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Abstract 

Broad deployment of multicore systems in commodity situations has highlighted the need for parallel 

environments that support a wider range of application than those on traditional parallel supercomputers. 

Further we need to build composite jobs made of heterogeneous applications. A common underlying 

runtime that supports multiple programming paradigms appears to be one important part of future parallel 

computing environments integrating cluster and multicore parallelism. Here we examine CCR or the 

Concurrency and Coordination Run time from Microsoft as a multi-paradigm run time supporting three key 

parallel models: full MPI collective messaging, asynchronous threading and coarse grain functional 

parallelism or workflow.  It is an attractive multi-paradigm candidate as it was designed to support general 

dynamic message patterns with high performance and already has a distributed, REST oriented runtime 

known as DSS built on top of it. We present results on message latency and bandwidth for two processor 

multicore systems based on AMD and Intel architectures with a total of four and eight cores. Generating up 

to a million messages per second on a single PC, we find on the AMD based PC, latencies from 4µs in 

basic asynchronous threading and point to point mode to 14 µs for a full MPI_SENDRECV exchange with 

all threads (one per core) sending and receiving 2 messages at a traditional MPI loosely synchronous 

rendezvous. Workflow latencies are measured as less than 40 µs with all results coming from the CCR and 

DSS freely available as part of the Microsoft Robotics Studio distribution. We present Intel PC latencies 

that are significantly higher but whose optimization has not been studied yet by us. Looking to the future, 

we suggest that the ease of programming custom collectives using the CCR primitives make it attractive to 

consider building a full MPI run time on top of it. This would have fully asynchronous queued messaging, 



integration with workflow and thread-based programming, a rendezvous and active message mode, support 

of managed code (C#) and ability to run on cluster and multicore systems. Although the current CCR has 

reasonable performance for MPI primitives, it would be important to improve this and current core CCR 

plans should lead to a factor of 2 lower latencies. We also will investigate the origins of the differences 

between Intel and AMD results. 

 
1. Introduction 
 
Multicore architectures are bringing parallel computing to a broad range of applications with profound 

impact on hardware, systems software and applications [1-3].  The programming models and runtime that 

will be used on multicore architectures are the subject of substantial academic and industry research and 

development as they must bridge between current commercial desktop and server systems, commercial 

parallel databases, distributed Grid environments and the massively parallel supercomputers largely aimed 

at science and engineering [4]. Intel [5] has examined classes of possible future desktop applications which 

they term RMS – Recognition, Mining and Synthesis. This can be illustrated by a sophisticated datamining 

application that first accesses a parallel database and then runs analysis algorithms including perhaps a 

multithreaded branch and bound search, and a SVM Support Vector Machine built on parallel linear 

algebra followed by sophisticated visualization. This composite application would need to be controlled by 

a coarse grain executive similar to Grid workflow [6] or Google MapReduce [7]. The individual 

datamining filters could use either the dynamic thread parallelism appropriate for search algorithm or an 

MPI style messaging for parallel linear algebra used in the SVM filter. Further we would like this job to run 

efficiently and seamlessly either internally to a single CPU or across a tightly coupled cluster or distributed 

Grid. In this paper we address a small part of the multicore puzzle – namely what could be the runtime that 

could span these different environments and different platforms that would be used by the heterogeneous 

composite applications that could be common on future multicore applications for personal, commercial or 

research use. Managed code will be important for desktop applications and so C# (used here) and Java 

could become more important for parallel programming. 

 



We examine the issues of building a multi-paradigm runtime with a particular example CCR which is a 

runtime [8-9] designed for robotics applications [10] but also investigated [11] as a general programming 

paradigm. CCR supports efficient thread management for handlers (continuations) spawned in response to 

messages being posted to ports. The ports (queues) are managed by CCR which has several primitives 

supporting the initiation of handlers when different message/port assignment patterns are recognized. Note 

that CCR supports a particular flavor of threading where information is passed by messages allowing 

simple correctness criteria. However this paper is not really proposing a programming model but examining 

a possible low level runtime which could support a variety of different parallel programming models that 

would map down into it. In particular the new generation of parallel languages [12] from Darpa’s HPCS 

High Productivity Computing System program supports the three execution styles (dynamic threading, 

MPI, coarse grain functional parallelism) we investigate here.  

 

In the next section, we discuss CCR and DSS briefly while section 3 defines more precisely our three 

execution models. Section 4 presents our basic performance results that suggest one can build a single 

runtime that supports the different execution models. Future work and conclusions are in section 5. 

 
2. Overview of CCR and DSS 

CCR provides a framework for building general collective communication where threads can write to a 

general set of ports and read one or more messages from one or more ports. The framework manages both 

ports and threads with optimized dispatchers that can efficiently iterate over multiple threads. All primitives 

result in a task construct being posted on one or more queues, associated with a dispatcher. The dispatcher 

uses OS threads to load balance tasks. The current applications and provided primitives support what we 

call the dynamic threading model with capabilities that include: 

1) FromHandler: Spawn threads without reading ports 

2) Receive: Each handler reads one item from a single port 

3) MultipleItemReceive: Each handler reads a prescribed number of items of a given type from a 

given port. Note items in a port can be general structures but all must have same type. 

4) MultiplePortReceive: Each handler reads a one item of a given type from multiple ports. 



5) JoinedReceive: Each handler reads one item from each of two ports. The items can be of different 

type. 

6) Choice: Execute a choice of two or more port-handler pairings 

7) Interleave: Consists of a set of arbiters (port -- handler pairs) of 3 types that are Concurrent, 

Exclusive or Teardown (called at end for clean up). Concurrent arbiters are run concurrently but 

exclusive handlers are not. 

 
One can spawn handlers that consume messages as is natural in a dynamic search application where 

handlers correspond to links in a tree. However one can also have long running handlers where messages 

are sent and consumed at a rendezvous points (yield points in CCR) as used in traditional MPI applications. 

Note that “active messages” correspond to the spawning model of CCR and can be straightforwardly 

supported. Further CCR takes care of all the needed queuing and asynchronous operations that avoid race 

conditions in complex messaging. For this first paper, we did use the CCR framework to build a custom 

optimized collective operation corresponding to the MPI “exchange” operation but used existing 

capabilities for the “reduce” and “shift” patterns. We believe one can extend this work to provide all MPI 

messaging patterns.  

 

Note that all our work was for managed code in C# which is an important implementation language for 

commodity desktop applications although slower than C++. In this regard we note that there are plans for a 

C++ version of CCR which would be faster but prone to traditional un-managed code errors such as 

memory leaks, buffer overruns, memory corruption. The C++ version could be faster than the current CCR 

but eventually we expect that the C# CCR will be within 20% of the performance of the C++ version. CCR 

has been extensively applied to the dynamic threading characteristic of today’s desktop application but its 

largest use is in the Robotics community. One interesting use is to add an efficient port-based 

implementation of “futures” to C#, since the CCR can easily express them with no modifications in the 

core runtime. CCR is very portable and runs on both CE (small devices) and desktop windows.  

 

DSS sits on top of CCR and provides a lightweight, REST oriented application model that is particularly 

suited for creating Web-style applications as compositions of services running in a distributed environment. 



Services are isolated from each other, even when running within the same node and are only exposed 

through their state and a uniform set of operations over that state. The DSS runtime provides a hosting 

environment for managing services and a set of infrastructure services that can be used for service creation, 

discovery, logging, debugging, monitoring, and security. DSS builds on existing Web architecture and 

extends the application model provided by HTTP through structured data manipulation and event 

notification. Interaction with DSS services happen either through HTTP or DSSP [27] which is a SOAP-

based protocol for managing structured data manipulations and event notifications. The combination of 

HTTP and DSSP allows services to expose their UI through traditional Web infrastructure mechanisms 

such as a browser as well as interacting efficiently with each other. 

 
3.  MPI and the 3 Execution Models 

MPI – Message Passing Interface – dominates the runtime support of large scale parallel applications for 

technical computing. It is a complicated specification with 128 separate calls in the original specification 

[13] and double this number of interfaces in the more recent MPI-2 including support of parallel external 

I/O [14-15]. MPI like CCR is built around the idea of concurrently executing threads (processes, programs) 

that exchange information by messages. In the classic analysis [16-19], parallel technical computing 

applications can be divided into four classes: 

a) Synchronous problems where every process executes the same instruction at each clock cycle. 

This is a special case of b) below and only relevant as a separate class if one considers SIMD 

(Single Instruction Multiple Data) hardware architectures. 

b) Loosely Synchronous problems where each process runs different instruction streams (often 

using the same program in SPMD mode) but they synchronize with the other processes every now 

and then. Such problems divide into stages where at the beginning and end of each stage the 

processes exchange messages and this exchange provides the needed synchronization that is 

scalable as it needs no global barriers. Load balancing must be used to ensure that all processes 

execute for roughly (within say 5%) the same time in each phase and MPI provides the messaging 

at the beginning and end of each stage. We get at each loose synchronization point a message 

pattern of many overlapping joins that is not usually seen in commodity applications and 

represents a new challenge. 



c) Embarrassingly or Pleasingly parallel problems have no significant inter-process 

communication and are often executed on a Grid. 

d) Functional parallelism leads to what were originally called metaproblems that consist of multiple 

applications, each of which 

is of one of the classes a), 

b), c) as seen in 

multidisciplinary 

applications such as linkage 

of structural, acoustic and 

fluid-flow simulations in 

aerodynamics. These have a 

coarse grain parallelism. 

 
Classes c) and d) today would 

typically be implemented as a 

workflow using services to 

represent the individual 

components. Often the 

components are distributed 

and the latency requirements 

are typically less stringent 

than for synchronous and loosely synchronous problems. We view this as functional parallelism in this 

paper and will use DSS already developed for Robotics [10] on top of CCR for this case and idealized in 

fig. 1(a).  

  
We use CCR in a mode where multiple identical stages are executed and the run is completed by 

combining the computations with a simple CCR supported reduction as shown in fig. 1(b). This also 

illustrates the simple Pipeline Spawn execution that we used for basic performance measurements of the 

Message

Thread0 Port0
MessageMessage

Thread0 Message

Message

Thread3 Port3
MessageMessage

Thread3

EndPort

Message

Thread2 Port2
MessageMessage

Message

Thread2 Message

Message

Thread1 Port1
MessageMessage

Thread1 Message

Fig. 1(b) Pipeline of Spawned Threads followed by a Reduction 
implemented using CCR Interleave

Service-A Service-B

Fig. 1(a) 2-way Inter Service message
Implemented in DSS

Message

Thread3 Port3
MessageMessage Message

Thread3 Port3
MessageMessage

Message

Thread2 Port2
MessageMessage Message

Thread2 Port2
MessageMessage

Message

Thread0 Port0
MessageMessage Message

Thread0 Port0
MessageMessage Message

Thread0 Port0
MessageMessage

Message

Thread3 Port3
MessageMessage

Message

Thread2 Port2
MessageMessage

Message

Thread1 Port1
MessageMessage Message

Thread1 Port1
MessageMessage Message

Thread1 Port1
MessageMessage

One Stage

Fig. 2: Illustration of multiple stages used in CCR Performance Measurements

Message

Thread0 Port0
MessageMessage Message

Thread0 Port0
MessageMessage Message

Thread0 Port0
MessageMessage

Message MessageMessage

Message MessageMessage

Message

Thread1 Port1
MessageMessage Message

Thread1 Port1
MessageMessage Message

Thread1 Port1
MessageMessage



dynamic threading performance. Each thread writes to a single port that is read by a fresh thread as shown 

in more detail in fig. 2.   

 

We take a fixed computation that takes from 8 to 17 seconds depending on hardware and execution 

environment to run sequentially on the machines we used in this study. This computation was divided into 

a variable number of stages of identical computational complexity and then the measurement of execution 

time as a function of number of stages allows one to find the thread and messaging overhead. Note that the 

extreme case of 107 stages corresponds to a 0.8 to 1.7 µs execution time and a stringent test for MPI style 

messaging which can require microsecond level latencies. We concentrated on small message payloads as it 

is the latency (overhead) in this case that is the critical problem. As multicore systems have shared 

memories, one would often use handles in small messages rather than transferring large payloads. 

 

We looked at three different message patterns for the dynamic spawned thread case choosing structure that 

was similar to MPI to allow easier comparison of different execution models. These spawned patterns are 

illustrated in fig. 3(a-c) and augment the pipeline of fig. 1(b) and 2 with a “nearest neighbor” shift with 
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either one or two messages written to ports so we could time both the Receive and MultiItemReceive modes 

of CCR. We note that figures 1 to 3 are drawn for 4 cores while our tests used both 4 and 8 core systems.  

 
For our test of the final execution style, namely the MPI style runtime, we needed rendezvous semantics 

which are fully supported by CCR and we chose to use patterns corresponding to the MPI_SENDRECV 

interface with either toroidal nearest neighbor shift of fig. 3(d) or the combination of a left and right shift, 

namely an exchange, shown in fig. 3(e). Note that posting to a port in CCR corresponds to a MPISEND and 

the matching MPIRECV is achieved from arguments of handler invoked to process the port. MPI has a 

much richer set of defined methods that describe different synchronicity options, various utilities and 

collectives. These include the multi-cast (broadcast, gather-scatter) of messages with the calculation of 

associative and commutative functions on the fly. It is not clear what primitives and indeed what 

implementation will be most effective on multicore systems [2, 20] and so we only looked at a few simple 

but representative cases in this initial study. In fact it is possible that our study which suggests one can 

support in the same framework a set of execution models that is broader than today’s MPI, could motivate a 

new look at messaging standards for parallel computing. 

 

Code Sample 1: MPI Exchange Pattern in CCR 
 
Main Routine for Exchange Pseudocode { 
Create CCR dispatchers to control threads 
Create a queue to hold tasks 
Set up start ports with MPI initialization data such as thread number 
Invoke handlers (MPI threads) on start ports  
} End Main Routine 
 
MPI logical thread Pseudocode (Arguments are start port contents) { 
Calculate nearest neighbors for exchange collective 
Loop over stages { 
Post information to 2 ports that will be read by left and right neighbors 
yield return on CCR MultipleItemReceive will wait till this thread’s information is available in its 
ports and continue execution after reading 2 ports 
Do computation for this stage 
} End loop over stages 
 
Each thread sends information to ending port and thread 0 only does 
 yield return on CCR MultipleItemReceive to collect information from all threads to complete run 
after reading from one port for each thread (this is a reduction operation).  
} End MPI Thread 



An important innovation of the CCR is to allow sequential, asynchronous computation without forcing the 

programmer to write callbacks, or continuations, and at the same time not blocking an OS thread. This 

allows the CCR to scale to tens of millions of pending I/O operations, but with code that reads like 

synchronous, blocking operations. We illustrate the CCR structure with the Pseudocode corresponding to 

an MPI exchange pattern given above in Code sample 1. 

 
We performed measurements on 3 machines labeled AMD, INTEL4 and INTEL8. The machine termed 

AMD had 2 gigabytes of memory and two AMD Opteron chips – each with two cores running at 2.4 GHz 

speed. The INTEL4 machine was a Dell Precision Workstation 670 with two dual-Core Intel® Xeon™ 

Processors running at 2.80GHz with 2x2MB L2 cache. The INTEL8 machine was a workstation with two 

2.64 GHz 4-core Intel® Xeon™ processors and a total of 4 gigabytes of memory. The AMD and INTEL8 

run the Windows Vista Enterprise operating system in 32bit and 64bit mode respectively. The INTEL4 

machine ran Windows XP Professional 64 bit edition and this was also used on earlier models of AMD and 

INTEL8 machines we used in our first tests reported below on the patterns in figs. 3(a-c).  This initial AMD 

platform had a 2.19 Ghz clock while the INTEL8 ran at 1.86 GHz in our first work. For the final version of 

the paper, we will rerun all our measurements on the newer machines which will improve the performances 

reported below for pipeline, shift and “2 shifts” dynamic threading modes. 

Fig. 4(a): Fixed amount of computation (4.107

units) divided into 4 cores and from 1 to 107

stages on HP Opteron Multicore termed AMD. 
Each stage is separated by reading and writing 
CCR ports in Pipeline mode
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4. Performance of CCR in 3 Execution Models 

4.1 CCR Message Latency and Overhead 

 
We illustrate our approach by discussing the simple pipeline pattern of fig. 3(a) for the AMD and INTEL4 

machines. In figs 4(a) and 4(b), we plot the total execution time for a series of computations. Each ran 4.107 

repetitions (107 repetitions on each of 

four cores) of the basic 1.4 microsecond 

compute activity (it is this long on the 

2.19 Ghz AMD, it was 1.5 microsecond 

on INTEL4) on 4 cores. The repetitions 

are achieved by either a simple loop 

inside the thread of basic computation 

unit or by splitting into separate stages 

separated by writing and reading CCR 

ports. This simple strategy ensures that 

without threading overhead the execution 

time will be identical whether one 

divides computation by loops or by CCR 

stages; this way we can get accurate 

estimates of the overhead incurred by the 

port messaging interface.  

 
We first analyze the AMD results where 

without overhead the execution time will 

be about 14 seconds and is shown as a 

dashed line in figure 4(a). The figure 

takes these 4.107 repetitions and plots 

their execution time when divided into stages of the type shown in figure 2. Each measurement was an 

average over at least 10 runs with a given set of parameters. Figure 4 shows the results plotted up to 10 

Fig. 5(a): Detail from Fig.4(a) for 1 to 1 million stages on 
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million stages while figure 5 shows the detail for up to one million stages. Always we use the term 

overhead to represent the actual measured execution time with subtraction of the time that a single stage 

would take to execute the same computational load. Overhead corresponds to latency in typical MPI 

benchmarking parlance. Figure 4 marks as “overhead=computation”, the point where measured execution 

time is twice that taken by a single stage. For 10 million stages the overhead on the AMD is large – almost 

85 seconds; this corresponds to a set of loosely synchronous stages lasting 9.9 microseconds which is 

mainly overhead as the “real” computation is just 1.4 microseconds per stage. The INTEL4 results show 

125 seconds overhead in this extreme case. 

 

 Looking at the case of one million stages, the overhead is smaller – about 5 seconds (for AMD and 9 

seconds for INTEL4); for the AMD, this corresponds to a set of loosely synchronous stages lasting 19 

microseconds where the overhead is about 5 microseconds and the “real” computation is 14 microseconds 

(a loop of ten basic computation unit) per stage. Linear fits to the stage dependence leads to an overhead 

per stage of 4.63 microseconds from figure 5(a) while the behavior becomes somewhat nonlinear in the 

larger range of stages in figure 4(a). This overhead represents the CCR (and system) time to set up threads 

and process the ports. Our measurement says this overhead is linear in the number of invocations when the 

spawned threads execute for substantially more (14 microseconds) than the basic overhead (4.63 

microseconds) but the overhead increases when the thread execution time decreases to a few microseconds. 

Turning to the INTEL4 results they are qualitatively similar but with significantly higher overhead. In 

figure 4(b), the average has increased from 8.04 for AMD to 12.66 microseconds for INTEL4 with the 

execution of 10 million stages taking 40% longer than the AMD even though the execution time with 1 

stage is only 7% longer. Comparing figs 5(a) and 5(b), shows the discrepancy between AMD and INTEL4 

CCR performance to be exacerbated if one restricts attention to just the first one million stages.  

 
We summarize in Table 1 several styles of runs in terms of the overheads on the case of 500,000 stages 

when the stage computations takes approximately 17 (AMD running at 2.4 GHz used in rendezvous 

measurements of figs. 3(d-e)) 28(AMD running at 2.19 GHz used in patterns of figs. 3(a-c)) 24(INTEL8 

used in patterns of figs. 3(d-e)), 30(INTEL4) or 34(INTEL8 used in patterns of figs. 3(a-c)) microseconds. 

We only list overhead or latency per stage in the messaging by subtracting out the stage computations from 



the run time. We look at 1-4 way parallelism for AMD and INTEL4 and 1-8 way parallelism for INTEL8. 

Not surprisingly when the requested parallelism is less than the maximum of cores, the system is able to 

use the “free” cores for port/message operations and reduce the stage overhead. We did use the AMD 

thread debugger to verify that the system made efficient use of cores but this did not have the microsecond 

resolution needed for an in depth study. Table 1 has all 5 patterns of fig. 3 including the three spawned 

thread and two rendezvous style.  For the dynamic spawned thread case, shift is very similar to pipeline as 

one might expect as both have the same number of port read/write operations. The two shift case of fig. 

3(c) shows that the overhead roughly doubles as we double the number of reads and writes.  

Table 1: Stage overheads in microseconds for the five CCR patterns illustrated in Figure 3 
and calculated from the 500,000 stage runtimes 

Number of Parallel Computations a) AMD Stage Overhead  
(microseconds) 1 2 3 4 
Straight Pipeline 0.77 2.4 3.6 5.0 

Shift N/A 3.3 3.4 4.7 

Two  Shifts N/A 4.8 7.7 9.5 

Rendezvous Shift N/A 7.1 9.0 9.7 

Rendezvous Exchange N/A 8.8 13.6 14.2 
Number of Parallel Computations b) INTEL4 Stage Overhead  

(microseconds) 1 2 3 4 

Straight Pipeline 1.7 3.3 4.0 9.1 

Shift N/A 3.4 5.1 9.4 

Two  Shifts N/A 6.8 13.8 13.4 
Number of Parallel Computations c) INTEL8 Stage Overhead 

(microseconds) 1 2 3 4 7 8 
Straight Pipeline 1.33 4.2 4.3 4.7 * 6.5 

Shift N/A 4.3 4.5 5.1 * 7.2 

Two  Shifts N/A 7.5 6.8 8.4 * 22.8 

Rendezvous Shift N/A 6.6 8.9 10.4 14.4 17.3 

Rendezvous Exchange N/A 8.9 15.6 15.2 22.3 28.3 

Notes: * marks missing measurements that will be added before publication 
      
Now we study in detail the Rendezvous measurements which exactly mimic MPI and are depicted in figs. 

3(d) and 3(e). Their overheads for 500,000 stages are also recorded in table 1 and the variation of 

performance with number of stages is given in figures 6(a) for AMD up to ten million and in fig. 6(b) for 

INTEL8 up to one million stages. We looked at two implementations of rendezvous exchange – in the first 



each thread issued writes to the left and right neighboring ports and then waited till its two messages were 

available. This uses a new version of CCR’s MultipleItemReceive. The second approach (which is shown in 

figs. 6 and 7 but not table 1) simple achieves an exchange as a right shift followed by a left right with no 

computation in between. This uses two calls per stage to CCR’s Receive primitive; the same call used once 

per stage by spawned pipeline and shift.  

 

It is interesting to see that the special CCR primitive optimized for exchange easily outperforms the simpler 

“exchange as two shifts” and demonstrates the value of being to develop new patterns directly in the 

managed code environment.  
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The AMD PC always outperforms INTEL8 in both table 1 and figures 6 and 7 but this is somewhat unfair 

as the management of the 8 parallel threads in the INTEL8 case is more demanding than the 4 needed by 

AMD and this impacts both CCR and the underlying Windows scheduler. The scaling of multicore chip 

performance as the number of cores increase will be an important area for future study. 

 

Figs. 7(a, b) show the messaging overhead as a function of the number of stages which is essentially the 

slope of the run time measurements in fig. 6. The AMD results are remarkably constant up to 10 million 

stages that illustrates that both CCR and the Windows O/S are able to schedule the 4 AMD cores in an 

efficient fashion with no interference between the stages. We note the early results were less good and the 

presented results come from optimizing the CCR-Windows scheduling interface. Especially for INTEL8, 

there are hints of an anomaly to the left of figs. 7(a, b) around 50,000 stages where the overhead 

surprisingly rises. We have understood this as due to non-optimal Windows scheduling and are working 

with the responsible Microsoft team on thread scheduling in this unusual (for commodity applications) case 

of highly correlated messaging. We believe that the MPI message pattern performance in figs. 6 and 7 and 

table 1 are excellent for the AMD and acceptable for INTEL8. We anticipate the results to improve with 

further analysis of results and optimizations. 

 

4.2 CCR Message Bandwidth 

We now briefly discuss some measurements of message bandwidth supported by CCR. We simulated a 

typical MPI CALL such as subroutine mpisend (buf, count, datatype, dest, tag, comm) by posting a 

structure made up of an array of doubles of length N and a set of six integers (with one extra integer for 

CCR control). These all used the full 4-way parallelism of AMD and INTEL4  and typical results are 

shown in fig. 8 with more detail available on request. One passes a reference for the data buffer buf and we 

used three distinct models for locations of final data termed respectively 

a) Inside Thread: The buffer buf is copied using C# Copy To function to a new array inside the 

thread whose size is identical to that of buf.  



b) Outside Thread: The buffer buf is copied using C# Copy To function to a fixed array (with 

distinct arrays for each core) outside the thread whose size is identical to that of buf.  

c) Stepped Array Outside Thread: The buffer buf is copied using element by element Copy in C# 

to a fixed large array outside the thread whose size is two million double floating words. Again 

each core has its own separate stepped array. 

 
Note all measurements in this section involved 4-way parallelism and the bandwidth is summed over all 

four cores simultaneously copying message buffers. 

In this bandwidth investigation, we fix the number of stages and look at the run time as a function of size of 

array stored in the port. One finds bandwidths that vary from 0.75 to 2 Gigabytes per second with the 

INTEL4 machine claiming both upper and lower values although it typically shows better bandwidth than 

the AMD machine. Note the best bandwidths are obtained when the destination arrays are outside the 

thread and when of course the copied data is small enough to make good use of cache. Also the bandwidth 

is higher for the cases where the computing component is significant; i.e. when it has a value of a few 

milliseconds rather than the lower limit of a few microseconds. Figure 8 illustrates our benchmarks with a 

stage computation of 2800 (AMD) to 3000 (Intel) microseconds. For the case (c) of a stepped array, the 

INTEL4 PC achieves a bandwidth of 1.75 gigabytes/second for 100,000 word messages which decreases to 

just 1 gigabyte/second for million word arrays. The AMD machine shows a roughly uniform bandwidth of 
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1.17 gigabyte/second independent of array size. Note typical messages in MPI would be smaller than 

100,000 words and so MPI would benefit from the performance increase for small messages. 

 

4.3 DSS Message Latency and Overhead 

We now examine CCR for the third form of parallelism; namely the functional parallelism model 

represented in fig. 1(a). The Robotics release [10] includes a lightweight service environment DSS built on 

top of CCR and we performed an initial evaluation of DSS on the AMD machine. In fig. 9, we time groups 

of request-response two way messages running on (different) cores of the AMD system. For a group of 200 

messages we   histogram the timings of 30 separate measurements. For low message counts DSS 

initialization bumps up the run time and for large groups of messages it increases – perhaps due to 

overheads like Garbage Collection. For message groups from about 50-1000 messages, we find average 

times of 30-50 microseconds or throughputs of 20,000 to 25,000 two-way messages per second. This result 

of internal service to internal service can be compared with Apache Axis 2 where the AMD PC supports 

about 3,000 messages per second throughput. This is not a fair comparison as the measurements of fig. 9 

are internal to one machine so each service end-point has effectively just two cores. The Axis 

measurements used external clients interacting on a LAN so there is network overhead but now the service 

can access the full 4 cores. We will complete fairer comparisons later and also examine the important one-

way messaging case. 

 

 

Fig. 9(a): Timing of HP Opteron Multicore AMD 
machineas a function of number of two-way service 
messages processed 
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5. Conclusions and Futures 
 
This preliminary study suggests that CCR and DSS form an interesting infrastructure for parallel 

computing. We addressed this by showing they can support the three basic messaging runtime models used 

in parallel computing. We found overheads on the AMD machine that varied from about 4 µs for dynamic 

threads to less than 40 µs for a flexible functional parallelism model with MPI style rendezvous’ in 

between. The AMD machine had a 14 µs overhead for rendezvous exchange (MPI_SENDRECV) that was 

little changed as we varied the computation per stage in the range of 1 to 100 µs. This is not as good as the 

current best MPI [21-24] but MPI has the benefit of from many years of experience. CCR and the 

underlying Windows multicore scheduler have not before been applied to this style of messaging in intense 

environments and we expect significant improvements in CCR and DSS performance over the next few 

months and would include updated figures in the published version of this paper. We will also complete the 

INTEL4 measurements and use our new faster INTEL8 and AMD PC’s for the dynamic thread case. We 

are also doing comparable multicore benchmarks on MPICH, OpenMPI and MPJ Express [25] ( and 

mpiJava [26]) to cover the very best classic MPI’s with in addition Java implementations giving us  another 

managed code example. Further details of current analysis can be found in [28]. 
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