

Event-based Infrastructure for Reconciling Distributed Annotation

Records

Ahmet Fatih Mustacoglu

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the Department of Computer Science,
Indiana University

ii

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

Doctoral Committee ________________________________
Dr. Geoffrey C Fox (Principal Advisor)

Dr. Andrew Lumsdaine

Dr. Kay Connelly

Dr. Steven D Johnson

iii

© 2008

Ahmet Fatih Mustacoglu

ALL RIGHTS RESERVED

iv

Abstract

One of the major challenges that people facing with is to remember and access

information that they have found earlier and tought could be useful for them. Propobably

the most common approach to re-finding information on the web is to use personal

bookmarks provided by several web browsers. Fox instance, Mozilla Firefox browser

supports the creation of collections of URLs. Furthermore, URLs can be annotated by

using keywords or free-form text. These collections can also be sorted based on a various

things such as keyword, last visited, location or time. People created bookmarks depend

on their personal interests in the information and quality of the resource, possibility of

future use, current necessities. Information is spread all over the Web in various locations

including centralised repositories, web servers and user desktops. Centralised repositories

represent the old fashion techniques for resource sharing, whereas completely

decentralised systems such as P2P systems allow users to share information without

depending on a third party repository. The necessities to find and share information led to

the development of emergent Web 2.0 applications. These new Web 2.0 applications

such as social bookmarking tools introduce a new way of sharing information rather than

the old fashion and P2P systems do. Social bookmarking tools address the challenging

problems of finding and sharing information among small groups, teams and

communities. Various types of social bookmarking tools developed their own systems to

support different kind of resources. Flickr, for example, allows the sharing of photos,

del.icio.us the sharing of bookmarks, Bibsonomy, CiteULike and Connotea the sharing of

scholarly publications, YouTube the sharing of video, and 43Things even the sharing of

goals in private life. Social bookmarking tools for sharing of scholarly publications

v

among these solutions are not interoperable with each other and they have limitations to

represent whole scientific documents in a consistent manner.

In this dissertation, we present service enabled Event-based Infrastructure to

provide an efficient, scalable, flexible and modular architecture to represent and reconcile

metadata of scholarly publications coming from various sources. The system utilizes

Event-based Infrastructure and pull and push based consistency enforcement approaches

to represent the content of scientific documents located at several annotation tools with

the added metadata fields and capabilities. We also present an empirical evaluation of the

system to demonstrate applicability of this architecture to handle with the issues that exist

in the annotation tools for scholarly publications.

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 1

1.1 MOTIVATION ... 4

1.2 STATEMENT OF RESEARCH PROBLEMS ... 6

1.3 WHY EVENT-BASED INFRASTRUCTURE AND HYBRID CONSISTENCY FRAMEWORK (EBIHCF) FOR

RECONCILING DIGITAL ENTITIES? .. 7

1.4 THESIS CONTRIBUTIONS ... 9

1.5 METHODOLOGY ... 11

1.6 THESIS ROADMAP .. 12

CHAPTER 2 BACKGROUND AND SURVEY OF TECHNOLOGIES 14

2.1 WEB 2.0 AND ANNOTATION TOOLS ... 14

2.1.1 Related Projects .. 21

2.1.1.1 Connotea ... 21

2.1.1.2 BibSonomy .. 24

2.1.1.3 ShaRef ... 25

2.1.1.4 ReMarkables ... 27

2.2 EVENT SYSTEMS ... 28

2.2.1 Event Representation .. 29

2.2.2 Events Classification .. 32

2.2.3 Related Projects .. 35

2.2.3.1 JEDI .. 35

2.2.3.2 NaradaBrokering ... 37

2.3 CONSISTENCY MAINTANENCE ... 38

2.3.1 Data-Centric Consistency Models ... 38

2.3.2 Client -Centric Consistency Models ... 42

2.3.3 Update Propagation and Consistency Protocols ... 45

2.4 TECHNOLOGIES .. 45

2.4.1 Apache Axis 1.x ... 45

2.4.2 Jakarta Commons HttpClient .. 47

2.4.3 XML Parsers ... 49

2.5 SUMMARY .. 51

CHAPTER 3 EVENT-BASED INFRASTRUCTURE .. 52

3.1 DESIGN OVERVIEW ... 52

3.2 CONTENT OF A DIGITAL ENTITY (DE) .. 59

3.3 INITIAL STORAGE OF A DOCUMENT AS A DE ... 60

3.4 DUPLICATE DETECTION .. 60

3.5 EVENT-BASED INFRASTRUCTURE UPDATE MODEL ... 61

3.6 OVERVIEW OF THE ARCHITECTURE COMPONENTS ... 61

3.6.1 Event-based Infrastructure Services ... 62

3.6.2 Digital Entity Manager .. 63

vii

3.6.2.1 Events and Dataset Management ... 63

3.6.2.1.1 Events and Dataset Creation... 64

3.6.2.1.2 Event Processing Engine ... 65

3.6.2.2 Digital Entity Update Management .. 67

3.6.2.3 Periodic Update Management .. 68

3.6.2.4 History and Rollback Management ... 69

3.6.3 Timestamp Generator ... 70

3.6.4 Scheduler ... 70

3.6.5 Data Manager ... 71

3.7 SUMMARY .. 71

CHAPTER 4 HYBRID CONSISTENCY FRAMEWORK FOR DISTRIBUTED ANNOTATION

RECORDS 73

4.1 DESIGN OVERVIEW ... 74

4.2 CONSISTENCY CRITERIA ... 76

4.3 EXCEPTIONS IN REAL LIFE DOMAIN .. 77

4.4 HYBRID CONSISTENCY FRAMEWORK ... 78

4.4.1 Duplicate Detection and Handling Concurrent Updates 79

4.4.2 Overview of the Architecture Components ... 82

4.4.2.1 Annotation Tools ... 82

4.4.2.2 Communication Manager ... 83

4.4.2.2.1 Gateway .. 85

4.4.2.2.2 Parser .. 86

4.4.2.2.3 Web API ... 86

4.4.2.3 Annotation Tools Update Manager .. 87

4.4.2.4 Digital Entity Manager .. 89

4.5 SUMMARY .. 90

CHAPTER 5 THE PROTOTYPE IMPLEMENTATION OF EVENT-BASED INFRASTRUCTURE

AND HYBRID CONSISTENCY FRAMEWORK .. 91

5.1 IDIOM SYSTEM IMPLEMENTATION OVERVIEW .. 92

5.2 EVENT-BASED INFRASTRUCTURE .. 95

5.2.1 Annotation Tools ... 100

5.2.2 IDIOM Web Services .. 101

5.2.3 Session and Event Management Module ... 101

5.2.4 Digital Entity Management Module ... 104

5.2.5 Search Tools .. 107

5.2.6 Authentication and Authorization .. 107

5.2.7 Other ... 107

5.2.8 Timestamp Generator ... 108

5.2.9 Scheduler ... 108

5.2.10 Data Manager ... 109

5.3 HYBRID CONSISTENCY FRAMEWORK ... 109

5.3.1 Communication Manager ... 110

viii

5.3.2 Annotation Tools Update Manager .. 111

5.3.3 Update Propagation .. 112

CHAPTER 6 PROTOTYPE EVALUATION AND DISCUSSIONS 114

6.1 TESTING ENVIRONMENT .. 115

6.2 SYSTEM RESPONSIVENESS EXPERIMENTS ... 117

6.2.1 System Responsiveness Experiment Results ... 119

6.3 SCALABILITY EXPERIMENT .. 125

6.3.1 Scalability Experiment Results .. 126

6.4 CONSISTENCY MAINTENANCE EXPERIMENT ... 130

6.4.1 Consistency Maintenance Experiment Results ... 131

6.5 SUMMARY .. 137

CHAPTER 7 CONCLUSION AND FUTURE WORK ... 139

7.1 THESIS SUMMARY ... 139

7.2 ANSWERING THE RESEARCH QUESTIONS .. 143

7.3 FUTURE RESEARCH .. 147

BIBLIOGRAPHY ... 148

ix

LIST OF FIGURES

Figure 1-1: Research Tools with added capabilities for Sharing and Managing Scientific
Documents .. 3

Figure 2-1: Bibsonomy User Interface showing Bookmarks and Publications
Simultaneously (image taken from document [35]) ... 24

Figure 3-1: General Architecture of Event-based Infrastructure 53

Figure 3-2: Document Representation in Event-based Infrastructure 55

Figure 3-3: Content of a Digital Entity ... 59

Figure 3-4: Retrieving the latest digital entity metadata ... 66

Figure 3-5: Update Event Parameters ... 68

Figure 4-1: General View of a Distributed Annotation Record (DAR)............................ 74

Figure 4-2: General Architecture of Hybrid Consistency Framework 79

Figure 4-3: Popular Tags in del.icio.us ... 83

Figure 4-4: Hybrid Consistency Framework Communication Manager 84

Figure 4-5: Gateway ... 85

Figure 4-6: Web API Response .. 87

Figure 4-7: Annotation Tools Update Manager .. 89

Figure 5-1: Internet Documentation and Integration of Metadata (IDIOM) Architecture 93

Figure 5-2: The Content of a Digital Entity .. 96

Figure 5-3: Schema of DE Content ... 99

Figure 5-4: Current Metadata of a DE .. 102

Figure 5-5: Content of a Minor Event... 103

Figure 5-6: Application of a Selected Minor Event to a DE ... 103

Figure 5-7: MoreInfo of a DE ... 105

Figure 5-8: Update Metadata of a DE ... 106

Figure 6-1: Testing Cases for System Responsiveness Experiment 119

Figure 6-2: Test Results for Number of Annotation Tools Investigation 121

Figure 6-3: Improved Test Results for Number of Annotation Tools Investigation 122

Figure 6-4: Average timings for echo service, entering a major event into a database
service, and uploading a DAR to an annotation tool service .. 124

Figure 6-5: Testing cases of scalability experiment for More Info request 126

Figure 6-6: Round Trip Time chart for More Info Request when the numbers of minor
events are increased .. 127

Figure 6-7: Round Trip Time chart for More Info Request when the numbers of minor
events are increased .. 128

Figure 6-8: Average More Info Service - response time at various levels of messages per
second ... 129

Figure 6-9: The design of the consistency maintenance experiment. The coming updates
from annotation tools are reflected on the primary copy of each DAR located on the main
database, while the updates made on primary copies are carried out to the annotation
tools to be reflected over there. ... 131

Figure 6-10: Primary Copy Update Propagation (1 Node). We have 154 major events in
our database, and each major event has ten updates (minor events) in their history. Time
units are in milliseconds.. 132

x

Figure 6-11: Primary Copy Update Propagation (2 Node). We have 154 major events in
our database, and each major event has ten updates (minor events) in their history. Time
units are in milliseconds.. 133

Figure 6-12: Annotation Tools Update Propagation (1 Tool). We have 154 major events
in our database, and each major event has ten updates (minor events) in their history.
Time units are in milliseconds. ... 134

Figure 6-13: Annotation Tools Update Propagation (2 Tools). We have 154 major events
in our database, and each major event has ten updates (minor events) in their history.
Time units are in milliseconds. ... 135

xi

LIST OF TABLES

Table 2-1: A summary of the features of Delicious, CiteULike, Connotea and Bibsonomy
... 20

Table 3-1: Stored Metadata Comparison in Annotation Tools ... 56

Table 5-1: Summary of Technologies... 112

Table 6-1: Summary of Cluster Node - gf6.ucs.indiana.edu .. 116

Table 6-2: Summary of Cluster Node - gf8.ucs.indiana.edu .. 116

Table 6-3: Summary of Cluster Node - gf16.ucs.indiana.edu .. 116

Table 6-4: Statistics of the experiment depicted in Figure 6-2 121

Table 6-5: Statistics of the experiment depicted in Figure 6-3 123

Table 6-6: Statistics of the experiment depicted in Figure 6-4 124

Table 6-7: Statistics of Figure 6-6 with changing number of minor events. Time units are
in milliseconds .. 127

Table 6-8: Statistics of Figure 6-7 with changing number of minor events. Time units are
in milliseconds .. 128

Table 6-9: Statistics of the experiment results depicted in Figure 6-8. Time units are in
milliseconds .. 129

Table 6-10: Statistics of the experiment results depicted in Figure 6-10 132

Table 6-11: Statistics of the experiment results depicted in Figure 6-11 133

Table 6-12: Statistics of the experiment results depicted in Figure 6-12 134

Table 6-13: Statistics of the experiment results depicted in Figure 6-12 135

Table 6-14: Statistics of the experiment results depicted in Figure 6-13 136

Table 6-15: Statistics of the experiment results depicted in Figure 6-13 136

CHAPTER 1

INTRODUCTION

One of the major challenges that people facing with is to remember and access

information that they have found earlier and tought could be useful for them. Propobably

the most common approach to re-finding information on the web is to use personal

bookmarks provided by several web browsers. Fox instance, Mozilla Firefox browser

supports the creation of collections of URLs. Furthermore, URLs can be annotated by

using keywords or free-form text. These collections can also be sorted based on a various

things such as keyword, last visited, location or time. People created bookmarks depend

on their personal interests in the information and quality of the resource, possibility of

future use, current necessities as explained in [1].

Information is spread all over the Web in various locations including centralised

repositories, web servers and user desktops. Centralised repositories represent the old

2

fashion techniques for resource sharing, whereas completely decentralised systems such

as P2P systems allow users to share information without depending on a third party

repository. The necessities to find and share information led to development of emergent

Web 2.0 applications. These new Web 2.0 applications such as social bookmarking tools

introduce a new way of sharing information rather than the old fashion and P2P systems

do.

Social bookmarking tools address the challenging problems of finding and sharing

information among small groups, teams and communities. Various types of social

bookmarking tools developed their own systems to support different kind of resources.

Flickr, for example, allows the sharing of photos, del.icio.us the sharing of bookmarks,

Bibsonomy, CiteULike and Connotea the sharing of scholarly publications, YouTube the

sharing of video, and 43Things even the sharing of goals in private life. Social

bookmarking tools for scientific documents among these solutions are not interoperable

with each other and they have limitations to represent whole scientific documents in a

consistent manner.

There are several common features for social bookmarking systems. First of all,

these tools provide their users with ability to create their personal bookmarks and share

them with other users instantly. These personal bookmarks are stored centrally in these

systems and can be accessible from any computer that has an internet connection.

Second, these systems enable entering personal keywords called tags explicitly by the

user for each bookmark. Using tags for the resources allows users to organize and display

their collections in a meaningful way. Furthermore, assigning multiple keywords for a

bookmark make it belongs to multiple categories. The final common feature of social

3

bookmarking tools is the social way of their use. The collection of bookmarks created by

users is also visible to other users. For instance, when a user name is clicked on, then the

collection of bookmarks for that user is viewable to other users. Similar transparency is

also valid for tags. So, one can retrieved similar resources that fall into same interest of

other users by clicking on an interested tag.

Figure 1-1: Research Tools with added capabilities for Sharing and Managing

Scientific Documents

4

Search tools have been developing rapidly and supporting the collection of

documents and metadata about scientific documents. The most famous of the search tools

are the Google Scholar and Windows Live Academic Search. Google Scholar, for

instance, provides various types of metadata about scholarly publications such as number

of cited, conference name etc.

Figure 1-1 illustrates a model of building a system hierarchy where search tools

and existing services of social bookmarking tools can be used with added capabilities to

collect and manage metadata and data for scientific content. Our goal is to define the

practical extent of existing annotation tools for scholarly publications based on

information retrieveal and management in a consistent way.

1.1 Motivation

As the web-based social bookmarking services have gained popularity, an

emerging need has appeared for methodologies to retrieve, represent, share and manage

information that are stored in these annotation tools for scholarly publications. As these

services enable storing, tagging and sharing documents, another emerging need has also

appeared for supporting these tools by using their existing services via Web Service

wrappers with added capabilities. In this thesis, we are particularly interested in

investigating managing, sharing and reconciling scholarly publications that are stored in

several social bookmarking tools in Service Oriented Architecture.

We identify the following limitations of current annotation tools for supporting

the management and sharing of scientific documents.

First, there has been increasing number of annotation tools, each having their own

structure and design, their own interface, their own format of their holdings. Even though

5

these tools provide common features to their users such as tagging, storing and sharing

metadata and data, they do not have complete metadata support to represent the whole

content of a scientific document. Because of this, users are forced to save their interested

publications or documents into several annotation tools.

Second, annotation tools are lack of support for communication with each other to

exchange or share information. Hence, users of these systems suffer from having the

same documents in several tools and not being able to form a whole document by

combining the pieces from various annotation tools.

Third, these tools are also missing services for uploading, extracting and

importing documents from/to various locations. Users of these systems will not have any

choice to extract the content of their documents stored at annotation tools into a specified

repository or to store their metadata and data from a specified repository into these

annotation tools. As a result of these, users of these systems can keep their documents on

a shared place provided by these tools, and use their services to share, store new

documents or modify existing documents, and tag their documents by using these tools’

user interfaces.

Fourth, annotation tools do not provide timestamp information for their records.

Users of these tools and services can share, update or modify content of documents

without timestamp information. Because of this, the same documents can be updated

inconsistently with unknown precise timestamps and spread around in existing annotation

tools with different versions resulting in inconsistencies. In order to keep replicas of the

same document at several annotation tools, there is a need for reconciling distributed

annotation records located at various annotation tools.

6

Fifth, existing annotation tools to store, tag, share scientific documents, and find

similar groups or documents can be supported by using these tools’ existing services in a

uniform interface with additional tools (such as Google Scholar, CiteSeer, and Windows

Live Academic etc.) and capabilities for collecting, sharing, tagging and managing

scholarly publications for scientific research. To do so, there is a need for an

infrastructure to represent content of scientific documents and their metadata coming

from various sources. This infrastructure should also enable keeping track of changes to

documents and metadata.

1.2 Statement of research problems

In this thesis, we mainly focused on investigating a novel approach of building

consistent, Event-based Infrastructure to reconcile multiple sources of publications

coming from various sources. In order to build such framework, we particularly identify

the following research questions.

1. Can we implement an infrastructure that handles data and metadata

coming from various sources in Service Oriented Architecture? Can this

infrastructure integrate various existing online annotation tools for

publications, which stores replicas of the same documents, and use their

services? What is the efficient and flexible data model for such

framework?

2. How can we support a flexible architecture that allows user to easily track

documents?

7

3. How can we provide a consistency between the online replicated

documents stored at annotation tools for scholarly publications and

document located on a central server?

4. How can we achieve an information management architecture that can

provide more metadata support than the current annotation tools do for

scholarly publications?

5. Can we support communication between annotation tools for scholarly

publications?

6. How can we provide users with ability to access previous versions of an

updated document? Can we allow users to retrieve and apply other users’

updates for a same document? What is the flexible update model?

7. Does event-based approach scales very well?

8. Can we support services for extracting data and metadata from these

annotation tools into a specified repository? Moreover, can we support

services for uploading data and metadata from a repository to annotation

tools?

1.3 Why Event-Based Infrastructure and Hybrid Consistency

Framework (EBIHCF) for reconciling digital entities?

There are increasing numbers of annotation tools for scholarly publications and

we are not sure that which one will survive in the future. So, one can not trust to keep

his/her research works in only one tool. Replication of the documents in other annotation

tools can be seen as a solution to keep documents safely at first glance, however none of

the tools provide complete metadata support for the documents resulting in having

8

various incomplete versions of documents in several annotation tools. Another limitation

is the support for the timestamp information in these annotation tools. They do not

provide timestamp information for the updated entries. Furthermore, these tools are lack

of interoperability to exchange data and metadata between each other. As a result, why

can not we use these existing annotation tools and their services with added extra

capabilities to provide a framework to manage documents, which are coming from

various sources and consistent with their copies? Apperantly, our proposed Event-based

Infrastructure and Hybrid Consistency Framework (EBIHCF) offer a solution to manage

documents in a consistent manner.

Since EBIHCF is an event-based system, it only stores the changes that happen

within the system in a database. This reduces any additional computation to check the

current status of a document. Having an event-based model also provides easy and

flexible document tracking and navigation through the histories of a document. We never

loose a version of a document and each modification is kept as an event in our proposed

EBIHCF. So, we can easily rollback by undoing changes to modify the current content of

a document to a previous version of it. One major drawback of keeping every change as

an event is to have enough space. Another limitation is to necessary time to spend to

process events to build a current version of a document. But, today’s computers are fast,

hard drive and memory are cheap. So, these limitations can easily be handled by using

powerful computers with huge hard drive capacity and fast memories.

Having stored documents and keeping the modifications to them as events in a

database with additional metadata support and capabilities allow us to have complete

version of a document in a safe place with various abilities to manage them. Furthermore,

9

timestamp information for every change for each document is also provided by EBIHCF

for tracking the changes to documents in an easy and flexible way.

 EBIHCF provide a consistent view of documents between their replicas at several

annotation tools and a complete version of documents stored in EBIHCF’s main

database. To do so, EBIHCF utilizes several services, which communicate with

annotation tools and database, for getting and distributing the updates between the

complete version of a document and its replicas.

Web Services constructs loosely coupled systems to enhance interoperability

between applications running on different platforms. Similarly, we can benefit from Web

Services to leverage the interoperability between the annotation tools to provide them

with ability to communicate with each other to exchange data and metadata.

1.4 Thesis Contributions

The main contribution of this thesis is to propose an event-based infrastructure

and Hybrid Consistency Framework for reconciling digital entities coming from various

sources in a consistent manner. The implications of this thesis include, but are not limited

to:

• Proposing an infrastructure for handling data and metadata coming from

various sources in a flexible and consistent manner. An example

implementation of the proposed infrastructure is presented to manage

documents coming from different sources. This approach introduces the

Event-Based Infrastructure discussed in CHAPTER 3 and has been

implemented and tested in IDIOM prototype system discussed in

CHAPTER 5.

10

• Proposing a novel framework for integrating various online annotation

tools, which keep the replication of same documents, and using their

existing services to benefit from them. This thesis introduces a common

data model and communication language to provide a common platform

where integrated annotation tools can interoperate and exchange

information. With this approach we aim to enable different annotation

tools with different capabilities to communicate with each other and utilize

each other’s services.

• Proposing a novel framework for maintaining consistency between the

central server, where the primary copy of a document resides, and the

annotation tools, where the replication of a document is stored.

• Proposing an update model for updated documents to provide efficient and

flexible modifications of metadata fields of a document discussed in detail

in Section 3.5.

• Identifying the key factors and design issues that affect the management of

documents coming from several sources. This framework provides a more

metadata support for publications for better representing the documents

than the major annotation tools do.

• Implementation of the proposed Event-based Infrastructure and Hybrid

Consistency Framework System Software and its user interfaces discussed

in CHAPTER 5.

11

• Performing performance, scalability and consistency maintanence

measurements to investigate the implementation of the prototype system

througly discussed in CHAPTER 6.

1.5 Methodology

To evaluate our architecture, we chose Apache Axis 1.2 [2] version to deploy

Web Services and Apache Tomcat [3] is used as a servlet container. User interfaces are

developed in Java Server Pages (JSP) in prototype system. We have integrated Connotea,

Delicious and Citeulike annotation tools into our prototype system as replications of

documents that are located on a central server with additional metadata. To maintain

consistency among those annotation tools and central server, we have applied our Event-

based Infrastructure and our Hybrid Consistency Framework that is running in the

background all the time. Our framework is developed and deployed in an open

environment.

We performed several experiments by modifying the input parameters to figure

out the behavior of Event-based Infrastructure and Hybrid Consistency Framework.

EBIHCF is able to use increasing number of minor events and to support increasing

number of annotation tools that are integrated into the system. EBIHCF is also able to

handle multiple clients request concurrently. Furthermore, we investigated the cost of

consistency maintanence at the primary-copy and annotation tools (replicated document)

in terms of the time required to carry out updates by applying time (pulling updates) and

push (pushing updates) based hybrid consistency maintanence model.

Java 2 Standard Edition Edition compiler with version 1.5.0_12 is utilized. Java is

a platform independent object oriented language from Sun Microsystems [4]. Java is

12

preferred language for Web Service technologies due to its platform independence. As a

result, we have also selected Java as our programming language to benefit the

technologies that are already developed for Web Services.

1.6 Thesis Roadmap

We have presented a general introduction of the proposed research in this chapter.

First, the limitations in existing online annotation tools for scholarly publications, which

lead into the proposed research, were discussed in detail. Second, the statement of

research problems is given. Third, we have explained why we apply Event-based

Infrastructure in this research. Fourth, we have provided the contributions of the thesis.

Finally, we have explained our methodology in this thesis.

The organization of the rest of the thesis is as follows. CHAPTER 2 reviews the

background information and the underlying technologies. It provides a survey of event

systems and information about consistency maintanence. Several technologies are also

explored in the second half of the chapter.

CHAPTER 3 presents Event-based Infrastructure in detail. The big picture is

given at the beginning of the chapter, and it displays the general idea and principles of the

proposed infrastructure. The modules of the proposed infrastructure are explored in the

remainder of the chapter.

CHAPTER 4 describes the Hybrid Consistency Framework for reconciling digital

entities in detail. This chapter explores the design overview, design philosophy,

consistency criteria and Hybrid Consistency Framework in detail. The modules are

described in the remainder of the chapter.

13

We discussed a prototype system in CHAPTER 5 to demostrate the effectiveness

and applicability of Event-based Infrastructure and Hybrid Consistency Framework. The

prototype system is then subjected to several tests, which are analyzed to help clarify the

key features of this thesis.

CHAPTER 6 analyzes the performance evolution of the Event-based

Infrastructure and Hybrid Consistency Framework. It presents bencmarking on

performance, scalability and consistency maintenance of the system. Finally, in

CHAPTER 7, we present the thesis summary, answers to research questions and outline

several areas for future research directions.

14

CHAPTER 2

BACKGROUND AND SURVEY OF

TECHNOLOGIES

In this chapter, we have investigated the related work on relevant concepts

covered in this thesis, summarize several well-known projects in the research community,

which are also closely related to our work and introduced major technologies applied in

the thesis project. We will discuss Web2.0 and Annotation Tools, Event Systems,

Consistency Maintenance, Related Projects, and Technologies in the following

subsections.

2.1 Web 2.0 and Annotation Tools

In recent years there has been a rapid development of tools and services aimed at

fostering online collaboration and sharing between users and communities [5]. Blogs

15

(blogger.com, Google Blog) [6], Wikis (Wikipedia, WikiWikiWeb, Wikitravel) [7, 8],

Social Networking Tools (MySpace [9], LinkedIn [10]), Social Bookmarking Tools

(del.icio.us [11], Flickr [12], YouTube [13]), Syndication Feed Aggregators (Netvibes

[14], YourLiveWire [15]) and other related tools are quickly being embraced by an

expanding user base. The term “Web 2.0” is now a widely accepted term representing

this wave of new Web-based tools and the belief that they indicate a qualitative change in

today’s Web.

This change is also apparent in the domain of scientific research, with the recent

creation of a number of online tools that enable the annotation and sharing of scientific

content, such as CiteULike [16], Connotea [17] [18], and Bibsonomy [19]. Perhaps, the

best known annotation (or, social bookmarking) web site is del.icio.us (henceforth

referred to as Delicious) [11], a tool designed to enable the annotation and sharing of

URLs. A number of other annotation tools, which support collaborative tagging [20-23],

are now in widespread use; they support annotation and sharing of a variety of resources,

such as photos (Flickr), videos (YouTube), books (LibraryThing [24]) and goals

(43things [25]). In particular, there are several online tools specializing in the annotation

of scholarly publications, including Connotea, CiteULike, and Bibsonomy. The core

service offered by these annotation tools is the capability that allows users to quickly

annotate their favorite resources (URLs, photos, or citations) using a small number of

tags (keywords) and to share their tagged content with other users. Tagging represents a

significant shift in the metadata creation methodology. Traditionally, metadata creation

has been handled by: (a) specialized professionals working with complex categorization

schemes; or (b) the authors of scholarly content. Both of these methods suffer from

16

various problems [26]. Among the cited shortcomings of professional metadata creation

are the complexity and the lack of scalability of cataloguing systems, especially when

applied to the vast amount of data in today’s Web. Author metadata creation is vulnerable

to inadequate or purposefully inaccurate descriptions by authors. The new approach of

metadata creation, namely tagging, puts the task of metadata creation in the hands of

general users. This practice of collaborative categorization (which is now commonly

referred to as folksonomy [26, 27]) aims to harness the collective intelligence of a large

number of people. It has met with widespread acceptance by the Web users, as shown by

the sharp increase in the number of subscribers to such tools. Recently, there have been

preliminary attempts to look into the cognitive underpinnings of the popularity of tagging

[28] and some dynamic discussions about the bottom-up tagging versus top-down

categorization trade-off [29, 30]. While tagging remains a new practice whose long-term

benefits are not yet well-understood, some of its advantages and disadvantages have been

already pointed out [31]. Among the benefits of tagging are: (a) the ease of use and

access of the tagging tools; (b) the ease of discovering new content; (c) the support for

the creation of niche communities. The shortcomings include: (i) the lack of a standard

set of keywords; (ii) the difficulty of dealing with misspelling errors, synonyms, and

acronyms, which are commonly found in tagging; (iii) the difficulty of inferring

hierarchical relationships between tags (i.e., creating taxonomy). Each social

bookmarking tool can be described in terms of: (a) A model of data and metadata adopted

by the tool; (b) A user interface that allows users and groups to subscribe to the service,

manage their tagged content, share it with other users, and discover new content; (c) An

input/output interface that allows the data and metadata to be exported to various formats

17

or applications, and enables programmatic interaction with the system. An overview of

these features for the case of Delicious is given next. Table 2-1 summarizes the features

of three other tools (CiteULike, Connotea, and Bibsonomy) in addition to Delicious.

a) Data and Metadata: There are two main data objects handled by Delicious:

users and URLs. Anyone can register by creating a user name and a password. Users

maintain lists of (annotated) URLs which they can share with other users. In addition to

these two data objects, there are several types of metadata:

User network: Users self-organize into a network through a simple process

whereby any user A can designate any other user B as being “in her network”. In this

case, user A is said to be a fan of B. This process leads to the creation of a directed graph

whose nodes denote users and where an arc (u, v) means that user v is in user u’s network

(or, that u is a fan of v).

Bookmarks: Users can add annotations to their favorite URLs, thereby expanding

URLs into bookmarks. There are three different types of annotation in Delicious:

descriptions, notes, and tags. The description of a URL is the title of the web page

addressed by that URL (i.e., the text between <title> </title> HTML tags in the source

code of that page). Notes and tags are user-defined annotations. Notes are expressions or

sentences that describe the content of a URL. Tags are single-word, freely chosen

descriptors of a URL and represent the most widely used type of annotation. A user can

assign as many tags as she likes to a URL and can even rename or delete these tags later.

There are no restrictions in choosing tags (except that a tag can’t contain a space); thus, a

tag can be an English word, an abbreviation, an acronym, a sequence of non-alphabetic

symbols, etc. A user can group her tags into bundles. A bundle should be composed of a

18

set of tags which are somehow related (the name of a bundle should reflect the way in

which its tags are related). A tag may belong to several bundles.

b) User Interface: The user interface of Delicious provides a number of ways in

which the users can add, share, and discover bookmarks.

Adding bookmarks: Each user maintains a list of favorite bookmarks. This list can

be populated in two ways: (i) by installing a bookmarklet—a button which when clicked

triggers the execution of a piece of Javascript code—in the browser and clicking it while

visiting a web page that is to be bookmarked; (ii) by manually creating bookmarks while

logged into the system.

Sharing bookmarks: A simple way in which a user can share her bookmarks is by

emailing the URL of the web page containing her favorite bookmarks to the people she

would like to share her bookmarks with (this URL has the format

http://del.icio.us/<uname>). A member can share a bookmark with a specific other

member by tagging the bookmark with the “for: uname” tag; this bookmark will appear

in the “links for you” page of the other member.

Discovering new bookmarks: In addition to discovering new web pages through

standard methods, such as search engines and topic directories, one can also discover

interesting pages by browsing or searching the data and metadata stored in Delicious.

Currently, Delicious provides support for the easy browsing of the recent and popular

bookmarks and tags, the bookmarks and tags of a particular user, the bookmarks tagged

with a particular tag or the ones with a certain media type. Another way of discovering

new bookmarks is to subscribe to one or more tags of interest. After you subscribe to a

set of tags, Delicious keeps track of all bookmarks subsequently tagged with those tags

19

and shows them to you under the “subscription” page. A user can see the favorite

bookmarks of all users in her network. Finally, it is also possible to search for bookmarks

by keyword.

By default all information in Delicious is publicly viewable. However, it is

possible for a user to declare one or more bookmarks, or her network, as private.

c) Input/Output Interface: There are several ways in which a program can

exchange data with Delicious:

• The Delicious API is, as of this writing, in the initial phase of development.

Currently, it provides methods for (i) checking the time when a user last

posted a bookmark; (ii) obtaining the list of tags of a user, and renaming them;

(iii) obtaining the list of bookmarks of a user, modifying, or deleting them and

adding new bookmarks; (iv) obtaining the bundles (i.e., tag sets) of a user,

deleting bundles, or creating new ones. All communication with the API is

done over HTTPS. A delay between queries of at least 1s is required by the

system.

• JSON (JavaScript Object Notation) [32] feeds are available for: bookmarks,

tags, network, and fans.

• RSS [33] feeds are available on most pages within Delicious; no RSS feed is

allowed to be polled more frequently than once every 30 minutes.

20

Table 2-1: A summary of the features of Delicious, CiteULike, Connotea and

Bibsonomy

 Delicious CiteULike Connotea Bibsonomy

Data Model >> users
>> general URLs

>> users
>> groups
>> citations

>> users
>> groups
>> citations

>> users
>> groups
>> general URLs or citations

Metadata >> user network
>> other networks (users-tags,
bookmarks-tags, users-
bookmarks)
>> descriptions of URLs
>> tags, bundles of tags
>> notes on URLs

>> authors
>> tags
>> notes

>> tags
>> descriptions
>> comments
>> geographical metadata (by
GoogleEarth)
>> tag notes (i.e., tag
annotations)

>> network of “friend” users
>> tags
>> descriptions
>> tag relations (subtag,
supertag)

User Interface >> adding bookmarks
• bookmarklet
• importing from favorites
stored in browser
• manual

>> modifying bookmarks

• add/delete/rename all
annotations
• delete bookmarks

>> sharing bookmarks

• email bookmark page’s
URL
• tag with “for: uname”

>> discovering bookmarks

• browse (hot now, recent,
popular, specific tag, specific
media type, history)
• for a particular tag, see
related tags, active users
• for a particular
bookmark, see common tags,
related bookmarks, posting
history
• see bookmarks of all
users in my network
• “links for you” page
• subscribe to specific tags
• search:
 - by default search tags,
notes, descriptions
 - may search only tags
 - operators: AND, OR, -,
NOT, XOR

>> adding bookmarks
• bookmarklet (only for
supported publisher sites)
• manual
• import from Bibtex

>> modifying bookmarks

• can add/delete/rename
allcitations fields
• can delete citations

>> sharing bookmarks

• email bookmark page’s
URL
• automatically exported to
“Everyone’s library”

>> discovering bookmarks

• browse
- everyone’s library
- everyone’s tags
- a specific tag
- a specific author
- a specific user
- a specific group

• create a watchlist of tags,
users, groups
• search by keyword one
of: title, author surname,
abstract, journal name, tag

>> adding bookmarks
• bookmarklet (only for
supported publisher sites)
• copy another user’s
bookmarks
• manual (supports DOIs)
• import from local file
(RIS, Bibtex, Endnote)

>> modifying bookmarks

• add/delete/rename all
citation fields
• delete citations

>> sharing bookmarks

• email bookmark page’s
URL

>> discovering bookmarks
• browse

- popular bookmarks
- popular tags
- a specific tag
- a specific user
- a specific group
- related tags

• search
can choose to search one of:
my library, user, tags, all)

>> adding bookmarks
• bookmarklet
• copy another user’s
bookmarks
• manual
• import from Bibtex
snippet

>> modifying bookmarks
• add/delete/rename all
citation fields
• delete citations

>> sharing bookmarks

• email bookmark page’s
URL

>> discovering bookmarks
• browse

- popular bookmarks
- popular tags
- a specific tag
- a specific user
- a specific group
- related tags
- suggested tags

• search
can choose to search a user’s
metadata or all users’
metadata

I/O Interface >> API
• support for tags, bundles,
bookmarks, posting times
• over HTTPS
• delay between queries >
1s

>> JSON feeds
• bookmarks, tags, user
network, user fans

>> RSS feeds
• available for most pages
• delay between polls > 30
min

>> RSS feeds

>> Export to Endnote, Bibtex

>> API
• over HTTP
• retrieve list of bookmarks
• retrieve list of posts
• retrieve list of tags
• create a new post
• edit existing post
• remove existing post

>> RSS feeds

>> Export to RIS, Endnote,
Bibtex, MODS

>> RSS feeds

>> SWRC feeds

>> Export to Endnote, Bibtex

21

� Discussion: While we expect that annotation tools will constantly improve, it

seems unlikely that all of them will “prosper”. This uncertainty will clearly inhibit

adoption; therefore, we adopt a philosophy that is different from the one that specializes

Delicious to scientific content in Connotea and CiteULike. We do not intend to replace

any of these systems in our research but rather add to them by building tools that add new

capabilities. We will achieve this by building wrappers (constructed as Web services)

which allow us to both extract information from these tools and to store information in

them in our thesis research. While doing that inconsistency issues rise up due to updates

in records without the time stamp information for the updated entries in these tools. To

handle inconsistencies that might occur among entries we propose our hybrid consistency

framework described in [34].

2.1.1 Related Projects

Major related projects in social bookmarking and the ones that use bookmarking

tools as a base for their design are summarized in the following sub-sections.

2.1.1.1 Connotea

Connotea is an open source free online reference management and social

bookmarking service for scientific research community [18]. It is developed by Nature

Publishing Group [reference]. Connotea has currently huge and increasing number of

users. Connoeta project is inspired by the general web linking management system

del.icio.us [11] to fill the gap in the field of scholarly reference management. Key

features of Connotea project can be summarized as below:

22

• Online storage of reference and bookmarks: The current reference

management systems rely on having a reference database stored to user’s

own computer locally, and modified via installed software. Having an

online database has some advantages: (a) Allow resources to be available

and accessible from any web-enabled computer; (b) It is easier to share

references; and (d) Supporting other key features of Connotea system and

direct linking of literature.

• Simple, non-hierarchical organizing: Reference data is not placed in

folders or sub-folders; instead data can be viewed from the perspective of

tags, users, or links. Tagging provides a grouping related documents and

easy navigation of material without using nested hierarchical folder

structure

• Opening the list to others: Connotea supports public and private

bookmarking concepts to allow other users to see public documents or not

to have access to private reference materials. Connotea can automatically

discover and display connection between users based on the similar stored

bookmarks.

• Auto-discovery of bibliographic information: Connotea can find and

import the bibliographic information for any article or book. This

eliminates the typing errors and reduces the amount of typing that users

need to do.

The main futures of Connotea system that implements the concepts explained

above are:

23

• Bookmarklets: Bookmarklets are the JavaScript code, and they can be

integrated into browsers to provide users with custom functionality. One

of the major Bookmarklet is the one that allows a user to save a webpage

that he/she is currently viewing into his/her Connotea account.

• Recognising URLs from common archives and importing bibliographic

data: Connotea has a built-in functionality to identify URLs if they belong

to the set of URLs that Connotea recognizes. For example, if an added

URL refer to a scholarly article, then Connotea stores the publication

name, volume, issue number, publication date and list of articles (Please

see comparison table to see available metadata field in Connotea in Table

3-1.

• Tagging: Tagging plays a crucial role in Connotea since users’

referecences can be organized and grouped by user defined meaningful

keywords called tags.

• Comments: Comments are the piece of personal data about documents.

There also exist a bookmarklet plugin in Connotea to add a new comment

about the current webpage that user viewing for an article or any

document.

• RSS: The documents/bookmarks in Connotea can be navigated through the

user, tag or the combination of user and tag. Every list of bookmarks in

Connotea provides a RSS feed with subscribed users to notify them about

newly added items.

24

2.1.1.2 BibSonomy

Bibsonomy is a web-based social bookmark and publication sharing system [35].

Data model of publication documents is based on BIBTEX [36], famous literature

management system for LATEX [37]. Bibsonomy can display bookmarks and BIBTEX

based references at the same time depicted in Figure 2-1.

Figure 2-1: Bibsonomy User Interface showing Bookmarks and Publications

Simultaneously (image taken from document [35])

25

The main architecture components of Bibsonomy are Apache Tomcat Servlet

Container [3], Java Server Pages [38], Java Servlet Technology [39], and MySQL

database.

Model View Controller (MVC) [40] programming paradigm is used for the

development of Bibsonomy system to separate the logical handling of data from the

presentation of the data. When there is a need for new output format, it can be

implemented as a JSP as a view of the model.

Bibsonomy relies on four major database tables: (a) A table for bookmarks posts;

(b) A table for publication posts; (c) A table for tag assignmenst; and (d) A table for the

relations.

Bibsonomy system provides its users with various services and main futures of

the Bibsonomy system are: (a) Relations between tags (user specific binary relation

explained in detail in section 3 in [35]); (b) Duplicate detection (hashing BIBTEX fields

by MD5 [41] message digest algorithm to detect duplicate publication entries); (c)

Editing tags; (d) Importing resources; (e) Exporting resources; (f) Groups; and (g)

Shopping basket, which allow picking desired publications to be available for export later

in a shopping basket.

2.1.1.3 ShaRef

ShaRef is a reference management system with collaboration and lightweight

knowledge management features [42-44]. ShaRef project is funded and carried out by

Swiss Federal Institute of Technology (ETH) [45].

One of ShaRef’s major goals is to manage references in a way that seamlessly

integrates bibliographic and web references. This allows ShaRef to manage all references

26

uniformly and its knowledge management capabilities can be used for all types of

references. It enables users to go from their references directly to the library via its

OpenURL [46] service. ShaRef provides minimal but usefull support for knowledge

management. It provides two concepts: (a) keywords, which are used for identifying

references within ShaRef like tagging documents; and (b) cross-references, which

connects references. ShaRef allows users to make generic cross-references such as

creating annotations that refer to other references.

Sharef provides its user with ability to share their resources based on access

control for users and groups. It also supports messasing to improve collaboration. So,

users or member of groups can access to references via ShaRef interface. Furthermore,

ShaRef allows users to publish references, and this enable the Web-based access to the

published references. By integrating a user user-defined XSLT program, any export

format can be generated for referemces.

ShaRef has been design based on XML data model and various XML

technologies [47]. It is implemented by using Java language for both platform and the

client to be as independent as possible from any specific operating system. The Java rich

client is client/server architecture and implemented by using Java RMI [48]. ShaRef can

work in online or offline mode. When it is working online mode, it uses pure Java DBMS

[49], where as it uses a user’s local hard drive in offline mode to store references. ShaRef

also provides a Web-based user interface that enables accessing ShaRef references via a

Web browser. The Web-based user interface does not offer the full services that Java

client does.

27

2.1.1.4 ReMarkables

ReMarkables is a Web-based research collaboration support system that uses

social bookmarking tools [50]. ReMarkables research project is developed at Nippon

Institute of Technology [51], and available from http://comweb.nit.ac.jp/ReMarkables. It

is built on existing social bookmarking tools and its main goal is to improve existing

social bookmarking tools to provide efficient collaborative support system for scientific

research communities. Members of scientific communities are mostly interested in

research topics and expert groups in those topics. In ReMarkables system, it is easy to

find research groups working on an interested topic via its topic bookmark services.

Users of research communities can share their bookmarks with specific tags;

communicate with each other using mailing lists and wiki pages associated with a topic

bookmar list. ReMarkables system’s requirement analysis is done based on Tropos

methodology [52], and main functionalities of ReMarkables system are: (a) Retrieve

online publications, search for topic bookmarks and other users’ bookmarks; (b) Explore

bookmarks; (c) Store personal bookmarks; (d) Export bibliography; (e) Manage topic

mailing list; (f) Share topic bookmarks; (g) Share topic wiki page.

In Tropos methodology [52], the system’s global architecture consists of

subsystems, which are also called actors, and the subsystems are connected to eah other

via data and control flows (data dependincies). To provide the major functionalities of the

ReMarkables system, new actors are introduced in the architecture of it and the main

actor is called “Topic recommender”. Basically Topic recommender has three main

functions: (a) Notify users via sending email when a new topic bookmark list is created

from a search result for a specific topic; (b) Notify users via email when a new bookmark

28

is added; (c) Display related topics in the topic bookmark frame when a user retrieves

online publications. Finally, the whole ReMarkables system services are managed and

provided by the five major architecture components: (a) Bookmark Searcher; (b) Personal

Bookmarks Manager; (c) Bibliographer; (d) Topic Recommender; and (e) Topic

Bookmarks Manager.

2.2 Event Systems

In recent years, there has been an increasing amount of research focused on event

based systems. Their main purpose is to notify the necessary entities about the changes

that occurred in the domain of interest. Today, event systems are needed and used in

many areas like graphical user interfaces, databases, web based applications, networking

applications, distributed applications, publish-subscribe paradigm etc. Several tools have

been developed for each of these areas to satisfy their needs, and NaradaBrokering [53-

57] is an open-source messasing infrastructure, which implements the publish-subscribe

paradigm, developed in Community Grids Lab at Indiana University [58].

There are two different approaches to the event definition. The first approach

defines an event as it is an instantaneous atomic occurrence, so it is represented as a point

in time [59-61]. Based on this approach, timestamps of event occurrences can be

categorized in three different ways:

• Absolute time point: It consists of date and time

• Relative time points: It is defined relative to a particular position

• Virtual Clocks are explained in detail in [62], and uniquie timestamp values

are assigned automatically to each event by the system.

29

The second approach defines an event as occurrence of an interval in time [63-

66]. Based on this approach, state change of an event can be specified within a specific

interval and the interval can be represented in two ways:

• As relative, absolute, or virtual time points represent starting and ending point

of an interval

• Event occurrences that represent the initial and ending points of an interval

So, first approach defines events as having no duration while the second approach

defines events by having them particular duration. Most of the previous event system

related works use the first approach in their event-based modeling and design.

� Discussion: In our research, we have choosen to use the first approach due to its

suitability to our design of the event-based infrastructure. We assign a time stamp value

to each minor or major event once they occur within the system as an absolute time point

described in [67]. This time stamps values provide us with ability to sort events based on

their occurrences and to use time stamp values for consistency maintanence described in

detail in section 4.4.

2.2.1 Event Representation

According to [68-70], events are represented in the form of tuples. Since, any

state change of an event in a specific time point or an interval represents information,

which is defined as a data structure with several attiributes. Events are constructed in the

form of tuple structure and delivered to external entities that are listening the system for a

particular state changes. Communication model for delivering events in the form of tuple

structure to the external entities takes place in the form of messages. Message formats

30

varies based on the domain of each system. Messages in event system represent a tuple

structure and tuples genericly composed of:

• Unique Event Id

• Event attributes that caries additional information about the event

Unique event id helps an event to be separated from other events and it is a

mandatory field for event representation. Event attributes carries an extra information

realted to the event such as event type, event owner, etc.

Events are described as in the form of tuples with already built in abstract data

types in previous work such as CORBA Event Notification Service [71, 72], Java AWT

delegation Event Model [73], DOM [74] interfaces for tuple representation. In database

programming, events are stored as a tuples in the form of record structures composing the

event histories.

Every system has a response unit to the state changes coming from the

environment to handle with the changes [69, 75]. Reactive applications depend on the

data that describes the current state of their environment due to changes. Each application

continuously checks any state changes happening in their environment to adopt the

changes in their interest. The process of uninterrupted checking for detecting the state

changes and retrieving the changes that represents the current environment is called

monitoring the environment. Instead of monitoring the state changes, most of the systems

prefer to be notified by the changes that happened in their domain of interest so that they

do not need to monitor the state changes to reduce the computational works. Since,

monitoring the state changes requires an additional computational overhead, and at this

point, event and event-based systems gets attention due to their nature. Use of Event-

31

Based systems provides applications with the state changes in their domain of interest in

the form of messages without monitoring their environment. As a result, external systems

do not need to spend any additional computation to retrieve the state changes. They can

be notified by the event-based systems once a state change occurred.

In distributed event-based systems, multiple objects at different locations can be

notified by events, which take place at any objects. To do so, they use publish-subscribe

mechanism that allow an object to generate and propagate the type of events to all

subscribed parties. Objects that are willing to receive updates from an object that has

published its events subscribe to the type of events in their domain of interest. Different

event types can point to different methods executed by the interested object. Notifications

are the objects that represent events. Events and notifications can be used in various

applications such as interactive applications, modifying a document, chat applications.

Distributed event-based systems have two main characteristics [76]:

• Heterogeneous: When event-based systems are used for communication

between distributed objects, different components that do not designed to

work together can be interoperated. It is described in detail how event-based

system can be used to interoperate different components on the internet [77].

• Asynchronous: Event generating objects send notifications to all objects that

subscribe to them so that publisher do not need to synchronize with the

subscriber objects. Project Mushroom described in detail in [78] is a

distributed event-based system that supports collaborative work.

� Discussion: In our thesis, events have unique event ids, and we have

distinguished our events as major and minor events and we have defined our events as a

32

time stamp action on a digital document with additional information (described in detail

in [67]). In our proposed research, we have interoperated heterogeneous annotation tools

to communicate with each other via event-based infrastructure and Web service

technology. We could not use publish-subscribe paradigm to disseminate updates since

the integrated annotation tools do not support publish-subscribe mechanism. However,

any application that require and support publish-subscribe mechanism, then broker

address and topic can be defined in a property file to provide updates via publish-

subscribe mechanism by connecting to the broker and subscribing a topic. Finally, our

update dissemination falls into unicast communication.

2.2.2 Events Classification

Events can be categorized as Primitive Events and Composite Events. Following

sub sections overview these two categories.

1) Primitive Events are the ones that are predefined within the system and

originated from the publishers in the event notification service [79-81]. Some

examples to primitive events: (a) Begin of Block (BOB) and End of Block

(EOB) atomic primitive events in a multi-user DBMS system [82, 83]; (b)

Predefined set of events in an embedded system like autonomous vehicle as in

[84]. Computations can be separated into several controllers and each controller

can react based on the associated predefined set of events to prevent collisions;

(c) Incoming requests for predefined database events such as insert, update,

delete etc. in a centralized or distributed database system [85]; (d) Clock events

generated using the system clock or distributed clocking scheme [86]; (e)

Synchronous or asynchronous huge amount of data can be retrieved from the

33

sensors through an event notification service in a distributed sensor network

system [87, 88].

Primitive events can be classified into four groups:

i. System related Primitive Events: They are the basic events that are

defined and fired by the system such as events in graphical user

interface (button press or release, etc.) [89, 90], database operations

(update, delete, inset etc.), smart sensor systems (detection of

temperature increase or decrease etc.) [91].

ii. User-defined Primitive Events: They are the events that are defined by

users explicitly [92].

iii. Time related Primitive Events: These events can be categorized into

three types of events:

a. Absolute Clock Events: These types of events are fired at an

absolute time point instantenously.

b. Relative Time Events: These events represent a unique time

points that is defined by a given reference point and offset value

for that point.

c. Periodic Time Events: These events are defined with a reference

point and a period. These events are fired by the system

periodically from the defined reference point.

iv. Exceptions: They are the interrupts that occur in a system due to illegal

operations. Exceptions can be seen in various types of applications,

34

especially in security systems and operating systems when a fault

occurred in the system [93].

2) Composite Events: Primitive events are in wide use and they can satisfy the

some application needs but, some of the applications may require more

complex time pattern for their environment. At this point composite events rise

up, and a composite event is an occurrence that represents a particular state

change based on a pattern, which consists of a combination of the basic events.

Some examples to primitive events: (a) To start a session when expected users

finish their transactions in an active multi-user DBMS, a group administrator

should track the system for a particular users and their transactions [94, 95]; (b)

Tracking of the current traffic in a real time traffic control system to predict a

traffic jam [96, 97]; (c) Providing necessary services for students and faculties

in a Web-based education system [98, 99].

• Discussion: Events are particularly suited for object-sharing frameworks. They

support heterogeneity. They enable us to meet users’ requirement for highlevel awareness

information during collaborations. They also fulfil users’ requirement to inspect the

histories of objects, and not just their current state. We have used event-based framework

in our thesis research and our approach for event classification in our theses defined in

[67]. Our events (major and minor) are primitive events and they fall into System related

primitive events since they are constructed by the system when an event occurred in the

system. Each event has a unique event id, time stamp, event type information and

payload data. That information is processed during document build-up process from

35

events to retrieve the latest or the desired version of a document and hybrid consistency

maintenance period as explained in detaill in CHAPTER 3 and CHAPTER 4.

2.2.3 Related Projects

2.2.3.1 JEDI

JEDI (Java Event-based Distributed Infrastructure) is an event-based, object-

oriented infrastructure for the development of complex distributed systems [100]. JEDI

infrastructure is based on the notion of active object (AO), which is “an autonomous

computational unit performing an application-specific task”. In JEDI, “Each active object

has its own thread of control and interacts with other AOs by explicitly producing and

consuming events”. Events are messages and they do not include any information about

their receipent. An event is ordered set of strings, which consists of event name and other

parameter values. Events are generated by AO and sent to event dispatcher (ED). Event

subscription and unsubscribe operations are provided for AO to allow them to show their

interest for receiving or not receiving the interested events during their life cycle.

Main futures of JEDI can be summarized as below:

• Event Patterns: An event pattern is a set of ordered string, which

represents a regular expression, in JEDI and AOs subscrive either a

specific event or an event pattern. An event pattern consists of pattern

name and pattern parameters. A pattern name is the first string, and the

remaining strings are the pattern parameters in an event pattern.

• Reactive Objects: Reactive objects are the particular AOs that execute a

standart loop by waiting for events that they subscribe to and process them

in JEDI.

36

• Distribution of the Event Dispatcher: In JEDI, two versions of event

dispatchers are supported: (a) Centralized; (b) Distributed. Centralized

version consists of asingle process, few AOs, running on local area

network, and is designed to handle simple systems with exchanging

limited number of events. So, centralized version can be a bottleneck for a

distributed system. However, in the distributed version of the event

dispatcher, the main goal is to support network intensive applications by

exploiting a set of dispatching servers interconnected in a tree structure.

• Preservation of Event Ordering: In distributed systems, ordering of events

ordering is a crucial issue, and none of the traditional communication

mechanism used over the internet guarantees a total ordering of events due

to variable latency. In JEDI, ordering of events is also crucial when

distributed event dispatchers are needed to be used. As a result, in JEDI

casual ordering of events are guaranteed [100].

• Mobility: Mobility is to be able to move running components of an

application easily across to nodes of a network. In JEDI, mobile AOs are

supported. So, AOs can disconnect from an event dispatcher and reconnect

to another distributed event dispatcher. To provide mobility of AO, JEDI

supports moveIn and moveOut operations [100].

37

2.2.3.2 NaradaBrokering

NaradaBrokering is an open-source event-brokering system based on the

publish/subscribe paradigm, which allows distributed systems to communicate with each

other by exchanging messages [53-57, 101, 102]. NaradaBrokering system has been

developed at Community Grids Lab [58] at Indiana University and available from

http://grids.ucs.indiana.edu/ptliupages/projects/narada.

Communication is asynchronous and events are central to NaradaBrokering

system. Events encapsulate data in various levels, and they constitute the data flow in

NaradaBrokering system. One of the main duties of NaradaBrokering system is to deal

with efficient management of data flow.

NaradaBrokering system incorporates number of services: (a) Reliable delivery;

(b) Ordered delivery; (c) Secure delivery of messages; (d) Access to globally

synchronized timestamps; (e) Reduction of jitters. It also supports various

communication protocols: (a) TCP; (b) UDP; (c) HTTP; (d) SSL; and (e) Parallel TCP.

NaradaBrokering also supports Java Message Service (JMS), JXTA to support

peer-to-peer interactions, SOAP and several Web Service specifications including WS-

Reliability, WS-Eventing, and WS-ReliableMessaging.

It has been used in various domains including collaborative applications,

audio/video conferencing applications and GIS systems. Some example applications

currently using NaradaBrokering are SERVOGrid [103], GlobalMMCS [104], the WEB-

IS research work at the Florida State University and the University of Minnesota, and the

Anabas system which provides support for shared displays and online collaborative

meeting software.

38

2.3 Consistency Maintanence

Consistency is an important issue in distributed systems. Consistency means that

all copies of a same document meant to be the same. When one copy is updated, and then

it must be ensured that all copies are updated as well [105].

According to [105], consistency models can be classified into two group: (a)

Data-Centric Consistency Models; (b) Client-Centric Consistency Models. Details about

these two models, update propagation and consistency protocols are given in the

following sections respectively.

2.3.1 Data-Centric Consistency Models

A consistency model is a contract between processes and hosting environment,

where data is stored. As long as processes obey the rules, the hosting environment

promises to work correctly. A process that executes a read operation on a data item

expects to get a value that is a result of the last write operation on the data item.

However, in the absence of a global clock, it is difficult to say which write operation is

the last one. So to maintain consistency in different ways, there are other data-centric

consistency model definitions. Each data-centric consistency model has different

restrictions on what a read operation can return on a data item. It is easy to implement

and use consistency models with minor restrictions whereas it requires lots of effort to

use consistency models with major restrictions. But the gain is different in each model

since the one with major restrictions provide better results than the one with minor

restrictions do [105]. More information on consistency models can be found in [106,

107]. Tanenbaum classifies data-centric consistency models into seven sub-categories:

39

• Strict Consistency: It is the most strict consistency model and it is defined by the

following condition:

“Any read on a data item x returns a value corresponding to the result of the

most recent write on x” [105].

This model relies on absolute global time to order processes and all writes to a

data item instantenously are visible to all processes. If a data item is changed, all

read requests on that data item gets the new value, no matter how soon these

requests are made, and which process are making a request and where these

processes are located.

• Linearizability and Sequential Consistency: Sequential consistency model is a

slightly weaker consistency model than strict consistency model. It is defined by

the following condition:

“The result of any execution is the same as if the (read and write) operations

by all processes on the data store were executed in some sequential order

and the operations of each individual process appear in this sequence in the

order specified by its program” [105].

Linearizability consistency model is weaker than strict consistency model and

stronger than sequential consistency model. A data store is linearizable as long as

each operation has time-stamp value and the following condition is satisfied:

“The result of any execution is the same as if the (read and write) operations

by all processes on the data store were executed in some sequential order

and the operations of each individual process appear in this sequence in the

40

order specified by its program. In addition, if tsOP1(x) < tsOP2(y), then

operation OP1(x) should precede OP2(y) in this sequence” [105].

Linearizability is usually used in formal verification of concurrent algorithms

[108]. If a data store holds necessary conditions for linearizable consistency, it

also satisfies necessary conditions for sequential consistency. Preserving time-

stamp ordered values brings additional cost to linerizability than sequential

consistency [109].

• Casual Consistency: A casual consistency model is a weaker consistency model

than sequential consistency model, and it distinguish events as casually related or

not. So, if event X is caused or affected by an earlier event Y, than casual

consistency requires that every process first get Y then get X. A data store said to

be caually consistent if it satisfies the following condition:

“Writes that are potentially casually realted must be seen by all processes in

the same order. Concurrent writes may be seen in a different order on

different machines” [105].

• FIFO Consistency: FIFO consistency model is less strick than casual consistency

model. FIFO consistency model requires the following condition to meet:

“Writes done by a single process are seen by all other processes in the order

in which they were issued, but writes from different processes may be seen

in a different order by different processes” [105].

In distributed shared memory systems, FIFO consistency is called PRAM

consistency, and is described in [110].

41

• Weak Consistency: Weak consistency is maintained by using synchronization

variables to maintain consistency [111]. Weak consistency model has three

characteristics as follow:

1. “Accesses to synchronization variables associated with a data store, are

sequentially consistent” [105].

2. “No operation on a synchronization variable is allowed to be performed

until all previous writes have completed everywhere” [105].

3. “No read or write operation on data items are allowed to be performed

until all operations to synchronization variables have been performed”

[105].

• Release Consistency: This model provides two kinds of synchronization variables

to distinguish a process whether enters or leaves a critical region. An acquire and

a release operation notify a data store that a critical region is about to be entered

or has just been exited [112]. A data store is release consistent if the following

conditions are satisfied:

1. “Before a read or write operation on shared data is performed, all

previous acquires done by the process must have completed

successfully” [105].

2. “Before a release is allowed to be performed, all previous reads and

writes done by the process must have been completed” [105].

3. “Accesses to synchronization variables are FIFO consistent (sequential

consistency is not required)” [105].

42

Lazy release consistency is a different implementation of release consistency and

described in detail in [113].

• Entry Consistency: Entry consistency model has been designed to be used with

critical sections [114] and it works in a similar way with release consistency

model. However, unlike release consistency, in entry consistency each shared data

has to be associated with some synchronization variable such as lock or barrier

[105].

A data store is entry consistent if it satisfies all the following requirements:

1. “An acquire access of a synchronization variable is not allowed to

perform with respect to a process until all updates to the guarded

shared data have been performed with respect to that process” [105].

2. “Before an exclusive mode access to a synchronization variable by a

process is allowed to perform with respect to that process, no other

process may hold the synchronization variable, not even in

nonexclusive mode” [105].

3. “After an exclusive mode access to a synchronization variable has

been performed, any other process’s next nonexclusive mode access to

that synchronization variable may not be performed until it has

performed with respect to that variable’s owner” [105].

2.3.2 Client -Centric Consistency Models

In the previous section, we have overview and summarized data-centric

consistency models that are all about providing a systemwide consistent view on a shared

data. On the other hand, client-centric consistency models ensure the consistent view of

43

data from a client’s perspective. They allow copies of a data to be inconsistent with each

other as long as the consistency is maintained from a single client’s point of view.

Tanenbaum classifies data-centric consistency models into five sub-categories:

• Eventual Consistency: In eventual consistency, replicas are allowed to diverge

and become inconsistent and it is guaranteed that the system can eventually

converge to a consistent state. In this model, it is easy to solve write-write

conflicts since; it is assumed that there are small numbers of processes that can

perform an update operation.

Eventual consistent data stores can perform well as long as clients always access

the same replica, however problems may occur when different replicas are

accessed. The problem can be solved via client-centric consistency that

guarantees consistent view of a datastore from a single client’s perspective [105].

Client-centric consistency models are generated (for example [115, 116]) based

on the work on Bayou [117].

• Monotonic Reads: It is the first client-centric consistency model and a data store

is monotonic-read consistent if satisfy the following condition:

“If a process reads the value of a data item x, any successive read operation

on x by that process will always return that same value or a more recent

value” [105].

So, monotonic-read consistency guarantess that if a process retrieves a value of a

data item A at time t1, than the process never gets an older version of data item A

at later time.

44

• Monotonic Writes: This client-centric consistency model ensures that write

operations are performed in the correct order on all copies of the data store. If a

data store is said to be monotonic-write consistent, it must satisfy the following

condition:

“A write operation by a process on a data item x is completed before any

successive write operation on x by the same process” [105].

• Read Your Writes: It is similar to the previous client-centric monotonic-read

consistency model, and a data store is read-your-write consistent if the following

condition is satisfied:

“The effect of a write operation by a process on data item x will always be

seen by a successive read operation on x by the same process” [105].

So a write operation is always completed before a successive read operation that

performed by the same process independent from where the read operation is

performed.

• Writes Follow Reads: Writes-follow-reads consistency model ensures that updates

are disseminated to replicas as the result of previous read operations. A data store

is writes-follow-reads consistent if the following condition is satisfied:

“A write operation by a process on a data item x following a previous read

operation on x by the same process, is guaranteed to take place on the same

or a more recent value of x that was read” [105].

45

2.3.3 Update Propagation and Consistency Protocols

An important design issue in update propagation is what to propagate to replicas.

There are three possibilities to propagate:

o Propagate only notification to replicas.

o Transfer data from one replica to another.

o Propagate the update operation to other replicas.

A promising approach to our design would be propagating the data from one copy

to another due to the nature of integrated annotation tools.

Another design issue is to decide whether updates are pulled or pushed. In a push-

based protocol, updates are disseminated to all replicas without their asking for the

updates. On the other hand, updates are retrieved from replicas by asking them at any

moment in pull-based protocol. Furthermore, unicasting or multicasting communication

approaches should also be decided to propagate updates. Because of the nature of the

annotation tools, our proposed approach is to have a push and time-based pull approaches

to propagate updates via unicast communication. Since annotation tools do not support

publish/subscribe mechanism.

2.4 Technologies

We have overviewed the main technologies that are crucial to our design and

implementation model of our proposed thesis research in the following sub-sections.

2.4.1 Apache Axis 1.x

Axis is a Web Service container and available from http://ws.apache.org/axis/ . It

is basically a SOAP (Simple Object Access Protocol) engine including:

46

• A simple stand-alone server,

• A server which plugs into servlet engines such as Tomcat,

• Extensive support for the Web Service Description Language (WSDL),

• Emitter tooling that generates Java classes from WSDL.

• Some sample programs, and

• A tool for monitoring TCP/IP packets.

Key features of the Apache Axis 1.x are:

• Speed: Axis 1.x is faster than the earlier versions of Apache SOAP since it uses

SAX (event-based) parsing.

• Flexibility: Architecture of Axis 1.x is flexible and provides developers with

ability to add extenstions into the Axis engine for custom header processing,

system management or any other custom needs.

• Stability: Axis is very stable since its defined published interfaces are change

slowly when it is compared to other parts of Axis.

• Component-oriented deployment: Common patterns can be implemented to

process custom applications in Axis 1.x by defining resusable networks of

Handlers.

• Transport framework: Core of the Axis engine is transport-independent and Axis

1.x supports various protocols including SMTP, FTP, and message-oriented

middleware.

• WSDL support: Axis 1.x supports the WSDL (Web Service Description

Language, version 1.1). Users can easily build stubs to access remote services,

47

and automatically export machine-readable descriptions of their deployed services

from Axis.

Axis 1.x provides three main interfaces: (a) Remote Procedure Calls (RPC) [118];

(b) Document/wrapped; (c) Message style communications. In the RPC style, a Java

object is serialized into XML and deserialized back into a Java object at the target point.

It is very profitable to use the RPC style if a Java program has already been written and

need to be deployed. Document and wrapped styles are similar to each other, whereas

they are different due to their use of SOAP encoding. In document/wrapped style data is

encapsulated within a plain XML document and serialization/deserialization operations

are not required, but binding is necessary in this type of deployment. Finally, message

style communication is a user-defined and it is very flexible due to its nature of being in

an XML document and not necessity of serializers/deserializers in this type of style.

� Discussion: In our implementation of our thesis research, we have used Axis 1.2

version as our Web Service container. We have followed RPC style communication to

provide access to our service interfaces as explained in 3.1. We have transferred

messages between clients and services in XML format via RPC style communication. We

preferred to use RPC style communication since we have already implemented our thesis

research in Java language and we need to deploy our implementation as a Web Service

accessible from various clients.

2.4.2 Jakarta Commons HttpClient

HttpClient is an open source project that provides functionalities to access

resources via HTTP protocol. It is available from http://hc.apache.org/httpclient-3.x/. Its

main futures are:

48

• Implementation of HTTP versions 1.0 and 1.1 in pure Java language.

• Implementation of the all HTTP methods (GET, POST, PUT, DELETE, HEAD,

OPTIONS, and TRACE) in an extensible OO framework.

• Supporting encryption with HTTP over SSL (HTTPS protocol).

• Providing transparent connections via HTTP proxies.

• Providing tunneled HTTPS connections through HTTP proxies, via the

CONNECT method.

• Allowing transparent connections through SOCKS proxies (version 4 & 5) using

native Java socket support.

• Provides authentication through Basic, Digest and the encrypting NTLM (NT Lan

Manager) methods.

• Ability to plug-in custom authentication methods.

• Ability to Multi-Part form POST for uploading large files.

• Pluggable secure sockets implementations, making it easier to use third party

solutions

• Support for connection management in multi-threaded applications. It allows

setting the maximum total connections and also the maximum connections per

host. Furthermore, it can detect and close stale connections.

• Ability for Automatic Cookie handling. It also allows plug-in mechanism for

custom cookie policies.

• It supports persistent connections by using KeepAlive in HTTP/1.0 and

persistance in HTTP/1.1

49

• It allows direct access to headers and the response code, which are sent by the

server.

• It allows setting connection timeouts.

� Discussion: In our design and implementation of thesis research, we need to have

a mechanism to communicate explicitly with annotation tools to retrieve data from and

send data to. Our Hybrid Consistency Framework has been designed to work in the

background as a multi-threaded form, and HttpClient is a perfect fit to provide our needs

by supporting all HTTP methods, cookies, and authentication in a multi-threaded

environment. Implementation details can be found in CHAPTER 5.

2.4.3 XML Parsers

There exist several parsers for XML processing. DOM and SAX parsers are the

most popular ones, and DOM parser is the most widely used one for XML processing. It

reads and validates the XML document. Document Object Model (DOM) [119] provides

“a platform- and language-neutral interface that will allow programs and scripts to

dynamically access and update the content, structure and style of documents”.

Documents are represented in a tree structure in the DOM structure. Each node in the tree

structure can be one of the specified types and what they may have as their children is

specified in [119] as:

• Document -- Element (maximum of one), ProcessingInstruction, Comment,

DocumentType

• DocumentFragment -- Element, ProcessingInstruction, Comment, Text,

CDATASection, EntityReference

• DocumentType -- no children

50

• EntityReference -- Element, ProcessingInstruction, Comment, Text,

CDATASection, EntityReference

• Element -- Element, Text, Comment, ProcessingInstruction, CDATASection,

EntityReference

• Attr -- Text, EntityReference

• ProcessingInstruction -- no children

• Comment -- no children

• Text -- no children

• CDATASection -- no children

• Entity -- Element, ProcessingInstruction, Comment, Text, CDATASection,

EntityReference

• Notation -- no children

Entire XML document represented in the DOM structure is kept in the memory

and this allows developers to retrieve any element of the document easily. So, it is very

profitable to use DOM parser in the case that a document needs to be accessed several

times. On the other hand, it requires large amount of memory, and it gets worsen when an

XML document gets bigger.

SAX (Simple API for XML) [120] parser does not work based on creating a

document object tree like DOM parser does. SAX parser works as a stream parser with an

event-driven API, where flow of the program is determined by events. Several methods

can be defined by users to be called when SAX events occur during parsing a document.

The SAX events include:

• XML Text nodes

51

• XML Element nodes

• XML Processing Instructions

• XML Comments

SAX parsers have some advantages and disadvantages when it is compared to

DOM parser. SAX parsers use much smaller memory than DOM parsers since DOM

parsers keep the whole document as DOM structure in the memory. So, size of the

memory that needs to be used by DOM parsers is depending on the document, whereas in

SAX parsers the amount of memory is based on the maximum depth of the XML tree. It

is always smaller than the parsed document as a tree itlself. Hence, SAX parsers work

faster than DOM parsers but the document needs to be parsed again and again to re-read

the parsed data. So, it does not provide an efficient way to parse XML documents when a

document needs to be accessed many times.

2.5 Summary

This chapter discussed the background information, reviewed the related work

and surveyed the major technologies related to our research. First, an overview of Web

2.0 and Annotation Tools, and its related projects are given. Second, Events Systems and

the related projects are reviewed. Third, Consistency maintenance approaches for

distributed systems are summarized and discussions are given throughout the chapter.

Finally, the related technologies are presented. From this, we have identified useful

strategies that we will use in our research architecture.

52

CHAPTER 3 Event-based Infrastructure

CHAPTER 2 surveyed event systems, analyzed the existing tools and approaches

that provide web-based services to store, share, and tag various resources among small

groups, teams and communities and their limitations involved in representing scholarly

publications in a consistent way and communication with each other. Based on the

analysis, this chapter particularly focuses on the modular architecture of a system by

addressing the first part of research problems given in Section 1.2.

3.1 Design Overview

In this chapter we introduce a novel architecture designed to provide an ideal

approach to represent, support collaboration and manage content of scientific documents

coming from various sources in a flexible fashion. Architectural design of the proposed

Event-based Infrastructure (EBI) appears in Figure 3-1.

53

Figure 3-1: General Architecture of Event-based Infrastructure

To meet the requirements for handling data and metadata coming from different

sources such as online collaboration tools, peer to peer system, social bookmarking

websites, academic search engines, scientific databases, and journal and conference

54

content management systems and manual entry via Event-based Infrastructure services,

the Event-based Infrastructure utilize the use of event concept as its building blocks.

According to this concept, content of scientific documents originating from various

sources are represented as events. Events constitutes the base unit for our Event-based

Infrastructure, and an event is commonly defined as the act of changing the value of an

attribute of some object [121]. Storing all the events about an object enables the actions

on this object to be reviewed and undone [122]. An event may also be defined as an

action with a time stamp and a message [102]. In our Event-based Infrastructure, we

adopt the view of an event as a time-stamped action on a document, which only maintains

the modifications to an object. We distinguish between minor and major events: insertion

of a new digital entity (DE), which is a collection of metadata representing a scholarly

publication, into the system or deletion of an existing digital entry from the system is

considered a major event; modifications to existing digital entities are considered minor

events. Examples of modification are: deleting one or more fields of a digital entity,

changing the value of one or more fields of a digital entity by adding or deleting

metadata, and so on. Another concept underlying the event-based infrastructure is that of

dataset. A dataset is a collection of minor events related to a user. A dataset creation is a

way to group the modifications of a digital entity. There are two important issues

requiring attention during the process of dataset creation (described in section 3.6.2.1.1 in

detail): (a) Events that are selected as members of a dataset must belong to the same

digital entity (we do not want to include into a dataset events belonging to different

digital entities). (b) The order of the events is a key factor in that the events related to a

DE will be applied in the order they occur. A document representation by events is

55

depicted in Figure 3-2. As it is seen on the figure, documents are constructed from major

and minor events. A major event represents the original entry in the system, while the

minor events are the modifications to the original entry during the time.

Figure 3-2: Document Representation in Event-based Infrastructure

To meet the requirements for providing a flexible architecture to track

modifications to documents and metadata that collectively form a digital entity, Event-

based Infrastructure benefits from representing modifications to documents as events.

Events are time stamped entities that encapsulate the changes to documents. Associated

with each digital entity, there will be an initial set of metadata. This initial set of metadata

is represented by a major event, and it may come from different sources. DE metadata of

a record at a certain point is the result of applying all the available ordered datasets to the

initial digital entity metadata. Another word, by replaying events, it is possible to

reconstruct a DE at any point in its evolution (explained in detail in section 3.6.2.1.2).

56

Table 3-1: Stored Metadata Comparison in Annotation Tools

Stored Metadata Citeulike Connotea Delicious

URL R R
TITLE R
DOI
PMID
ISBN/ASIN
REFERENCE TYPE R

AUTHORS
PUBLICATION

NAME

VOLUME NO
ISSUE NO
CHAPTER
EDITION
START PAGE
END PAGE
PAGES
YEAR
MONTH
DAY
PUBLICATION DATE
DATE OTHER
EDITORS
JOURNAL
BOOK TITLE
HOW PUBLISHED
INSTITUTION
ORGANISATION
PUBLISHER
ADDRESS
SCHOOL
SERIES
BIBTEX KEY
ABSTRACT
DISPLAY TITLE
TAGS

† R

TAG SUGGESTIONS
DESCRIPTION R

MY WORK
EVERYONE’S TAG
PRIVACY SETTINGS
RELEASE DATE TO

ALL USERS

PRIORITY OF

RECORDS

NOTE
COMMENT

= Supported, R = REQUIRED, † = Adds “no-tag”

57

To meet the comprehensive metadata field requirements, proposed Event-based

Infrastructure support various metadata fields to represent whole metadata about a

scholarly publication. Supported metadata fields are compatible with the one that

specified by the Dublin Core Metadata Initiative (DCMI) [123] and BibTex [36]. Table

3-1 portrays the stored metadata comparison in Connotea, Citeulike, and Delicious

annotation tools.

To meet the flexible choices for version control, Event-based Infrastructure

provides an architectural component called Rollback Module. The rollback module has

been designed to retrieve the desired version of a DE by undoing the necessary events

that are already applied to a DE. The rollback mechanism is explained in Section 3.6.2.4.

To meet the requirements for providing services to extract data from annotation

tools to a specified repository and to upload data from a desired repository to an

annotation tool, Event-based Infrastructure uses Communication Manager explained in

Section 4.4.2.2 to communicate with annotation tools to exchange data and metadata.

To provide convenient structure for organizing data and metadata without dealing

with the complexity of hierarchical structure, grouping and accessing related documents

easily, Event-based Infrastructure support collaborative tagging of documents.

To meet the interoperability requirements, Event-based Infrastructure has been

designed as a service-enabled system. Web Services enables the interoperability between

different software applications running on different platforms [124]. Web Services have

an interface which is described in a machine-processable format, and Web Services

support interoperable machine to machine interaction over a network. Web Services are

defined in a language called Web Services Description Language (WSDL) [125]. The

58

clients can communicate with a web service by exchanging messages in SOAP (Simple

Object Access Protocol) format. SOAP [126] is a platform and language independent

communication protocol for exchanging information in distributed environment. SOAP is

an XML based protocol, and consists of three parts the envelope, the encoding rules, and

the Remote Procedure Call (RPC) convention. SOAP can be used in any combination of

with some other protocols such as HTTP [127], FTP [128] etc. WSDL is specified in

XML, and it is used for describing and locating Web Services. WSDL uses four major

elements to define Web Services:

• portType: Specfies the operations performed by the web service.

• message: Message defines the data elements of an operation.

• types: Types element defines the data types used by the web service.

• binding: Binding specifies concrete protocol and data format specifications for the

operations and messages defined by a particular portType.

As a summary, our Event-based Infrastructure supports: (1) Representation of

data and metadata coming from various sources as events; (2) Tracking changes to data

and metadata; (3) Supporting the extraction and collection of metadata and documents

into a central repository from various sources such as online collaboration tools, peer to

peer system, social bookmarking websites, academic search engines (Google Scholar

(GS) [129] and Windows Live Academic (WLA) [130]), scientific databases, and journal

and conference content management systems and manual entry. So, it is inevitable to

have an event-based model to support and represent those multiple sources of metadata

information for digital entities in a collaborative environment; (4) Providing services to

upload data and metadata from a specified repository to annotation tools; (5) Supporting

59

sharing, modifying, collaboratively tagging of DEs; (6) Supporting the communication

of annotation tools with eah other via Web Service; (7) Providing comprehensive

metadata support to be able to represent the whole metadata of a scholarly publication;

(8) Pull and push based consistency maintenance as explained in detail in CHAPTER 4;

and (9) Supporting flexibility to maintaining all versions of DEs and ability to rollback to

any version by undoing the related events.

3.2 Content of a Digital Entity (DE)

In our proposed arhitecture, a DE is divided into its metadata that represents a

scholarly publication so as an event. In our Event-based Infrastructure, each DE’s

metadata are designed to be stored in a relational database (MySQL) and the latest

version of a complete DE can be generated from scratch by executing its all datasets and

events in the order they are created. Figure 3-3 represents a DE and its encapsulated

metadata that represents the complete metadata of a scholarly publication in our proposed

architecture.

Figure 3-3: Content of a Digital Entity

60

3.3 Initial Storage of a Document as a DE

Event-based Infrastructure requires associating each DE with a folder, which is a

label representing a logical repository to collect DEs into, and it stores metadata of the

document with its owner information into a MySQL database as a major event with a

unique DE id. An owner is a registered user with the proposed system. Hence, each DE is

tied to a user, and the owner of a DE can define access rights for himself/herself, other

users, and groups as read, write, and execute. Moreover, an owner of a folder can also

specify access rights for himself/herself, other users, and groups as read, write, and

execute. Depend on the defined access rights for DEs and their belonging folders, our

Event-based Infrastructure support users or communities to collaborate on the specified

DEs.

As a summary, metadata of a document is inserted into a MySQL database as a

major event forming a DE in our proposed architecture. Each DE has assigned to a

unique id and it is tied to a user. Our Event-based Infrastructure provides users with

ability to create as many folders as they wish, since they are just a label with unique id

pointing to a table, where all data and metadata are stored, of a central MySQL database.

3.4 Duplicate Detection

It is a major issue to find out if a document that is about to be inserted into the

system already exists in the system or not. Our Event-based Infrastructure defines its own

duplicate detection algorithm to decide whether two given DE is similar or not with a

defined threshold value.

61

Our Event-based Infrastructure’s duplicate detection algorithm has been designed

to compare a given digital entity with all the DEs from a repository to find its matching

primary copy whether it exists in the database or not. Our duplicate detection algorithm

works based on the available metadata fields of a given document including URL, title,

authors and publication venue with a defined threshold value for the comparison

algorithm such as 0.95.

3.5 Event-based Infrastructure Update Model

Our proposed Event-based Infrastructure’s update model built on the event-based

structure to provide flexible choices to users. Our update model uses events for applying

the updates on existing digital entities. It provides users with flexible choices to apply the

updates as minor events when faced with existing DEs within the repository as:

• Keep the existing version.

• Replace the existing version with the new one.

• Merge the existing and the new version.

Our update model supports the above update model concepts to be applied for all

matching digital entities or each existing individual digital entity in the system. By doing

that, updates can be applied to each individual or all digital entities as a default based on

the selected choice.

3.6 Overview of the Architecture Components

Event-based Infrastructure’s modules can be categorized under five main

categories: a) Event-based Infrastructure services; b) Digital Entity Manager; c)

Timestamp Generator; d) Scheduler; and e) Data Manager. Annotation Tools component

62

is explained in Section 4.4.2.1 and Communication Manager is discussed in Section

4.4.2.2.

3.6.1 Event-based Infrastructure Services

Event-based Infrastructure services are the Web Services that provide a

communication with the core services of the proposed architecture over HTTP protocol

through SOAP messages. It has an interface written in WSDL and it is used for

describing and locating the Event-based Infrastructure service implementations. The

architecture supports seamless access to archival data and metadata through standard

Web Services interfaces.

Supporting Web Service technology provides many advantages. “A Web Service

is an interface that describes a collection of operations that are network accessible

through standardized XML messaging” [131]. The interface hides the implementation

logic and details from the users, and this allows the service to be used on different

platforms rather than the one it was implemented. Also any application capable of

communicating through the standard XML messaging protocol and regardless of with

which programming language it was implemented in can use the service through the

standard interface. These properties allow Web Services based frameworks to be loosely

coupled and be component oriented. Due to the standard interfaces and messaging

protocols the Web Services can easily be assembled to solve more complex problems.

One significant feature of the Web Services is that they allow program-to-program

communications. With the help of several Web Services specifications a complete cycle

of describing, publishing, and finding services can be made possible. As new

specifications have being developed and the industry matures the system integration that

63

includes these steps will finally happen dynamically in runtime. The main difference

between the Web services and the other component technologies is that, the Web services

are accessed via the ubiquitous Web protocols such as Hypertext Transfer Protocol

(HTTP) and Extensible Markup Language (XML) instead of object-model-specific

protocols such as Distributed Component Object Model (DCOM) [132] or Remote

Method Invocation (RMI) [48].

Finally, the capabilities that provided by Web Service technology can be of great

benefit to the usage of our proposed Event-based Infrastructure services. Many

applications running on different platforms can access its services via its service

interfaces.

3.6.2 Digital Entity Manager

Digital Entity Manager is an umbrella name for a group of modules that

contributes to DE management together. Its modules are: (1) Events and Dataset

management; (2) Digital Entity Update Management; (3) Periodic Updates Management;

(4) History and Rollback Management. Figure 3-1 displays the Digital Entity Manager

and its components. The details of each module are given in the following sections

respectively.

3.6.2.1 Events and Dataset Management

Events and Dataset Management module is responsible for the creation of

major/minor events and datasets. It has two submodules to provide its main services:

64

3.6.2.1.1 Events and Dataset Creation

In order to create a new DE or to validate modifications to a DE, major or minor

events need to be created by the proposed system. Insertion of a new document and its

metadata is represented with a major event stored into a MySQL database with a unique

id in the proposed architecture. When a modification made to any metadata field of an

existing DE, then only the modification is saved into the repository (MySQL database) as

a minor event with a unique event id and the unique DE id that this event belongs to.

Desired minor events belonging to the same DE can be grouped together to form a

dataset with a unique dataset id assigned by the system automatically. Created events and

datasets are processed by Event Processing Engine to build a desired version of a DE at

any given time. Details of the event and dataset processing can be found in section

3.6.2.1.2.

There are many key advantages of using events and datasets for representing data

and metadata. First, by representing data and metadata with events and datasets, our

proposed system never loose a copy of a DE for any version. Since, data and metadata are

archived as events into a MySQL database, and any version of a documents can be

rebuild from scratch by using its major event and datasets that brings collection of minor

events. Another word, using event structure for representing data and metadata enables

our proposed architecture to rollback to any version of a document in its history. Second,

timestamp information is a crucial thing for distributed and collaboration systems. Each

event has a timestamp value and this information can be used for ordering the events or

maintaining consistency among documents by defining the order of update operations on

primary copy and replicas of data and metadata. Third, events provide our architecture to

65

be flexible for building and retrieving a document based on the desired user’s or group’s

events. Finally, due to the nature of our documents represented by several metadata

fields, using an event structure leverages collaboration and updates on the metadata fields

of a document. Our architecture can only store the modified metadata field of a document

instead of storing the whole modified document, and the complete document can later be

constructed by using its events based on their occurrences in time.

3.6.2.1.2 Event Processing Engine

Main duty of the Event Processing Engine is to build a complete document by

using the document’s dataset and events for a given state. To do so, Event Processing

Engine collects all the dataset and the events belong to the requested DE from a MySQL

database. Having done that, Event Processing Engine process all the minor events sorted

by time using their timestamp on top of the major event to retrieve the final version of the

requested document. Another word, by using the initial metadata, which is a major event,

of a digital entity and by applying dataset(s) on top of it, one can retrieve any version of a

DE. Hence, in case of an error or users’ request, our architecture supports to restore the

system to a previous safe state by using the related dataset for that state.

The example in Figure 3-4 shows the process of building a document by using its

major event and datasets. Each dataset (Dataset-1… Dataset-N) is composed of a number

of minor events, and each dataset modifies the digital entity metadata based on the events

that it has. In our proposed Event-based infrastructure, all available datasets of a digital

entity are applied on top of the initial digital entity metadata, which is the major event of

this DE, based on their increasing creation time to retrieve the latest digital entity

66

metadata. During the application process, we apply each dataset and its associated events

in the increasing order of their creation time.

Figure 3-4: Retrieving the latest digital entity metadata

As depicted in Figure 3-4, to build a digital entity metadata for a certain point, we

just apply the related dataset(s) on top of the initial digital entity metadata based on their

67

creation time, and the plus sign (+) in the formula indicates the application of the related

dataset(s) on top of the initial digital entity metadata. As a result, we have:

Current DE Metadata = Initial DE Metadata +� Dataset �k

�

�
�
.

3.6.2.2 Digital Entity Update Management

Our proposed Event-based Infrastructure stores data and metadata representing

metadata of scholarly publications into a MySQL database in the form of events, which

are the primary copies of the DARs stored at the annotation tools, and it supports data

exchange between MySQL database and annotation tools. An update is specified as either

a major or a minor event in the proposed system based on what it has modified within the

system. In a major event representation, an update creates a new entry or deletes an

existing entry, while in a minor event representation an updated modifies any metadata

field of a DE [67]. Digital Entity Update Manager deals with the updates that are made

directly on the primary copy of each DE via Event-based Infrastructure services. Its main

responsibilities are: (1) Deciding the event type (major or minor event) by using duplicate

detection mechanism to find out whether this update is trying to create a new DE or

update an existing DE; (2) Creating an update event that could be a major or minor event

by setting up necessary parameters into a MySQL database via Events and Dataset

Creation module explained in Section 3.6.2.1.1; (3) Passing the update event and its data

to Communication Manager to propagate the update to the supported annotation tools to

either upload a new entry in the case of major event or reflect the changes on replica

copies in the case of a minor event via Communication Manager as explained in section

4.4.2.2. It provides push based strict consistency maintanence approach by propagating

68

the update immediately to the integration annotation tools when it occurs. Updates are

disseminated to the integrated annotation tools via unicast communication strategy; (4)

Returning a confirmation result to the clients in XML format.

Each update is defined with its parameters including its unique id, its operation

type (replace, merge, delete), which DE it belongs to, its timestamp value, and its data.

These parameters are transferred as XML message to the necessary modules. Schema of

parameters of an update event is depicted in Figure 3-5.

Figure 3-5: Update Event Parameters

Finally, Digital Entity Update Management service can be accessed by any client

that capable of communicating through XML messaging via Web Service call using

SOAP messages over HTTP protocol.

3.6.2.3 Periodic Update Management

Periodic Update Management module keeps tracking the updates (minor events)

to DEs, and it is responsible for retrieving and applying all the updates made in the

system to same or similar DEs.

69

It has been designed to provide conveinent choices to retrieve the updates made to

DEs belong to other users in order to execute them on users’ own DEs based on our

proposed Event-based Infrastructure’s update model as defined in section 3.5. It detects

the changes for updated digital entities as events and provides all available updates from

other users for a user’s all existing DEs. By keep tracking the updated events, Event-

based Infrastructure can provide the owner of the digital entities with ability to update

his/her digital entities with the new updated ones. Hence, users can collect and apply the

updates, which were made on DEs by other users, for their own DEs by the provided

Periodic Update Management service of the proposed system.

3.6.2.4 History and Rollback Management

Collaborative systems allow people to work together on a common task and share

resources to pursue their goals. A mechanism to avoid undesired changes in the system is

a critical issue in such systems. Because people work on a common set of resources, they

could modify the same resources. So, data is exposed to unintentional user mistakes.

To avoid undesired changes and to have flexible choices in the system, it is

necessary to have a mechanism for restoring the system to any previous state. There are

several existing systems that provide mechanisms for restoring the state of the system to

any previous state. For example, in the Windows XP operating system, if the system

crashes, then the tool called “System Restore” can be used for restoring the system to the

last working point. As another example, many developers of the same project works on

the same source code and they use one of the versioning systems such as Concurrent

Versions System (CVS) [133] or Subversion (SVN) [134] to access and submit their

changes. They do modifications on the code and they submit their changes into the

70

repository. If any of the developer needs to retrieve the previous version of the code, then

they can obtain it through the versioning system that they are using in their project. As a

final example, Wiki systems allow their users to add, remove, change and edit a common

digital content. By using “Recent Changes” page and “Revision History” function from

the change log are being used for restoring the previous version of the content [7].

To allow the state of the system to be restored to any previous state, proposed

Event-based Infrastructure system supports a service that lists the history of each DE and

provide a mechanism to undo any changes (rollback) to the desired state in its history.

3.6.3 Timestamp Generator

Timestamp generator provides a service to generate unique timestamp values to

the requesting processes. These unique timestamps values are used for ordering processes

to execute them once there is an update conflict on the shared data. Furthermore, events

also need to be timestamped in order to impose an order on them.

3.6.4 Scheduler

Scheduler is responsible for controlling concurrent access on a shared data. It

determines that which process is allowed to pass to the data manager for read or write

operation. Main duty of the scheduler component is to keep track of currently executing

processes and their data in order to allow or keep waiting other processes on the shared

data. In order to keep track of executing and waiting processes, Scheduler utilizes a

waiting and an execution queues. Basically, each process that would like to read or write

on a data item x need to register with Scheduler first. The Scheduler checks the data item

x to find out whether the data item x has being updated currently by other processes or

71

not. If it has being updated, then the requested process is moved to the waiting queue,

otherwise it is added to the execution queue. Finally, when the executing process on data

item x is done with its operation on data item x, it notifies Scheduler so that it can be

removed from the execution queue. Furthermore, Scheduler picks the next process that

has the smallest timestamp among others and is greater than the current timestamp value

of data item x from waiting queue up to execute on data item x if there are any.

3.6.5 Data Manager

Data manager is responsible for executing read or write requests on a data item.

Data manager is not concerned about what operations it is performing. It just executes the

coming operation allowed by Scheduler as explained in Section 3.6.4 on a data item.

3.7 Summary

In this chapter, we explained the proposed Event-based Infrastructure, its

components and the creation and application of dataset during the retrieval of a DE. Our

Event-based Infrastructure has a moduler architecture which improves the maintanence

and simplicity of the system. The modules can be classified into five sub-groups. The

first group that contains the service module which provides an interface to communicate

with Event-based Infrastructure services over HTTP via SOAP calls. The second group is

in charge of the Digital Entity Management. This module consists of 4 sub-groups. The

first group is Event and Dataset Management and it is responsible with the creation and

management of the events and the datasets. The second group is Digital Entity Update

management and it deals with the updates made on primary copies of a DE. The third

group is Periodic Update Management module and it provides a mechanism to collect

72

and apply the updates made to a DE belongs to another user. Finally, History and

Rollback Management part maintains the histories of DEs and allows users to rollback to

any state of a DE in its history. The third group is the Timestamp generator that generates

unique timestamp values for the requesting processes. The fourt group is the Scheduler

and it schedules the order of process executions to regulate the concurrent access on a

shared data. The fifth group is the Data Manager, and it is responsible for executing the

coming requests on data.

73

CHAPTER 4

Hybrid Consistency Framework for Distributed

Annotation Records

CHAPTER 2 analyzed the major consistency maintanence approaches for

distributed systems in detail, and CHAPTER 3 explained the first part of the proposed

approach to represent, manage and deal with resources coming from various sources for

scientific research. Based on the analysis, this chapter particularly focuses on modular

architecture of a system by addressing the second part of the research problems given in

Section 1.2. In the remainder of this chapter, we explain Hybrid Consistency Framework

and provide the detail explanation about its modules.

74

4.1 Design Overview

We have designed a novel Hybrid Consistency Framework that supports

collaboration and maintains consistency among Distributed Annotation Records (DARs),

which are replicas of the same document, kept at various web-based annotation tools. An

overview of the proposed architecture design appears in Figure 4-2.

Annotation tools are one of the major Web-based Web 2.0 applications. Users of

those annotation tools can have the same documents in their account in several annotation

tools. Those tools provide their users with ability to: (1) enter a new record; (2) delete an

existing record; (3) modify an existing record; (4) tag their record; (5) share the content

of their records with other users. URL value of each DAR is a mandatory attribute in

these tools and it is used as a unique key element for storing records in annotation tools.

Figure 4-1 depicts DAR that is held at annotation tools.

Figure 4-1: General View of a Distributed Annotation Record (DAR)

75

One major problem with annotation tools is that they do not provide timestamps

for the updated records, and modifications to a DAR can come from multiple sources.

The consistency concept arises when records get updated with unknown timestamp, and

multiple copies of a same document can be existed in different versions within the

various numbers of annotation tools. Providing consistency maintenance is a fundamental

issue [135], and our thesis research focuses on how to design a consistency framework to

maintain consistency for DARs held on those annotation tools with additional

information attached to their primary copies. The design of such an environment should

consist of the group of annotation tools intended to be consistent with each other, and a

main system, where a primary copy of each document from each annotation tools are

stored with additional metadata information into a relational database (MySQL database).

Another fundamental issue with them is that annotation tools are lack of services

or mechanisms to provide their clients with notification services for deleted, modified or

entered new entries into their system. Because of this, there is no way to be notified about

any changes in those systems. The only way to identify any change in those tools

externally is to have a mechanism to go and check them periodically.

We have designed the proposed Hybrid Consistency Framework, which benefit

from having an Event-based Infrastructure as its base and timestamped events can thus be

used to reconcile the system state, to be able to: (1) Run for consistency enforcement in

specified time period; (2) Communicate with the integrated annotation tools periodically;

(3) Retriece records from the annotation tools; (4) Compare records with their primary

copies coming from the MySQL database. (5) Collect updates based on the comparisons

and put the updates into an update event list as minor events. If a record does not have a

76

primary copy, then put it into the update event list as a major event. (6) Pass the found

events to Digital Entity Update Management module to be inserted into MySQL database

as events and disseminated to the annotation tools as explain in 3.6.2.2. Furthermore,

users can collaborate on the primary copy of each DAR with each other by sharing the

same document. And our Hybrid Consistency Framework propagates updates made on a

primary copy of a DAR immediately to each annotation tool to reflect the changes in a

consistent manner via Digital Entity Update Management module explained in 3.6.2.2.

As a summary, our proposed Hybrid Consistency Framework have been designed

to have a two way mechanism (pull and push) to maintain consistency among the

integrated annotation tools by storing a primary copy of each DAR on a central repository

(MySQL database). We are going to explain our hybrid consistency framework and its

components in detail in the following sections of this chapter.

4.2 Consistency Criteria

The consistency maintanence issue has to do with ensuring that all copies of the

same data to be the same at a given time. Some approaches to maintain consistency are

discussed in detail in [105, 135-139]. Tanenbaum [105] differentiates consistency under

two main categories: (1) data-centric; and (2) client-centric. In data-centric approach, all

copies of data are updated whether some clients is aware of those updates or not. In

client-centric approach, consistency is maintained from a client’s perspective. Client-

centric consistency model allows copies of data to be inconsistent with each other as long

as the consistency is ensured from a single client’s point of view.

The implementation of the consistency models can be categorized as primary-

based protocols (primary-copy approach) and replicated-write protocols [105]. In primary

77

copy approach, updates are executed on a single location, and propagated replicas from

there, while in the replicated-write approach; updates can be originated from multiple

locations. For an example, techniques for maintaining consistency in P2P networks: (1)

Push: Owner-initiated Consistency: messages are propagated through the P2P overlay in

push approach; (2) Pull: Peer-initiated Consistency mechanism, individual peers polls the

owner to figure out if a file is stale or not; and (3) hybrid Consistency mechanism. Our

approach enhances the popular consistency techniques, which had been originally

designed for the distributed replicated systems, to be applied to DARs to maintain

consistency among web-based annotation tools. Detail background information regarding

to consistency maintenance can be found in section 2.3.

4.3 Exceptions in Real Life Domain

Our architectural design relies on following assumption.

• We assume that DAR are not modified from annotation tools’ UI since we have

already integrated these independent annotation tools into our system including their

existing services with added extra capabilities.

• We assume that timestamp information for each updated record is the time that

our proposed Hybrid Consistency Framework checks annotation tools for retrieving

updates periodically as specified.

• We assume that if there are updates coming from different annotation tool for a

same record, the one coming from the higher priority annotation tool as specified is

applied.

78

• We assume that there can be maximum one modification to a record between each

periodic consistency maintanence by the proposed Hybrid Consistency Framework. If

there is more than one, then our proposed system retrieves the last one as the one.

4.4 Hybrid Consistency Framework

Our hybrid consistency framework has been designed to maintain consistency

between DARs kept at annotation tools and a primary copy of each DAR. The Hybrid

Consistency Framework is a data centric consistency model, and it is based on the

primary copy based consistency protocol approach. In our proposed framework, update

propagations are carried out through pull and push based approaches. Push approach

enforces strict consistency model on primary copies of DARs. In strict consistency

model; whenever updates occurred on a primary copy of a DAR, they are being

propagated immediately to each annotation tool to update DARs on their site. Push

approach is handled via Digital Entity Update Management module discussed in 3.6.2.2.

However, pull approach is a time-based consistency control approach [140]. We are

periodically checking DARs from each annotation tool for any updates. If there is any,

then we are pulling them out. Finally, we are applying them onto the primary copy of

each DAR, which is stored in a relational database (MySQL) with additional metadata.

Concurrent updates ona shared document is handled based on our policy defined in

section 4.4.1. We have also designed a rollback structure to help for consistency

maintenance. It basically allows users to rollback to a previous state at any time. The

rollback mechanism explained in detail in Section 3.6.2.4. Figure 4-2 represents the

overall architecture of our proposed Hybrid Consistency Framework. Explanation of the

architecture components are given in section 4.4.2 in detail.

79

Figure 4-2: General Architecture of Hybrid Consistency Framework

4.4.1 Duplicate Detection and Handling Concurrent Updates

In our proposed Hybrid Consistency Framework research, it is crucial to identify

if two records are representing the same document or not. During the consistency

80

maintenance process; each record is retrieved from annotation tools, and processed to

form a digital entity as explained in Communication Manager in Section 4.4.2.2. We

compare each digital entity with all the primary copies from a repository by using our

duplicate detection algorithm to find its matching primary copy if it exists in the database

as explained in Section 3.4. According to our duplicate algorithm result, if a digital entity

does not exist in the database, then this is a new update and it is passed to the DE Update

Management module to be inserted into the system as a major event, and propagated to

all replicas, which are stored at the integrated annotation tools, by DE Entity Update

Manager. If we can find a matching primary copy for this digital entity, then our

Annotation Tools Update Manager compares these two digital entities to identify that

whether any metadata field of the digital entity is updated or not. If there are any

available updates, then they are processed by Digital entity Update Management module

to push the updates to the annotation tools as explained in Section 3.6.2.2.

The main goal of concurrency control is to allow processes to work on a shared

data simultaneously in a way that the shared data left in a consistent state after

modifications. The consistency is maintained by giving processes access to shared data in

a specific order in which the final result is the same as if all processes had run

sequentially. Concurrency control algorithms can generally be categorized based on how

the read and write operations are synchronized. Synchronization can be provided through

either mutual exclusion or ordering processes by using timestamp values [105]. In our

proposed Hybrid Consistency Framework, it is very rare to have concurrent updates on a

same document due to the asynchronous nature of our proposed system. However, our

policy for concurrent updates is to adopt Pessimistic Time Stamp Ordering [105]

81

approach. In this approach, each process is assigned a unique timestamp value by using

Lamport’s algorithm, and every data item in the system has also read and write

timestamp values set to the most recent executions on them. When concurrent updates

occur on a shared data, data manager process the one with the lowest timestamp first. In

our proposed research, concurrent updates occurrences are very seldom, and they may

occur when:

I. A user uses an annotation tool’s own UI to update a replica record and

another user tries to update the same copy through its primary copy by

using Digital Entity Manager;

II. Two or more users try to update a record through the primary copy by

using Digital Entity Manager;

III. While consistency manager is working in the background to collect and

process updates on primary copies and replicas, another user tries to

update a record via its primary copy by using Digital Entity Manager.

In the first case, we do not have much control how the annotation tool handles the

coming concurrent update requests. In order to handle inconsistencies, annotation tools

are supposed to notify our system once an update occurs in their system, but they do not

have such functionality. Moreover, they are independent systems and we cannot lock

them during the update executions to prevent inconsistencies. For example; let’s assume

that an update (Updateprimary) coming from the replica’s primary copy is executed before a

user’s update (Updateannotation) coming from the annotation tool’s UI. Then Updateprimary

will be lost. Since, Updateannotation overwrites Updateprimary. Let’s think the other case that

Updateannotation is executed before Updateprimary. Then, Updateannotation will disappear due to

82

the replacement of it by Updateprimary. So, above cases are exceptions in real life domain

as explained in 4.3, and we assume that updates from annotation tools’ UI do not occur

since we have already integrated these independent annotation tools into our system

including their existing services with added extra capabilities. In the second and third

cases; data manager process the request with the lowest timestamp first according to our

concurrent updates policy.

4.4.2 Overview of the Architecture Components

Hybrid Consistency Framework modules can be placed under four umbrellas:

Annotation Tools, Communication Manager, Annotation Tools Update Manager, and

Digital Entity Manager. Hybrid Consistency Framework uses Timestamp Generator,

Scheduler, and Data Modules explained in Section 3.3. The detailed explanation of the

Hybrid Consistency Framework modules and their responsibilities are explained in the

following sections respectively.

4.4.2.1 Annotation Tools

Annotation tools represent the integrated annotation tools into our proposed

Hybrid Consistency Framework. They hold data and metadata about documents in their

systems. Another word, they are distributed repositories that stores data and metadata in

their system with provided services. The common feature of these annotation tools is that

they allows their users to tag their content and provides different services for managing

their resources. For instance; Figure 4-3 depicts popular tags on del.icio.us, and users of

these systems can access related documents or similar research groups via the tags. These

systems are discussed in detail in Section 2.1.

83

In our framework, we intend to use these tools to store metadata of a scientific

document. The records in these tools called DARs are the replica copies of the records

stored in the MySQL system database. As we explain earlier in CHAPTER 3, we

represent several data and metadata coming from various sources as events in our Event-

based Infrastructure. The documents represented and stored in the MySQL system

database as events are the primary copies of the DARs located at the integrated

annotation tools. Main responsibility of our Hybrid Consistency Framework is to

maintain a consistency between replica copies of data and metadata located in integrated

annotation tools and their primary copies stored in a MySQL system database.

Figure 4-3: Popular Tags in del.icio.us

4.4.2.2 Communication Manager

Communication manager depicted in Figure 4-4 transports the data between the

computing nodes. It is responsible for uploading or downloading data from annotation

tools through their defined gateways. It retrieves the records from annotation tools via

HTTPClient native libraries by using either: (1) Annotation tool’s API and get the

response in XML format. Records are then parsed by using a DOM parser and XPATH

84

[141]; or (2) HTTP GET, and POST method resulting in getting the response in RSS or

HTML format. In RSS type responses, documents are parsed by using a DOM parser and

XPATH, and in HTML type responses, data is parsed after cleaning faulty HTML by

using JTidy [142] native libraries. Having retrieved and parsed documents,

Communication Manager passes the mined data to Annotation Tools Update Manager

explained in detail in section 4.4.2.3. Updates disseminated to annotation tools by Digital

Entity Update Management module described in Section 3.6.2.2 via: (1) annotation tools

API; or (2) HTTP GET, POST methods through HTTPClient [143] native library unless

an annotation tool provides an API. Communication Manager’s modules are explained in

the following sections respectively.

Figure 4-4: Hybrid Consistency Framework Communication Manager

85

4.4.2.2.1 Gateway

Gateway represented in Figure 4-5 is an interface between the Hybrid

Consistency Framework and annotation tools. It is both entrance and exit point for the

incoming and outgoing messages. Our proposed Hybrid Consistency Framework

communicates with annotation tools through their gateways. Another word is that

Gateway connects Consistency Framework to the annotation tools by using libraries and

tools of those native environments.

Each annotation tool provides their clients with various ways to interact with their

system: (1) Web API allows clients to retrieve, modify and post data easily to an

annotation tool; (2) RSS allows clients to retrieve data easily from an annotation tool.

However, to modify an existing DAR or to post a new one; HTPP GET and POST

methods need to be used via HTTPClient native libraries. The communications are

carried out through HTTP methods by using HTTPClient native libraries [143]. An

individual gateway is created for each interacting annotation tool, which has its own

communication structures.

Gateways
EBIHCF Modules

EBIHCF

Annotation

Tools

Figure 4-5: Gateway

86

4.4.2.2.2 Parser

Parser is a native library used for parsing the responses coming from annotation

tools. There are several parsers to utilize in XML processing. DOM parser is the most

widely used one. It reads and validates the XML documents. If the document is valid,

then it returns a document object tree. We can randomly access any element since each

element is entirely kept in memory. As a result, it provides a very efficient navigation

mechanism over the parsed document. On the other hand, its drawback is that it requires

large amount of memory in order to hold the whole parsed document as discussed in

detail in Section 2.4.3. Most of the major annotation tools provide their Web API so that

users can communicate with their services easily. In our prototype implementation

(described in CHAPTER 5), we have used JDOM [144] parser as our parsing library. In

some annotation websites, they do not provide a Web API for their services. In order to

communicate with those annotation tools, we have used XPATH to retrieve the desired

element of the document and JTidy native libary [142], which is used for cleaning faulty

HTML and provide a DOM interface to the documents that is going to be parsed.

4.4.2.2.3 Web API

 Web API (Application Programming Interface) is a service for accessing data on

annotation tools. Most of the major annotation tools provide their Web API and RSS

feeds for an easy access to their data. Their Web API and RSS feed return a document in

XML format, which can be parsed easily by using a DOM parser, to the requester.

Document kept at annotation tools can be retrieved, modified via either their Web

API or HTTP (POST and GET) methods through HTTPClient tool by passing the

necessary parameter to HTTPClient object. Having executed their Web API for posting

87

or editing a document, we are going to receive a response in XML format displayed in

Figure 4-6.

Figure 4-6: Web API Response

However, the response is going to be in HTML format for requested operations in HTTP

methods instead of XML type format.

4.4.2.3 Annotation Tools Update Manager

Annotation Tools Update Manager utilizes handlers to retrieve DARs periodically

from annotation tools introduced in Section 4.4.2.1 via Communication Manager

described in Section 4.4.2.2, and passes the updates to Digital Entity Update Management

module so that updates can be disseminated to integrated annotation tools immediately

after being applied on the primary copy of each DAR (Push approach). Annotation Tools

Update Manager’s main responsibilities are: (1) Obtaining DARs from annotation tools

regularly via Communication Manager; (2) Determining the updates by comparing DARs

and their primary copies stored in MySQL system database; (3) Passing updates to

Digital Entity Update Management module which has a embedded module to propagate

updates to the integrated annotation tools to reflect the changes on DARs.

88

Annotation Tools Update Manager uses a handler such as Java thread for

retrieving DARs from each annotation tools regularly as it is defined. Another word is

that it obtains records from each annotation tool and finds out the updates periodically. If

there are any conflicting updates that are coming from different annotation tools for a

same document, it selects the updates that are coming from a highest priority annotation

tool as described in Section 4.3.

Collecting updates from documents that are coming from Communication

Manager requires: (1) Finding the primary copy of each replica record by using duplicate

detection algorithm discussed in Section 3.4; (2) Comparing each replica record with its

primary copy to figure out modifications if there is any. After indentifying the updates,

next step is to pass them to Digital Entitiy Update Management module so that updates

can be applied on their primary copies and disseminated to replica records located at

annotation tools. Integrated annotation tools do not support publish-subscribe mechanism

forcing Digital Entitiy Update Management module to use unicast communication to

propagate updates to replicas. However, any application that require and support publish-

subscribe mechanism, then broker address and topic can be defined in a property file to

provide updates via publish-subscribe mechanism by connecting to the broker and

subscribing a topic. Figure 4-7 portrays the functionality of Annotation Tools Update

Manager.

89

Figure 4-7: Annotation Tools Update Manager

4.4.2.4 Digital Entity Manager

Digital Entity Manager is an umbrella name for a group of modules that

contributes to DAR management together. Its modules are: (1) Digital Entity Update

90

Management; (2) History and Rollback Management; (3) Periodic Updates Management;

(4) Events and Dataset management.

Digital Entity Update Management module is used by Hybrid Consistency

Framework. In Digital Entity Update Management, update propagations are carried out

through push based approach and it enforces strict consistency model on primary copies

of DARs. It applies modifications on their primary copies and disseminates the updates

immediately to their replica copies kept at integrated annotation tools. Figure 3-1 displays

the Digital Entity Manager and its components. Detailed explanation of its modules can

be found in Section 3.3.

4.5 Summary

In this chapter, we explained Hybrid Consistency Framework and its modules.

Our Hybrid Consistency Framework has a moduler architecture which improves the

maintanence and simplicity of the system. The modules can be classified into four sub-

groups. The first group that contains the annotation tools where DARs are located. The

second group is responsible for transporting the data between computing nodes. The third

group is in charge determining the updates mades through the annotation tools. Finally,

the last one is to handle the updates made on to a primary copy of a DAR.

91

CHAPTER 5

The Prototype Implementation of Event-based

Infrastructure and Hybrid Consistency Framework

This chapter represents implementation details of a prototype of the system

architectures mentioned in the earlier chapters. To demonstrate the effectiveness and

applicability of CHAPTER 3 and CHAPTER 4, we have implemented a prototype

service enabled framework based on these architectures. The prototype system is

implemented by utilizing following technologies and open source tools: (a) Java 2 SDK,

Standart Edition with version 1.5 [145], (b) Apache Axis Web Service Platform with

version 1.2 [2]; (c) Apache Tomcat Servlet Container with version 5.0.28 [3]; (d)

HttpClient Technology with version 3.0.1 [143]; (e) JTidy Tool with version

04aug2000r7 [142]; (f) JDOM with version 1.1 [144]. Our implementation called Internet

92

Documentation and Integration of Metadata (IDIOM) is an open-source and available

from [146].

In this section, we discuss the implementation details of Event-based

Infrastructure and Hybrid Consistency Framework prototype system. First, we review the

prototype IDIOM implementation. Second, we discuss the Event-based Infrastructure of

the IDIOM system. Finally, we discuss Hybrid Consistency Framework of the IDIOM

system.

5.1 IDIOM System Implementation Overview

IDIOM provides a collaborative Cyberinfrastructure based scientific research

environment [147, 148]. Its tools and services are backed by a MySQL database which

store user and community specific data and metadata and is configured into three

applications: (1) A model for scientific research which links both traditional simulations

and observational analysis to the data mining of existing scientific documents; (2) A

model for a journal web site supporting both readers and the editorial function; (3) A

model for a natural collection of related documents such as those of a research group or

those of a conference.

Figure 5-1 shows the overall architecture of prototype IDIOM system. This

system consists of five main layers: (a) the client layer; (b) the service layer; (c) the

server layer; (d) the helper layer; and (e) the data layer. The client layer of the IDIOM

system is made up of Java Server Pages (JSP) [38], which is translated into servlets by an

Apache Tomcat J2EE Web container and generates dynamic content for the browser. The

client layer communicates with the Server layer over the HTTP protocol through SOAP

messages encapsulating WSDL-formatted objects. The Server layer consists of several

93

Storage

User Interface

HTTP

Browser

JSP

Internet Documentation and Integration of

Metadata (IDIOM) Web Services

Digital Entity

(DE)

Management

Service

Annotation

Tools

Service

Search

Tools

Service

Authentication

and

Authorization

Service

Other

Services

Annotation Tools

citeulike.org

connotea.org

del.icio.us

Search Tools

Google Scholar

(GS)

Windows Live

Academic

(WLA)

JDBC Connection

Other

Applications

WSDL WSDL WSDLWSDL WSDL

SOAP
SOAP RSS REST REST

Scheduler Data Manager
Timestamp

Generator

RDBMS

RSS

Other

Submodules

Communication

Manager

Digital Entity

(DE)

Management

Search Tools

Submodule

Authentication &

Authorization

Submodule

User’s profile

Management

DE Metadata

View Options

New DE

Management

Event and

Dataset

Management

Data and

Metadata

Transfer

Data and

Metadata

Download

Data and

Metadata

Upload

Login

Management

DE Access

Rights

Management

DE Update

Management Administrative

Tools

Google

Scholar/

Windows Live

Academic

Google Scholar

Advanced

MyResearch

Folder

Advanced

MyResearch

Folder

User

Registration

Service

Username and

Password

Recovery

Service

Folder Access

Rights

Management

Logut

Management

DE Periodic

Update

Management

Annotation Tools Update Manager

PubsOnline

History and

Rollback

Management

Hybrid Consistency Framework

Session and

Event

Management

Submodule

- User

Authentication

(username/

password)

cookie based

- Events’

metadata

- Event and

Dataset

Management

- DE Metadata

View

Figure 5-1: Internet Documentation and Integration of Metadata (IDIOM)

Architecture

modules that constitute the main architecture blocks of the IDIOM system to handle the

coming requests from the service layer. The helper layer provides synchronized

timestamp values and handles the requests to be forwarded to Data Manager so that it can

94

communicate with the data layer through JDBC connection. Finally, the data layer is

composed of a MySQL system database.

We have followed Web 2.0 design patterns [149] in designing the IDIOM system.

Below, we list these patterns and discuss how they were applied in designing IDIOM:

Delivering services, not packaged software: IDIOM is a collection of tools and

services that can be accessed over the Web (either through a user interface or

programmatically through Web services). It will evolve by introducing new features; still

its users won’t have to install new versions of the software.

Producing hard-to-recreate data that gets richer as more people use the system:

By combining data from a variety of sources, IDIOM will create added-value data and

metadata generated with specific communities in mind. As more people participate in a

community, the collection of the data and metadata managed by that community will

increase in quantity, leading to the potential for improved precision of the automated

system tools.

Harnessing collective intelligence: Through its integration with the social

bookmarking tools, IDIOM can leverage data and metadata from a large number of

researchers. Moreover, the system can handle both individual users and groups of users,

and supports sharing and collaboration between group members.

Leveraging the long tail through customer self-service: The term “long tail” here

refers to the concept formulated by Anderson [150] that non-hit products can collectively

make up a market share that may exceed the relatively few current hits, bestsellers or

blockbusters, provided the store or distribution channel is large enough (this business

model is leveraged for example by Netflix or Amazon.com). IDIOM aims to support

95

research communities, such as the members of a research project, a group interested in a

particular chemical compound and so on, by allowing them to create system accounts and

to use the community-building tools for their specific usage scenarios.

Software above the level of a single device: Currently, the IDIOM user interface

runs in a browser. However, because of its layered design and the use of J2EE

technology, system front-ends for other devices, such as PDAs, can be developed at low

cost. In addition to these design patterns, we have followed two general principles: (a)

every component is packaged as a service as long as this packaging does not imply an

unacceptable performance degradation; b) if a needed capability exists and works well

but is insufficient in some fashion, we try not to replace it but rather wrap it as a service

so we can interact with its natural interface but easily input and output information

through its service interface.

5.2 Event-based Infrastructure

In our proposed Event-based Infrastructure; all documents, their metadata and

modifications to documents are represented as an event (major or minor). Events are used

to keep track of changes to documents and metadata. The main aspects of the

implemented Event-based Infrastructure of the IDIOM system can be enumerated as

follow:

• Digital Entity (DE): It is a collection of metadata that represents metadata fields

of a scholarly publication. The metadata fields of a DE in our implementation of

the IDIOM system are displayed in Figure 5-2.

96

Figure 5-2: The Content of a Digital Entity

• Major Events: Each entry of a digital entity in to the system or deletion of an

existing digital entity from the system is considered as a major event. A major

event can have as many as minor events related to it. If a major event does not

have any minor events, then the DE data consists of only the major event data.

• Minor Events: Every updates to an existing digital entity in the system are defined

as minor events in our proposed architecture. Therefore, minor events represent

the modifications to an existing DE in the proposed system. During the process of

building a DE, minor events are processed on top of the major event by their

timestamp.

• Dataset: A dataset is a collection of minor events in our proposed architecture.

Each update represents a state of a DE, and we provide a mechanism to go to any

state of a DE in its history. A dataset allows combining several updates into one

state in our Event-based Infrastructure.

97

• Rollback mechanism: We have designed a rollback mechanism based on the

concept of events and datasets. It allows going back and forward to any state on

the history of a DE.

• Users and Profiles: The IDIOM system supports individual users and groups of

users. Users’ personal information and the login information for bookmarking

web sites are accessible through the user’s profile. More specifically, user’s

profile contains the system password, email address, full name, login information

for annotation web sites (citeulike.org, connotea.org and del.icio.us), and the

group membership information. Users can access and modify their profile settings

at any time; while logged in users can: (a) Change their system password; (b)

Update their profile including the full name, email address and the username and

password for the annotation web sites; (c) Make requests to subscribe to any

available group. For each DE, there are three types of access rights: Read access

right, Write access right, and Delete access right. Users who have Read access for

a DE can read that citation. Only users who have Write access for a DE can

update that citation. Delete access is required for deleting DEs. These access

rights are defined with respect to three kinds of users: Owner who is the user that

initiates the citation metadata creation; Group which is the group to which the

owner belongs; other users. There is only one owner of a citation record.

However, there might be more than one group for a citation. The owner of a

citation record can specify the citation rights for all three kinds of users

mentioned above.

98

• User Session: Due to the stateless nature of HTTP, a number of alternative

mechanisms have been developed for applications that need to maintain a

conversational state. The HTTP session API, which is a component of the Java

Servlet specification, provides a mechanism for web-based applications to

maintain a user's state information. This mechanism, which is called session, is

usually associated with a user and supports the management of the user’s state

information on the server side. A session is represented by an HttpSession object,

which stores and provides access to the user specific data. In the IDIOM system,

the user’s session is instantiated once a user logs into the system. The session can

be later accessed through the JSP pages.

• Messaging Format: Provided services of the IDIOM system communicate with its

clients via exchanging messages in XML format. The schema for the content of a

DE is depicted in Figure 5-3:

99

element digitalentity
diagram

Figure 5-3: Schema of DE Content

100

• Confirmation of Service Execution and Exception handling: IDIOM services are

deployed by using Axis 1.2 Web Service technology under Apache Tomcat

Container. Confirmation of requested services is returned to the clients in XML

format. Furthermore, any exceptions occurred during the execution of services

such as originating from integrated annotation tools or related to service

implementations etc. are caught and a confirmation message is returned to clients

in XML format.

Finally, modules of the prototype IDIOM system can be categorized: (1)

Annotation Tools; (2) Search Tools; (3) IDIOM Web Services; (4) Session and Event

Management; (5) Digital Entity Management; (6) Annotation Tools; (7) Search Tools; (8)

Authentication and Authorization; (9) Other; (10) Timestamp Generator; (11) Scheduler;

(12) Data Manager. In the following sub-sections, we give a brief description of the

functionality provided by each module.

5.2.1 Annotation Tools

Annotation Tools are the integrated annotation tools into the IDIOM system to

store replica copies of the primary copies referred as DE stored in a MySQL system

database. It implements the Annotation Tools abstract layer as described in 4.4.2.1. The

records kept at annotation tools called DARs can be accessed via IDIOM system services

and user interfaces. Users can upload records from repository to these tools, download

records from these tools into a repository, or transfer records between the integrated

annotation tools. In the current implementation, IDIOM system integrates Connotea,

CiteULike, and Delicious tools.

101

5.2.2 IDIOM Web Services

IDIOM Web Services implements the Event-based Infrastructure Services

abstraction layer as explained in Section 3.6.1. IDIOM Web Services provide access to

modules and their services via SOAP calls over HTTP protocol in current

implementation. The IDIOM Web Services can be accessed via different protocols

through the supported interfaces as well.

5.2.3 Session and Event Management Module

The goal of this module is to store user specific data such as user credentials

(password/username) cookie based, minor events to a DE, and the “view options”, which

control the level of detail with respect to the metadata fields displayed for each DE, into

users’ session. A session is a user’s state information, and maintained on the server side

[151]. From the moment user logged in the IDIOM system, user credentials, any changes

made to a DE, and view options for metadata fields of a DE are all saved in the user

session. When a user logs out from the IDIOM system, all unused minor events

(modifications to a DE) for a dataset creation are removed. This module provides user

interfaces for the Events and Dataset Management (Events and Dataset Creation, and

Event Processing Engine abstraction layers explained in section 3.6.2.1).

Users can retrieve and update metadata fields of their accessible DEs as explained

in Section 5.2.4. The updates to DEs are saved into the logged user’s session and they can

be accessed via Event Management Module user interfaces. Event Management Module

user interfaces allows users to access and simulate the minor events, which represents the

updates for a digital entity, before creating a dataset(s) by selecting available minor

events for a digital entity. Another word is that users can review their updates called

102

minor events, create datasets, simulate their updates on the DE, and confirm their updates

if they wish. Once users confirm the updates, then these updates inserted into MySQL

database for the related DE as minor events. Upon a request to access the DE metadata,

these minor events are automatically processed on top of the major event of the DE to

build the DE metadata based on the selected path. The selected path could be a user’s

events, or a group’s events, or all events belong to this DE as a default option. Figure

5-4, Figure 5-5, and Figure 5-6 displays the available paths to process events to build a

DE, content of a minor event, and application of the minor event on the DE.

Figure 5-4: Current Metadata of a DE

103

Figure 5-5: Content of a Minor Event

Figure 5-6: Application of a Selected Minor Event to a DE

104

5.2.4 Digital Entity Management Module

Digital Entity Management module is responsible for: (1) Implementing the

Events and Dataset Management services. Furthermore, it provides a service to view

detailed information about a DE by utilizing Event Processing Engine (Implements Event

and Dataset Management abstraction layer explained in Section 3.6.2.1; (2) Providing the

services for inserting a new DE or updating an existing DE, and it utilizes push-based

consistency maintenance approach by pushing the updates immediately after they occur

to the integrated annotation tools via Communication Manager described in Section 5.3.1.

(Implements Digital Entity Update Management abstraction layer discussed in 3.6.2.2);

(3) Providing an access to the history of a DE and rollback mechanism, from its entry

into IDIOM system to present (Implements History and Rollback Management

abstraction layer as discussed in Section 3.6.2.4); (4) Providing a service to retrieve and

apply updates belonging to other users on their DEs by Periodic Update Management

service (Implement Periodic Update Management abstraction layer as introduced in

Section 3.6.2.3).

Event and Dataset Management service handles with creating events (minor and

major) and datasets for the related DEs. In the current implementation of the IDIOM

system, minor events are kept in the logged user’s session. Once user created datasets

from the minor events, then they are sent to this module to be processed. Furthermore,

coming requests for a new DE entry is represented by creating a major event for it by this

module. Event and Dataset Management module also provides a More Info service,

which implements the concept of building DE metadata from its events. More Info

service is achieved by processing the selected minor events that are ordered by their

105

timestamp on top of the initial metadata of a DE (major event of it) by Event Processing

Engine. The selection of minor events can be based on a user, a group, or a default

selection that includes all the minor events of events. More Info service is depicted

respectively in Figure 5-7.

Figure 5-7: MoreInfo of a DE

Based on the coming events type (minor or major), DE Update Management

module forwards the requests to the Event and Dataset Management module. To handle

the coming update requests, Update DE Metadata service uses More Info service to build

DE metadata to send back to the requesting clients in XML format. In the current

implementation of the IDIOM system, a user can retrieve DE metadata in editable format

via DE Update Management service. After the user modified any metadata field of the

DE, it generates a minor event including the current modification to DE, and stores it into

106

the user’s session so that it can be processed later as explained in Section 5.2.3. Once the

logged user creates a dataset, then the associated minor events are sent to the DE Update

Management module to be processed as minor events. These minor events are forwarded

to Event and Dataset Management module to be executed. Furthermore, the user interface

of the IDIOM system to insert a new DE sends a request to DE Update Mamagement

module to be handled. It forwards this reuest as a major event to be processed by Event

and Dataset Management module. Update DE Metadata services are depicted

respectively in Figure 5-8. DE Update Management module implements strict

consistency approach by disseminating the update to each annotation tool right away.

Updates are disseminated by unicast communication approach since the integrated

annotation tools do not support publish/subscribe paradigm by using Communication

Manager described in Section 5.3.1.

Figure 5-8: Update Metadata of a DE

107

5.2.5 Search Tools

This module provides services and interfaces to the web-based search tools

including Google Scholar, Google Scholar Advanced, and Windows Live Academic. It

also provide services for local folder search and integrates the PubsOnline software - “an

open source tool for management and presentation of databases of citations via the Web”

[152] - into the IDIOM system and providing an interface for searching the logical

folders of IDIOM system database. This module is implemented by another PhD student

working on this project.

5.2.6 Authentication and Authorization

This module supports IDIOM systems authentication and authorization

mechanism to resources including DE and folder access rights structure, super and group

role definitions. This module is implemented by another PhD student working on this

project.

5.2.7 Other

User Registration, Username and Password Recovery, User’s Profile

Management, and DE Metadata View Options modules exist in the other modules of the

system architecture. These modules are responsible for providing users with services to

register with the system, retrieve their forgotten username, reset their forgotten password,

manage their profile such as name, email, password etc., and define the view options of

digital entities to view or hide specific metadata fields.

108

5.2.8 Timestamp Generator

Timestamp Generator module is responsible for producing uniqueue timestamp

values for the requesting processes. In order to impose an order on events, each event has

to be time-stamped before it is generated and stored in the session or the MySQL system

database. Since, events are processed by Event Processing Engine by their ordered

timestamps as explained in Section 3.6.2.1.2. Timestamp values are also used by the

Hybrid Consistency mechanism to maintain consistency by imposing an order on

updates. Furthermore, each process has also need to be time-stamped in order to manage

concurrent access on a shared data item. To assign a unique timestamp value, Timestamp

Generator interacts with Network Time Protocol (NTP) –based time service [153]. This

service provides synchronized timestamp values by synchronizing the distributed

machine clocks with atomic time servers available across the universe.

5.2.9 Scheduler

Scheduler module is responsible for managing coming requests for accessing Data

Manager Module as explained in Section 5.2.10. It implements Scheduler abstract layer

as explained in Section 3.6.4.

Scheduler implements two queues to manage concurrent processes who wish to

operate on a same data item at the same time. It implements Pessimistic Timestamp

Ordering algorithm to handle concurrent access on a shared data item. In Pessimistic

Timestamp Ordering, each process and data item are assigned a timestamp value. Data

items have read and write timestamp values for the related read and write operations on

them. Once a data item is read or written then its timestamp value is set to the regarding

process’s timestamp value. Basically, Scheduler module uses timestamp ordering, and if

109

two process conflicts then it allows the one with the lowest timestamp to execute its

operation on the shared data after putting it into the execution queue, and puts the second

process on the waiting queue. Both queues are implemented by using Java Hashtable

structure. After the first process finish its execution, it updates the timestamp value of

shared item with its value and it is removed from the execution queue. Then the next

waiting process from the waiting queue is allowed to execute its operation only if its

timestamp value is greater than the regarding timestamp value of the shared data item.

Otherwise it is aborted.

5.2.10 Data Manager

Data Manager is responsible for executing the process that comes from Scheduler

as explained in Section 5.2.9 on data items. It implements the Data Manager abstract

layer as explained in Section 3.6.5. Data Manager uses JDBC connection to connect to

MySQL system database.

5.3 Hybrid Consistency Framework

The Hybrid Consistency Framework is an umbrealla name for: (1) DE Update

Management sub-module of the Digital Entity Management Module; (2) Communication

Manager; and (3) Annotation Tools Manager. Hybrid Consistency Framework works in

two ways by utilizing pull and push based consistency maintenance approaches.

In the push based approach as explained earlier in Section 5.2.4, DE Update

Management module is responsible for disseminating the updates immediately once they

occur to the integrated annotation tools via Communication Manager as explained in

Section 5.3.1. The updates take place on primary copies located at the central MySQL

110

system database. These primary copies have more metadata field than the DARs located

at the annotation tools.

Communication manager is responsible for providing communication between the

main system and the integrated annotation tools via their defined gateways explained in

detail in Section 5.3.1.

Annotation Tool Manager is responsible for checking the integrated annotation

tools periodically to obtain the DARs, and compare them to find out the any available

updates described in detail in Section 5.3.2. It implements the time-based pull approach

to collect the updates from the integrated annotation tools.

5.3.1 Communication Manager

This module provides an interface to the annotation tools: Delicious, CiteULike,

and Connotea. It allows a user: (1) to upload DEs data and metadata to one of these

annotation websites; (2) to download DEs data and metadata from one of the annotation

websites into one of the logical folders of IDIOM system database; (3) to transfer DEs

data and metadata between these annotation websites. Annotation Tools module

implements the Communication Manager abstract layer as explained in Section 4.4.2.2.

To upload data and metadata from a user’s specified logical folder to the specified

annotation tool, Communication Manager Module uses the defined gateway abstract

layer explained in Section 4.4.2.2.1 for the desired annotation tool. Communication

Manager builds the DE metadata from its events and uploads it to the annotation tool.

To download data and metadata, first Communication Manager Module gets

records from the specified annotation tool via its gateway. Second, it parses the coming

XML result by using JDOM and XPATH technologies. Third, it passes the coming data

111

to DE Management module as explained in Section 5.2.4 in order to be processed and

entered into the MySQL database as major event in the case of being a new entry. If they

are existing entries, then they are saved into the user’s session as minor events.

To transfer data and metadata between annotation tools, first Communication

Manager Module retrieves the records from the first annotation tool via its gateway.

Second, it parses the coming result that is in XML format by using JDOM and XPATH

technologies. Third, it uploads data and metadata to the second annotation website via its

gateway.

5.3.2 Annotation Tools Update Manager

Annotation Tools Update Manager module is responsible for implementing a

mechanism to deal with the consistency maintenance of DARs located at several

annotation tools by using pull (time-based) and push based consistency approaches. This

module implements the Annotation Tools Update Manager abstraction layer as explained

in Section 4.4.2.3. Furthermore, it utilizes the Communication Manager module

described in Section 5.3.1 to push updates to the integrated annotation tools.

In the pull based approach, Annotation Tools Update Manager utilizes Java

Threads running in the background for each integrated annotation tool. Process of

collecting and applying updates requires several steps. First, these threads wakes up as

specified in the properties file of the IDIOM prototype system and communicate with

their regarding annotation tool to get records from there. Second, they gets records from

database and compares the coming records the ones from the database to find out that

whether any update or new entry exists. If there is any update, then they are put into a

shared hashtable by all threads. If there are two or more updates for the same record, then

112

the update coming from the higher priority annotation tool as specified in the properties

file is put into the shared hashtable where all the updates are collected. Third, this module

passes the updates to DE Management Module as explained in 5.2.4 so that primary

copies of DEs can be updated and updates are disseminated to the annotation tools.

Update Propagation is explained in detail in Section 5.3.3.

Table 5-1: Summary of Technologies

API Purpose

JDOM For parsing XML documents

Jakarta
Commons

HTTP Client
version 3.0.1

For handling HTTP communication

XPATH For querying an XML document object

JTidy For parsing HTML documents

Apache Axis
version 1.2

For creating Java Web Services

JAVA For implementing the framework

Finally, in our implementation of Hybrid Consistency Framework Management

module of IDIOM system, we have used various technologies. Summary of the

technologies are represented in Table 5-1.

5.3.3 Update Propagation

In distributed systems, there are two approaches for update propagation: Pull

approach and Push Approach. In Pull approach, a server or client ask another server to

send any updates that it may have, where as in Push based approach, updates are

propagated to other replica server without their requests [105]. In our prototype

113

implementation, we utilized push and time-based pull methodology for update

propagation and unicast technique for dissemination of updates to integrated annotation

tools. Based on this methodology, whenever an update occur on IDIOM system, the

primary-copy immediately reflects the changes to the replica copies located at the

integrated annotation tools in order to keep them up-to-date with the recent change.

Updates can be distributed in either unicast or multicast communication methodology

[105]. In unicast update propagation methodology, the primary-copy server sends updates

to replica holders separately, while in multicast update propagation, it send the updates

by using an underlying multicast utility that handles sending the updates to replica

holders. For dissemination of updates, we used unicast communication methodology due

to lack of support for publish/subscribe mechanism of annotation tools.

114

CHAPTER 6

Prototype Evaluation and Discussions

In this chapter we performed extensive series of measurements to evaluate the

prototype implementation of the proposed architecture and investigate its practical

usefulness in real life applications. In this chapter, the following research questions are

being answered:

• What is the baseline performance of the Hybrid Consistency Framework

implementation in terms of the base upload and download operations?

(Section 6.2 answers this question.)

• What is the optimum number of annotation tools that the proposed

implementation can handle without the performance degradation? (Section 6.2

answers this question.)

115

• What is the optimum consistency-interval time for achieving high

performance for checking annotation tools for the updates? (Section 6.2

answers this question.)

• What is the optimum number of clients that can be concurrently supported by

the proposed system? (Section 6.3 answers this question.)

• How well the system does performs when the numbers of minor events are

increased for standart operations? (Section 6.3 answers this question.)

• How well the system does performs when the message rate per second is

increased for standart operations? (Section 6.3 answers this question.)

• What is the cost of consistency maintanence in terms of the time required to

carry out updates at the primary-copy holder? (Section 6.4 answers this

question.)

• What is the cost of consistency maintanence in terms of the time required to

carry out updates at the annotation tools? (Section 6.4 answers this question.)

• How does the system behavior change for continuous, uninterrupted update

operations at primary-copy (for consistency maintanence)? (Section 6.4

answers this question.)

6.1 Testing Environment

We tested our Event-based Hybrid Consistency Framework implementation by

using gf6 node, gf8 node and gf16 node of clusters located at Community Grids

Laboratory at Indiana University. We have run our client programs on gf6, we have

deployed our service-based Event-model Hybrid Consistency Framework system on gf8,

116

and we have installed our database on gf16. Summary of these machine configurations

are given in Table 6-1, Table 6-2 and Table 6-3 respectively.

Table 6-1: Summary of Cluster Node - gf6.ucs.indiana.edu

Cluster Node gf6.ucs.indiana.edu

Processor Intel® XeonTM CPU (2.40GHz)

RAM 2 GB total

OS GNU/Linux (kernel release 2.4.22)

Table 6-2: Summary of Cluster Node - gf8.ucs.indiana.edu

Cluster Node gf8.ucs.indiana.edu

Processor Intel® XeonTM CPU (2.40GHz)

RAM 2 GB total

OS GNU/Linux (kernel release 2.4.22)

Table 6-3: Summary of Cluster Node - gf16.ucs.indiana.edu

Cluster Node gf16.ucs.indiana.edu

Processor Intel® XeonTM CPU (E5345 2.33GHz)

RAM

OS GNU/Linux (kernel release 2.6.9-5.ELsmp

117

In our general experiments methodology, we have used single-threaded and multi-

threaded client programs. Our Event-based Hybrid Consistency Framework is also a

multi-threaded service-enabled system running on cluster node gf8.ucs.indiana.edu. We

have sent various requests from the client programs to our proposed system

implementation to test the performance, the scalability and the consistency enforcement

of our proposed system.

We have implemented our service-enabled Event-based Consistency Framework

in Java Language, using Java 2 Standard Edition Edition compiler with version 1.5.0_12.

In our experiments with the prototype implementation, we used Apache Tomcat Server

with version 5.0.28 and Apache Axis technology with version 1.2 as a container. We set

the maximum heap size of Java Virtual Machine (JVM) to1024MB by using the option –

Xmx1024m. In our experiments, we also increased the maximum number of threads from

default value to 1000 in Apache Tomcat Server to be able to test the system behavior for

the huge numbers of concurrent clients.

6.2 System Responsiveness Experiments

Our main goal in doing this experiment is to measure the baseline performance of

our Event-based Hybrid Consistency Framework implementation. We have tested the

performance of our proposed system by measuring the times necessary to insert a new

major event (forms a DE) into the system as a primary copy, and entering a new record

into an annotation tool (forms a DAR). The performance evaluation is done when there is

no additional traffic in the system. The primary interest for doing system responsiveness

experiment was to investigate the optimum performance of the system for main

operations for the proposed system. The client programs were running on a cluster node

118

gf6, while service-enabled event-based Hybrid Consistency system was running on

cluster node gf8.

In this experiment, we were exploring the performance of our methodology for

upload and download operations of the proposed system. We have conducted the

following test cases: a) A single client sends insert DE request to an echo service; b) A

single client sends insert DE as major event request required to access to the DB; c) A

single client sends make a new DAR request required to access to an annotation tool.

In this experiment, we tried to investigate the various overheads that might affect

the proposed system performance. In order to distinguish the various overheads such as

network communication, client application initialization etc., we have used a simple

service that returns the coming request itself without any processing. The comparison of

the actual result of the base primitive service and the Event-based Consistency

Framework, the real time spent on the server side for the execution can be obtained

easily.

In our each testing case, the clients send 400 sequential requests for upload and

download standard operations. We recorded the average response time, and this

experiment was repeated 5 times. Figure 6-1 shows the design of these experiments.

119

Figure 6-1: Testing Cases for System Responsiveness Experiment

6.2.1 System Responsiveness Experiment Results

We conduct experiments where we investigate the maximum number of

annotation tools that can be supported by the proposed system without performance

degradation and the best possible consistency-interval period to provide consistency and

high performance at the same time. For testing experiments, we used Event-based Hybrid

Consistency Framework base operation: getMoreInfo.

Based on the results depicted in Figure 6-2, and listed in Table 6-4, we identified

that a large number of annotation tools may well be supported without any error by the

system and do not cause any overhead on the system performance. However, we

observed that there is a linear increase in process time while the number of annotation

tools is increased. Hence, the number of threads, which are responsible for collecting and

120

applying updates for annotation tools, are depent on the machine environment where the

service is running. During our experiments, we are able to create and run upto 1400

threads on node 8 to represent 1400 annotation tools. But, supporting this number of

annotation tools requires spending huge amount of time for the consistency maintenance.

In one of our experiment, there exist 154 major and 10 minor for each major events in the

database and 100 annotation tools integrated into the system as in our experiment. We

have 10 records (around 13.2 KB) coming from annotation tools to be parsed to collect

the updates. The average total processing time for each annotation tool for collecting

updates and applying updates in our experiment is around ~ 154,662 msec. Hence, the

total processing time for 100 annotation tools is to collect and to apply updates for

maintaining consistency is about to 2.58 minutes. The best consistency-interval period

that helps us to observe how often the updates can be obtained from 100 annotation tools

without performance degradation is around 2-3 minutes. As a result, if we perform

consistency maintenance check every 2-3 minutes for 100 tools, it is not going to conflict

with the existing consistency operations.

121

Figure 6-2: Test Results for Number of Annotation Tools Investigation

Table 6-4: Statistics of the experiment depicted in Figure 6-2

Event-Based Hybrid Consistency Framework – Process Timings for 154 major and 1540
minor events (10 minor events for each major event) exist in the database
Number of
Annotation

Tools

Get DB
Records

Collect
Updates

Update DB
Propagate
Updates

Total
Process
Time

10 8586.15 8647.79 200.79 6085.40 15135.75
20 15814.44 15924.50 201.02 12711.29 29248.31
30 24223.04 24445.09 201.01 19016.08 44152.46
40 30862.13 31618.47 200.46 25019.36 58061.09
50 37241.51 39241.04 200.98 30329.01 72341.60
60 46551.42 49963.57 200.49 36136.39 90241.58
70 49886.82 55468.01 200.19 42774.53 104617.11
80 50951.70 59901.48 200.72 47883.78 117513.07
90 54117.57 66810.34 201.25 54324.21 134735.84

100 62430.11 76966.45 200.86 62300.77 154662.35

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 T
im

e
 (

m
se

c)

of Annotation Tools

Consistency Maintenance for the # of Integrated Annotation Tools

Average - Collect Updates

Average - Update DB

Average - Propagate

Updates

Average - Total Process

Time

STDev - Collect Updates

STDev - Update DB

STDev - Propagate

Updates

STDev - Total Process Time

Average - Get DB Records

STDev - Get DB Records

122

Furthermore, we can be able to reduce the time spend to get existing records from

database by using a pre in memory collection of records. As a result, records are

retrieved from the database just once at the beginning of each consistency maintenance

operation resulting in decreasing in the total time spent for consistency maintenance.

Then each annotation tool does not need to connect to database to get existing records

instead they can obtain the records from memory storage easily. Experiment results for

the pre in memory collection of records are given in Figure 6-3 and listed in Table 6-5.

Figure 6-3: Improved Test Results for Number of Annotation Tools Investigation

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00

70000.00

80000.00

90000.00

100000.00

10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 T
im

e
 (

m
se

c)

of Annotation Tools

Improved Consistency Maintenance for the # of Integrated

Annotation Tools

Average - Improved Total

Process Time

STDev - Improved Total

Process Time

Average - Get Records

from DB

STDev - Get Records from

DB

123

Table 6-5: Statistics of the experiment depicted in Figure 6-3

Event-Based Hybrid Consistency Framework – Process Timings for 154 major and 1540

minor events (10 minor events for each major event) exist in the database
Number of
Annotation

Tools

Get DB
Records

Total Improved
Process Time

STDev Get
DB Records

STDev Total
Improved Process

Time

10 4901.04 6549.60 241.05 199.03
20 4996.43 13433.87 244.82 367.72
30 4967.29 19929.42 247.36 1125.55
40 4979.19 27198.96 248.54 1433.85
50 5001.22 35100.09 249.51 2477.58

60 4998.12 43690.16 250.42 3298.50

70 4988.22 54730.29 249.92 4918.68

80 5011.17 66561.37 251.28 6053.92

90 5006.12 80618.27 249.33 7746.24

100 4995.92 92232.24 250.18 8218.89

Depicted Figure 6-4 and listed in Table 6-6 represent basic proposed system

responsiveness result. In this experiment we recorded round trip times and process times

for: a) calling an echo service to measure response time of our implemented service

without any process time; b) entering a major event into the database; c) uploading a

DAR to an annotation website. Generating and storing a major event in the database is

one of the major services provided by the proposed Event-based Hybrid Consistency

Framework. Furthermore, the proposed Event-based Hybrid Consistency Framework

propagates the updates via pull or push mechanism by using upload and download

services of the system in order to maintain consistency. This experiment shows the

necessary time requirements for these major services to enter or to upload a digital entity

between the database and annotation tools.

We may easily retrieve the time spend on the server side by extracting the times

that obtained on the echo service.

124

Figure 6-4: Average timings for echo service, entering a major event into a database

service, and uploading a DAR to an annotation tool service

Table 6-6: Statistics of the experiment depicted in Figure 6-4

 Event-based Hybrid Consistency Framework – Timings of the Major

Services (Times are in msec and per one record)

Number
of
repetition

Average Timings (msec) STDev
Echo
Service
(Round
Trip
Time)

Insert a
major
event
into DB

Connotea
Post Time

Total
Process
time to
upload a
DAR

Echo
Service

Insert a
major
event
into
DB

Upload a
DAR to
annotation
tool

1 23.47 214.66 127.84 131.37 7.46 8.13 9.71
2 22.22 214.19 127.22 130.49 7.37 6.87 8.68
3 22.25 214.39 127.33 130.29 7.81 6.55 8.24
4 22.86 216.41 127.97 130.76 7.42 6.41 9.29
5 22.13 216.86 127.66 130.21 7.52 6.37 9.81

0

50

100

150

200

250

1 2 3 4 5

A
v

e
ra

g
e

 T
im

e
 (

m
se

c)

Repeated Test Cases

Major Timings for Event-Based Hybrid

Consistency Framework

Average - Echo Service

STDev - Echo Service

Average - Enter Major

Event into DB

STDev - Enter Major

Event into DB

Average - Upload DE to

Connotea

STDev - Upload DE

Process Time

Average - Connotea

Pure Post Time

125

6.3 Scalability Experiment

The primary interest in doing this experiment was to investigate the scalability of

Event-based Hybrid Consistency Framework implementation. We conducted two testing

cases and tried to answer the following research questions: a) how well does the system

performs when the number of minor events are increased for standart operations such as

More Info request on a DE?; b) how well does the system performs when the message

rate per second is increased for standart operations such as More Info request on a DE

with fixed number of events?

In first experiment, our main goal is to identify the performance degradation in

response time when numbers of minor events are increased in the Event-based Hybrid

Consistency system. We have completed this test case by increasing the number of minor

events until the response time degrades. In this testing case, we recorded round trip time

at each MoreInfo request on a DE. The design of this testing case is depicted in Figure

6-5.

126

Figure 6-5: Testing cases of scalability experiment for More Info request

6.3.1 Scalability Experiment Results

Based on the experiment result, we identified that Event-Based Hybrid

Consistency Framework major operations performed well for the increased number of

minor events. However, after a certain number of minor events, performance starts to

degrade due to the time necessary to processes minor events to build the latest version of

a record. Experiment results are given in Figure 6-6, Figure 6-7 and listed in Table 6-7

and Table 6-8.

127

Figure 6-6: Round Trip Time chart for More Info Request when the numbers of

minor events are increased

Table 6-7: Statistics of Figure 6-6 with changing number of minor events. Time

units are in milliseconds

Event-based Hybrid Consistency Framework – MoreInfo Request Operation

Number of Minor Events
Average Timing

(msec)
STDev

0 36.01 17.62
10 68.97 16.70
20 94.00 14.71
30 122.83 14.09
40 156.55 19.07
50 181.18 12.39
60 213.40 15.55
70 244.99 13.16
80 281.18 22.29
90 310.36 12.69

100 340.73 14.72

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
se

c)

Number of Minor Events

Increased # of Minor Events

Average - More

Info

STDev - More Info

128

Figure 6-7: Round Trip Time chart for More Info Request when the numbers of

minor events are increased

Table 6-8: Statistics of Figure 6-7 with changing number of minor events. Time

units are in milliseconds

Event-based Hybrid Consistency Framework – MoreInfo Request Operation

Number of Minor Events
Average Timing

(msec)
STDev

0 36.01 17.62
500 1570.00 27.84

1000 3260.13 40.18
1500 4868.74 53.29
2000 6482.76 108.64
2500 8362.69 94.89
3000 10003.24 117.51

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500 3000 3500

A
v

e
ra

g
e

 r
o

u
n

d
 T

ri
p

 T
im

e
 (

m
se

c)

Number of Minor Events

Increased # of Minor Events

Average - More

Info

STDev - More Info

129

Figure 6-8: Average More Info Service - response time at various levels of messages

per second

Table 6-9: Statistics of the experiment results depicted in Figure 6-8. Time units are

in milliseconds

Event-based Hybrid Consistency Framework – Increased Message Rate

Messages/second Average Timing (msec)
10 116.05
20 169.12
30 220.15
40 271.21
50 313.45
60 357.16
70 450.04
80 507.77
90 4269.23

Based on the results depicted in Figure 6-8 and listed in Table 6-9, we determined

that concurrent inquiry requests may be well responded by Event-based Hybrid

Consistency Framework without any error. During our experiment, each major event has

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90 100A
v

e
ra

g
e

 R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
se

c)

message rate (message/per second)

Increased Message Rate per Second

More Info Message

Rate

130

10 minor events, and each minor event is processed to build the latest record in order to

obtain more info on a record. We observe that after around 80 inquiry messages per

second, the system performance degrades due to high message rate. This threshold is

mainly due to the processing capability of the minor events of the system. As the more-

info request message-rate is increased, the number of the request and relatively its

process of the minor events are also increased.

6.4 Consistency Maintenance Experiment

The design of this experiment is depicted in Figure 6-9. Our primary interest in

doing this experiment was to investigate the cost of our Hybrid Consistency Framework.

We conducted various test cases to measure the cost of our Hybrid Consistency

Framework implementation and tried to answer the following questions: a) what is the

cost of consistency maintenance in terms of the time required to carry out updates at the

primary-copy holder? (The first test conducted with one annotation tool and the second

test conducted with two annotation tools); b) what is the cost of consistency maintenance

in terms of the time required to carry out updates at the annotation tools?

131

Event-based Hybrid Consistency

Framework Main Database

Annotation Tools

 Figure 6-9: The design of the consistency maintenance experiment. The coming

updates from annotation tools are reflected on the primary copy of each DAR

located on the main database, while the updates made on primary copies are carried

out to the annotation tools to be reflected over there.

6.4.1 Consistency Maintenance Experiment Results

Our Hybrid Consistency Framework experiments are categorized into two

categories: 1) Dealing with the updates that occur on the primary copies; 2) Handling the

updates that occur on any integrated annotation tools into the system. Our experiment

results are given as below:

132

Figure 6-10: Primary Copy Update Propagation (1 Node). We have 154 major

events in our database, and each major event has ten updates (minor events) in their

history. Time units are in milliseconds.

Table 6-10: Statistics of the experiment results depicted in Figure 6-10

Event-Based Hybrid Consistency Framework – Consistency Maintenance (Primary Copy:
Results are for propagating one record which has 10 minor events)

Number of
Times

Process
Time

Network Time
Total Time STDev.

Process
Time

STDev.
Network

Time
1 49.71 128.48 178.19 5.16 24.64
2 48.50 131.25 179.75 4.44 32.21
3 48.25 128.66 176.92 5.52 24.46
4 48.69 132.13 180.82 5.85 29.22
5 48.63 129.03 177.67 6.28 25.53

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5

A
v

e
ra

g
e

 T
im

e
 (

m
se

c)

Every 400 Observations

Primary Copy Update Propagation (1 Node)

Average - Total Process

Time

Average - Process Time

Average - Network Time

STDev - Process Time

STDev - Network Time

133

Figure 6-11: Primary Copy Update Propagation (2 Node). We have 154 major

events in our database, and each major event has ten updates (minor events) in their

history. Time units are in milliseconds.

Table 6-11: Statistics of the experiment results depicted in Figure 6-11

Event-Based Hybrid Consistency Framework – Consistency Maintenance

Number of
Times

Process
Time

Total
Network

Time

Total
Time

STDev.
Process
Time

STDev.
Network
Time-1

STDev.
Network
Time-2

1 48.83 410.83 459.67 8.43 24.44 7.04
2 48.60 410.82 459.42 7.98 26.38 6.96
3 48.49 411.39 459.89 6.80 27.16 6.63
4 47.93 412.41 460.34 6.90 29.53 7.42
5 47.82 409.85 457.67 5.82 26.49 7.52

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5

A
v

e
ra

g
e

 T
im

e
 (

m
se

c)

Every 400 Observations

Primary Copy Update Propagation (2 Node)

Average - Total Process

Time

Average - Process Time

Average - Total Network

Time

STDev - Process Time

STDev - Network Time-1

STDev - Network Time-2

134

Figure 6-12: Annotation Tools Update Propagation (1 Tool). We have 154 major

events in our database, and each major event has ten updates (minor events) in their

history. Time units are in milliseconds.

Table 6-12: Statistics of the experiment results depicted in Figure 6-12

Event-Based Hybrid Consistency Framework – Consistency Maintenance (Annotation
Tools, 154 Major events and 10 minor events for each major event. Found 10 updates)

Number of
Times

Get records
from DB

Collect
Updates

Update DB

Propagate
Updates

Total
Processing

Time
1 5070.08 5088.19 200.50 1254.63 6563.24
2 4936.99 4954.55 200.72 1255.84 6431.02
3 5056.08 5073.43 200.77 1274.58 6567.57
4 4986.65 5004.59 200.66 1252.30 6477.49
5 5072.92 5091.86 200.69 1260.84 6563.84

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5

A
v

e
ra

g
e

 T
im

e
 (

m
se

c)

Every 400 Observations

Annotation Tools Consistency Maintenance (1 Tool)

Average - Get DB Records

Average - Collect Updates

Average - Update DB

Average - Propagate

Updates
Average - Total Processing

Time
STDev - Get DB Records

STDev - Collect Updates

STDev - Update DB

STDev - Propagate Updates

135

Table 6-13: Statistics of the experiment results depicted in Figure 6-12

Event-Based Hybrid Consistency Framework – Consistency Maintenance (Annotation
Tools, 154 Major events and 10 minor events for each major event. Found 10 updates)

Number
of Times

Get records from
DB STDev.

Collect
Updates
STDev.

Update DB

STDev.

Propagate
Updates
STDev.

Total
Processing

Time STDev
1 46.82 47.66 2.95 45.42 67.03
2 40.87 41.29 3.05 51.16 68.88
3 62.80 63.46 2.94 68.05 88.14
4 47.26 47.27 3.11 64.41 81.35
5 94.79 95.60 2.91 67.92 91.61

Figure 6-13: Annotation Tools Update Propagation (2 Tools). We have 154 major

events in our database, and each major event has ten updates (minor events) in their

history. Time units are in milliseconds.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5

A
v

e
ra

g
e

 T
im

e
 (

m
se

c)

Every 400 Observations

Annotation Tools Consistency Maintenance (2 Tools)

Average - Get DB Records

Average - Collect Updates

Average - Update DB

Average - Propagate

Updates

Average - Total Processing

Time

STDev - Get DB Records

STDev - Collect Updates

STDev - Update DB

136

Table 6-14: Statistics of the experiment results depicted in Figure 6-13

Event-Based Hybrid Consistency Framework – Consistency Maintenance (Annotation
Tools, 154 Major events and 10 minor events for each major event. Found 10 updates)

Number of
Times

Get records
from DB

Collect
Updates

Update DB

Propagate
Updates

Total
Processing

Time
1 5314.55 5340.97 200.73 1340.11 6917.17
2 5575.47 5595.44 200.68 1300.10 7133.47
3 5477.02 5497.56 200.57 1304.45 7041.00
4 5353.80 5374.44 200.83 1311.66 6918.43
5 5508.47 5528.11 200.71 1328.00 7099.93

Table 6-15: Statistics of the experiment results depicted in Figure 6-13

Event-Based Hybrid Consistency Framework – Consistency Maintenance (Annotation Tools,
154 Major events and 10 minor events for each major event. Found 10 updates)

Number
of Times

Get records from
DB STDev.

Collect
Updates
STDev.

Update DB

STDev.

Propagate
Updates
STDev.

Total Processing
Time STDev

1 94.82 116.50 3.12 89.86 119.08
2 86.88 88.28 3.03 50.30 104.90
3 96.14 98.06 3.01 83.04 102.44
4 96.38 97.65 3.11 86.29 115.73
5 92.08 94.29 2.94 92.92 118.62

Based on the results depicted in Figure 6-10, Figure 6-11, while total processing

time is increased, processing time remains the same. This difference is caused by the

network time of the second annotation tool. During the propagation of the update to the

second website, we have used their API to post update to their system and this was

bringing this the extra time. Hence, while we increase the number of integrated

annotation tools in to our proposed system, the total processing time is going to increased

137

based on the necessary time to upload an update to the added annotation tools via their

API.

Based on the Figure 6-12, and Figure 6-13, each integrated annotation tool brings

an extra cost increasing in linear to our proposed system. Since, we are assigning a thread

to each annotation tools to collect and apply their updates in our framework. Each thread

is accessing the common database entries to get existing database records and in memory

storage, where we collect the updates before applying them. Furthermore, CPU is also

shared by each thread based on the CPU scheduling. Finally, mainly the thread creation

and these two factors cause an increase in the total processing time. However, this

increase can be reduced by implementing our pre-retrieval of database records before

starting to each consistency maintenance operation as depicted in Figure 6-3 and listed in

Table 6-5 .

6.5 Summary

This chapter presented the performance evaluation of our proposed Event-based

Infrastructure and Hybrid Consistency Framework. First, our experiment results indicated

that our proposed framework can handle huge number of annotation tool integration. The

experiment results pointed out the trade-off between the number of annotation tool

integration and performance. We have also identified the best consistency-interval time

based on our experiments.

Second, our experiment pointed out the trade-off between the scalability and

performance of the proposed system. Based on the experiment results, we discovered

some threshold values for the maximum number of simultaneous More Info service

operation that can be performed on the system. For instance, while the number of

138

requests exceeds 80 simultaneous messages per second, the system performance starts to

decrease. This experiment results also showed that the system is able to scale to

increasing message sizes and performs well. We have also identified that increasing the

number of minor events in the system cause the round trip time to linear increase of More

Info request. For example, for 100 minor events we identified that round trip time for

More Info request is 340.73 msec while 3000 minor events the round trip time for More

Info request is 10003.24 msec. The experiment result pointed out the trade-off between

the number of minor events existence in the database and performance. As a solution,

after some points, minor events can periodically be compacted into a single major event

to get over this overhead.

Finally, our experiment pointed out that processing time of our primary copy

based update propagation remains the same while the total processing times increase due

to the networking time of the each integrated annotation tool. Based on the experiment

result, we identified that time necessary for annotation tools consistency maintanence is

increased while the number of annotation tool is increased. Since, we are creating one

thread for each annotation tool to collect and apply its updates. Access to common

storage, shared CPU and uploading updates to annotation tools cause this major time

increases. However, accessing common storage by each annotation tool can be reduced

by implementing a pre-retrieval of database records before each consistency maintenance

procedure.

139

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Thesis summary

This thesis studied Event-based Infrastructure and a Hybrid Consistency

Framework for reconciling distributed annotation records located at various annotation

tools. We have identified our motivation, and research problems in CHAPTER 1. We

discussed the related work and survey of technologies in CHAPTER 2. Having identified

our motivations, and reviewed the relevant research works, we proposed our architectural

design for an Event-based Infrastructure and Hybrid Consistency Framework. We

introduced the Event-based Infrastructure in CHAPTER 3. We presented the Hybrid

Consistency Framework in CHAPTER 4. We explained our proposed research’s

140

implementation details in CHAPTER 5. We introduced prototype evaluation and

discussions in CHAPTER 6.

Social bookmarking services strikingly changed how people find and refind

information on the internet. Furthermore, it demonstrated the power of online

collaboration and there are several features of social bookmarking services that support

collaboration. First, users of these systems store data and metadata in a shared place

instead of storing them in a private local storage such as a personal computer’s hard

drive. This allows anyone to access other users’ records resulting in users to discover new

sources of information. Second, social bookmarking services leverage the use of

collaborative tagging of resources. Users can tag their content on these social

bookmarking tools, organiza their resources by tags, and search all resources existed on

social bookmarking services by tags to find related or interested resources. So,

collaborative tagging provides users with ability to organize their resources in a flexible

way.

There has been an enormous growth in social bookmarking applications and the

most obvious and famous example is del.icio.us. Social bookmarking tools offer great

services for publicly accessible web resources. Today, there are various types of social

bookmarking services focused on different areas such as Social Networking Tools

(MySpace, LinkedIn), Social Bookmarking Tools (del.icio.us), Video Sharing and

annotation (YouTube), and annotation and sharing of scholarly publications (CiteULike,

Connotea, Bibsonomy).

Despite the huge number of web-based annotation tools that provide services for

storage and collaboration of resources over the internet, these tools have limitations. First

141

of all, their metadata support for the stored documents varies and the metadata fields

provided by these tools are not enough to represent the whole content of a scientific

document causing storing same scholarly publications in several annotation tools.

Second, these tools are lack of support for communication with each other. Third, they

also suffer lack of services to upload data from a repository, extract and import data into

a repository. Finally, they do not provide timestamp information for the updated records

causing inconsistencies once documents get updated.

Our thesis research focused on reconciling distributed annotation records stored at

the social bookmarking services that enable the annotation and sharing of scientific

content with additional metadata support and capabilities. We have reviewed events

sytems in section 2.2 and overviewed consistency models for distributed systems in

section 2.3. We have investigated Event-based Infrastructure and Hybrid Consistency

mechanism by adopting existing consistency models for distributed systems to our

research.

A promising approach to address the above issues is the event-based paradigm

and providing a consistency mechanism around it to keep replicas, records stored at

several annotation tools, consistent with each other. The components of an event-based

system cooperate by sending and receiving events, a particular form of messages. Our

event-based infrastructure is the key concept to our research. Documents, metadata, and

modifications to them are represented as events in our research. Events allow us to keep

track of changes to documents and metadata. It also provides users with ablity to rollback

in a flexible fashion to change the state of a digital entity referred as DE in the previous

chapters.

142

Event-based infrastructure benefits from representing documents as events. Since,

we never loose a version of a document. It provides flexibility of having different

versions of a document any time and enables going back and forward among the versions

of a document. Furthermore, event-based approach allows us to handle various types of

metadata coming from several sources such as annotation tools (Connotea, Bibsonomy,

and CiteULike), academic search tools (Google Scholar, Windows Live Academic).

Event-based infrastructure also has advantages of having timestamp values for

each action made on a document. Events can be ordered and executed based on their

timestamp values. Furthermore, concurrent updates on a shared document can also be

handled based on our concurrent update policy as explained in section 4.4.1 by ordering

events.

Our Hybrid Consistency Framework (HCF) also benefits from having an event-

based infrastructure by forming a strict consistency model via primary copy based

approach and time-based consistency model via pull based approach to maintain

consistency when updates (minor events) occurred. HCF propogate updates by using

Digital Entity Update Management module to all replicas based on our push-based strict

consistency model once updates occurred on a primary copy of document. Propagation of

updates is done via unicast communication due to missing support of publish/subscribe

mechanism in the integrated annotation tools. However, we have adopted a time-based

consistency model for pulling updates from annotation tools periodically to apply

primary copies and rest of the replicas to make them consistent with each other.

Web Service support in our Event-based Infrastructure is also another key feature

to allow different client running on a different platforms to interoperate with each other.

143

Our services can be accessed via SOAP calls to access documents from any client that

has internet access.

Our Event-based Infrastructure and Hybrid Consistency Framework scales very

well. We have performed several evaluations to measure scalability, performance and

consistency maintenance of our proposed Event-based Infrastructure and Hybrid

Consistency Framework in CHAPTER 6.

Our Event-based Infrastructure and Hybrid Consistency Framework is a very

flexible system. It easily allows adding new annotation or academic search tools into the

system. The only necessary action is to implanting a suitable gateway as explained in

detail in section 4.4.2.2.1.

7.2 Answering the research questions

In this section, we will answer our research questions raised in section 1.2.

Can we implement an infrastructure that handles data and metadata coming from

various sources in Service Oriented Architecture? Can this infrastructure integrate

various existing online annotation tools for publications, which stores replicas of the

same documents, and use their services? What is the efficient and flexible data model for

such framework?

The answer to this question is “yes”. We introduced an Event-based Infrastructure

that can deal with various data and metadata coming from different sources. Our Event-

based Infrastructure also supports Web Service technology to leverage interoperability

among different clients. CHAPTER 3 overviewed the event-based architecture, and

CHAPTER 5 explained the prototype implementation of the architecture. Event-based

144

infrastructure approach provides efficient and flexible data model for handling data and

metadata coming from various sources.

How can we support a flexible architecture that allows user to easily track

documents?

Event-based Infrastructure is the promising approach to easily track changes to

documents and metadata. In this approach, every action made on a document is kept with

a timestamp value. This allows us to keep a history of each document and their

modifications ordered by time. Event-based Infrastructure and its details are given in

detail in CHAPTER 3.

How can we provide a consistency between the online replicated documents

stored at annotation tools for scholarly publications and document located on a central

server?

Consistency maintenance is all about keeping all copies of data that may possibly

be distributed to different locations to be same. After reviewing consistency models,

protocols and update propogations for distributed systems in section 2.3, we have

designed our Hybrid Consistency Framework (HCF) to maintain consistency for

distributed annotation records (DARs) located at various annotation tools. HCF is a

promising approach to maintain consistency among DARs and their primary copies via

pull and push based consistency mechanisms. HCF is a data-centric consistency model

and it consists of primary-copy and time-interval based consistency protocol approaches.

In primary-copy based approach, whenever updates occurred on a primary copy of a

DAR, they are being propagated immediately to each annotation tool to update

replication of same document kept at various annotation tools (push approach). However,

145

in time-interval based approach, we periodically check DARs from each annotation tool

for any updates. If there is any, then we are pulling them out and applying them on the

primary copy of each DAR, which is stored in a relational database with additional

metadata. CHAPTER 4 discussed the proposed Hybrid Consistency Framework in detail.

How can we achieve an information management architecture that can provide

more metadata support than the current annotation tools do for scholarly publications?

In current annotation tools that hold scientific documents metadata support is very

limited to include all metadata about a document. Hence, documents are represented with

missing metadata field in those tools. In other words, documents are kept at these

annotation tools are not complete, and they are stored in various annotation tools due to

their various services and metadata supports. In our Event-based Infrastructure we keep

primary copies of each document with additional metadata support in a central repository

consistent with all replicas of the primary copies. Supported metadata field of a document

as an event is displayed in Figure 3-3.

Can we support communication between annotation tools for scholarly

publications?

The answer to this question is “yes”. Existing annotation tools for keeping

scientific documents on their site are lack of communication with each other. The

interoperability among annotation tools can be leveraged by Web Service technology.

Our Event-based Infrastructure has interfaces that provide heteregenous clients to access

its services via SOAP calls over HTTP as explained in CHAPTER 3.

146

How can we provide users with ability to access previous versions of an updated

document? Can we allow users to retrieve and apply other users’ updates for a same

document? What is the flexible update model?

Proposed Event-based Infrastructure (EBI) keeps each document when they

entered into the system as a major event and the following updates to it as minor events

in a central repository as explained in section 3.1 and depicted in Figure 3-2. So, we

never loose a version of a document and this provides users with ability to have histories

of each document at any given time. Users can easily search updates for the similar

documents easily to retrieve and apply their updates on their existing records. We have an

approach to provide a flexible and efficient update model, which allows users to have

ability to ignore or apply updates to the selected documents, explained in detail in section

3.5.

Does event-based approach scales very well?

The answer to this question is “yes”. We have performed measurements to

evaulate scalability and performance of our Event-based Infrastructure. Details of the

scalability results are given in section 6.3. Furthermore, we have investigated the

behavior of our Event-based Infrastructure when the numbers of minor events are

increased depicted in Figure 6-6 and Figure 6-7. Further evaluations of our prototype

implementation can be found in CHAPTER 6.

Can we support services for extracting data and metadata from these annotation

tools into a specified repository? Moreover, can we support services for uploading data

and metadata from a repository to annotation tools?

147

The answer to both questions is “yes”. Our Event-based Infrastructure supports

services to communicate with the integrated annotation tools. These services provide

users with ability to extract and download data and metadata into a specified repository.

Furthermore, users can upload data and metadata from a specified repository to the

integrated annotation tools. These concepts and their implementations are defined in

CHAPTER 3 and Section Error! Reference source not found. respectively.

7.3 Future research

This thesis deploys an Event-based Infrastructure and adopts consistency

techniques for distributed systems to maintain consistency among distributed annotation

records and their primary copies stored at a central repository. It utilizes an Event-based

Infrastructure and introduces a Hybrid Consistency Framework to maintain consistency

among distributed annotation records representing scholarly publications. We plan to

expand on this approach to be able to apply other application domains such as video

collaboration domain (YouTube etc.). We will further research compaction of minor

events into major events when the number of minor events reaches to a predefined

number to reduce processing time. An additional area that we intend to research is to

migrate from centralized storage to decentralized storage.

148

Bibliography

[1] A. David, B. Ron, and C. Mark, "Information archiving with bookmarks: personal

Web space construction and organization," in Proceedings of the SIGCHI

conference on Human factors in computing systems. Los Angeles, California,

United States: ACM Press/Addison-Wesley Publishing Co., 1998.

[2] Apache Axis version 1.2. Available from:

http://www.apache.org/dyn/closer.cgi/ws/axis/1_2/

[3] Apache Tomcat with version 5.0.28. Available from: http://tomcat.apache.org

[4] Sun Microsystems web site http://www.sun.com/ .

[5] T. Hammond, T. Hannay, B. Lund, and J. Scott, "Social Bookmarking Tools (I):

A General Review," in D-Lib Magazine, vol. 11, 2005.

[6] Blogger Website http://www.blogger.com.

[7] Wiki - Wikipedia web site http://en.wikipedia.org/wiki/Wiki .

[8] Wikitravel web site http://wikitravel.org.

[9] MySpace web site http://www.myspace.com/.

[10] LinkedIn web site http://www.linkedin.com/.

[11] Delicious web site http://del.icio.us.

[12] Flickr web site http://flickr.com.

[13] YouTube web site http://www.youtube.com/.

[14] Netvibes web site http://www.netvibes.com/.

149

[15] YourLiveWire web site http://www.yourlivewire.net/.

[16] CiteULike web site http://www.citeulike.org.

[17] Connotea web site http://www.connotea.org.

[18] B. Lund, T. Hammond, M. Flack, and T. Hannay, "Social Bookmarking Tools

(II): A Case Study - Connotea," in D-Lib Magazine, vol. 11, 2005.

[19] Bibsonomy web site http://www.bibsonomy.org.

[20] G. Begelman, P. Keller, and F. Smadja, "Automated Tag Clustering: Improving

search and exploration in the tag space," in World Wide Web Conference.

Edinburgh, Scotland, 2006.

[21] C. Cattuto, V. Loreto, and L. Pietronero, "Collaborative Tagging and Semiotic

Dynamics," PNAS, vol. 104, pp. 1461, 2007.

[22] R. Lambiotte and M. Ausloos, "Collaborative Tagging as a Tripartite Network,"

in Computational Science â€“ ICCS 2006, 2006, pp. 1114-1117.

[23] S. A. Golder and B. A. Huberman, "Usage patterns of collaborative tagging

systems," Journal of Information Science, vol. 32, pp. 198-208, 2006.

[24] LibraryThing web site http://www.librarything.com.

[25] 43things web site http://www.43things.com.

[26] A. Mathes, "Folksonomies: Cooperative classification and communication

through shared metadata," 2004.

[27] W. Xian, Z. Lei, and Y. Yong, "Exploring social annotations for the semantic

web," in Proceedings of the 15th international conference on World Wide Web.

Edinburgh, Scotland: ACM, 2006.

150

[28] R. Sinha, "A cognitive analysis of tagging (or how the lower cognitive cost of

tagging makes it popular)."

[29] P. Merholtz, "Clay Shirky's Viewpoints are Overrated."

[30] C. Shirky, "Ontology is Overrated: Categories, Links, and Tags ".

[31] L. Gordon-Murnane, "Social bookmarking, folksonomies, and Web 2.0 tools

" Searcher, vol. 14, pp. 26-38, 2006.

[32] JSON web site http://www.json.org/.

[33] RSS Advisory Board Website http://www.rssboard.org/.

[34] A. F. Mustacoglu and G. Fox, "Hybrid Consistency Framework for Distributed

Annotation Records in a Collaborative Environment " presented at The 2008

International Symposium on Collaborative Technologies and Systems (CTS

2008), Irvine,CA, 2008.

[35] A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme, "BibSonomy: A Social

Bookmark and Publication Sharing System," presented at 14th Int. Conference on

Conceptual Structures, Aalborg, Denmark, 2006.

[36] BibTeX web site http://www.bibtex.org/.

[37] LaTeX – A document preparation system. Available from:

 http://www.latex-project.org/

[38] JavaServer Pages Technology. Available from: http://java.sun.com/products/jsp/.

[39] Java Servlet Technology. Available from: http://java.sun.com/products/servlets.

[40] E. K. Glenn and T. P. Stephen, "A cookbook for using the model-view controller

user interface paradigm in Smalltalk-80," J. Object Oriented Program., vol. 1, pp.

26-49, 1988.

151

[41] R. Rivest, "The MD5 Message-Digest Algorithm," 1992.

[42] E. Wilde, "Shared Bibliographies as Hypertext," ETH Zurich (Swiss Federal

Institute of Technology) 2005.

[43] E. Wilde, "References as Knowledge Management," Issues in Science and

Technology Librarianship, vol. 41, 2004.

[44] E. Wilde, S. Anand, and P. Zimmermann, "Management and Sharing of

Bibliographies," in Research and Advanced Technology for Digital Libraries,

2005, pp. 479-480.

[45] "Swiss Federal Institute of Technology (ETH)."

[46] H. Van de Sompel and O. Beit-Arie, "Open linking in the scholarly information

environment using the OpenURL framework," D-Lib Magazine, vol. 7, 2001.

[47] E. Wilde, S. Anand, and P. Zimmermann, "ShaRef: XML-Centric Software

Design," ETH Zurich (Swiss Federal Institute of Technology) 2005.

[48] "Java Remote Method Invocation (RMI)."

[49] HSQLDB web site http://hsqldb.sourceforge.net/.

[50] I. Takashi, K. Piyanuch, H. Masahiro, and Q. Zhengyu, "ReMarkables: A Web-

Based Research Collaboration Support System Using Social Bookmarking

Tools," in Proceedings of the 2006 IEEE/WIC/ACM international conference on

Web Intelligence and Intelligent Agent Technology: IEEE Computer Society,

2006.

[51] Nippon Institute of Technology web site http://www.nit.ac.jp/english/index.html.

152

[52] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos, "Tropos:

An Agent-Oriented Software Development Methodology," Autonomous Agents

and Multi-Agent Systems, vol. 8, pp. 203-236, 2004.

[53] G. Fox and S. Pallickara, "Deploying the NaradaBrokering Substrate in Aiding

Efficient Web and Grid Service Interactions," presented at Grid Computing, 2005.

[54] G. Fox, S. Pallickara, and X. Rao, "A scaleable event infrastructure for peer to

peer grids," in Proceedings of the 2002 joint ACM-ISCOPE conference on Java

Grande. Seattle, Washington, USA: ACM, 2002.

[55] S. Pallickara, H. Bulut, P. Burnap, G. Fox, A. Uyar, and D. Walker, "Support for

High Performance Real-time Collaboration within the NaradaBrokering

Substrate," 2005.

[56] S. Pallickara and G. Fox, "NaradaBrokering: A Distributed Middleware

Framework and Architecture for Enabling Durable Peer-to-Peer Grids," in

Middleware 2003, 2003, pp. 998-999.

[57] S. Pallickara, M. Pierce, H. Gadgil, G. Fox, Y. Yan, and H. Yi, "A Framework for

Secure End-to-End Delivery of Messages in Publish/Subscribe Systems," 2006.

[58] "Community Grids Lab at Indiana University."

[59] S. Gatziu, Events in an active, object-oriented database system. Hamburg: Verlag

Dr. Kovac, 1995.

[60] K. R. Dittrich and S. Gatziu, "Time Issues in Active Database Systems,"

presented at International Workshop on an Infrastructure for Temporal Databases,

Arlington, Texas, 1993.

153

[61] G. Liu, A. Mok, and P. Konana, "A Unified Approach for Specifying Timing

Constraints and Composite Events in Active Real-Time Database Systems," 1998.

[62] L. Lamport, "Time, clocks, and the ordering of events in a distributed system,"

Commun. ACM, vol. 21, pp. 558-565, 1978.

[63] J. F. Allen and G. Ferguson, "Actions and Events in Interval Temporal Logic,"

Journal of Logic and Computation, vol. 4, pp. 531-579, 1994.

[64] P.-s. Kam, "Discovering temporal patterns for interval-based events," 2000.

[65] C. Liebig, M. Cilia, and A. Buchmann, "Event Composition in Time-Dependent

Distributed Systems," 1999.

[66] Peter R., Pietzuch R., Shand B., and B. J., "A Framework for Event Composition

in Distributed Systems," presented at 4th International Conference on Middleware

(MW'03), Rio de Janeiro, Brazil, 2003.

[67] A. F. Mustacoglu, A. E. Topcu, A. Cami, and G. Fox, "A Novel Event-Based

Consistency Model for Supporting Collaborative Cyberinfrastructure Based

Scientific Research," in Collaborative Technologies and Systems CTS 2007 in

Technical Cooperation with The IEEE Computer Society. Orlando, FL, USA:

IEEE Computer Society, 2007.

[68] R. Tolksdorf, Laura : a coordination language for open distributed systems.

Berlin: Technische UniversitÃ¤t Berlin, Fachbereich 20, Informatik, 1992.

[69] R. Kowalski and F. Sadri, "Towards a unified agent architecture that combines

rationality with reactivity," in Logic in Databases. International Workshop LID

'96 Proceedings, D. Pedreschi and C. Zaniolo, Eds.: Springer-Verlag, 1996, pp.

137-149.

154

[70] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford, "Tspaces," IBM

Systems Journal 37, pp. 454-474, 1998.

[71] O. Object Management Group, "The Common Object Request

Broker:Architecture and Specification."

[72] O. Object Management Group, "CORBA Services:Common Object Services

Specification-Event Service Specification."

[73] Sun Micro Systems, "Java AWT:Delegation Event Model."

[74] M. Shane, B. Mark, P. Steven, and R. T. V., "An Events Syntax for XML."

[75] R. Alur and T. A. Henzinger, "Reactive Modules," Formal Methods in System

Design, vol. 15, pp. 7-48, 1999.

[76] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems Concepts and

Design: Addison-Wesley, 2005.

[77] B. John, B. Jean, M. Ken, and S. Mark, "Using events for the scalable federation

of heterogeneous components," in Proceedings of the 8th ACM SIGOPS

European workshop on Support for composing distributed applications. Sintra,

Portugal: ACM, 1998.

[78] T. Kindberg, G. Coulouris, J. Dollimore, and J. Heikkinen, "Sharing objects over

the Internet: the Mushroom approach," presented at Global Telecommunications

Conference, 1996. GLOBECOM '96. 'Communications: The Key to Global

Prosperity, London, UK, 1996.

[79] J. Bacon, J. Bates, R. Hayton, and K. Moody, "Using Events to Build Distributed

Applications," 1995.

155

[80] N. Foo and P. Peppas, "Primitive Events," presented at 7th Join Australian

Conference in Artificial Intelligence AI'94, Armidale,Australia, 1994.

[81] P. Pietzuch, B. Shand, and J. Bacon, "A Framework for Event Composition in

Distributed Systems," in Middleware 2003, 2003, pp. 997-997.

[82] K. Delaney and R. Soukup, Inside Microsoft SQL Server 2000. Redmond, WA:

Microsoft Press, 2000.

[83] T. Kyte, Expert one-on-one Oracle. Birmingham, Uk: WROX Press, 2001.

[84] C. Innocenti, G. Mondino, P. Regis, and G. Sandini, "Trajectory planning and

real-time control of an autonomous mobilerobot equipped with vision and

ultrasonic sensors," presented at Proceedings of the 1994 IEEE/RSJ/GI

International Conference on Intelligent Robots and Systems IROS'94, Munich,

Germany, 1994.

[85] S. Ceri and G. Pelagatti, Distributed databases : principles and systems. New

York: McGraw-Hill, 1984.

[86] C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, and S. Richard Thomas, "A

glossary of temporal database concepts," SIGMOD Rec., vol. 21, pp. 35-43, 1992.

[87] P. Bonnet, J. Gehrke, and P. Seshadri, "Towards Sensor Database Systems," in

Mobile Data Management, 2001, pp. 3-14.

[88] V. Lesser, C. L. Ortiz, and M. Tambe, Distributed sensor networks : a multiagent

perspective. Boston: Kluwer Academic Publishers, 2003.

[89] R. Eckstein, M. Loy, and D. Wood, Java Swing. Sebastopol, Calif.: O'Reilly,

1998.

156

[90] W. O. Galitz and NetLibrary, "The essential guide to user interface design an

introduction to GUI design principles and techniques," 2nd ed: New York : Wiley

Computer Pub., 2002.

[91] R. Frank and NetLibrary, "Understanding smart sensors," 2nd ed: Boston : Artech

House, 2000.

[92] B. Garabadu, C. Thompson, G. Lindstrom, and J. Klewicki, "Fast and Accurate

NN Approach for Multi-Event Annotation of Time Series," University of Utah,

2003.

[93] A. T. Chandramohan and M. L. Henry, "Hardware and software support for

efficient exception handling," in Proceedings of the sixth international conference

on Architectural support for programming languages and operating systems. San

Jose, California, United States: ACM, 1994.

[94] S. Gatziu and K. R. Dittrich, "Detecting composite events in active database

systems using Petrinets," presented at Proceedings Fourth International Workshop

on Research Issues in Data Engineering, Houston, TX, USA, 1994.

[95] N. Gehani, H. V. Jagadish, and O. Shumeli, "Composite Event Specification in

Active Databases:Model and Implementation," presented at Proceedings of

the18th International Conference on Very Large Databases, Vancouver, Canada,

1992.

[96] A. Hegyi, B. De Schutter, S. Hoogendoorn, R. Babuska, H. van Zuylen, and H.

Schuurman, "A fuzzy decision support system for traffic control centers,"

presented at Proceedings of the Intelligent Transportation Systems, Oakland, CA,

USA, 2001.

157

[97] M. Molina, J. Hern A, and J. E. Cuena, "A structure of problem-solving methods

for real-time decision support in traffic control," International Journal of Human-

Computer Studies, vol. 49, pp. 577-600, 1998.

[98] J. P. Bell and D. Schauder, "The WEBWORKFORCE: a learning repository to

support educators, trainers and information technology courses," in Proceedings

of the fifth Australasian conference on Computing education - Volume 20.

Adelaide, Australia: Australian Computer Society, Inc., 2003.

[99] A. Naeve, "The Knowledge Manifold:an Educational Arcitecture That Supports

Inquiry-Based Customizable Forms of E-Learning," presented at The 2nd

European Web-based Learning Environments Conference (WBLE 2001), Lund,

Sweeden, 2001.

[100] C. Gianpaolo, N. Elisabetta Di, and F. Alfonso, "The JEDI Event-Based

Infrastructure and Its Application to the Development of the OPSS WFMS," IEEE

Transactions on Software Engineering, vol. 27, pp. 827-850, 2001.

[101] G. Fox and S. Pallickara, "The Narada Event Brokering System: Overview and

Extensions," presented at Proceedings of the International Conference on Parallel

and Distributed Processing Techniques and Applications, Las Vegas, Nevada,

USA, 2002.

[102] S. Pallickara and G. C. Fox, "A Scalable Durable Grid Event Service," in

Middleware 2003, 2001.

[103] SERVOGrid web site http://www.servogrid.org.

[104] GlobalMMCS web site http://www.globalmmcs.org.

158

[105] A. S. Tanenbaum and M. V. Steen, Distributed Ssytems Principles and

Paradigms, 2002.

[106] D. Mosberger, "Memory consistency models," SIGOPS Oper. Syst. Rev., vol. 27,

pp. 18-26, 1993.

[107] S. V. Adve and K. Gharachorloo, "Shared Memory Consistency Models: A

Tutorial," vol. 29, 1996, pp. 66-76.

[108] M. P. Herlihy and J. M. Wing, "Linearizability: a correctness condition for

concurrent objects," ACM Trans. Program. Lang. Syst., vol. 12, pp. 463-492,

1990.

[109] H. Attiya and J. L. Welch, "Sequential consistency versus linearizability," ACM

Trans. Comput. Syst., vol. 12, pp. 91-122, 1994.

[110] R. J. Lipton and J. S. Sandberg, PRAM : a scalable shared memory. Princeton,

N.J.: Princeton University, Dept. of Computer Science, 1988.

[111] M. Dubois, C. Scheurich, and F. A. Briggs, "Synchronization, Coherence, and

Event Ordering in Multiprocessors," vol. 21, 1988, pp. 9-21.

[112] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy,

"Memory consistency and event ordering in scalable shared-memory

multiprocessors," in Proceedings of the 17th annual international symposium on

Computer Architecture. Seattle, Washington, United States: ACM, 1990.

[113] K. Pete, L. C. Alan, and Z. Willy, "Lazy release consistency for software

distributed shared memory," in Proceedings of the 19th annual international

symposium on Computer architecture. Queensland, Australia: ACM, 1992.

159

[114] N. B. Brian, J. Z. Matthew, and A. S. Wayne, "The Midway Distributed Shared

Memory System," Carnegie Mellon University 1993.

[115] D. B. Terry, K. Petersen, M. J. Spreitzer, and M. M. Theimer, "The Case for Non-

transparent Replication: Examples from Bayou," vol. 21: IEEE Data Engineering,

1998, pp. 12-20.

[116] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer, and B. B.

Welch, "Session Guarantees for Weakly Consistent Replicated Data," in

Proceedings of the Third International Conference on Parallel and Distributed

Information Systems. Austin, TX, USA: IEEE Computer Society, 1994, pp. 140-

149.

[117] K. Petersen, M. Spreitzer, D. Terry, and M. Theimer, "Bayou: replicated database

services for world-wide applications," in Proceedings of the 7th workshop on

ACM SIGOPS European workshop: Systems support for worldwide applications.

Connemara, Ireland: ACM, 1996.

[118] D. B. Andrew and N. Bruce Jay, "Implementing remote procedure calls," ACM

Trans. Comput. Syst., vol. 2, pp. 39-59, 1984.

[119] "Document Object Model (DOM)."

[120] "Simple API for XML (SAX) Parser."

[121] S. R. David and K. Balachander, "An event-based model of software

configuration management," in Proceedings of the 3rd international workshop on

Software configuration management. Trondheim, Norway: ACM Press, 1991.

[122] G. C. Fox, "Collaboration within an Event based Computing Paradigm," 2001.

[123] Dublin Core Metadata Initiative (DCMI) web site http://dublincore.org/.

160

[124] SOA and Web Services. Available from:

http://www.ibm.com/developerworks/webservices.

[125] Web Services Description Language (WSDL) web site

http://www.w3.org/TR/wsdl.

[126] Simple Object Access Protocol (SOAP) 1.1. web site

http://www.w3.org/TR/soap/.

[127] Hypertext Transfer Protocol (HTTP) 1.1 available from

 ftp://ftp.isi.edu/in-notes/rfc2616.txt.

[128] FILE TRANSFER PROTOCOL (FTP). Available from :

http://tools.ietf.org/html/rfc959.

[129] Google Scholar web site http://scholar.google.com.

[130] Windows Live Academic web site http://academic.live.com.

[131] H. Kreger, "Web Services Conceptual Architecture (WSCA 1.0)," 2001.

[132] F. E. Redmond, DCOM : Microsoft Distributed Component Object Model. Foster

City, CA: IDG Books Worldwide, 1997.

[133] Open Source Version Control web site http://www.nongnu.org/cvs/.

[134] Subversion web site http://subversion.tigris.org/.

[135] S. Chengzheng and C. David, "Consistency maintenance in real-time

collaborative graphics editing systems," ACM Trans. Comput.-Hum. Interact.,

vol. 9, pp. 1-41, 2002.

[136] L. Jiang, L. Xiaotao, S. Prashant, and R. Krithi, "Consistency Maintenance In

Peer-to-Peer File Sharing Networks," in Proceedings of the The Third IEEE

Workshop on Internet Applications: IEEE Computer Society, 2003.

161

[137] R. Jonathan, F. Sarah, and V. Sankar, "Consistency management for distributed

collaboration," ACM Comput. Surv., vol. 31, pp. 13, 1999.

[138] V. Jurgen, V. JiRgen, G. Werner, C. Li-Te, and M. Michael, "Consistency

Control for Synchronous and Asynchronous Collaboration Based on Shared

Objects and Activities," Comput. Supported Coop. Work, vol. 13, pp. 573-602,

2004.

[139] G. Werner, V. Jurgen, C. Li-Te, and M. Michael, "Supporting activity-centric

collaboration through peer-to-peer shared objects," in Proceedings of the 2003

international ACM SIGGROUP conference on Supporting group work. Sanibel

Island, Florida, USA: ACM Press, 2003.

[140] L. Rui, L. Du, and S. Chengzheng, "A Time Interval Based Consistency Control

Algorithm for Interactive Groupware Applications," 2004.

[141] XML Path Language (XPATH). Available from: http://www.w3.org/TR/xpath.

[142] JTIDY with version 04aug2000r7. Available from: http://jtidy.sourceforge.net/.

[143] JAKARTA COMMONS HTTPCLIENT with version 3.0.1. web site

http://jakarta.apache.org/httpcomponents/httpclient-3.x/.

[144] JDOM with version 1.1. Available from: http://www.jdom.org/.

[145] Java 2 SDK, Standart Edition with version 1.5. Available from:

http://java.sun.com/.

[146] Internet Documentation and Integration of Metadata (IDIOM) Project Website

http://gf16.ucs.indiana.edu:54571/IDIOM/login.jsp.

[147] D. E. Atkins, K. K. Droegemeier, S. I. Feldman, H. Garcia-Molina, M. L. Klein,

D. G. Messerschmitt, P. Messina, J. P. Ostriker, and M. H. Wright,

162

"Revolutionizing Science and Engineering Through Cyberinfrastructure. Report

of the National Science Foundation Blue-Ribbon Advisory Panel on

Cyberinfrastructure," 2003.

[148] G. Fox, A. F. Mustacoglu, A. E. Topcu, and A. Cami, "SRG: A Digital

Document-Enhanced Service Oriented Research Grid," presented at Information

Reuse and Integration IRI-07, Las Vegas, NV, USA, 2007.

[149] T. O'Reilly, What is Web 2.0: Design patterns and business models for the next

generation of software, 2005.

[150] C. Anderson, The Long Tail: Why the Future of Business Is Selling Less of More:

Hyperion, 2006.

[151] IBM WebSphere Session Management. Available from:

http://www.informit.com/articles/article.asp?p=332851&rl=1.

[152] A. M. Scott, K. Richard, L. Matt, and S. Craig, "PubsOnline: open source

bibliography database," in Proceedings of the 33rd annual ACM SIGUCCS

conference on User services. Monterey, CA, USA: ACM Press, 2005.

[153] B. Hasan, P. Shrideep, and F. Geoffrey, "Implementing a NTP-based time service

within a distributed middleware system," in Proceedings of the 3rd international

symposium on Principles and practice of programming in Java. Las Vegas,

Nevada: Trinity College Dublin, 2004.

