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The changing nature of biomolecular simulations 

In the biomolecular simulation (BMS) community, classical molecular dynamics (MD) 
simulations enable the elucidation of the relationship between the structure of biomolecules 
such as proteins, nucleic acids, or lipids and their function via their dynamics. MD simulations 
account for approximately one quarter of the service units used on XSEDE resources. Although 
traditionally the generation of the data has been the computational bottleneck and has been 
highly optimized, more and more the analysis of the data is becoming a rate limiting step. Within 
the NSF DIBBs SPIDAL project we have been working on leveraging HPC resources for the 
analysis of BMS data [1], starting from two widely adopted software packages in the community, 
cpptraj [2] and MDAnalysis [3,4]. 

Current state of the art simulations are performed at the atomic level and include the 
niomolecules and their environment such as water, ions, lipids, and small molecules. Typical 
system sizes range from O(103) to O(106) atoms with some exceptionally large systems up to 
~108 [5]. Simulations integrate the equations of motion of all atoms using femtosecond 
timesteps. The positions (and possibly velocities) of the atoms are saved to a trajectory file at 
regular intervals, typically every 1 to 100 ps. Current simulation lengths typically achieve ≤ 10 µs 
although on special hardware up to 1 ms has been achieved for small systems with O(104) 
atoms [6], while massively distributed simulations can produce aggregate data of up to 6 ms [7]. 
Advances in hardware (GPUs, FPGA/custom hardware, exascale resources such as Summit) 
and software (e.g. GPU-optimized codes) lead to a steady increase in the trajectory sizes [8], 
currently in the hundreds of GB to a few TB range. 

A common approach is to run a single or a few repeats of simulations for a fixed condition with 
the aim to capture equilibrium behavior. Long continuous trajectories have provided valuable 
insights in protein folding in a unbiased manner [6]. However, increasingly the emphasis is on 
sampling of rare events and quantitative predictions of free energies and rates, which 
necessitates enhanced sampling approaches [9, 10, 11] that run ensembles of tens to hundreds 
of coupled simulations. Exascale computing promises to make such calculations much more 
feasible and more widespread. The trajectories from enhanced sampling runs have to be 
analyzed as a single dataset; the size of the datasets (approaching hundreds of TB [12]) will 
make it infeasible to move the data away from the HPC system where they were produced and 
their analysis will take too long with current serial approaches. The challenge becomes to 
design computational environments that support both data generation and analysis efficiently 
and to develop analysis software that makes best use of resources that have been geared 
towards data production. 
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From offline to online analysis 
Thus, concomitant with increased computing capabilities is the opportunity and the need for             
sophisticated and efficient analysis of unprecedented volumes of data generated from           
simulations. The temporal coupling of Molecular Dynamics simulations generating data          
(producer) to analysis of the data (consumer) can be classified into three broad categories,  

I. Data Reduction: This is classic scenario, where in-situ (real-time) analysis of data is              
performed to reduce the volume of data that needs to eventually be stored or output to disc.                 
Original drivers of data reduction were poor file system performance, but recent advances in the               
ability to “compute only what you need” [13] scenarios has resulted in several approaches to               
analysing data once and only once. 

2. Streaming Data into Analysis: There have been advances in stream-based algorithms of             
traditional analysis algorithms which benefit from incremental data availability, thus          
necessitating the ability of large volumes of data to be streamed directly from simulations to               
analysis. The need to stream data directly into simulations is not confined to stream-based              
analysis algorithms; several online learning algorithms [14] benefit from increased and           
incremental data. 

3. Adaptive Simulations: Arguably the coupled simulation-analysis scenario that has received           
the greatest attention thus far, is the general class of algorithms referred to as adaptive               
algorithms, and in particular adaptive ensembles simulations [15]. In adaptive algorithms the            
intermediate data generated by simulations is used to guide the evolution of the next stage of                
simulations. Traditional examples of these include Markov State Model (MSM) and variants            
thereof, but recently more sophisticated ML-driven approaches to steering simulations          
(ML-driven-MD) have been both proposed and implemented [11]. The motivation for adaptive            
simulations varies from “better, faster and greater” sampling of a very large phase space [15], to                
the efficient utilization of limited computing resources [16]. Ref [17] discusses a software system              
that supports multiple adaptive algorithms that significantly increase simulations efficiency. 

AI-driven analysis and simulation 
ML is being used to analyze the results of molecular dynamics simulations (e.g., binding 
affinities [12], folding [14], phase diagrams [20], or Tang’s contribution to this meeting predicting 
stability). An exciting idea is to use AI-driven analysis to advance MD simulations or whole 
ensembles of simulations based on the phase space that has already been sampled. Such 
AI-driven autotuning has been shown to be able to increase time steps in QM MD [19] and 
suggest parameters (such as timestep size, spatial meshes, internal polarization densities) to be 
used in the simulation [21] but more widespread application of these ideas will likely require 
meeting the challenges of converging simulations and analysis as outlined above. 
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