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Abstract. We describe a suite of data mining tools that cover clustering, 
information retrieval and the mapping of high dimensional data to low dimensions 
for visualization. Preliminary applications are given to particle physics, 
bioinformatics and medical informatics.  The data vary in dimension from low (2-
20), high (thousands) to undefined (sequences with dissimilarities but not vectors 
defined). We use deterministic annealing to provide more robust algorithms that 
are relatively insensitive to local minima. We discuss the algorithm structure and 
their mapping to parallel architectures of different types and look at the 
performance of the algorithms on three classes of system; multicore, cluster and 
Grid using a MapReduce style algorithm. Each approach is suitable in different 
application scenarios.  We stress that data analysis/mining of large datasets can be 
a supercomputer application. 
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Introduction 

Computation and data intensive scientific data analyses are increasingly prevalent. In 
the near future, data volumes processed by many applications will routinely cross the 
peta-scale threshold, which would in turn increase the computational requirements. 
Efficient parallel/concurrent algorithms and implementation techniques are the key to 
meeting the scalability and performance requirements entailed in such scientific data 
analyses. Most of these analyses can be thought of as a Single Program Multiple Data 
(SPMD) [1] algorithms or a collection thereof. These SPMDs can be implemented 
using different parallelization techniques such as threads, MPI [2], MapReduce [3], and 
mash-up [4] or workflow technologies [5] yielding different performance and usability 
characteristics. In some fields like particle physics, parallel data analysis is already 
commonplace and indeed essential. In others such as biology, data volumes are still 
such that much of the work can be performed on sequential machines linked together 
by workflow systems such as Taverna [6]. The parallelism currently exploited is 
usually the “almost embarrassingly parallel” style illustrated by the independent events 
in particle physics or the independent documents of information retrieval – these lead 
to independent “maps” (processing) which are followed by a reduction to give 
histograms in particle physics or aggregated queries in web searches. MapReduce is a 
cloud technology that was developed from the data analysis model of the information 
retrieval field and here we combine this cloud technique with traditional parallel 
computing ideas. The excellent quality of service (QoS) and ease of programming 
provided by the MapReduce programming model is attractive for this type of data 
processing problem. However, the architectural and performance limitations of the 
current MapReduce architectures make their use questionable for many applications. 
These include many machine learning algorithms [7, 8] such as those discussed in this 



paper which need iterative closely coupled computations. Our results find poor results 
for MapReduce on many traditional parallel applications with an iterative structure in 
disagreement with earlier papers [7]. In section 2 we compare various versions of this 
data intensive programming model with other implementations for both closely and 
loosely coupled problems. However, the more general workflow or dataflow paradigm 
(which is seen in Dryad [9] and other MapReduce extensions) is always valuable. In 
sections 3 and 4 we turn to some data mining algorithms that require parallel 
implementations for large data sets; interesting both sections see algorithms that scale 
like N2 (N is dataset size) and use full matrix operations. 

 
Table 1. Hardware and software configurations of the clusters used for testing. 

 
Our algorithms are parallel MDS (Multi dimensional scaling) [10] and clustering. 

The latter has been discussed earlier by us [11-15] but here we extend our results to 
larger systems – single workstations with 16 and 24 cores and a 128 core (8 nodes with 
16 cores each) cluster described in table 1. Further we study a significantly different 
clustering approach that only uses pairwise distances (dissimilarities between points) 
and so can be applied to cases where vectors are not easily available. This is common 
in biology where sequences can have mutual distances determined by BLAST like 
algorithms but will often not have a vector representation. Our MDS algorithm also 
only uses pairwise distances and so it and the new clustering method can be applied 

Ref Cluster Name # Nodes CPU L2 Cache 
Memory 

Operating System 

A Barcelona  1 1 AMD Quad Core  2x1MB Windows Server  
 (4 core  Opteron 2356   8 GB HPC Edition 
 Head Node)  2.3GHz  (Service Pack 1) 
B Barcelona  4 2  AMD Quad Core 4×512K  Windows Server 2003 
 (8 core  Opteron 2356  16GB Enterprise x64 bit  
 Compute  Node)    2.3 GHz  Edition 
C Barcelona  2 4  AMD Quad Core 4×512K Windows Server 
 (16 core  Opteron 8356   16 GB HPC Edition 
 Compute Node)  2.3GHz  (Service Pack 1) 
D Barcelona  1 4 Intel Six Core 12 M Windows Server 
 (24 core  Xeon E7450  48GB HPC Edition 
 Compute Node)  2.4GHz  (Service Pack 1) 
E Madrid 1 1 AMD Quad Core 2x1MB Windows Server 
 (4 core  Opteron 2356   8 GB HPC Edition 
 Head Node)  2.3GHz    (Service Pack 1) 
F Madrid 8 (128  4 AMD Quad Core 4x512K Windows Server 
 (16 core cores) Opteron 8356  16 GB HPC Edition 
 Compute Node)  2.3GHz  (Service Pack 1) 
G Gridfarm 8 2 Quad core Intel  4x1MB Red Hat Enterprise 
 8 core  Xeon E5345 

2.3GHz 
8GB Linux 4 

H IU Quarry 112 2 Quad-core Intel 4x4MB, Red Hat  Enterprise  
 8 core  Xeon 5335 8 GB Linux 4 
   2.00GHz   
I Tempest (24 core 

Compute Node) 
Infiniband  

32 
(768 
cores) 

4 Intel Six Core 
Xeon E7450         
2.4GHz 

12 M 
48 GB 

Windows Server 
HPC Edition 
(Service Pack 1) 



broadly. Both our original vector-based (VECDA) and the new pairwise distance 
(PWDA) clustering algorithms use deterministic annealing to obtain robust results. 
VECDA was introduced by Rose and Fox almost 20 years ago [16] and has obtained 
good results [17] and there is no clearly better clustering approach. The pairwise 
extension PWDA was developed by Hofmann and Buhmann [18] around 10 years ago 
but does not seem to have used in spite of its attractive features – robustness and 
applicability to data without vector representation. We complete the algorithm and 
present a parallel implementation in this paper. 

As seen in table 1, we use both Linux and Windows platforms in our multicore and 
our work uses a mix of C#, C++ and Java. Our results study three variants of 
MapReduce, threads and MPI. The algorithms are applied across a mix of paradigms to 
study the different performance characteristics. 

1.  in Messaging Runtime 

The focus of this paper will be comparison of runtime environments for both parallel 
and distributed systems. There are successful workflow languages which underlies the 
approach of the SALSA project [15] which is to use workflow technologies – defined 
as orchestration languages for distributed computing for the coarse grain functional 
components of parallel computing with dedicated low level direct parallelism of 
kernels. At the run time level, there is much similarity between parallel and distributed 
run times to the extent that both support messaging but with different properties. Some 
of the choices are shown in figure 1 and differ by both hardware and programming 
models. The hardware support of parallelism/concurrency varies from shared memory 
multicore, closely coupled (e.g. Infiniband connected) clusters, and the higher latency 
and possibly lower bandwidth distributed systems. The coordination (communication 

and synchronization) of the 
different execution units vary 
from threads (with shared 
memory on cores); MPI 
between cores or nodes of a 
cluster; workflow or mash-ups 
linking services together; the 
new generation of cloud data 
intensive programming systems 
typified by Hadoop  [19] 
(implementing MapReduce) 
and Dryad. These can be 
considered as the workflow 
systems of the information 
retrieval industry but are of 
general interest as they support 
parallel analysis of large 
datasets. As illustrated in the 
figure the execution units vary 
from threads to processes and 
can be short running or long 
lived.  

Figure 1(a). First three of seven different combinations of 
processes/threads and intercommunication mechanisms 
discussed in the text 
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Figure 1(b). Last four of seven different combinations of processes/threads and intercommunication 
mechanisms discussed in the text 

Short running threads can be spawned up in the context of persistent data in 
memory and so have modest overhead seen in section 4. Short running processes in the 
spirit of stateless services are seen in Dryad and Hadoop and due to the distributed 

memory can have substantially higher 
overhead than long running processes which 
are coordinated by rendezvous messaging as 
later do not need to communicate large 
amounts of data – just the smaller change 
information needed. The importance of this 
is emphasized in figure 2 showing data 
intensive processing passing through 
multiple “map” (each map is for example a 
particular data analysis or filtering 
operation) and “reduce” operations that 
gather together the results of different map 
instances corresponding typically to a data 
parallel break up of an algorithm. The figure 
notes two important patterns 

a) Iteration where results of one stage are iterated many times. This is seen in the 
“Expectation Maximization” EM steps in the later sections where for clustering and 
MDS, thousands of iterations are needed. This is typical of most MPI style algorithms. 

b) Pipelining where results of one stage are forwarded to another; this is functional 
parallelism typical of workflow applications. In applications of this paper we 
implement a three stage pipeline: 

Data (from disk)  Clustering  Dimension Reduction (MDS)  Visualization 
 

Figure 2: Data Intensive Iteration and Workflow 
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Each of the first two stages is parallel and one can break up the compute and 
reduce modules of figure 2 into parallel components as shown in figure 3. There is an 
important ambiguity in parallel/distributed programming models/runtimes that both the 
parallel MPI style parallelism and the distributed Hadoop/ Dryad/ Web 
Service/Workflow models are implemented by messaging. Thus the same software can 
in fact be used for all the decompositions seen in figures 1-3. Thread coordination can 
avoid messaging but even here messaging can be attractive as it avoids many of the 
error scenarios seen in shared memory thread synchronization. The CCR threading [8-
11, 20-21] used in this paper is coordinated by reading and writing messages to ports. 

As a further example of runtimes crossing different 
application characteristics, MPI has often been used 
in Grid (distributed) applications with MPICH-G 
popular here. Again the paper of Chu [7] noted that 
the MapReduce approach can be used in many 
machine learning algorithms and one of our data 
mining algorithms VECDA only uses map and 
reduce operations (it does not need send or receive 
MPI operations). We will show in this paper that 
MPI gives excellent performance and ease of 
programming for MapReduce as it has elegant 
support for general reductions although it does not 
have the fault tolerance and flexibility of Hadoop or 
Dryad. Further MPI is designed for the “owner-

computes” rule of SPMD – if a given datum is stored in a compute node’s memory, 
that node’s CPU computes (evolves or analyzes) it. Hadoop and Dryad combine this 
idea with the notion of “taking the computing to the data”. This leads to the generalized 
“owner stores and computes” rule or crudely that a file (disk or database) is assigned a 
compute node that analyzes (in parallel with nodes assigned different files) the data on 
its file. Future scientific programming models must clearly capture this concept. 

2. Data Intensive Workflow Paradigms 

In this section, we will present an architecture and a prototype implementation of a new 
programming model that can be applied to most composable class of applications with 
various program/data flow models, by combining the MapReduce and data streaming 
techniques and compare its performance with other parallel programming runtimes 
such as MPI, and the cloud technologies Hadoop and Dryad. 
 MapReduce is a parallel programming technique derived from the functional 
programming concepts and proposed by Google for large-scale data processing in a 
distributed computing environment. The map and reduce programming constructs 
offered by MapReduce model is a limited subset of programming constructs provided 
by the classical distributed parallel programming models such as MPI.  However, our 
current experimental results highlight that many problems can be implemented using 
MapReduce style by adopting slightly different parallel algorithms compared to the 
algorithms used in MPI, yet achieve similar performance to MPI for appropriately large 
problems. A major advantage of the MapReduce programming model is that the 
easiness in providing various quality of services. Google and Hadoop both provide 
MapReduce runtimes with fault tolerance and dynamic flexibility support. 

Figure 3: Workflow of Parallel Services 

Parallel 
Services



 Dryad is a distributed execution engine for coarse grain data parallel applications. It 
combines the MapReduce programming style with dataflow graphs to solve the 
computation tasks. Dryad considers computation tasks as directed acyclic graph 
(DAG)s where the vertices represent computation tasks –typically,  sequential 
programs with no thread creation or locking, and the edges as communication channels 
over which the data flow from one vertex to another. 
 Moving computation to data is another advantage of the MapReduce and Dryad 
have over the other parallel programming runtimes. With the ever-increasing 
requirement of processing large volumes of data, we believe that this approach has a 
greater impact on the usability of the parallel programming runtimes in the future. 

2.1. Current MapReduce Implementations 

Google's MapReduce implementation is coupled with a distributed file system named 
Google File System (GFS) [22] where it reads the data for MapReduce computations 
and stores the results.  According to the seminal paper by J. Dean et al.[3], in their 
MapReduce implementation, the intermediate data are first written to the local files and 
then accessed by the reduce tasks. The same architecture is adopted by the Apache's 
MapReduce implementation – Hadoop.  
 Hadoop stores the intermediate results of the computations in local disks, where the 
computation tasks are executed, and informs the appropriate workers to retrieve (pull) 
them for further processing. The same approach is adopted by Disco [23] – another 
open source MapReduce runtime developed using a functional programming language 
named Erlang [24]. Although this strategy of writing intermediate result to the file 
system makes the above runtimes robust, it introduces an additional step and a 
considerable communication overhead to the MapReduce computation, which could be 
a limiting factor for some MapReduce computations. Apart from the above, all these 
runtimes focus mainly on computations that utilize a single map/reduce computational 
unit. Iterative MapReduce computations are not well supported. 

2.2. CGL-MapReduce 

CGL-MapReduce is a novel MapReduce runtime that uses streaming for all the 
communications, which eliminates the overheads associated with communicating via a 
file system. The use of streaming enables the CGL-MapReduce to send the 
intermediate results directly from its producers to its consumers.  

Currently, we have not integrated a distributed file system such as HDFS with 
CGL-MapReduce, but it can read data from a typical distributed file system such as 
NFS or from local disks of compute nodes of a cluster with the help of a meta-data file. 
The fault tolerance support for the CGL-MapReduce will harness the reliable delivery 
mechanisms of the content dissemination network that we use. Figure 4 shows the main 
components of the CGL-MapReduce. 



 The CGL MapReduce runtime system is comprised of a set of workers, which 
perform map and reduce tasks and a content dissemination network that handles all the 
underlying communications. As in other MapReduce runtimes, a master worker 
(MRDriver) controls the other workers according to instructions given by the user 

program. However, unlike typical MapReduce runtimes, CGL-MapReduce supports 
both single-step and iterative MapReduce computations.  

 
Figure 5. Computation phases of CGL-MapReduce 

 A MapReduce computation under CGL-MapReduce passes through several phases 
of computations as shown in figure 5. In CGL-MapReduce the initialization phase is 
used to configure both the map/reduce tasks and  can be used to load any fixed data 
necessary for the map/reduce  tasks. The map and reduce stages perform the necessary 
data processing while the framework directly transfers the intermediate result from map 
tasks to the reduce tasks. The merge phase is another form of reduction which is used 
to collect the results of the reduce stage to a single value. The User Program has access 
to the results of the merge operation. In the case of iterative MapReduce computations, 
the user program can call for another iteration of MapReduce by looking at the result of 
the merge operation and the framework performs anther iteration of MapReduce using 
the already configured map/reduce tasks eliminating the necessity of configuring 
map/reduce tasks again and again as it is done in Hadoop. 
  CGL-MapReduce is implemented in Java and utilizes NaradaBrokering[25], a 
streaming-based content dissemination network. The CGL-MapReduce research 
prototype provides the runtime capabilities of executing MapReduce computations 
written in the Java language. MapReduce tasks written in other programming 

Figure 4: Components of the CGL-MapReduce System 
 



languages require wrapper map and reduce tasks in order for them to be executed using 
CGL-MapReduce. 

2.3. Performance Evaluation 

To evaluate the different runtimes for their performance we have selected several data 
analysis applications. First, we applied the MapReduce technique to parallelize a High 
Energy Physics (HEP) data analysis application and implemented it using Hadoop, 
CGL-MapReduce, and Dryad (Note: The academic release of Dryad only exposes the 
DryadLINQ [26] API for programmers. Therefore, all our implementations are written 
using DryadLINQ although the underlying runtime it uses is Dryad). The HEP data 
analysis application processes large volumes of data and performs a histogramming 
operation on a collection of event files produced by HEP experiments. Next, we 
applied the MapReduce technique to parallelize a Kmeans clustering [27] algorithm 
and implemented it using Hadoop, CGL-MapReduce, and Dryad. Details of these 
applications and the challenges we faced in implementing them can be found in [28]. In 
addition, we implemented the same Kmeans algorithm using MPI (C++) as well. We 
have also implemented a matrix multiplication algorithm using Hadoop and CGL-
MapReduce. We also implemented two common text-processing applications, which 
perform a “word histogramming” operation, and a “distributed grep” operation using 
Dryad, Hadoop, and CGL-MapReduce. Table 1 and Table 2 highlight the details of the 
hardware and software configurations and the various test configurations that we used 
for our evaluations. 

Table 2. Test configurations. 

Feature HEP Data Analysis Kmeans clustering Matrix 
Multiplication 

Histogramming 
& Grep 

Cluster Ref H G G B 
Number of 
Nodes 

12 4 5 4 

Number of 
Cores 

96 32 40 32 

Amount of 
Data 

 

Up to 1TB of HEP 
data 
 

Up to 10 million 
data points 

Up to 16000 
rows and 
columns 

100GB of text 
data 

Data 
Location 

IU Data Capacitor: a 
high-speed and high-
bandwidth storage 
system running the 
Lustre File System 

Hadoop : HDFS 
CGL- 
MapReduce : NFS 
Dryad : Local Disc 

Hadoop : HDFS 
CGL-
MapReduce :  
NFS 

Hadoop : HDFS 
CGL-MapReduce:  
Local Disc 
Dryad : 
Local Disc 

Language Java, C++ (ROOT) Java, C++ Java Java, C# 
 

 For the HEP data analysis, we measured the total execution time it takes to process 
the data under different implementations by increasing the amount of data. Figure 6 (a) 
depicts our results. 
 Hadoop and CGL-MapReduce both show similar performance. The amount of data 
accessed in each analysis is extremely large and hence the performance is limited by 
the I/O bandwidth of a given node rather than the total processor cores. The overhead 
induced by the MapReduce implementations has negligible effect on the overall 
computation. 
 



 The Dryad cluster (Table 1 ref. B) we used has a smaller hard disks compared to the 
other clusters we use. Therefore, to compare the performance of Hadoop, CGL-
MapReduce, and Dryad for HEP data analysis, we have performed another test using a 
smaller data set  on a smaller cluster configuration. Since Dryad is deployed on a 
Windows cluster running HPC Server Operating System(OS) while Hadoop and CGL-
MapReduce are run on Linux clusters, we normalized the results of the this benchmark  
to eliminate the differences caused by the hardware and the different OSs. Figure 6(b) 
shows our results. 

 
Figure 6(b). HEP data analysis, execution time vs. the volume of data (fixed compute resources). Note: In 
the Dryad version of HEP data analysis the “reduction” phase (combining of partial histograms produced by 
the “map” tasks) is performed by the GUI using a separate thread. So the timing results for Dryad does not 
contain the time for combining partial histograms. 
 Figure 6(a) and 6(b) show that Hadoop, Dryad, and CGL-MapReduce all perform 
nearly equally for the HEP data analysis. HEP data analysis is both compute and data 
intensive and hence the overheads associated with different parallel runtimes have 
negligible effect on the overall performance of the data analysis. 
  

Figure 6(a). HEP data analysis, execution time vs. the volume of data (fixed compute resources) 
 



 We evaluate the performance of different implementations for the Kmeans 
clustering application and calculated the parallel overhead (φ) induced by the different 
parallel programming runtime using the formula given below. In this formula P denotes 
the number of hardware processing units (i.e. number of cores used) and T(P) denotes 
the total execution time of the program when P processing units are used. T(1) denotes 
the total execution time for a single threaded program. Note φ is just (1/efficiency – 1) 
and often is preferable to efficiency as overheads are summed linearly in φ. 

φ(P) = [PT(P) –T(1)] /T(1)                                                                                (2.1) 

Figure 7 depicts our performance results for Kmeans expressed as overhead. 

 
Figure 7. Overheads associated with Hadoop, Dryad, CGL-MapReduce, and MPI for Kmeans clustering – 
iterative MapReduce - (Both axes are in log scale) 

 The results in figure 7 show that although the overheads of different parallel 
runtimes reduce with the increase in the number of data points, both Hadoop and Dryad 
have very large overheads for the Kmeans clustering application compared to  MPI and 
CGL-MapReduce implementations.  
 
 Matrix multiplication is another iterative algorithm that we have implemented using 
Hadoop and CGL-MapReduce. To implement matrix multiplication using MapReduce 
model, we adopted the row/column decomposition approach to split the matrices. To 
clarify our algorithm let’s consider an example where two input matrices A and B 
produce matrix C as the result of the multiplication process. We split the matrix B into 
n column blocks where n is equal to the number of map tasks used for the computation. 
The matrix A is split to m row blocks where m determines the number of iterations of 
MapReduce computations needed to perform the entire matrix multiplication.  In each 
iteration, all the map tasks consume two inputs; (i) a column block of matrix B and (ii) 
a row block of matrix A and collectively they produce a row block of the resultant 
matrix C. The column block associated with a particular map task is fixed throughout 
the computation while the row blocks are changed in each iteration. However, in 
Hadoop’s programming model, there is no way to specify this behavior and hence it 
loads both the column block and the row block in each iteration of the computation. 



CGL-MapReduce supports the notion of long running map/reduce tasks where these 
task are allowed to retain static data in memory across invocations yielding better 
performance characteristics for iterative MapReduce computations. 
 
 For the matrix multiplication program, we measured the total execution time by 
increasing the size of the matrices used for the multiplication, using both Hadoop and 
CGL-MapReduce implementations. The result of this evaluation is shown in figure 8. 

 

 
Figure 8. Performance of the Hadoop and CGL-MapReduce for matrix multiplication 

 
 The results in figure 7 and figure 8 show how the approach of configuring once and 
re-using of map/reduce tasks across iterations and the use of streaming have improved 
the performance of CGL-MapReduce for iterative MapReduce tasks. The 
communication overhead and the loading of static data in each iteration have resulted 
large overheads in iterative MapReduce computations implemented using Hadoop. The 
DAG based execution model of Dryad requires generation of execution graphs with 
fixed number of iterations. It also supports “loop unrolling” where a fixed number of 
iterations are performed as a single execution graph (a single query of DryadLINQ). 
The number of loops that can be unrolled is limited by the amount of stack space 
available for a process, which executes a collection of graph vertices as a single 
operation. Therefore, an application, which requires n iterations of MapReduce 
computations, can perform it in m cycles where in each cycle; Dryad executes a 
computation graph with n/m iterations. In each cycle the result computed so far is 
written to the disk and loaded back at the next cycle. Our results show that even with 
this approach there are considerable overheads for iterative computations implemented 
using Dryad. 
 
 The performance results of the two text processing applications comparing Hadoop, 
CGL-MapReduce, and Dryad are shown in figure 9 and figure 10.  



 
Figure 9. Performance of Dryad, Hadoop, and CGL-MapReduce for “histogramming of words” operation. 

 

 
Figure 10. Performance of Dryad, Hadoop, and CGL-MapReduce for “distributed grep” operation  

 In both these tests, Hadoop shows higher overall processing time compared to 
Dryad and CGL-MapReduce. This could be mainly due to its distributed file system 
and the file based communication mechanism. Dryad uses in memory data transfer for 
intra-node data transfers and a file based communication mechanism for inter-node 
data transfers where as in CGL-MapReduce  all data transfers occur via streaming.  The 
“word histogramming” operation requires higher data transfer requirements compared 
to the “distributed grep” operation and hence the streaming data transfer approach 
adopted by the CGL-MapReduce shows lowest execution times for the “word 
histogramming” operation. In “distributed grep” operation both Dryad and CGL-
MapReduce show close performance results. 



3. Multidimensional Scaling MDS 

Dimension reduction algorithms are used to reduce dimensionality of high dimensional 
data into Euclidean low dimensional space, so that dimension reduction algorithms are 
used as visualization tools. Some dimension reduction approaches, such as generative 
topographic mapping (GTM) [29] and Self-Organizing Map (SOM) [30], seek to 
preserve topological properties of given data rather than proximity information.  On the 
other hand, multidimensional scaling (MDS) [31-32] tries to maintain dissimilarity 
information between mapping points as much as possible. The MDS algorithm 
involves several full N × N matrices where we are mapping N data points. Thus, the 
matrices could be very large for large problems (N could be as big as millions even 
today). For large problems, we will initially cluster the given data and use the cluster 
centers to reduce the problem size. Here we parallelize an elegant algorithm for 
computing MDS solution, named SMACOF (Scaling by MAjorizing a COmplicated 
Function) [33-34], using MPI.NET [35-36] which is an implementation of message 
passing interface (MPI) for C# language and presents performance analysis of the 
parallel implementation of SMACOF on multicore cluster systems. We show some 
examples of the use of MDS to visualize the results of the clustering algorithms of 
section 4 in figure 11. These are datasets in high dimension (from 20 in figure 11(right) 
to over a thousand in figure 11(left)) which are projected to 3D using proximity 
(distance/dissimilarity) information. The figure shows 2D projections determined by us 
from rotating 3D MDS results. 

 
Figure 11. Visualization of MDS projections using parallel SMACOF described in section 3. Each color 
represents a cluster determined by the PWDA algorithm of section 4. Figure 11(left) corresponds to 4500 
ALU pairwise aligned Gene Sequences with 8 clusters [37] and 11(right) to 4000 Patient Records with 8 
clusters from [38] 

Multidimensional scaling (MDS) is a general term for a collection of techniques to 
configure data points with proximity information, typically dissimilarity (interpoint 
distance), into a target space which is normally Euclidean low-dimensional space. 
Formally, the N × N dissimilarity matrix Δ = (δij) should be satisfied symmetric (δij = 
δji), nonnegative (δij ≥ 0), and zero diagonal elements (δii = 0) conditions. From given 
dissimilarity matrix Δ, a configuration of points is constructed by the MDS algorithm in 
a Euclidean target space with dimension p. The output of MDS algorithm can be an N 
× p configuration matrix X, whose rows represent each data point xi in Euclidean p-
dimensional space. From configuration matrix X, it is easy to compute the Euclidean 
interpoint distance dij(X) = ||xi – xj|| among N configured points in the target space and 



to build the N × N Euclidean interpoint distance matrix D(X) = (dij(X)). The purpose of 
MDS algorithm is to map the given points into the target p-dimensional space, while 
the interpoint distance dij(X) is approximated to δij with different MDS forms 
correspondingly to different measures of the discrepancy between dij(X) and δij. 
STRESS [39] and SSTRESS [40] were suggested as objective functions of MDS 
algorithms. STRESS (σ or σ(X)) criterion (Eq. (3.1)) is a weighted squared error 
between distance of configured points and corresponding dissimilarity, but SSTRESS 
(σ2 or σ2(X)) criterion (Eq. (3.2)) is a weighted squared error between squared distance 
of configured points and corresponding squared dissimilarity.  

σ(X) = Σi<j≤n wij(dij(X) − δij)2 (3.1) 

σ2(X) = Σi<j≤n wij [(dij(X))2 − (δij)2]2 (3.2) 

where wij is a weight value, so wij ≥ 0.Therefore, the MDS can be thought of as an 
optimization problem, which is minimization of the STRESS or SSTRESS criteria 
during constructing a configuration of points in the p-dimension target space.   

3.1. Scaling by MAjorizing a COmplicated Function (SMACOF) 

Scaling by MAjorizing a COmplicated Function (SMACOF) [33-34] is an iterative 
majorization algorithm in order to minimize objective function of MDS. SMACOF is 
likely to find a local not global minima as is well known from gradient descent 
methods.  Nevertheless, it is powerful since it guarantees a monotonic decrease of the 
objective function.  The procedure of SMACOF is described in Algorithm 1.  For the 
mathematical details of SMACOF, please refer to [32]. 

 

3.2. Distributed-Memory Parallel SMACOF 

In order to implement distributed-memory parallel SMACOF, one must address two 
issues: one is the data decomposition where we choose block matrix decomposition for 
our SMACOF implementation since it involves matrix multiplication iterated over 



successive gradient descents, and the other is the required communication between 
decomposed processes.  For the data decomposition, our implementation allows users 
to choose the number of row-blocks and column-blocks with a constraint that the 
product of the number of row-blocks and column-blocks should be equal to the number 
of processes, so that each process will be assigned corresponding decomposed sub-
matrix.  For instance, if we run this program with 16 processes, then users can 
decompose the N×N full matrices into not only 4×4 block matrices but also 16×1, 8×2, 
2×8, and 1×16 block matrices.  In addition, message passing interface (MPI) is used to 
communicate between processes, and MPI.NET is used for the communication.   

3.2.1.  Advantages of Distributed-memory Parallel SMACOF 

The running time of SMACOF algorithm is O (N2). Though matrix multiplication of 
V†·B(X) takes O (N3), you can reduce the computation time by using associativity of 
matrix multiplication.  By the associative property of the matrix multiplication, 
(V†·B(X))·X is equal to V†·(B(X)·X).  While the former takes the order of O(N3 + N2p), 
the latter takes only O (2N2p), where N is the number of points and p is the target 
dimension that we would like to find a configuration for given data.  Normally, the 
target dimension p is two or three for the visualization, so p could be considered as a 
constant for computational complexity.  Also, SMACOF algorithm uses at least four 
full N×N double matrices, i.e. Δ, D, V†, and B(X), which means at least 32× N2 bytes of 
memory should be allocated to run SMACOF program.   

As in general, there are temporal and spatial advantages when we use distributed-
memory parallelism.  First, computational advantage should be achieved by both 
shared-memory and distributed-memory parallel implementation of SMACOF.  While 
shared-memory parallelism is limited by the number of processors (or cores) in a single 
machine, distributed-memory parallelism can be extended the available number of 
processors (or cores) as much as machines are available, theoretically.  SMACOF 
algorithm uses at least 32× N2 bytes of memory as we mentioned above.  For example, 
32MB, 3.2GB, 12.8GB, and 320GB are necessary for N = 1000, 10000, 20000, 100000, 
correspondingly.  Therefore, a multicore workstation, which has a 8GB of memory will 
be able to run SMACOF algorithm with 10000 data points. However, this workstation 
cannot be used to run the same algorithm with 20000 data points. Shared memory 
parallelism increases performance but does not increase size of problem that can be 
addressed.  Thus, the distributed-memory parallelism allows us to run SMACOF 
algorithm with much more data, and this benefit is quite important in the era of a data 
deluge. 

3.3. Experimental Results and Analysis 

For the performance experiments of the distributed-memory parallel SMACOF, we use 
two nodes of Ref C and one node of Ref D in Table 1.  For the performance test, we 
generate artificial random data set which is in 8-centered Gaussian distribution in 4-
dimension with different number of data points, such as 128, 256, 512, 1024, 2048, and 
4096. 

Due to gradient descent attribute of SMACOF algorithm, the final solution highly 
depends on the initial mapping. Thus, it is appropriate to use random initial mapping 
for the SMACOF algorithm unless specific prior initial mapping exists, and to run 
several times to increase the probability to get better solution. If the initial mapping is 



different, however, the computation amount can be varied whenever the application 
runs, so that we could not measure any performance comparison between two 
experimental setups, since it could be inconsistent. Therefore, the random seed is fixed 
for the performance measures of this paper to generate the same answer and the same 
necessary computation for the same problem. The stop condition threshold value (ε) is 
also fixed for each data. We will investigate the dependence on starting point more 
thoroughly using other approaches discussed in section 3.4. 

3.3.1. Performance Analysis 

For the purpose of performance comparison, we implemented the sequential version of 
SMACOF algorithm.  The sequential SMACOF is executed on each test node, and the 
test results are in Table 3.  Note that the running time of D is almost twice faster than 
the other two nodes, though the core’s clock speed of each node is similar.  The reason 
would be the cache memory size.  L2 cache of two Ref C nodes (C1 and C2) is much 
smaller than that of D node. 
Table 3. Sequential Running time in seconds on each test node 

 
Initially we measured the performance of the distributed-memory parallel 

SMACOF (MPI_SMACOF) on each test node only.  Figure 12 shows the speedup of 
each test node with different number of processes.  Both axes of the Figure 12 are in 
logarithmic scale.  As the Figure 12 depicted, the MPI_SMACOF is not good for small 
data, such as 128 and 256 data points.  However, for larger data, i.e. 512 and more data 
points, the MPI_SMACOF shows great performance on the test data.  You should 
notice those speedup values of larger data, such as 1024 or more data points on C1 and 
C2 nodes are bigger than the actual processes number using the MPI_SMACOF 
application, which corresponds to super-linear speedup.  However, on the D node, it 
represented good speedup but not super-linear speedup at all.  The reason of super-
linear speedup is related to cache-hit ratio, as we discussed about sequential running 
results.  MPI_SMACOF implemented in the way of block decomposition, so that those 
sub-matrix would be better matched in the cache line size and the portion of sub-matrix 
which is in cache memory at a moment would be bigger than the portion of whole 
matrix in it.  The Figure 12 also describes that the speedup ratio (or efficiency) 
becomes worse when you run MPI_SMACOF with more processes on single node.   It 
seems natural that as the number of computing units increases, the assigned computing 
job will be decreased but the communication overhead will be increased. 
 

Data size C1 C2 D 
128 0.3437 0.3344 0.1685 
256 1.9031 1.9156 0.9204 
512 9.128 9.2312 4.8456 
1024 32.2871 32.356 18.1281 
2048 150.5793 150.949 83.4924 
4096 722.3845 722.9172 384.7344 



 
Figure 12. Speedup of MPI_SMACOF performance on each test node 

In addition, we have measured the performance of the proposed MPI_SMACOF 
algorithm on all the three test nodes with different number of processes.  Figure 13 
illustrates the speedup of those experiments with respect to the average of the 
sequential SMACOF running time on each node.  The comparison with average might 
be reasonable since, for every test case, the processes are equally spread as much as 
possible on those three test nodes except the case of 56 processes running.  The Figure 
13 represents that the speedup values are increasing as the data size is getting bigger.  
This result shows that the communication overhead on different nodes is larger than 
communication overhead on single node, so that the speedup is still increasing, even 
with large test data such as 2048 and 4096 points, instead of being converged as in 
Figure 12. 



 
Figure 13. Speedup of MPI_SMACOF on combine nodes 

3.4. Conclusions 

We have developed a dimension mapping tool that is broadly applicable as it only uses 
dissimilarity values and does not require the points to be in a vector space. We have 
good parallel performance and are starting to use it for science applications as 
illustrated in figure 11. In later work, we will compare the method described with 
alternatives that can also be parallelized and avoid the steepest descent approach of 
SMACOF which can lead to local minima. One approach, first described in [41] and 
[42], uses deterministic annealing based on ideas sketched in section 4. This still uses 
Expectation Maximization (EM) (steepest descent) but only for the small steps needed 
as temperature is decreased. We will also implement the straightforward but possibly 
best method from ref [43] that solves equations (3.1) and (3.2) as χ2 problems and uses 
optimal solution methods for this. 

4. Multicore Clustering 

4.1. Algorithms 

Clustering can be viewed as an optimization problem that determines a set of K clusters 
by minimizing 

HVECDA =  ∑i=1
N ∑k=1

K Mi(k) DVEC(i,k)   (4.1) 
where DVEC(i,k) is the distance between point i and cluster center k.  N is the 

number of points and Mi(k) is the probability that point i belongs to cluster k. This is 
the vector version and one obtains the pairwise distance model with: 

HPWDA = 0.5 ∑i=1
N ∑j=1

N D(i, j) ∑k=1
K Mi(k) Mj(k) / C(k) (4.2) 

and C(k) = ∑i=1
N Mi(k)   is the expected number of points in the k’th cluster. D(i,j) 

is pairwise distance between points 1 and j.  Equation (4.1) requires one be able to 



calculate the distance between a point i and the cluster center k and this is only possible 
when one knows the vectors corresponding to the points i. (4.2) reduces to (4.1) when 
one inserts vector formulae and drops terms  that average to zero. The formulation (4.2) 
is important as there are many important clustering applications where one only knows 
distances between points and not a Euclidean vector representation. 

One must minimize (4.1) or (4.2) as a function of cluster centers for case VECDA 
and cluster assignments Mi(k) for case PWDA. One can derive deterministic annealing 
from an informatics theoretic [17] or physics formalism [18]. In latter case one 
smoothes out the cost function (4.1) or (4.2) by averaging with the Gibbs distribution 
exp(-H/T). This implies in a physics language that one is minimizing not H but the free 
energy F at temperature T and entropy S 

 F = H-TS      (4.3) 
 

   
Figure 14. Preliminary stage of clustering shown in  figure 11(left) corresponding to 4500 ALU pairwise 
aligned Gene Sequences with 2 clusters [37]  

For VECDA and Hamiltonian H given by equation (4.1), one can do this averaging 
exactly.  

 
 Mi(k) = exp( - DVEC(i,k)/T )  / Zi                (4.4) 
 Zi = ∑ k exp( - DVEC(i,k)/T )     (4.5) 
 F = - T ∑i=1

N log [Zi] / N    (4.6) 
 
For the case of equation (4.2) where only distances are known, the integrals with 

the Gibbs function are intractable analytically as the degrees of freedom Mi(k) appear 
quadratically in the exponential. In the more familiar simulated annealing approach to 
optimization, these integrals are effectively performed by Monte Carlo. This implies 
simulated annealing is always applicable but is usually very slow. The applicability of 
deterministic annealing was enhanced by the important observation in [18] that one can 
use an approximate Hamiltonian H0 and average with exp(-H0/T). For pairwise 
clustering (4.2), one uses the form motivated by the VECDA formalism (4.4). 

 
 H0 = ∑i=1

N ∑k=1
K Mi(k) εi(k)   (4.7) 

 Mi(k) ∝ exp( -εi(k)/T ) with ∑k=1
K Mi(k) =1  (4.8) 

 



εi(k) are new degrees of freedom. This averaging removes local minima and is 
designed so that at high temperatures one starts with one cluster. As temperature is 
lowered one minimizes the Free Energy (4.3) with respective to the degrees of freedom. 
A critical observation of Rose [17] allows one to determine when to introduce new 
clusters. As in usual expectation maximization (steepest descent) the first derivative of 
equation (4.3) is set to zero to find new estimates for Mi(k) and other parameters such 
as cluster centers for VECDA. Then one looks at the second derivative Γ of F to find 
instabilities that are resolved by splitting clusters. One does not examine the full matrix 
but the submatrices coming from restricting Γ to variations of the parameters of a 
single cluster with the K-1 other clusters fixed and multiple identical clusters placed at 
location of clusters whose stability one investigates. As temperature is lowered one 
finds that clusters naturally split and one can easily understand this from the analytic 
form for Γ. The previous work [18] on PWDA was incomplete and did not consider 
calculation of Γ but rather only assumed an a priori fixed number of clusters. We have 
completed the formalism and implemented it in parallel. Note we only need to find the 
single lowest eigenvalue of Γ (restricted to varying one cluster). This is implemented as 
power (Arnoldi) method. One splits the cluster if its restricted Γ has a negative 
eigenvalue and this is the smallest when looked at over all clusters.  

The formalism for VECDA can be found in our earlier work and [17]. Here we just 
give results for the more complex PWDA and use it to illustrate both methods. We let 
indices k µ λ runs over clusters from 1 to K while i j α β run over data points from 1 to 
N. Mi(k) has already been given in equation (4.8). Then one calculates: 

 
A(k) = - 0.5 ∑i=1

N ∑j=1
N D(i, j) Mi(k) Mj(k) / C(k)2   (4.9a) 

Bα(k) =  ∑i=1
N D(i, α) Mi(k) / C(k)    (4.9b) 

C(k) = ∑i=1
N Mi(k)      (4.9c) 

Allowing one to derive the estimate εα(k) = (Bα(k) + A(k))  (4.10)           
 
Equation (4.10) minimizes F of equation (4.3). The NK×NK  second derivative 

matrix Γ is given by: 
 

{α,µ}Γ{β,λ} = (1/T) δαβ {Mα(µ) δµλ - Mα(µ) Mα(λ) } + (Mα(µ) Mβ(λ) / T2)   {∑k=1
K [ 

- 2A(k) - Bβ(k) - Bα(k) + D(α,β)] [Mα(k) -  δkµ ] [Mβ(k) - δkλ]/C( k)}  (4.11) 
 
Equations (4.9) and (4.10) followed by (4.8) represent the basic steepest descent 

iteration (Expectation Maximization) that is performed at fixed temperature until the 
estimate for εα(k) is converged. Note steepest descent is a reasonable approach for 
deterministic annealing as one has smoothed the cost function to remove (some) local 
minima. Then one decides whether to split a cluster from the eigenvalues of Γ as 
discussed above. If splitting is not called for, one reduces the temperature and repeats 
equations (4.8) through (4.11). There is an elegant method of deciding when to stop 
based on the fractional freezing factors Φ(k) 

 
Φ(k) = ∑i=1

N Mi(k) (1 - Mi(k)) / C(k)   (4.12) 
 



As temperatures are lowered after final split, then the Mi(k) tend to either 0 or 1 so 
Φ(k) tends to zero. We currently stop when all the freezing factors are < 0.002 but 
obviously this precise value is ad-hoc. 

4.2. Multi-Scale and Deterministic Annealing 

In references [12] and [14], we explain how a single formalism describes many 
different problems: VECDA (Clustering of points defined by vectors with deterministic 
annealing) [16-17], Gaussian Mixture Models (GMM) [44]; Gaussian Mixture Models 
with deterministic annealing (GMMDA) [45]; and Generative Topographic Maps 
(GTM) [29]. One can also add deterministic annealing to GTM and we are currently 
working on this for Web applications [46]. Deterministic annealing can be considered 
as a multi-scale approach as quantities are weighted by exp (-D/T) for distances D and 
temperature T. Thus at a given temperature T, the algorithm is only sensitive to 
distances D larger than or of order T. One starts at high temperatures (determined by 
largest distance scale in problem) and reduce temperature (typically by 1% each 
iteration) until you reach either the distance scale or number of clusters desired. As 
explained in original papers [16], clusters emerge as phase transitions as one lowers the 
temperature and need not be put in by hand. For example the eight clusters in figure  
11(left) were found systematically with clusters being added as one reduced 
temperature so that at a higher temperature one first split from one to two clusters to 
find results of figure 14. The splits are determined from the structure of second 
derivative matrix equation (4.11) and figure 11(left) is for example found by continuing 
to reduce the temperature from intermediate result in figure 14.  

4.3. Operational Use of Clustering and MDS 

The original data is clustered with VECDA (see earlier papers for examples) or 
PWDA and then visualized by mapping points to 3D with MDS as described in section 
3 and visualizing with a 3D viewer written in DirectX. As a next step, we will allow 
users to select regions either from clustering or MDS and drill down into the 
substructure in this region. Like the simpler linear principal component analysis, MDS 
of a sub-region is generally totally different from that of full space. We note here that 
deterministic annealing can also be used to avoid local minima in MDS [47]. We will 
report our extensions of the original approach in [41-42] and comparison with 
Newton’s method for MDS [43] elsewhere. 

Clustering in high dimensions d is not intuitive geometrically as the volume of a 
cluster of radius R is proportional to R(d+1) implying that a cluster occupying 0.1% of 
total volume has a radius reduced by only a factor 0.99 from that of overall space with 
d=1000 (a value typical of gene sequences). These conceptual difficulties are avoided 
by the pairwise approach. One does see the original high dimension when projecting 
points to 3D for visualization as they tend to appear on surface of the lower 
dimensional space. This can be avoided as discussed in [42] by a mapping Distance D 
→ f(D) where f is a monotonic function designed so that the transformed distances f(D) 
are distributed uniformly in a lower dL dimensional space. We experimented with dL = 
2 and 4 where the mapping is analytically easy but found it did not improve the 
visualization. Typical results are shown in figure 15(right) that maps data of figure 
15(left) to 2 dimensions before applying MDS – the clustering is still performed on 
original unmapped data. Certainly the tendency in figure 15(left) to be at edge of 



visualization volume is removed but data understanding does not seem improved. This 
approach finds an effective dimension deff for original data by comparing mean and 
standard deviation of all the inter-point distances D(i,j)  with those in a dimension deff. 
This determines an effective dimension deff of 40-50 for sequence data and about 5 for 
medical record data; in each case deff is a dimension smaller than that of underlying 
vector space. This is not surprising as any data set is a very special correlated set of 
points.   

 
Figure 15: Results of Clustering of 4500 ALU sequences into 10 clusters before (left) and after (right) 
dimensional reduction described in text below. 

4.4. Parallelism 

The vector clustering model is suitable for low dimensional spaces such as our 
earlier work on census data [12] but the results of figures 11, 14 and 15 correspond to 
our implementation of PWDA – the pairwise distance clustering approach of [18] 
which starts from equation (4.2) and its structure has similarities to familiar O(N2) 
problems such as (astrophysical) particle dynamics. As N is potentially of order a 
million we see that both MDS and pairwise clustering are potential supercomputing 
data analysis applications. The parallelism for clustering is straightforward data 
parallelism with the N points divided equally between the P parallel units. This is the 
basis of most MapReduce algorithms and clustering was proposed as a MapReduce 
application in [7]. We have in fact compared simple (K-means) clustering between 
versions and MapReduce and MPI in section 2 and ref. [28]. Note that VECDA should 
be more suitable than K-means for MapReduce as it has more computation at each 
iteration (MapReduce has greater overhead than MPI on communication and 
synchronization as shown in section 2). VECDA only uses reduction, barrier and 
broadcast operations in MPI and in fact MPI implementation of this algorithm is 
substantially simpler than the threaded version. Reduction, Barrier and Broadcast are 
all single statements in MPI but require several statements – especially for reduction – 
in the threaded case. Reduction is not difficult in threaded case but requires care with 
many opportunities for incorrect or inefficient implementations. 

PWDA is also data parallel over points and its O(N2) structure is tackled similarly 
to other O(N2) algorithms by dividing the points between parallel units. Each MPI 
process also stores the distances D(i, j)  for all points i for which process is responsible. 
Of course the threads inside this process can share all these distances stored in common 
memory of a multicore node. There are subtle algorithms familiar from N-body particle 
dynamics where a factor of 2 in storage (and in computation) is saved by using the 



symmetry D(i, j)  = D(j, i)  but this did not seem useful in this case. The MPI parallel 
algorithm now needs MPI_SENDRECV to exchange information about the distributed 
vectors; i.e. one needs to know about all components of vectors Mi Bi and the vector Ai 
iterated in finding maximal eigenvectors. This exchange of information can either be 
done with a broadcast or as in results reported here by send-receive in ring structure as 
used in O(N2) particle dynamics problems. We measured the separate times in the four 
components of MPI – namely send-receive, Reduction, and Broadcast and only the first 
two are significant reaching 5-25% of total time with Broadcast typically less than 
0.1% of execution time. The time needed for MPI send-receive is typically 2 to 3 times 
that for reduction but the latter is a non trivial overhead (often 5-10%). Obviously 
broadcast time would go up if it was used in place of send-receive in information 
exchange step. 

4.5. Computational Complexity 

The vector and pairwise clustering methods have very different and 
complementary computational complexities. VECDA execution time is proportional to 
N d2 for N points – each of dimension d. PWDA has an execution time proportional to 
N2. PWDA can rapidly become a supercomputer computation. For example with 4500 
sequence data points and 8 clusters, the sequential execution time is about 15 hours on 
a single core of the systems used in our benchmarks. A direct clustering with PWDA of 
half million points (relevant even today) would thus naturally use around 5000 cores 
(100 points per core) with pure MPI parallelization. The hybrid threading-MPI 
parallelism could efficiently support more cores.  

We note that currently some 40-70% of the computation time is used in deciding 
whether to split clusters in PWDA; there are probably significantly faster algorithms 
here. The runs of VECDA reported here correspond to a low dimension space d = 2 for 
which negligible time is spent in splitting decision. The second derivative matrices are 
of size NK×NK for PWDA and of size dK×dK for VECDA. These are full matrices but 
as power method for determining maximal eigenvalues is used the computation is 
proportional to to the square of the matrix dimension. For computations reported here, 
the annealing uses from 1000-10,000 temperature steps while each eigenvalue 
determination uses 10-200 iterations. 

4.6. Performance 

We have performed extensive performance measurements [11-14] showing the 
effect of cache and for Windows runtime fluctuations can be quite significant. Here we 
give some typical results with figure 15 showing the performance of PWDA on the 
single 24 core workstation (ref D of table 1). The results are expressed as an overhead 
using the definitions of equation (1) introduced in section 2. We compare both MPI and 
thread based parallelism using Microsoft’s CCR package [20-21]. As these codes are 
written in C#, we use MPI.NET[35-36] finding this to allow an elegant object-based 
extension of traditional MPI and good performance. MPI.NET is a wrapper for the 
production Microsoft MPI.  

Figure 16 shows that although threading and MPI both get good performance, their 
systematics are different. For the extreme case of 24-way parallelism, the thread 
implementation shows an overhead that varies between 10 and 20% depending on the 
data set size. MPI shows a large overhead for small datasets that decreases with 



increasing dataset size so in fact 24-way MPI parallelism is 20% faster than the thread 
version on the largest 10,000 element dataset. This is due to the different sources of the 
overhead. For MPI the overhead is due to the communication calls which are due to 
reduce (20%) and send-receive (80%) and this as expected decreases (inversely 
proportional to dataset size) as the dataset size increases. For threads there is no 
memory movement overhead but rather the overhead is due to the Windows thread 
scheduling that leads to large fluctuations that can have severe effects on tightly 
synchronized parallel codes such as those in this paper as discussed in refs. [11-14]. 
We see some cases where the overhead is negative (super-linear speedup) which is due 
to better use of cache in the higher parallelism cases compared to sequential runs. This 
effect is seen in all our runs but differs between the AMD and Intel architectures 
reflecting their different cache size and architecture. 

Figure 16. Parallel Overhead for pure threading or pure MPI on Tempest (ref I of Table 1) for three different 
patient datasets with 2000, 4000 and 10,000 elements. The center and rightmost results are MPI.NET runs 
labeled 1XNX1 (center) or 1X1XN for N MPI processes. The leftmost results are CCR threading labeled 
NX1X1 for N threads. Left and center are run on one node; the right is one process per node on up to 24 
nodes. 

Comparing center and right datasets we see that MPI gets comparable performance 
on cores of a single node (center points) or when running one process per node on up to 
24 nodes of the Infiniband connected cluster. In the results plotted in the figure. MPI 
gets better performance (smaller overhead) than threading on the largest 10,000 
element Patient dataset. This reflects the large chunks of processing per MPI process. 
As seen in figure this is not always the case as threading outperforms MPI on the 2000 
and 4000 element datasets for largest 24-way parallelism. As a dramatic example using 
all 768 cores of Tempest (ref I Table 1), the pattern 24X1X32 (24 threads on each of 32 
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nodes connected as 32 MPI processes) runs 172 times faster than the communication 
dominated 1X24X32 (24 internal MPI processes on each of 32 nodes). 

 

 
Figure 17. Measurements from [11, 12] showing 5 to 10% runtime fluctuations on an 8 core 

workstation. The results are plotted as a function of number of simultaneous threads from 1 to 8 and for three 
different dataset sizes. 

 
The fluctuations in thread execution times are illustrated in figure 17 showing 

standard deviations from 5 to 10% on a simple kernel representative of the VECDA 
clustering algorithm. The identical code (translated from C# to C) shows order of 
magnitude lower fluctuations when run under Linux [13] with interesting systematics 
even in Linux case. These fluctuations can give significant parallel overheads as 
parallel algorithms used in VECDA and PWDA like those in most scientific algorithms 
requires iterative thread synchronization at the rendezvous points. Here the execution 
time will be the maximum over that of all the simultaneous fluctuating threads and so 
increase as this number increases. As described in the earlier papers we have always 
seen this and reported this effect to Microsoft. We found that these fluctuations were 
the only sizeable new form of parallel overhead compared to those well known from 
traditional parallel computing i.e. in addition to load imbalance and communication 
overhead. We did note extra overheads due to different threads interfering on a single 
cache line (“false sharing”) but our current software is coded to avoid this.  



 
Figure 18. Parallel Overhead for VECDA using long lived threads run on 128 core Madrid Cluster in 

table 1. The results achieve a given parallelism by choosing number of nodes, MPI processes per node and 
threads per MPI process. The number of threads increases as you move from left to right for given level of 
parallelism. 

 
Figure 19. Comparison of use of short lived (solid lines) and long lived (dashed lines) threads for the Vector-
based deterministic annealing VECDA. The results achieve a given parallelism by choosing number of 
nodes, MPI processes per node and threads per MPI process. The number of threads increases as you move 
from left to right for given level of parallelism. 
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Note that the fluctuation effect is larger in the work reported here compared to our 

previous papers as we are looking here at many more simultaneous threads. Note that 
the effect does not just reflect the number of threads per process but also the total 
number of threads because the threads are synchronized not just within a process but 
between all processes as MPI calls will synchronize all the threads in the job. Thus it is 
interesting to examine this effect on the full 128 core Madrid cluster as this could even 
be a model for performance of future much larger core individual workstations.  

 
We note that VECDA and PWDA differ somewhat in their performance 

characteristics. VECDA only uses modest size reductions (dominant use), broadcast 
and barrier MPI operations and so has particularly fast MPI synchronization. PWDA 
also has MPI_SENDRECV (exchange of data between processes) which increases the 
MPI synchronization time. Thus VECDA shown in figures 18 and 19 tends always to 
have MPI at least as fast as CCR and in some cases very much faster. Figure 18 shows 
the parallel overhead for 44 different choices of nodes (from 1 to 8), MPI processes per 
node (from 1 to 16) and threads per node (from 1 to 16 divided between the MPI 
processes per node). The results are divided into groups corresponding to a given total 
parallelism. For each group, the number of threads increases as we move from left to 
right. For example in the 128 way parallel group, there are five entries with the leftmost 
being 16 MPI processes per node on 8 nodes (a total of 128 MPI processes) and the 
rightmost 16 threads on each of 8 nodes (a total of 8 MPI processes). We find an 
incredibly efficient pure MPI version – an overhead of just 0.08 (efficiency 92%) for 
128 way parallelism whereas the rightmost case of 16 threads has a 0.63 overhead 
(61% efficiency). All cases with 16 threads per node show a high overhead that slowly 
increases as the node count increases. For example the case of 16 threads on one node 
has an overhead of 0.51. Note that in this we use scaled speedup i.e. the problem size 
increases directly according to number of parallel units. This ensures that the inner 
execution scenarios are identical in all 44 cases reported in figure 18. We achieve 
scaled datasets by replicating a base point set as one can easily see that leads to same 
mathematical problem but with a work that increases properly as number of execution 
units increases. 

Figure 19 looks again at the vector clustering VECDA comparing MPI versus two 
versions of threading. MPI is again very efficient – the 32 way parallel code with 16 
MPI processes on each of two 16 core nodes has overheads (given by equation (1) and 
roughly 1 – efficiency) of 0.05 to 0.10. For the case of 16 threads on each of two nodes 
the overhead is 0.65 (short lived) to 1.25 (long lived) threads. The short lived threads 
are the natural implementation with threads spawned for parallel for loops. In the long 
lived case, the paradigm is similar to MPI with long running threads synchronizing 
with rendezvous semantics. 
 



 
Figure 20. Parallel Overhead for PWDA runs on 128 core cluster (Ref. F in table 1) with patterns defined in 
figure 16.and in label in figure itself.  
 
Figure 20 shows results of PWDA for a 10,000 element dataset on the 128 core cluster 
(ref. F in Table 1). The results show threading outperforming MPI for the highly 
parallel results on right whereas on left (2- to 8-way parallelism) MPI outperforms 
threading. That is due to MPI being affected by the communication overhead of send-
receive as discussed above for the results of figure 16. The results also show effects of 
the cache seen in the negative overheads (corresponding to a slow 1x1x1 case). The 
patterns are always labeled as (threads per process)x(MPI processes per node)x(nodes). 
Note figures 16 and 20 study the overhead for a fixed problem whereas figures 18 and 
19 look at scaled speedup with problem size increasing proportional to number of 
parallel units. We see that the 10,000 element dataset can run well up even up to 128-
way parallelism. 

5. Conclusions 

This paper has addressed several issues. It has studied the performance of a variety of 
different programming models on data intensive problems. It has presented novel 
clustering and MDS algorithms which are shown to parallelize well and could become 
supercomputer applications for large million point problems. It has compared MPI and 
threading on multicore systems showing both to be effective but with different 
overheads. We see these complemented by the data intensive programming models 
including Dryad and Hadoop as well as an in house version of MapReduce. These 

Parallel Pairwise Clustering PWDA 
Speedup Tests on eight 16-core Systems (6 Clusters, 10,000 records)

Threading with Short Lived CCR Threads

Parallel  Patterns (# Thread /process) x (# MPI process /node) x (# node)
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support an “owner stores and computes” programming paradigm that will be of 
increasing importance. 
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