

Abstract—To link multiple varying Grids together, there is a need

for an Information System which will act as a translator for

accessing information from other Grid’s Information Services.

This study discusses principles and experiences in building a

novel architecture of a Hybrid Service, which provides

unification, federation and interoperability of different XML

metadata services, and presents a performance evaluation of the

prototype implementation. The results indicate that the Hybrid

Service achieves information integration with negligible

processing overheads while preserving persistency of

information.

Index Terms—Information services, information integration,

information federation, hybrid services, metadata services

I. INTRODUCTION

he data requirements of e-Science applications have been

increased over the years. These applications present an

environment for acquiring, processing and sharing data among

interested parties. In order to manage data in such data-

intensive application environments, Service Oriented

Architecture (SOA) principles have recently gained great

importance [1]. A Service Oriented Architecture is simply a

collection of services put together to achieve a common goal.

These services communicate with each other for either data

passing or coordinating some activity.

In order to manage information in SOA-based applications,

independent projects have developed their own customized

implementations of Information Service Specifications. These

solutions are not interoperable with each other, target vastly

different systems and address diverse sets of requirements [2].

They require greater interoperability to enable communication

between different grid projects so that they can share and

utilize each other’s resources. Furthermore, they do not

provide uniform interfaces for publishing and discovery of

information and this in turn creates a limitation on the client-

end, as the users have to interact with more than one services.

 Mehmet S. Aktas is with the Information Technologies Institute of

TUBITAK-Marmara Research Center, Gebze, Kocaeli, 41470 Turkey

(corresponding author - phone: +902626772554; e-mail:

mehmet.aktas@bte.mam.gov.tr).

 Geoffrey C. Fox is with the Community Grids Laboratory at the Indiana

University, Bloomington, IN 47403 USA (e-mail: gcf@cs.indiana.edu).

 Marlon Pierce is with the Community Grids Laboratory at the Indiana

University, Bloomington, IN 47403 USA (e-mail: mpierce@cs.indiana.edu).

To address these challenges, we introduce a Grid

Information Service Architecture called Hybrid Service. The

Hybrid Service unifies one-to-many information services and

their communication protocols. It federates information

coming from different information services under a unified

architecture. It enables search/access/store metadata with

negligible processing overheads. It enables inter-operability

with wide-range of Web Service clients, as it supports widely

used Web Service Specifications. It is a persistent system, as it

backs-up metadata without degradation of the system

performance. It is a robust system, as it enables distribution

and redundancy of information.

In this paper, we discuss the Hybrid Service Architecture

and present an evaluation of its prototype implementation. The

organization of the rest of the paper is as follows. Section 2

reviews the background work. Section 3 presents the

architectural design details and the prototype implementation

of the system. Section 4 analyzes its performance evolution.

Section 5 concludes the paper with a summary and discuses

the future research directions.

II. BACKGROUND

An effort towards interoperability in Grid Community has

been promoted by the Open Grid Forum (OGF). The OGF has

started a research activity called GIN (Grid Interoperation

Now) [3] to manage interoperation among major grid projects

such as EGEE [4] and UK National Grid Service [5]. The

OGF suggests guidelines for interoperability in such a way

that each grid's internal information system will enable

accessing information from other information services. As the

information service schema, the Open Grid Forum GIN

workgroup utilizes a subset of the Grid Laboratory Uniform

Environment (Glue) Schema [6], which is an effort to support

interoperability between US and Europe Grid Projects. In this

research, we introduce a system architecture that meets the

interoperability guidelines suggested by OGF GIN work

group. We integrate the Glue Schema into our design to be

able to interoperate with GIN activity participating

information services.

 The interoperability aspect of the system requires

addressing wide range of Web Service applications and

Principles and Experiences: Building a Hybrid

Metadata Service for Service Oriented

Architecture based Grid Applications

Mehmet S. Aktas, Geoffrey C. Fox, and Marlon Pierce

T

providing an interoperation-bridge across the existing

implementations of information services. In this research, to

achieve interoperability, along with the Hybrid Service, we

also provided implementations (Extended UDDI XML

Metadata Service and WS-Context XML Metadata Service)

for two widely used and WS-I compatible information service

specifications: UDDI [7] and WS-Context [8]. The Universal

Description, Discovery, and Integration (UDDI) Specification

is a widely used standard that enables services advertise

themselves and discover other services. The Web Services

Context (WS-Context) Specification defines a simple

mechanism to share and keep track of common information

shared between multiple participants in Web Service

interactions. The extended UDDI XML Metadata Service

implements an extended version of existing out-of-box UDDI

Specification. The WS-Context XML Metadata Service

implements existing out-of-box Web-Service Context

Specification.

Information integration is the process of unifying

information residing at multiple sources and providing a

unified access interface [9]. Unifying heterogeneous data

sources under a single architecture has been target of many

investigations [10]. Previous work on such merger between

the heterogeneous information systems can be broadly

categorized as global-as-view and local-as-view integration. In

former category, data from several sources are transformed

into a global schema and can be queried with a uniform query

interface. In the latter category, queries are transformed into

specialized queries over the local databases. The global

schema approach captures expressiveness capabilities of

customized local schemas; however, it cannot scale up to high

number of data sources. The local-as-view approach requires

each local-system’s schema to be mapped against each other

and lead to large number of mappings that need to be created

and managed. To achieve high performance in data

integration, there is a need for a higher-level add-on

architecture that can assemble the information coming from

different metadata systems and carry out queries on the

heterogeneous information space. In this research, we achieve

such higher-level architecture, by integrating the global-as-

view approach with the heterogeneous local information

services. This approach encapsulates the expressiveness power

of the customized schemas that are being integrated.

Information security is a fundamental issue in Grid

Information Services, as the Grid/Web Service metadata may

not be open to anyone. Thus, there is a need for an information

security mechanism. However, as it is not the main focus of

this particular study, we leave out the investigating and

leveraging of research in the information security area as

future work. We concentrate on the unification, federation and

interoperability aspects of the system.

III. HYBRID SERVICE

The Hybrid Service is an add-on system that interacts with

local information services and unifies them in a higher-level

architecture which provides unification, federation and

interoperability of Grid Information Services.

Figure 1 illustrates the Hybrid Service Architecture that

assembles metadata instances coming from different local

information systems. The Hybrid Service interacts with the

clients, which may be supporting different communication

protocols, through a uniform access interface, while it

manages one-to-many local information services in the

background.

TUPLE SPACE API

TUPLE POOL (JAVA SPACES)

UNIFORM ACCESS INTERFACE

Request processor

Access Control Notification

A HYBRID SERVICE IN-MEMORY STORAGE

Extended

UDDI
GLUE ….

INFORMATION RESOURCE MANAGER

WS-Context

Client Client ClientClient

Figure 1. This figure illustrates the general view of the Hybrid Service. The

dashed box indicates the Hybrid Service. The rectangle shaped boxes above

the Hybrid Service indicates the Web Service clients interacting with the

system. The boxes below the Hybrid Service indicate the implementations of

varying Information Service Specifications.

Figure 2 illustrates a detailed view of the abstraction layers.

As it can be observed in the figure, the Hybrid Service

supports a Uniform Access Interface layer that consists of

multiple XML APIs for varying different schemas such as

Extended UDDI and WS-Context. The Uniform Access

Interface layer allows different information service clients to

interact with the system.

The Request-processing layer extracts incoming requests. It

supports notification and access control capabilities. The

notification capability enables the interested clients to be

notified of the state changes in metadata. It is implemented by

utilizing publish-subscribe based paradigm. The access control

capability is responsible for enforcing controlled access to the

Hybrid Service. The investigation and implementation of

access control mechanism is left out for future study.

TupleSpaces Access API allows access to in-memory

storage. (The TupleSpace paradigm [11] was first introduced

by Gelernter and Carriero at Yale University as a part of Linda

programming language.) In this research, we implemented a

lightweight version of the JavaSpaces Specification [12]

which is the implementation specification of TupleSpaces

paradigm. The TupleSpaces Access API supports all

query/publish operations that can take place on the Tuple

Pool. The Tuple Pool implements a generalized in-memory

storage mechanism based on JavaSpaces Specification. It

enables mutually exclusive access and associative lookup to

shared data.

The Tuple Processor layer is designed to process metadata

stored in the Tuple Pool. Once the metadata instances are

stored in the Tuple Pool as tuple objects, the system starts

processing the tuples and provides various capabilities. The

first capability is the LifeTime Management. Each metadata

instance may have a lifetime defined by the user. If the

metadata lifetime is exceeded, then it is evicted from the

TupleSpace. The second capability is the Persistency

Management. The system checks with the tuple space every so

often for newly added /updated tuples and stores them into the

database for persistency of information. The third capability is

the Fault Tolerance Management. The system checks with the

tuple space every so often for newly-added/updated tuples and

replicates them in other Hybrid Service instances using the

publish-subscribe (pub-sub) messaging system. This capability

also provides consistency among the replicated datasets. The

fourth capability is the Dynamic Caching Management. With

this capability, the system keeps track of the requests coming

from the pub-sub system and replicates/migrates tuples to

other information services where the high demand is

originated.

The Filtering layer is designed for information integration.

The Hybrid Service supports a federation capability to address

the problem of providing integrated access to heterogeneous

metadata. To facilitate the testing of this capability, a Unified

Schema is introduced by integrating different information

service schemas. If the metadata is an instance of the Unified

Schema, such metadata needs to be mapped into the

appropriate local information service back-end. To achieve

this, the Hybrid Service utilizes the Filtering layer. This layer

does filtering based on the user-defined mapping rules to

provide transformations between the Unified Schema

instances and local schema instances. If the metadata is an

instance of a local schema, then the system does not apply any

filtering, and backs-up this metadata to the corresponding

local information service back-end.

The Information Resource Manager layer is responsible for

managing low-level information service implementations. It

provides decoupling between the Hybrid Service and sub-

systems. The Information Resource Manager handles with the

management of local information service implementations. It

provides decoupling between the Hybrid Service and sub-

systems. With the implementation of Information Resource

Manager, we have provided a uniform, single interface to sub-

information systems.

The Pub-Sub Network layer is responsible for

communication between Hybrid Service instances. On

receiving the requests from the Tuple Processor, the Pub-Sub

Manager publishes the request to the corresponding topics.

The Pub-Sub Manager may also receive key-based

access/storage requests from the pub-sub network. In this case,

these requests will be carried out on the Tuple Pool by

utilizing TupleSpace Access API. The Pub-Sub Manager

utilizes publisher and subscriber sub-components in order to

provide communication among the instances of the Hybrid

Services.

The execution logic to process a key-based retrieval request

happen as follows. On receiving the client request, the request

processor extracts the incoming request. The request processor

processes the incoming request by checking it with the

specification-mapping metadata (SpecMetadata) files. For

each supported schema, there is a user-defined SpecMetadata

file, which defines all necessary information for the functions

that can be executed on the instances of the schema under

consideration. Based on this information, the request processor

extracts the inquiry/publish request from the incoming

message and executes these requests on the Tuple Pool.

Client

TUPLE SPACE API

TUPLE POOL

Extended UDDI

WS API

TUPLE processor

Lifetime

Management

Persistency

Management

Fault Tolerance

Management

WS-Context

WS API
….

Request processor

Access Control Notification

Extended UDDI WS-Context ….

Information Resource Manager
PUB-SUB Network Manager

Unified

Schema API

Dynamic Caching

Management

Filter

ClientClient Client

Glue

Figure 2 This figure illustrates the abstraction layers of the Hybrid Service

from top-to-bottom.

To execute a key-based retrieval request the following

strategy is applied. The system keeps all locally available

metadata keys in a table in the memory. On receipt of a

request, the system first checks if the metadata is available in

the memory by checking with the metadata-key table. If the

requested metadata is not available in the local system, the

request is forwarded to the Pub-Sub Manager layer to probe

other Hybrid Services for the requested metadata. If the

metadata is in the in-memory storage, then the request

processor utilizes the Tuple Space Access API and executes

the query in the Tuple Pool.

Once the request is extracted and processed, the system

presents access control and notification capabilities. With

these capabilities, the system ensures controlled access and

informs interested parties of the state changes happening in the

metadata. This way the requested entities can keep track of

information regarding a particular metadata instance.

If the request is to be handled in the memory, the Tuple

Space Access API is used to enable the access to the in-

memory storage. This API allows us to perform operations on

the Tuple Pool. Once the metadata instances are stored in the

Tuple Pool as tuple objects, the tuple processor layer is being

used to check with the Tuple Pool every so often for newly-

added / updated tuples.

If the metadata is to be stored to the information service

backend (for persistency of information), the Information

Resource Management layer is used to provide connection

with the back-end resource. If the metadata is to be

replicated/stored into other Hybrid Service instances, the Pub-

Sub Management Layer is used for managing interactions with

the rest of the Hybrid Service network.

IV. EVALUATION

We investigated the performance and scalability aspects of

the Hybrid Service. This investigation was conducted for

Unified Schema XML API standard operations. In this

evaluation, the following research questions are addressed:

- What is the performance of the Hybrid Service for the

Unified Schema XML API standard operations?

- How do Unified Schema XML API functions compare

against other supported Schema XML APIs such as WS-

Context XML API?

- What is the scalability of Hybrid Service prototype for

Unified Schema XML API standard operations?

The investigations are conducted using eight nodes of a

Linux cluster located at the Community Grids Laboratory of

Indiana University. The configuration of the cluster nodes and

the software environment for the experiments is listed in Table

1. In the experiments, the performance is evaluated with

respect to response time at client applications. The response

time is the average time from the point a client sends off a

query until the point the client receives a complete response.

We conducted two experiments to understand the behavior of

the system: performance and scalability.

Program Testing Setup

Processor Intel® Xeon™ CPU (2.40GHz)

RAM 2GB total

Network Bandwidth 100 Ambits/sec. (among the cluster nodes)

OS GNU/Linux (kernel release 2.4.22)

Compiler

Java 2 Standard Edition v.1.5 with maximum

heap size of 1024 MB using the –Xmx1024m

option

Servlet container
Tomcat Apache Server v.5.5.8 with max.

multiple thread number of 1000

Web Service container Apache Axis v.2.0

Database MYSQL with v.4.1

Timing function
Java 2 with v.1.5 – timing function

“nanoTime()”

 Table 1 Program testing environment configuration

The performance experiment is conducted to understand the

baseline performance of the Hybrid Service. This evaluation

investigates the performance of system for standard Unified

Schema operations and compares it against the performance of

WS-Context Schema standard operations when there is no

additional traffic. To do this following testing cases are

completed: a single client sends publish requests to an echo

service which receives a message and then sends it back to the

client with no processing applied; a single client sends publish

requests to a Hybrid Service which grants the request with

memory access; a single client sends publish requests to a

Hybrid Service which grants the request with database access.

In the experiment, both the Hybrid Service and testing client

application were located in two different servers located in the

Linux cluster. This experiment was repeated five times and we

record the average response time. Recall that the Hybrid

Service backs-up information every so often for persistency

reasons. During the investigation, we observed that if the

backup frequency is every 10 seconds or lower, average

execution time for publish operation stabilized to ~7.5

milliseconds. Therefore, we chose the value for backup

frequency as every 10 sec in the experiments.

 Figure 3 Round Trip Time Chart for Metadata Inquiry Requests

Analyzing the results depicted in Figure 3, we observe that

the Hybrid Service achieves noticeable performance

improvements in metadata management for standard

operations by simply employing an in-memory storage

mechanism, while preserving a certain persistency level. We

also observe that the Unified Schema operations require more

time (compared to WS-Context Schema operations) for

database accesses, since the system requires additional time to

perform transformation between the Unified Schema and WS-

Context Schema instances.

In the scalability experiment, we investigated how well the

Hybrid Service - Unified Schema XML API performs for

increasing message rates. To answer this question, we ramped-

up the work load (number of messages sent per second) until

the system performance degrades.

0

5

10

15

20

25

1 2 3 4 5

T
im

e
 (

m
il

li
se

co
n

d
s)

Repeated Test Cases

Unified

database

WS-Context

database

Unified

memory

WS-Context

memory

Echo service

 Figure 4 Round Trip Time Chart for Metadata Inquiry Requests

The results are depicted in Figure 4. Analyzing the results,

we conclude that Hybrid Service Unified Schema XML API

standard operations performed well under increasing message

rates. For inquiry request messages, we observe a threshold

value after which the system performance starts decreasing

due to high message rate. This threshold is mainly due to the

limitations of Web Service container, as we observe the

similar threshold when we test the system with an echo service

that returns the input parameter passed to it with no message

processing is applied. For publish request messages, we

observe another threshold value where the system

performance starts dropping down. The reason for this is the

following. As the publish message-rate is increased, the

number of updated/newly written metadata in the Tuple Pool

is also increased. In turn, the action that writes and transforms

the larger number of updates into the default local information

service back-end affects the system performance and causes

higher fluctuations in the response times for increasing

number of simultaneous publish requests.

V. CONCLUSION AND FUTURE WORK

The performance evaluation and related tests have served to

prove several of the basic concepts of Hybrid Metadata

Service architecture while revealing bottlenecks and areas of

needed performance improvement. The evaluation study

pointed out that the Hybrid Service achieves interoperability

amongst different information systems with negligible

processing overheads. It also pointed out that the Hybrid

Service scales to high number of message rates while

supporting integration and preserving persistency of

information.

We intend to further improve this service by investigating

an information security mechanism for the distributed

information service network.

ACKNOWLEDGMENT

The Advanced Information Systems Technology Program

of NASA’s Earth-Sun System Technology Office supported

this research.

REFERENCES

[1] Booth, D., Haas, H., McCabe, F., Newcomer, E.,

Champion, M., Ferris, C., and Orchard, D. “Web Service

Architecture.” WC3 Working Group Note, 11 February

2004. Available from http://www.w3c.org/TR/ws-arch

[2] Zanikolas, S., Sakellariou, R., A Taxonomy of Grid

Monitoring Systems. . Future Generation Computer

Systems, 21(1), 2005: p. pp. 163--188

[3] OGF Grid Interoperation Now Community Group (GIN -

CG) - Web site is available at

https://forge.gridforum.org/-projects/gin

[4] The Enabling Grids for E-science (EGEE) project - Web

site is available at http://www.eu-egee.org/ Access date:

October, 2007

[5] The National Grid Service (NGS) - Web site available is

at http://www.grid-support.ac.uk/, Access date: October,

2007

[6] GLUE Schema Collaboration. The GLUE Schema

homepage. http://infnforge.cnaf.infn.it/glueinfomodel/

[7] Bellwood, T., Clement, L., and von Riegen, C., UDDI

Version 3.0.1: UDDI Spec Technical Committee

Specification http://uddi.org/pubs/uddi-v3.0.1-

20031014.htm. 2003.

[8] Bunting, B., Chapman, M., Hurley, O., Little M,,

Mischinkinky, J., Newcomer, E., Webber, J., and

Swenson, K. , Web Services Context (WS-Context) ver

1.0 http://www.arjuna.com/library/specs/ws_caf_1-0/WS-

CTX.pdf. 2003.

[9] Lenzerini, M., Data Integration: A Theoretical

Perspective, in PODS: 243-246. 2002

[10] Ziegler, P., Dittrich, K., Three Decades of Data

Integration - All Problems Solved?, in WCC: 3-12. 2004

[11] Carriero, N., Gelernter, D., Linda in Context. Commun.

ACM, 32(4): 444-458, 1989.

[12] Sun_Microsystems, JavaSpaces Specification Revision

1.0, 1999 available at http://www.sun.com/jini/specs/js.ps.

0

10

20

30

40

50

60

0 200 400 600 800 1000

a
v

e
ra

g
e

 r
o

u
n

d
 t

ri
p

 t
im

e
 (

m
se

c)

message rate (message/per second)

inquiry message rate

publish message rate

