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Abstract—Radar depth sounding and imaging systems produce two-
dimensional and three-dimensional imaging of the subterranean structure of 
polar ice sheets. Information such as ice thickness and surface elevation is 
extracted from this data and applied to research problems in ice flow 
modeling and ice mass balance calculations.  Due to the large amount of data 
collected, we seek to automate the ice-bottom layer tracking and also allow 
for efficient manual corrections when errors occur in the automated 
tracking. In this work, we present improvements made to previous 
implementations of the Viterbi and TRW-S algorithms for ice-bottom 
extraction in 2D and 3D radar imagery. Along with an explanation of our 
modifications, we demonstrate the results obtained by our modified 
implementation of the two algorithms and by previously proposed solutions 
to this problem, when compared to the available manually-corrected ground-
truth data. Furthermore, we perform a self-assessment of tracking results by 
analyzing differences in the estimated ice-bottom for surveyed locations 
where flight paths have crossed and thus two separate measurements have 
been made at the same location. 

Index Terms—Feature extraction, glaciology, ice thickness, ice 
tracking, radar tomography 

I. INTRODUCTION 

The Center for Remote Sensing of Ice Sheets (CReSIS), based at 
the University of Kansas, designs and develops radar instrumentation 
that allows for wide-coverage remote sounding and imaging of the ice 
sheets, snow, and sea ice in polar regions.  

The data acquired by these sensors provide information about the 
basal topography of the ice structures of the surveyed region, from 
which measurements such as ice thickness can be derived. Analysis of 
this polar topography data helps determine the contribution of ice caps 
to the present sea level using the surface mass balance and discharge 
method, and can be factored into ice-flow modeling studies to predict 
their future impact on the sea level [1].  

The raw data collected by systems such as the Multichannel 
Coherent Radar Depth Sounder [2] pass through a processing pipeline 
including pulse compression, synthetic aperture radar processing, and 
array processing steps to resolve the data in the range, along-track, and 
cross-track dimension, respectively [3]. Data products from this 
processing include 2D SAR images and 3D SAR tomography, both of 
which display the structure of the subterranean ice topography.  

In both of these data products, the most relevant features are the ice-
surface and ice-bottom layers. The former is the interface between the 
air and the ice; the latter is the interface between the ice and the 
bedrock or liquid water underneath. The location of these layers in 
each echogram is used in the calculation of the ice thickness of the 
surveyed area, and thus some form of layer tracking is required.  

In a typical deployment of the CReSIS depth sounding systems, 
thousands of kilometers of terrain are covered per day. Due to the large 
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amount of data collected, accurate manual tracking of the 2D 
echograms is a slow and time consuming process, and effectively 
impossible in the case of 3D imagery where hundreds of thousands of 
images are generated if we view the 3D imagery as a stack of 2D 
images. This has driven the development of automated ice layer 
tracking systems.  

 This problem has received attention from researchers such as 
Gifford et al. [4], who proposed edge-based and active-contour-based 
iterative methods of tracking the interfaces. Similarly, a solution 
utilizing a level-set technique was suggested by Rahnemoonfar et al. 
[5]. Another approach was proposed by Crandall et al. [6], which poses 
this tracking as an inference problem, solved using the Viterbi 
algorithm [7] on a probabilistic graphical model which combines 
several known constraints of the polar ice layers. An improved solution 
using a similar model was suggested by Lee et al. [8], which employed 
a Markov Chain Monte Carlo (MCMC) technique to solve the 
inference problem and also allowed the ice-surface and ice-bottom to 
be simultaneously solved. Another solution was proposed, this time 
specifically for 3D images, by Xu et al. [9], using a sequential tree-
reweighted message passing (TRW-S) [10] technique. This problem 
was later revisited by Xu et al. [11] using deep convolutional and 
recurrent neural networks. 

We present an adaptation to the aforementioned Viterbi [6] and 
TRW-S [9] solutions that adjusts the cost function to better match the 
dataset and include additional evidence. We apply the adapted 
algorithms to CReSIS data, and assess the results obtained by these 
techniques in terms of tracking accuracy and speed. We determine 
average tracking errors by comparing to the available manually-
tracked ground-truth data, and compare this with previous solutions. 
We also check the self-consistency of the 3D algorithms by comparing 
results where flightlines cross and two independent measurements 
have been made at the same location. 
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Fig. 1.  Example of 2D echogram. Notice that the ice-surface and ice-bottom 
merge on the right when no ice is present. 



The organization of this paper is as follows: in Section II, we 
describe the 2D and 3D formats of data on which layer tracking is 
performed, along with an overview of the tracking framework 
presented. In Section III, we define our modifications to the original 
cost functions, and in Section IV we present the algorithms used and 
our modifications to their implementation. In Section V, we present 
and analyze the results obtained, as well as a self-assessment of the 
accuracy of these results. 

II. BACKGROUND 

A. Two-dimensional radar imagery 
In a 2D image or echogram (e.g. see Fig. 1) the subterranean ice 

structures are displayed along the flight profile. The horizontal axis 
represents the along-track dimension, where each column is a range-
line. The vertical axis corresponds to the fast-time dimension, where 
each row is a range bin. The vertical dimension is directly related to 
the depth of the subterranean ice structure. The pixel intensity is 
proportional to the radar scattering intensity with darker representing 
a stronger scattering signal. Fig. 2 illustrates the image axes with 
respect to the aircraft.  

 
In Fig. 1, the very dark, continuous line near the top is the ice-

surface, and the dark erratic line near the middle is the ice-bottom. 
Notice that these two interfaces merge around range-line 1,900 
indicating the beginning of a region with no ice. Lastly, notice the layer 
under the ice-surface that follows its shape: this is the first surface 
multiple, and is always located at twice the time delay as the surface. 
This a signal processing artifact that may confuse the tracker and create 
a false positive, complicating the layer tracking process. A simple 

solution for mitigating the effects of this undesirable feature is 
described in Section III.  

B. Three-dimensional radar imagery 
The 3D images represent a sequence of cross-track images (or 

“slices”) of the terrain. In each slice, the horizontal axis displays the 
cross-track elevation angles discretized into direction-of-arrival bins, 
and the vertical axis depicts the fast-time dimension in the same 
manner as a two-dimensional echogram where each row corresponds 
to a range-bin. Fig. 3 shows an example image slice, and Fig. 4 shows 
how the slices fit together relative to the radar platform coordinate 
system. The MUltiple SIgnal Classification (MUSIC) algorithm is 
used to generate the images [12]. The color of each pixel represents the 
MUSIC cepstrum which is loosely related to how likely a scatterer is 
present. In the figure, yellow indicates a larger cepstrum value which 
is associated with increased likelihood and blue indicates a lower 
cepstrum value. 

C. Layer tracking framework for 2D and 3D imagery 
While both formats of radar imagery display the subterranean ice 

sheet structures of the surveyed area, an important difference between 
the two is that there exists a strong correlation in two dimensions for 
the ice-bottom in the 3D image; that is in both elevation angle and 
along-track dimensions since the bottom layer tends to vary smoothly. 
On the other hand, no “third dimension” is available for the two-
dimensional echograms. The 2D image is a subset of the 3D image and 
does not have an elevation angle dimension; it corresponds to just the 
nadir elevation angle bin (bin 33 in Fig. 3) from each 3D slice. 

As such, different algorithms produce optimal layer tracking results 
for each image type. In the 3D case for example, the best algorithms 
exploit the layer correlation in two dimensions. In the 2D case, the 
reduced dimensionality of the data allows an exact solution to the 
minimization to be found (although less information is supplied to the 
minimization and so the result is generally worse than the 3D case [9]). 

For all algorithms, we make the assumption that the ice-surface 
layer is known a priori, since there generally exist accurate ice-surface 
estimates (such as ArcticDEM and Bedmap2 [13]) based on satellite 
imagery for surveyed locations. The location of the ice-surface is an 
input to the ice-bottom tracker and is used to define portions of the cost 
function explained below. 

Furthermore, we constrain the ice-bottom layer to be single-valued 
everywhere with respect to the elevation angle and along-track 
dimension, meaning that only one row can correctly label each column 
of the image matrix. In a physical sense, this is the same as assuming 
that the subterranean ice structure surveyed contains no overhangs or 
cave-like features from the perspective of the radar.  

 
Fig. 2.  Illustration depicting the axes of the 2D echograms relative to the 
radar platform. The cross-track offset is assumed to be zero. 

 
Fig. 3.  Example of a 3D image slice. 

 
Fig. 4.  A sequence of cross-track slices generates a 3D image of the surveyed 
terrain. 



III. A  GRAPHICAL MODEL FOR LAYER-TRACKING 

 In previously published works, [6] and [9] pose the echogram layer-
tracking problem as an inference problem on a statistical graphical 
model. For both 2D and 3D imagery, the authors assign a unary cost 
function 𝜓𝜓𝑈𝑈 to every pixel, which represents the cost for the ice-bottom 
layer to pass through that pixel, and assign a column-to-column layer 
transition cost in a binary cost function 𝜓𝜓𝐵𝐵.  

Based on these pixel and transition costs, a Markov Random Field 
(MRF) framework is formulated and inference is performed in order 
to find the lowest total cost solution. For both algorithms, the hidden 
states of this model are the rows that correctly label the ice-bottom 
layer in each column of the image matrix. While the method of 
performing inference on the MRF and ultimately detecting the lowest-
cost (highest probability) solution differs between the two algorithms, 
in both cases the unary and binary costs are determined in a very 
similar manner.  

The tracking output for the 2D imagery is in the form of an Nx-
dimensional vector, where Nx is the number of range-lines in the input 
image. In the case of 3D imagery, the output is an Nb-by-Nx matrix, 
where Nb represents the number of direction-of-arrival bins in the 
three-dimensional image matrix.  

Here, we present an expanded explanation of this layer tracking 
process, as well as modifications that have improved the accuracy of 
the results. 

A. Unary cost function 
The unary cost function, 𝜓𝜓𝑈𝑈, which assigns a cost to each individual 

pixel in the input image, has five terms which are explained below. 
Fig. 5 provides a summary of these inputs to the layer tracking 
software. 

The first term 𝜓𝜓𝑆𝑆𝑈𝑈𝑆𝑆𝑆𝑆 enforces the constraint that all points of the 
ice-bottom layer must be at or below the ice-surface. For the two layers 
to be at the same depth, it must be the case that no ice is present at that 
position, effectively generating an ice thickness measurement equal to 
zero.  

Since “ice mask” datasets, which show where ice is present, are 
available for most regions surveyed by CReSIS (e.g. Randolph Glacier 
Inventory [17]) the algorithms will 1) merge the ice-bottom to the ice-
surface where there is no ice (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0) and 2) force the ice-bottom 
to lie in a certain range relative to the surface if close to the ice margin 
(i.e. near the transition between no-ice and ice), and 3) have no effect 
is more than a certain distance away from the ice margin. Also, a value 
of positive infinity is assigned to the 𝜓𝜓𝑆𝑆𝑈𝑈𝑆𝑆𝑆𝑆 term for all pixels located 
above the ice-surface, which guarantees that the bottom will always be 
below the surface. 

Because a relatively smooth transition is expected between icy and 
non-icy regions of the terrain, the ice-bottom is restricted to a range of 
values near the ice margin. This is done by shrinking the icy regions 

by 2 pixels and then filtering this shrunk ice mask with a boxcar 
window equal to 2.56 × [1 1 1 1 1] in the elevation angle dimension 
and then in the along-track dimension. Values above 90 are then set to 
infinity. For example, a binary ice mask sequence [0 0 1 1 1] would 
become a filtered ice mask sequence [0 0 32 65 ∞]. This cost function 
term is then given by: 

𝜓𝜓𝑆𝑆𝑈𝑈𝑆𝑆𝑆𝑆(𝑠𝑠) =  �∞,    𝑠𝑠 > 𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 or (𝑠𝑠 ≠ 𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0)
0,𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 >  𝑠𝑠 > 𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  

where 𝑠𝑠 represents the row index of the pixel of interest, 𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 is the 
row index of the ice-surface layer, and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the filtered ice mask. 

We modified the previously proposed template term in order to 
better use the dynamic range of the imagery. The 𝜓𝜓𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸 term used in 
[6] and [9] measures the squared difference in the image pixel intensity 
relative to a template of an ideal layer return. The template was found 
through an automated training sequence using the a priori surface 
information. Although it is data dependent, the template invariably has 
a peak in the center with decreasing values towards the edges of the 
template. Because the 𝜓𝜓𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸 term measured the squared distance to 
the template, a peak response in the imagery with the same intensity 
produces the lowest cost. The issue with using the squared distance to 
the template is that the peak intensity from the ice-bottom layer varies 
with larger intensities generally indicating a better measurement (since 
these correspond to greater signal to noise ratios). To better handle 
peak intensity variability, we now use a correlation operation that 
multiplies the template with the image: 

𝜓𝜓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠) =  −  � 𝐼𝐼(𝑠𝑠 + 𝑝𝑝)𝜇𝜇(𝑝𝑝)
𝑝𝑝 ∈ 𝑇𝑇

 

where 𝑝𝑝 ∈ 𝑇𝑇 = {−5,−4,−3, … ,5} refers to the pixel index of the 
correlation function, and 𝜇𝜇(𝑝𝑝) is the correlation function which is now 
fixed to 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (5𝑝𝑝 / 1.5) which for ±5 pixels approximately 
corresponds to the midpoint in the first minimum on either side of the 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 function peak at  𝑝𝑝 = 0 as shown in Fig. 6.   

The term 𝜓𝜓𝐺𝐺𝑇𝑇, shown in Fig. 7, of the unary cost function 
encourages the ice-bottom layer to be drawn towards ground-truth 
points, if they exist. To account for potential small inaccuracies of the 
ground-truth, the algorithm is not forced to return an answer in which 
the ice-bottom is found to exactly match the location of that point, but 

 
Fig. 5.  Diagram illustrating main inputs of the automated layer-tracking 
systems. The location of the ice-bottom layer, shown here as a continuous 
blue line overlaid on an echogram, is the output for both 2D and 3D trackers. 
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Fig. 6.  Values of the correlation function 𝜇𝜇(𝑝𝑝) used in the unary cost 
calculation. 

 
Fig. 7.  The unary cost of every pixel in the input image is increased 
according to the squared vertical distance to ground-truth points in the same 
column of the image matrix, if they exist. 



encouraged to approximately match it by a cost term that is positively 
associated with the squared vertical distance to the ground-truth point, 
as in 

𝜓𝜓𝐺𝐺𝑇𝑇(𝑠𝑠) = (𝑠𝑠 − 𝐺𝐺𝑇𝑇)2 
where 𝑠𝑠𝑌𝑌 represents the row index of the pixel of interest and 𝐺𝐺𝑇𝑇 is the 
row index of the ground-truth point. 

Ground-truth can be manually added by a human operator. For 2D 
imagery, this is not done before the automated tracking is run. 
However, ground-truth points are automatically acquired by 
intersecting the flight path of interest with flight paths of previous 
surveys of that geographical region. Frequently, a given location will 
have been imaged and labeled before, and the point in which the new 
flightline crosses the old will already have ice-bottom depth 
information associated with it, which can then be used to help the 
tracker. These flightline intersections are commonly known as 
crossovers, and can also be used in determining the error associated 
with layer tracking results.  

For the 3D imagery, ground-truth points are taken from the 2D 
tracking process by using the ice-bottom layer from the 2D imagery in 
the nadir elevation angle bin of the 3D imagery. Although this is not 
strictly required by the 3D algorithm, in all the results presented in this 
work, the nadir tracked bin from 2D imagery is used as ground-truth 
to the 3D imagery and we did not evaluate the performance without 
this ground-truth added in for 3D imagery. 

Another potential sources of ground-truth are a priori estimates of 
the ice-bottom that can be used as weak evidence by the tracking 
algorithms via an additional unary cost term 𝜓𝜓𝐸𝐸𝐸𝐸𝑇𝑇𝑆𝑆𝐸𝐸. These are 
incorporated in the same way as manual or crossover ground-truth 
points, but with a lower weighting. These estimates can be obtained, 
for example, from existing ice thickness models based on ice flow 
dynamics and mass conservation [14]. 

Because the ice-surface return usually generates a strong and 
consistent region of high intensity pixels in the imagery, as is the case 
in Fig. 2, an ice-surface repulsion term 𝜓𝜓REP is added to the unary cost 
function to prevent the tracker from incorrectly labeling the ice-surface 
as the ice-bottom.  This is done by raising the unary cost of pixels that 
are within a certain maximum sensory distance (𝛼𝛼𝐸𝐸𝑆𝑆𝑀𝑀) from the ice-
surface. An ice thickness close to zero would cause a large increase in 
cost, defined by a maximum cost (𝛼𝛼𝐸𝐸𝑆𝑆) parameter, which would 
prevent the tracker from selecting it as the true label for the ice-bottom. 
To ensure a smooth cost increase as a function of proximity to the ice-
surface, a shifted exponential decay function was chosen, as can be 
seen in Fig. 8. This term is calculated as  

 

𝜓𝜓𝑆𝑆𝐸𝐸𝐸𝐸(𝑠𝑠) =  � 
0,   ∆𝑌𝑌> 𝛼𝛼𝐸𝐸𝑆𝑆𝑀𝑀

𝛼𝛼𝐸𝐸𝑆𝑆 ∗ 𝑒𝑒−𝜆𝜆 ∗ 𝛥𝛥𝑌𝑌 −  𝛼𝛼𝐸𝐸𝑆𝑆 ∗ 𝑒𝑒−𝜆𝜆 ∗𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀 , otherwise 

 

where ∆𝑌𝑌= 𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑠𝑠 is the vertical pixel distance between the ice-
surface layer and the pixel of interest 𝑠𝑠, and 𝜆𝜆 is the exponential decay 
constant. 

The final unary cost of each pixel is calculated by a weighted 
summation of the aforementioned partial cost terms, as in 

 𝜓𝜓𝑈𝑈  =   𝜓𝜓𝑆𝑆𝑈𝑈𝑆𝑆𝑆𝑆 +  𝜓𝜓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑤𝑤𝐺𝐺𝑇𝑇 𝜓𝜓𝐺𝐺𝑇𝑇 + 𝜓𝜓𝐸𝐸𝐸𝐸𝑇𝑇𝑆𝑆𝐸𝐸 +  𝑤𝑤𝑆𝑆𝐸𝐸𝐸𝐸𝜓𝜓𝑆𝑆𝐸𝐸𝐸𝐸 
where the 𝑤𝑤 variables are the weights assigned to each individual 
unary cost term and are discovered via hyperparameter optimization. 

B. Binary cost function 
The binary cost function assigns a cost 𝜓𝜓𝐵𝐵 to every valid column-

to-column transition in the image matrix. This function is tuned to 
enforce a smoothness constraint on the model, increasing the 
likelihood that transitions which generate smoother layers will be 
selected by assigning to these a lower cost. A smooth interface is 
generally a reasonable assumption for the bottom of the ice sheet. 

In previous efforts, the implementation of this binary cost term was 
set to prioritize flat surfaces in the coordinate systems of the 2D and 
3D imagery. However, since the 3D imagery are in a cylindrical 
coordinate system native to the radar sounding processing, this “flat” 
surface did not represent a flat surface in Cartesian space. A flat surface 
in Cartesian coordinates curves downward towards the edges of the 3D 
imagery (see Fig. 3 for an example of this effect).  Also, if the aircraft 
altitude changes, both the ice-surface and ice-bottom will change 
together with altitude.  

For this reason, in both 2D and 3D datasets the smoothing term has 
now been modified to set the lowest transition costs to rows that follow 
the range-slope of the ice-surface. In the 3D imagery scenario, 
although this is still not a flat surface in the Cartesian coordinate 
system, this is a flatter and more realistic approximation of the 
expected shape of the ice-bottom and computationally simpler than 
calculating the shape of a flat ice-bottom in Cartesian space which 
must account for ice refraction from a non-flat ice-surface layer. The 
new binary cost function term is given by: 

𝜓𝜓𝐵𝐵 = 𝑤𝑤𝐵𝐵 ∗ (𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑒𝑒 − 𝐷𝐷𝑒𝑒𝑠𝑠𝐷𝐷 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠𝑒𝑒𝐷𝐷)2 
where 𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑒𝑒 and 𝐷𝐷𝑒𝑒𝑠𝑠𝐷𝐷 are the row index of the source and 
destination columns respectively, and 𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠𝑒𝑒𝐷𝐷 is the range-slope of the 
ice-surface between the column of interest and the previous column. A 
scaling factor 𝑤𝑤𝐵𝐵 is used to define the weight of this smoothing term.  

C. Data pre-processing 
The 2D image intensity exhibits a strong dependence on depth in 

ice due to the ice loss and spherical spreading loss. We apply a simple 
detrending routine that normalizes the mean intensity of each row. This 
helps the tracker in areas where the bed echo is weak.  

Without normalization, clutter near the ice-surface is often so strong 
that the ice-bottom layer tracker may jump up to this signal despite the 
layer smoothness and surface-repulsion constraints enforced by the 
unary and binary cost functions of the tracking algorithms. The 
previous proposed solutions of [6, 9] thresholded the image data to 
prevent the layer tracker from incorrectly tracking ice-surface points 
as the ice-bottom. The problem with thresholding is the loss of signal 
information associated with it. With the implementation of the 
detrending routine, data thresholding is no longer necessary. 

While the 2D images are estimates of scatterer intensity, the 3D 
images are not. A similar detrending procedure is not as crucial in the 
3D imagery because the MUSIC algorithm’s cepstrum produces a 
muted dynamic range. 

As previously mentioned, an undesirable feature present in both the 
2D and 3D imagery is the surface multiple, which is caused by a 
ringing of the radar signal between the ice-surface and the aircraft. To 
mitigate the effect of the surface multiple as a false positive to the 
algorithms, we have employed a simple method of decreasing the pixel 

 
Fig. 8.  Shifted exponential decay of the ψ_REP term as a function of the 
vertical distance ∆_Y between the pixel of interest and the ice-surface layer. 
The selected parameter values are α_MSD=50, α_MC=200, and λ=0.075. 



intensity around the areas of the input image in which the surface 
multiple is located. It is possible to estimate the location of this feature 
by doubling the two-way travel time of the ice-surface. 

Additionally, previous tracking efforts divided flight data into small 
frames for processing. These data frames are contiguous and this 
sometimes resulted in lower quality results near the edges of the data 
frames than is possible by processing the entire flight. For this reason, 
the two-dimensional data passed in to the Viterbi algorithm has been 
modified so that entire flights are processed at once. This also increases 
the probability that the layer data being processed will include ground 
truth from crossing lines, although this tends to have a relatively local 
effect on improving performance. 

D. Parameter optimization 
The weights and parameters in the cost function affect the accuracy 

of the automated tracker. Therefore, the optimal values of these 
parameters, such as the maximum sensory distance 𝛼𝛼𝐸𝐸𝑆𝑆𝑀𝑀 and 
maximum cost 𝛼𝛼𝐸𝐸𝑆𝑆 of the 𝜓𝜓REP term described above, need to be 
carefully tuned for the best possible performance of the algorithms.  

For this purpose, multi-stage (multi-resolution) grid-search and 
random-search [15] parameter optimization techniques were used, 
supervised by the performance metric of ice-bottom layer mean error 
(measured in absolute pixel distance) when compared to a manually-
tracked training set.  Random search is a recent hyper-parameter global 
optimization technique that has been shown to outperform exhaustive 
grid-search methods in terms of accuracy and computational cost, 
particularly in large parameter spaces where not all variables have 
equal impact on the final error measurement and therefore are not 
equally important to tune. 

Due to the differences in image structure between the 2D and 3D 
datasets, a distinct combination of optimal parameters was found for 
each case. Optimization was only performed using the Viterbi 
algorithm for the 2D imagery and TRW-S for the 3D imagery. The 𝑤𝑤𝐺𝐺𝑇𝑇 
and 𝑤𝑤𝑆𝑆𝐸𝐸𝐸𝐸  weighting variables of the unary cost function were tuned. 
A scaling factor 𝑤𝑤𝐵𝐵 for the binary cost function was also found. The 
optimal results found for these parameters is shown in Table 1.  

 
TABLE I 

PARAMETERS USED IN COST FUNCTION CALCULATIONS 

IV. ALGORITHMS APPLIED TO LAYER-TRACKING 

Once both unary and binary costs have been assigned in the manner 
described above, we apply the Viterbi algorithm to the 2D and 3D 
imagery and the TRW-S algorithm to the 3D imagery to ultimately 
discover the lowest-cost label of the ice-bottom, which is taken to be 
the final result.  

A. 2D imagery and the Viterbi algorithm 
For the 2D imagery, we follow the solution proposed by Crandall et 

al. [6] of formulating a Hidden Markov Model (HMM) framework by 
splitting the MRF model into a set of non-loopy graphs, and then use 
the Viterbi algorithm [7, 16] to perform exact inference on each of 
these graphs in sequence. 

Viterbi is an efficient dynamic programming method of finding the 
highest-probability sequence of hidden states in a finite-state discrete-
time Markov process. This algorithm is guaranteed to return the global 
maximum likelihood path (the “Viterbi path”) of an HMM. 

In this framework the observed variables are each pixel of the input 
image data, and the hidden variables consist of the correct row labels 

for each column, as well as pairwise probability functions between 
neighboring hidden variables.   

B. 3D imagery and the TRW-S algorithm 
In order to take advantage of the strong correlation between 

consecutive slices of three-dimensional imagery, Xu et al. [9] proposes 
the use of a sequential tree-reweighted message passing (TRW-S) 
technique [10], in which cost information is passed both intra- and 
inter-slice. Because of the inter-slice message passing capability, this 
method is capable of preventing discontinuities in both along-track and 
elevation angle dimensions during the layer reconstruction. 

Similar to the 2D solution, an energy minimization framework on a 
first-order MRF is formulated. While the intra-slice message passing 
procedure performs in similar fashion to the Viterbi algorithm by 
propagating evidence to its neighboring pixels to the left and right 
(direction-of-arrival dimension), the inter-slice message passing 
propagates ice-bottom layer evidence between consecutive slices of 
3D imagery (along-track dimension). 

The implementation of this algorithm has been changed from [9] so 
that the message passing along the direction-of-arrival dimension is 
now always performed outward from nadir, rather than switching from 
left-to-right and right-to-left message propagation on each iteration of 
the algorithm. The issue with the previous solution was that a strong 
preference was given to the cost messages originating from the 
extreme directions-of-arrival bins on either side, where the signal 
quality is usually the worst. Since we have ground-truth data at nadir 
(usually from having tracked the corresponding 2D dataset) and the 
signal quality is often best at nadir, the preferential message passing 
direction was changed to be always outward from nadir, in such way 
that the nadir column asserts the greatest influence on the final result. 

After iterative belief propagation is performed, the set of labels that 
minimize the total (unary and binary) costs is selected as the answer. 

Unlike the Viterbi algorithm, the TRW-S algorithm on an MRF is 
not guaranteed to converge to a global optimum. However, based on 
trial and error similar to [9], we found that 50 iterations usually 
produces satisfactory results. More systematic testing in the future may 
suggest convergence criteria rather than a fixed number of iterations. 

C. 3D imagery and the Viterbi algorithm 
The layer tracking solution using the Viterbi algorithm can also be 

applied to 3D imagery with no additional adaptations. This is 
accomplished by passing in individual slices of the 3D imagery to the 
algorithm. This input format differs from that of the TRW-S algorithm, 
to which three-dimensional matrices can be passed in.  

In order to force propagation of layer evidence through the range-
line dimension, the tracking result of a given slice may be passed in as 
ground-truth to the next slice in the 3D data frame, but we do not 
explore this possibility in this work. 

 However, as expected, when applied to three-dimensional imagery 
the Viterbi algorithm is outperformed in accuracy by the TRW-S 
algorithm and is more likely to generate discontinuities in results, 
particularly along range-lines due to the absence of message-passing 
in that dimension.   

V. RESULTS AND DISCUSSION 

A. 2D imagery  
We tested our modified Viterbi routine on 2D data from the 2009 

NASA Operation IceBridge Antarctica campaign, the same dataset 
used by the authors of [5] and [8]. The algorithm received no manual 
aid of any kind, and the only ground-truth points provided were the 
aforementioned automatically-acquired crossovers. We did not re-run 
the other results for the 2D imagery; rather, these are the results 

  𝑤𝑤𝐺𝐺𝑇𝑇  𝑤𝑤𝑆𝑆𝐸𝐸𝐸𝐸 𝑤𝑤𝐵𝐵  
Viterbi 10 150 55 
TRW-S 11 24 33 



published in [5] and [8]. Three examples of tracked radar imagery are 
shown in Fig 9. Example 9a is the original frame from Fig. 1 which 
contained an ice-free section on the right side where the two layers 
merge because of the ice mask information. Example 9b shows the 
smoothness constraint helping bridge a gap through a section of weak 
signal and 9c and 9d show a section that benefited from the detrending 
where the whole ice-bottom was generally weak, but still detectable. 

It is crucial to note that previous solutions discarded appreciable 
amounts of data considered of poor quality or in which the bottom was 
not clearly visible. We have utilized all segments in which ground-
truth data were available; specific sections of the tracking results that 
present large deviations to the reference have significantly shifted the 
mean error measurement. The results obtained by our solution are 
significantly improved when the algorithm is applied to more recent 
radar datasets due to the improvements in the radar systems. 

 
TABLE II 

2D IMAGE TRACKING ERROR RESULTS (IN PIXELS) 

Error Viterbi 
[6] 

MCMC 
[8] 

Level-sets 
[5] 

Viterbi 
(Ours) 

Mean 43.1 37.4 6.6 6.0 
Median 14.4 9.1 2.1 1.0 

 
 Table II shows the results for our modified implementation of the 
Viterbi algorithm, as well as results for previously proposed solutions, 
in terms of absolute column-wise difference compared to manually 
detected ground truth, measured in pixels and averaged between all 
frames analyzed.  

B. 3D imagery  
We executed both of our modified Viterbi and TRW-S algorithm 

implementations on 3D imagery resulting from the 2014 NASA 
Operation IceBridge Canadian Arctic Archipelago campaign. 
Previously published results included only 7 frames, whereas these 
results include all 102 frames from the dataset. The tracked result for 
Fig. 3 is shown in Fig. 10. A more difficult and interesting result in 

 
Fig. 9.  a) Example of labeled 2D echogram displaying the known ice-surface layer and the ice-bottom layer tracked by our implementation of the Viterbi 
algorithm. This is the same data frame as presented in Fig. 1. b) The smoothness constraint enforced by the binary cost function allows for tracking even when 
discontinuities are present in the ice-bottom data, as can be seen around the center of the echogram above. c) and d) Data detrending and adaptive pixel intensity 
weighting allow for weak bed echoes to be accurately tracked. 

a)

b)

c)

d)

 
Fig. 10.  Example of labeled 3D slice displaying the known ice-surface layer 
and the ice-bottom layer tracked by our implementation of the TRW-S 
algorithm. This is the same data frame as presented in Fig. 3. 



shown in Fig. 11 where several discontinuities in the ice-bottom are 
handled smoothly by the tracker. 

The ground-truth against which these results are compared was 
obtained by manual correction of the results primarily using the TRW-
S algorithm. Because the algorithms allow additional ground truth to 
be passed in, manual ground truth points were added until the bottom 
layer was tracked in a satisfactory way. If the image quality was too 
poor to be tracked, then a quality mask was set so that the results for 
that section of the imagery would not be included in the comparison. 
The use of the automated trackers to create the manually tracked result 
is necessary for the 3D dataset due to its large size. For this reason, it 
is likely that the results presented here are biased towards the results 
output by the completely automated TRW-S algorithm. This effect 
does not happen in the case of 2D echograms, as manual tracking of 
these images is a far more tractable problem.  

 
TABLE III 

3D IMAGE TRACKING ERROR RESULTS (IN PIXELS) 

Error Viterbi TRW-S Viterbi 
(Ours) 

TRW-S 
(Ours) 

Mean 12.1 9.7 9.8 5.1 
Median 2.0 2.0 1.0 0.0 

 
 Table III shows the results for our modified implementations of the 
algorithms, as well as results for the originally proposed 
implementations, in terms of absolute column-wise difference 
compared to manually detected ground truth, measured in pixels and 
averaged between all frames analyzed. 

C. Crossover errors 
TABLE IV 

CROSSOVER ERROR RESULTS (IN METERS) 

Error Manually 
Corrected TRW-S 

Mean 23 26 
Median 11 13 

Table IV presents the crossover errors where flightlines crossed and 
two independent measurements were acquired over the same location. 
We obtain results for both the automated TRW-S algorithm and for the 
manually-corrected ground-truth data.  The dataset used for this 
calculation is the same as used for the 3D imagery tracking presented 
above.  

Crossover errors can be visualized by overlaying the two (crossing) 
flightlines of interest in a digital elevation model. Fig. 12 displays the 
flight paths (green and blue lines) of two data frames from the 2014 

NASA Operation IceBridge deployment, as well as the swath imaged 
by each. The region surrounded by a red line is the intersection of the 
two swaths and represents the data points that were imaged both times. 
The third section of the figure displays the vertical error between the 
results obtained by tracking (TRW-S) the ice-bottom layer at the 
intersection of the two data frames shown. 

D. Geostatistical Analysis 
 We perform an examination of the statistical properties of the ice 

layers after tracking and validation of the results. This analysis is 

 
Fig. 11.  Example of tracking through ice-bottom data discontinuities on a 3D 
slice. 

 

 

 
Fig. 12.  Crossover visualization and error map. 



valuable in detecting trends and biases of the detected layers, and has 
offered clues regarding potential improvements to the cost functions 
used by the algorithms. We expect it will also be useful in future 
improvements of the layer tracking technique, in which cost terms may 
be assigned based on the probability distributions generated by this 
geostatistical analysis. We compute two distributions, both generated 
through calculations performed on the 2014 NASA Operation 
IceBridge dataset.  

The first, shown in Fig. 13, is a distribution of direction-of-arrival 
“step sizes” per unit change in range-bin. “Step size” refers to the 
horizontal variation, in units of direction-of-arrival bins, between two 
given layer points. In other words, this is a distribution of direction-of-
arrival bin variation of ice-bottom layers when a unit change in range 
bin index is made.  

The second distribution, shown in Fig. 14, contains information 
regarding average ice thickness per distance to nearest ice-margin. The 
term “ice-margin” refers to the meeting point between icy and non-icy 
regions. The nearest ice-margin can be found in either direction-of-
arrival or range-line dimensions. 

VI. CONCLUSION 

In this work we have demonstrated ice-bottom tracking in 2D SAR 
images and 3D SAR tomographic images of glacial ice using 
adaptations of two existing algorithms. The results of these tracking 
algorithms are compared with previous results and generally perform 
better due to additional evidence and a better fit to the specific problem 
of ice imaging. Measurements at crossing points, suggest an accuracy 
of 23 m in elevation for the 3D SAR images after manual corrections 
are applied. Geostatistical analysis of the absolute and differenced ice 
thickness after manual correction suggests relatively smooth 
probability density functions that may be useful in improving the 
automated tracker in the future. 
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Fig. 13.  Histogram of step sizes (in units of direction-of-arrival bins) for bin 
1 (out of 64, as shown in Fig. 3). The red line is a fitted Gaussian distribution 
over the data. 

 
Fig. 14.  Two-dimensional histogram of ice thickness (in units of range-bins) 
as a function of distance from the nearest ice-margin (in units of meters). 
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