

Performance of Multicore Systems on Parallel Datamining Services

Xiaohong Qiu
xqiu@indiana.edu

Research Computing UITS
Indiana University Bloomington

Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae

gcf@indiana.edu yuanh@indiana.edu sebae@indiana.edu
Community Grids Laboratory

Indiana University Bloomington

George Chrysanthakopoulos, Henrik Frystyk Nielsen
 georgioc@microsoft.com henrikn@microsoft.com

Microsoft Research
Redmond WA

Abstract

Multicore systems are of growing importance and 64-
128 cores can be expected in a few years. We expect
datamining to be an important application class of
general importance and are developing such scalable
parallel algorithms for managed code (C#) on
Windows. We present a performance analysis that
compares MPI and a new messaging runtime library
CCR (Concurrency and Coordination Runtime) with
Windows and Linux and using both threads and
processes. We investigate effects of cache lines and
memory bandwidth and fluctuations of run times of
loosely synchronized threads. We give results on
message latency and bandwidth for two processor
multicore systems based on AMD and Intel
architectures with a total of four and eight cores.
Generating up to a million messages per second on a
single PC, we find on an Intel dual quadcore system,
latencies from 5µs in basic asynchronous threading to
20 µs for a full MPI_SENDRECV exchange with all
threads (one per core) sending and receiving 2
messages at a traditional MPI style loosely
synchronous rendezvous. We compare our C# results
with C using MPICH2 and Nemesis and Java with
both mpiJava and MPJ Express. We are packaging
our core algorithms not as traditional libraries but as
services and use DSS (Decentralized System Services
built on CCR) to compose workflows or mashups for
complete applications. We show initial results from
GIS and Cheminformatics clustering problems. Our
results suggest that the service composition model and
Windows/C# thread programming model will be a

flexible parallel programming environment for
important commodity applications. C.

1. Introduction

