)

Management

Service

Annotation

Tools

Service

Search

Tools

Service

Authentication

and

Authorization

Service

Other

Services

S
e

rv
e

r
L

a
y

e
r

D
a

ta
 L

a
y

e
r

Annotation Tools

citeulike.org

connotea.org

del.icio.us

Search Tools

Google Scholar

(GS)

Windows Live

Academic

(WLA)

JDBC Connection

Other

Applications

WSDL WSDL WSDLWSDL WSDL

SOAP
SOAP RSS REST

REST

Data Manager
Timestamp

Generator

RDBMS

RSS

S
e

rv
ic

e
 L

a
y

e
r

H
e

lp
e

r
L

a
y

e
r

H
T

T
P

H
T

T
P

Other

Submodules

Communication

Manager

Digital Entity

(DE)

Management

Search Tools

Submodule

Authentication &

Authorization

Submodule

User’s profile

Management

DE Metadata

View Options

Event and

Dataset

Management

Data and

Metadata

Transfer

Data and

Metadata

Download

Data and

Metadata

Upload

Login

Management

DE Access

Rights

Management

DE Update

Management

Administrative

Tools

Google

Scholar/

Windows Live

Academic

Google Scholar

Advanced

MyResearch

Folder

Advanced

MyResearch

Folder

User

Registration

Service

Username and

Password

Recovery

Service

Folder Access

Rights

Management

Logut

Management

DE Periodic

Update

Management

Annotation Tools Update Manager

PubsOnline

History and

Rollback

Management

Consistency Framework

Session and

Event

Management

Submodule

- User

Authentication

(username/

password)

cookie based

- Events’

metadata

- Event and

Dataset

Management

- DE Metadata

View

Figure 5-1: Internet Documentation and Integration of Metadata (IDIOM)

Architecture

104

modules that constitute the main architecture blocks of the IDIOM system to handle the

coming requests from the service layer. The helper layer provides synchronized

timestamp values and handles the requests to be forwarded to Data Manager so that it can

communicate with the data layer through JDBC connection. Finally, the data layer is

composed of a MySQL system database.

We have followed Web 2.0 design patterns [161] in designing the IDIOM system.

Below, we list these patterns and discuss how they were applied in designing IDIOM:

Delivering services, not packaged software: IDIOM is a collection of tools and

services that can be accessed over the Web (either through a user interface or

programmatically through Web services). It will evolve by introducing new features; still

its users won’t have to install new versions of the software.

Producing hard-to-recreate data that gets richer as more people use the system:

By combining data from a variety of sources, IDIOM will create added-value data and

metadata generated with specific communities in mind. As more people participate in a

community, the collection of the data and metadata managed by that community will

increase in quantity, leading to the potential for improved precision of the automated

system tools.

Harnessing collective intelligence: Through its integration with the social

bookmarking tools, IDIOM can leverage data and metadata from a large number of

researchers. Moreover, the system can handle both individual users and groups of users,

and supports sharing and collaboration between group members.

Leveraging the long tail through customer self-service: The term ―long tail‖ here

refers to the concept formulated by Anderson [162] that non-hit products can collectively

105

make up a market share that may exceed the relatively few current hits, bestsellers or

blockbusters, provided the store or distribution channel is large enough (this business

model is leveraged for example by Netflix or Amazon.com). IDIOM aims to support

research communities, such as the members of a research project, a group interested in a

particular chemical compound and so on, by allowing them to create system accounts and

to use the community-building tools for their specific usage scenarios.

Software above the level of a single device: Currently, the IDIOM user interface

runs in a browser. However, because of its layered design and the use of J2EE

technology, system front-ends for other devices, such as PDAs, can be developed at low

cost. In addition to these design patterns, we have followed two general principles: (a)

every component is packaged as a service as long as this packaging does not imply an

unacceptable performance degradation; b) if a needed capability exists and works well

but is insufficient in some fashion, we try not to replace it but rather wrap it as a service

so we can interact with its natural interface but easily input and output information

through its service interface.

5.2 Event-based Infrastructure

In our proposed Event-based Infrastructure; all documents, their metadata and

modifications to documents are represented as events (major or minor). Events are used

to keep track of changes to documents and metadata. The main aspects of the

implemented Event-based Infrastructure of the IDIOM system can be enumerated as

follow:

106

 Digital Entity (DE): It is a collection of metadata that represents metadata fields

of a scholarly publication. The metadata fields of a DE in our implementation of

the IDIOM system are displayed in Figure 5-2.

ChapterEdition Editor Institution
How

Published

Bibtex Key

Journal

MonthNote Number Organization Pages

PubType URL Address Author Book Title
Cross

Reference

Publisher School Series Title Volume

Year

IssueTag Short Title
Alternate

Journal
ISSN Abstract

Research

Notes
Last Modify

Date
Language

Conference

Name

Conference

Location and

Date

Conference

URL

Comments Book URL
Additional

Main URL-1

Additional

Main URL-2
DOI

Number

Cited

Figure 5-2: The Content of a Digital Entity

 Major Events: Each entry of a digital entity in to the system or deletion of an

existing digital entity from the system is considered as a major event. A major

event can have as many as minor events related to it. If a major event does not

have any minor events, then the DE data consists of only the major event data.

 Minor Events: Every updates to an existing digital entity in the system are defined

as minor events in our proposed architecture. Therefore, minor events represent

the modifications to an existing DE in the proposed system. During the process of

building a DE, minor events are processed on top of the major event by their

timestamp.

107

 Dataset: A dataset is a collection of minor events in our proposed architecture.

Each update represents a state of a DE, and we provide a mechanism to go to any

state of a DE in its history. A dataset allows combining several updates into one

state in our Event-based Infrastructure.

 Rollback mechanism: We have designed a rollback mechanism based on the

concept of events and datasets. It allows going back and forward to any state on

the history of a DE.

 Users and Profiles: The IDIOM system supports individual users and groups of

users. Users’ personal information and the login information for bookmarking

web sites are accessible through the user’s profile. More specifically, user’s

profile contains the system password, email address, full name, login information

for annotation web sites (citeulike.org, connotea.org and del.icio.us), and the

group membership information. Users can access and modify their profile settings

at any time; while logged in users can: (a) Change their system password; (b)

Update their profile including the full name, email address and the username and

password for the annotation web sites; (c) Make requests to subscribe to any

available group. For each DE, there are three types of access rights: Read access

right, Write access right, and Delete access right. Users who have Read access for

a DE can read that citation. Only users who have write access for a DE can update

that citation. Delete access is required for deleting DEs. These access rights are

defined with respect to three kinds of users: Owner who is the user that initiates

the citation metadata creation; Group which is the group to which the owner

belongs; other users. There is only one owner of a citation record. However, there

108

might be more than one group for a citation. The owner of a citation record can

specify the citation rights for all three kinds of users mentioned above.

 User Session: Due to the stateless nature of HTTP, a number of alternative

mechanisms have been developed for applications that need to maintain a

conversational state. The HTTP session API, which is a component of the Java

Servlet specification, provides a mechanism for web-based applications to

maintain a user's state information. This mechanism, which is called session, is

usually associated with a user and supports the management of the user’s state

information on the server side. A session is represented by an HttpSession object,

which stores and provides access to the user specific data. In the IDIOM system,

the user’s session is instantiated once a user logs into the system. The session can

be later accessed through the JSP pages. All requests to get MoreInfo on a record

or to update a record bring a copy of the original record into the user session,

which is a private workspace for the user.

 Messaging Format: Provided services of the IDIOM system communicate with its

clients via exchanging messages in XML format. The schema for the content of a

DE is depicted in Figure 5-3:

109

element digitalentity
diagram

Figure 5-3: Schema of DE Content

110

 Confirmation of Service Execution and Exception handling: IDIOM services are

deployed by using Axis 1.2 Web Service technology under Apache Tomcat

Container. Confirmation of requested services is returned to the clients in XML

format. Furthermore, any exceptions occurred during the execution of services

such as originating from integrated annotation tools or related to service

implementations etc. are caught and a confirmation message is returned to clients

in XML format.

Finally, modules of the prototype IDIOM system can be categorized as: (1)

Annotation Tools; (2) IDIOM Web Services; (3) Session and Event Management; (4)

Digital Entity Management; (5) Search Tools; (6) Authentication and Authorization; (7)

Other; (8) Timestamp Generator; (9) Data Manager. In the following sub-sections, we

give a brief description of the functionality provided by each module.

5.2.1 Annotation Tools

Annotation Tools are the integrated annotation tools into the IDIOM system to

store replica copies of the primary copies referred as DE stored in a MySQL system

database. It implements the Annotation Tools abstract layer as described in 4.4.2.1. The

records kept at annotation tools called DARs can be accessed via IDIOM system services

and user interfaces. Users can upload records from repository to these tools, download

records from these tools into a repository, or transfer records between the integrated

annotation tools. In the current implementation, IDIOM system unifies and federates

Connotea, CiteULike, and Delicious tools.

111

5.2.2 IDIOM Web Services

IDIOM Web Services implements the Event-based Infrastructure Services

abstraction layer as explained in Section 3.7.2. IDIOM Web Services provide access to

modules and their services via SOAP calls over HTTP protocol in current

implementation. The IDIOM Web Services can be accessed via different protocols

through the supported interfaces as well.

5.2.3 Session and Event Management Module

The goal of this module is to store user specific data such as cookie-based user

credentials (password/username), modifications to a DE as minor events, and the ―view

options‖, which control the level of detail with respect to the metadata fields displayed

for each DE, into users’ session. A session is a user’s state information, and maintained

on the server side [163]. From the moment user logged in the IDIOM system, user

credentials, any changes made to a DE, and view options for metadata fields of a DE are

all saved in the user session. It also serves as a private workspace for the user and users

can concurrently modify their copy of records. When a user logs out from the IDIOM

system, all unused minor events (modifications to a DE) for a dataset creation are

removed.

The updates to DEs are saved into the logged user’s session and they can be

accessed via the implemented Event Management Module user interfaces. Event

Management Module user interfaces allow users to access and simulate the minor events,

which represents the updates for a digital entity, before creating a dataset(s) by selecting

available minor events for a digital entity. Another word is that users can review their

updates called minor events, create datasets, simulate their updates on the DE, and

112

confirm their updates if they wish. Once users confirm the updates, then these updates

inserted into MySQL database for the related DE as minor events and removed from the

logged user’s session. Upon a request to access the DE metadata, these minor events are

automatically processed on top of the major event of the DE to build the DE metadata

based on the selected path. The selected path could be a user’s events, or a group’s

events, or all events belong to this DE as a default option. Figure 5-4, Figure 5-5, and

Figure 5-6 displays the available paths to process events to build a DE, content of a minor

event, and application of the minor event on the DE.

Figure 5-4: Current Metadata of a DE

113

Figure 5-5: Content of a Minor Event

Figure 5-6: Application of a Selected Minor Event to a DE

114

5.2.4 Digital Entity Management Module

Digital Entity Management module is responsible for: (1) Providing a service for

inserting a new DE into the IDIOM system, and push the new entry to the integrated

annotation tools via Communication Manager described in Section 5.3.2.; (2)

Implementing the Events and Dataset Management services, and providing a service to

view detailed information about a DE by utilizing Event Processing Engine (Implements

Event and Dataset Management abstraction layer explained in Section 3.7.3.1); (3)

Providing services for updating an existing DE, and it utilizes push-based consistency

maintenance approach by pushing the updates immediately after they occur to the

integrated annotation tools via Communication Manager described in Section 5.3.2.

(Implements Digital Entity Update Management abstraction layer discussed in 3.7.3.2);

(4) Providing an access to the history of a DE and rollback mechanism, from its entry

into IDIOM system to present (Implements History and Rollback Management

abstraction layer as discussed in Section 3.7.3.4); (5) Providing a service to retrieve and

apply updates belonging to other users on their DEs by Periodic Update Management

service (Implement Periodic Update Management abstraction layer as introduced in

Section 3.7.3.3).

New DE service deals with the requests to make and insert a new digital entity

into the IDIOM system. Created new entity is saved as a major event into IDIOM

system’s main database. If the entity about to be created already exists in the IDIOM

system, then the request is forwarded to DE Update Management module to be handled.

Event and Dataset Management service handles with creating events (minor and

major) and datasets for the related DEs. In the current implementation of the IDIOM

115

system, minor events are kept in the logged user’s session. Once user created datasets

from the minor events, then they are sent to this module to be processed. Furthermore,

coming requests for a new DE entry is represented by creating a major event for it by this

module. Event and Dataset Management module also provides a More Info service,

which implements the concept of building DE metadata from its events. More Info

service is achieved by processing the selected minor events that are ordered by their

timestamp on top of the initial metadata of a DE (major event of it) by Event Processing

Engine. The selection of minor events can be based on a user, a group, or a default

selection that includes all the minor events for a DE. The implemented user interface to

use More Info service is depicted respectively in Figure 5-7.

Figure 5-7: MoreInfo of a DE

116

Based on the coming events type (minor or major), DE Update Management

module forwards the requests to the Event and Dataset Management module. To handle

the coming update requests, Update DE Metadata service uses More Info service to build

DE metadata to send back to the requesting clients in XML format. In the current

implementation of the IDIOM system, a user can retrieve an existing DE metadata to edit

via DE Update Management service. After the user modified any metadata field of the

DE, it generates a minor event including the current modification to DE, and stores it into

the user’s session so that it can be processed later as explained in Section 5.2.3. Once the

logged user creates a dataset, then the associated minor events are sent to the DE Update

Management module to be processed as minor events. These minor events are forwarded

to Event and Dataset Management module to be executed. Furthermore, the user interface

of the IDIOM system to insert a new DE sends a request to DE Update Management

module to be handled. It forwards this request as a major event to be processed by Event

and Dataset Management module. Implemented user interface for Update DE Metadata

services are depicted respectively in Figure 5-8. DE Update Management module

propagates the update to each annotation tool right away. Updates are disseminated by

unicast communication approach since the integrated annotation tools do not support

publish/subscribe paradigm by using Communication Manager described in Section

5.3.2.

117

Figure 5-8: Update Metadata of a DE

5.2.5 Search Tools

This module provides services and interfaces to the web-based search tools

including Google Scholar, Google Scholar Advanced, and Windows Live Academic. It

also provide services for local folder search and integrates the PubsOnline software - ―an

open source tool for management and presentation of databases of citations via the Web‖

[164] - into the IDIOM system and providing an interface for searching the logical

folders of IDIOM system database. This module is implemented by another PhD student

working on this project.

118

5.2.6 Authentication and Authorization

This module supports IDIOM systems authentication and authorization

mechanism to resources including DE and folder access rights structure, super and group

role definitions. This module is implemented by another PhD student working on this

project.

5.2.7 Other

User Registration, Username and Password Recovery, User’s Profile

Management, and DE Metadata View Options modules exist in the other modules of the

system architecture. These modules are responsible for providing users with services to

register with the system, retrieve their forgotten username, reset their forgotten password,

manage their profile such as name, email, password etc., and define the view options of

digital entities to view or hide specific metadata fields of them.

5.2.8 Timestamp Generator

Timestamp Generator module is responsible for producing uniqueue timestamp

values for the requesting processes. In order to impose an order on events, each event has

to be time-stamped before it is generated and stored in the session or the MySQL system

database. Since, events are processed by Event Processing Engine by their ordered

timestamps as explained in Section 3.7.3.1.2. Timestamp values are also used by the

consistency mechanism to maintain consistency by imposing an order on updates. To

assign a unique timestamp value, Timestamp Generator interacts with Network Time

Protocol (NTP) –based time service [165]. This service provides synchronized timestamp

119

values by synchronizing the distributed machine clocks with atomic time servers

available across the universe.

5.2.9 Data Manager

Data Manager is responsible for executing the coming requests on data items. It

implements the Data Manager abstract layer as explained in Section 3.7.5. Data Manager

uses JDBC connection to connect to MySQL system database.

5.3 Consistency Framework

The Consistency Framework implements optimistic replication approach to

ensure eventual consistency between replicas. It propagates and collects the updates by

utilizing pull and push based approaches. It is an umbrealla name for: (1) DE Update

Management sub-module of the Digital Entity Management Module implementing the

push-based approach; (2) Communication Manager; and (3) Annotation Tools Update

Manager implementing the pull-based approach.

In the push based approach as explained earlier in Section 5.2.4, DE Update

Management module is responsible for disseminating the updates immediately once they

occur to the integrated annotation tools via Communication Manager as explained in

Section 5.3.2. The updates take place on primary copies located at the central MySQL

system database. These primary copies have more metadata field than the DARs located

at the annotation tools.

Communication manager is responsible for providing communication between the

main system and the integrated annotation tools via their defined gateways explained in

detail in Section 5.3.2.

120

Annotation Tools Update Manager is responsible for checking the integrated

annotation tools periodically to obtain the DARs, and compare them to find out the any

available updates described in detail in Section 5.3.3. It implements the time-based pull

approach to collect the updates from the integrated annotation tools.

5.3.1 Digital Entity Update Management

This module is responsible for handling the updates happened on primary copies

of records located at the annotation tools. It pushes the updates to the integrated

annotation tools immediately once they occur via unicast methodology. Digital Entity

Update Management implements Digital Entity Update Management abstraction layer as

explained earlier in Section 3.7.3.2.

5.3.2 Communication Manager

This module provides an interface to the annotation tools: Delicious, CiteULike,

and Connotea. It allows a user: (1) to upload DEs data and metadata to one of these

annotation websites; (2) to download DEs data and metadata from one of the annotation

websites into one of the logical folders of IDIOM system database; (3) to transfer DEs

data and metadata between these annotation websites. Communication Manager Module

implements the Communication Manager abstract layer as explained in Section 4.4.2.2.

To upload data and metadata from a user’s specified logical folder to the specified

annotation tool, Communication Manager Module uses the defined gateway abstract

layer explained in Section 4.4.2.2.1 for the desired annotation tool. Communication

Manager builds the DE metadata from its events and uploads it to the annotation tool.

121

To download data and metadata, first Communication Manager Module gets

records from the specified annotation tool via its gateway. Second, it parses the coming

XML result by using JDOM and XPATH technologies. Third, it passes the coming data

to DE Management module as explained in Section 5.2.4 in order to be processed and

entered into the MySQL database as major event in the case of being a new entry. If they

are existing entries, then they are saved into the user’s session as minor events.

To transfer data and metadata between annotation tools, Communication Manager

Module first retrieves the records from the first annotation tool via its gateway. Second,

it parses the coming result that is in XML format by using JDOM and XPATH

technologies. Third, it uploads data and metadata to the second annotation website via its

gateway.

5.3.3 Annotation Tools Update Manager

Annotation Tools Update Manager module is responsible for implementing a

mechanism to deal with the consistency maintenance of DARs located at several

annotation tools by using time-based pull approach to collect updates. This module

implements the Annotation Tools Update Manager abstraction layer as explained in

Section 4.4.2.3.

In the pull based approach, Annotation Tools Update Manager utilizes Java

Threads running in the background for each integrated annotation tool. It basically

collects records from the annotation tools to find out updates and passes them to DE

Management module to be handled. Process of collecting and applying updates requires

several steps. First, these threads wakes up periodically to check updates as specified in

the properties file of the IDIOM prototype system and communicate with their regarding

122

annotation tool to get records from there. Second, they gets records from the IDIOM

system’s database and compares the coming records the ones coming from the database

to find out that whether any update or new entry exists. If there is any update, then they

are put into a shared hashtable by all threads. If there are two or more updates for the

same record, then the updates are processed based on the concurrent access policy as

defined in Section 4.4.1 and are put into the shared hashtable where all the updates are

collected. Third, this module passes the updates to DE Management Module to be pushed

to the integrated annotation tools as explained in 5.2.4 so that primary copies of DEs can

be updated and the updates are disseminated to the annotation tools to reflect the changes

over there. Update Propagation is explained in detail in Section 5.3.4.

Finally, in our implementation of Consistency Framework Management module

of IDIOM system, we have used various technologies. Summary of the technologies are

represented in Table 5-1.

Table 5-1: Summary of Technologies

API Purpose

JDOM For parsing XML documents

Jakarta

Commons

HTTP Client

version 3.0.1

For handling HTTP communication

XPATH For querying an XML document object

JTidy For parsing HTML documents

Apache Axis

version 1.2
For creating Java Web Services

JAVA For implementing the framework

123

5.3.4 Update Propagation

In distributed systems, there are two approaches for update propagation: Pull

approach and Push Approach. In Pull approach, a server or client ask another server to

send any updates that it may have, whereas in Push based approach, updates are

propagated to other replica server without their requests [110]. In our prototype

implementation, we utilized push and time-based pull methodology for update

propagation and unicast technique for dissemination of updates to integrated annotation

tools. Based on this methodology, whenever an update occur on IDIOM system, the

primary-copy immediately reflects the changes to the replica copies located at the

integrated annotation tools in order to keep them up-to-date with the recent change.

Updates can be distributed in either unicast or multicast communication methodology

[110]. In unicast update propagation methodology, the primary-copy server sends updates

to replica holders separately, while in multicast update propagation, it send the updates

by using an underlying multicast utility that handles sending the updates to replica

holders. For dissemination of updates, we used unicast communication methodology due

to lack of support for publish/subscribe mechanism of annotation tools.

124

CHAPTER 6

Prototype Evaluation and Discussions

In this chapter we performed extensive series of measurements to evaluate the

prototype implementation of the proposed architecture and investigate its practical

usefulness in real life applications. In this chapter, the following research questions are

being answered:

 What is the baseline performance of the Consistency Framework

implementation in terms of the base upload and download operations?

(Section 6.2 answers this question.)

 What is the optimum number of clients that can be concurrently supported by

the proposed system? (Section 6.3 answers this question.)

125

 How well does the system perform when the message rate per second is

increased for MoreInfo standart operation with DB access? (Section 6.3

answers this question.)

 How well does the system perform when the message rate per second is

increased for MoreInfo standart operation with memory utilization? (Section

6.3 answers this question.)

 How well does the system perform when the message rate per second is

increased for Update DE standart operation? (Section 6.3 answers this

question.)

6.1 Testing Environment

We tested our Event-based Infrastructure and Consistency Framework

implementation by using gf12-15 nodes and gf16 node of clusters located at Community

Grids Laboratory at Indiana University. We have run our client programs on gf12-gf15,

we have deployed our service-based Event-based Infrastructure and Consistency

Framework system on gf16, and we have installed our database on gf16. Summary of

these machine configurations are given in Table 6-1, and Table 6-2 respectively.

Table 6-1: Summary of Cluster Nodes – (gf12-15).ucs.indiana.edu

Cluster Nodes gf12-15.ucs.indiana.edu

Processor Intel
®
 Xeon

TM
CPU (E5345 2.33GHz)

RAM 2 GB

OS GNU/Linux (kernel release 2.6.9-5.ELsmp

126

Table 6-2: Summary of Cluster Node - gf16.ucs.indiana.edu

Cluster Node gf16.ucs.indiana.edu

Processor Intel
®
 Xeon

TM
CPU (E5345 2.33GHz)

RAM 2 GB Total

OS GNU/Linux (kernel release 2.6.9-5.ELsmp

In our general experiments methodology, we have used single-threaded and multi-

threaded client programs. Our Event-based Infrastructure and Consistency Framework is

also a multi-threaded service-enabled system running on cluster node

gf16.ucs.indiana.edu. We have sent various requests from the client programs to our

proposed system implementation to test the performance, and the scalability of our

proposed system.

We have implemented our service-enabled Event-based Infrastructure and

Consistency Framework in Java Language, using Java 2 Standard Edition Edition

compiler with version 1.5.0_12. In our experiments with the prototype implementation,

we used Apache Tomcat Server with version 5.0.28 and Apache Axis technology with

version 1.2 as a container. We set the maximum heap size of Java Virtual Machine

(JVM) to1024MB by using the option –Xmx1024m. In our experiments, we also

increased the maximum number of threads from default value to 1000 in Apache Tomcat

Server to be able to test the system behavior for the huge numbers of concurrent clients.

127

6.2 System Responsiveness Experiments

Our main goal in doing this experiment is to measure the baseline performance of

our Event-based Infrastructure and Consistency Framework implementation. We have

tested the performance of our proposed system by measuring the times necessary to

download a record from an annotation tool into a repository, and to upload a new record

from a repository to an annotation tool (forms a DAR). Furthermore, we have

investigated latency values for More Info functionality with DB access and memory

utilization, and Update DE functionality. The performance evaluation is done when there

is no additional traffic in the system. The primary interest for doing system

responsiveness experiment was to investigate the optimum performance of the system for

download, upload, more info and update digital entity primary operations for the

proposed system. The client programs were running on a cluster nodes gf12-gf15, while

service-enabled Event-based Infrastructure and Consistency system was running on a

cluster node gf16.

In this experiment, we were exploring the performance of our methodology for

download, upload, more info and update digital entity operations of the proposed system.

We have conducted the following test cases: a) A single client sends a request to

download a DAR from an annotation tool as a major event required to access to the DB;

b) A single client sends a request to make a new DAR required to access to an annotation

tool; c) A single client sends a request to get a more info on a digital entity from a

repository required to access to the DB; d) A single client sends a request to get a more

info on a digital entity from the cache required to access to the memory; and e) A single

client sends a request to update a digital entity existed in a repository.

128

In our each testing case, the clients send 400 sequential requests for download,

upload, more info and update digital entity standard operations. We recorded the average

execution time, and this experiment was repeated 5 times. Figure 6-1 shows the design of

these experiments.

Single

Thread

Event-based

Infrastructure

and Consistency

Framework

Test-2. Upload a record to

an Annotation Tool

1 user and 400 requests

W

S

D

L

Single

Thread

Event-based

Infrastructure

and Consistency

Framework

Test-1. Download a

record into a database

1 user and 400 requests

Annotation

Tools

Database

W

S

D

L

W

S

D

L

W

S

D

L

W

S

D

L

Single

Thread

Test-3. More Info request

with database access

Database

1 user and 400 requests

Event-based

Infrastructure

and Consistency

Framework

W

S

D

L

W

S

D

L

Single

Thread

Test-4. More Info request

with memory access

Event-based

Infrastructure

and Consistency

Framework

W

S

D

L

1 user and 400 requests

W

S

D

L

Single

Thread

Test-5. Update digital entity

request with database access

Database

1 user and 400 requests

Event-based

Infrastructure

and Consistency

Framework

W

S

D

L

Database

Annotation

Tools

Figure 6-1: Testing Cases for System Responsiveness Experiment

129

6.2.1 System Responsiveness Experiment Results

We conduct experiments where we investigate the base performance of the

proposed system. Depicted in Figure 6-2, Figure 6-3, Figure 6-4, Figure 6-5, Figure 6-6

and listed in Table 6-3, Table 6-4, Table 6-5, Table 6-6, Table 6-7 represent basic

proposed system responsiveness result. In this experiment we first recorded execution

times for: a) calling the download service to measure the processing time of our

implemented service; b) calling the upload service to measure the processing time of our

implemented service. Next, we recorded round trip times for: a) calling the More Info

service with database access to measure the latency of our implemented service; b)

calling More Info service with memory utilization to measure the latency of our

implemented service; c) calling Update DE service to measure the latency of our

implemented service. Downloading a new entry requires to store this entry as a major

event in the database and it is one of the major services provided by the proposed Event-

based Infrastructure and Consistency Framework. Furthermore, the proposed Event-based

Infrastructure and Consistency Framework propagates the updates via push mechanism

by using upload service of the system in order to maintain consistency. This experiment

shows the necessary time requirements for these major services to download or to upload

a digital entity between the database and annotation tools (replicas).

130

Figure 6-2: Download a record

Table 6-3: Statistics of the experiment depicted in Figure 6-2

Repeated Test

Cases

1 2 3 4 5

Process time (msec) 145.44 146.49 145.72 147.77 147.37

STDev 12.74 13.64 13.09 14.54 13.94

1 2 3 4 5
0

20

40

60

80

100

120

140

160

Repeated Test Cases

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

e
c

) process time -

download a record

STDev - download

a record

131

Figure 6-3: Upload a record

Table 6-4: Statistics of the experiment depicted in Figure 6-3

Repeated Test

Cases

1 2 3 4 5

Process time (msec) 146.24 144.23 144.75 146.33 144.3

STDev 6.61 5.52 7.11 7.6 7.24

1 2 3 4 5
0

20

40

60

80

100

120

140

160

Repeated Test Cases

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

e
c

)

process time -

upload a record

STDev - upload a

record

132

Figure 6-4: Latency and STDev values for More Info standard operation with

database access

Table 6-5: Statistics of the experiment depicted in Figure 6-4

Repeated Test

Cases

1 2 3 4 5

Latency (msec) 2.58 2.55 2.56 2.54 2.54

STDev 0.49 0.49 0.50 0.49 0.49

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Repeated Test Cases

A
v

e
ra

g
e

 R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
s

e
c

) latency - More Info

with DB access

STDev - More Info

with DB access

133

Figure 6-5: Latency and STDev values for More Info standard operation with

memory utilization

Table 6-6: Statistics of the experiment depicted in Figure 6-5

Repeated Test

Cases

1 2 3 4 5

Latency (msec) 1.62 1.61 1.63 1.62 1.64

STDev 0.49 0.48 0.48 0.48 0.48

1 2 3 4 5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Repeated Test Cases

A
v

e
ra

g
e

 R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
s

e
c

)

latency - More Info with

cache utilization

STDev - More Info with

cache utilization

134

Figure 6-6: Latency and STDev values for Update DE standard operation

Table 6-7: Statistics of the experiment depicted in Figure 6-6

Repeated Test

Cases

1 2 3 4 5

Latency (msec) 4.46 4.45 4.49 4.43 4.48

STDev 0.49 0.51 0.50 0.49 0.51

6.3 Scalability Experiment

The primary interest in doing this experiment was to investigate the scalability of

Event-based Infrastructure and Consistency Framework implementation. We conducted

three testing cases and tried to answer the following research questions: a) how well does

the system performs when the message rate per second is increased for More Info

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Repeated Test Cases

A
v

e
ra

g
e

 R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
s

e
c

)

latency - Update DE

STDev - Update DE

135

standart operation request on a DE with DB access?; b) how well does the system

performs when the message rate per second is increased for More Info standart operation

request on a DE with memory utilization?; b) how well does the system performs when

the message rate per second is increased for Update DE standart operation request?

In first experiment, our main goal is to identify the number of concurrent requests

requiring DB access that can be handled by the proposed system when message rate per

second are increased in the Event-based Infrastructure and Consistency Framework. We

have completed this test case by increasing the message rate/sec until the response time

degrades. In this testing case, we recorded round trip time at each MoreInfo request on a

DE with DB access. In the second testing case, we have applied the same technique as

previous experiment except that each request is responded by using memory utilization.

In the third experiment, we have investigated the concurrent requests for an Update DE

main operation that can be serviced by the Event-based Infrastructure and Consistency

Framework while message rate per second are increased. The designs of these testing

cases are depicted in Figure 6-7.

136

Single

Thread

Event-based

Infrastructure

and Consistency

Framework

Database

Event-based Infrastructure and Consistency

Framework – More Info request (database

access) with increasing Message rates

Single

Thread

Various # of Clients

Single

Thread

Single

Thread

Various # of Clients

Event-based

Infrastructure

and Consistency

Framework

Event-based Infrastructure and Consistency

Framework – More Info request (memory usage)

with increasing Message rates

Single

Thread

W

S

D

L

Single

Thread

Database

Event-based Infrastructure and Consistency

Framework – Update DE request with

increasing Message rates

Event-based

Infrastructure

and Consistency

Framework

Message rate scalability investigation

W

S

D

L

W

S

D

L

W

S

D

L

W

S

D

L

W

S

D

L

W

S

D

L

W

S

D

L

W

S

D

L

Various # of Clients

Figure 6-7: Testing cases of scalability experiment for More Info and Update DE

requests

6.3.1 Scalability Experiment Results

Based on the results depicted in Figure 6-8 and listed in Table 6-8, we determined

that concurrent inquiry requests may be well responded by Event-based Infrastructure

and Consistency Framework without any error. According to the experiment result, we

identified that Event-Based Infrastructure and Consistency Framework major operations

137

performed well for the increased message rate. However, after a certain number of

messages per second, performance starts to degrade due to high message rate. We

observe that after around 929 inquiry messages per second for MoreInfo with DB access,

after around 1178 inquiry messages per second for MoreInfo with memory utilization,

after around 542 inquiry messages per second for Update DE, the system performance

degrades due to high message rate. This threshold is mainly due to thread scheduling and

context switches. Experiment results are depicted in Figure 6-8, Figure 6-9, Figure 6-10

and listed in Table 6-8, Table 6-9, Table 6-11.

Figure 6-8: More Info message rate with DB access

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

message rate (message/per second)

a
v
e
ra

g
e
 r

o
u
n
d
 t

ri
p
 t

im
e
 (

m
s
e
c
)

more info message rate

138

Table 6-8: Statistics of the experiment results depicted in Figure 6-8. Time units are

in milliseconds

Event-based Infrastructure and Consistency Framework – Increased Message Rate

Messages/second Average Timing (msec)

0 0

263 2.61

377 3.56

515 3.75

652 3.78

761 4

840 4.23

929 4.47

966 5.09

974 5.83

993 6.76

Figure 6-9: More Info message rate with memory utilization

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5

4

message rate (message/per second)

a
v
e
ra

g
e
 r

o
u
n
d
 t

ri
p
 t

im
e
 (

m
s
e
c
)

more info message rate

139

Table 6-9: Statistics of the experiment results depicted in Figure 6-9. Time units are

in milliseconds

Event-based Infrastructure and Consistency Framework – Increased Message Rate

Messages/second Average Timing (msec)

0 0

358 1.65

549 1.96

723 2.07

894 2.13

1051 2.13

1178 2.21

1300 2.48

1404 2.64

1468 2.8

1516 3

1592 3.67

Overhead calculations for improving the performance for MoreInfo operation

with DB and memory utilization will be the time necessary to calculate the latest version

of a DE after applying a coming update on top of it and storing back the latest version

into the database. Statistics of the experiment is listed in Table 6-10.

Table 6-10: Statistics of the overhead calculations for database and memory

utilization to improve the performance. Time units are in milliseconds

Overhead Time

(Database)

STDev for DB Overhead Time

(Memory)

STDev for Memory

6.82 0.75 0.96 0.35

140

Figure 6-10: Update DE message rate

Table 6-11: Statistics of the experiment results depicted in Figure 6-10. Time units

are in milliseconds

Event-based Infrastructure and Consistency Framework – Increased Message Rate

Messages/second Average Timing (msec)

0 0

155 2.25

229 2.87

323 2.99

418 3.12

487 3.22

542 3.43

577 3.85

607 4.29

609 5.05

619 6.83

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

message rate (message/per second)

a
v
e
ra

g
e
 r

o
u
n
d
 t

ri
p
 t

im
e
 (

m
s
e
c
)

update message rate

141

6.4 Summary

This chapter presented the performance evaluation of our proposed Event-based

Infrastructure and Consistency Framework. First, our experiment pointed out the trade-

off between the scalability and performance of the proposed system. Based on the

experiment results, we discovered some threshold values for the maximum number of

simultaneous Update DE, and More Info service operation with DB access and memory

utilization that can be performed on the system. For instance, while the number of

requests exceeds 929 simultaneous messages per second for More Info operation with DB

access, the system performance starts to decrease. This experiment results also showed

that the system is able to scale to increasing message sizes and performs well.

142

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Thesis summary

This thesis studied Event-based Infrastructure and a Consistency Framework for

reconciling distributed annotation records located at various annotation tools. We have

identified our motivation, and research problems in CHAPTER 1. We discussed the

related work and survey of technologies in CHAPTER 2. Having identified our

motivations, and reviewed the relevant research works, we proposed our architectural

design for an Event-based Infrastructure and Consistency Framework for Distributed

Annotation Records. We introduced the Event-based Infrastructure in CHAPTER 3. We

presented the Consistency Framework for Distributed Annotation Records (CFDAR) in

143

CHAPTER 4. We explained our proposed research’s implementation details in

CHAPTER 5. We introduced prototype evaluation and discussions in CHAPTER 6.

Social bookmarking services strikingly changed how people find and refind

information on the internet. Furthermore, it demonstrated the power of online

collaboration and there are several features of social bookmarking services that support

collaboration. First, users of these systems store data and metadata in a shared place

instead of storing them in a private local storage such as a personal computer’s hard

drive. This allows anyone to access other users’ records resulting in users to discover new

sources of information. Second, social bookmarking services leverage the use of

collaborative tagging of resources. Users can tag their content on these social

bookmarking tools, organiza their resources by tags, and search all resources existed on

social bookmarking services by tags to find related or interested resources. So,

collaborative tagging provides users with ability to organize their resources in a flexible

way and to access related research materials easily.

There has been an enormous growth in social bookmarking applications and the

most obvious and famous example is del.icio.us. Social bookmarking tools offer great

services for publicly accessible web resources. Today, there are various types of social

bookmarking services focused on different areas such as Social Networking Tools

(MySpace, LinkedIn), Social Bookmarking Tools (del.icio.us), Video Sharing and

annotation (YouTube), and annotation and sharing of scholarly publications (CiteULike,

Connotea, Bibsonomy).

Despite the huge number of web-based annotation tools that provide services for

storage and collaboration of resources over the internet, these tools have limitations. First

144

of all, their metadata support for the stored documents varies and the metadata fields

provided by these tools are not enough to represent the whole content of a scientific

document causing storing same scholarly publications in several annotation tools.

Second, these tools are lack of support for communication with each other. Third, they

also suffer lack of services to upload data from a repository, extract and import data into

a repository. Finally, they do not provide timestamp information for the updated records

causing inconsistencies once documents get updated.

Our thesis research focused on reconciling distributed annotation records stored at

the social bookmarking services, which enable annotation and sharing of scientific

content, with additional metadata support and capabilities. We have reviewed events

sytems in Section 2.2 and overviewed consistency models for distributed systems in

Section 2.3. We have investigated an Event-based Infrastructure and a consistency

mechanism by adopting existing consistency models for distributed systems to our

research.

A promising approach to address the above issues is the event-based paradigm

and providing a consistency mechanism around it to keep replica records stored at several

annotation tools consistent with each other. The components of an event-based system

cooperate by sending and receiving events, a particular form of messages. Our event-

based infrastructure is the key concept to our research. Documents, metadata, and

modifications to them are represented as events in our research. Events allow us to keep

track of changes to documents and metadata. It also provides users with ability to

rollback in a flexible fashion to change the state of a digital entity referred as DE in the

previous chapters.

145

Event-based infrastructure benefits from representing documents as events. Since,

we never loose a version of a document. It provides flexibility of having different

versions of a document any time and enables going back and forward among the versions

of a document. Furthermore, event-based approach allows us to handle various types of

metadata coming from several sources as events such as annotation tools (Connotea,

Bibsonomy, and CiteULike), academic search tools (Google Scholar, Windows Live

Academic).

Proposed Event-based Infrastructure provides a comprehensive metadata support

to represent the complete metadata of a document in its system. Moreover, it supports

collaborative tagging of documents that brings many advantages such as organizing data

and metadata in a non complex way, grouping or accessing interested documents by

clicking on a related tag or a user etc.

Event-based Infrastructure also has advantages of having timestamp values for

each action made on a document. Events can be ordered and executed based on their

timestamp values. Furthermore, concurrent updates on a shared document can also be

handled based on our concurrent update policy as explained in Section 4.4.1.

Our Consistency Framework for Distributed Annotation Records (CFDAR) also

benefits from having an Event-based Infrastructure by adopting optimistic replication

approach to ensure eventual consistency. It utilizes push-based approach to propagate

updates and time-based pull approach to retrieve the updates from the annotation tools.

CFDAR propogates updates by using Digital Entity Update Management module to all

replicas based on our push-based update propagation approach once updates occurred on

a primary copy of documents. Propagation of updates is done via unicast communication

146

due to missing support of publish/subscribe mechanism in the integrated annotation tools.

However, we have adopted a time-based approach for pulling updates from annotation

tools periodically to apply primary copies and rest of the replicas to make them consistent

with each other.

Web Service support in our Event-based Infrastructure is also another key feature

to allow different client running on a different platforms to interoperate with each other.

Our services can be accessed via SOAP calls to access documents from any client that

has internet access.

Our Event-based Infrastructure and Consistency Framework scales very well. We

have performed several evaluations to measure scalability, and performance of our

proposed Event-based Infrastructure and Consistency Framework in CHAPTER 6.

Our Event-based Infrastructure and Consistency Framework is a very flexible

system. It unifies and federated major annotation tools and it easily allows adding new

annotation or academic search tools into the system. The only necessary action is to

implanting a suitable gateway as explained in detail in Section 4.4.2.2.1.

7.2 Answering the research questions

In this section, we will answer our research questions raised in Section 1.2.

Can we implement an infrastructure that handles data and metadata coming from

various sources in Service Oriented Architecture? Can this infrastructure unify and

federate various existing online annotation tools for publications, which stores replicas

of the same documents, and use their services? What is the efficient and flexible data

model for such framework?

147

The answer to this question is ―yes‖. We introduced an Event-based Infrastructure

that can deal with various data and metadata coming from different sources. Our Event-

based Infrastructure also supports Web Service technology to leverage interoperability

among different clients. CHAPTER 3 overviewed the event-based architecture, and

CHAPTER 5 explained the prototype implementation of the architecture. Event-based

Infrastructure approach provides efficient and flexible data model for handling data and

metadata coming from various sources. Furthermore, it builds the necessary layers to

unify and federate the various annotation tools into the proposed research framework.

How can we support a flexible architecture that allows user to easily track

documents?

Event-based Infrastructure is the promising approach to easily track changes to

documents and metadata. In this approach, every action made on a document is kept with

a timestamp value. This allows us to keep a history of each document and their

modifications ordered by time. Event-based Infrastructure and its details are given in

detail in CHAPTER 3.

How can we provide a consistency mechanism between the online replicated

documents stored at annotation tools for scholarly publications and documents located

on a central server?

Consistency maintenance is all about keeping all copies of data that may possibly

be distributed to different locations to be the same. After reviewing consistency models,

protocols and update propogations for distributed systems in Section 2.3, we have

designed our Consistency Framework for Distributed Annotation Records (CFDAR) to

maintain consistency for distributed annotation records (DARs) located at various

148

annotation tools. CFDAR is a promising approach to maintain consistency among DARs

and their primary copies via pull and push based update propagation models. CFDAR is a

client-centric consistency model and it adopts optimistic replication approach and ensures

eventual consistency between replicas. Whenever updates occurred on a primary copy of

a DAR, they are being propagated immediately to each annotation tool to update

replication of same document kept at various annotation tools (push approach). However,

in time-interval based approach, we periodically check DARs from each annotation tool

for any updates. If there is any, then we are pulling them out and applying them on the

primary copy of each DAR, which is stored in a relational database with additional

metadata, and propagating them to the integrated annotation tools. CHAPTER 4

discussed the proposed CFDAR in detail.

How can we achieve an information management architecture that can provide

more metadata support than the current annotation tools do for scholarly publications?

In current annotation tools that hold scientific documents metadata support is very

limited to include all metadata about a document. Hence, documents are represented with

missing metadata field in those tools. In other words, documents are kept at these

annotation tools are not complete, and they are stored in various annotation tools due to

their various services and metadata supports. In our Event-based Infrastructure we keep

primary copies of each document with additional metadata support in a central repository

consistent with all replicas of the primary copies. Supported metadata field of a document

as an event is displayed in Figure 5-2.

Can we support communication between annotation tools for scholarly

publications?

149

The answer to this question is ―yes‖. Existing annotation tools for keeping

scientific documents on their site are lack of communication with each other. The

interoperability among annotation tools can be leveraged by Web Service technology.

Our Event-based Infrastructure has interfaces that provide heteregenous clients to access

its services via SOAP calls over HTTP as explained in CHAPTER 3.

How can we provide users with ability to access previous versions of an updated

document? Can we allow users to retrieve and apply other users’ updates for a same

document? What is the flexible update model?

Proposed Event-based Infrastructure (EBI) keeps each document when they

entered into the system as a major event and the following updates to it as minor events

in a central repository as explained in Section 3.1 and depicted in Figure 3-2. So, we

never loose a version of a document and this provides users with ability to have histories

of each document at any given time. Users can easily search updates for the similar

documents easily to retrieve and apply their updates on their existing records. We have an

approach to provide a flexible and efficient update model, which allows users to have

ability to ignore or apply updates to the selected documents, explained in detail in Section

3.5.

Does event-based approach scales very well?

The answer to this question is ―yes‖. We have performed measurements to

evaulate scalability and performance of our Event-based Infrastructure. Details of the

scalability results are given in Section 6.3. Furthermore, we have investigated the base

performance of our prototype system. Further details of our prototype implementation

evaluations can be found in CHAPTER 6.

150

Can we support services for extracting data and metadata from these annotation

tools into a specified repository? Moreover, can we support services for uploading data

and metadata from a repository to annotation tools?

The answer to both questions is ―yes‖. Our Event-based Infrastructure and

Consistency Framework for Distributed Annotation Records supports services to

communicate with the integrated annotation tools. These services provide users with

ability to extract and download data and metadata into a specified repository.

Furthermore, users can upload data and metadata from a specified repository to the

integrated annotation tools. These concepts and their implementations are defined in

CHAPTER 3 and Section 5.3.2 respectively.

7.3 Future research

This thesis deploys an Event-based Infrastructure and adopts a consistency

technique for distributed systems to maintain consistency among distributed annotation

records and their primary copies stored at a central repository. It introduces an Event-

based Infrastructure and utilizes optimistic replication approach to ensure eventual

consistency between distributed annotation records representing scholarly publications.

We plan to expand on this approach to be able to apply other application domains such as

video collaboration domain (YouTube etc.). We will further research machine learning

techniques to identify typing errors within the documents. An additional area that we

intend to research is to migrate from centralized storage to decentralized storage.

151

References

[1] A. David, B. Ron, and C. Mark, "Information archiving with bookmarks: personal

Web space construction and organization," in Proceedings of the SIGCHI

conference on Human factors in computing systems. Los Angeles, California,

United States: ACM Press/Addison-Wesley Publishing Co., 1998.

[2] G. Fox, A. F. Mustacoglu, A. E. Topcu, and A. Cami, "SRG: A Digital

Document-Enhanced Service Oriented Research Grid," presented at Information

Reuse and Integration IRI-07, Las Vegas, NV, USA, 2007.

[3] A. F. Mustacoglu, A. E. Topcu, A. Cami, and G. Fox, "A Novel Event-Based

Consistency Model for Supporting Collaborative Cyberinfrastructure Based

Scientific Research," in Collaborative Technologies and Systems CTS 2007 in

Technical Cooperation with The IEEE Computer Society. Orlando, FL, USA:

IEEE Computer Society, 2007.

[4] A. E. Topcu, A. F. Mustacoglu, G. Fox, and A. Cami, "Integration of

Collaborative Information Systems in Web 2.0," 2007.

[5] G. C. Fox, M. E. Pierce, A. F. Mustacoglu, and A. E. Topcu, "Web 2.0 for E-

Science Environments," 2007.

[6] A. F. Mustacoglu and G. Fox, "Hybrid Consistency Framework for Distributed

Annotation Records in a Collaborative Environment " presented at The 2008

International Symposium on Collaborative Technologies and Systems (CTS

2008), Irvine,CA, 2008.

[7] "Apache Axis version 1.x."

[8] "Apache Tomcat with version 5.0.28."

152

[9] "Sun Microsystems."

[10] T. Hammond, T. Hannay, B. Lund, and J. Scott, "Social Bookmarking Tools (I):

A General Review," in D-Lib Magazine, vol. 11, 2005.

[11] "Blogger Website."

[12] "Wiki - Wikipedia web site."

[13] "Wikitravel."

[14] "MySpace."

[15] "LinkedIn."

[16] "Delicious web site."

[17] "Flickr."

[18] "YouTube."

[19] "Netvibes."

[20] "YourLiveWire."

[21] "CiteULike web site."

[22] "Connotea web site."

[23] B. Lund, T. Hammond, M. Flack, and T. Hannay, "Social Bookmarking Tools

(II): A Case Study - Connotea," in D-Lib Magazine, vol. 11, 2005.

[24] "Bibsonomy web site."

[25] G. Begelman, P. Keller, and F. Smadja, "Automated Tag Clustering: Improving

search and exploration in the tag space," in World Wide Web Conference.

Edinburgh,Scotland, 2006.

[26] C. Cattuto, V. Loreto, and L. Pietronero, "Collaborative Tagging and Semiotic

Dynamics," PNAS, vol. 104, pp. 1461, 2007.

153

[27] R. Lambiotte and M. Ausloos, "Collaborative Tagging as a Tripartite Network,"

in Computational Science â€“ ICCS 2006, 2006, pp. 1114-1117.

[28] S. A. Golder and B. A. Huberman, "Usage patterns of collaborative tagging

systems," Journal of Information Science, vol. 32, pp. 198-208, 2006.

[29] "LibraryThing."

[30] "43things."

[31] A. Mathes, "Folksonomies: Cooperative classification and communication

through shared metadata," 2004.

[32] W. Xian, Z. Lei, and Y. Yong, "Exploring social annotations for the semantic

web," in Proceedings of the 15th international conference on World Wide Web.

Edinburgh, Scotland: ACM, 2006.

[33] R. Sinha, "A cognitive analysis of tagging (or how the lower cognitive cost of

tagging makes it popular)."

[34] P. Merholtz, "Clay Shirky's Viewpoints are Overrated."

[35] C. Shirky, "Ontology is Overrated: Categories, Links, and Tags ".

[36] L. Gordon-Murnane, "Social bookmarking, folksonomies, and Web 2.0 tools

" Searcher, vol. 14, pp. 26-38, 2006.

[37] "JSON."

[38] "RSS Advisory Board Website."

[39] "Nature Publishing Group."

[40] A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme, "BibSonomy: A Social

Bookmark and Publication Sharing System," presented at 14th Int. Conference on

Conceptual Structures, Aalborg, Denmark, 2006.

154

[41] "BibTeX."

[42] "LaTeX – A document preparation system."

[43] "JavaServer Pages Technology."

[44] "Java Servlet Technology."

[45] E. K. Glenn and T. P. Stephen, "A cookbook for using the model-view controller

user interface paradigm in Smalltalk-80," J. Object Oriented Program., vol. 1, pp.

26-49, 1988.

[46] R. Rivest, "The MD5 Message-Digest Algorithm," 1992.

[47] E. Wilde, "Shared Bibliographies as Hypertext," ETH Zurich (Swiss Federal

Institute of Technology) 2005.

[48] E. Wilde, "References as Knowledge Management," Issues in Science and

Technology Librarianship, vol. 41, 2004.

[49] E. Wilde, S. Anand, and P. Zimmermann, "Management and Sharing of

Bibliographies," in Research and Advanced Technology for Digital Libraries,

2005, pp. 479-480.

[50] "Swiss Federal Institute of Technology (ETH)."

[51] H. Van de Sompel and O. Beit-Arie, "Open linking in the scholarly information

environment using the OpenURL framework," D-Lib Magazine, vol. 7, 2001.

[52] E. Wilde, S. Anand, and P. Zimmermann, "ShaRef: XML-Centric Software

Design," ETH Zurich (Swiss Federal Institute of Technology) 2005.

[53] "Java Remote Method Invocation (RMI)."

[54] "HSQLDB."

155

[55] I. Takashi, K. Piyanuch, H. Masahiro, and Q. Zhengyu, "ReMarkables: A Web-

Based Research Collaboration Support System Using Social Bookmarking

Tools," in Proceedings of the 2006 IEEE/WIC/ACM international conference on

Web Intelligence and Intelligent Agent Technology: IEEE Computer Society,

2006.

[56] "Nippon Institute of Technology."

[57] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos, "Tropos:

An Agent-Oriented Software Development Methodology," Autonomous Agents

and Multi-Agent Systems, vol. 8, pp. 203-236, 2004.

[58] G. Fox and S. Pallickara, "Deploying the NaradaBrokering Substrate in Aiding

Efficient Web and Grid Service Interactions," presented at Grid Computing, 2005.

[59] G. Fox, S. Pallickara, and X. Rao, "A scaleable event infrastructure for peer to

peer grids," in Proceedings of the 2002 joint ACM-ISCOPE conference on Java

Grande. Seattle, Washington, USA: ACM, 2002.

[60] S. Pallickara, H. Bulut, P. Burnap, G. Fox, A. Uyar, and D. Walker, "Support for

High Performance Real-time Collaboration within the NaradaBrokering

Substrate," 2005.

[61] S. Pallickara and G. Fox, "NaradaBrokering: A Distributed Middleware

Framework and Architecture for Enabling Durable Peer-to-Peer Grids," in

Middleware 2003, 2003, pp. 998-999.

[62] S. Pallickara, M. Pierce, H. Gadgil, G. Fox, Y. Yan, and H. Yi, "A Framework for

Secure End-to-End Delivery of Messages in Publish/Subscribe Systems," 2006.

[63] "Community Grids Lab at Indiana University."

156

[64] S. Gatziu, Events in an active, object-oriented database system. Hamburg: Verlag

Dr. Kovac, 1995.

[65] K. R. Dittrich and S. Gatziu, "Time Issues in Active Database Systems,"

presented at International Workshop on an Infrastructure for Temporal Databases,

Arlington, Texas, 1993.

[66] G. Liu, A. Mok, and P. Konana, "A Unified Approach for Specifying Timing

Constraints and Composite Events in Active Real-Time Database Systems," 1998.

[67] L. Lamport, "Time, clocks, and the ordering of events in a distributed system,"

Commun. ACM, vol. 21, pp. 558-565, 1978.

[68] J. F. Allen and G. Ferguson, "Actions and Events in Interval Temporal Logic,"

Journal of Logic and Computation, vol. 4, pp. 531-579, 1994.

[69] P.-s. Kam, "Discovering temporal patterns for interval-based events," 2000.

[70] C. Liebig, M. Cilia, and A. Buchmann, "Event Composition in Time-Dependent

Distributed Systems," 1999.

[71] Peter R., Pietzuch R., Shand B., and B. J., "A Framework for Event Composition

in Distributed Systems," presented at 4th International Conference on Middleware

(MW'03), Rio de Janeiro, Brazil, 2003.

[72] R. Tolksdorf, Laura : a coordination language for open distributed systems.

Berlin: Technische UniversitÃ¤t Berlin, Fachbereich 20, Informatik, 1992.

[73] R. Kowalski and F. Sadri, "Towards a unified agent architecture that combines

rationality with reactivity," in Logic in Databases. International Workshop LID

'96 Proceedings, D. Pedreschi and C. Zaniolo, Eds.: Springer-Verlag, 1996, pp.

137-149.

157

[74] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford, "Tspaces," IBM

Systems Journal 37, pp. 454-474, 1998.

[75] O. Object Management Group, "The Common Object Request

Broker:Architecture and Specification."

[76] O. Object Management Group, "CORBA Services:Common Object Services

Specification-Event Service Specification."

[77] Sun Micro Systems, "Java AWT:Delegation Event Model."

[78] M. Shane, B. Mark, P. Steven, and R. T. V., "An Events Syntax for XML."

[79] R. Alur and T. A. Henzinger, "Reactive Modules," Formal Methods in System

Design, vol. 15, pp. 7-48, 1999.

[80] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems Concepts and

Design: Addison-Wesley, 2005.

[81] B. John, B. Jean, M. Ken, and S. Mark, "Using events for the scalable federation

of heterogeneous components," in Proceedings of the 8th ACM SIGOPS

European workshop on Support for composing distributed applications. Sintra,

Portugal: ACM, 1998.

[82] T. Kindberg, G. Coulouris, J. Dollimore, and J. Heikkinen, "Sharing objects over

the Internet: the Mushroom approach," presented at Global Telecommunications

Conference, 1996. GLOBECOM '96. 'Communications: The Key to Global

Prosperity, London, UK, 1996.

[83] J. Bacon, J. Bates, R. Hayton, and K. Moody, "Using Events to Build Distributed

Applications," 1995.

158

[84] N. Foo and P. Peppas, "Primitive Events," presented at 7th Join Australian

Conference in Artificial Intelligence AI'94, Armidale,Australia, 1994.

[85] P. Pietzuch, B. Shand, and J. Bacon, "A Framework for Event Composition in

Distributed Systems," in Middleware 2003, 2003, pp. 997-997.

[86] K. Delaney and R. Soukup, Inside Microsoft SQL Server 2000. Redmond, WA:

Microsoft Press, 2000.

[87] T. Kyte, Expert one-on-one Oracle. Birmingham, Uk: WROX Press, 2001.

[88] C. Innocenti, G. Mondino, P. Regis, and G. Sandini, "Trajectory planning and

real-time control of an autonomous mobilerobot equipped with vision and

ultrasonic sensors," presented at Proceedings of the 1994 IEEE/RSJ/GI

International Conference on Intelligent Robots and Systems IROS'94, Munich,

Germany, 1994.

[89] S. Ceri and G. Pelagatti, Distributed databases : principles and systems. New

York: McGraw-Hill, 1984.

[90] C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, and S. Richard Thomas, "A

glossary of temporal database concepts," SIGMOD Rec., vol. 21, pp. 35-43, 1992.

[91] P. Bonnet, J. Gehrke, and P. Seshadri, "Towards Sensor Database Systems," in

Mobile Data Management, 2001, pp. 3-14.

[92] V. Lesser, C. L. Ortiz, and M. Tambe, Distributed sensor networks : a multiagent

perspective. Boston: Kluwer Academic Publishers, 2003.

[93] R. Eckstein, M. Loy, and D. Wood, Java Swing. Sebastopol, Calif.: O'Reilly,

1998.

159

[94] W. O. Galitz and NetLibrary, "The essential guide to user interface design an

introduction to GUI design principles and techniques," 2nd ed: New York : Wiley

Computer Pub., 2002.

[95] R. Frank and NetLibrary, "Understanding smart sensors," 2nd ed: Boston : Artech

House, 2000.

[96] B. Garabadu, C. Thompson, G. Lindstrom, and J. Klewicki, "Fast and Accurate

NN Approach for Multi-Event Annotation of Time Series," University of Utah,

2003.

[97] A. T. Chandramohan and M. L. Henry, "Hardware and software support for

efficient exception handling," in Proceedings of the sixth international conference

on Architectural support for programming languages and operating systems. San

Jose, California, United States: ACM, 1994.

[98] S. Gatziu and K. R. Dittrich, "Detecting composite events in active database

systems using Petrinets," presented at Proceedings Fourth International Workshop

on Research Issues in Data Engineering, Houston, TX, USA, 1994.

[99] N. Gehani, H. V. Jagadish, and O. Shumeli, "Composite Event Specification in

Active Databases:Model and Implementation," presented at Proceedings of

the18th International Conference on Very Large Databases, Vancouver, Canada,

1992.

[100] A. Hegyi, B. De Schutter, S. Hoogendoorn, R. Babuska, H. van Zuylen, and H.

Schuurman, "A fuzzy decision support system for traffic control centers,"

presented at Proceedings of the Intelligent Transportation Systems, Oakland, CA,

USA, 2001.

160

[101] M. Molina, J. Hern A, and J. E. Cuena, "A structure of problem-solving methods

for real-time decision support in traffic control," International Journal of Human-

Computer Studies, vol. 49, pp. 577-600, 1998.

[102] J. P. Bell and D. Schauder, "The WEBWORKFORCE: a learning repository to

support educators, trainers and information technology courses," in Proceedings

of the fifth Australasian conference on Computing education - Volume 20.

Adelaide, Australia: Australian Computer Society, Inc., 2003.

[103] A. Naeve, "The Knowledge Manifold:an Educational Arcitecture That Supports

Inquiry-Based Customizable Forms of E-Learning," presented at The 2nd

European Web-based Learning Environments Conference (WBLE 2001), Lund,

Sweeden, 2001.

[104] C. Gianpaolo, N. Elisabetta Di, and F. Alfonso, "The JEDI Event-Based

Infrastructure and Its Application to the Development of the OPSS WFMS," IEEE

Transactions on Software Engineering, vol. 27, pp. 827-850, 2001.

[105] G. Fox and S. Pallickara, "The Narada Event Brokering System: Overview and

Extensions," presented at Proceedings of the International Conference on Parallel

and Distributed Processing Techniques and Applications, Las Vegas, Nevada,

USA, 2002.

[106] S. Pallickara and G. C. Fox, "A Scalable Durable Grid Event Service," in

Middleware 2003, 2001.

[107] "SERVOGrid."

[108] "GlobalMMCS."

[109] "Anabas Inc.."

161

[110] A. S. Tanenbaum and M. V. Steen, Distributed Ssytems Principles and

Paradigms, 2002.

[111] D. Mosberger, "Memory consistency models," SIGOPS Oper. Syst. Rev., vol. 27,

pp. 18-26, 1993.

[112] S. V. Adve and K. Gharachorloo, "Shared Memory Consistency Models: A

Tutorial," vol. 29, 1996, pp. 66-76.

[113] M. P. Herlihy and J. M. Wing, "Linearizability: a correctness condition for

concurrent objects," ACM Trans. Program. Lang. Syst., vol. 12, pp. 463-492,

1990.

[114] H. Attiya and J. L. Welch, "Sequential consistency versus linearizability," ACM

Trans. Comput. Syst., vol. 12, pp. 91-122, 1994.

[115] R. J. Lipton and J. S. Sandberg, PRAM : a scalable shared memory. Princeton,

N.J.: Princeton University, Dept. of Computer Science, 1988.

[116] M. Dubois, C. Scheurich, and F. A. Briggs, "Synchronization, Coherence, and

Event Ordering in Multiprocessors," vol. 21, 1988, pp. 9-21.

[117] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy,

"Memory consistency and event ordering in scalable shared-memory

multiprocessors," in Proceedings of the 17th annual international symposium on

Computer Architecture. Seattle, Washington, United States: ACM, 1990.

[118] K. Pete, L. C. Alan, and Z. Willy, "Lazy release consistency for software

distributed shared memory," in Proceedings of the 19th annual international

symposium on Computer architecture. Queensland, Australia: ACM, 1992.

162

[119] N. B. Brian, J. Z. Matthew, and A. S. Wayne, "The Midway Distributed Shared

Memory System," Carnegie Mellon University 1993.

[120] D. B. Terry, K. Petersen, M. J. Spreitzer, and M. M. Theimer, "The Case for Non-

transparent Replication: Examples from Bayou," vol. 21: IEEE Data Engineering,

1998, pp. 12-20.

[121] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer, and B. B.

Welch, "Session Guarantees for Weakly Consistent Replicated Data," in

Proceedings of the Third International Conference on Parallel and Distributed

Information Systems. Austin, TX, USA: IEEE Computer Society, 1994, pp. 140-

149.

[122] K. Petersen, M. Spreitzer, D. Terry, and M. Theimer, "Bayou: replicated database

services for world-wide applications," in Proceedings of the 7th workshop on

ACM SIGOPS European workshop: Systems support for worldwide applications.

Connemara, Ireland: ACM, 1996.

[123] B. Berliner, "CVS II:Parallelizing Software Dev elopment."

[124] S. Yasushi and S. Marc, "Optimistic replication," ACM Comput. Surv., vol. 37,

pp. 42-81, 2005.

[125] S. Weiss, P. Urso, and P. Molli, "Wooki: A P2P Wiki-Based Collaborative

Writing Tool," in Web Information Systems Engineering – WISE 2007, 2007, pp.

503-512.

[126] G. Oster, P. Urso, P. Molli, and A. Imine, "Data consistency for P2P collaborative

editing," in Proceedings of the 2006 20th anniversary conference on Computer

supported cooperative work. Banff, Alberta, Canada: ACM, 2006.

163

[127] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A. M.

Kermarrec, "Lightweight probabilistic broadcast," ACM Trans. Comput. Syst.,

vol. 21, pp. 341-374, 2003.

[128] D. Alan, G. Dan, H. Carl, I. Wes, L. John, S. Scott, S. Howard, S. Dan, and T.

Doug, "Epidemic algorithms for replicated database maintenance," SIGOPS Oper.

Syst. Rev., vol. 22, pp. 8-32, 1988.

[129] D. B. Andrew and N. Bruce Jay, "Implementing remote procedure calls," ACM

Trans. Comput. Syst., vol. 2, pp. 39-59, 1984.

[130] "Jakarta Commons HttpClient with version 3.0.1."

[131] "Document Object Model (DOM)."

[132] "Simple API for XML (SAX) Parser."

[133] S. R. David and K. Balachander, "An event-based model of software

configuration management," in Proceedings of the 3rd international workshop on

Software configuration management. Trondheim, Norway: ACM Press, 1991.

[134] G. C. Fox, "Collaboration within an Event based Computing Paradigm," 2001.

[135] "Dublin Core Metadata Initiative (DCMI)."

[136] "SOA and Web Services."

[137] "Web Services Description Language (WSDL)."

[138] "Simple Object Access Protocol (SOAP) 1.1."

[139] "Hypertext Transfer Protocol (HTTP) 1.1 ".

[140] "FILE TRANSFER PROTOCOL (FTP)."

[141] "Google Scholar."

[142] "Windows Live Academic."

164

[143] E. Rahm and P. A. Bernstein, "A survey of approaches to automatic schema

matching," The VLDB Journal The International Journal on Very Large Data

Bases, vol. 10, pp. 334-350, 2001.

[144] H. Kreger, "Web Services Conceptual Architecture (WSCA 1.0)," 2001.

[145] F. E. Redmond, DCOM : Microsoft Distributed Component Object Model. Foster

City, CA: IDG Books Worldwide, 1997.

[146] "Open Source Version Control web site."

[147] "Subversion web site."

[148] H. T. Kung and T. R. John, "On optimistic methods for concurrency control," in

Proceedings of the fifth international conference on Very Large Data Bases -

Volume 5. Rio de Janeiro, Brazil: VLDB Endowment, 1979.

[149] S. Chengzheng and C. David, "Consistency maintenance in real-time

collaborative graphics editing systems," ACM Trans. Comput.-Hum. Interact.,

vol. 9, pp. 1-41, 2002.

[150] L. Jiang, L. Xiaotao, S. Prashant, and R. Krithi, "Consistency Maintenance In

Peer-to-Peer File Sharing Networks," in Proceedings of the The Third IEEE

Workshop on Internet Applications: IEEE Computer Society, 2003.

[151] R. Jonathan, F. Sarah, and V. Sankar, "Consistency management for distributed

collaboration," ACM Comput. Surv., vol. 31, pp. 13, 1999.

[152] V. Jurgen, V. JiRgen, G. Werner, C. Li-Te, and M. Michael, "Consistency

Control for Synchronous and Asynchronous Collaboration Based on Shared

Objects and Activities," Comput. Supported Coop. Work, vol. 13, pp. 573-602,

2004.

165

[153] G. Werner, V. Jurgen, C. Li-Te, and M. Michael, "Supporting activity-centric

collaboration through peer-to-peer shared objects," in Proceedings of the 2003

international ACM SIGGROUP conference on Supporting group work. Sanibel

Island, Florida, USA: ACM Press, 2003.

[154] L. Rui, L. Du, and S. Chengzheng, "A Time Interval Based Consistency Control

Algorithm for Interactive Groupware Applications," 2004.

[155] "XML Path Language (XPATH)."

[156] "JTIDY with version 04aug2000r7."

[157] "JDOM with version 1.1."

[158] "Java 2 SDK, Standart Edition with version 1.5."

[159] "Internet Documentation and Integration of Metadata (IDIOM) Project Website."

[160] D. E. Atkins, K. K. Droegemeier, S. I. Feldman, H. Garcia-Molina, M. L. Klein,

D. G. Messerschmitt, P. Messina, J. P. Ostriker, and M. H. Wright,

"Revolutionizing Science and Engineering Through Cyberinfrastructure. Report

of the National Science Foundation Blue-Ribbon Advisory Panel on

Cyberinfrastructure," 2003.

[161] T. O'Reilly, What is Web 2.0: Design patterns and business models for the next

generation of software, 2005.

[162] C. Anderson, The Long Tail: Why the Future of Business Is Selling Less of More:

Hyperion, 2006.

[163] "IBM WebSphere Session Management ".

166

[164] A. M. Scott, K. Richard, L. Matt, and S. Craig, "PubsOnline: open source

bibliography database," in Proceedings of the 33rd annual ACM SIGUCCS

conference on User services. Monterey, CA, USA: ACM Press, 2005.

[165] B. Hasan, P. Shrideep, and F. Geoffrey, "Implementing a NTP-based time service

within a distributed middleware system," in Proceedings of the 3rd international

symposium on Principles and practice of programming in Java. Las Vegas,

Nevada: Trinity College Dublin, 2004.

