
 Enabling Peer to Peer Grids
Geoffrey Fox Shrideep Pallickara Xi Rao

Community Grid Computing Laboratory, Indiana University,
Suite 224, 501 N. Morton St., IN 47404, USA.

1-812-856-7977 1-812-856-1311 1-812-856-0765
gcf@indiana.edu spallick@indiana.edu xirao@indiana.edu

ABSTRACT
In this paper we propose a peer-to-peer (P2P) grid comprising resources such as relatively static clients, high-end resources and a
dynamic collection of multiple P2P subsystems. We investigate the architecture of the messaging and event service that will
support such a hybrid environment. We designed a distributed publish-subscribe system NaradaBrokering for XML specified
messages. NaradaBrokering interpolates between centralized systems like JMS (Java Message Service) and P2P environments.
Here we investigate and present our strategy for the integration of JXTA into NaradaBrokering. The resultant system naturally
scales with multiple Peer Groups linked by NaradaBrokering.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems – Design studies, Performance attributes.

General Terms
Performance, Design, Reliability

Keywords
Event distribution systems, middleware, P2P systems, grid computing, JXTA

INTRODUCTION
The peer-to-peer (abbreviated as P2P) style interaction [10] model facilitates sophisticated resource sharing
environments between “consenting” peers over the “edges” of the internet; the “disruptive” [11] impact of which has
resulted in a slew of powerful applications built around this model. Resources shared could be anything – from CPU
cycles, exemplified by SETI@home (extraterrestrial life) [14] and Folding@home (protein folding) [15], to files
(Napster and Gnutella [17]). Resources in the form of direct human presence include collaborative systems (Groove
[18]) and Instant Messengers (Jabber [16]). Peer “interactions” involves advertising resources, search and
subsequent discovery of resources, request for access to these resources, responses to these requests and exchange of
messages between peers. An overview of P2P systems and their deployments in distributed computing and
collaboration can be found in [9]. Systems tuned towards large-scale P2P systems include Pastry [19] from
Microsoft, which provides an efficient location and routing substrate for wide-area P2P applications. Pastry provides
a self-stabilizing infrastructure that adapts to the arrival, departure and failure of nodes. The JXTA [12] (from
juxtaposition) project at Sun Microsystems is another research effort that seeks to provide such large-scale P2P
infrastructures. Discussion pertaining to the adoption of event services as a key building block supporting P2P
systems can be found in [8,9]. In this paper we propose a peer-to-peer (P2P) grid comprising resources such as
relatively static clients, high-end resources and a dynamic collection of multiple P2P subsystems. We investigate the
architecture, comprising a distributed brokering system that will support such a hybrid environment. Services can be
hosted on such a P2P grid with peer groups managed locally and arranged into a global system supported by core
servers. Access to services can then be mediated either by the “broker middleware” or alternatively by direct peer-
to-peer (P2P) interactions between machines “on the edge”. The relative performance of each approach (which
could reflect computer/network cycles as well as the existence of firewalls) would be used in deciding on the
implementation to use. P2P approaches best support local dynamic interactions; the distributed broker approach
scales best globally but cannot easily manage the rich structure of transient services, which would characterize
complex tasks. We use our research system NaradaBrokering as the distributed brokering core to support such a
hybrid environment.

There are several attractive features in the P2P model, which motivate the development of such hybrid systems.
Deployment of P2P systems is entirely user driven obviating the need for any dedicated management of these
systems. Peers expose the resources that they are willing to share and can also specify the security strategy to do so.
Driven entirely on demand a resource may be replicated several times; a process that is decentralized and one over

mailto:gcf@indiana.edu
mailto:spallick@indiana.edu
mailto:xirao@indiana.edu
mailto:SETI@home
mailto:Folding@home

which the original peer that advertised the resource has sometimes little control over. Peers can form groups with the
fluid group memberships. In addition P2P systems tend to be very dynamic with peers maintaining an intermittent
digital presence. P2P systems incorporate schemes for searching and subsequent discovery of resources. In P2P
systems, not every request (search) goes through, and even if it does, there could be zero or more valid responses
(discovery). Peers anticipate neither the template that the responses conform to nor the order in which these
responses would be received. Furthermore, responses are not identical with each responding peer processing any
given request based on the resources at its disposal and it’s interpretation of the request. Communication between a
requesting peer and responding peers is facilitated by peers en route to these destinations. These intermediate peers
are thus made aware of capabilities that exist at other peers. This discovery of services offered by other peers
constitutes dynamic real time knowledge propagation. Furthermore, since peer interactions, in most P2P systems,
are XML based, peers could be written in any language and can be compiled for any platform.

There are also some issues that need to be addressed while incorporating support for P2P interactions. P2P
interactions are self-attenuating with interactions dying out after a certain number of hops. These attenuations in
tandem with traces of the peers, which the interactions have passed through, eliminate the continuous echoing
problem that result from loops in peer connectivity. However, attenuation of interactions sometimes prevents peers
from discovering certain services that are being offered. This results in P2P interactions being very localized. These
attenuations thus mean that the P2P world is inevitably fragmented into many small subnets that are not connected.
Peers in P2P systems interact directly with each other and sometimes use other peers as intermediaries in
interactions. Specialized peers are sometimes deployed to enhance routing characteristics. Nevertheless,
sophisticated routing schemes are seldom in place and interactions are primarily through simple forwarding of
requests with the propagation range determined by the attenuation indicated in the message. However, attenuations
are minimized by the small-world [1,11 pp 203-241] effect in P2P systems.

Efficient brokering environments need to be deployed using a distributed network of brokers to address the issues of
scaling, load balancing and failure resiliency. Distributed dynamic publish subscribe is an attractive model for both
synchronous [29] and asynchronous communication. Note that this system must support many different patterns
including P2P and centralized models. Native NaradaBrokering supports this flexibility but we must also expect that
realistic scenarios will require the integration of multiple brokering schemes. NaradaBrokering supports this hybrid
case through gateways to the other event worlds. NaradaBrokering supports both JMS and JXTA, which
are publish/subscribe environments with very different interaction models. Details pertaining to the JMS integration
can be found in [24]. In this paper, we look at both the native NaradaBrokering model and its integration
with JXTA. This paper is organized as follows. Section 1 provides an overview of the NaradaBrokering system.
Section 2 outlines entry points for NaradaBrokering’s support for P2P interactions, while section 3 provides an
overview of JXTA. Section 4 describes our strategy of integrating NaradaBrokering and JXTA. Finally, we outline
possible Narada-JXTA applications and describe the status of our experiments.

1. NARADABROKERING
NaradaBrokering [3-7,24] is an event brokering system designed to run on a large network of cooperating broker
nodes. Communication within NaradaBrokering is asynchronous and the system can be used to support different
interactions by encapsulating them in specialized events. Events are central in NaradaBrokering and encapsulate
information at various levels as depicted in the figure 1. Clients can create and publish events, specify interests in
certain types of events and receive events that conform to specified templates. Client interests are managed and used
by the system to compute destinations associated with published events. Clients, once they specify their interests,
can disconnect and the system guarantees the delivery of matched events during subsequent reconnects. Clients
reconnecting after prolonged disconnects, connect to the local broker instead of the remote broker that it was last
attached to. This eliminates bandwidth degradations caused by heavy concentration of clients from disparate
geographic locations accessing a certain known remote broker over and over again. The delivery guarantees are met
even in the presence of failures.

Source

Destinations

Event Descriptors

Content Descriptors

Content Payload
Event Distribution Traces /

TimeTo Live (TTL)

Event Origins

Explicit
Destinations

Used to compute
Destinations

Used for eliminating
continuous echoing/
attenuation of event.

Used to handle
content

Figure 1: Event in the NaradaBrokering System

1.1 Broker Organization
Uncontrolled broker and connection additions, result in a broker network susceptible to network-partitions and
devoid of any logical structure making the creation of efficient broker network maps (BNM) an arduous if not
impossible task. The lack of this knowledge hampers development of efficient routing strategies, which exploit the
broker topology. Such systems then resort to “flooding” the entire broker network, forcing clients to discard events
they are not interested in. To circumvent this, NaradaBrokering incorporates a broker organization protocol, which
manages the addition of new brokers and also oversees the initiation of connections between these brokers. The
node organization protocol incorporates IP discriminators, cluster size and concurrent connection thresholds at
individual brokers in its decision making process to prevent these situations.

In NaradaBrokering we impose a hierarchical structure on the broker network, where a broker is part of a cluster that
is part of a super-cluster, which in turn is part of a super-super-cluster and so on. Clusters comprise strongly
connected brokers with multiple links to brokers in other clusters, ensuring alternate communication routes during
failures. This organization scheme results in “small world networks” [1,2] where the average communication
“pathlengths” between brokers increase logarithmically with geometric increases in network size, as opposed to
exponential increases in uncontrolled settings. This distributed cluster architecture allows NaradaBrokering to
support large heterogeneous client configurations that scale to arbitrary size. Creation of BNMs and the detection of
network partitions are easily achieved in this topology. We augment the BNM hosted at individual brokers to reflect
the cost associated with traversal over connections, for e.g. intra-cluster communications are faster than inter-cluster
communications. The BNM can now be used not only to compute valid paths but also for computing shortest paths.
Changes to the network fabric are propagated only to those brokers that have their broker network view altered. Not
all changes alter the BNM at a broker and those that do result in updates to the routing caches, containing shortest
paths, maintained at individual brokers.

1.2 Dissemination of events
Every event has an implicit or explicit destination list, comprising clients, associated with it. The brokering system
as a whole is responsible for computing broker destinations (targets) and ensuring efficient delivery to these targeted
brokers en route to the intended client(s). Events as they pass through the broker network are be updated to snapshot
its dissemination within the network. The event dissemination traces eliminate continuous echoing and in tandem
with the BNM – used for computing shortest paths – at each broker, is used to deploy a near optimal routing
solution. The routing is near optimal since for every event the associated targeted set of brokers are usually the only
ones involved in disseminations. Furthermore, every broker, either targeted or en route to one, computes the shortest
path to reach target destinations while employing only those links and brokers that have not failed or been failure-
suspected.

1.3 Failures and Recovery
In NaradaBrokering, stable storages existing in parts of the system are responsible for introducing state into the
events. The arrival of events at clients advances the state associated with the corresponding clients. Brokers do not
keep track of this state and are responsible for ensuring the most efficient routing. Since the brokers are stateless,
they can fail and remain failed forever. The guaranteed delivery scheme within NaradaBrokering does not require

every broker to have access to a stable store or DBMS. The replication scheme is flexible and easily extensible.
Stable storages can be added/removed and the replication scheme can be updated. Stable stores can fail but they do
need to recover within a finite amount of time. During these failures the clients that are affected are those that were
being serviced by the failed storage.

1.4 Support for dynamic topologies
Support for local broker accesses, client roams and stateless brokers provide an environment extremely conducive to
dynamic topologies. Brokers and connections could be instantiated dynamically to ensure efficient bandwidth
utilizations. These brokers and connections are added to the network fabric in accordance with rules that are dictated
by the agents responsible for broker organization. Brokers and connections between brokers can be dynamically
instantiated based on the concentration of clients at a geographic location and also based on the content that these
clients are interested in. Similarly average pathlengths for communication could be reduced by instantiating
connections to optimize clustering coefficients within the broker network. Brokers can be continuously added or fail
and the broker network can undulate with these additions and failures of brokers. Clients could then be induced to
roam to such dynamically created brokers for optimizing bandwidth utilization.

1.5 JMS Compliance
NaradaBrokering is JMS [21] compliant and provides support not only for JMS clients, but also for replacing
single/limited server JMS systems transparently [24] with a distributed NaradaBrokering broker network. Since JMS
clients are vendor [22,23] agnostic, this JMS integration has provided NaradaBrokering with access to a plethora of
applications built around JMS, while the integrated Narada-JMS solution provides these applications with scaling,
availability and dynamic real time load balancing. Among the applications ported to this solution is the Anabas
distance education conferencing system [25] and the Online Knowledge Center (OKC) portal [26] being developed
at the IU Grid labs.

1.6 Results from the prototype
Figure 3 illustrates some results [4,7] from our initial research where we studied the message delivery time as a
function of load. The results are from a system comprising 22 broker processes and 102 clients in the topology
outlined in figure 2. Each broker node process is hosted on 1 physical Sun SPARC Ultra-5 machine (128 MB RAM,
333 MHz), with no SPARC Ultra-5 machine hosting two or more broker node processes. The publisher and the
measuring subscriber reside on the same SPARC Ultra-5 machine. In addition to this there are 100 subscribing
client processes, with 5 client processes attached to every other broker node (broker nodes 22 and 21 do not have
any other clients besides the publisher and measuring subscriber respectively) within the system. The 100 client
node processes all reside on a SPARC Ultra-60 (512 MB RAM, 360 MHz) machine. The run-time environment for
all the broker node and client processes is Solaris JVM (JDK 1.2.1, native threads, JIT). The three matching values
correspond to the percentages of messages that are delivered to any given subscriber. The 100% case corresponds to
systems that would flood the broker network. The system performance improves significantly with increasing
selectivity from subscribers. We found that the distributed network scaled well with adequate latency (2
milliseconds per broker hop) unless the system became saturated at very high publish rates.

i4 5
6 l

13 14
15

j7 8
9

h
1 2

3

k10 11
12

m
16 17

18

n
20

21
19

22

Measuring
Subscriber

Publisher

Figure 2: Test Topology

Transit Delay under different matching rates:22 Brokers 102 Clients

Match Rate=100%
Match Rate=50%
Match Rate=10%

0 1002003004005006007008009001000
Publish Rate
 (Events/sec) 0 50100150200250300350400450500

Event Size
 (Bytes)

0
50

100
150
200
250
300
350
400
450

Mean
 Transit Delay
 (MilliSeconds)

Figure 3: Transit delays for different matching rates

NaradaBrokering’s JMS compliant messaging solution also gave comparable performance [24] to SonicMQ except
for smaller message payloads at low publish rates. However, we do understand how a production version of the
NaradaBrokering system could give Grande performance – about a factor of 3 lower in latency than the prototype.
By improving the thread scheduling algorithms and incorporating flow control (needed at high publish rates) into the
NaradaBrokering core significant gains in performance can be achieved. Currently we do not intend to incorporate
any non-Java modules.

2.0 NARADABROKERING AND P2P INTERACTIONS
Issues in P2P systems pertaining to the discovery of services and intelligent routing can be addressed very well in
the NaradaBrokering brokering system. The broker network would be used primarily as a delivery engine, and a
pretty efficient one at that, while locating peers and propagating interactions to relevant peers. The most important
aspect in P2P systems is the satisfaction of peer requests and discovery of peers and associated resources that could
handle these requests. The broker network forwards these requests only to those peers that it believes can handle the
requests. Peer interactions in most P2P systems are achieved through XML-based data interchange. XML’s data
description and encapsulation properties allow for ease of accessing specific elements of data. Individual brokers
routing interactions could access relevant elements, cache this information and use it subsequently to achieve the
best possible routing characteristics. The brokering system, since it is aware of advertisements, can also act as a hub
for search and discovery operations. These advertisements when organized into “queryspaces” allow the integrated
system to respond to search operations more efficiently.

Resources in NaradaBrokering are generally within the purview of the broker network. P2P systems replicate
resources in an ad hoc fashion, the availability of which is dependent on the peer’s active digital presence. Some
resources, however, are best managed by the brokering system rather than being left to the discretion of peers who
may or may not be present at any given time. An understanding of the network topology and an ability to pin point
the existence of peers interested in that resource are paramount for managing the efficient replications of a resource.
The distributed broker network, possessing this knowledge, best handles this management of resources while
ensuring that these replicated resources are “closer” and “available” at locations with a high interest in that resource.
Furthermore, the broker network is also better suited, than a collection of peers, to eliminate race conditions and
deadlocks that could exist due to a resource being accessed simultaneously by multiple peers. The broker network
can also be responsive to changes in peer concentrations, volumes of peer requests, and resource availability.
Brokers and associated interconnections can be dynamically instantiated or purged to compensate for affected
routing characteristics.

As mentioned earlier, P2P systems fragment into multiple disconnected sub-systems. NaradaBrokering could also be
used to connect islands of peers together. Peers that are not directly connected through the peer network could be
indirectly connected through the broker network. Peer interactions and resources in the P2P model are traditionally

unreliable, with interactions being lost or discarded due to peer failures or absences, overloading of peers and
queuing thresholds being reached. Guaranteed delivery properties existing in NaradaBrokering can augment peer
behavior to provide a notion of reliable peers, interactions and resources. Such an integrated brokering solution
would also allow for hybrid interaction schemes to exist alongside each other. Applications could be built around
hybrid-clients that would exhibit part peer behavior and part traditional client behavior (e.g. JMS). P2P
communications could be then used for traffic where loss of information can be sustained. Similarly, hybrid-clients
needing to communicate with each other in a “reliable” fashion could utilize the brokering system’s capabilities to
achieve that. Sometimes, hybrid-clients can satisfy each other’s requests, in which case they would, obviating need
for funneling interactions through the broker network. The broker merely serves as an efficient conduit for
supporting interaction between different applications (clients, peers or hybrid).

3. JXTA
 JXTA is a set of open, generalized protocols to support peer-to-peer interactions and core P2P capabilities such as
indexing, file sharing, searching, peer grouping and security. The JXTA peers, and rendezvous peers (specialized
routers), rely on a simple forwarding of interactions for disseminations and rely on time-to-live (TTL) indicators and
peer traces to attenuate interaction propagations. However JXTA interactions are unreliable, tend to be very
localized and are based on simple forwarding. Figure 4 depicts the protocols that comprise the XML encoded JXTA
protocol suite. Table 1 outlines the functionality of each protocol layer comprising the JXTA suite [13].

Rendezvous Protocol

Peer Info
Protocol

Peer Discovery
Protocol

Pipe Binding
Protocol

Peer Resolver Protocol

Peer Endpoint Protocol

Figure 4: The JXTA protocol suite

Table 1: Functionality of the various JXTA protocols

Protocol Layer Functionality
Peer Info Check another peer’s status
Peer Discovery Publish & receive advertisements for a

peer group
Peer Binding Create pipe for communication
Peer Resolver Send/Receive queries to/from other

peers
Rendezvous Initiate propagations to peers.
Endpoint Uses network protocols to handle

routing

JXTA is independent of transport protocols and can be implemented on top of TCP/IP, HTTP, TLS, Bluetooth,
HomePNA, and many other protocols. JXTA provides features such as dynamic discovery and a rich search
mechanism while allowing peers to communicate across NAT, DHCP, and firewall boundaries. In JXTA a peer is
any node that supports JXTA protocols and could be any digital device. Peers that seek to collaborate could come
together to form a peer group. Peers within a peer group can identify each other, agree on group memberships and
exchange information with each other. Peers publish the existence of a resource through an advertisement, which is
simply an XML document describing the resource. Peers locate other peers, peer groups and properties pertaining to
them. Once a peer joins a JXTA group, JXTA’s discovery capabilities support queries for services, resources and
other peers.

JXTA is programming language independent. Implementation of the core JXTA protocols in Perl 5, Object C, Ruby,
Smalltalk and Python are currently underway. It is expected that existing P2P systems would either support JXTA
or have bridges initiated to it from JXTA. Support for JXTA would thus enable us to leverage other P2P systems
along with applications built around those systems. With regards to bridges to other existing P2P systems, LimeWire
(http://www.limewire.com) is investigating shared development between the Gnutella and Project JXTA developer
communities. There also proposals pertaining to the management of interactions between Jabber and JXTA peers.
NaradaBrokering’s support for JXTA in addition to the support for JMS would result in interactions that are robust
and dynamic while being supported by a scalable and highly available system. A good example of a dynamic “peer”
group is the set of Grid/Web Services [29-34] generated dynamically when a complex task runs – here existing
registration/discovery mechanisms are unsuitable. A JXTA like discovery strategy within such a dynamic group
combined with NaradaBrokering’s JMS mode between groups seems attractive. These “peers” can of course be in
“middle tier” – so such a model can be applied in the Internet universe where we have “clusters” (In our analogy
JXTA runs galaxies while JMS runs the universe). We intend to investigate this model of dynamic resource
management in later papers.

http://www.limewire.com/

4. JXTA & NARADABROKERING
In our strategy for providing support for P2P interactions within NaradaBrokering, we need to ensure –

• Minimal or zero changes to the NaradaBrokering system core and the associated protocol suites.
• We also make no changes to the JXTA core and the associated protocols. We make additions to the

rendezvous layer for integration purposes. Peers do not communicate directly with the NaradaBrokering
system and continue to interact with other peers, rendezvous peers and Narada-JXTA proxies (which it sees
as a rendezvous peer).

• Furthermore, this integration should entail neither any changes to the peers nor a straitjacketing of the
interactions that these peers could have had prior to the integration.

The integration is based on the proxy model, which essentially acts as the bridge between the NaradaBrokering
system and JXTA. From the figure outlining the JXTA protocol architecture it is clear that the Narada-JXTA proxy
could reside in one of three layers — the peer Resolver, the Rendezvous or the Endpoint layer. The Narada-JXTA
proxy, irrespective of the layer it resides in, is responsible for propagation (and receiving) interactions to (and from)
the brokering system. It is conceivable that an implementation of the JXTA transport binding mandates handshakes
prior to connection set ups and packet exchanges to monitor the state of the connection. These data exchanges are
pertinent to the underlying transport implementation and should obviously not be propagated within the brokering
system. Thus if the Narada-JXTA proxy were to reside in the Endpoint layer, it would entail an inspection of every
data packet prior to propagating it to the brokering system. Furthermore, overheads associated with testing each
message prior to forwarding it to the brokering system can add up in the form of queuing delays that might
eventually slow the system down. On the other hand if we were to set up the Narada-JXTA proxy inside the
Resolver layer we run into the problem of lost interactions. Not all interactions received at the Rendezvous layer are
propagated to the Resolver layer. The Resolver layer deals only with the issue and receipt of generic queries to find
or search for peers, peer groups, pipes, and other resources. Other peer interactions are not routed to this layer. The
Rendezvous layer, which receives all the P2P interactions and does not have the problem of lost interactions, is thus
the most appropriate layer for the Narada-JXTA proxy to reside in. The Rendezvous layer has most P2P interactions
forwarded to it from the Endpoint Layer. Among the few interactions not forwarded to the Rendezvous layer is the
query response, which is handled only within the Endpoint layer of peers en route to the original querying peer. We
discuss this issue in more detail in subsequent sections. The routing headers associated with interactions are however
accessed within the Endpoint layer. In some cases, which we discuss in the section pertaining to handling queries
and responses, the headers need to be processed by the Rendezvous layer to ensure processing within the integrated
NaradaBrokering-JXTA system.

The Narada-JXTA proxy, operating inside the JXTA rendezvous layer, serves in a dual role as both a rendezvous
peer and as a NaradaBrokering client providing a bridge between NaradaBrokering and JXTA. NaradaBrokering
could be viewed as a service by JXTA. The discovery of this service is automatic and instantaneous due to the
Narada-JXTA proxy’s integration inside the rendezvous layer. Any peer can utilize NaradaBrokering as a service so
long as it is connected to a Narada-JXTA proxy. Nevertheless, peers do not know that the broker network is routing
some of their interactions. Furthermore, these Narada-JXTA proxies, since they are configured as clients within the
NaradaBrokering system, inherit all the guarantees that are provided to NaradaBrokering clients.

4.1 The interaction model
Different JXTA interactions are queued at the queues associated with the relevant layers comprising the JXTA
protocol suite [13]. Each layer performs some operations including the addition of additional information. The
rendezvous layer processes information arriving at its input queues from the peer-resolving layer and the pipe-
binding layer. Since the payload structure associated with different interactions is different we can easily identify the
interaction types associated with the payloads. Interactions pertaining to discovery/search or communications within
a peer group would be serviced both by JXTA rendezvous peers and also by Narada-JXTA proxies.

NARADA-
JXTA proxy

NARADA
broker cloud

Peers

JXTA
Rendezvous
PEER

Dynamic/fluid
peer groups

High end "long lived"/
persistent resources

Figure 5: The Narada-JXTA interaction model

Interactions that peers have with the Narada-JXTA proxies are what are routed through the NaradaBrokering
system. JXTA peers can continue to interact with each other and of course some of these peers can be connected to
pure JXTA rendezvous peers. Peers have multiple routes to reach each other and some of these could include the
NaradaBrokering system and some of them need not. Such peers can interact directly with each other during the
request/response interactions. Figure 5 outlines the NaradaBrokering JXTA interaction model.

4.2 Interaction Disseminations
Peers can create a peer group; request to be part of a peer group; perform search/request/discovery all with respect to
a specific targeted peer group. Peers always issue requests/responses to a specific peer group and sometimes to a
specific peer. Peers and peer groups are identified by UUID [27] (IETF specification guarantees uniqueness until
3040 A.D.) based identifiers. Every peer generates its own peer id while the peer that created the peer group
generates the associated peer group id. Each rendezvous peer keeps track of multiple peer groups through peer
group advertisements that it receives. Any given peer group advertisement could of course be received at multiple
rendezvous peers. These rendezvous peers are then responsible for forwarding interactions; if it had received an
advertisement for the peer group contained in these interactions.

Narada-JXTA proxies are initialized both as rendezvous peers and also as NaradaBrokering clients. During its
initialization as a NaradaBrokering client every proxy is assigned a unique connection ID by the NaradaBrokering
system, after which the proxy subscribes to a topic identifying itself as a Narada-JXTA proxy. This enables
NaradaBrokering to be aware of all the Narada-JXTA proxies that are present in the system. The Narada-JXTA
proxy in its role as a rendezvous peer to peers receives –

• Peer group advertisements
• Requests from peers to be part of a certain peer group and responses to these requests
• Messages sent to a certain peer group or a targeted peer
• Queries and responses to these queries

To ensure the efficient dissemination of interactions, it is important to ensure that JXTA interactions that are routed
by NaradaBrokering are delivered only to those Narada-JXTA proxies that should receive them. This entails that the
Narada-JXTA proxy perform a sequence of operations, based on the interactions that it receives, to ensure selective
delivery. The set of operations that the Narada-JXTA proxy performs comprise gleaning relevant information from
JXTA’s XML encapsulated interactions, constructing an event based on the information gleaned and finally in its
role as a NaradaBrokering client subscribing (if it chooses to do so) to a topic to facilitate selective delivery. By
subscribing to relevant topics, and creating events targeted to specific topics each proxy ensures that the broker
network is not flooded with interactions routed by them. The events constructed by the Narada-JXTA proxies
include the entire interaction as the event’s payload. Upon receipt at a proxy, this payload is de-serialized and the
interaction is propagated as outlined in the proxy’s dual role as a rendezvous peer. Events constructed from

interactions need to have a unique identifier associated with them. Advertisements, since, they encapsulate
information pertaining to uniquely identifiable resource can use the UUID associated with the advertised resource as
the interaction identifier of the constructed event. The interaction type along with the interaction identifier allow us
to uniquely identify each event. In the case of JXTA messages the unique interaction identifier is constructed based
on the peer id of the peer issuing the message and the timestamp in milliseconds (based on the system-clock at the
peer node) associated with the message. We now proceed to outline the sequence of operations associated with
different JXTA interactions.

4.2.1 Peer Group Advertisements
When peer group advertisements propagated by a peer are received at a Narada-
JXTA proxy, it creates the event depicted in figure 6. The peer group
advertisement is the payload contained in this event. The proxy proceeds to initiate
a subscription to the peer group with the subscription being registered to the
connection that the proxy has into the NaradaBrokering system. This enables
NaradaBrokering to identify this Narada-JXTA proxy as a destination when
certain interactions are targeted to that specific peer group. NaradaBrokering
delivers this peer group advertisement to all the Narada-JXTA proxies within the
integrated Narada-JXTA system. Proxies that receive this advertisement do not
initiate any actions and the proxy deals with this advertisement just as a JXTA
rendezvous peer would.

Narada Headers

Interaction ID
JXTA Interaction Type

(Subscription)
Peer group id

Peer Group Advertisement

Narada Event Distribution
Traces

Pe

4.2.2 Requests to be part of a peer group, and responses to these requests
When a peer issues a request to be part of a certain peer group, the event constructed by
depicted in figure 7.(a). The advertisement is contained in the payload, and the targeted
is the peer group id. NaradaBrokering thus propagates the event to the proxies that had
ensure that responses to this advertisement are targeted to the proxy forwarding t
encapsulates its NaradaBrokering connection information within this event. Narada-J
event maintain the JXTA request and the connection associated with the request; to be
responses. These Narada-JXTA proxies then behave as a normal rendezvous peer, p
normally would. This entails forwarding/routing of events en route to peers that are part

NaradaBrokering

Interaction

NaradaBrokering Headers

Interaction UUID

Peer Advertisement
Request

(a)

JXTA Interaction Type

NaradaBrokering
Connection Info
Peer group id

After Peer Adve
Respons

(c)

JXTA Interacti
(Subscript
Peer grou

Peer id

NaradaBrokerin
Distribution T

Peer Advertisement
Response

(b)

Peer id
Peer Advertisement

Request
NaradaBrokering Event

Distribution Traces

NaradaBrokering Headers

Interaction UUID

JXTA Interaction Type

NaradaBrokering
Connection Info
Peer group id

Peer id
Peer Advertisement

Response
NaradaBrokering Event

Distribution Traces

Figure 7: Dealing with request/responses to join peer groups

When responses, initiated by authorized peers, are received at the Narada-JXTA proxy
there was a request associated with it and proceeds to forward the response encapsulated
depicted in figure 7.(b). The proxy also retrieves the target connection that this resp
includes it in the event. Upon receipt of this response at the initiating Narada-JXTA
operations in its role as a rendezvous to ensure propagation of the response to the reques
Figure 6: Event for
erGroup Advertisement
 the Narada-JXTA proxy is
topic contained in this event
 subscribed to this topic. To
his request, the event also
XTA proxies receiving this
 used during propagation of
rocessing the request as it

of the peer group.

 Headers

UUID

rtisement
e

on Type
ion)
p id

g Event
races

, the proxy checks to see if
 in a NaradaBrokering event
onse should be sent to and
 proxy, the proxy initiates

ting peer.

The “initiating” Narada-JXTA proxy then proceeds to subscribe to both the peergroup-id and the peer-id. This event
is depicted in figure 7.(c), and as can be seen there is no payload contained in this event. The peergroup-id
subscription ensures that interactions for the peer group, which the serviced peer will be a part of, are always
received at the proxy; this includes advertisements to be part of that peer group. Furthermore, a lot of JXTA
interactions are sometimes targeted to specific peers so we also subscribe to the peer-id contained in the received
response. When events are sent to a specific peer in a peer group, the NaradaBrokering system routes the event to
the Narada-JXTA proxy (or proxies) that can route the event to the targeted peer.

4.2.3 JXTA Messages
When JXTA messages arrive at a Narada-JXTA proxy, the event constructed for routing within the
NaradaBrokering system is depicted in figure in figure 8. These are the elements that the NaradaBrokering system
will operate on. The rest of the JXTA message needs to be serialized and would be the payload contained within the
constructed event.

Narada Headers

Interaction ID

JXTA Interaction Type

Peer group id

Peer id

JXTA Event Payload

Narada Event
Distribution Traces

Request/
Response

Present
when
trageted
to a
specific
Peer

Allows the
NARADA
system to
route event to
specific JXTA
proxies

For duplicate
detection
within
NARADA

Figure 8: Event for JXTA Messages

NaradaBrokering then routes this event to only those proxies that had subscribed to either the peergroup-id or the
peer-id contained in this event. Upon receipt at the Narada-JXTA proxies the payload contained in the event is
unmarshalled and the JXTA message is recreated. With the Narada-JXTA proxy now behaving as any other
rendezvous peer, propagation from this point on proceeds as dictated by the JXTA reference implementation.
NaradaBrokering for its part deals with the efficient routing of the NaradaBrokering events based on the topic and
subscriptions (propagated during receipt of peer advertisements at the proxies).

4.2.4 Dealing with queries and query responses
Peers can query for resources and this query is propagated within the system to other peers. Peers that can satisfy
the issuing peer’s query request respond by constructing appropriate query responses. Of course a query is
attenuated if the TTL associated with the interaction is reached and there were no peers that could satisfy the peer’s
query. Queries maintain peer distribution traces in their headers to ensure that responses that satisfy the query
contain path information to ensure that responses can reach the originating peer. A peer adds its trace within this
header (the reverse path) in the Endpoint layer. The peer traces are recorded in sequence so that the reverse path can
be easily constructed. Figure 9.(a) depicts a query’s propagation through various peers. It is clear from the figure
that if peer D can satisfy peer A’s query the peer trace can be used for the response to reach the querying peer A.
The response generally contains either a resource or a pointer to the resource a peer might have been interested in.

NaradaBrokering
Broker Cloud

A

A

A

A, B

A, B

A, B, C

A, B, C

A, B, C, D

B C D

X, Y, ... Query peer-trace
leaving a node

X, Query peer-trace
entering a node

(c)

A

A

A

A, B

A, B

A, B, C

A, B, C

A, B, C, D

B C D

(a)

Narada-JXTA
Proxy

JXTA Rendezvous
peer

A

A

A

A

A

A, C

A, C

A, C, D

B C DNaradaBrokering
Broker Cloud

(b)

Figure 9: Peer traces in queries under different inter connection scenarios

The peer trace also indicates the last peer that processed the query and propagated it to the peer that is currently
processing the query. In our setting there are two issues that we need to deal with, which if not rectified could result
in a fragmented P2P system at least as far as queries are concerned. Both of these stem from inconsistent
information in peer trace headers associated with queries and responses.

1. For a query propagated by a Narada-JXTA proxy into the NaradaBrokering broker cloud, the trace
associated with the query does not include the peer trace of the Narada-JXTA proxy (the proxy also has a
dual role as a Rendezvous peer) propagating the query. This is because the trace is updated in the Endpoint
layer only after processing associated with the query is complete and the query is ready to be propagated to
another peer. Since the interaction is propagated from within the Rendezvous layer (where the proxy
resides), the query trace header modification needs to be done prior to this propagation.

2. When the message is received by the Narada-JXTA proxy from the brokering system, the last peer
information is invalid. This is because the last peer information would refer to a peer which the Narada-
JXTA proxy is not connected to.

The query responses are routed by the Endpoint layers and these responses are not propagated to the Rendezvous
layers. There are two issues pertaining to the processing of query responses by the Endpoint layer. First, a query
response is not forwarded to the rendezvous layer if the destination ID associated with the query response is not the
peer id of the peer. Second, if the reverse path information requires the Endpoint to route the query response to a
peer that it is not connected to the query response is discarded.

Figure 9.(b) depicts the peer trace headers associated with query en route to peer D through a couple of Narada-
JXTA proxies and the NaradaBrokering system. As is clear from the figure based on the information contained in
the peer trace header, there is no way for the query response to reach peer A. In fact the query response will be
discarded by Narada-JXTA proxy C’s Endpoint layer because there is insufficient information regarding the peer to

be reached. During the propagation of query responses, which takes place within the Endpoint layer, the reverse path
information contained in the query response might lead the Endpoint layer, at a Narada-JXTA proxy, to a peer that it
is not aware of. This will result in the query response being discarded by the Endpoint layer. To circumvent this
problem, in the peer hosting the Narada-JXTA proxy, we update the Endpoint layer to detect if the interaction being
processed is a query response. If it is, the query response is allowed to propagate up to the Rendezvous layer where
the Narada-JXTA proxy funnels the message into the brokering system. The brokering system then routes the
response to relevant Narada-JXTA proxy where it arrives at the Rendezvous layer. The Rendezvous layer then
percolates the query response down to the Endpoint layer where the query-response propagations proceed as
outlined in the JXTA specification. Note that since the reverse path information (peer trace of the query) contained
in the query response is now consistent the routing proceeds efficiently.

Thus in figure 9.(c) when a query arrives at the Narada-JXTA proxy B’s Endpoint layer, the message is forwarded
to the Rendezvous layer, which operates on the message headers (usually the Endpoint layer’s functionality) and
adds its trace to the header associated with the query. Similarly when a response arrives at Narada-JXTA proxy C,
the response if propagated to the broker network which routes the interaction to peer B which percolates the
response down to its Endpoint layer from where the response is routed as outlined in JXTA specification.

4.3 The Duplicate detection problem:
Unlike NaradaBrokering clients that interact with only one broker at any given time and never with any other client
directly; peers can be connected to multiple peers and rendezvous peers. This situation leads to having the same
interaction entering the NaradaBrokering system through multiple points and also due to loops in peer connectivity.
Under conditions of increasing loads and high peer concentrations the cumulative effects of these JXTA interactions
entering the distributed broker network could entail prohibitive CPU/bandwidth costs. The most crucial thing is to
ensure that the NaradaBrokering broker network is not inundated with such duplicate interactions.

JXTA interactions, when they are propagated into the NaradaBrokering system, are encapsulated inside events
outlined in earlier sections. Destinations computed for duplicate events are identical; when these events are being
routed within the NaradaBrokering network the route they take is more or less the same, i.e. they propagate through
the same cluster controllers. Paths traversed by later events (duplicates) en route to final destinations are more or
less the same as the event that traversed prior to it. These paths only vary during sudden network changing
conditions such as failures of brokers/links and spikes in network usage over sustained durations in which case the
paths computed based on network costs would vary. Even in such cases subsequent duplicates continue to traverse
along identical computed paths. Having brokers keep track of the events (event id’s specifically) they received and
discarding duplicates allows us to solve the duplicate detection problem and prevent the network from expending
network cycles for routing duplicates. This scheme allows for faster disseminations, with a survival of the fittest
scheme, where duplicate events are discarded if they were not the first to arrive at a broker.

4.4 JXTA Applications and NaradaBrokering
JXTA applications that were tested within the integrated Narada-JXTA environment included the JXTA shell, which
provides a command line interface to JXTA functionality and myjxta (also known as InstantP2P), which also
includes an instant messaging environment. Work is currently underway to integrate myjxta into the Anabas
Conferencing system where NaradaBrokering would provide backend support for both JMS and JXTA interactions.
In [29] we described the Garnet Message Service (based on the Anabas shared display infrastructure) as a
demonstration that JMS and millisecond latency for small messages can support major collaborative functions –
Shared Display, Whiteboard, Polls, Text chat among others. The goal of our effort is to explore the use of Garnet
with hybrid messaging and bring Garnet and NaradaBrokering functionality to JXTA.

5. NARADABROKERING-JXTA SYSTEMS
The NaradaBrokering JXTA integration service scales naturally since NaradaBrokering provides dynamic “long
distance” support while JXTA provides for dynamic localized supports. In the combined global scale infrastructure
NaradaBrokering works best for “long lived” and persistent resources that would be efficiently replicated within
NaradaBrokering. This integrated model provides efficient search/discovery not only for static activity but also for
dynamic activity while allowing JXTA interactions at the edges. The resultant system also scales with multiple
JXTA Peer Groups linked by NaradaBrokering, which can dynamically instantiate new brokers to balance the load.
As opposed to the simple forwarding of interactions, the intelligent routing in NaradaBrokering in tandem with the

duplicate detection scheme in our solution ensures faster disseminations and improved communication latencies for
peers. Furthermore, targeted peer interactions traversing along shortest paths within the broker network obviates the
need for a peer to maintain dedicated connections to a lot of peers. Proxies, due to their initialization as clients
within NaradaBrokering, inherit all the guarantees accorded to clients within the NaradaBrokering such as
guaranteed delivery in the presence of failures and fast disseminations. Discovery of rendezvous peers in JXTA is a
slow process. A rendezvous peer generally downloads a list of other rendezvous peers from a server, not all of which
would be up and running at that time. We allow for dynamic discovery of Narada-JXTA proxies, which need not be
directly aware of each other, but do end up receiving interactions sent to a peer group if they had both received peer
group advertisements earlier. The scheme also allows us to connect islands of peers and rendezvous peers together,
allowing for a greater and richer set of interactions between these peers.

A typical application of the hybrid Narada/JXTA technology is distance education. This often consists of multiple
linked classrooms where the participants in each classroom are individually linked to collaborative environment.
Here a peer-to-peer model (such as JXTA) can be used in a classroom to give fast dynamic response to shared input
control while the JMS style global NaradaBrokering capability is used to multicast between classrooms. More
generally this combination – of globally structured and locally dynamic messaging, scales to support general
applications. We can package the JXTA/JMS/NaradaBrokering hybrid as an event or messaging web service whose
different modes could correspond to different ports in WSDL [28]. These ports trade off scaling, performance and
reliability in a fashion that can be chosen by the user. Alternatively web services communicate via channels and we
could use the technology of this paper to flexibly link different services together with dynamic choice of service
provider. Other applications we are pursuing include workflow where administrative agents control the traffic
between different web services. We have explained in more detail how one can base a P2P Grid architecture on a
generalized publish/subscribe mechanism in [8]. NaradaBrokering is currently (like Sonic and others) pure Java in
brokers and messaging. We bind XML to Java sockets when working with JXTA. We have extended this model
partially and currently NaradaBrokering supports RTP (using UDP) to be used as transport mechanism for
audio/video. It would be attractive for NaradaBrokering to use JXTA like flexible transport mechanisms.

6. EXPERIMENTAL SETUP
For comparing JXTA performance in NaradaBrokering we setup the topologies depicted in figures 10 and 11. For
each topology we then compare the performance of the pure JXTA environment, the integrated Narada-JXTA
system and the pure NaradaBrokering system. To compute communication delays while obviating the need for clock
synchronizations and the need to account for clock drifts, the receiver/sender pair is setup on the same machine
(Pentium-3, 1 GHz, 256 MB RAM). In all the test cases, a message published by the sender is received at the
receiver and the delay is computed. For a given message payload this is done for a sample of messages and we
compute the mean delay and the standard deviation associated with the samples. We also measure the Jitter J, which
is defined as the mean deviation (smoothed absolute value) of the difference D in packet spacing at the receiver
compared to the sender for a pair of packets. The Jitter J is computed based on the formula − J = J + (|D(i-1, i)| -
J)/16, where D(i-1, i) corresponds to the difference between the delay for ith packet and the delay for the (i-1)th
packet. This is repeated for different payload sizes. For every topology every node (broker or rendezvous peer)
involved in the experimental setup is hosted on a different machine (Pentium-3, 1 GHz, 256MB RAM). The run-
time environment for all the processes is (JDK-1.3 build Blackdown-1.3.1, Red Hat Linux 7.3). The machines
involved in the experimental setup reside on a 100 Mbps LAN.

Figures 12 through 15 depict the mean transit delay for the message samples under the two topologies. Figure 16 is a
plot of the jitter values for message samples in Topology-II. We also performed this experiment involving machines
at Indiana University (IU), University of Texas (UT) and Florida State University (FSU). The sender/receiver pair
was hosted on a machine (Pentium-3, 550MHz, 512MB RAM) at FSU. For each topology half the nodes resided on
machines (Pentium-3, 1 GHz, 256MB RAM) at UT and the other half resided on machines (Pentium-3, 1 GHz,
256MB RAM) at IU. Figure 17 depicts the mean transit delay for topology-II involving machines at IU,UT and
FSU. Results depicted in figures 12 through 17 indicate the superior performance of the integrated Narada-JXTA
system compared to that of the pure JXTA system.

(a)

R

RR

R

R R

(b)

R

RR

R

R R

N N

N

NN

N

N N

(c)

R

N NaradaBrokering broker

JXTA Rendezvous

JXTA Peer

NaradaBrokering client

Figure 10: Test Topology-I

R R

R

R

R R

R

R

(a)

R R

R

R

R R

R

R

N

(b)

N N

N

N

N N

N

N

(c)

R

N NaradaBrokering broker

JXTA Rendezvous

 JXTA Peer

NaradaBrokering client

Figure 11: Test topology-II

0

20

40

60

80

100

120

140

160

180

50 100 150 200 250 300 350 400 450 500

Tr
an

si
t D

el
ay

 (
M

illi
se

co
nd

s)

Message Payload Size
 (Bytes)

NaradaBr
Pure JXTA

Narada-JXTA

Figure 12: Mean transit delay for message samples in
Topology-I (smaller payloads)

0

20

40

60

80

100

120

140

160

180

500 1000 1500 2000 2500 3000 3500 4000 4500 500

Tr
an

si
t D

el
ay

 (
M

illi
se

co
nd

s)

Message Payload Size
 (Bytes)

NaradaBr
Pure JXTA

Narada-JXTA

Figure 13: Mean transit delay for message samples in
Topology-I (bigger payloads)

0

50

100

150

200

250

50 100 150 200 250 300 350 400 450 500

Tr
an

si
t D

el
ay

 (
M

illi
se

co
nd

s)

Message Payload Size
 (Bytes)

NaradaBr
Pure JXTA

Narada-JXTA

Figure 14: Mean transit delay for message samples in
Topology-II (smaller payloads)

0

50

100

150

200

250

500 1000 1500 2000 2500 3000 3500 4000 4500 500

Tr
an

si
t D

el
ay

 (
M

illi
se

co
nd

s)

Message Payload Size
 (Bytes)

NaradaBr
Pure JXTA

Narada-JXTA

Figure 15: Mean transit delay for message samples in
Topology-II (bigger payloads)

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900

Ji
tte

r (
M

illi
se

co
nd

s)

Packet Number

NaradaBr
Pure JXTA

Narada-JXTA

Figure 16: Jitter values for message samples in Topology-II

50

100

150

200

250

300

350

400

450

50 100 150 200 250 300 350 400 450 500

Tr
an

si
t D

el
ay

 (
M

illi
se

co
nd

s)

Message Payload Size
 (Bytes)

NaradaBr
Pure JXTA

Narada-JXTA

Figure 17: Mean transit delay for message samples in
Topology-II (external machines)

7. CONCLUSION
In this paper we presented our strategy for a scaleable P2P grid. In NaradaBrokering we have based support for P2P
interactions through JXTA. We also enumerated the benefits that can be accrued, by both NaradaBrokering and P2P
systems such as JXTA, through such integrations. The successful integration of NaradaBrokering with JXTA can be
combined with our earlier results on JMS [24] to demonstrate that one can both support very different brokering
models within the same system and deploy hybrid systems with NaradaBrokering linking different environments.
We believe such an environment is appropriate for building scalable (Grande) P2P grids supporting both dynamic
local and long-range static resources. Furthermore, it is our belief that this integration, to go along with our existing
JMS integration, has added considerable value to NaradaBrokering and that we are well positioned to Web Service
“enable” NaradaBrokering.

REFERENCES
1. D.J. Watts and S.H. Strogatz. Collective Dynamics of Small-World Networks. Nature. 393:440. 1998.
2. R. Albert, H. Jeong and A. Barabasi. Diameter of the World Wide Web. Nature 401:130. 1999.
3. The NaradaBrokering Project at IU’s Grid Computing Laboratory http://www.naradabrokering.org
4. Geoffrey Fox and Shrideep Pallickara, An Event Service to Support Grid Computational Environments, to be published in

Concurrency and Computation: Practice and Experience, Special Issue on Grid Computing Environments.
5. Geoffrey C. Fox and Shrideep Pallickara, An Approach to High Performance Distributed Web Brokering. ACM Ubiquity

Volume2 Issue 38. November 2001.
6. Pallickara, S., "A Grid Event Service." PhD Syracuse University, 2001.
7. Geoffrey C. Fox and Shrideep Pallickara .The Narada Event Brokering System: Overview and Extensions. Proc. of the

International Conference on Parallel and Distributed Processing Techniques and Applications. Las Vegas 2002.
8. Geoffrey Fox, Ozgur Balsoy, Shrideep Pallickara, Ahmet Uyar, Dennis Gannon, Aleksander Slominski. Community Grids.

Proc. of the International Conference on Computational Science. Amsterdam, Netherlands 2002.
9. Geoffrey Fox, "Peer-to-Peer Networks," Computing in Science & Engineering, vol. 3, no. 3, May2001.
10. openp2p P2P Web Site from O’Reilly http://www.openp2p.com.
11. “Peer-To-Peer: Harnessing the Benefits of a Disruptive Technology”, edited by Andy Oram, O’Reilly Press 2001.
12. Sun Microsystems. The JXTA Project and Peer-to-Peer Technology http://www.jxta.org
13. The JXTA Protocol Specifications. http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html
14. SETI@home Project http://setiathome.ssl.berkeley.edu.
15. Folding@home Project http://www.stanford.edu/group/pandegroup/Cosm
16. Jabber http://www.jabber.org
17. Gnutella. http://gnutella.wego.com
18. Groove Network http://www.groove.net
19. Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer

systems. Proceedings of Middleware 2001.
20. PocketJXTA Project: Porting the JXTA-c platform to the PocketPC and similar devices. http://pocketjxta.jxta.org/

http://www.naradabrokering.org/
http://www.jxta.org/
http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html
mailto:SETI@home
http://setiathome.ssl.berkeley.edu/
mailto:Folding@home
http://www.stanford.edu/group/pandegroup/Cosm
http://www.jabber.org/
http://gnutella.wego.com/
http://www.groove.net/
http://pocketjxta.jxta.org/

21. Mark Happner, Rich Burridge and Rahul Sharma. Sun Microsystems. Java Message Service Specification. 2000.
http://java.sun.com/products/jms

22. SonicMQ JMS Server http://www.sonicsoftware.com/
23. The OpenJMS Project http://openjms.exolab.org/
24. Geoffrey C. Fox and Shrideep Pallickara JMS Compliance in the Narada Event Brokering System. Proc. of the

International Conference on Internet Computing. Las Vegas, 2002.
25. The Anabas Conferencing System. http://www.anabas.com
26. The Online Knowledge Center (OKC) Web Portal http://judi.ucs.indiana.edu/okcportal/index.jsp
27. Paul J. Leach and Rich Salz. Network Working Group. UUIDs and GUIDs. February, 1998.
28. Web Services Description Language (WSDL) 1.1 http://www.w3.org/TR/wsdl.
29. Geoffrey Fox et al. Grid Services For Earthquake Science. To appear in Concurrency & Computation: Practice and

Experience. Special Issue on Grid Computing Environments.
30. Presentation on Web Services by Francesco Curbera of IBM at DoE Components Workshop July 23-25, 2001. Livermore,

California. http://www.llnl.gov/CASC/work shops/components2001/viewgraphs/FranciscoCurbera.ppt
31. Frank Laymann, Web Services Flow Language WSFL, http://www.ibm.com/software/solutions/webservices/pdf/ WSFL.pdf
32. Harumi Kuno, Mike Lemon, Alan Karp and Dorothea Beringer, (WSCL – Web Services Conversational Language),

“Conversations + Interfaces = Business logic”, http://www.hpl.hp.com/techreports/2001/HPL-20 01127.html
33. Semantic Web from W3C to describe self organizing Intelligence from enhanced web resources. http://www.

w3c.org/2001/sw/
34. Berners-Lee, T., Hendler, J., and Lassila, O., "The Semantic Web," Scientific American, May2001.
35. Ken Arnold, Bryan O'Sullivan, Robert Scheifler, Jim Waldo and Ann Wollrath. The Jini Specification. Addison-Wesley.

June 1999.

http://java.sun.com/products/jms
http://www.sonicsoftware.com/
http://openjms.exolab.org/
http://www.anabas.com/
http://judi.ucs.indiana.edu/okcportal/index.jsp
http://www.w3.org/TR/wsdl
http://www.llnl.gov/CASC/work shops/components2001/viewgraphs/FranciscoCurbera.ppt
http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www.hpl.hp.com/techreports/2001/HPL-20 01127.html
http://www. w3c.org/2001/sw/
http://www. w3c.org/2001/sw/

	ABSTRACT
	
	INTRODUCTION

	2.0 NARADABROKERING AND P2P INTERACTIONS
	3. JXTA
	4.2.1 Peer Group Advertisements
	4.2.2 Requests to be part of a peer group, and responses to these requests
	4.2.3 JXTA Messages
	4.2.4 Dealing with queries and query responses
	4.4 JXTA Applications and NaradaBrokering

	6. EXPERIMENTAL SETUP
	7. CONCLUSION

