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Abstract

We propose a new graph model for folksonomy analysis. In order to compare our proposed model

with the vector space model, which is widely used in the information retrieval field, we have performed

multidimensional scaling schemes and clustering analysis by using the both models. While the vector

space model is easy to implement in folksonomy analysis and even computationally lighter, the graph

model is more suitable for analyzing folksonomies which can be represented as a tag graph. To overcome

computational burdens occurred in the graph model, we implemented a parallel version of Floyd-Warshall

algorithm for finding the shortest paths.

1 Introduction

As the number of virtual on-line communities has been rapidly growing for a recent period in the Internet, the

quantity of information and knowledge produced by the on-line community are measureless. The interesting

aspect of this trend is that the knowledges in the Internet are not only produced by a small number of experts,

but also they are produced by the normal Internet users. Ratings, recommendations, and collaborative tags

are one of those examples. The term folksonomies, meaning the knowledges collected from the people, has

been coined to describe such phenomena. However, such knowledges often suffer from lack of efficiency in

searching and discovering meaningful information. This is simply because i) the amount of data to process

for searching purpose is huge, ii) the data is not well organized since no single authority can exist, and iii)

there is no uniform semantics agreed by all Internet users. As a result, knowledges are often hard to search

or quickly buried in by other newly created knowledges as time goes. Many efforts has been taken and lots

of researchers have been conducted to solve this problem.

A collaborative tagging system is one of the most popular systems designed to utilize the power of people’s

knowledges and provide efficient ways of searching information. A collaborative tagging, also known as social

tagging or social indexing, is the way of collaboration to annotate objects – such as documents, Internet

media, URLs and so on – by using tags or keywords. The systems usually come with a function to browse

the data which have been collaboratively tagged by multiple users and search a specific object in the system
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Figure 1: An example of document matrix A using the vector space model of 3-dimension (a) and another
example represented in 2-dimension (b). The solid lines in (b) depicts sharing of common tags between two
documents and imply their relationships. Note that there is no tags shared between di and dj (depicted as
a dotted line). However they are indeed connected via dk; I.e, they are sharing some information.

by using a query. Through this way, the system can help users to discover unexposed information. Thus,

developing precise and efficient models for searching is the key step for building a successful collaborative

tagging system.

For building efficient indexing schemes of searching engines, two models have been widely used in the

field: the vector space model and the graph model. Although both models are sharing many similar aspects,

they are distinct in many practical point of views. As examples, the Latent Semantic Indexing (LSI) [3] is

using the vector space model for indexing and measuring pairwise similarities between documents, and the

famous ranking algorithm PageRank used by Google is based on the graph model. While the vector space

model has been widely studied and applied in many areas due to its simplicity, not many researches have been

conducted for the use of the graph model so far. While the vector space model is easy to apply, the graph

model requires additional computational cost – we will discuss shortly – but has more attractive advantages

in applying to collaborative tagging systems. Thus, the motivation of this paper is to research on the use of

the graph model in performing the analysis of folksonomy data. For this purpose, we will investigate how

the graph model is superior to the vector space model in performing clustering analysis. Secondly, how the

graph model will behave in dealing with the high volume of data. Finally, we will further research on how

to relax complexity of the graph model in order to improve the quality of clustering analysis.

In the next section, we will compare both the graph model and the vector space model and introduce

the measurement schemes we used in our experiments. The experiment results are shown in Section 3.

2 Folksonomies Analysis

In the following, we will discuss two models used in folksonomy analysis and introduce measurement schemes

we used for experiments.

2.1 The vector space model vs. the graph model

The vector space model, which is also known as bag-of-words model, where each document is represented

by an unordered collection of keywords. For the ease of representation, vectors are usually used. In the

vector space model, a documents is considered as a point in a q-dimensional orthogonal coordinate system,
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Figure 2: A tag graph(a) and a part of tag graphs of MIS-CIEC portal(b). Tags, resources (URLs), and
users are represented as a square, a circle, and a box respectively. (b) shows only resource-tag graphs and
each independent network (connected graph) is assigned to a unique color.

where q equals the total number of distinct tags in the system, and each coordinate stands for one tag word.

By using a vector notation, we can represent a document di as a q-dimension vector (wi1, · · · , wiq), where

wij is a weight of the occurrence of the term tj (Various weight schemes are used in the field and will be

discussed shortly) and the collection of n documents as a matrix A ∈ ℜn×q where each row corresponds

to di. An example is shown in Figure 1. Although the vector space model can be immediately applicable

to indexing documents in collaborative tagging systems, it lacks ability to estimate fine-tuned document-

document (or tag-tag) relationships. For an example, although two documents (or two tags) seem to have

no direct relationship by means of sharing no common tags, they may be indirectly connected and share

something via other documents. As observed in social networks, such indirect connections can play an

important role in searching. As shown in Figure 1(b), the solid lines depict the sharing of common tags

between two documents and imply direct relationships of two nodes. Note that there is no sharing tags

between di and dj (depicted as a dotted line). However they are indeed connected via dk; I.e, di and dj

are sharing some information. We can exploit this observation for building more efficient searching schemes.

However, discovering such relationships is not directly available in the vector space model.

To overcome the shortage of the vector space model, the graph model is used. The graph model is

becoming popular in the areas of the Internet search engines, like Google, and social network analysis

because of its ability to represent relationships between objects. By using the graph model, folksonomies can

be represented in a graph, which is known as a tag graph (see Figure 2(a)). In a tag graph, we can consider

an object – a tag, a document, or a user – as a node and an existence of relationship between them as an

3



Measurement Abbr Name Definition

Weight
TF tfij Term Frequency The number of tagged term tj for document di

DF dfj Document Frequency The number of documents having the same tag tj
TF-IDF tfidfij TF-Inverse DF tfij × log n

dfj
where n is the total number of di
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Table 1: Equations used for measure weights and dissimilarities. Slightly modified from original equations.

edge. Tag graphs in the real life examples tend to be a complex network, showing small world and scale-free

network properties [6]. An example of a tag graph is shown in Figure 2(b).

In fact, two models – the vector space model and the graph-based model – can be easily convertible to each

other in general. However, they are distinct to each other in various scenarios. Basically, while the vector

space model uses vectors in an orthogonal tag basis space, the graph model exploits graphical structures.

While the vector space model considers the frequencies of tag occurrences for indexing, the graph model

focuses on graphical characteristics such as hop distances and the degree of connectivity between nodes.

2.2 Dissimilarity Measurement

Measuring dissimilarities (or similarities) between two objects is a key step in folksonomy analysis and it is

directly related to the performance of the system. Although it is possible in folksonomy analysis to measure

various dissimilarities – such as document-document, document-tag, document-user, user-tag, and user-user,

in this paper we only consider document-document dissimilarity for simplicity. The other measurements can

be easily estimated by using the same technique. Also, we use only dissimilarities to avoid confusion.

Weight Measures: Measuring dissimilarities begins with measuring weights wij for tag tj and document

di in document-tag matrix A. Various schemes have been suggested in many literatures but the most popular

schemes are Term Frequency (TF thereafter for short) and Term Frequency-Inverse Document Frequency

(TF-IDF for short) which is the multiplication of TF and IDF. In a nutshell, term frequency tfij is the

number of tagged term tj for document di and the document frequency dfj is the number of documents

having the same tag tj . IDF is computed by log n
dfj

for the total number of document n and thus TF-IDF

equals tfij × log n
dfj

. Formulas used in this paper are summarized in Table 1.

Dissimilarity Measures: Dissimilarity is a degree of unlikeness between two documents. We used in

this paper three common similarity measuring schemes [2]: Cosine, Jaccard, and Pearson. Dissimilarities

are simply computed from them. Three dissimilarities used in this paper are defined as COS, JAC, and PEA,

which summarized in Table 1.

Note that measuring dissimilarity is slightly different in both models. In vector space mode, all document-

document dissimilarities can be directly computed from the document-tag matrix A; I.e, in the vector space

model, we can compute a pairwise dissimilarity matrix D ∈ ℜn×n by measuring its entries δij , meaning

the dissimilarity between two documents di and dj . δij can be computed by using one of our dissimilarity

measures: either COS(di, dj), JAC(di, dj), or PEA(di, dj). However, in the graph model we cannot compute
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Figure 3: Dissimilarity measure in the graph model. The dissimilarity between d2 and d6 can be computed
by following the connected path. One way to compute this is to find the shortest path from d2 and d6.

all dissimilarities directly from the matrix A but, instead, we should do iteratively; Firstly, compute only

dissimilarities of directly connected documents, i.e., documents sharing at least one common tag between

them, and then, measure dissimilarities of the others, which have no direct connections, by means of discov-

ering paths between them. Path discoveries can be done by using the solution of the shortest path problem.

For an example, as shown in Figure 3, the dissimilarity δ26 cannot be computed at first hand. The value

can be computed after discovering a path from d2 to d6 or vise versa. When computing dissimilarities by

using the graph model, we don’t always need to find the shortest path. However, in this paper, we choose to

use the shortest path for measuring dissimilarities. Floyd-Warshall algorithm [4] is well known for finding

the shortest paths. In summary, we can compute dissimilarities δij in the graph model by using two steps:

i) measure dissimilarities, like COS, JAC, PEA, if documents are sharing common tags, and ii) measure the

shortest path distances as dissimilarities, if ones share no common tags.

In fact, measuring dissimilarities by using graphical structures has been used in the Isomap [9]. In contrast

to the Isomap, in which graphical structures should be artificially generated, we utilize the naturally existing

graph structures in tag graphs.

Regarding the computational cost, while the vector space model requires O(n2) computation for obtaining

n × n pairwise dissimilarity matrix D, the graph model using the Floyd-Warshall algorithm needs O(n3).

Considering the number of documents usually maintained in a real system can exceed tens of thousands or

even more, the difference of computational cost between the two models will be much larger as the number of

documents is increasing. In this paper, we could overcome this problem by implementing a parallel version

of Floyd-Warshall algorithms [7] running on multiple processes simultaneously.

2.3 Multidimensional Scaling and Clustering

Dimension reduction schemes are often used prior to clustering for decreasing computational costs and

removing noises [10]. Various schemes are known for dimension reduction. Classical Multidimensional

Scaling (CMDS thereafter for short) is the one of the most popular methods, and Laplacian eigen map [1]

(Laplacian map thereafter) has been well studied in many research articles for the analysis of document

corpus. Thus, in our paper we use both CMDS and Laplacian eigen map for dimension reduction purpose.

Isomap [7] also takes the same approach; the use of CMDS with the (dis)similarity data measured in the

graph model. In this paper, we take more general approaches: we have investigated the effectiveness of

dimension reduction schemes in performing clustering analysis and comparing with other multidimensional
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scaling schemes like Laplacian. Those will be discussed in the experiment result section.

Clustering of folksonomies is an unsupervised way of classification of folksonomy data into several sub

groups so that each sub group shares more common concepts while different groups less relateness. In

many cases, quality of clustering is measured by the inter-similarity between clusters and/or the intra-

similarity within the nodes in a cluster. Euclidean distance is commonly used for measuring inter and intra

similarities in the vector space model. However, the graph model can suggest another way of measuring the

quality of folksonomy clustering. Since the connections can be obtained from the folksonomy data and those

connections can be represented as edges, intuitively we can estimate a clustering result by the number of

inter-cluster edges and/or intra-cluster edges; I.e., a good clustering algorithm should produce clusters which

maximize the number of inner-cluster edges and minimize the intra-cluster edges. Simply, in this paper, we

have devised the following quality function Q to compare clustering results:

Q =

m
∑

c=1

Qc =

m
∑

c=1

∑

i,j f(c, eij)

|E|
, (1)

where the function f(c, eij) returns 1 if an edge eij between two document di and dj is an inner-cluster

one and otherwise 0 for a given number of clusters c and |E| is the total number of existing edges. Since

the clustering numbers can vary from 1 (every node is in the same cluster) up to m (each node forms one

cluster and so m equals the total number of documents n), the value Q is the exhaustive sum for all possible

clustering numbers. Note that always Q1 = 1 and Qm = 0.

By using the quality function Q, we will estimate 1) how two models – the vector space model and the

graph model – will be different in applying clustering schemes, and 2) how clustering results will differ with

respect to the number of dimensions obtained by CMDS or Laplacian scheme. Although it is unfair that the

vector space model is compared by the quality function Q, which is specially designed for the graph model,

we measured Q values in both cases to show how different the both models are. The results will be discussed

in Section 3.

2.4 Relaxation

As mentioned earlier, growing the number of nodes makes the tag graph of folksonomy tend to be a complex

scale-free network of which diameters is relatively small compared to the number of nodes. I.e., documents in

the collaborative tagging system will be associated with most of tags and this results in lowering document-

tag and document-document distances.

This characteristic can lead to lowering quality of clustering analysis. Dimension reduction schemes

used in our paper are designed to preserve node-node Euclidean distances of dissimilarities as much as

possible, which is different from other multi-dimensional visualization schemes [5, 8] which are designed

for nice-looking layouts in 2- or 3-dimension space and allowed to ignore or exaggerate some parts of data

unevenly. Therefore, for an input of heavily entangled networks which are commonly observed in scale-free

tag graphs, distance-preserving dimension reduction schemes tends to make them be condensed in a sphere

of low dimension. For an example shown in Figure 4, while CMDS of 51 nodes (a) is scattered enough to

understand the structure, CMDS of 1125 nodes (b) is too complex to capture node-node relationships and
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Figure 4: CMDS of simple (a) and complex network (b). While CMDS of 51 nodes (a) is scattered enough,
CMDS of 1125 nodes (b) is complex.

Data Sets Documents Tags Used Remarks
MSI-CIEC portal 92 178 d:51, t:86 In-house system

Connotea 1131 6071 d:1125, t:4152 Harvested from Connotea

Table 2: Data sets used in the paper

so it is hard to be used for clusterings.

To overcome this problem, we devised a pre-process for relaxing complex relationships embedded in a tag

graph. The intuition is to remove a weak edge if a node has more stronger one. For an example, let assume

a node dk having two edges with dissimilarity δik and δkj connecting to two nodes di and dj respectively. If

δik is much bigger than δkj (δik ≫ δkj), we can ignore δik value by setting infinity. In our paper, we used

the following relaxation rule :

{

δik = ∞, if δik · θ > δkj

δkj = ∞, if δkj · θ > δik

, (2)

where θ is a threshold factor ranged 0 ≤ θ < 1.

Results of relaxation will be explained in Section 3.

3 Experiments

For the experiments in this paper, we prepared two sets of folksonomy data: One from our in-house collabora-

tive tagging system called MSI-CIEC portal, which is currently under development, and the other harvested

from Connotea, one of the well-known folksonomy systems. The Connotea data was obtained in January

2008 and only collected approximately 1000 documents in the most popular document list and their related

tags. Among the data we collected, we observed a few sub-graphs which are totally disconnected to the

other graphs. Thus, we only extracted the largest subgraph from the data set and used for our experiments.
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The data used in this experiment is summarized in Table 2.

3.1 The graph model vs. the vector space model

We compared CMDS and Laplacian eigen map produced by using either the graph model (Figure 5(a) and

6(a)) or the vector space model (Figure 5(a) and 6(b)). We also compared the Q values for clustering quality

measures. In order to observe the effectiveness of dimension reductions, we applied a clustering scheme (in

this case we used hierarchical clustering algorithm [11]) to two cases: i) before dimension reduction (depicted

as a dotted blue line in Figure 5 and 6) and ii) after dimension reduction(depicted as a solid lines in Figure 5

and 6). Note the solid lines. Depending on the data, the dimensions we can obtain from CMDS or Laplacian

is from 1 up to the maximum number of positive eigen values of data. We computed exhaustively all Q

values for each possible dimensions from 2 up to the maximum.

We also computed CMDS or Laplacian for each use of TF, TF-IDF, COS, JAC, and PEA but the results

are not vary. The summary of Q values are shown in Figure 7.

As a result, the graph based model is better than the vector space model. Overall, as shown in Figure 7,

the Q values based on the graph model (left pictures) are slightly bigger than ones based on the vector space

model (right pictures). Also, the graphs show that the clustering with the data without dimension reduction

is generally better. However, as seen in Figure 5(a), if we choose a right number of clusters, we can have

better clustering efficiency according to Q values.

3.2 Complex Network Analysis

In the next experiment, we further investigated the usefulness of the graph model with high volume of data.

We used the Connotea data in which over about 1100 nodes of document are connected with about 4100

tags. As observed in Figure 8, the CMDS graph shows the very complex structure. This implies the network

of folksonomies as a complex network. Indeed, the network shows the scale-free network properties, which

can be observed in many complex system, having lots of hub nodes with high degree of connections and so

the length of the shortest path is relatively small. In our Connotea data, we observed that the maximum

hop distance is only 4.

Anyway, although the CMDS graph looks so complex, the clustering quality Q shows better performance

result. The Q values (the dark shaded bars) are even better than the Q values without using dimension

reduction (lightly shaded bars). On the contrary, the Q values measured with the data using the vector

space model shows poor performance.

3.3 Relaxation Effect

In this experiment, we have experimented to measure the effects of relaxation defined by Eq. 2 with Con-

notea’s data in the graph model. For this purpose, we have applied our relaxation rule to the Connotea’s data

with respect to θ = 0.2 and 0.4 and measured clustering quality Q of CMDS (See Figure 10). As a result,

comparing with no relaxation case as shown in Figure 8(a), clustering quality scores Q are increasing as θ

is bigger from 0.2 to 0.4. Thus, we have observed a simple relaxation can be used for improving clustering

qualities.
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(a) CMDS by using the graph model
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(b) CMDS by using the vector space model

Figure 5: CMDS with MSI-CIEC data based on the graph model (a) and the vector space model (b). Both
are using TF and COS. Q values for clustering quality is shown in the right. The horizontal blue dotted
lines shows the Q values of clustering without dimension reduction. The black solid lines are showing the
changes of Q values for clustering the data from CMDS by increasing dimensions from 2 up to the maximum
dimension possibly extracted from CMDS, which in this case is 32 and 44 respectively.
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(a) Laplacian by using the graph model
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(b) Laplacian by using the vector space model

Figure 6: Laplacian with MSI-CIEC data based on the graph model (top) and the vector space model
(bottom). Both are using TF-IDF and PEA. Q values for clustering quality is shown in the right. The
horizontal blue dotted lines shows the Q values of clustering without dimension reduction. The black solid
lines are showing the changes of Q values for clustering the data from CMDS by increasing dimensions from
2 up to the maximum dimension possibly extracted from Laplacian, which is 51 in this case.
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Figure 7: Q values for all experiments with MSI-CIEC data. Dark color bars represents the average of Q
values for all dimensions possible obtained from CMDS or Laplacian and the light color bar shows the Q
values of clustering without dimension reduction. Overall, the graph models are better than the vector space
model according to the Q values.
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Figure 8: CMDS with Connotea data based on the graph model (a) and the vector space model (b). Both
are using TF and COS. Q values for clustering quality is shown in the right. The horizontal blue dotted
lines shows the Q values of clustering without dimension reduction. The black solid lines are showing the
changes of Q values for clustering the data from CMDS by increasing dimensions from 2 up to the maximum
dimension possibly obtained from CMDS.
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Figure 9: Q values for clustering with/without using CMDS of Connotea data. The left picture is drawn
based on the graph model and the right picture is based on the vector space model. Dark color bars represent
the average of Q values for all dimensions possible obtained from CMDS and the light color bar shows the
Q values of clustering without dimension reduction. Clearly, the graph models show good performance than
the vector space model.

4 Conclusion

In this paper, we investigated the two common model widely used in the field of information retrieval: the

vector space model and the graph model. Although the vector space model is easy to use and can be directly

applicable in the collaborative tagging systems, it has a disadvantage in describing the relationships which

are commonly existing in folksonomy data. Contrary to the vector space model, the graph model is more

suitable for the data in which members are highly inter connected and showing complex network structures.

We verified this by performing clustering analysis and dimensional reduction schemes such as CMDS and

Laplacian eigen map. In case of analyzing heavily entangled networks, we devised a relaxation scheme which

can remove unrelated edges and help to improve clustering qualities for CMDS.

As for the future search, we are planning to apply more various clustering algorithms by using the graph

model in order to drive more general conclusions.
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Figure 10: Effect of relaxation with respect to θ factor 0.2 and 0.4. Measured with connotea’s data in the
graph model. Graphs with no relaxation can be found in Figure 8(a). Higher quality scores of clustering are
observed as θ is increasing.
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