
Parallel Data Mining from Multicore to
Cloudy Grids

BLINDED

Abstract. We describe a suite of data mining tools that cover clustering,
information retrieval and the mapping of high dimensional data to low dimensions
for visualization. Preliminary applications are given to particle physics,
bioinformatics and medical informatics. The data vary in dimension from low (2-
20), high (thousands) to undefined (sequences with dissimilarities but not vectors
defined). We use deterministic annealing to provide more robust algorithms that
are relatively insensitive to local minima. We discuss the algorithm structure and
their mapping to parallel architectures of different types and look at the
performance of the algorithms on three classes of system; multicore, cluster and
Grid using a MapReduce style algorithm. Each approach is suitable in different
application scenarios. We stress that data analysis/mining of large datasets can be
a supercomputer application.

Keywords. MPI, MapReduce, CCR, Performance, Clustering, Multidimensional
Scaling

Introduction

Computation and data intensive scientific data analyses are increasingly prevalent. In
the near future, data volumes processed by many applications will routinely cross the
peta-scale threshold, which would in turn increase the computational requirements.
Efficient parallel/concurrent algorithms and implementation techniques are the key to
meeting the scalability and performance requirements entailed in such scientific data
analyses. Most of these analyses can be thought of as a Single Program Multiple Data
(SPMD) [1] algorithms or a collection thereof. These SPMDs can be implemented
using different parallelization techniques such as threads, MPI [2], MapReduce [3], and
mash-up [4] or workflow technologies [5] yielding different performance and usability
characteristics. In some fields like particle physics, parallel data analysis is already
commonplace and indeed essential. In others such as biology, data volumes are still
such that much of the work can be performed on sequential machines linked together
by workflow systems such as Taverna [6]. The parallelism currently exploited is
usually the “almost embarrassingly parallel” style illustrated by the independent events
in particle physics or the independent documents of information retrieval – these lead
to independent “maps” (processing) which are followed by a reduction to give
histograms in particle physics or aggregated queries in web searches. MapReduce is a
cloud technology that was developed from the data analysis model of the information
retrieval field and here we combine this cloud technique with traditional parallel
computing ideas. The excellent quality of service (QoS) and ease of programming
provided by the MapReduce programming model is attractive for this type of data
processing problem. However, the architectural and performance limitations of the
current MapReduce architectures make their use questionable for many applications.
These include many machine learning algorithms [7, 8] such as those discussed in this

paper which need iterative closely coupled computations. Our results find poor results
for MapReduce on many traditional parallel applications with an iterative structure in
disagreement with earlier papers [7]. In section 2 we compare various versions of this
data intensive programming model with other implementations for both closely and
loosely coupled problems. However, the more general workflow or dataflow paradigm
(which is seen in Dryad [9] and other MapReduce extensions) is always valuable. In
sections 3 and 4 we turn to some data mining algorithms that require parallel
implementations for large data sets; interesting both sections see algorithms that scale
like N2 (N is dataset size) and use full matrix operations.

Table 1. Hardware and software configurations of the clusters used for testing.

Our algorithms are parallel MDS (Multi dimensional scaling) [10] and clustering.

The latter has been discussed earlier by us [11-15] but here we extend our results to
larger systems – single workstations with 16 and 24 cores and a 128 core (8 nodes with
16 cores each) cluster described in table 1. Further we study a significantly different
clustering approach that only uses pairwise distances (dissimilarities between points)
and so can be applied to cases where vectors are not easily available. This is common
in biology where sequences can have mutual distances determined by BLAST like
algorithms but will often not have a vector representation. Our MDS algorithm also
only uses pairwise distances and so it and the new clustering method can be applied

Ref Cluster Name # Nodes CPU L2 Cache
Memory

Operating System

A Barcelona 1 1 AMD Quad Core 2x1MB Windows Server
 (4 core Opteron 2356 8 GB HPC Edition
 Head Node) 2.3GHz (Service Pack 1)
B Barcelona 4 2 AMD Quad Core 4×512K Windows Server 2003
 (8 core Opteron 2356 16GB Enterprise x64 bit
 Compute Node) 2.3 GHz Edition
C Barcelona 2 4 AMD Quad Core 4×512K Windows Server
 (16 core Opteron 8356 16 GB HPC Edition
 Compute Node) 2.3GHz (Service Pack 1)
D Barcelona 1 4 Intel Six Core 12 M Windows Server
 (24 core Xeon E7450 48GB HPC Edition
 Compute Node) 2.4GHz (Service Pack 1)
E Madrid 1 1 AMD Quad Core 2x1MB Windows Server
 (4 core Opteron 2356 8 GB HPC Edition
 Head Node) 2.3GHz (Service Pack 1)
F Madrid 8 (128 4 AMD Quad Core 4x512K Windows Server
 (16 core cores) Opteron 8356 16 GB HPC Edition
 Compute Node) 2.3GHz (Service Pack 1)
G Gridfarm 8 2 Quad core Intel 4x1MB Red Hat Enterprise
 8 core Xeon E5345

2.3GHz
8GB Linux 4

H IU Quarry 112 2 Quad-core Intel 4x4MB, Red Hat Enterprise
 8 core Xeon 5335 8 GB Linux 4
 2.00GHz
I Tempest (24 core

Compute Node)
Infiniband

32
(768
cores)

4 Intel Six Core
Xeon E7450
2.4GHz

12 M
48 GB

Windows Server
HPC Edition
(Service Pack 1)

broadly. Both our original vector-based (VECDA) and the new pairwise distance
(PWDA) clustering algorithms use deterministic annealing to obtain robust results.
VECDA was introduced by Rose and Fox almost 20 years ago [16] and has obtained
good results [17] and there is no clearly better clustering approach. The pairwise
extension PWDA was developed by Hofmann and Buhmann [18] around 10 years ago
but does not seem to have used in spite of its attractive features – robustness and
applicability to data without vector representation. We complete the algorithm and
present a parallel implementation in this paper.

As seen in table 1, we use both Linux and Windows platforms in our multicore and
our work uses a mix of C#, C++ and Java. Our results study three variants of
MapReduce, threads and MPI. The algorithms are applied across a mix of paradigms to
study the different performance characteristics.

1. in Messaging Runtime

The focus of this paper will be comparison of runtime environments for both parallel
and distributed systems. There are successful workflow languages which underlies the
approach of the SALSA project [15] which is to use workflow technologies – defined
as orchestration languages for distributed computing for the coarse grain functional
components of parallel computing with dedicated low level direct parallelism of
kernels. At the run time level, there is much similarity between parallel and distributed
run times to the extent that both support messaging but with different properties. Some
of the choices are shown in figure 1 and differ by both hardware and programming
models. The hardware support of parallelism/concurrency varies from shared memory
multicore, closely coupled (e.g. Infiniband connected) clusters, and the higher latency
and possibly lower bandwidth distributed systems. The coordination (communication

and synchronization) of the
different execution units vary
from threads (with shared
memory on cores); MPI
between cores or nodes of a
cluster; workflow or mash-ups
linking services together; the
new generation of cloud data
intensive programming systems
typified by Hadoop [19]
(implementing MapReduce)
and Dryad. These can be
considered as the workflow
systems of the information
retrieval industry but are of
general interest as they support
parallel analysis of large
datasets. As illustrated in the
figure the execution units vary
from threads to processes and
can be short running or long
lived.

Figure 1(a). First three of seven different combinations of
processes/threads and intercommunication mechanisms
discussed in the text

Data Parallel Run Time Architectures

MPI

MPI

MPI

MPI

MPI is long running
processes with
Rendezvous for
message exchange/
synchronization

CCR Ports

CCR Ports

CCR Ports

CCR Ports

The Multi Threading
CCR can use short-
lived threads
communicating via
shared memory and
Ports (messages)

CCR Ports

CCR Ports

CCR Ports

CCR Ports

CCR – Long
Running threads
communicating at
rendezvous via
shared memory
and Ports
(messages)

Figure 1(b). Last four of seven different combinations of processes/threads and intercommunication
mechanisms discussed in the text

Short running threads can be spawned up in the context of persistent data in
memory and so have modest overhead seen in section 4. Short running processes in the
spirit of stateless services are seen in Dryad and Hadoop and due to the distributed

memory can have substantially higher
overhead than long running processes which
are coordinated by rendezvous messaging as
later do not need to communicate large
amounts of data – just the smaller change
information needed. The importance of this
is emphasized in figure 2 showing data
intensive processing passing through
multiple “map” (each map is for example a
particular data analysis or filtering
operation) and “reduce” operations that
gather together the results of different map
instances corresponding typically to a data
parallel break up of an algorithm. The figure
notes two important patterns

a) Iteration where results of one stage are iterated many times. This is seen in the
“Expectation Maximization” EM steps in the later sections where for clustering and
MDS, thousands of iterations are needed. This is typical of most MPI style algorithms.

b) Pipelining where results of one stage are forwarded to another; this is functional
parallelism typical of workflow applications. In applications of this paper we
implement a three stage pipeline:

Data (from disk) Clustering Dimension Reduction (MDS) Visualization

Figure 2: Data Intensive Iteration and Workflow

Disk/Database

Compute
(Map #1)

Disk/Database
Memory/Streams

Compute
(Reduce #1)

Disk/Database
Memory/Streams

Disk/Database

Compute
(Reduce #2)

Disk/Database
Memory/Streams

Compute
(Map #2)

Disk/Database
Memory/Streams

Iteration

Workflow

Each of the first two stages is parallel and one can break up the compute and
reduce modules of figure 2 into parallel components as shown in figure 3. There is an
important ambiguity in parallel/distributed programming models/runtimes that both the
parallel MPI style parallelism and the distributed Hadoop/ Dryad/ Web
Service/Workflow models are implemented by messaging. Thus the same software can
in fact be used for all the decompositions seen in figures 1-3. Thread coordination can
avoid messaging but even here messaging can be attractive as it avoids many of the
error scenarios seen in shared memory thread synchronization. The CCR threading [8-
11, 20-21] used in this paper is coordinated by reading and writing messages to ports.

As a further example of runtimes crossing different
application characteristics, MPI has often been used
in Grid (distributed) applications with MPICH-G
popular here. Again the paper of Chu [7] noted that
the MapReduce approach can be used in many
machine learning algorithms and one of our data
mining algorithms VECDA only uses map and
reduce operations (it does not need send or receive
MPI operations). We will show in this paper that
MPI gives excellent performance and ease of
programming for MapReduce as it has elegant
support for general reductions although it does not
have the fault tolerance and flexibility of Hadoop or
Dryad. Further MPI is designed for the “owner-

computes” rule of SPMD – if a given datum is stored in a compute node’s memory,
that node’s CPU computes (evolves or analyzes) it. Hadoop and Dryad combine this
idea with the notion of “taking the computing to the data”. This leads to the generalized
“owner stores and computes” rule or crudely that a file (disk or database) is assigned a
compute node that analyzes (in parallel with nodes assigned different files) the data on
its file. Future scientific programming models must clearly capture this concept.

2. Data Intensive Workflow Paradigms

In this section, we will present an architecture and a prototype implementation of a new
programming model that can be applied to most composable class of applications with
various program/data flow models, by combining the MapReduce and data streaming
techniques and compare its performance with other parallel programming runtimes
such as MPI, and the cloud technologies Hadoop and Dryad.
 MapReduce is a parallel programming technique derived from the functional
programming concepts and proposed by Google for large-scale data processing in a
distributed computing environment. The map and reduce programming constructs
offered by MapReduce model is a limited subset of programming constructs provided
by the classical distributed parallel programming models such as MPI. However, our
current experimental results highlight that many problems can be implemented using
MapReduce style by adopting slightly different parallel algorithms compared to the
algorithms used in MPI, yet achieve similar performance to MPI for appropriately large
problems. A major advantage of the MapReduce programming model is that the
easiness in providing various quality of services. Google and Hadoop both provide
MapReduce runtimes with fault tolerance and dynamic flexibility support.

Figure 3: Workflow of Parallel Services

Parallel
Services

 Dryad is a distributed execution engine for coarse grain data parallel applications. It
combines the MapReduce programming style with dataflow graphs to solve the
computation tasks. Dryad considers computation tasks as directed acyclic graph
(DAG)s where the vertices represent computation tasks –typically, sequential
programs with no thread creation or locking, and the edges as communication channels
over which the data flow from one vertex to another.
 Moving computation to data is another advantage of the MapReduce and Dryad
have over the other parallel programming runtimes. With the ever-increasing
requirement of processing large volumes of data, we believe that this approach has a
greater impact on the usability of the parallel programming runtimes in the future.

2.1. Current MapReduce Implementations

Google's MapReduce implementation is coupled with a distributed file system named
Google File System (GFS) [22] where it reads the data for MapReduce computations
and stores the results. According to the seminal paper by J. Dean et al.[3], in their
MapReduce implementation, the intermediate data are first written to the local files and
then accessed by the reduce tasks. The same architecture is adopted by the Apache's
MapReduce implementation – Hadoop.
 Hadoop stores the intermediate results of the computations in local disks, where the
computation tasks are executed, and informs the appropriate workers to retrieve (pull)
them for further processing. The same approach is adopted by Disco [23] – another
open source MapReduce runtime developed using a functional programming language
named Erlang [24]. Although this strategy of writing intermediate result to the file
system makes the above runtimes robust, it introduces an additional step and a
considerable communication overhead to the MapReduce computation, which could be
a limiting factor for some MapReduce computations. Apart from the above, all these
runtimes focus mainly on computations that utilize a single map/reduce computational
unit. Iterative MapReduce computations are not well supported.

2.2. CGL-MapReduce

CGL-MapReduce is a novel MapReduce runtime that uses streaming for all the
communications, which eliminates the overheads associated with communicating via a
file system. The use of streaming enables the CGL-MapReduce to send the
intermediate results directly from its producers to its consumers.

Currently, we have not integrated a distributed file system such as HDFS with
CGL-MapReduce, but it can read data from a typical distributed file system such as
NFS or from local disks of compute nodes of a cluster with the help of a meta-data file.
The fault tolerance support for the CGL-MapReduce will harness the reliable delivery
mechanisms of the content dissemination network that we use. Figure 4 shows the main
components of the CGL-MapReduce.

 The CGL MapReduce runtime system is comprised of a set of workers, which
perform map and reduce tasks and a content dissemination network that handles all the
underlying communications. As in other MapReduce runtimes, a master worker
(MRDriver) controls the other workers according to instructions given by the user

program. However, unlike typical MapReduce runtimes, CGL-MapReduce supports
both single-step and iterative MapReduce computations.

Figure 5. Computation phases of CGL-MapReduce

 A MapReduce computation under CGL-MapReduce passes through several phases
of computations as shown in figure 5. In CGL-MapReduce the initialization phase is
used to configure both the map/reduce tasks and can be used to load any fixed data
necessary for the map/reduce tasks. The map and reduce stages perform the necessary
data processing while the framework directly transfers the intermediate result from map
tasks to the reduce tasks. The merge phase is another form of reduction which is used
to collect the results of the reduce stage to a single value. The User Program has access
to the results of the merge operation. In the case of iterative MapReduce computations,
the user program can call for another iteration of MapReduce by looking at the result of
the merge operation and the framework performs anther iteration of MapReduce using
the already configured map/reduce tasks eliminating the necessity of configuring
map/reduce tasks again and again as it is done in Hadoop.
 CGL-MapReduce is implemented in Java and utilizes NaradaBrokering[25], a
streaming-based content dissemination network. The CGL-MapReduce research
prototype provides the runtime capabilities of executing MapReduce computations
written in the Java language. MapReduce tasks written in other programming

Figure 4: Components of the CGL-MapReduce System

languages require wrapper map and reduce tasks in order for them to be executed using
CGL-MapReduce.

2.3. Performance Evaluation

To evaluate the different runtimes for their performance we have selected several data
analysis applications. First, we applied the MapReduce technique to parallelize a High
Energy Physics (HEP) data analysis application and implemented it using Hadoop,
CGL-MapReduce, and Dryad (Note: The academic release of Dryad only exposes the
DryadLINQ [26] API for programmers. Therefore, all our implementations are written
using DryadLINQ although the underlying runtime it uses is Dryad). The HEP data
analysis application processes large volumes of data and performs a histogramming
operation on a collection of event files produced by HEP experiments. Next, we
applied the MapReduce technique to parallelize a Kmeans clustering [27] algorithm
and implemented it using Hadoop, CGL-MapReduce, and Dryad. Details of these
applications and the challenges we faced in implementing them can be found in [28]. In
addition, we implemented the same Kmeans algorithm using MPI (C++) as well. We
have also implemented a matrix multiplication algorithm using Hadoop and CGL-
MapReduce. We also implemented two common text-processing applications, which
perform a “word histogramming” operation, and a “distributed grep” operation using
Dryad, Hadoop, and CGL-MapReduce. Table 1 and Table 2 highlight the details of the
hardware and software configurations and the various test configurations that we used
for our evaluations.

Table 2. Test configurations.

Feature HEP Data Analysis Kmeans clustering Matrix
Multiplication

Histogramming
& Grep

Cluster Ref H G G B
Number of
Nodes

12 4 5 4

Number of
Cores

96 32 40 32

Amount of
Data

Up to 1TB of HEP
data

Up to 10 million
data points

Up to 16000
rows and
columns

100GB of text
data

Data
Location

IU Data Capacitor: a
high-speed and high-
bandwidth storage
system running the
Lustre File System

Hadoop : HDFS
CGL-
MapReduce : NFS
Dryad : Local Disc

Hadoop : HDFS
CGL-
MapReduce :
NFS

Hadoop : HDFS
CGL-MapReduce:
Local Disc
Dryad :
Local Disc

Language Java, C++ (ROOT) Java, C++ Java Java, C#

 For the HEP data analysis, we measured the total execution time it takes to process
the data under different implementations by increasing the amount of data. Figure 6 (a)
depicts our results.
 Hadoop and CGL-MapReduce both show similar performance. The amount of data
accessed in each analysis is extremely large and hence the performance is limited by
the I/O bandwidth of a given node rather than the total processor cores. The overhead
induced by the MapReduce implementations has negligible effect on the overall
computation.

 The Dryad cluster (Table 1 ref. B) we used has a smaller hard disks compared to the
other clusters we use. Therefore, to compare the performance of Hadoop, CGL-
MapReduce, and Dryad for HEP data analysis, we have performed another test using a
smaller data set on a smaller cluster configuration. Since Dryad is deployed on a
Windows cluster running HPC Server Operating System(OS) while Hadoop and CGL-
MapReduce are run on Linux clusters, we normalized the results of the this benchmark
to eliminate the differences caused by the hardware and the different OSs. Figure 6(b)
shows our results.

Figure 6(b). HEP data analysis, execution time vs. the volume of data (fixed compute resources). Note: In
the Dryad version of HEP data analysis the “reduction” phase (combining of partial histograms produced by
the “map” tasks) is performed by the GUI using a separate thread. So the timing results for Dryad does not
contain the time for combining partial histograms.
 Figure 6(a) and 6(b) show that Hadoop, Dryad, and CGL-MapReduce all perform
nearly equally for the HEP data analysis. HEP data analysis is both compute and data
intensive and hence the overheads associated with different parallel runtimes have
negligible effect on the overall performance of the data analysis.

Figure 6(a). HEP data analysis, execution time vs. the volume of data (fixed compute resources)

 We evaluate the performance of different implementations for the Kmeans
clustering application and calculated the parallel overhead (φ) induced by the different
parallel programming runtime using the formula given below. In this formula P denotes
the number of hardware processing units (i.e. number of cores used) and T(P) denotes
the total execution time of the program when P processing units are used. T(1) denotes
the total execution time for a single threaded program. Note φ is just (1/efficiency – 1)
and often is preferable to efficiency as overheads are summed linearly in φ.

φ(P) = [PT(P) –T(1)] /T(1) (2.1)

Figure 7 depicts our performance results for Kmeans expressed as overhead.

Figure 7. Overheads associated with Hadoop, Dryad, CGL-MapReduce, and MPI for Kmeans clustering –
iterative MapReduce - (Both axes are in log scale)

 The results in figure 7 show that although the overheads of different parallel
runtimes reduce with the increase in the number of data points, both Hadoop and Dryad
have very large overheads for the Kmeans clustering application compared to MPI and
CGL-MapReduce implementations.

 Matrix multiplication is another iterative algorithm that we have implemented using
Hadoop and CGL-MapReduce. To implement matrix multiplication using MapReduce
model, we adopted the row/column decomposition approach to split the matrices. To
clarify our algorithm let’s consider an example where two input matrices A and B
produce matrix C as the result of the multiplication process. We split the matrix B into
n column blocks where n is equal to the number of map tasks used for the computation.
The matrix A is split to m row blocks where m determines the number of iterations of
MapReduce computations needed to perform the entire matrix multiplication. In each
iteration, all the map tasks consume two inputs; (i) a column block of matrix B and (ii)
a row block of matrix A and collectively they produce a row block of the resultant
matrix C. The column block associated with a particular map task is fixed throughout
the computation while the row blocks are changed in each iteration. However, in
Hadoop’s programming model, there is no way to specify this behavior and hence it
loads both the column block and the row block in each iteration of the computation.

CGL-MapReduce supports the notion of long running map/reduce tasks where these
task are allowed to retain static data in memory across invocations yielding better
performance characteristics for iterative MapReduce computations.

 For the matrix multiplication program, we measured the total execution time by
increasing the size of the matrices used for the multiplication, using both Hadoop and
CGL-MapReduce implementations. The result of this evaluation is shown in figure 8.

Figure 8. Performance of the Hadoop and CGL-MapReduce for matrix multiplication

 The results in figure 7 and figure 8 show how the approach of configuring once and
re-using of map/reduce tasks across iterations and the use of streaming have improved
the performance of CGL-MapReduce for iterative MapReduce tasks. The
communication overhead and the loading of static data in each iteration have resulted
large overheads in iterative MapReduce computations implemented using Hadoop. The
DAG based execution model of Dryad requires generation of execution graphs with
fixed number of iterations. It also supports “loop unrolling” where a fixed number of
iterations are performed as a single execution graph (a single query of DryadLINQ).
The number of loops that can be unrolled is limited by the amount of stack space
available for a process, which executes a collection of graph vertices as a single
operation. Therefore, an application, which requires n iterations of MapReduce
computations, can perform it in m cycles where in each cycle; Dryad executes a
computation graph with n/m iterations. In each cycle the result computed so far is
written to the disk and loaded back at the next cycle. Our results show that even with
this approach there are considerable overheads for iterative computations implemented
using Dryad.

 The performance results of the two text processing applications comparing Hadoop,
CGL-MapReduce, and Dryad are shown in figure 9 and figure 10.

Figure 9. Performance of Dryad, Hadoop, and CGL-MapReduce for “histogramming of words” operation.

Figure 10. Performance of Dryad, Hadoop, and CGL-MapReduce for “distributed grep” operation

 In both these tests, Hadoop shows higher overall processing time compared to
Dryad and CGL-MapReduce. This could be mainly due to its distributed file system
and the file based communication mechanism. Dryad uses in memory data transfer for
intra-node data transfers and a file based communication mechanism for inter-node
data transfers where as in CGL-MapReduce all data transfers occur via streaming. The
“word histogramming” operation requires higher data transfer requirements compared
to the “distributed grep” operation and hence the streaming data transfer approach
adopted by the CGL-MapReduce shows lowest execution times for the “word
histogramming” operation. In “distributed grep” operation both Dryad and CGL-
MapReduce show close performance results.

3. Multidimensional Scaling MDS

Dimension reduction algorithms are used to reduce dimensionality of high dimensional
data into Euclidean low dimensional space, so that dimension reduction algorithms are
used as visualization tools. Some dimension reduction approaches, such as generative
topographic mapping (GTM) [29] and Self-Organizing Map (SOM) [30], seek to
preserve topological properties of given data rather than proximity information. On the
other hand, multidimensional scaling (MDS) [31-32] tries to maintain dissimilarity
information between mapping points as much as possible. The MDS algorithm
involves several full N × N matrices where we are mapping N data points. Thus, the
matrices could be very large for large problems (N could be as big as millions even
today). For large problems, we will initially cluster the given data and use the cluster
centers to reduce the problem size. Here we parallelize an elegant algorithm for
computing MDS solution, named SMACOF (Scaling by MAjorizing a COmplicated
Function) [33-34], using MPI.NET [35-36] which is an implementation of message
passing interface (MPI) for C# language and presents performance analysis of the
parallel implementation of SMACOF on multicore cluster systems. We show some
examples of the use of MDS to visualize the results of the clustering algorithms of
section 4 in figure 11. These are datasets in high dimension (from 20 in figure 11(right)
to over a thousand in figure 11(left)) which are projected to 3D using proximity
(distance/dissimilarity) information. The figure shows 2D projections determined by us
from rotating 3D MDS results.

Figure 11. Visualization of MDS projections using parallel SMACOF described in section 3. Each color
represents a cluster determined by the PWDA algorithm of section 4. Figure 11(left) corresponds to 4500
ALU pairwise aligned Gene Sequences with 8 clusters [37] and 11(right) to 4000 Patient Records with 8
clusters from [38]

Multidimensional scaling (MDS) is a general term for a collection of techniques to
configure data points with proximity information, typically dissimilarity (interpoint
distance), into a target space which is normally Euclidean low-dimensional space.
Formally, the N × N dissimilarity matrix Δ = (δij) should be satisfied symmetric (δij =
δji), nonnegative (δij ≥ 0), and zero diagonal elements (δii = 0) conditions. From given
dissimilarity matrix Δ, a configuration of points is constructed by the MDS algorithm in
a Euclidean target space with dimension p. The output of MDS algorithm can be an N
× p configuration matrix X, whose rows represent each data point xi in Euclidean p-
dimensional space. From configuration matrix X, it is easy to compute the Euclidean
interpoint distance dij(X) = ||xi – xj|| among N configured points in the target space and

to build the N × N Euclidean interpoint distance matrix D(X) = (dij(X)). The purpose of
MDS algorithm is to map the given points into the target p-dimensional space, while
the interpoint distance dij(X) is approximated to δij with different MDS forms
correspondingly to different measures of the discrepancy between dij(X) and δij.
STRESS [39] and SSTRESS [40] were suggested as objective functions of MDS
algorithms. STRESS (σ or σ(X)) criterion (Eq. (3.1)) is a weighted squared error
between distance of configured points and corresponding dissimilarity, but SSTRESS
(σ2 or σ2(X)) criterion (Eq. (3.2)) is a weighted squared error between squared distance
of configured points and corresponding squared dissimilarity.

σ(X) = Σi<j≤n wij(dij(X) − δij)2 (3.1)

σ2(X) = Σi<j≤n wij [(dij(X))2 − (δij)2]2 (3.2)

where wij is a weight value, so wij ≥ 0.Therefore, the MDS can be thought of as an
optimization problem, which is minimization of the STRESS or SSTRESS criteria
during constructing a configuration of points in the p-dimension target space.

3.1. Scaling by MAjorizing a COmplicated Function (SMACOF)

Scaling by MAjorizing a COmplicated Function (SMACOF) [33-34] is an iterative
majorization algorithm in order to minimize objective function of MDS. SMACOF is
likely to find a local not global minima as is well known from gradient descent
methods. Nevertheless, it is powerful since it guarantees a monotonic decrease of the
objective function. The procedure of SMACOF is described in Algorithm 1. For the
mathematical details of SMACOF, please refer to [32].

3.2. Distributed-Memory Parallel SMACOF

In order to implement distributed-memory parallel SMACOF, one must address two
issues: one is the data decomposition where we choose block matrix decomposition for
our SMACOF implementation since it involves matrix multiplication iterated over

successive gradient descents, and the other is the required communication between
decomposed processes. For the data decomposition, our implementation allows users
to choose the number of row-blocks and column-blocks with a constraint that the
product of the number of row-blocks and column-blocks should be equal to the number
of processes, so that each process will be assigned corresponding decomposed sub-
matrix. For instance, if we run this program with 16 processes, then users can
decompose the N×N full matrices into not only 4×4 block matrices but also 16×1, 8×2,
2×8, and 1×16 block matrices. In addition, message passing interface (MPI) is used to
communicate between processes, and MPI.NET is used for the communication.

3.2.1. Advantages of Distributed-memory Parallel SMACOF

The running time of SMACOF algorithm is O (N2). Though matrix multiplication of
V†·B(X) takes O (N3), you can reduce the computation time by using associativity of
matrix multiplication. By the associative property of the matrix multiplication,
(V†·B(X))·X is equal to V†·(B(X)·X). While the former takes the order of O(N3 + N2p),
the latter takes only O (2N2p), where N is the number of points and p is the target
dimension that we would like to find a configuration for given data. Normally, the
target dimension p is two or three for the visualization, so p could be considered as a
constant for computational complexity. Also, SMACOF algorithm uses at least four
full N×N double matrices, i.e. Δ, D, V†, and B(X), which means at least 32× N2 bytes of
memory should be allocated to run SMACOF program.

As in general, there are temporal and spatial advantages when we use distributed-
memory parallelism. First, computational advantage should be achieved by both
shared-memory and distributed-memory parallel implementation of SMACOF. While
shared-memory parallelism is limited by the number of processors (or cores) in a single
machine, distributed-memory parallelism can be extended the available number of
processors (or cores) as much as machines are available, theoretically. SMACOF
algorithm uses at least 32× N2 bytes of memory as we mentioned above. For example,
32MB, 3.2GB, 12.8GB, and 320GB are necessary for N = 1000, 10000, 20000, 100000,
correspondingly. Therefore, a multicore workstation, which has a 8GB of memory will
be able to run SMACOF algorithm with 10000 data points. However, this workstation
cannot be used to run the same algorithm with 20000 data points. Shared memory
parallelism increases performance but does not increase size of problem that can be
addressed. Thus, the distributed-memory parallelism allows us to run SMACOF
algorithm with much more data, and this benefit is quite important in the era of a data
deluge.

3.3. Experimental Results and Analysis

For the performance experiments of the distributed-memory parallel SMACOF, we use
two nodes of Ref C and one node of Ref D in Table 1. For the performance test, we
generate artificial random data set which is in 8-centered Gaussian distribution in 4-
dimension with different number of data points, such as 128, 256, 512, 1024, 2048, and
4096.

Due to gradient descent attribute of SMACOF algorithm, the final solution highly
depends on the initial mapping. Thus, it is appropriate to use random initial mapping
for the SMACOF algorithm unless specific prior initial mapping exists, and to run
several times to increase the probability to get better solution. If the initial mapping is

different, however, the computation amount can be varied whenever the application
runs, so that we could not measure any performance comparison between two
experimental setups, since it could be inconsistent. Therefore, the random seed is fixed
for the performance measures of this paper to generate the same answer and the same
necessary computation for the same problem. The stop condition threshold value (ε) is
also fixed for each data. We will investigate the dependence on starting point more
thoroughly using other approaches discussed in section 3.4.

3.3.1. Performance Analysis

For the purpose of performance comparison, we implemented the sequential version of
SMACOF algorithm. The sequential SMACOF is executed on each test node, and the
test results are in Table 3. Note that the running time of D is almost twice faster than
the other two nodes, though the core’s clock speed of each node is similar. The reason
would be the cache memory size. L2 cache of two Ref C nodes (C1 and C2) is much
smaller than that of D node.
Table 3. Sequential Running time in seconds on each test node

Initially we measured the performance of the distributed-memory parallel

SMACOF (MPI_SMACOF) on each test node only. Figure 12 shows the speedup of
each test node with different number of processes. Both axes of the Figure 12 are in
logarithmic scale. As the Figure 12 depicted, the MPI_SMACOF is not good for small
data, such as 128 and 256 data points. However, for larger data, i.e. 512 and more data
points, the MPI_SMACOF shows great performance on the test data. You should
notice those speedup values of larger data, such as 1024 or more data points on C1 and
C2 nodes are bigger than the actual processes number using the MPI_SMACOF
application, which corresponds to super-linear speedup. However, on the D node, it
represented good speedup but not super-linear speedup at all. The reason of super-
linear speedup is related to cache-hit ratio, as we discussed about sequential running
results. MPI_SMACOF implemented in the way of block decomposition, so that those
sub-matrix would be better matched in the cache line size and the portion of sub-matrix
which is in cache memory at a moment would be bigger than the portion of whole
matrix in it. The Figure 12 also describes that the speedup ratio (or efficiency)
becomes worse when you run MPI_SMACOF with more processes on single node. It
seems natural that as the number of computing units increases, the assigned computing
job will be decreased but the communication overhead will be increased.

Data size C1 C2 D
128 0.3437 0.3344 0.1685
256 1.9031 1.9156 0.9204
512 9.128 9.2312 4.8456
1024 32.2871 32.356 18.1281
2048 150.5793 150.949 83.4924
4096 722.3845 722.9172 384.7344

Figure 12. Speedup of MPI_SMACOF performance on each test node

In addition, we have measured the performance of the proposed MPI_SMACOF
algorithm on all the three test nodes with different number of processes. Figure 13
illustrates the speedup of those experiments with respect to the average of the
sequential SMACOF running time on each node. The comparison with average might
be reasonable since, for every test case, the processes are equally spread as much as
possible on those three test nodes except the case of 56 processes running. The Figure
13 represents that the speedup values are increasing as the data size is getting bigger.
This result shows that the communication overhead on different nodes is larger than
communication overhead on single node, so that the speedup is still increasing, even
with large test data such as 2048 and 4096 points, instead of being converged as in
Figure 12.

Figure 13. Speedup of MPI_SMACOF on combine nodes

3.4. Conclusions

We have developed a dimension mapping tool that is broadly applicable as it only uses
dissimilarity values and does not require the points to be in a vector space. We have
good parallel performance and are starting to use it for science applications as
illustrated in figure 11. In later work, we will compare the method described with
alternatives that can also be parallelized and avoid the steepest descent approach of
SMACOF which can lead to local minima. One approach, first described in [41] and
[42], uses deterministic annealing based on ideas sketched in section 4. This still uses
Expectation Maximization (EM) (steepest descent) but only for the small steps needed
as temperature is decreased. We will also implement the straightforward but possibly
best method from ref [43] that solves equations (3.1) and (3.2) as χ2 problems and uses
optimal solution methods for this.

4. Multicore Clustering

4.1. Algorithms

Clustering can be viewed as an optimization problem that determines a set of K clusters
by minimizing

HVECDA = ∑i=1
N ∑k=1

K Mi(k) DVEC(i,k) (4.1)
where DVEC(i,k) is the distance between point i and cluster center k. N is the

number of points and Mi(k) is the probability that point i belongs to cluster k. This is
the vector version and one obtains the pairwise distance model with:

HPWDA = 0.5 ∑i=1
N ∑j=1

N D(i, j) ∑k=1
K Mi(k) Mj(k) / C(k) (4.2)

and C(k) = ∑i=1
N Mi(k) is the expected number of points in the k’th cluster. D(i,j)

is pairwise distance between points 1 and j. Equation (4.1) requires one be able to

calculate the distance between a point i and the cluster center k and this is only possible
when one knows the vectors corresponding to the points i. (4.2) reduces to (4.1) when
one inserts vector formulae and drops terms that average to zero. The formulation (4.2)
is important as there are many important clustering applications where one only knows
distances between points and not a Euclidean vector representation.

One must minimize (4.1) or (4.2) as a function of cluster centers for case VECDA
and cluster assignments Mi(k) for case PWDA. One can derive deterministic annealing
from an informatics theoretic [17] or physics formalism [18]. In latter case one
smoothes out the cost function (4.1) or (4.2) by averaging with the Gibbs distribution
exp(-H/T). This implies in a physics language that one is minimizing not H but the free
energy F at temperature T and entropy S

 F = H-TS (4.3)

Figure 14. Preliminary stage of clustering shown in figure 11(left) corresponding to 4500 ALU pairwise
aligned Gene Sequences with 2 clusters [37]

For VECDA and Hamiltonian H given by equation (4.1), one can do this averaging
exactly.

 Mi(k) = exp(- DVEC(i,k)/T) / Zi (4.4)
 Zi = ∑ k exp(- DVEC(i,k)/T) (4.5)
 F = - T ∑i=1

N log [Zi] / N (4.6)

For the case of equation (4.2) where only distances are known, the integrals with

the Gibbs function are intractable analytically as the degrees of freedom Mi(k) appear
quadratically in the exponential. In the more familiar simulated annealing approach to
optimization, these integrals are effectively performed by Monte Carlo. This implies
simulated annealing is always applicable but is usually very slow. The applicability of
deterministic annealing was enhanced by the important observation in [18] that one can
use an approximate Hamiltonian H0 and average with exp(-H0/T). For pairwise
clustering (4.2), one uses the form motivated by the VECDA formalism (4.4).

 H0 = ∑i=1

N ∑k=1
K Mi(k) εi(k) (4.7)

 Mi(k) ∝ exp(-εi(k)/T) with ∑k=1
K Mi(k) =1 (4.8)

εi(k) are new degrees of freedom. This averaging removes local minima and is
designed so that at high temperatures one starts with one cluster. As temperature is
lowered one minimizes the Free Energy (4.3) with respective to the degrees of freedom.
A critical observation of Rose [17] allows one to determine when to introduce new
clusters. As in usual expectation maximization (steepest descent) the first derivative of
equation (4.3) is set to zero to find new estimates for Mi(k) and other parameters such
as cluster centers for VECDA. Then one looks at the second derivative Γ of F to find
instabilities that are resolved by splitting clusters. One does not examine the full matrix
but the submatrices coming from restricting Γ to variations of the parameters of a
single cluster with the K-1 other clusters fixed and multiple identical clusters placed at
location of clusters whose stability one investigates. As temperature is lowered one
finds that clusters naturally split and one can easily understand this from the analytic
form for Γ. The previous work [18] on PWDA was incomplete and did not consider
calculation of Γ but rather only assumed an a priori fixed number of clusters. We have
completed the formalism and implemented it in parallel. Note we only need to find the
single lowest eigenvalue of Γ (restricted to varying one cluster). This is implemented as
power (Arnoldi) method. One splits the cluster if its restricted Γ has a negative
eigenvalue and this is the smallest when looked at over all clusters.

The formalism for VECDA can be found in our earlier work and [17]. Here we just
give results for the more complex PWDA and use it to illustrate both methods. We let
indices k µ λ runs over clusters from 1 to K while i j α β run over data points from 1 to
N. Mi(k) has already been given in equation (4.8). Then one calculates:

A(k) = - 0.5 ∑i=1

N ∑j=1
N D(i, j) Mi(k) Mj(k) / C(k)2 (4.9a)

Bα(k) = ∑i=1
N D(i, α) Mi(k) / C(k) (4.9b)

C(k) = ∑i=1
N Mi(k) (4.9c)

Allowing one to derive the estimate εα(k) = (Bα(k) + A(k)) (4.10)

Equation (4.10) minimizes F of equation (4.3). The NK×NK second derivative

matrix Γ is given by:

{α,µ}Γ{β,λ} = (1/T) δαβ {Mα(µ) δµλ - Mα(µ) Mα(λ) } + (Mα(µ) Mβ(λ) / T2) {∑k=1
K [

- 2A(k) - Bβ(k) - Bα(k) + D(α,β)] [Mα(k) - δkµ] [Mβ(k) - δkλ]/C(k)} (4.11)

Equations (4.9) and (4.10) followed by (4.8) represent the basic steepest descent

iteration (Expectation Maximization) that is performed at fixed temperature until the
estimate for εα(k) is converged. Note steepest descent is a reasonable approach for
deterministic annealing as one has smoothed the cost function to remove (some) local
minima. Then one decides whether to split a cluster from the eigenvalues of Γ as
discussed above. If splitting is not called for, one reduces the temperature and repeats
equations (4.8) through (4.11). There is an elegant method of deciding when to stop
based on the fractional freezing factors Φ(k)

Φ(k) = ∑i=1

N Mi(k) (1 - Mi(k)) / C(k) (4.12)

As temperatures are lowered after final split, then the Mi(k) tend to either 0 or 1 so
Φ(k) tends to zero. We currently stop when all the freezing factors are < 0.002 but
obviously this precise value is ad-hoc.

4.2. Multi-Scale and Deterministic Annealing

In references [12] and [14], we explain how a single formalism describes many
different problems: VECDA (Clustering of points defined by vectors with deterministic
annealing) [16-17], Gaussian Mixture Models (GMM) [44]; Gaussian Mixture Models
with deterministic annealing (GMMDA) [45]; and Generative Topographic Maps
(GTM) [29]. One can also add deterministic annealing to GTM and we are currently
working on this for Web applications [46]. Deterministic annealing can be considered
as a multi-scale approach as quantities are weighted by exp (-D/T) for distances D and
temperature T. Thus at a given temperature T, the algorithm is only sensitive to
distances D larger than or of order T. One starts at high temperatures (determined by
largest distance scale in problem) and reduce temperature (typically by 1% each
iteration) until you reach either the distance scale or number of clusters desired. As
explained in original papers [16], clusters emerge as phase transitions as one lowers the
temperature and need not be put in by hand. For example the eight clusters in figure
11(left) were found systematically with clusters being added as one reduced
temperature so that at a higher temperature one first split from one to two clusters to
find results of figure 14. The splits are determined from the structure of second
derivative matrix equation (4.11) and figure 11(left) is for example found by continuing
to reduce the temperature from intermediate result in figure 14.

4.3. Operational Use of Clustering and MDS

The original data is clustered with VECDA (see earlier papers for examples) or
PWDA and then visualized by mapping points to 3D with MDS as described in section
3 and visualizing with a 3D viewer written in DirectX. As a next step, we will allow
users to select regions either from clustering or MDS and drill down into the
substructure in this region. Like the simpler linear principal component analysis, MDS
of a sub-region is generally totally different from that of full space. We note here that
deterministic annealing can also be used to avoid local minima in MDS [47]. We will
report our extensions of the original approach in [41-42] and comparison with
Newton’s method for MDS [43] elsewhere.

Clustering in high dimensions d is not intuitive geometrically as the volume of a
cluster of radius R is proportional to R(d+1) implying that a cluster occupying 0.1% of
total volume has a radius reduced by only a factor 0.99 from that of overall space with
d=1000 (a value typical of gene sequences). These conceptual difficulties are avoided
by the pairwise approach. One does see the original high dimension when projecting
points to 3D for visualization as they tend to appear on surface of the lower
dimensional space. This can be avoided as discussed in [42] by a mapping Distance D
→ f(D) where f is a monotonic function designed so that the transformed distances f(D)
are distributed uniformly in a lower dL dimensional space. We experimented with dL =
2 and 4 where the mapping is analytically easy but found it did not improve the
visualization. Typical results are shown in figure 15(right) that maps data of figure
15(left) to 2 dimensions before applying MDS – the clustering is still performed on
original unmapped data. Certainly the tendency in figure 15(left) to be at edge of

visualization volume is removed but data understanding does not seem improved. This
approach finds an effective dimension deff for original data by comparing mean and
standard deviation of all the inter-point distances D(i,j) with those in a dimension deff.
This determines an effective dimension deff of 40-50 for sequence data and about 5 for
medical record data; in each case deff is a dimension smaller than that of underlying
vector space. This is not surprising as any data set is a very special correlated set of
points.

Figure 15: Results of Clustering of 4500 ALU sequences into 10 clusters before (left) and after (right)
dimensional reduction described in text below.

4.4. Parallelism

The vector clustering model is suitable for low dimensional spaces such as our
earlier work on census data [12] but the results of figures 11, 14 and 15 correspond to
our implementation of PWDA – the pairwise distance clustering approach of [18]
which starts from equation (4.2) and its structure has similarities to familiar O(N2)
problems such as (astrophysical) particle dynamics. As N is potentially of order a
million we see that both MDS and pairwise clustering are potential supercomputing
data analysis applications. The parallelism for clustering is straightforward data
parallelism with the N points divided equally between the P parallel units. This is the
basis of most MapReduce algorithms and clustering was proposed as a MapReduce
application in [7]. We have in fact compared simple (K-means) clustering between
versions and MapReduce and MPI in section 2 and ref. [28]. Note that VECDA should
be more suitable than K-means for MapReduce as it has more computation at each
iteration (MapReduce has greater overhead than MPI on communication and
synchronization as shown in section 2). VECDA only uses reduction, barrier and
broadcast operations in MPI and in fact MPI implementation of this algorithm is
substantially simpler than the threaded version. Reduction, Barrier and Broadcast are
all single statements in MPI but require several statements – especially for reduction –
in the threaded case. Reduction is not difficult in threaded case but requires care with
many opportunities for incorrect or inefficient implementations.

PWDA is also data parallel over points and its O(N2) structure is tackled similarly
to other O(N2) algorithms by dividing the points between parallel units. Each MPI
process also stores the distances D(i, j) for all points i for which process is responsible.
Of course the threads inside this process can share all these distances stored in common
memory of a multicore node. There are subtle algorithms familiar from N-body particle
dynamics where a factor of 2 in storage (and in computation) is saved by using the

symmetry D(i, j) = D(j, i) but this did not seem useful in this case. The MPI parallel
algorithm now needs MPI_SENDRECV to exchange information about the distributed
vectors; i.e. one needs to know about all components of vectors Mi Bi and the vector Ai
iterated in finding maximal eigenvectors. This exchange of information can either be
done with a broadcast or as in results reported here by send-receive in ring structure as
used in O(N2) particle dynamics problems. We measured the separate times in the four
components of MPI – namely send-receive, Reduction, and Broadcast and only the first
two are significant reaching 5-25% of total time with Broadcast typically less than
0.1% of execution time. The time needed for MPI send-receive is typically 2 to 3 times
that for reduction but the latter is a non trivial overhead (often 5-10%). Obviously
broadcast time would go up if it was used in place of send-receive in information
exchange step.

4.5. Computational Complexity

The vector and pairwise clustering methods have very different and
complementary computational complexities. VECDA execution time is proportional to
N d2 for N points – each of dimension d. PWDA has an execution time proportional to
N2. PWDA can rapidly become a supercomputer computation. For example with 4500
sequence data points and 8 clusters, the sequential execution time is about 15 hours on
a single core of the systems used in our benchmarks. A direct clustering with PWDA of
half million points (relevant even today) would thus naturally use around 5000 cores
(100 points per core) with pure MPI parallelization. The hybrid threading-MPI
parallelism could efficiently support more cores.

We note that currently some 40-70% of the computation time is used in deciding
whether to split clusters in PWDA; there are probably significantly faster algorithms
here. The runs of VECDA reported here correspond to a low dimension space d = 2 for
which negligible time is spent in splitting decision. The second derivative matrices are
of size NK×NK for PWDA and of size dK×dK for VECDA. These are full matrices but
as power method for determining maximal eigenvalues is used the computation is
proportional to to the square of the matrix dimension. For computations reported here,
the annealing uses from 1000-10,000 temperature steps while each eigenvalue
determination uses 10-200 iterations.

4.6. Performance

We have performed extensive performance measurements [11-14] showing the
effect of cache and for Windows runtime fluctuations can be quite significant. Here we
give some typical results with figure 15 showing the performance of PWDA on the
single 24 core workstation (ref D of table 1). The results are expressed as an overhead
using the definitions of equation (1) introduced in section 2. We compare both MPI and
thread based parallelism using Microsoft’s CCR package [20-21]. As these codes are
written in C#, we use MPI.NET[35-36] finding this to allow an elegant object-based
extension of traditional MPI and good performance. MPI.NET is a wrapper for the
production Microsoft MPI.

Figure 16 shows that although threading and MPI both get good performance, their
systematics are different. For the extreme case of 24-way parallelism, the thread
implementation shows an overhead that varies between 10 and 20% depending on the
data set size. MPI shows a large overhead for small datasets that decreases with

increasing dataset size so in fact 24-way MPI parallelism is 20% faster than the thread
version on the largest 10,000 element dataset. This is due to the different sources of the
overhead. For MPI the overhead is due to the communication calls which are due to
reduce (20%) and send-receive (80%) and this as expected decreases (inversely
proportional to dataset size) as the dataset size increases. For threads there is no
memory movement overhead but rather the overhead is due to the Windows thread
scheduling that leads to large fluctuations that can have severe effects on tightly
synchronized parallel codes such as those in this paper as discussed in refs. [11-14].
We see some cases where the overhead is negative (super-linear speedup) which is due
to better use of cache in the higher parallelism cases compared to sequential runs. This
effect is seen in all our runs but differs between the AMD and Intel architectures
reflecting their different cache size and architecture.

Figure 16. Parallel Overhead for pure threading or pure MPI on Tempest (ref I of Table 1) for three different
patient datasets with 2000, 4000 and 10,000 elements. The center and rightmost results are MPI.NET runs
labeled 1XNX1 (center) or 1X1XN for N MPI processes. The leftmost results are CCR threading labeled
NX1X1 for N threads. Left and center are run on one node; the right is one process per node on up to 24
nodes.

Comparing center and right datasets we see that MPI gets comparable performance
on cores of a single node (center points) or when running one process per node on up to
24 nodes of the Infiniband connected cluster. In the results plotted in the figure. MPI
gets better performance (smaller overhead) than threading on the largest 10,000
element Patient dataset. This reflects the large chunks of processing per MPI process.
As seen in figure this is not always the case as threading outperforms MPI on the 2000
and 4000 element datasets for largest 24-way parallelism. As a dramatic example using
all 768 cores of Tempest (ref I Table 1), the pattern 24X1X32 (24 threads on each of 32

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1x
1x

1
2x

1x
1

4x
1x

1
8x

1x
1

16
x1

x1
24

x1
x1

1x
2x

1
1x

4x
1

1x
8x

1
1x

16
x1

1x
24

x1

1x
1x

2
1x

1x
4

1x
1x

8
1x

1x
16

1x
1x

24

Patient2000

Patient4000

Patient10000

PWDA Parallel Pairwise data clustering
by Deterministic Annealing run on 24 core computer

Parallel Pattern (Thread X Process X Node)

Threading

Intra-node
MPI Inter-node

MPI

Parallel
Overhead

nodes connected as 32 MPI processes) runs 172 times faster than the communication
dominated 1X24X32 (24 internal MPI processes on each of 32 nodes).

Figure 17. Measurements from [11, 12] showing 5 to 10% runtime fluctuations on an 8 core

workstation. The results are plotted as a function of number of simultaneous threads from 1 to 8 and for three
different dataset sizes.

The fluctuations in thread execution times are illustrated in figure 17 showing

standard deviations from 5 to 10% on a simple kernel representative of the VECDA
clustering algorithm. The identical code (translated from C# to C) shows order of
magnitude lower fluctuations when run under Linux [13] with interesting systematics
even in Linux case. These fluctuations can give significant parallel overheads as
parallel algorithms used in VECDA and PWDA like those in most scientific algorithms
requires iterative thread synchronization at the rendezvous points. Here the execution
time will be the maximum over that of all the simultaneous fluctuating threads and so
increase as this number increases. As described in the earlier papers we have always
seen this and reported this effect to Microsoft. We found that these fluctuations were
the only sizeable new form of parallel overhead compared to those well known from
traditional parallel computing i.e. in addition to load imbalance and communication
overhead. We did note extra overheads due to different threads interfering on a single
cache line (“false sharing”) but our current software is coded to avoid this.

Figure 18. Parallel Overhead for VECDA using long lived threads run on 128 core Madrid Cluster in

table 1. The results achieve a given parallelism by choosing number of nodes, MPI processes per node and
threads per MPI process. The number of threads increases as you move from left to right for given level of
parallelism.

Figure 19. Comparison of use of short lived (solid lines) and long lived (dashed lines) threads for the Vector-
based deterministic annealing VECDA. The results achieve a given parallelism by choosing number of
nodes, MPI processes per node and threads per MPI process. The number of threads increases as you move
from left to right for given level of parallelism.

Parallel Patterns

-0.02

0.03

0.08

0.13

0.18

0.23

0.28

0.33

0.38

0.43

0.48

0.53

0.58

0.63

0.68

Parallel Deterministic Annealing Clustering VECDA (Long Lived)
Scaled Speedup Tests on eight 16-core Systems (10 Clusters; 160,000 points per cluster per thread)

Threading with CCR using Long Lived Threads

Parallel Overhead

2-way 4-way 8-way

16-way 32-way 48-way

64-way

128-way

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

VECDA Parallel Deterministic Annealing Vector Clustering
Long Lived (LL dashed lines) vs. Short Lived (SL solid lines) Threads

(Scaled Speedup Tests on two 16-core Systems;
10 Clusters; 160,000 data points per cluster per thread)

1x
1x

1
1x

2x
1

1x
1x

2
2x

1x
1

1x
4x

1
2x

2x
1

1x
2x

2
2x

1x
2

4x
1x

1
1x

8x
1

2x
4x

1
4x

2x
1

1x
4x

2
2x

2x
2

4x
1x

2
8x

1x
1

1x
16

x1
2x

8x
1

4x
4x

1
8x

2x
1

1x
8x

2
2x

4x
2

4x
2x

2
8x

1x
2

16
x1

x1
1x

16
x2

2x
8x

2
4x

4x
2

8x
2x

2
16

x1
x2

Parallel Patterns (# Threads/Process) X (#Processes/Node)X(#Nodes)

Parallel Overhead

2-way

32-way

4-way
8-way

16-way

Note that the fluctuation effect is larger in the work reported here compared to our

previous papers as we are looking here at many more simultaneous threads. Note that
the effect does not just reflect the number of threads per process but also the total
number of threads because the threads are synchronized not just within a process but
between all processes as MPI calls will synchronize all the threads in the job. Thus it is
interesting to examine this effect on the full 128 core Madrid cluster as this could even
be a model for performance of future much larger core individual workstations.

We note that VECDA and PWDA differ somewhat in their performance

characteristics. VECDA only uses modest size reductions (dominant use), broadcast
and barrier MPI operations and so has particularly fast MPI synchronization. PWDA
also has MPI_SENDRECV (exchange of data between processes) which increases the
MPI synchronization time. Thus VECDA shown in figures 18 and 19 tends always to
have MPI at least as fast as CCR and in some cases very much faster. Figure 18 shows
the parallel overhead for 44 different choices of nodes (from 1 to 8), MPI processes per
node (from 1 to 16) and threads per node (from 1 to 16 divided between the MPI
processes per node). The results are divided into groups corresponding to a given total
parallelism. For each group, the number of threads increases as we move from left to
right. For example in the 128 way parallel group, there are five entries with the leftmost
being 16 MPI processes per node on 8 nodes (a total of 128 MPI processes) and the
rightmost 16 threads on each of 8 nodes (a total of 8 MPI processes). We find an
incredibly efficient pure MPI version – an overhead of just 0.08 (efficiency 92%) for
128 way parallelism whereas the rightmost case of 16 threads has a 0.63 overhead
(61% efficiency). All cases with 16 threads per node show a high overhead that slowly
increases as the node count increases. For example the case of 16 threads on one node
has an overhead of 0.51. Note that in this we use scaled speedup i.e. the problem size
increases directly according to number of parallel units. This ensures that the inner
execution scenarios are identical in all 44 cases reported in figure 18. We achieve
scaled datasets by replicating a base point set as one can easily see that leads to same
mathematical problem but with a work that increases properly as number of execution
units increases.

Figure 19 looks again at the vector clustering VECDA comparing MPI versus two
versions of threading. MPI is again very efficient – the 32 way parallel code with 16
MPI processes on each of two 16 core nodes has overheads (given by equation (1) and
roughly 1 – efficiency) of 0.05 to 0.10. For the case of 16 threads on each of two nodes
the overhead is 0.65 (short lived) to 1.25 (long lived) threads. The short lived threads
are the natural implementation with threads spawned for parallel for loops. In the long
lived case, the paradigm is similar to MPI with long running threads synchronizing
with rendezvous semantics.

Figure 20. Parallel Overhead for PWDA runs on 128 core cluster (Ref. F in table 1) with patterns defined in
figure 16.and in label in figure itself.

Figure 20 shows results of PWDA for a 10,000 element dataset on the 128 core cluster
(ref. F in Table 1). The results show threading outperforming MPI for the highly
parallel results on right whereas on left (2- to 8-way parallelism) MPI outperforms
threading. That is due to MPI being affected by the communication overhead of send-
receive as discussed above for the results of figure 16. The results also show effects of
the cache seen in the negative overheads (corresponding to a slow 1x1x1 case). The
patterns are always labeled as (threads per process)x(MPI processes per node)x(nodes).
Note figures 16 and 20 study the overhead for a fixed problem whereas figures 18 and
19 look at scaled speedup with problem size increasing proportional to number of
parallel units. We see that the 10,000 element dataset can run well up even up to 128-
way parallelism.

5. Conclusions

This paper has addressed several issues. It has studied the performance of a variety of
different programming models on data intensive problems. It has presented novel
clustering and MDS algorithms which are shown to parallelize well and could become
supercomputer applications for large million point problems. It has compared MPI and
threading on multicore systems showing both to be effective but with different
overheads. We see these complemented by the data intensive programming models
including Dryad and Hadoop as well as an in house version of MapReduce. These

Parallel Pairwise Clustering PWDA
Speedup Tests on eight 16-core Systems (6 Clusters, 10,000 records)

Threading with Short Lived CCR Threads

Parallel Patterns (# Thread /process) x (# MPI process /node) x (# node)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

2-way

1x
2x

2

2x
1x

2
2x

2x
1

1x
4x

2
1x

8x
1

2x
2x

2
2x

4x
1

4x
1x

2
4x

2x
1

1x
8x

2

2x
4x

2
2x

8x
1

4x
2x

2
4x

4x
1

8x
1x

2
8x

2x
1

1x
16

x1

1x
16

x2
2x

8x
2

4x
4x

2
8x

2x
2

16
x1

x2

2x
8x

3

1x
16

x3

2x
4x

6

1x
8x

8
1x

16
x4

2x
8x

4

16
x1

x4
1x

16
x8

4x
4x

8
8x

2x
8

16
x1

x8

4x
2x

6

4x
2x

8

1x
2x

1
1x

1x
2

2x
1x

1

1x
4x

1

4x
1x

1

16
x1

x1

1x
8x

6

2x
4x

8

8x
1x

1

4x
4x

3

8x
2x

3
16

x1
x3

8x
1x

8
8x

2x
4

2x
8x

8

4-way 8-way

16-way

32-way

48-way

64-way 128-way

support an “owner stores and computes” programming paradigm that will be of
increasing importance.

6. Acknowledgements

Removed

References

[1] F. Darema, SPMD model: past, present and future, Recent Advances in Parallel Virtual Machine and
Message Passing Interface, 8th European PVM/MPI Users' Group Meeting, Santorini/Thera, Greece,
2001.

[2] MPI (Message Passing Interface), http://www-unix.mcs.anl.gov/mpi/
[3] J. Dean and S. Ghemawat, Mapreduce: Simplified data processing on large clusters, ACM Commun.,

vol. 51, Jan. 2008, pp. 107-113.
[4] Geoffrey Fox and Marlon Pierce Grids Challenged by a Web 2.0 and Multicore Sandwich Special Issue

of Concurrency&Compuitation:Practice&Experience on Seventh IEEE International Symposium on
Cluster Computing and the Grid — CCGrid 2007, Keynote Talk Rio de Janeiro Brazil May 15
2007 ://grids.ucs.indiana.edu/ptliupages/publications/CCGridDec07-Final.pdf

[5] Dennis Gannon and Geoffrey Fox, Workflow in Grid Systems Concurrency and Computation: Practice &
Experience 18 (10), 1009-19 (Aug 2006), Editorial of special issue prepared from GGF10 Berlin.

[6] Taverna Open Source Workflow code produced by OMII-OK ://taverna.sourceforge.net/
[7] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukotun. Map-reduce for machine learning

on multicore. In B. Scholkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 281–288. MIT Press, Cambridge, MA, 2007.

[8] Apache Hama Open Source project for MapReduce and matrix and machine learning
algorithms ://incubator.apache.org/hama/

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, Dryad: Distributed data-parallel programs from
sequential building blocks, European Conference on Computer Systems , March 2007.

[10] Seung-Hee Bae Parallel Multidimensional Scaling Performance on Multicore Systems at workshop on
Advances in High-Performance E-Science Middleware and Applications in Proceedings of eScience
2008 Indianapolis IN December 7-12
2008 ://grids.ucs.indiana.edu/ptliupages/publications/eScience2008_bae3.pdf

[11] Xiaohong Qiu, Geoffrey Fox, H. Yuan, Seung-Hee Bae, George Chrysanthakopoulos, Henrik Frystyk
Nielsen High Performance Multi-Paradigm Messaging Runtime Integrating Grids and Multicore
Systems September 23 2007 published in proceedings of eScience 2007 Conference Bangalore India
December 10-13 2007 ://grids.ucs.indiana.edu/ptliupages/publications/CCRSept23-07eScience07.pdf

[12] Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae, George Chrysanthakopoulos, Henrik
Frystyk Nielsen PARALLEL CLUSTERING AND DIMENSIONAL SCALING ON MULTICORE
SYSTEMS Invited talk at the 2008 High Performance Computing & Simulation Conference (HPCS
2008) In Conjunction With The 22nd EUROPEAN CONFERENCE ON MODELLING AND
SIMULATION (ECMS 2008) Nicosia, Cyprus June 3 - 6, 2008; Springer Berlin / Heidelberg Lecture
Notes in Computer Science Volume 5101/2008 "Computational Science: ICCS 2008" ISBN 978-3-540-
69383-3 Pages 407-416 DOI: ://dx.doi.org/10.1007/978-3-540-69384-0_46

[13] Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae, George Chrysanthakopoulos, Henrik
Frystyk Nielsen Performance of Multicore Systems on Parallel Data Clustering with Deterministic
Annealing ICCS 2008: "Advancing Science through Computation" Conference; ACC CYFRONET and
Institute of Computer Science AGH University of Science and Technology Kraków, POLAND; June
23-25, 2008. Springer Lecture Notes in Computer Science Volume 5101, pages 407-416, 2008.
DOI: ://dx.doi.org/10.1007/978-3-540-69384-0_46

[14] Xiaohong Qiu , Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae, George Chrysanthakopoulos, Henrik
Frystyk Nielsen Parallel Data Mining on Multicore Clusters 7th International Conference on Grid and
Cooperative Computing GCC2008 Shenzhen China October 24-26
2008 ://grids.ucs.indiana.edu/ptliupages/publications/qiu-ParallelDataMiningMulticoreClusters.pdf

[15] Home Page for SALSA Project at Indiana University ://www.infomall.org/salsa.

http://grids.ucs.indiana.edu/ptliupages/publications/CCGridDec07-Final.pdf�
http://taverna.sourceforge.net/�
http://incubator.apache.org/hama/�
http://grids.ucs.indiana.edu/ptliupages/publications/eScience2008_bae3.pdf�
http://grids.ucs.indiana.edu/ptliupages/publications/CCRSept23-07eScience07.pdf�
http://dx.doi.org/10.1007/978-3-540-69384-0_46�
http://dx.doi.org/10.1007/978-3-540-69384-0_46�
http://grids.ucs.indiana.edu/ptliupages/publications/qiu-ParallelDataMiningMulticoreClusters.pdf�
http://www.infomall.org/salsa�

[16] Kenneth Rose, Eitan Gurewitz, and Geoffrey C. Fox Statistical mechanics and phase transitions in
clustering Phys. Rev. Lett. 65, 945 - 948 (1990)

[17] Rose, K. Deterministic annealing for clustering, compression, classification, regression, and related
optimization problems, Proceedings of the IEEE Vol. 86, pages 2210-2239, Nov 1998

[18] T Hofmann, JM Buhmann Pairwise data clustering by deterministic annealing, IEEE Transactions on
Pattern Analysis and Machine Intelligence 19, pp1-13 1997

[19] Apache Hadoop, ://hadoop.apache.org/core/
[20] Microsoft Robotics Studio is a Windows-based environment that includes end-to-end Robotics

Development Platform, lightweight service-oriented runtime, and a scalable and extensible platform.
For details, see ://msdn.microsoft.com/robotics/

[21] Georgio Chrysanthakopoulos and Satnam Singh An Asynchronous Messaging Library for C#,
Synchronization and Concurrency in Object-Oriented Languages (SCOOL) at OOPSLA October 2005
Workshop, San Diego, CA.

[22] S. Ghemawat, H. Gobioff, and S. Leung, The Google file system, Symposium on Operating Systems
Principles 2003, pp 29–43, 2003.

[23] Disco project, http://discoproject.org/
[24] Erlang programming language, http://www.erlang.org/
[25] S. Pallickara and G. Fox, “NaradaBrokering: A Distributed Middleware Framework and Architecture

for Enabling Durable Peer-to-Peer Grids,” Middleware 2003, pp. 41-61.
[26] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Kumar and J. Currey, DryadLINQ: A System

for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language Symposium
on Operating System Design and Implementation (OSDI), San Diego, CA, December 8-10, 2008.

[27] J. B. MacQueen , Some Methods for classification and Analysis of Multivariate Observations,
Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley,
University of California Press, vol. 1, pp. 281-297.

[28] Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox Map-Reduce for Data Intensive Scientific
Analyses Proceedings of the IEEE International Conference on e-Science. Indianapolis. 2008.
December 7-12 2008 ://grids.ucs.indiana.edu/ptliupages/publications/ekanayake-MapReduce.pdf

[29] M. Svens´en. GTM: The Generative Topographic Mapping. PhD thesis, Neural Computing Research
Group, Aston University, Birmingham, U.K., 1998.

[30] T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, Germany, 2001.
[31] J. B. Kruskal and M.Wish. Multidimensional Scaling. Sage Publications Inc., Beverly Hills, CA, U.S.A.,

1978.
[32] I. Borg and P. J. Groenen. Modern Multidimensional Scaling: Theory and Applications. Springer, New

York, NY, U.S.A., 2005.
[33] J. de Leeuw. Applications of convex analysis to multidimensional scaling. Recent Developments in

Statistics, pages 133–145, 1977.
[34] J. de Leeuw. Convergence of the majorization method for multidimensional scaling. Journal of

Classification, 5(2):163–180, 1988.
[35] Douglas Gregor and Andrew Lumsdaine. Design and Implementation of a High-Performance MPI for

C# and the Common Language Infrastructure. Principles and Practice of Parallel Programming
(PPoPP), pages 133-142, February 2008. ACM.

[36] MPI.NET Home Page ://www.osl.iu.edu/research/mpi.net
[37] Alkes L. Price, Eleazar Eskin and Pavel A. Pevzner, Whole-genome analysis of Alu repeat elements

reveals complex evolutionary history. Genome Res. 2004 14: 2245-2252 DOI:
http://dx.doi.org/10.1101/gr.2693004

[38] Bell JF, Wilson JS, Liu GC. Neighborhood greenness and 2-year changes in body mass index of
children and youth. Am J Prev Med. Dec 2008;35(6):547-553.

[39] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1–27, 1964.

[40] Y. Takane, F. W. Young, and J. de Leeuw. Nonmetric individual differences multidimensional scaling:
an alternating least squares method with optimal scaling features. Psychometrika, 42(1):7–67, 1977.

[41] Hansjorg Klock, Joachim M. Buhmann Multidimensional scaling by deterministic annealing in Energy
Minimization Methods in Computer Vision and Pattern Recognition, Eds Pelillo M. and Hancock E.R.,
Proc. Intl. Workshop EMMCVPR Venice Italy, Springer Lecture Notes in Computer Science 1223 ppg.
246-260 May 1997

[42] Hansjorg Klock, Joachim M. Buhmann, Data visualization by multidimensional scaling: a deterministic
annealing approach, Pattern Recognition 33 (2000) 651}669

[43] Anthony J. Kearsley, Richard A. Tapia, Michael W. Trosset The Solution of the Metric STRESS and
SSTRESS Problems in Multidimensional Scaling Using Newton’s Method, technical report 1995.

http://hadoop.apache.org/core/�
http://msdn.microsoft.com/robotics/�
http://grids.ucs.indiana.edu/ptliupages/publications/ekanayake-MapReduce.pdf�
http://www.osl.iu.edu/research/mpi.net�

[44] Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum-likelihood from incomplete data via the
EM algorithm. J. R. Statist. Soc. Ser. B (methodological), 39, 1–38.

[45] Naonori Ueda and Ryohei Nakano Deterministic annealing EM algorithm Neural Networks Volume 11,
Issue 2, 31 March 1998, Pages 271-282 ://dx.doi.org/10.1016/S0893-6080(97)00133-0

[46] Jong Youl Choi, Indiana University, Private Communication 2009.
[47] Seung-Hee Bae, Indiana University, Private Communication 2009.

http://dx.doi.org/10.1016/S0893-6080(97)00133-0�

	Choices in Messaging Runtime
	2. Data Intensive Workflow Paradigms
	2.1. Current MapReduce Implementations
	2.2. CGL-MapReduce
	2.3. Performance Evaluation

	3. Multidimensional Scaling MDS
	3.1. Scaling by MAjorizing a COmplicated Function (SMACOF)
	3.2. Distributed-Memory Parallel SMACOF
	3.2.1. Advantages of Distributed-memory Parallel SMACOF

	3.3. Experimental Results and Analysis
	3.3.1. Performance Analysis

	3.4. Conclusions

	4. Multicore Clustering
	4.1. Algorithms
	4.2. Multi-Scale and Deterministic Annealing
	4.3. Operational Use of Clustering and MDS
	4.4. Parallelism
	4.5. Computational Complexity
	4.6. Performance

	5. Conclusions
	6. Acknowledgements

