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Abstract—Multicore systems are of growing importance and 64-

128 cores can be expected in a few years. We expect datamining to 
be an important application class of general importance and are 
developing such scalable parallel algorithms for managed code 
(C#) on Windows. We present a performance analysis that 
compares MPI and a new messaging runtime library CCR 
(Concurrency and Coordination Runtime) with Windows and 
Linux and using both threads and processes. We investigate effects 
of cache lines and memory bandwidth and fluctuations of run times 
of loosely synchronized threads. We give results on message latency 
and bandwidth for two processor multicore systems based on AMD 
and Intel architectures with a total of four and eight cores. 
Generating up to a million messages per second on a single PC, we 
find on an Intel dual quadcore system, latencies from 5µs in basic 
asynchronous threading to 20 µs for a full MPI_SENDRECV 
exchange with all threads (one per core) sending and receiving 2 
messages at a traditional MPI style loosely synchronous 
rendezvous. We compare our C# results with C using MPICH2 and 
Nemesis and Java with both mpiJava and MPJ Express. We are 
packaging our core algorithms not as traditional libraries but as 
services and use DSS (Decentralized System Services built on CCR) 
to compose workflows or mashups for complete applications. We 
show initial results from GIS and Cheminformatics clustering 
problems. Our results suggest that the service composition model 
and Windows/C# thread programming model will be a flexible 
parallel programming environment for important commodity 
applications. C 
 

Index Terms—Cache, Datamining, MPI, Multicore, Parallel 
Computing , Performance, Threads, Windows 
 

I. INTRODUCTION 
Multicore architectures are of increasing importance and are 
impacting client, server and supercomputer systems [1-6]. 
They make parallel computing and its integration with large 
systems of great importance as “all” applications need good 
performance rather than just the relatively specialized areas 
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covered by traditional high performance computing. We 
suggest that one needs to look again at parallel programming 
environments and runtimes and examine how they can support 
a broad market. In this paper we consider datamining as an 
application that has broad applicability and could be important 
on tomorrow’s client systems as one supports “user expert 
assistants” that help the user by analyzing the “deluge” of data 
from sensors or just the internet connection. Perhaps on the 
128 core client PC of 7 years hence, most of the cores would 
be spent on speculative and directed data analysis. Such 
applications are likely to be written in managed code (C#, 
Java) and run on Windows (or equivalent client OS for Mac) 
and use threads. This scenario is suggested by the recent RMS 
analysis by Intel [5]. It is interesting that the parallel kernels 
of most datamining algorithms are similar to those well 
studied by the high performance (scientific) computing 
community and often need the synchronization primitives 
supported by MPI.  
 
In other papers [7-9] we have explained our hybrid 
programming model SALSA (Service Aggregated Linked 
Sequential Activities) that builds libraries as a set of services 
and uses simple service composition to compose complete 
applications [10]. Each service then runs on parallel on any 
number of cores – either part of a single PC or spread out over 
a cluster. The performance requirements at the service layer 
are less severe than at the “microscopic” thread level for 
which MPI is designed and where this paper concentrates. We 
use DSS (Decentralized System Services) which offers good 
performance with messaging latencies of 35 µs between 
services on a single PC [9]. Each service consists of parallel 
threads or processes that are synchronized in our case by 
Locks, MPI or a novel messaging runtime library CCR 
(Concurrency and Coordination Runtime) developed by 
Microsoft Research [11-15]. In this paper we explore these 
different synchronization overheads and the effects of 
operating system and the use of threads or processes.  
 
In this paper, we present the performance analysis for C# and 
Java on both Windows and Linux and identify new features 
that have not been well studied for parallel scientific 
applications. This worked was performed on a set of multicore 
commodity PC’s summarized in Table I. The results can be 
extended to clusters as we are using similar messaging 
runtime but we focus in this paper on the new results seen on 
the multicore systems. 
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TABLE I: MULTICORE PC’S USED IN PAPER 

AMD4: HPxw9300 workstation, 2 AMD Opteron CPUs Processor 275 at 
2.19GHz, L2 Cache 2x1MB (for each chip), Memory 4GB.  XP Pro 64bit 
and Windows Server 2003 
Intel4: Dell Precision PWS670, 2 Intel Xeon CPUs at 2.80GHz, L2 Cache 
2x2MB, Memory 4GB. XP Pro 64bit 
Intel8a: Dell Precision PWS690, 2 Intel Xeon CPUs E5320 at 1.86GHz, L2 
Cache 2x4M, Memory 8GB. XP Pro 64bit 
Intel8b: Dell Precision PWS690, 2 Intel Xeon CPUs x5355 at 2.66GHz, L2 
Cache 2X4M, Memory 4GB. Vista Ultimate 64bit and Fedora 7 
Intel8c: Dell Precision PWS690, 2 Intel Xeon CPUs x5345 at 2.33GHz, L2 
Cache 2X4M, Memory 8GB. Redhat 

 
Section II discusses the CCR runtime and section III our 
motivating clustering datamining applications. These results 
identify some important benchmarks covering cache and 
memory effects, runtime fluctuations and synchronization 
costs discussed in sections IV-VII. Conclusions are in Section 
VIII. 
 
All results and benchmark codes presented are available from 
http://www.infomall.org/salsa [16] 

II. OVERVIEW OF CCR  
CCR provides a framework for building general collective 
communication where threads can write to a general set of 
ports and read one or more messages from one or more ports. 
The framework manages both ports and threads with 
optimized dispatchers that can efficiently iterate over multiple 
threads. All primitives result in a task construct being posted 
on one or more queues, associated with a dispatcher. The 
dispatcher uses OS threads to load balance tasks. The current 
applications and provided primitives support a dynamic 
threading model with capabilities that include: 
 

1) FromHandler: Spawn threads without reading ports 
2) Receive: Each handler reads one item from a single 

port 
3) MultipleItemReceive: Each handler reads a 

prescribed number of items of a given type from a 
given port. Note items in a port can be general 
structures but all must have same type. 

4) MultiplePortReceive: Each handler reads a one item 
of a given type from multiple ports. 

5) JoinedReceive: Each handler reads one item from 
each of two ports. The items can be of different type. 

6) Choice: Execute a choice of two or more port-
handler pairings 

7) Interleave: Consists of a set of arbiters (port -- 
handler pairs) of 3 types that are Concurrent, 
Exclusive or Teardown (called at end for clean up). 
Concurrent arbiters are run concurrently but 
exclusive handlers are not. 

 
One can spawn handlers that consume messages as is natural 
in a dynamic search application where handlers correspond to 
links in a tree. However one can also have long running 
handlers where messages are sent and consumed at a 

rendezvous points (yield points in CCR) as used in traditional 
MPI applications. Note that “active messages” correspond to 
the spawning model of CCR and can be straightforwardly 
supported. Further CCR takes care of all the needed queuing 
and asynchronous operations that avoid race conditions in 
complex messaging. CCR is attractive as it supports such a 
wide variety of messaging from dynamic threading, services 
(via DSS described in [9]) and MPI style collective 
operations.  
 
CODE SAMPLE 1: MPI EXCHANGE PATTERN IN CCR 

 
For our performance comparisons with MPI, we needed 
rendezvous semantics which are fully supported by CCR and 
we chose to use patterns corresponding to the 
MPI_SENDRECV interface with either toroidal nearest 
neighbor shift or the combination of a left and right shift, 
namely an Exchange where each process (thread) sends and 
receives two messages. Note that posting to a port in CCR 
corresponds to a MPISEND and the matching MPIRECV is 
achieved from arguments of handler invoked to process the 
port. MPI has a much richer set of defined methods that 
describe different synchronicity options, various utilities and 
collectives. These include the multi-cast (broadcast, gather-
scatter) of messages with the calculation of associative and 
commutative functions on the fly. It is not clear what 
primitives and indeed what implementation will be most 
effective on multicore systems [2, 17] and so we only looked 
at a few simple but representative cases in this initial 
performance study. In fact it is possible that our study which 
suggests one can support in the same framework a set of 
execution models that is broader than today’s MPI, could 
motivate a new look at messaging standards for parallel 
computing. We used built in CCR primitives for the shift and 
reduction operations but exploited CCR’s ability to construct 
customized collectives sketched in Code Sample I to 
implement the MPI Exchange pattern. An important 
innovation of the CCR is to allow sequential, asynchronous 

Main Routine for Exchange Pseudocode { 
Create CCR dispatchers to control threads 
Create a queue to hold tasks 
Set up start ports with MPI initialization data such as thread number 
Invoke handlers (MPI threads) on start ports  
} End Main Routine 
 
MPI logical thread Pseudocode (Arguments are start port contents) { 
Calculate nearest neighbors for exchange collective 
Loop over stages  { Post information to 2 ports that will be read by left 
and right neighbors 
yield return on CCR MultipleItemReceive will wait till this thread’s 
information is available in its ports and continue execution after reading 2 
ports 
 
Do computation for this stage 
} End loop over stages 
 
Each thread sends information to ending port and thread 0 only does 
 yield return on CCR MultipleItemReceive to collect information from all 
threads to complete run after reading from one port for each thread (this 
is a reduction operation).  
} End MPI Thread 
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computation without forcing the programmer to write 
callbacks, or continuations, and at the same time not blocking 
an OS thread. This allows the CCR to scale to tens of millions 
of pending I/O operations, but with code that reads like 
synchronous, blocking operations.  
 
Note that all our work was for managed code in C# which is 
an important implementation language for commodity desktop 
applications although slower than C++. In this regard we note 
that there are plans for a C++ version of CCR which would be 
faster but prone to traditional un-managed code errors such as 
memory leaks, buffer overruns, memory corruption. The C++ 
version could be faster than the current CCR but eventually 
we expect that the C# CCR will be within 20% of the 
performance of the C++ version. CCR has been extensively 
applied to the dynamic threading characteristic of today’s 
desktop application but its largest use is in the Robotics 
community. One interesting use is to add an efficient port-
based implementation of “futures” to C#, since the CCR can 
easily express them with no modifications in the core runtime. 
CCR is very portable and runs on both CE (small devices) and 
desktop windows.  
 
DSS sits on top of CCR and provides a lightweight, REST 
oriented application model that is particularly suited for 
creating Web-style applications as compositions of services 
running in a distributed environment and its use in SALSA is 
described in [9]. 

III. CLUSTERING APPLICATION 
 

We are building a suite of data mining services to test the 
runtime and two layer SALSA programming model. We start 
with data clustering which has many important applications 
including clustering of chemical properties which is an 
important tool [18] for finding for example a set of chemicals 
similar to each other and so likely candidates for a given drug. 
We are also looking at clustering of spatial information and in 
particular properties derived from the US Census data. We use 
a modification of the well known K-means algorithm [19], 
deterministic annealing [20], that has good convergence and 
parallelization properties. For a set of data points x and cluster 
centers y, one gradually temperature T and iteratively 
calculates: 
y = ∑ x p(x,y) x 
p(x,y) = exp(-d(x,y)/T) p(x) / Zx                       (1) 
with Zx = ∑ y exp(-d(x,y)/T)  
 
Here d(x,y) is the distance defined in space where clustering is 
occurring. Parallelism can be implemented by dividing points 
x between the cores and there is a natural loosely synchronous 
barrier where the sums in each core are combined in a 
reduction collective to complete (1). Such parallel applications 
have a well understood performance model that can be 
expressed in terms of a parallel overhead f(n,P) where putting 
T(n,P) as the execution time on P cores or more generally 

processes/threads, we can define:  
 

Overhead f(n,P) = (PT(n,P)-T(Pn,1))/T(Pn,1)     (2)                

Efficiency ε = 1/(1+f) 
 

For the algorithm of (1), f(n,P) should depend on the grain 
size n where each core handles n data points and in fact f(n,P) 
should decrease proportionally to the reciprocal of the grain 
size with a coefficient that depends on synchronization costs 
[6, 21-23. This effect is clearly seen in fig. 1 presented already 
in [9] although surprisingly we do not find f(n,P) tending to 
zero as n increases. Rather it rather erratically wanders around 
a small number 0.02 to 0.1 as parameters are varied. The 
overhead also decreases as shown in fig. 1 as the number of 
clusters increases as it is easy to show from (1) as the basic 
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Fig. 1.  Parallel Overhead for GIS 2D Clustering on Intel8b using C# 
with 8 threads (cores) and CCR Synchronization. We use two values 
(10, 20) for the number of clusters and plot against the reciprocal of the 
number of data points assigned to each thread 
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Fig. 2.  Parallel Overhead defined in (2) as a function of the number 
of clusters for a) 2 dimensional GIS data for Indiana in over 200,000 
blocks and 40,000 chemical compounds each with 1052 binary 
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computation is proportional to number of points n multiplied 
by the number of clusters. In fig. 2 we plot the parallel 
overhead as a function of the number of clusters for two large 
real problems coming from Census data and chemical 
property clustering. These clearly show the rather random 
behavior after f(n,8) decreases to a small value corresponding 
to quite good parallelism – speedups of over 7 on 8 core 
systems. The results in fig. 2(b) show lower asymptotic values 
which were determined to correspond to the binary data used 
in Chemistry clustering. This problem showed fluctuations 
similar to 2(a) if one used floating point representation for the 
Chemistry “fingerprint” data. Of course the binary choice 
shown in fig. 2(b) is fastest and the appropriate approach to 
use. 

 
In the following section, we follow up on various details of 
these measurements examining the different components that 
effect performance 

IV. CACHE EFFECTS ON PERFORMANCE 
We found it quite hard to get reliable timing and identified 

two sources addressed here and in Sect. VII. The largest effect 
which is straightforward to address comes from the nature of 
the cache on all machines listed in table I. If different cores 
access different variables but those stored in the same cache 
line, then wild execution timer fluctuations can occur. These 

are documented by a simple computation that calculates 
concurrent summations and stores them in an array element 
A(i) for thread i. The summation used a random number 
generator to avoid being compiled away and can be 
downloaded from our web site [16]. This natural 
implementation leads to an order of magnitude increase in run 
time over an implementation that stores results in A(Si) where 
the separator S is chosen so that adjacent elements of A are 
separated by 64 bytes or more. These results are documented 
in Table II that records the execution time as a function of S 
and as a function of several machine and operating system 
choices. One sees good performance with modest fluctuations 
as long as S corresponds to a separation of 64 bytes or more. 
On the other hand in most cases the performance is dreadful 
and fluctuations sometimes large for separations S less than 64 
bytes (the columns labeled 1 and 4 in units of double variables 
– 8 bytes – in Table II). This effect is independent of 
synchronization used (compare CCR and Locks in Table II) 
and is presumably due to the cache design on these modern 
multicore systems.  Looking at the separation of 8 or 1024 
doubles in Table II, one can see that with compilers we used, 
C was much faster than C# and Linux faster than Windows. 
Most remarkably the Redhat Linux results do not show the 
degradation of performance seen for Windows for separation 
of 1 or 4 doubles.  

 
TABLE II: CACHE LINE COMPUTATION TIMES 

Thread Array Separation (unit is 8 bytes) 
1 4 8 1024 Machine OS Run Time Mean 

(µs) 
Std Dev 

Mean (µs) 
Mean 
(µs) 

Std Dev 
Mean (µs) 

Mean 
(µs) 

Std Dev 
Mean (µs) 

Mean 
(µs) 

Std Dev 
Mean (µs) 

Vista CCR C# CCR 8.03 .029 3.04 .059 0.884 .0051 0.884 .0069 
Vista  C# Locks 13.0 .0095 3.08 .0028 0.883 .0043 0.883 .0036 
Vista C 13.4 .0047 1.69 .0026 0.66 .029 0.659 .0057 Intel8b 

Fedora C 1.50 .01 0.69 .21 0.307 .0045 0.307 .016 
XP CCR C# 10.6 .033 4.16 .041 1.27 .051 1.43 .049 
XP Locks C# 16.6 .016 4.31 .0067 1.27 .066 1.27 .054 Intel8a 
XP C 16.9 .0016 2.27 .0042 0.946 .056 0.946 .058 

Intel8c Redhat C 0.441 .0035 0.423 .0031 0.423 .0030 0.423 .032 
C# CCR 8.58 .0080 2.62 .081 0.839 .0031 0.838 .0031 
C# Locks 8.72 .0036 2.42 .01 0.836 .0016 0.836 .0013 WinServer 

2003 
C 5.65 .020 2.69 .0060 1.05 .0013 1.05 .0014 
C# CCR 8.58 .0080 2.62 .081 0.839 .0031 0.838 .0031 
C# Locks 8.72 .0036 2.42 .01 0.836 .0016 0.836 .0013 

AMD4 

XP 
C 5.65 .020 2.69 .0060 1.05 .0013 1.05 .0014 
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The Fedora Linux results on Intel 8b rather remarkably lie in 
between those of Windows and Redhat in Table II showing a 
factor of 5 difference between separation 1 and 8 whereas 
Redhat has only a 5% effect while Windows varies widely 
with an upto factor of 15 effect.  Thus although the cache 
hardware architecture produces this effect, its impact is very 
systems software dependent. We are obviously able to 
program around this feature but it is unfortunate as using A(i) 
to store results from thread i is surely a natural strategy. This 
effect is in fact known [24] but its implications are often not 
properly implemented. For example the C# math random 

number generator makes the mistake of using such an array 
and so has unnecessarily poor performance. 

 

V. MEMORY AND THREAD PERFORMANCE 
 
In figs. 3, 4 and 5 we isolate the kernel of the clustering 
algorithm of sec. II and examine its performance as a function 
of grain size n, number of clusters and number of cores. In all 
cases we use the scaled speed up scenario and measure thread 
dependence at three fixed values of grain size n (10,000, 
50,000 and 500,000). All results are divided by the number of 
clusters, the grain size, and the number of cores and scaled so 
the 10,000 data point, one cluster, one core result becomes 1. 
These figures then immediately allow us to identify key 
features of the computation. We display cases for 1 cluster 
where memory bandwidth effects could be important and also 
for 80 clusters where such effects are small as one performs 
80 floating point operations on every variable fetched from 
memory. The three figures have typical results covering 
respectively Windows and C#, Windows and C and finally 
Linux and C. Always we use threads not processes and C uses 
Locks and C# uses CCR synchronization. Data is stored so as 
to avoid any of cache line effects discussed in the previous 
section.  
 
The results foe one cluster clearly show the effect of memory 
bandwidth with scaled run time increasing significantly as one 
increases the number of cores used. In this benchmark the 
memory demands scale directly with number of cores. Indeed 
a major concern with multicore system is the need for a 
memory bandwidth that increases linearly with the number of 
cores. In fig. 4 we see a 50% increase in the run time for a 
grain size of 10,000. This is for C# and Windows and the 
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Fig. 3.   Scaled Run time on Intel8b using Vista and C# with CCR for 
synchronization on Clustering Kernel for three dataset sizes with 10,000 
50,000 or 500,000 points per thread(core). Each measurement involved 
averaging over at least 1000 computations separated by synchronization 
whose cost is not included in results 
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Fig. 4.   Scaled Run time on Intel8b using Vista and C with locks for 
synchronization on Clustering Kernel for three dataset sizes with 
10,000 50,000 or 500,000 points per thread (core).  

Fig. 5.   Scaled Run time on Intel8b using Fedora Linux and C with 
locks for synchronization on Clustering Kernel for three dataset 
sizes with 10,000 50,000 or 500,000 points per thread (core).  
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overhead is reduced to 22% for C on Windows and 13% for C 
on Linux. Further we note that naively the 10,000 data point 
case should get excellent performance as the dataset can easily 
fit in cache and minimize memory bandwidth needs. These 
results again (see section IV) illustrate that the current 
multicore hardware and software cache architecture is highly 
unsuitable for this style of application. As we believe 
datamining is likely to be a critical type of application on 
future machines, we suggest serious attention be given to 
these problems. 
 
We get modest overheads for 80 clusters in all cases which is 
in fact why the applications of sect. II run well. There are no 
serious memory bandwidth issues in cases with several 
clusters and in this case that dominates the computation. This 
is usual parallel computing wisdom; real size problems run 
with good efficiency as long as there is plenty of computation. 
[6, 21-23] The datamining cases we are studying (Clustering, 
EM based Mixture models, Hidden Markov Methods) satisfy 
this and will run well on machines expected in next 5 years. 

VI. SYNCHRONIZATION PERFORMANCE 
The synchronization performance has been discussed in detail 
earlier for CCR where we discussed both dynamic threading 
showing it had an approximate 5µs overhead and MPI style 
behavior [9]. Here we detail in table III some comparisons for 
the MPI Exchange operation running on the maximum 
number of cores (4 or 8) available on the systems of Table I. 
Results for the older Intel8a are also in [16]. In each we use a 
zero size message.  
 

TABLE III: MPI EXCHANGE LATENCY 
Machine OS Runtime Grains Latency µs 

MPJE 8 Procs 181 
MPICH2 8 Procs 40.0 
MPICH2 
Fast Option 

8 Procs 39.3 Intel8c: 
gf12 Redhat 

Nemesis 8 Procs 4.21 
MPJE 8 Procs 157 
mpiJava 8 Procs 111 Intel8c: 

gf20 Fedora 
MPICH2 8 Procs 64.2 

Vista MPJE 8 Procs 170 
MPJE 8 Procs 142 Fedora mpiJava 8 Procs 100 Intel8b 

Vista CCR 8 Thrds 20.2 
XP MPJE 4 Procs 185 

MPJE 4 Procs 152 
mpiJava 4 Procs 99.4 Redhat 
MPICH2 4 Procs 39.3 

AMD4 

XP CCR 4 Thrds 16.3 
Intel4 XP CCR 4 Thrds 25.8 
Note that the CCR Exchange operation timed above has the 

full messaging transfer semantics of the MPI standards but 
avoids the complexity of some MPI capabilities like tags [25-
33]. We expect that future simplified messaging systems that 

like CCR span from concurrent threads to collective 
rendezvous’s will chose such simpler implementations. 
Nevertheless we think that Table III is a fair comparison.  
Note that in the “Grains” column, we list number of 
concurrent activities and if they are threads or processes. 
These measurements correspond to synchronizations occuring 
roughly every 30µs and were averaged over 500,000 such 
synchronizations in a single run. The optimized Nemesis 
version of MPICH2 gives best performance while CCR with 
for example 20µs latency on Intel8b, outperforms “vanilla 
MPICH2”. We see from Table I that C on Linux is much 
faster on computation than C# and we can expect as discussed 
in Section II, CCR and C# to improve and compete in 
performance with the better optimized (older) languages. 
 
We were surprised by the uniformly poor performance of MPI 
with Java. Here the old mpiJava invokes MPICH2 from a 
Java-C binding wile MPJ Express [28] is pure Java., It 
appears threads in Java currently are not competitive in 
performance with those in C#. Perhaps we need to revisit the 
goals of the  old Java Grande activity [34]. As discussed 
earlier we expect managed code to be of growing importance 
as client multicores prolifergate.  

VII. PERFORMANCE FLUCTUATIONS 

We already noted in Sect III that our performance was 
impacted by flluctuations in run time that were bigger than 
seen in most parallel computing studies that typically look at 
Linux and processes whereas our results are mainly for 
Windows and threads. In figures 6, 7 and 8 we present some 
results quantifying this using the same “clustering kernel” 
introduced in Sect V.  We average results over 1000 
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Fig. 6.   Ratio of Standard Deviation to mean of thread execution time  
averaged over 1000 instances using XP on Intel 8a and C# with CCR for 
synchronization on Clustering Kernel for three dataset sizes with 10,000 
50,000 or 500,000 points per thread (core).  
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synchronization points in a single run. In figs. 6 and 7 we 
calculate the standard deviation of the 1000P samples if P 
cores are used. In the final fig. 8, we calculate the the value of 
the Maximum minus the Minimum execution time of the P 
concurrent threads between synchronization points and 
average over the 1000 samples. By definition, this 
measurement must give zero for one thread whereas the that 
used in figs. 6 and 7 can be nonzero even for one thread. Our 
results show much larger run time fluctuations for Windows 
than for Linux. And we believe this effect leads to the 2-10% 
parallel overheads seen already in fig. 2.  

These figures also show many of the same trends of earlier 
results. The smallest dataset (10,000) which should be 
contained in cache has the largest fluctuations. Further Redhat 
has significantly lower fluctuations than Fedora with C and 
Linux seeing lower numbers than C# and Windows. Even 
Redhat has quite large fluctuations for 1 cluster (fig. 7a)) 
which reduce to about 0.4% for the compute bound 80 cluster 
case. C# in fig. 6 has rather large (5% or above) fluctuations 
in all cases considered.  
 
Note our results with Linux are all obtained with threads and 
so are not directly comparable with traditional MPI 

measurements that use processes. Processes are better isolated 
from each other in both cache and system effects and so it is 
possible that these fluctuations are quite unimportant in past 
Scientific programming studies but significant in our case. 

 

VIII. CONCLUSIONS 
Our results are basically positive. We have initial results that 
suggest a class of datamining applications run well on current 
multicore architectures. We have looked in detail at overheads 
due to memory, cache, run time fluctuation and 
synchronizations. Some of these are surprisingly high in 
Windows/C# environments but further work is likely to 
address this problem as the best Linux systems only show 
small effects. C# appears to have much better thread 
synchronization effects than Java and it seems important to 
investigate this. Current cache architectures are unsuitable for 
this application class and it would be useful to allow a cache 
operation mode that avoided unnecessary overheads such as 
those studied in Sect. IV. 
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