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Abstract 
We discuss the application of Web 2.0 to support scientific research (e-Science) and related 
“e-moreorlessanything” applications. Web 2.0 offers interesting technical approaches to build 
the core e-infrastructure (Cyberinfrastructure) as well as a host of interesting services 
exemplified by Facebook, YouTube, Amazon S3/EC2 and Google maps. We discuss why 
some of the original Grid goals of linking the world's computer systems may not be so 
relevant today and that interoperability is needed at the data and not always at the 
infrastructure level. Web 2.0 may also support Parallel Programming 2.0 -- a better parallel 
computing software environment motivated by the need to run commodity applications on 
multicore chips. A “Grid on the chip” will be a common use of future chips with tens or 
hundreds of cores. 
 
1. Introduction 
Grid computing has dominated distributed computing research for more than a decade 
(for reviews, see [Foster2004] and [Berman2003]).  Architecturally, Grids (as normally 
defined by the community, but see below) have been closely aligned with Web Services 
[Atkinson2003], and the international research communities have worked to define open 
XML standards [OGF].  The application of Grids has traditionally centered on integrating 
very high-end resources (supercomputers, extremely large clusters, and data archives) 
that are run be various real agencies into virtual organizations.  The NSF TeraGrid [TG] 
and NSF/DOE Open Science Grid [OSG] are prominent examples in the United States.   
 
As we discuss in this paper, we foresee two important pressures on or drivers for the 
future of Grid computing.  First, architecturally, the Web Service foundations of Grids 
are being challenged by so-called “Web 2.0” network computing approaches.  As we 
have discussed in previous papers [Fox2007A, Fox2007B, Liu2007, Mustacoglu2007, 
Pierce2007A, Qiu2007A, Topcu2007], Web 2.0 (although unlike Web Services a largely 
uncoordinated activity) provides a comprehensive set of Web computing capabilities that 
mirrors the Web Service architecture [Hey2007, HinchcliffeBlog, Parastatidis2007].  
Second, we see major challenges to Grids as their traditional deployment (providing the 
middleware for integrating major computing research centers) will be undermined by 
problem of an abundance (rather than a scarcity) of computing power for many problems.   
Arguably this state has existed for some time (hence the success of Condor [Thain2005] 
and related technologies for cycle scavenging), but we see this as being revolutionized by 
the coming ubiquity of parallel computing which include as a special case loosely 



coupled Grid applications.  The availability of substantial parallel computing power 
through dozens of multicore processors available on a single machine will allow current 
small and medium sized parallel computing jobs to run on a single machine, making the 
traditional supercomputing centers’ infrastructure (user time allocations, multi-user batch 
queuing systems) a relatively unattractive, complex solution for all but the largest of 
parallel computing problems. Restructuring current Supercomputer infrastructure as 
highly parallel multicores in a “cloud” systems architecture may provide a new direction 
that links Web 2.0 and Grids and satisfy the “common” case of multiple smallish jobs. 
Power uses may be served with a “Compute Grid (e.g. Globus [Foster2006]) Cloud” with 
an architecture similar to current supercomputer infrastructure. 
 
Before addressing these driving issues, we begin with a survey of terms and concepts that 
will be discussed in this paper.  These will clarify our internal usage and we hope will 
also be adopted by others.  
 
Narrow and Broad Grids: This field is confused by inconsistent use of terminology, 
and it is important to distinguish between applications, infrastructure and technologies, 
and their different realizations. We define Web Services, Grids and (aspects of) Web 2.0 
and its variants like Enterprise 2.0 as technologies. Sometimes the term Grids is reserved 
for specific architectures like OGSA or a distributed system built from Web Services. 
There are also Grid systems like Globus, EGEE [EGEE] and TeraGrid with a particular 
application, technology or geographic focus. We call all these Narrow Grids, but one can 
also use the term Grid to describe any (large-scale) distributed system that is coordinated 
or managed for some goal. Such a Broad Grid concept would for example encompass 
Globus, general Web Service and Web 2.0 systems. These technologies combine and 
compete to build electronic (software) infrastructures that are termed e-infrastructure or 
Cyberinfrastructure. Such electronic infrastructure enables or hosts applications that we 
can term generically e-moreorlessanything. e-Science or perhaps better e-Research is of 
course a special case of e-moreorlessanything where it is science or scholarly research 
that is being electronically supported [DeRoure2007, Goble2007]. 
 
e-moreorlessanything: The originator of e-Science, John Taylor, Director General of 
Research Councils UK, Office of Science and Technology, provides the following 
definition: e-Science is about global collaboration in key areas of science, and the next 
generation of infrastructure that will enable it. e-Science involves developing tools and 
technologies that allow scientists to do ‘faster, better or different’ research. There are 
many other specific examples of e-moreorlessanything. For example, e-Business captures 
an emerging view of corporations as dynamic virtual organizations linking employees, 
customers and stakeholders across the world. Outsourcing is one aspect of such global 
corporate enterprise and so another example of e-moreorlessanything. In general these 
areas have a deluge of data of ever increasing size driven by new instruments, sensors 
and internet resources. This data must be managed and understood with sophisticated 
tools. Further people, computers, data (including sensors and instruments) must be linked 
for both on-demand and asynchronous activities. This distributed system forms a virtual 
organization (i.e. an electronically supported distributed but real organization) supported 
by a mix of Web 2.0 and Grid tools [Fox2007D]. 



 
Cyberinfrastructure and e-Infrastructure: Cyberinfrastructure is a largely USA term 
for the infrastructure that supports the data, people, and computers of distributed 
science (i.e. e-Science defined above) – by exploiting Internet technology (Web2.0) 
adding (via Grid technology) management, security, supercomputers etc 
[Bement2007, NSF2003]. 
 
NSF’s Cyberinfrastructure has two rather different foci. It has both parallel and 
distributed computing systems that are both ‘just” collections of networked computers 
and storage. Of course parallel systems have low latency (microseconds) between 
nodes and distributed systems higher latency (many milliseconds) between nodes. 
The parallel components are used to get high performance on individual large 
simulations with problems that need to be decomposed. These simulations could 
involve data analysis or data assimilation with data naturally distributed and 
supported by the establishment of the Cyberinfrastructure. In general the distributed 
aspect of Cyberinfrastructure integrates already distinct components which currently 
may or may not be parallel systems. As multicore becomes pervasive, all components 
of Cyberinfrastructure will become parallel if not “massively parallel”. 
 
Services: Cyberinfrastructure is made of distributed, ideally autonomous services 
(originally Web services) that are “just” programs or data sources packaged for 
distributed access. The data is expressed by XML-based standards like GML, CML 
and CellML/SBML (for Geography, Chemistry, and Biology respectively), while a 
service plays the role of methods in traditional programming. Web services use 
WSDL to define interfaces to the method functionality.  In contrast, Web 2.0 follows 
the old programming library practice: one just specifies the interface without special 
interface definition language standards. However all approaches to services use a 
loose coupling of coarse grained entities where the interface establishes a “contract” 
independent of implementation between two services or a service and a client. Note that 
software engineering and interoperability/standards are closely linked to the use of 
services. Although there is no broad agreement on the “right” approach to services, all 
major approaches to distributed systems today are built around some form of services. 
These services are composed (linked together) by mashups (typically scripts) or 
workflow (often based on XML specifications like BPEL), which represent “Grid” or 
“Service” programming.  Since we are discussing distributed systems, note that the 
composed services are actually aggregations of clients: the clients run in a single 
environment (i.e. JavaScript in a browser or a Java Virtual Machine in a portal server), 
while the services run remotely and are unaware of each other. 
 
For e-Science, services fall into several categories including models, applications, and 
simulations; data access, storage, federation, and discovery; filters for data mining and 
manipulation; and finally general capabilities such as collaboration, security etc.   
 

2. Web 2.0 



There is no precise definition of Web 2.0, but it is operationally defined by a set of 
technologies (JSON, AJAX, etc. discussed later) and a wide range of Web sites 
supporting user interaction among themselves (social networking) for sharing resources 
such as images and video. Media sharing and bookmarking are structured to allow 
communities (i.e. virtual organizations) to grow up around resources. Similarly peer 
production sites allow users (people in communities) to select and rate presented 
information. Technical capabilities include Start Pages (portals) for access to and 
mashups for integration of web information. There are also very popular capabilities like 
Blogs and Wikis for supporting communication either broadly or within an organization. 
Google maps and related technologies illustrate the power of interactive, integrative, 
contributory technologies, and are emblematic of Web 2.0, revolutionizing the extremely 
complicated world of Geographical Information Systems with much simpler XML 
standards and programming APIs that democratize the development process.  
 
With consequences perhaps analogous to its upheaval of Geographical Information 
Systems, Web 2.0 has also encroached on more traditional territory of cyberinfrastructure.  
Recent important Web 2.0 developments include cloud systems, which support the 
distributed storage and computing that was up to now the distinctive feature of Grids. 
These clouds address “commodity usage” rather than the high performance simulations 
and data transport that are characteristic of Grids like TeraGrid (USA) and DEISA 
(Europe).   From the developer’s point of view, these systems provide much simpler 
programming, resource allocation, and security models than Grid computing.  This can be 
traced to motivating problems: “narrow” Grids have a strong research flavor and have 
often attempted to support relatively complicated use cases [Foster2004B], whereas 
“cloud” systems are driven by economic considerations and so must appeal to the most 
popular (and simple) use cases.  Some of this complication is a result of conflating the 
complicated needs of Grid deployers with the simpler needs of Grid developers.  
Computing clouds are not necessarily simpler to deploy, but they do present a simpler 
face to developers. 
 
Web 2.0 can benefit e-Science in many ways. Its tools can enhance scientific 
collaboration, i.e. effectively support virtual organizations, in different ways from Grids, 
which focus on secure robust managed sharing of high value resources. The popularity of 
Web 2.0 can provide high quality technologies and software that (due to large 
commercial investment) can be very useful in e-Science and higher quality than Grid or 
Web Service solutions. Furthermore, the usability and participatory nature of Web 2.0 
can bring science and its informatics to a broader audience. As we mention later, Web 2.0 
can even help the emerging challenge of using multicore chips, i.e. in improving parallel 
computing programming and runtime environments. 
 
We will now make the comparison of Web 2.0 and Grids more concrete. In Tables 1 and 
2, we summarize and compare the Grid and Web 2.0 approaches to three major e-Science 
features.   
 
Table 1: Grid View of e-Science Features 
Feature Grid Approach 



1: Community 
Building 

Designed to enable Virtual Organizations based on collaborations 
between existing organizations such as research groups and 
supercomputing centers.  Top-down approach, closely tied to PKI-
based security infrastructure. 

2: Collaboration Focused on real time audio/video collaborations such as Access 
Grid.  Virtual Organizations provide a framework but typically no 
interesting functions for asynchronous collaboration. 

3: Semantic and 
ontological 
representation of 
metadata 

Semantic Grid efforts follow closely the Semantic Web and use 
RDF, OWL for information representation.  These can be used for 
both describing metadata and the contents of digital libraries as well 
as workflows. 

 
Table 2: Web 2.0 View of e-Science Features 
Feature Web 2.0 Approach 
1: Community 
Building 

Web 2.0 communities are typically networks of emergent groups of 
individuals with shared interests. Facebook, MySpaces, and Flickr 
are prominent examples. 

2: Collaboration Dominated by asynchronous collaboration: group-edited content 
(Wikis), shared commenting /rating/tagging of online content.  
Collaboration and community building are intertwined. 

3: Semantic and 
ontological 
representation of 
metadata 

Metadata described by Microformats (semantic XHTML extensions) 
that represent community consensus and convention.  Ontologies are 
replaced by “folksonomies” of conventional tags used to describe a 
network entity.  

 
Web 2.0 and Web Services: Originally we expected that Web Services would dominate 
a new generation of Enterprise software and that Grids would leverage commercial 
investment in this field and be built in terms of Web Services [Atkinson2005]. However 
this is not what happened. The rise of Web 2.0 shows that commercial software 
innovation is happening in a different space – that of consumer and media systems – 
where Web services have not had significant adoption.  
 
Enterprise software and Web Services have evolved in expected directions but slowly. 
There is good .NET and Java support for Web services and the so-called WS-* 
specifications provide a rich, sophisticated but complicated standard set of capabilities for 
security, fault tolerance, meta-data, discovery, notification etc. We defined above a class 
of “Narrow Grids” build on Web Services, which provide a robust managed environment 
with growing but still small adoption in Enterprise systems and distributed science (e-
Science).  
 
It once appeared that use of Web Services in Grids was inevitable but this is no longer 
clear. Experience has shown that Web services are often complicated, slow and of lower 
functionality than traditional approaches. For example, WS-Security is quite slow while 
WS-RM (Reliable Messaging) seems to have poor adoption and is for example 
inadequate for multi-cast operations. Standards like WSDM (distributed management) 



seem unnecessarily complex, which hampers its broad adoption, as does the difficult 
deployment (too much Java!) of Web Service infrastructure. 
 
Web 2.0 supports a similar architecture to Web services despite being developed in a 
more chaotic but remarkably successful fashion with a service architecture using a variety 
of protocols including those of Web and Grid services. For example there are over 500 
Interfaces defined at [PW.com].  These interfaces and data formats (such as KML for 
Google maps) are often proprietary or de facto standards. However the communicatory 
nature of Web 2.0 makes interface information readily available while the arcane UDDI 
Web Service registry approach has failed. One can easily combine SOAP (Web Service) 
based services/systems with Web 2.0 services and simple REST or XML over HTTP 
messages. However in such a hybrid world, the systems will naturally evolve to the 
“lowest common denominator” and the additional structure and complexity of SOAP 
messaging and WS-* specifications will not thrive.  

 
Service Oriented Information Architecture 
There is agreement on a general service architecture for information infrastructure – one 
creates a Cyberinfrastructure consisting of distributed services accessed by portals, 
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Figure 1: Information architecture combining Web 2.0 and Grid Concepts. Wisdom 
is obtained by fusing and transforming data that comes from sensors, instruments, 
services, Grids and Clouds. Data is transformed by filters that perform data 
analysis, transformation, assimilation or production from simulations. Traditional 
Grids expose constituent services as illustrated by Filter Service surrounded by 
other (fluff services (fs)) services in dashed rectangles. Compute, Storage and 
Filter clouds hide this detail and expose data interfaces. Discovery is needed for 
both Clouds and Grid services and all components are linked by messages 



gadgets, gateways, and/or RSS feeds. This is illustrated in Fig. 1 which includes a rich set 
of sensor services that wrap all sources of data which can be simulations, video cams, 
robots, instruments such as LHC or even just any other service, Grid or Cloud. This data 
is then processed by a workflow that fuses and transforms the data into more refined 
forms enabling decisions. There is a traditional DIKW (Data, Information. Knowledge 
and Wisdom) pipeline. In the figure a service that accepts raw data and produces data is 
architecturally no different from one that accepts knowledge and produces wisdom. The 
filters shown in figure could involve geometric corrections, simulations or sophisticated 
data-mining algorithms but each most importantly defined by the input and output data 
which are of course transported as messages between services. We indicate in figure how 
current Grid architectures identify individual services while the Cloud architectures 
identifies collections of services (clouds) whose internal service infrastructure is opaque. 
In either case, we see a classic system of systems or rather Grid of Grids hierarchical 
composite architecture. Note that in this approach, sensor services and filter services are 
only distinguished in their input; filter services and clouds get messages as input from 
other services or clouds. Sensor services have some “out-of-band” source of data but both 
sensors and filters have similar outputs – namely “e-moreorlessanything” formatted data 
streams. In this approach an RSS feed from Flickr for example is a sensor as it produces 
messages every now and then as a time series. 
 
Narrow Grids and Web Services A striking feature of traditional Web services is the 
rich WS-* specifications defining in detail the overall system infrastructure. Although a 
beautiful idea, it has proven hard to implement well and realize the benefits of the 
infrastructure level interoperability. In contrast, Web 2.0 focuses on a few simple system 
principles with interoperability as discussed for Figure 1 only at the application data level. 
Note this data focus is consistent with Semantic Grid/Web but so far the sophisticated 
capabilities (built around say RDF and OWL) of the Semantic Web have had modest use. 
A cynic might note that the lack of detailed standards in Web 2.0 come about as it is 
preferable to industry which can get proprietary advantage inside their clouds. Returning 
to an earlier discussion, one needs to share computing, data, people in e-
moreorlessanything, Grids initially focused on computing but data and people (the Web 
2.0 focus) are currently more important. 
 
A Web 2.0 fanatic might argue that Web Services and Narrow Grids are taking too long 
to solve the wrong problem at the wrong point in stack with a complexity that makes 
friendly usability difficult. Note that in spite of the unclear technology directions, e-
Science and more generally e-moreorlessanything are thriving with the advantages of 
distributed enablement very clear in many fields. 
 
3. Multicore and Too much Computing 
Traditionally both grids and parallel computing have tried to increase computing 
capabilities by aggregating computers together in a distributed or local fashion 
respectively. This approach has naturally optimized the performance of codes but 
often this is at the cost of re-usability. One also sees great interest in exploiting all 
possible CPU’s such as graphics co-processors on a motherboard while in a 
distributed system scavenging software makes use of any “idle cycles” on computers 



often across administrative domains. Again approaches like TeraGrid for NSF in the 
USA and those in other communities have linked many large computers together. 
Science Gateways (portals) show the positives of such Grids as they allow more 
seamless choice of use of networked resources; such brokering is in the spirit of Web 
2.0. However the original meta-computing goal of Grids, i.e. the integration of 
capabilities of multiple resources, creates a lot of the complexity of today’s systems 
that cross administrative domains. This should be contrasted with the cloud system 
approach which give the illusion of a “black-box cluster” i.e. a single uniform system. 
We have emphasized already that data is naturally distributed and simple data format 
interoperability standards support exchange of information between different clouds 
and between clouds and client systems. Traditional “Compute/File” Grids do increase 
the available computing but is this really needed?  
 
Arguably the next crisis in technology area will be the opposite problem to that 
tackled by Grids; namely, too much computing will be available.  Mass market CPU 
chips will be 32-128way parallel in 5 years time, and we currently have little idea 
how to use them on commodity systems – especially on clients. There are perhaps at 
most 2 releases of standard software (such as Windows or Microsoft Office) in this 
time span and we need to find value in these new chips for the broad market so that 
the multicore instantiation of Moore’s law (roughly constant clock speed, increasing 
core density) will lead to improved performance. We need to address this issue with 
approaches that can be implemented in next 3-5 years. Multicore servers have one 
source of “natural parallelism” as many users can access and use machines 
simultaneously on separate cores but there is no such obvious universal parallelism on 
clients.  
 
One of most interesting analyses of possible applications that can exploit multicore 
comes from Intel with its RMS (Recognition Mining Synthesis) analysis 
[INTELRMS]. They identify gaming and generalized decision support (data mining) 
as possible multicore applications. Perhaps it will be too much data and its data mining 
that will come to the rescue of too much computing? There will be an increasing data 
deluge including the scientific observations for e-Science but these are most naturally 
addressed by parallel data mining on servers. However the deluge is pervasive and 
clients could host data from local (video, environmental) sensors plus data fetched 
from the network (Intranet and Internet). The latter might be mined automatically by 
the client to provide an “intelligent environment” for user sessions. Most relevant data 
mining algorithms can be efficiently parallelized as long as the datasets are large 
enough. Thus we imagine that data-mining of this “too much data” will use up the 
“too much computing” both for server-side science and client-side PC’s. 
 

3.1. Attack of the Killer Multicores 
Today commodity Intel systems are sold with 8 cores spread over two processors. 
Specialized chips such as GPU’s and IBM Cell processor have substantially more cores 
[Dongarra2007].  Moore’s Law implies and will be satisfied by and imply exponentially 
increasing number of cores doubling every 1.5-3 Years. However, we can expect only 



modest increases in clock speed in individual processors.  Moore’s Law will be upheld by 
the ever increasing number of cores on a single processor. Intel has already prototyped an 
80 core server chip that is a foretaste of systems that could be on the market as early as 
2011.   
 
In order to use these cores, most hardware and software vendors have started significant 
activities in parallel computing programming (at least partially recycled from the past 
[Fox2007C].) Some of the programming models and application styles are similar to 
Grids (Web 2.0) programming styles (as we will discuss in Section 4.2) [Patterson2007, 
SALSA].  Parallel computing will use where possible distributed system technology to 
benefit from the enormous software investment in the area. On the other hand, dozens of 
cores on a chip will motivate many to build a Broad Grid on a chip. This will encourage 
the developers of Broad Grid technology and applications to make them run very well 
internally to multicore systems. 
 

3.2. Grids meet Multicore Systems 
The expected rapid growth in the number of cores per chip has important implications for 
Grids. With 16-128 cores on a single commodity system five years from now, one will 
both be able to build a Grid like application on a chip and indeed must build such an 
application to get the Moore’s law performance increase.  Otherwise one will “waste” 
cores.  Indeed, one of the challenges facing chip manufacturers is to identify parallel 
applications that can be used to provide a justification for the cores. 
 
One will not want to reprogram when moving an application from a 64 node cluster or 
transcontinental implementation to a single chip Grid. However multicore chips have a 
very different architecture from Grids: shared rather than distributed memory.  Similarly, 
latencies are measured in microseconds not milliseconds.  As we have discussed in 
previous papers, millisecond latencies in messaging (“the rule of the millisecond”) 
actually provide a fair description that can be used to distinguish Grid applications from 
parallel applications.  Thus Grid and multicore technologies will need to “converge” and 
converged technology model will have different requirements from current Grid 
assumptions 
 

3.3. Grid versus Multicore Applications: the Role of Data 
It seems likely that future multicore applications will involve a loosely coupled mix of 
multiple modules that at least include the three application classes: Data access, query 
and store; Analysis, Filtering, Transformation and/or simulation; User visualization and 
interaction. This is precisely the mix that Grids support. Grids of course involve 
distributed modules implementing the different components, while multicore machines 
must integrate them in a single system.  Grids and Web 2.0 use service-oriented 
architectures to describe system at module level and we will argue later that this is an 
appropriate model for multicore programming. Given the importance of data in all 
applications (the “too much data” hypothesis), we need to analyze carefully where the 
data for multicore applications will come from as all this computing is not useful if one 
spends all one’s time migrating data around. One typically addresses this by placing 
compute (analysis) at the data but this is not so obvious if most of the computing power is 



instantiated as multicore clients on the edge of the network (that is, the server under a 
user’s desk). These multicore clients can get data from the Internet, i.e. distributed 
sources. As mentioned earlier, this data captures the personal interests of client and can 
be used by client to help user interact with world. Another possibility local source of data 
is that from a set of local sensors (video-cams and environmental sensors) naturally 
stored on client or locally to client. Alternatively the multicore client could perform a 
standalone calculation or be part of a distributed coordinated computation (SETI@Home) 
 
Of course one may be able to afford the network use to copy or cache remote data on a 
client. In this regard, note that as you increase sophistication of data analysis, you 
increase the ratio of compute to input-output data transfer. Maybe as “too much data” and 
“too much computing” inexorably take off, algorithms will evolve and increase their 
complexity to allow easier matching of data and multicores. For example, a typical 
modern data-mining approach like Support Vector Machine is sophisticated (dense) 
matrix algebra and not just text matching [BYOPA2007].  The time complexity of 
sophisticated data analysis will make it more attractive to fetch data from the Internet and 
cache/store on client.  The increasing algorithmic computational complexity will also 
help with memory bandwidth problems in multicore chips.  In this vision, the current 
Grid “just” acts as a source of data and the Grid application runs locally. 
 
4. A Comparison of Web 2.0 and Grid Technologies 
In this section we review Web 2.0 technologies, which we have organized into categories 
matching our earlier classification of Web Service standards.  These are presented in 
Tables 3 and 4.   

 
Table 3: Ten Web Service Areas with Examples 
WS-* Area Grid/Web Service Examples 
1: Core Service Model XML, WSDL, SOAP 
2: Service Internet WS-Addressing, WS-MessageDelivery; Reliable Messaging 

WSRM; Efficient Messaging MOTM 
3: Notification WS-Notification, WS-Eventing (Publish-Subscribe) 
4: Workflow and 
Transactions 

BPEL, WS-Choreography, WS-Coordination 

5: Security WS-Security, WS-Trust, WS-Federation, SAML,  
WS-SecureConversation 

6: Service Discovery UDDI, WS-Discovery 
7: System Metadata 
and State 

WSRF, WS-MetadataExchange, WS-Context 

8: Management WSDM, WS-Management, WS-Transfer 
9: Policy and 
Agreements 

WS-Policy, WS-Agreement 

10: Portals and User 
Interfaces 

WSRP (Remote Portlets) 

 

Table 4: Web 2.0 Approach to Web Service Capabilities 
WS-* Area Web 2.0 Approach 



1: Core Service Model XML becomes optional but still useful (especially if kept simple 
and small enough for simple parsing and manipulation in 
memory limited applications); SOAP becomes JSON, RSS, or 
ATOM; WSDL becomes REST with generic API  (GET, PUT, 
etc); HTTP remains the primary transport mechanism.  

2: Service Internet No special Quality of Service.  Assumes TCP/IP provides 
sufficient guarantees. Use JMS or equivalent although JMS not 
very aligned with Web 2.0. Most naturally use inside Clouds. 

3: Notification XmlHttpRequest plus HTTP with polling– JMS perhaps?  
4: Workflow and 
Transactions (no 
Transactions in Web 
2.0) 

Workflows analogous to mashups, Google MapReduce.  
Scripting with PHP, JavaScript …. 

5: Security SSL, HTTP Authentication/Authorization; OpenID is Web 2.0 
Single Sign on. 

6: Service Discovery Web sites such as http://www.programmableweb.com; no 
standard programmable discovery system, but examples based 
on Atom Publishing Protocol are possible.  

7: System Metadata and 
State 

Processed by application – no exposed system state (REST); 
Microformats are a universal metadata approach 

8: Management 
(Interaction) 

WS-Transfer-style protocols (GET, PUT, etc). 

9: Policy and 
Agreements 

Service dependent. Processed by application 

10: Portals and User 
Interfaces 

Start Pages, AJAX and Widgets (Netvibes), Gadgets 

 
4.1. Web 2.0 and Grids 

In this section, we compare Web 2.0 and Grid [Fox2007D] environments and especially 
portals and workflow engines.  Given the level of adoption of Web 2.0 technologies 
relative to Grid technologies, we suggest the replacement of many Grid components 
with their Web 2.0 equivalents: Mashups could replace workflow; Start Pages with 
gadgets and widgets could replace portlets, while UDDI could be replaced by user 
generated registries (discovered by standard Web search engines), and so on. 
Microformats (that is, community-defined XHTML extensions to represent nuggets of 
metadata) can be used to describe Web 2.0 services, providing potentially a more 
automatic and sophisticated discovery mechanism.  Alternatively, one may adapt the 
Atom Publishing Protocol as an information system.  This REST-like API is designed to 
support the discovery of new Atom feeds using Atom itself as an information and 
metadata format.  Atom is extensible, so one may embed other markups (such as 
microformats) into the Atom feed.  
 
Mashups and Workflows: One controversial observation in our comparison above 
(Tables 3 and 4) is that mashups are at least operationally equivalent to Grid workflow 
systems.  Both are best defined through examples.  Mashup applications combine 
operations from two or more Web 2.0 services with the linkage either client or server side.  



The relatively sophisticated Web 2.0 approach to clients encourages much that is server 
side in a classic Web Service approach to be replaced by client (often JavaScript) 
software. Google Maps, Yahoo Maps or Microsoft Virtual Earth supplemented with 
services providing custom data are the most well known mashups.  The popularity of 
mashups has grown to the point that compositional tools are now available [Pipes, 
Popfly].  These are reviewed at [HinchcliffeBlog] while Web Service and Grid Workflow 
tools are reviewed at [Gannon2006, Yu2005].  As with mashups, workflow engines 
combine Web Services into composite applications.  They are typically “scripted” with 
XML (BPEL), just as mashups are typically written using JavaScript or PHP.  However 
both now offer visual interfaces which are familiar from systems like AVS which like 
Pipeline Pilot (Cheminformatics) and Khoros (Image Processing), we now recognize as 
early workflow and mashup engines.  
 
Workflows and mashups themselves are excellent candidates for other Web 2.0 
applications.  Here we note the important myExperiment effort, which is building a Web 
2.0 social network including shared Taverna workflows [myexperiment].  Yahoo Pipes 
offers a somewhat similar mechanism: pipes may be shared, extended, annotated, and 
rated by collaborators.  One may also search for interesting workflows or see which ones 
are the most viewed. 
 
Web 2.0 Mashups and APIs: One of the best sources for mashup examples and APIs is 
the Programmable Web [PW.com], which has (as of December 23, 2007) 2607 mashups 
and 579 Web 2.0 APIs. Google Maps is the most often used in mashups. Amazon S3 is 
also growing in popularity, being number 21 in the list of API’s in use by Mashups. Note 
that the Programmable Web acts as a UDDI style registry for the Web 2.0. It is striking 
that in spite of the emphasis on open standards of the research community, there is no 
such site registering e-Science and Grid services. Each site has API and its features that 
are divided into broad categories.   Only a few are used a lot with only 56 API’s or 
around 10% of the total used in 10 or more mashups.  APIs are also available through an 
RSS feed, providing a programmable way for interacting with the APIs. It seems unlikely 
that complex technologies like BPEL for specifying workflows will be competitive with 
the simpler scripting technologies used in Web 2.0 and some Grid workflows. XML is 
very powerful but it is not an elegant way to specify a programming language. 
 
Portlets and Google Gadgets:  Portals (also known as Science Gateways especially 
when used for the TeraGrid) for Grid Systems are commonly built using server-side Java 
technology and have a component-container model (portlets).  Standard compliant portlet 
containers such as GridSphere aggregate portlets on the server-side into a single Web 
application.  Portlet components are portable across standard compliant applications but 
must be deployed on the server with the container.  The Web Services for Remote 
Portlets OASIS standard (WSRP) provides the potential of decoupling portlets from the 
Java Virtual Machine of the container, but this standard has been hampered by lack of 
well-implemented open source tools and probably also a compelling use case, at least for 
science gateways.  
 



In contrast, Start Pages such as iGoogle offer user-customizable content driven by a large 
collection of community contributed components (“gadgets”). Gadgets are clients to Web 
2.0 services such as RSS feeds and more complicated applications.  iGoogle uses client-
side instead of server-side aggregation. Gadgets can also be designed to be work with 
Google sidebar. Although more user friendly than most portlet containers and much 
richer in content, Start Pages do not support the level of security assumed in most portlet-
based applications.  The resolution of this is either to design an open source Start Page 
container that can support more sophisticated security requirements, or alternatively to 
develop more science gadgets that do not require sophisticated security models.   
 

4.2. Parallel Programming 2.0 
Web 2.0 can also help address long standing difficulties with parallel programming 
environments which we can illustrate with the multicore Service Aggregated Linked 
Sequential Activities (SALSA) project from Indiana University [Qiu2007A, SALSA]. 
Their aim is to link parallel and distributed (Grid) computing by developing parallel 
applications as services and not as programs or libraries.  Given the expected “too much 
data and computing” scenario explained in Section 3, SALSA is developing a set of 
services (library) of multicore parallel data mining algorithms that can be composed as 
mashups.  
 
We need to define a model for parallel programming [Patterson2007]. Experience from 
parallel programming (largely for scientific applications) suggests we break parallelism 
into two areas: firstly, building parallel “kernels” (libraries) and secondly, composing 
parallel library components into complete applications.  
 
Scalable Parallel Components (Kernels): There are no agreed high-level programming 
environments for building library members that are broadly applicable. However, lower 
level approaches where parallelism must be defined explicitly are available and although 
quite hard to use, are reliable and well understood. Such models include MPI for 
messaging or just locks within a single shared memory. SALSA is currently using a very 
flexible messaging system, CCR from Microsoft. There are several low level messaging 
patterns to support here including the collective synchronization of MPI, dynamic 
irregular thread parallelism needed in search algorithms, and more specialized cases like 
discrete event simulation. We currently assume that the kernels of such scalable parallel 
libraries will be built by experts with a broader group of programmers composing library 
members into complete applications using approaches described below. 
 
Composition of Parallel Components: The composition step has many excellent 
solutions as this does not have the same drastic synchronization and correctness 
constraints as in scalable parallelism above. Approaches to composition include task 
parallelism in languages such as C++, C#, Java and Fortran90; general scripting 
languages like Python; and domain specific environments like Matlab. Recent approaches 
include MapReduce, F# and DSS. Many scientific applications use MPI for the coarse 
grain as well as fine grain area parallelism. The new languages from DARPA’s HPCS 
program support task parallelism (composition of parallel components), but we expect 
that decoupling composition and scalable parallelism will remain popular and must be 



supported. Graphical interfaces were popularized with AVS and Khoros 10-15 years ago 
and recently are seen in Grid/Web Service workflow systems such as Taverna, 
InforSense KDE, Pipeline Pilot (from SciTegic), and XBaya (part of the LEAD 
environment built at Indiana University). As discussed in section 4.1, Mashups from Web 
2.0 are also usable here and as this is the broadest area can be expected to develop the 
most user friendly software. It may need to be enhanced to provide needed security 
(Grids) and performance (multicore) but we assume that Web 2.0 mashup technology 
will be very attractive for composition of parallel kernels. We term this Parallel 
Programming 2.0. 
 
Note both programming and runtime for kernels and their composition must be supported 
in three environments: inside chips (the multicore problem); between machines in 
clusters (the traditional parallel computing problem); or in Grids. The building of kernels 
is typically only interesting on true parallel computers as the algorithms require low 
communication latency. However composition is similar in both parallel and distributed 
scenarios and it seems useful as discussed above to allow the use of Grid and Web 
composition tools for the parallel problem. Thus we suggest that it is useful to capture 
parallel library members as (some variant of) services. Note that we are not assuming a 
uniform implementation and in fact expect good service composition inside a multicore 
chip to often require highly optimized communication mechanisms between the services 
that minimize memory bandwidth use. However very different mechanisms would be 
used to integrate services between computer systems. Further bandwidth and latency 
requirements reduce as one increases the grain size of services and this again suggests the 
smaller services inside closely coupled cores and machines will have stringent 
communication requirements. The above discussion defines the “Service Aggregation” 
term in SALSA; library members will be built as services that can be used by non expert 
programmers. 
 
We generalize the well-known CSP (Communicating Sequential Processes) of Hoare to 
describe the low level approaches to kernel building as “Linked Sequential Activities” in 
SALSA. We use the term activities (and not processes) in SALSA to allow one to build 
services from either threads, processes (usual MPI choice) or even just other services. We 
choose linkage to denote the different ways of synchronizing the parallel activities that 
may involve shared memory rather than some form of messaging or communication. 
 
There are several engineering and research issues glossed over above. We mentioned the 
critical communication optimization problem area already. We need to discuss what we 
mean by services; the requirements of multi-language support; supporting 
implementations on multicore, cluster or Grid infrastructure. Further it seems useful to re-
examine MPI and define a simpler model that naturally supports threads or processes and 
the full set of communication patterns mentioned above. 
 
5. Summary and Looking to the Future 
Web 2.0 and Grids are addressing similar application classes although Web 2.0 has 
focused more on user interactions and less on computing (or to be precise, on running 
jobs). Thus the component technologies for Grids and Web 2.0 have comparable 



capabilities and it should be fruitful to compare, contrast and as appropriate combine 
ideas and systems with portals, workflow and registries fruitful areas. The other side of 
the Grid Sandwich is multicore which has some similarities (both have lots of processing 
units) but very different issues in area of performance and as discussed in section 3.3, the 
location of data. We noted that both for Grids and multicore systems, mining the data 
deluge is expected to be a critical application. Although multicore requires low latency 
run time (microseconds) for the parallel runtime of the kernels, the requirements for “task 
parallelism” (module composition) are less stringent and we proposed “Parallel 
Programming 2.0” where multicore kernels are built as services and composed using 
some variant of mashup or workflow technology.  
The contrast between services and the more traditional object approaches for parallel 
programming deserves more study. Note that a two level programming model is common 
for Grids with services being constructed from one language (for example Java or C#) but 
composed with another (MapReduce, BPEL or Popfly). However a single integrated 
language (Java, C++, HPCS) is probably most popular in parallel computing. In Parallel 
Programming 2.0, we assume traditional (possibly object oriented) languages will be 
used to build kernels as services while in the two level model we use a different mashup 
or workflow technology to compose the kernels. Web 2.0 has highlighted the value of 
simplicity in protocols; one might speculate that standards like MPI whose functionality 
is certainly needed on multicore chips [Qiu2007A], could be usefully simplified in a 
broadly adopted Parallel Programming 2.0.  System of Systems, Grids, Web 2.0 and 
Multicore are likely to build systems hierarchically out of smaller systems, so we need to 
support Grids of Grids, Webs of Grids, Grids of Multicores etc. i.e. systems of systems of 
all sorts 
 
Looking to the future, Web 2.0 has momentum as it is driven by success of social web 
sites and the user friendly protocols attracting many developers of mashups. For narrow 
Grids, their momentum is driven by the success of eScience and the commercial web 
service thrusts largely aimed at Enterprise. We expect application domains such as 
business and military, where predictability and robustness are often essential, might be 
built on Web Service (Narrow Grid) technologies with the user interactivity of Web 2.0 
added to support social interactions in their virtual organizations. However, the higher 
complexity of Web Services discourages both broad adoption and high implementation 
quality of WS-* components, requiring substantial investment.  Maybe this will just 
wither away, leaving a simpler Web 2.0 technology base. On the other hand robustness 
and coping with unstructured blooming of a ten thousand flowers are forces pressuring 
Web 2.0 and confusing its future role. The usability and full exploitation of Multicore 
systems will drive the development of Parallel Programming 2.0, and we expect this to 
see much innovation. Perhaps the most interesting near term questions for distributed 
system Grids and Web 2.0 are the Grid Cloud architecture, data interchange standards 
and usage models. 
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