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Abstract—With the ever-increasing need to analyze large
amounts of data to get useful insights, it is essential to develop
complex parallel machine learning algorithms that can scale with
data and number of parallel processes. These algorithms need
to run on large data sets as well as they need to be executed
with minimal time in order to extract useful information in
a time constrained environment. MPI is a widely used model
for developing such algorithms in high-performance computing
paradigm while Apache Spark and Apache Flink are emerging
as big data platforms for large-scale parallel machine learning.
Even though these big data frameworks are designed differently,
they follow the data flow model for execution and user APIs.
Data flow model offers fundamentally different capabilities than
the MPI execution model, but the same type of parallelism can
be used in applications developed in both models. This paper
presents three distinct machine learning algorithms implemented
in MPI, Spark, and Flink and compares their performance and
identifies strengths and weaknesses in each platform.
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I. INTRODUCTION

Machine learning algorithms are increasingly popular for
handling large-scale data analytics. With the prevailing era of
tremendous data sizes and complex algorithms, it is necessary
to use parallel computing to make these algorithms compute
in a reasonable amount of time. There are many frameworks
available to run such algorithms in parallel from the High
performance computing (HPC) and Big Data communities.
Message passing interface(MPI) is the most widely used
and dominant technology in HPC for parallel data analytics.
Numerous frameworks exist in the Big Data community for
doing large-scale parallel computations for machine learning
algorithms, including Hadoop [1], Spark [2], Flink [3], [4],
Tez [5] and Google Dataflow [6], and it is worthwhile to note
there is no single technology that stands out among others as
the best.

Hadoop is an early big data system for analyzing very large
data sets. It employed a limited data flow API with map and
reduce functions to move data and do computations. Later on
it became clear that Hadoop was not efficient enough for the
majority of Big Data problems, especially machine learning
applications involving iterative computations [7]. Spark, Flink
and Tez are some of the later systems that overcame these

bottlenecks. They expose richer data flow APIs along with in-
memory computations and iterative computing support to be
much more efficient than Hadoop.

MPI programming API utilises an in-memory in-place
execution model where the computations and communications
both happen in the same process under the same programming
scope. On the other hand, Big Data systems have adopted a
data flow style programming model and execution model for
processing large amounts of data. Both Flink and Spark feature
data flow APIs, and their execution also happens in data flow
style. In Data-flow programming model, operators are applied
on distributed data sets which produce other distributed data
sets. This abstraction provides a simple yet very powerful pro-
gramming API. These APIs are usually written in accordance
with the functional programming principles, making them
less error prone and easy to program. A data-flow execution
model separates the communications and computations by
allowing computing to happen in self-contained tasks and not
permitting communication within the task execution. The tasks
do stateless computations on the data.

In contrast to these high level programming APIs, MPI
provides bare communication primitives necessary for parallel
computing. The MPI primitives are highly optimized for
HPC environments with primary focus on in-memory stateful
computing and support for advanced hardware such as high
performance interconnects. With recent trends in the Big Data
community, we see Big Data frameworks are inclined to use
some of the hardware and algorithmic advances applied in
traditional HPC frameworks. Even though MPI is a generic
programming API, it is harder to use than Spark or Flink style
programs without using substantial programming.

Among the big data frameworks we have mentioned earlier,
Apache Flink and Spark are popular and efficient examples.
These two have been used heavily in machine learning applica-
tions owing to having personalize machine learning libraries
called FlinkML [4] and MLib [8], respectively. Because of
the in-memory nature of the computations, we can argue that
MPI, Flink and Spark provide a comparable feature set for
machine learning applications. Even though these frameworks
have been positioned as enablers of large-scale machine learn-
ing, it is hard to find complex machine learning algorithms
with heavy computational and communication demands im-
plemented in these platforms.



This paper examines three distinctively different algorithms
implemented in Spark, Flink and MPI and studies their per-
formance characteristics. The algorithms discussed here are
Multidimensional Scaling [9], K-Means and Terabyte sort.
We compare the two contrasting styles of programming and
execution models offered by Big Data frameworks and MPI to
point out the advantages and disadvantages of both approaches
for parallel machine learning applications. Furthermore, the
paper analyzes the algorithms on all three platforms and draws
a clear distinction between the strengths and weaknesses of the
frameworks.

The rest of the paper is organized as follows. Section II
describes the data flow and MPI models of computation
along with background information about Spark and Flink.
Section III IV V explains the MDS, K-Means and Terasort
algorithms respectively and explains their implementations in
Spark, Flink and MPI. The next Section VI describes the
experiments conducted while Section VII explains the results
observed. Related work is discussed in Section VIII and the
paper concludes in Section IX.

II. DATA FLOW AND MPI

A. Execution models

Data flow frameworks model computation as a graph where
nodes represent the operators that are applied to data and edges
represent the communication channels between the operators.
The input and output of an operator is sent through the
edges. Operators are user defined code that execute on the
data and produce other data. The graph is created using data
flow functions provided by the framework. These data flow
functions act upon the data to create the graph. An example
function is a partition function, often called a map in data flow
engines. A map function works on partitions of a data set and
presents the partitioned data to the user defined operators at the
nodes. The output of a user defined operator is connected to
another user defined operator using a data flow function. Map
and reduce are such two widely used data flow functions.

The data flow model consist of a logical graph and an
execution graph. The logical graph is defined by the user with
data, data flow functions and user operators. The execution
graph is created by the framework to deploy the logical graph
on the cluster. For example, some user functions may run
in larger numbers of nodes depending on the user defined
parallelism and size of input. Also when creating the execution
graph the framework can apply optimizations to make some
data flow operations more efficient. An example logical graph
is shown in Fig. 1 where it displays a map and reduce data
flow functions. Fig. 3 shows an execution graph for this
logical graph where it runs multiple map operations and reduce
operations in parallel. It is worth noting that each user defined
function runs on its own program scope without access to
any state about previous tasks. The only way to communicate
between tasks is using messaging, as tasks can run in different
places.

For task execution, frameworks use a thread model with
fewer task managers executing the parallel tasks for a node.
This leads to a smaller number of TCP connections between
the nodes, but the individual tasks are subjected to interference
by other task executions.

Fig. 1. Logical graph of a data flow

Fig. 2. Execution graph of a data flow

Message passing interface (MPI) is a generic model for
doing parallel computations. It is used most widely in the sin-
gle program multiple data (SPMD) style of parallel programs.
The parallel processes can employ MPI functions for both
message passing and synchronization between the processes.
Fig. 3 shows the execution model of MPI. Unlike in data
flow, the same process does the communion and computations
throughout the execution. The processes are normal Unix
versions spawned by MPI.

B. Programming APIs

Popular data flow engines such as Spark, Flink and Google
Data Flow all enable a functional programming API. The
data is abstracted as high level language objects. A large
distributed data set is represented as a programming construct.
For example, in Flink the data structure is called a DataSet,
while in Spark it is a RDD. These data sets are considered
immutable, meaning they cannot be changed once created.

The user defined operators are implemented according to
the functional programming paradigm with no side effects,

Fig. 3. Execution flow of MPI program with compute and communication
regions



meaning a user defined code cannot modify out-of-scope data
sets or passed-in data sets. The only way an operator can
produce a new data set is by outputting it, thus creating a
different version every time. This clean programming paradigm
makes it easier for an average programmer to write data-flow
programs faster and error-free. But it comes with the cost
of creating new structures every time a data set has to be
modified. In MPI style programs, we almost always modify the
existing memory structures without producing new data sets
every time a small operation is applied to the data. The data
flow functions are always applied to these data objects. Usually
a data flow function implements a user defined function to act
upon the data it receives, although there are functions that
don’t accept user defined programs.

The data loading and data saving is abstracted out in
terms of data sources and sinks. Data source and sinks are
responsible for reading and writing the data while hiding the
details of different file systems such as local file systems and
distributed file systems like HDFS. The default data sources are
sufficient for large sets of applications but for more advanced
use cases users often end up writing their own readers and
writers.

C. Apache Flink

Apache Flink is a batch and stream processing engine that
models every computation as a data flow graph which is then
submitted to the Flink cluster. The nodes in this graph are the
computations and the edges are the communication links. Flink
closely resembles the both the data flow execution model and
API. The user graph is transformed into an execution graph
by Flink before it is executed on the distributed nodes. While
undergoing this transformation, Flink optimizes the user graph,
taking into account the data locality. Flink uses and thread
based worker model for executing the data flow graphs. It can
chain consecutive tasks in the work flow in a single node to
make the run more efficient by reducing data serializations and
communications.

Even though Flink has a nice theoretically sound data flow
abstraction for programming, we found that it is difficult to
program in a strictly data-flow fashion for complex programs.
This primarily due to the fact that control flow operations such
as if conditions and iterations are harder code in data flow
paradigm.

D. Apache Spark

Apache Spark is a distributed in-memory data processing
engine. The data model in Spark is based around RDDs [10],
and the execution model is based on RDDs and lineage graphs.
The lineage graph captures dependencies between RDDs and
their transformations. The logical execution model is expressed
through a chain of transformations on RDDs by the user. This
lineage graph is also essential in supporting fault tolerance in
Apache Spark.

RDD’s can be read in from a file system such as HDFS,
and transformations are applied to the RDDs. Spark transfor-
mations are lazy operations and actual work is only done when
an action operation such as count, reduce are invoked. By
default, intermediate RDDs created through transformations
are not cached and will be recomputed when needed. The

user has the ability to cache or persist intermediate RDDs by
specifying this explicitly. This is very important for iterative
computation where same data sets are being used over and
over again.

Spark primarily uses an thread based worker model for
executing the tasks. Unlike in Flink where user submits the
execution graph to the engine, Spark programs are controlled
by a driver program. This driver program usually runs in a
separate master node and the parallel regions in this driver
program are shipped to the cluster to be executed. With this
model complex control flow operations that needs to run
serially such as iterations and if conditions run in master while
data flow operators are executed in worker nodes. While this
model makes it easier to write complex programs, it is harder
to do complex optimizations on the data flow graph as it needs
to be executed on the fly.

III. MULTIDIMENSIONAL SCALING

Multidimensional scaling is a popular, well established
machine learning technique for projecting high dimensional
data into a lower dimension so that they can be analyzed. It
has been extensively used to visualize high dimensional data
by projecting into 3D or 2D models. MDS is a computationally
expensive algorithm. The best algorithms are in the range of
O(N2). When applied to a larger data set, the computation
time increases exponentially. The algorithm can be made to
run efficiently in parallel to reduce the computation time
requirements.

Parallel version of MDS requires multiple parallel regions
and nested iterations for its computations. We will not go
through the details of the algorithm as it is already described in
several previous works [11], [12], [13]. The initial work [11] il-
lustrates how the original MDS algorithms complexity is being
lowered from O(N3) to O(N2). The proceeding papers [12],
[13] describe techniques for improving the implementation
efficiency using Java and MPI. For the purpose of this study we
only investigate the algorithm in terms of parallel operations
it requires, their complexity and how they can be run in
parallel as we try to analyze this algorithm on three execution
platforms.

Given a high dimensional distance matrix, the goal of MDS
algorithm is to produce a point file with the target dimension.
Optionally the algorithm can take a weight matrix. The flow
of the algorithm is shown in flow diagram 4. MDS algorithm
begins by reading two files which contain the pair of matrices.
If the data set has N high dimensional data points, the size
of these matrices will be N × N with each cell containing
2 bytes of data in the form of a Short Integer. One matrix
file contains the distances and the other contains the weights.
Each worker in the computation only reads part of the N ×N
matrix. Aside from these two matrices, the algorithm requires
a N ×M matrix where M is the target projection dimension.
In most cases M will be 3 or 2.

The pseudo code of the algorithm is shown in 1 emphasiz-
ing on the important parallel operations. Since this particular
implementation of MDS uses deterministic annealing(DA) as
an optimization technique, the algorithm has an outer loop
involving temperature. The temperature is lowered after each
loop until it reaches a configured low value. For each degree



Fig. 4. Multidimensional Scaling algorithm with Deterministic Annealing
control flow

reading, the solution to the MDS equation is found as an
optimization. For each iteration, the stress is lowered until the
difference between consecutive stresses are minimal enough.
This involves the last two loops, where the middle loop is over
stress and the inner loop is for the optimization computation.

The core of the computation involves several matrix mul-
tiplications. The remaining computations are mainly serial
in nature. These matrix multiplications are present in the
two inner loops and largely involve N × N into N × M
matrices. The algorithm is made parallel around these matrix
multiplications.

Apart from the 3 matrices already described, three other
matrix of size N × M are required, called BC,MMr and
MMa and one array V of size N . For this algorithm we
can achieve a balanced load across the parallel workers. The
two NN matrices read are partitioned row-wise. The N ×M
matrix, which contains the projected points, is maintained as
a whole in all the workers along with along with BC,MMr
and MMa.

A. MPI Implementation

The MPI implementation is a BSP style program written in
Java using the OpenMPI Java bindings. Computations in DA-
MDS grow O(N2) and communications O(N). The algorithm
involves gather/reduce of large matrices. Because of this the
communication between the workers is very intensive. The
MPI implementation uses shared memory explicitly to reduce
the cost of collective operations by doing local operation to
a node first before doing the global collective operation. The
MPI implementation is further enhanced with different styles
of threads to utilize the modern multi-core machines.

B. Apache Flink Implementation

Flink starts the implementation with custom input formats
for reading the binary matrix files and text based point files

Algorithm 1 MDS Parallel operations
1: d,wi, P, n,m . Where d - partition of D, w - partition of W, p

- Initial points, N - number of points, M - target dimension, K -
number of parallel tasks

2: P = [N,M ] point matrix
3: b = N

K
4: d = [b,N ] partition of D matrix
5: w = [b,N ] partition of W matrix
6: BC = [N,M ] NxM matrix
7: V = [b] Array
8: T DA temperature
9: while T > 0 do

10: preStress = calculateStress(d,w, P, T )
11: while stressDiff > delta do
12: BC = calculateBC(d,w, P, T )
13: P = conjugateGradient(d,w, P, T,BC)
14: stress = calculateStress(d,w, P, T )
15: stressDiff = preStress− stress
16: preStress = stress
17: end while
18: T = αT
19: end while
20: function CONJUGATEGRADIENT(d,w, P, T,BC)
21: MMr = [N,M ] NxM matrix
22: MMr = calculateMM(w, V, P )
23: BC = BC −MMr
24: MMr = BC
25: rTr = innerProduct(MMr,MMr)
26: testEnd = rTr ∗ cgThreshold
27: while itr < cgCount do
28: MMAp = calculateMM(w, V,BC)
29: α = rTr/innerProduct(BC,MMAp)
30: P = P + α ∗BC
31: if rTr < testEnd then
32: break
33: end if
34: MMr =MMr − α ∗MMAp
35: temp = innerProduct(MMr,MMr)
36: β = temp/rTr
37: rTr = temp
38: BC =MMr + β ∗BC
39: end while
40: return P
41: end function
42: function CALCULATESTRESS(d,w, P, T ) . parallel operation
43: calculate partial value of Stress (Double value)
44: All Reduce partial stress (sum)
45: return stress
46: end function
47: function CALCULATEBC(d,w, P, T ) . parallel operation
48: calculate partial value of BC for [b,M ] matrix
49: gather the other parts from peers (AllGather)
50: return BC
51: end function
52: function CALCULATEMM(w, V,A) . parallel operation
53: calculate wA using V for diagnol values of w
54: AllGather [b,M ] parts from peers
55: return the collected [N,M ] matrix
56: end function
57: function INNERPRODUCT(A,B)
58: return sum of vector dot products
59: end function



required by MDS. Compared to MPI implementation it was
much easier to deal with the high level APIs of the input
format for handling data partitioning and reading. The parallel
operations in the MDS algorithm are mostly implemented
using Map, Reduce and GroupReduce operations in Flink API.
Also the broadcast functionality is used heavily throughout the
program.

As of this work, Flink doesn’t support nested iterations and
only supports single level iterations. Because of this limitation,
only the last loop is implemented as a data-flow. To handle
the two outer loops, the implementation used separate jobs.
As such each job executes the innermost loop and saves the
computation to disk. Then the next outer loop starts as a new
job with the saved state. This is a very inefficient way of
implementing the iterations because Flink has to schedule the
job, load data and save intermediate data for each of the two
outer loops. We noticed that data loading doesn’t add much
overhead, but scheduling the tasks does.

Flink does not support outputting variables created inside
an iteration. This leads to the creation of unified data sets
with both the loop variable and output variable in a single
data set. Because of this we had to pass these two data sets to
distributed operations that only handle one of them at a time.
Flink has no mechanism to load the same data set over all
the workers and maintain such structures across all the nodes
throughout different data flow operations. So the point matrix
is created only in a single node. Every time there is a parallel
operation requiring the point matrix, it has to be broadcast to
the workers. This applies to other matrices such as BC and
MMr as well.

The data flow operators are scheduled by Flink without
much control from the user about where to place the data and
operators in a cluster. For a complex data flow application such
as MDS, it is important to have some control over where the
data and operators are placed in the cluster while doing the
computation to apply many application-specific optimizations.
For simple data flow application, this gives a perfect abstrac-
tion and an easy API for users to write efficient programs. But
for complex applications it may not translate well as in the
easy case. Also it is worth noting that, Flink has to model the
serial operation in the algorithm according to the data flow
style.

Even though Flink programming model can become com-
plex and non-intuitive for complex algorithms, we found that
the programs were surprisingly free of programming errors
compared to MPI programs. This is primarily due to the
functional style of programming API where user cannot change
state.

C. Spark Implementation

The programming model of Spark does not allow tasks to
communicate with one another, therefore all-to-all collectives
are not supported in Spark. As a result, at each iteration the
data needs to be collected at the master process and then a new
set of tasks has to be created with the new data for the next
iteration. This adds two additional overheads to the algorithm.
The first is task creation and distribution at each iteration.
The other is caused by the additional I/O that needs to be
done at each step to perform reduce and broadcast instead

Fig. 5. K-Means data flow graph for Flink and Spark

of an AllReduce operation. Because of these limitations the
main loops of the MDS algorithm are executed in the driver
program and large tasks such as calculateBC, calculateMM and
calculateStress are performed as distributed map-reduce tasks.
This results in a large number of map reduce phases. The
resulting values are then broadcast from the driver program
to the cluster before the next iteration is executed. Several
RDD’s that contain distance data and weight data are cached
to improve performance.

Because Spark does not allow in-place changes on RDDs,
the algorithm generates intermediate data sets that are not
required in the MPI implementation. These intermediate data
sets increase the memory usage of the algorithm, which is
problematic because memory is a limiting factor when running
MDS on very large matrices.

IV. K-MEANS ALGORITHM

K-Means is an efficient and practical classical machine
learning algorithm for data clustering. The algorithm maintains
K cluster points called centroids. There are many variations
of K-means available, but for these experiments we use the
simplest form. As described in the pseudo code 2, parallel
algorithm works as follows: the input to the system is N
points and K initial centroids generated randomly. The N
points are partitioned among the parallel tasks and each parallel
processes read the K initial centroids. After this step, every
task calculates its nearest centroid for each point. The local
average of these points for each centroid are used in a global
average to get the new centroids position. This is essentially
an AllReduce operation with sum.

A. MPI Implementation

Each parallel MPI implementation reads its partition of the
point data set and calculates the nearest centroid for each point.
The average of these local values are summed over all the ranks
using the MPI AllReduce operation to find the new centroids.

B. Spark & Flink Implementations

Spark and Flink K-Means data flow graph is shown in
Fig 5. At each iteration, a new set of centroids are calculated
and fed back to the beginning of the iteration. The algorithm
partitions the points into multiple map tasks and uses the full
set of centroids in every one. Each map task assigns its points
to their nearest centroid. The average of points is reduced
(sum) for each centroid to get the new set of centroids, which
are broadcast to the next iteration. Spark MLib provides a
implementation of K-Means, which is used for evaluations.

In MPI after the AllReduce operation, the centroids are
updated within the program in-place. On the other hand, for



Spark and Flink these centroids need to be broadcast back to
all the tasks that do the nearest neighbor calculation in the
next iteration. We can argue that all reduce operation in MPI
is equivalent to reduce + broadcast, which is the mechanism
used in Flink and Spark. But it is worth noting that AllReduce
can be optimized for greater efficiency than running reduce
and broadcast separately by using algorithms such as recursive
doubling.

V. TERASORT

Sorting terabytes of data is a utility algorithm used by
larger machine learning applications. The algorithm itself
presents some interesting characteristics when we compare
with MPI and data flow style applications. Spark, Flink and
MPI implementations of the algorithm use the strategy shown
in Fig 6 to sort 1 terabyte of data in parallel. At the initial
stage, the data is partitioned into equal size chunks among
the processes. The processes load these chunks into memory
and uses a sample set of data to find an ordered partitioning
of the global data set. It does this by sorting the samples
gathered from a configurable number of processes. Given that
the data is well balanced and the number of sample partitions
are reasonably high, this step normally generates a balanced
partitioning of the data. In the next step, this global partitioning
is used by all the processes to send the data to the correct
parallel task. We call this the shuffling phase. The parallel
version of the algorithm is described in code 3. After a process
receives the data it requires from other processes, it sorts and
writes them to a file. This creates a globally sorted data set
across the parallel tasks.

Algorithm 2 Parallel K-Means algorithm
1: W number of parallel processes
2: P point partition
3: C initial centers
4: C1 = C
5: for i = 1 to iterations do
6: Ci+1 = 0 next set of centers
7: for p = in P do
8: Calculate the nearest center i for p in Ci

9: add p to the i center in Ci+1

10: end for
11: All reduce sum on Ci+1 and take average (no of assigned points)
12: end for

Algorithm 3 Terabyte sort parallel algorithm
1: W number of parallel processes
2: P point partition
3: R Final points of this process
4: s ⊆ P take samples from P
5: S =

⋃
si Gather the samples from parallel processes

6: S = sort(S) Sort the samples gathered
7: T ⊆ S T is a partition that divides the samples across the parallel

processes
8: for p = in P do
9: Calculate the partition i which p belongs to using T

10: Send p to i
11: end for
12: for j = 1 to W do
13: Receive points from ith process and gather them to R
14: end for
15: sort R
16: save R

The input to the system is according to the format defined

Fig. 6. Parallel sorting flow. Large boxes show the processes/tasks and small
boxes are input files and output files.

Fig. 7. MPI’s data shuffling algorithm. Processes send and receive in a ring
topology.

for Indy sort by sortbenchmark.org 1. Each point is 100 bytes
long with a 10 bytes key and 90 bytes of random data. The
data is sorted using only the key part of the data but final
output contains the full 100 bytes for each point.

1) MPI: In the MPI implementation the initial sampling
is done in memory by choosing a subset of ranks. The
samples are gathered to a single process to sort and create
the partitioning. This partitioning is then broadcast to all the
parallel tasks. The algorithm used send/receives along with
iprobe to send the data to correct ranks. A chained send/receive
topology in a ring is used, as shown in Fig 7 to send the data.
Unlike in Spark and Flink case lot of functionality had to be
written in-order to get the algorithm working in a memory
limited environment with file based sorting. Also to send the
data efficiently the algorithm gathered large enough data set
before sending it to the correct process.

2) Spark and Flink: Terasort can be implemented in Spark
and Flink using the built-in capabilities of the platform. The
data is loaded from HDFS cluster running in the same nodes.
The data partitioning is done using the HDFS file system by
reading the sample chunks in a single node; sorting them and
writing the partitions back to HDFS. The sorting algorithm
uses this partitioning to send the data to correct maps. The
data is sorted using the sorting functions of Flink and Spark.

For Terasort, there was no apparent difference in the
communication or the computation used by MPI, Flink or
Spark. The MPI algorithm used send/receive operations which
is essentially the mechanism used by Spark and Flink. Flink
and Spark buffer the data internally while we buffered the data
manually for sending using MPI.

1http://sortbenchmark.org/



VI. EVALUATION

The experiments were run on Juliet, which is an Intel
Haswell HPC cluster. Up to 64 nodes were used for the
experiments. These nodes have 24 cores (2 sockets x 12 cores
each) per node. A node consists of 128GB of main memory
and 56Gbps Infiniband interconnect and 1Gbps dedicated
Ethernet connections. MPI experiments were conducted using
TCP instead of Infiniband to make it comparable with Spark
and Flink. For Flink and Spark experiments, the data was
loaded from a HDFS cluster running on the same nodes. For
MPI experiments data was copied to local storage in the nodes.
For experiments we only used up to 20 cores in each node to
reduce interference from other processes such as HDFS data
nodes, Yarn, Flink TaskManager that run on these. MPI can
utilize all the cores as it doesn’t include additional processes.

For the experiments we ran MDS with a limited number
of iterations with 5 temperature loops, 2 stress loops and 8
conjugate gradient iterations to limit the time required for
experiments. Fig. 8 shows time (displayed in log scale) for
running MDS on 16 nodes with 20 parallel tasks in each node.
The points are varied from 4000 to 64000. Flink performed
very poorly as expected because it doesn’t support nested
iterations. Spark did considerably well compared to Flink but
still proved much slower than MPI. This figure also shows
the compute time of the MPI algorithm. It is evident that in
MPI the communication overhead and other overheads when
running the algorithm in parallel is minimal. Since the same
parallel algorithm is implemented in Spark and Flink, this
computing time provides a baseline for them as well. The large
increase in time in Flink is caused by overheads introduced by
the frameworks.

Fig. 9 Shown running the MDS algorithm with 32000
points on different number of nodes each having 20 parallel
tasks. In MPI the running time decreases as expected while
increasing the parallelism, and in Spark and Flink the running
time increases with more nodes.

We conducted two sets of experiments for the K-Means
algorithm. In one experiment we used 10 million points each
having 100 attributes (100 dimensions) and 10 iterations to
calculate centers. In the next set we used 1 million points
with 2 attributes and 100 iterations. The first test showed the
amount of computation required is higher compared to the later
experiment, which itself needed shorter computations and more
communications because of the high number of iterations.

Fig. 10 shows the results of the 10 million point experiment
in 16 nodes with varying number of centers. Flink worked
comparatively better than Spark in this case and even per-
formed closer to MPI performance. Fig. 11 shows the results
of having 10 million points with 16000 centers and varying the
number of nodes. Unlike in the MDS case, we saw decreases in
time in all three frameworks when the parallelism increased.
Fig. 12 shows the results of the 1 million point experiment
in 8 nodes. The performance gap between MPI and Flink is
wider in this case. Fig. 12 shows the same experiment with
64000 centers and varying number of nodes. As the parallelism
increased again, MPI performed better but Flink did not scale
well.

Fig. 14 shows the run time of sorting 1 Terabyte of data in
64 nodes with all three frameworks. Because we are mainly

comparing the in-memory performance of the algorithms, we
used sufficient nodes so that we can do the sorting in-memory
without using the disks. As such the largest time of the algo-
rithm was spent on shuffling the data across multiple processes.
In this case all the frameworks performed reasonably well
and produced results closer to each other, although the MPI
Infiniband results are significantly faster than other approaches.
For 32 node test the memory was insufficient and the program
had to use the disk to perform the sorting. The MPI-IB test
shows that MPI with Infiniband performed best in transferring
the data quickly. For 32 node MPI case we noticed that Java
garbage collection was affecting the performance. This is an
initial investigation, which we will extend later.

A micro benchmark was conducted to measure the reduce
operation communication time in the three frameworks and its
results are shown in Fig. 15. The experiment was conducted
in 32 nodes with 20 parallel tasks in each node having 640
parallel tasks. Integer array of varying sizes is used for the
reduction operation, which was conducted several times in an
iteration to calculate the average time. It is clear from the graph
that there is a large difference in time between Flink and MPI.

VII. DISCUSSION

MDS is the most complex algorithm among the three
algorithms considered here. We have encountered many ineffi-
ciencies of Spark and Flink while implementing the algorithm.
For Flink the biggest inefficiency was its inability to support
nested loops. This leads to a very laborious implementation
where we save the intermediate data to file system at each
iteration in the outer two loops. Also the way Flink is designed
means it needs to read the input files each time it does the
iterations, adding to the overhead. The main inefficiency in
the Spark MDS implementation was caused due to the lack
of all-to-all collective operations. Using a reduce operations
followed by a broadcast operation added couple of overheads
to the algorithm.

K-Means showed some interesting characteristics with the
three frameworks we used. In parallel K-Means, the commu-
nication cost is a direct function of the number of centroids
involved and it doesn’t depend on the number of points. With
increased number of points, the computation time increases,
but the communication time remains the same. When using the
10 million data set it was evident that Flink performed close to
MPI, and when using the 1 million data set with 100 iterations,
the performance gap widened. We concluded that Flink-like
frameworks need improvements in communication algorithms
used for transferring data to scale to larger nodes when
communication requirements are high. Most of the practical
clustering problems do not have hundreds of thousands of
clusters. This means K-Means can perform equally better in
Flink or spark for practical data analytics tasks.

For Terasort, both Flink and MPI displayed comparable
performance results. The communication in Terasort involves
transferring large amounts of data among the nodes. Ring-like
topologies produce the best results for throughput in such bulk
transfers since they effectively use the networks in all the nodes
at the same time as evident by the good performance in MPI
algorithm. Since Flink and Spark do the asynchronous point to
point communications, they both saw the similar performance



Fig. 8. MDS execution time on 16 nodes with 20 processes in each node with
varying number of points Fig. 9. MDS execution time with 32000 points on varying number of nodes.

Each node runs 20 parallel tasks.

Fig. 10. K-Means execution time on 16 nodes with 20 parallel tasks in each
node with 10 million points and varying number of centroids. Each point has
100 attributes.

Fig. 11. K-Means execution time on varying number of nodes with 20
processes in each node with 10 million points and 16000 centroids. Each point
has 100 attributes.

Fig. 12. K-Means execution time on 8 nodes with 20 processes in each
node with 1 million points and varying number of centroids. Each point has 2
attributes.

Fig. 13. K-Means execution time on varying number of nodes with 20
processes in each node with 1 million points and 64000 centroids. Each point
has 2 attributes.

to MPI. Writing the MPI algorithm required time and effort
and for such tasks involving transferring large amount of data

Flink and Spark can be better choices given the ease of use.

The experiments showed an interesting observation where



Fig. 14. Terasort execution time in 64 and 32 nodes. Only MPI shows the
sorting time and communication time as other two frameworks doesn’t provide
a viable method to accurately measure them. Sorting time includes data save
time. MPI-IB - MPI with Infiniband

Fig. 15. Reduce operation time with 640 parallel tasks in 32 nodes. Integer
array with different sizes is used for the reduce operation.

big data frameworks doesn’t scale well for algorithms with
high frequency of communicate and compute regions. Also
it was evident that Spark performed better than Flink when
there was high frequency of communication and computation
regions. Algorithms with longer computation and communica-
tion times performed well in Flink compared to Spark.

The micro-benchmarks show there is a big difference in
communication times for collective communications between
MPI and the big data platforms. The primary reason is that,
MPI has implemented very efficient collective communication
algorithms while Flink and Spark rely on point to point
connections.

VIII. RELATED WORK

An immense amount of research is being done on improv-
ing performance and resource utilization in both the Big Data
and HPC communities. Research on improving performance
of Spark is being done in Project Tungsten [14] where they
aim to improve performance by introducing its own memory
management and cache handling system. Even though we
mainly talked about Spark and Flink, there are a large number
of frameworks utilized in the Big Data community, each
having pros and cons over each other. Pregal [15], Apache
Hama [16] and Apache Giraph [17] are frameworks that were
developed around the BSP model. There are also numerous dis-

tributed graph processing frameworks, including GraphX [18].
Doekemeijer et al. [19] compare and contrast many distributed
graph processing frameworks. Much research has also been
done on integrating HPC technology into big data frameworks
to improve performance. Lu et al. [20] integrate RDMA
technology to improve performance of Hadoop. Hpc-abds [21]
discusses and summarizes HPC and Big data convergence.

Owing to the increasing popularity of machine learning al-
gorithms, most Big Data frameworks provide machine learning
libraries. Mlib [8] is built on top of Spark and offers a wide
variety of machine learning algorithms. FlinkML [4] is the
requisite library for Flink. Intel Data Analytics Acceleration
Library (DAAL) [22] from Intel has been tuned for Intel
architecture; it provides functions for deep learning, classical
machine learning, etc. Tensorflow [23] is a library developed
at Google. Algorithms developed using TensorFlow can be
executed in a wide variety of heterogeneous systems that
range from mobile devices to supercomputers. h2o [24] is a
machine learning framework that supports Spark and Hadoop
with simplified APIs for ease of use. Apache Mahout [25]
remains another popular framework originally developed to
support machine learning on top of Hadoop and later expanded
to support other frameworks.

There is a lot of focus today on comparing HPC technology
with Big Data technology in order to understand pros and cons
of each. These comparisons contribute towards the HPC/Big
Data convergence by identifying areas that can be improved
in each technology domain. The authors have studied about
HPC/Big Data convergence [26] in more detail. Reyes-Ortiz
et al. [27] compare Spark and MPI/OpenMP on Google
Cloud platform to compare and contrast performance, data
management, etc. between the two frameworks. Liang et al.
[28] compare DataMPI [29], which is an extension of MPI
developed to execute Hadoop-like Big Data jobs, with Spark
and Hadoop using BigDataBench [30]. The authors previously
studied factors that affect performance of Java machine learn-
ing applications in Multicore HPC Clusters [13].

TeraSort is a popular sorting algorithm that can be used
to measure I/O performance of frameworks. Lu et al. [29]
use Terasort to compare DataMPI to Hadoop and Marcu et
al. [31] use Terasort to compare Spark and Flink. MDS is a
popular method used for dimension reduction, DA-MDS [32]
used in this paper is a Deterministic Annealing approach to
MDS which can outperform other MDS implementations.

IX. CONCLUSION & FUTURE WORK

The three algorithms presented here show different perfor-
mance across the three frameworks for the algorithms consid-
ered. MPI performed the best in all three algorithms, but it was
the hardest to program among the three. A reasonable person
can pick Spark or Flink over MPI simply due to the trade off
of performance vs ease of use. Flink and Spark performed well
on the Terasort algorithm and K-Means with minimal coding
efforts while performing poorly on the more sophisticated
MDS algorithm. There are large number of machine learning
algorithms that are in the range of K-Means and Terabytesort
complexity and they can be efficiently implemented in these
platforms. For more complex algorithms these frameworks
needs to be improved to support the algorithm requirements.



For example, Flink and Spark require efficient communication
algorithms to scale complex machine learning algorithms that
require tight synchronizations and collective communications.
We are working on to improve the performance of Flink and
Spark by improving their communication algorithms.
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