
Performance of Multicore Systems on Parallel Datamining Services

1

Abstract—Multicore systems are of growing importance and 64-

128 cores can be expected in a few years. We expect datamining to
be an important application class of general importance and are
developing such scalable parallel algorithms for managed code
(C#) on Windows. We present a performance analysis that
compares MPI and a new messaging runtime library CCR
(Concurrency and Coordination Runtime) with Windows and
Linux and using both threads and processes. We investigate effects
of cache lines and memory bandwidth and fluctuations of run times
of loosely synchronized threads. We give results on message latency
and bandwidth for two processor multicore systems based on AMD
and Intel architectures with a total of four and eight cores.
Generating up to a million messages per second on a single PC, we
find on an Intel dual quadcore system, latencies from 5µs in basic
asynchronous threading to 20 µs for a full MPI_SENDRECV
exchange with all threads (one per core) sending and receiving 2
messages at a traditional MPI style loosely synchronous
rendezvous. We compare our C# results with C using MPICH2 and
Nemesis and Java with both mpiJava and MPJ Express. We are
packaging our core algorithms not as traditional libraries but as
services and use DSS (Decentralized System Services built on CCR)
to compose workflows or mashups for complete applications. We
show initial results from GIS and Cheminformatics clustering
problems. Our results suggest that the service composition model
and Windows/C# thread programming model will be a flexible
parallel programming environment for important commodity
applications. C

Index Terms—Cache, Datamining, MPI, Multicore, Parallel
Computing , Performance, Threads, Windows

I. INTRODUCTION
Multicore architectures are of increasing importance and are
impacting client, server and supercomputer systems [1-6].
They make parallel computing and its integration with large
systems of great importance as “all” applications need good
performance rather than just the relatively specialized areas

1 This work was partially supported by Microsoft Corporation. X. Qiu

xqiu@indiana.edu is with Research Computing UITS, Indiana University
Bloomington. G. C. Fox gcf@indiana.edu, H. Yuan yuanh@indiana.edu,
and S. Bae sebae@indiana.edu are with Community Grids Laboratory Indiana
University Bloomington. G. Chrysanthakopoulos georgioc@microsoft.com,
and H. Frystyk Nielsen henrikn@microsoft.com are from Microsoft Research
Redmond WA.

covered by traditional high performance computing. We
suggest that one needs to look again at parallel programming
environments and runtimes and examine how they can support
a broad market. In this paper we consider datamining as an
application that has broad applicability and could be important
on tomorrow’s client systems as one supports “user expert
assistants” that help the user by analyzing the “deluge” of data
from sensors or just the internet connection. Perhaps on the
128 core client PC of 7 years hence, most of the cores would
be spent on speculative and directed data analysis. Such
applications are likely to be written in managed code (C#,
Java) and run on Windows (or equivalent client OS for Mac)
and use threads. This scenario is suggested by the recent RMS
analysis by Intel [5]. It is interesting that the parallel kernels
of most datamining algorithms are similar to those well
studied by the high performance (scientific) computing
community and often need the synchronization primitives
supported by MPI.

In other papers [7-9] we have explained our hybrid
programming model SALSA (Service Aggregated Linked
Sequential Activities) that builds libraries as a set of services
and uses simple service composition to compose complete
applications [10]. Each service then runs on parallel on any
number of cores – either part of a single PC or spread out over
a cluster. The performance requirements at the service layer
are less severe than at the “microscopic” thread level for
which MPI is designed and where this paper concentrates. We
use DSS (Decentralized System Services) which offers good
performance with messaging latencies of 35 µs between
services on a single PC [9]. Each service consists of parallel
threads or processes that are synchronized in our case by
Locks, MPI or a novel messaging runtime library CCR
(Concurrency and Coordination Runtime) developed by
Microsoft Research [11-15]. In this paper we explore these
different synchronization overheads and the effects of
operating system and the use of threads or processes.

In this paper, we present the performance analysis for C# and
Java on both Windows and Linux and identify new features
that have not been well studied for parallel scientific
applications. This worked was performed on a set of multicore
commodity PC’s summarized in Table I. The results can be
extended to clusters as we are using similar messaging
runtime but we focus in this paper on the new results seen on
the multicore systems.

Performance of Multicore Systems on Parallel
Datamining Services

Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae, George Chrysanthakopoulos,
Henrik Frystyk Nielsen1

Performance of Multicore Systems on Parallel Datamining Services

2

TABLE I: MULTICORE PC’S USED IN PAPER

AMD4: HPxw9300 workstation, 2 AMD Opteron CPUs Processor 275 at
2.19GHz, L2 Cache 2x1MB (for each chip), Memory 4GB. XP Pro 64bit
and Windows Server 2003
Intel4: Dell Precision PWS670, 2 Intel Xeon CPUs at 2.80GHz, L2 Cache
2x2MB, Memory 4GB. XP Pro 64bit
Intel8a: Dell Precision PWS690, 2 Intel Xeon CPUs E5320 at 1.86GHz, L2
Cache 2x4M, Memory 8GB. XP Pro 64bit
Intel8b: Dell Precision PWS690, 2 Intel Xeon CPUs x5355 at 2.66GHz, L2
Cache 2X4M, Memory 4GB. Vista Ultimate 64bit and Fedora 7
Intel8c: Dell Precision PWS690, 2 Intel Xeon CPUs x5345 at 2.33GHz, L2
Cache 2X4M, Memory 8GB. Redhat

Section II discusses the CCR runtime and section III our
motivating clustering datamining applications. These results
identify some important benchmarks covering cache and
memory effects, runtime fluctuations and synchronization
costs discussed in sections IV-VII. Conclusions are in Section
VIII.

All results and benchmark codes presented are available from
http://www.infomall.org/salsa [16]

II. OVERVIEW OF CCR
CCR provides a framework for building general collective
communication where threads can write to a general set of
ports and read one or more messages from one or more ports.
The framework manages both ports and threads with
optimized dispatchers that can efficiently iterate over multiple
threads. All primitives result in a task construct being posted
on one or more queues, associated with a dispatcher. The
dispatcher uses OS threads to load balance tasks. The current
applications and provided primitives support a dynamic
threading model with capabilities that include:

1) FromHandler: Spawn threads without reading ports
2) Receive: Each handler reads one item from a single

port
3) MultipleItemReceive: Each handler reads a

prescribed number of items of a given type from a
given port. Note items in a port can be general
structures but all must have same type.

4) MultiplePortReceive: Each handler reads a one item
of a given type from multiple ports.

5) JoinedReceive: Each handler reads one item from
each of two ports. The items can be of different type.

6) Choice: Execute a choice of two or more port-
handler pairings

7) Interleave: Consists of a set of arbiters (port --
handler pairs) of 3 types that are Concurrent,
Exclusive or Teardown (called at end for clean up).
Concurrent arbiters are run concurrently but
exclusive handlers are not.

One can spawn handlers that consume messages as is natural
in a dynamic search application where handlers correspond to
links in a tree. However one can also have long running
handlers where messages are sent and consumed at a

rendezvous points (yield points in CCR) as used in traditional
MPI applications. Note that “active messages” correspond to
the spawning model of CCR and can be straightforwardly
supported. Further CCR takes care of all the needed queuing
and asynchronous operations that avoid race conditions in
complex messaging. CCR is attractive as it supports such a
wide variety of messaging from dynamic threading, services
(via DSS described in [9]) and MPI style collective
operations.

CODE SAMPLE 1: MPI EXCHANGE PATTERN IN CCR

For our performance comparisons with MPI, we needed
rendezvous semantics which are fully supported by CCR and
we chose to use patterns corresponding to the
MPI_SENDRECV interface with either toroidal nearest
neighbor shift or the combination of a left and right shift,
namely an Exchange where each process (thread) sends and
receives two messages. Note that posting to a port in CCR
corresponds to a MPISEND and the matching MPIRECV is
achieved from arguments of handler invoked to process the
port. MPI has a much richer set of defined methods that
describe different synchronicity options, various utilities and
collectives. These include the multi-cast (broadcast, gather-
scatter) of messages with the calculation of associative and
commutative functions on the fly. It is not clear what
primitives and indeed what implementation will be most
effective on multicore systems [2, 17] and so we only looked
at a few simple but representative cases in this initial
performance study. In fact it is possible that our study which
suggests one can support in the same framework a set of
execution models that is broader than today’s MPI, could
motivate a new look at messaging standards for parallel
computing. We used built in CCR primitives for the shift and
reduction operations but exploited CCR’s ability to construct
customized collectives sketched in Code Sample I to
implement the MPI Exchange pattern. An important
innovation of the CCR is to allow sequential, asynchronous

Main Routine for Exchange Pseudocode {
Create CCR dispatchers to control threads
Create a queue to hold tasks
Set up start ports with MPI initialization data such as thread number
Invoke handlers (MPI threads) on start ports
} End Main Routine

MPI logical thread Pseudocode (Arguments are start port contents) {
Calculate nearest neighbors for exchange collective
Loop over stages { Post information to 2 ports that will be read by left
and right neighbors
yield return on CCR MultipleItemReceive will wait till this thread’s
information is available in its ports and continue execution after reading 2
ports

Do computation for this stage
} End loop over stages

Each thread sends information to ending port and thread 0 only does
 yield return on CCR MultipleItemReceive to collect information from all
threads to complete run after reading from one port for each thread (this
is a reduction operation).
} End MPI Thread

Performance of Multicore Systems on Parallel Datamining Services

3

computation without forcing the programmer to write
callbacks, or continuations, and at the same time not blocking
an OS thread. This allows the CCR to scale to tens of millions
of pending I/O operations, but with code that reads like
synchronous, blocking operations.

Note that all our work was for managed code in C# which is
an important implementation language for commodity desktop
applications although slower than C++. In this regard we note
that there are plans for a C++ version of CCR which would be
faster but prone to traditional un-managed code errors such as
memory leaks, buffer overruns, memory corruption. The C++
version could be faster than the current CCR but eventually
we expect that the C# CCR will be within 20% of the
performance of the C++ version. CCR has been extensively
applied to the dynamic threading characteristic of today’s
desktop application but its largest use is in the Robotics
community. One interesting use is to add an efficient port-
based implementation of “futures” to C#, since the CCR can
easily express them with no modifications in the core runtime.
CCR is very portable and runs on both CE (small devices) and
desktop windows.

DSS sits on top of CCR and provides a lightweight, REST
oriented application model that is particularly suited for
creating Web-style applications as compositions of services
running in a distributed environment and its use in SALSA is
described in [9].

III. CLUSTERING APPLICATION

We are building a suite of data mining services to test the
runtime and two layer SALSA programming model. We start
with data clustering which has many important applications
including clustering of chemical properties which is an
important tool [18] for finding for example a set of chemicals
similar to each other and so likely candidates for a given drug.
We are also looking at clustering of spatial information and in
particular properties derived from the US Census data. We use
a modification of the well known K-means algorithm [19],
deterministic annealing [20], that has good convergence and
parallelization properties. For a set of data points x and cluster
centers y, one gradually temperature T and iteratively
calculates:
y = ∑ x p(x,y) x
p(x,y) = exp(-d(x,y)/T) p(x) / Zx (1)
with Zx = ∑ y exp(-d(x,y)/T)

Here d(x,y) is the distance defined in space where clustering is
occurring. Parallelism can be implemented by dividing points
x between the cores and there is a natural loosely synchronous
barrier where the sums in each core are combined in a
reduction collective to complete (1). Such parallel applications
have a well understood performance model that can be
expressed in terms of a parallel overhead f(n,P) where putting
T(n,P) as the execution time on P cores or more generally

processes/threads, we can define:

Overhead f(n,P) = (PT(n,P)-T(Pn,1))/T(Pn,1) (2)

Efficiency ε = 1/(1+f)

For the algorithm of (1), f(n,P) should depend on the grain
size n where each core handles n data points and in fact f(n,P)
should decrease proportionally to the reciprocal of the grain
size with a coefficient that depends on synchronization costs
[6, 21-23. This effect is clearly seen in fig. 1 presented already
in [9] although surprisingly we do not find f(n,P) tending to
zero as n increases. Rather it rather erratically wanders around
a small number 0.02 to 0.1 as parameters are varied. The
overhead also decreases as shown in fig. 1 as the number of
clusters increases as it is easy to show from (1) as the basic

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4

Parallel Overhead

10 Clusters

20 Clusters

10000/Grain Size

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4

Parallel Overhead

10 Clusters

20 Clusters

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4

Parallel Overhead

10 Clusters

20 Clusters

10000/Grain Size
Fig. 1. Parallel Overhead for GIS 2D Clustering on Intel8b using C#
with 8 threads (cores) and CCR Synchronization. We use two values
(10, 20) for the number of clusters and plot against the reciprocal of the
number of data points assigned to each thread

0.000

0.050

0.100

0.150

0.200

0 5 10 15 20 25 30

Parallel Overhead

Number of Clusters

2D GIS Census Data

a)
0.000

0.050

0.100

0.150

0.200

0 5 10 15 20 25 30

Parallel Overhead

Number of Clusters

2D GIS Census Data

0.000

0.050

0.100

0.150

0.200

0 5 10 15 20 25 30

Parallel Overhead

Number of Clusters

2D GIS Census Data

a)

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0 2 4 6 8 10 12 14 16

PubChem
1052 Binary Chemical Properties

Parallel Overhead

Number of Clusters
b)
0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0 2 4 6 8 10 12 14 16

PubChem
1052 Binary Chemical Properties

Parallel Overhead

Number of Clusters
b)

Fig. 2. Parallel Overhead defined in (2) as a function of the number
of clusters for a) 2 dimensional GIS data for Indiana in over 200,000
blocks and 40,000 chemical compounds each with 1052 binary

Performance of Multicore Systems on Parallel Datamining Services

4

computation is proportional to number of points n multiplied
by the number of clusters. In fig. 2 we plot the parallel
overhead as a function of the number of clusters for two large
real problems coming from Census data and chemical
property clustering. These clearly show the rather random
behavior after f(n,8) decreases to a small value corresponding
to quite good parallelism – speedups of over 7 on 8 core
systems. The results in fig. 2(b) show lower asymptotic values
which were determined to correspond to the binary data used
in Chemistry clustering. This problem showed fluctuations
similar to 2(a) if one used floating point representation for the
Chemistry “fingerprint” data. Of course the binary choice
shown in fig. 2(b) is fastest and the appropriate approach to
use.

In the following section, we follow up on various details of
these measurements examining the different components that
effect performance

IV. CACHE EFFECTS ON PERFORMANCE
We found it quite hard to get reliable timing and identified

two sources addressed here and in Sect. VII. The largest effect
which is straightforward to address comes from the nature of
the cache on all machines listed in table I. If different cores
access different variables but those stored in the same cache
line, then wild execution timer fluctuations can occur. These

are documented by a simple computation that calculates
concurrent summations and stores them in an array element
A(i) for thread i. The summation used a random number
generator to avoid being compiled away and can be
downloaded from our web site [16]. This natural
implementation leads to an order of magnitude increase in run
time over an implementation that stores results in A(Si) where
the separator S is chosen so that adjacent elements of A are
separated by 64 bytes or more. These results are documented
in Table II that records the execution time as a function of S
and as a function of several machine and operating system
choices. One sees good performance with modest fluctuations
as long as S corresponds to a separation of 64 bytes or more.
On the other hand in most cases the performance is dreadful
and fluctuations sometimes large for separations S less than 64
bytes (the columns labeled 1 and 4 in units of double variables
– 8 bytes – in Table II). This effect is independent of
synchronization used (compare CCR and Locks in Table II)
and is presumably due to the cache design on these modern
multicore systems. Looking at the separation of 8 or 1024
doubles in Table II, one can see that with compilers we used,
C was much faster than C# and Linux faster than Windows.
Most remarkably the Redhat Linux results do not show the
degradation of performance seen for Windows for separation
of 1 or 4 doubles.

TABLE II: CACHE LINE COMPUTATION TIMES

Thread Array Separation (unit is 8 bytes)
1 4 8 1024 Machine OS Run Time Mean

(µs)
Std Dev

Mean (µs)
Mean
(µs)

Std Dev
Mean (µs)

Mean
(µs)

Std Dev
Mean (µs)

Mean
(µs)

Std Dev
Mean (µs)

Vista CCR C# CCR 8.03 .029 3.04 .059 0.884 .0051 0.884 .0069
Vista C# Locks 13.0 .0095 3.08 .0028 0.883 .0043 0.883 .0036
Vista C 13.4 .0047 1.69 .0026 0.66 .029 0.659 .0057 Intel8b

Fedora C 1.50 .01 0.69 .21 0.307 .0045 0.307 .016
XP CCR C# 10.6 .033 4.16 .041 1.27 .051 1.43 .049
XP Locks C# 16.6 .016 4.31 .0067 1.27 .066 1.27 .054 Intel8a
XP C 16.9 .0016 2.27 .0042 0.946 .056 0.946 .058

Intel8c Redhat C 0.441 .0035 0.423 .0031 0.423 .0030 0.423 .032
C# CCR 8.58 .0080 2.62 .081 0.839 .0031 0.838 .0031
C# Locks 8.72 .0036 2.42 .01 0.836 .0016 0.836 .0013 WinServer

2003
C 5.65 .020 2.69 .0060 1.05 .0013 1.05 .0014
C# CCR 8.58 .0080 2.62 .081 0.839 .0031 0.838 .0031
C# Locks 8.72 .0036 2.42 .01 0.836 .0016 0.836 .0013

AMD4

XP
C 5.65 .020 2.69 .0060 1.05 .0013 1.05 .0014

CCGrid 2008 Qiu et al., Performance of Multicore Systems on Parallel Datamining Services

5

The Fedora Linux results on Intel 8b rather remarkably lie in
between those of Windows and Redhat in Table II showing a
factor of 5 difference between separation 1 and 8 whereas
Redhat has only a 5% effect while Windows varies widely
with an upto factor of 15 effect. Thus although the cache
hardware architecture produces this effect, its impact is very
systems software dependent. We are obviously able to
program around this feature but it is unfortunate as using A(i)
to store results from thread i is surely a natural strategy. This
effect is in fact known [24] but its implications are often not
properly implemented. For example the C# math random

number generator makes the mistake of using such an array
and so has unnecessarily poor performance.

V. MEMORY AND THREAD PERFORMANCE

In figs. 3, 4 and 5 we isolate the kernel of the clustering
algorithm of sec. II and examine its performance as a function
of grain size n, number of clusters and number of cores. In all
cases we use the scaled speed up scenario and measure thread
dependence at three fixed values of grain size n (10,000,
50,000 and 500,000). All results are divided by the number of
clusters, the grain size, and the number of cores and scaled so
the 10,000 data point, one cluster, one core result becomes 1.
These figures then immediately allow us to identify key
features of the computation. We display cases for 1 cluster
where memory bandwidth effects could be important and also
for 80 clusters where such effects are small as one performs
80 floating point operations on every variable fetched from
memory. The three figures have typical results covering
respectively Windows and C#, Windows and C and finally
Linux and C. Always we use threads not processes and C uses
Locks and C# uses CCR synchronization. Data is stored so as
to avoid any of cache line effects discussed in the previous
section.

The results foe one cluster clearly show the effect of memory
bandwidth with scaled run time increasing significantly as one
increases the number of cores used. In this benchmark the
memory demands scale directly with number of cores. Indeed
a major concern with multicore system is the need for a
memory bandwidth that increases linearly with the number of
cores. In fig. 4 we see a 50% increase in the run time for a
grain size of 10,000. This is for C# and Windows and the

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 1 Cluster

500,000

50,000

10,000
Scaled

Runtime

Datapoints
per thread

a)
1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 1 Cluster

500,000

50,000

10,000
Scaled

Runtime

Datapoints
per thread

a)

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 80 Clusters

500,000

50,000
10,000

Scaled
Runtime

Datapoints
per thread

b)
0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 80 Clusters

500,000

50,000
10,000

Scaled
Runtime

Datapoints
per thread

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 80 Clusters

500,000

50,000
10,000

500,000

50,000
10,000

Scaled
Runtime

Datapoints
per thread

b)

Fig. 3. Scaled Run time on Intel8b using Vista and C# with CCR for
synchronization on Clustering Kernel for three dataset sizes with 10,000
50,000 or 500,000 points per thread(core). Each measurement involved
averaging over at least 1000 computations separated by synchronization
whose cost is not included in results

1

1.05

1.1

1.15

1.2

1.25

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C Locks 1 Cluster

500,000

50,000

10,000Scaled

Runtime

Datapoints
per thread

a)
1

1.05

1.1

1.15

1.2

1.25

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C Locks 1 Cluster

500,000

50,000

10,000Scaled

Runtime

Datapoints
per thread1

1.05

1.1

1.15

1.2

1.25

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C Locks 1 Cluster

500,000

50,000

10,000

500,000

50,000

10,000Scaled

Runtime

Datapoints
per thread

a)

0.8

0.825

0.85

0.875

0.9

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C Locks 80 Clusters

500,000
50,000

10,000Scaled
Runtime

Datapoints
per thread

b)
0.8

0.825

0.85

0.875

0.9

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C Locks 80 Clusters

500,000
50,000

10,000Scaled
Runtime

Datapoints
per thread

0.8

0.825

0.85

0.875

0.9

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C Locks 80 Clusters

500,000
50,000

10,000Scaled
Runtime

Datapoints
per thread

b)

Fig. 4. Scaled Run time on Intel8b using Vista and C with locks for
synchronization on Clustering Kernel for three dataset sizes with
10,000 50,000 or 500,000 points per thread (core).

Fig. 5. Scaled Run time on Intel8b using Fedora Linux and C with
locks for synchronization on Clustering Kernel for three dataset
sizes with 10,000 50,000 or 500,000 points per thread (core).

0.98

1.03

1.08

1.13

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Fedora C Locks
1 Cluster

500,000
50,000

10,000Scaled
Runtime

Datapoints
per thread

a)
0.98

1.03

1.08

1.13

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Fedora C Locks
1 Cluster

500,000
50,000

10,000Scaled
Runtime

Datapoints
per thread

a)

1.025

1.03

1.035

1.04

1.045

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Fedora C Locks
80 Clusters 500,000

50,000

10,000Scaled
Runtime

Datapoints
per thread

b)
1.025

1.03

1.035

1.04

1.045

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Fedora C Locks
80 Clusters 500,000

50,000

10,000Scaled
Runtime

Datapoints
per thread

b)

CCGrid 2008 Qiu et al., Performance of Multicore Systems on Parallel Datamining Services

6

overhead is reduced to 22% for C on Windows and 13% for C
on Linux. Further we note that naively the 10,000 data point
case should get excellent performance as the dataset can easily
fit in cache and minimize memory bandwidth needs. These
results again (see section IV) illustrate that the current
multicore hardware and software cache architecture is highly
unsuitable for this style of application. As we believe
datamining is likely to be a critical type of application on
future machines, we suggest serious attention be given to
these problems.

We get modest overheads for 80 clusters in all cases which is
in fact why the applications of sect. II run well. There are no
serious memory bandwidth issues in cases with several
clusters and in this case that dominates the computation. This
is usual parallel computing wisdom; real size problems run
with good efficiency as long as there is plenty of computation.
[6, 21-23] The datamining cases we are studying (Clustering,
EM based Mixture models, Hidden Markov Methods) satisfy
this and will run well on machines expected in next 5 years.

VI. SYNCHRONIZATION PERFORMANCE
The synchronization performance has been discussed in detail
earlier for CCR where we discussed both dynamic threading
showing it had an approximate 5µs overhead and MPI style
behavior [9]. Here we detail in table III some comparisons for
the MPI Exchange operation running on the maximum
number of cores (4 or 8) available on the systems of Table I.
Results for the older Intel8a are also in [16]. In each we use a
zero size message.

TABLE III: MPI EXCHANGE LATENCY
Machine OS Runtime Grains Latency µs

MPJE 8 Procs 181
MPICH2 8 Procs 40.0
MPICH2
Fast Option

8 Procs 39.3 Intel8c:
gf12 Redhat

Nemesis 8 Procs 4.21
MPJE 8 Procs 157
mpiJava 8 Procs 111 Intel8c:

gf20 Fedora
MPICH2 8 Procs 64.2

Vista MPJE 8 Procs 170
MPJE 8 Procs 142 Fedora mpiJava 8 Procs 100 Intel8b

Vista CCR 8 Thrds 20.2
XP MPJE 4 Procs 185

MPJE 4 Procs 152
mpiJava 4 Procs 99.4 Redhat
MPICH2 4 Procs 39.3

AMD4

XP CCR 4 Thrds 16.3
Intel4 XP CCR 4 Thrds 25.8
Note that the CCR Exchange operation timed above has the

full messaging transfer semantics of the MPI standards but
avoids the complexity of some MPI capabilities like tags [25-
33]. We expect that future simplified messaging systems that

like CCR span from concurrent threads to collective
rendezvous’s will chose such simpler implementations.
Nevertheless we think that Table III is a fair comparison.
Note that in the “Grains” column, we list number of
concurrent activities and if they are threads or processes.
These measurements correspond to synchronizations occuring
roughly every 30µs and were averaged over 500,000 such
synchronizations in a single run. The optimized Nemesis
version of MPICH2 gives best performance while CCR with
for example 20µs latency on Intel8b, outperforms “vanilla
MPICH2”. We see from Table I that C on Linux is much
faster on computation than C# and we can expect as discussed
in Section II, CCR and C# to improve and compete in
performance with the better optimized (older) languages.

We were surprised by the uniformly poor performance of MPI
with Java. Here the old mpiJava invokes MPICH2 from a
Java-C binding wile MPJ Express [28] is pure Java., It
appears threads in Java currently are not competitive in
performance with those in C#. Perhaps we need to revisit the
goals of the old Java Grande activity [34]. As discussed
earlier we expect managed code to be of growing importance
as client multicores prolifergate.

VII. PERFORMANCE FLUCTUATIONS

We already noted in Sect III that our performance was
impacted by flluctuations in run time that were bigger than
seen in most parallel computing studies that typically look at
Linux and processes whereas our results are mainly for
Windows and threads. In figures 6, 7 and 8 we present some
results quantifying this using the same “clustering kernel”
introduced in Sect V. We average results over 1000

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
1 Cluster

500,000
50,000

10,000

Datapoints
per thread

Std Dev
Runtime

a)
0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
1 Cluster

500,000
50,000

10,000

Datapoints
per thread

Std Dev
Runtime

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
1 Cluster

500,000
50,000

10,000

Datapoints
per thread

Std Dev
Runtime
Std Dev
Runtime

a)

0

0.025

0.05

0.075

0.1

0 1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
80 Clusters

500,000

50,000

10,000

Datapoints
per thread

Std Dev
Runtime

b)
0

0.025

0.05

0.075

0.1

0 1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
80 Clusters

500,000

50,000

10,000

Datapoints
per thread

Std Dev
Runtime

0

0.025

0.05

0.075

0.1

0 1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
80 Clusters

500,000

50,000

10,000

Datapoints
per thread

Std Dev
Runtime
Std Dev
Runtime

b)

Fig. 6. Ratio of Standard Deviation to mean of thread execution time
averaged over 1000 instances using XP on Intel 8a and C# with CCR for
synchronization on Clustering Kernel for three dataset sizes with 10,000
50,000 or 500,000 points per thread (core).

CCGrid 2008 Qiu et al., Performance of Multicore Systems on Parallel Datamining Services

7

synchronization points in a single run. In figs. 6 and 7 we
calculate the standard deviation of the 1000P samples if P
cores are used. In the final fig. 8, we calculate the the value of
the Maximum minus the Minimum execution time of the P
concurrent threads between synchronization points and
average over the 1000 samples. By definition, this
measurement must give zero for one thread whereas the that
used in figs. 6 and 7 can be nonzero even for one thread. Our
results show much larger run time fluctuations for Windows
than for Linux. And we believe this effect leads to the 2-10%
parallel overheads seen already in fig. 2.

These figures also show many of the same trends of earlier
results. The smallest dataset (10,000) which should be
contained in cache has the largest fluctuations. Further Redhat
has significantly lower fluctuations than Fedora with C and
Linux seeing lower numbers than C# and Windows. Even
Redhat has quite large fluctuations for 1 cluster (fig. 7a))
which reduce to about 0.4% for the compute bound 80 cluster
case. C# in fig. 6 has rather large (5% or above) fluctuations
in all cases considered.

Note our results with Linux are all obtained with threads and
so are not directly comparable with traditional MPI

measurements that use processes. Processes are better isolated
from each other in both cache and system effects and so it is
possible that these fluctuations are quite unimportant in past
Scientific programming studies but significant in our case.

VIII. CONCLUSIONS
Our results are basically positive. We have initial results that
suggest a class of datamining applications run well on current
multicore architectures. We have looked in detail at overheads
due to memory, cache, run time fluctuation and
synchronizations. Some of these are surprisingly high in
Windows/C# environments but further work is likely to
address this problem as the best Linux systems only show
small effects. C# appears to have much better thread
synchronization effects than Java and it seems important to
investigate this. Current cache architectures are unsuitable for
this application class and it would be useful to allow a cache
operation mode that avoided unnecessary overheads such as
those studied in Sect. IV.

REFERENCES

[1] David Patterson The Landscape of Parallel Computing Research: A

View from Berkeley 2.0 Presentation at Manycore Computing 2007
Seattle June 20 2007
http://science.officeisp.net/ManycoreComputingWorkshop07/Presentati
ons/David%20Patterson.pdf

[2] Jack Dongarra Editor The Promise and Perils of the Coming Multicore

Revolution and Its Impact, CTWatch Quarterly Vol 3 No. 1 February 07,
http://www.ctwatch.org/quarterly/archives/february-2007

0

0.002

0.004

0.006

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8c Redhat C Locks
80 Clusters

500,000

50,000

10,000

Datapoints
per thread

Std Dev
Runtime

b)
0

0.002

0.004

0.006

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8c Redhat C Locks
80 Clusters

500,000

50,000

10,000

Datapoints
per thread

Std Dev
Runtime

0

0.002

0.004

0.006

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8c Redhat C Locks
80 Clusters

500,000

50,000

10,000

Datapoints
per thread

Std Dev
Runtime
Std Dev
Runtime

b)

Fig. 7. Ratio of Standard Deviation to mean of thread execution time
using Redhat on Intel8c (a,b) or Fedora on Intel8b (c) Linux and C with
locks for synchronization on Clustering Kernel for three dataset sizes
with 10,000 50,000 or 500,000 points per thread (core).

0

0.005

0.01

0.015

0.02

1 2 3 4 5 6 7 8

\

Number of Threads (one per core)

Intel 8b Fedora C Locks
80 Clusters

500,000
50,000

10,000

Datapoints
per thread

Std Dev
Runtime

c)
0

0.005

0.01

0.015

0.02

1 2 3 4 5 6 7 8

\

Number of Threads (one per core)

Intel 8b Fedora C Locks
80 Clusters

500,000
50,000

10,000

Datapoints
per thread

Std Dev
Runtime
Std Dev
Runtime

c)

0

0.025

0.05

0.075

0.1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8c Redhat C Locks
1 Cluster

500,000

50,000

10,000
Datapoints
per thread

Std Dev
Runtime

a)
0

0.025

0.05

0.075

0.1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8c Redhat C Locks
1 Cluster

500,000

50,000

10,000
Datapoints
per thread

Std Dev
Runtime
Std Dev
Runtime

a)

Fig. 8. Ratio of Maximum minus Minimum to mean of concurrent
thread execution time averaged over 1000 instances using XP on Intel 8a
and C# with CCR for synchronization on Clustering Kernel for three
dataset sizes with 10,000 50,000 or 500,000 points per thread (core).

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
1 Cluster

500,000
50,000

10,000

Datapoints
per thread

Max-Min
Runtime

a)
0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
1 Cluster

500,000
50,000

10,000

Datapoints
per thread

Max-Min
Runtime
Max-Min
Runtime

a)

0

0.025

0.05

0.075

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
80 Clusters

50,000
500,000
10,000

Datapoints
per thread

Max-Min
Runtime

b)
0

0.025

0.05

0.075

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
80 Clusters

50,000
500,000
10,000

Datapoints
per thread

Max-Min
Runtime
Max-Min
Runtime

b)

CCGrid 2008 Qiu et al., Performance of Multicore Systems on Parallel Datamining Services

8

[3] Herb Sutter, The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software, Dr. Dobb's Journal, 30(3), March 2005.

[4] Annotated list of multicore Internet sites

http://www.connotea.org/user/crmc/

[5] Pradeep Dubey Teraflops for the Masses: Killer Apps of Tomorrow

Workshop on Edge Computing Using New Commodity Architectures,
UNC 23 May 2006 http://gamma.cs.unc.edu/EDGE/SLIDES/dubey.pdf

[6] Geoffrey Fox tutorial at Microsoft Research Parallel Computing 2007:

Lessons for a Multicore Future from the Past February 26 to March 1
2007
http://grids.ucs.indiana.edu/ptliupages/presentations/PC2007/index.html

[7] Xiaohong Qiu, Geoffrey Fox, and Alex Ho Analysis of Concurrency and

Coordination Runtime CCR and DSS, Technical Report January 21
2007
http://grids.ucs.indiana.edu/ptliupages/publications/CCRDSSanalysis_ja
n21-07.pdf

[8] Xiaohong Qiu, Geoffrey Fox, H. Yuan, Seung-Hee Bae, George

Chrysanthakopoulos, Henrik Frystyk Nielsen Performance
Measurements of CCR and MPI on Multicore Systems Summary
September 23 2007
http://grids.ucs.indiana.edu/ptliupages/presentations/MCPerformanceSe
pt21-07.ppt

[9] Xiaohong Qiu, Geoffrey Fox, H. Yuan, Seung-Hee Bae, George

Chrysanthakopoulos, Henrik Frystyk Nielsen High Performance Multi-
Paradigm Messaging Runtime Integrating Grids and Multicore Systems
to be published in proceedings of eScience 2007 Conference Bangalore
India December 10-13 2007
http://grids.ucs.indiana.edu/ptliupages/publications/CCRSept23-
07eScience07.pdf

[10] Dennis Gannon and Geoffrey Fox, Workflow in Grid Systems

Concurrency and Computation: Practice & Experience 18 (10), 1009-19
(Aug 2006), Editorial of special issue prepared from GGF10 Berlin
http://grids.ucs.indiana.edu/ptliupages/publications/Workflow-
overview.pdf

[11] Henrik Frystyk Nielsen, George Chrysanthakopoulos, “Decentralized

Software Services Protocol – DSSP”
http://msdn.microsoft.com/robotics/media/DSSP.pdf

[12] “Concurrency Runtime: An Asynchronous Messaging Library for C#

2.0” George Chrysanthakopoulos Channel9 Wiki Microsoft
http://channel9.msdn.com/wiki/default.aspx/Channel9.ConcurrencyRunt
ime

[13] “Concurrent Affairs: Concurrent Affairs: Concurrency and Coordination

Runtime”, Jeffrey Richter Microsoft
http://msdn.microsoft.com/msdnmag/issues/06/09/ConcurrentAffairs/def
ault.aspx

[14] Microsoft Robotics Studio is a Windows-based environment that

includes end-to-end Robotics Development Platform, lightweight
service-oriented runtime, and a scalable and extensible platform. For
details, see http://msdn.microsoft.com/robotics/

[15] Georgio Chrysanthakopoulos and Satnam Singh “An Asynchronous

Messaging Library for C#”, Synchronization and Concurrency in
Object-Oriented Languages (SCOOL) at OOPSLA October 2005
Workshop, San Diego, CA.
http://urresearch.rochester.edu/handle/1802/2105

[16] SALSA Multicore research Web site, http://www.infomall.org/salsa

[17] J Kurzak and J J Dongarra, Pipelined Shared Memory Implementation of

Linear Algebra Routines with arbitary Lookahead - LU, Cholesky, QR,
Workshop on State-of-the-Art in Scientific and Parallel Computing,

Umea, Sweden, June 2006
http://www.hpc2n.umu.se/para06/papers/paper_188.pdf

[18] Geoff M. Downs, John M. Barnard Clustering Methods and Their Uses

in Computational Chemistry, Reviews in Computational Chemistry,
Volume 18, 1-40 2003

[19] K-means algorithm at Wikipedia http://en.wikipedia.org/wiki/K-

means_algorithm

[20] Rose, K. Deterministic annealing for clustering, compression,

classification, regression, and related optimization problems,
Proceedings of the IEEE Vol. 86, pages 2210-2239, Nov 1998

[21] “The Sourcebook of Parallel Computing” edited by Jack Dongarra, Ian

Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon,
and Andy White, Morgan Kaufmann, November 2002.

[22] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. Walker Solving

Problems in Concurrent Processors-Volume 1, Prentice Hall, March
1988

[23] Fox, G. C., Messina, P., Williams, R., “Parallel Computing Works!”,

Morgan Kaufmann, San Mateo Ca, 1994.

[24] How to Align Data Structures on Cache Boundaries, Internet resource

from Intel, http://www.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/knowledgebase/43837.htm

[25] Message passing Interface MPI Forum http://www.mpi-

forum.org/index.html

[26] MPICH2 implementation of the Message-Passing Interface (MPI)

http://www-unix.mcs.anl.gov/mpi/mpich/

[27] High Performance MPI Message Passing Library http://www.open-

mpi.org/

[28] Mark Baker, Bryan Carpenter, and Aamir Shafi. MPJ Express: Towards

Thread Safe Java HPC, Submitted to the IEEE International Conference
on Cluster Computing (Cluster 2006), Barcelona, Spain, 25-28
September, 2006. http://www.mpj-express.org/docs/papers/mpj-
clust06.pdf

[29] mpiJava Java interface to the standard MPI runtime including MPICH

and LAM-MPI http://www.hpjava.org/mpiJava.html

[30] Richard L. Graham and Timothy S. Woodall and Jeffrey M. Squyres

“Open MPI: A Flexible High Performance MPI”, Proceedings, 6th
Annual International Conference on Parallel Processing and Applied
Mathematics, 2005 http://www.open-mpi.org/papers/ppam-2005

[31] D.K. Panda “How will we develop and program emerging robust, low-

power, adaptive multicore computing systems?” The Twelfth
International Conference on Parallel and Distributed Systems ICPADS
‘06 July 2006 Minneapolis http://www.icpads.umn.edu/powerpoint-
slides/Panda-panel.pdf

[32] Thomas Bemmerl “Pallas MPI Benchmarks Results”

http://www.lfbs.rwth-aachen.de/content/index.php?ctl_pos=392

[33] Myricom Myri-10G and Myrinet-2000 Performance Measurements

http://www.myri.com/scs/performance/

[34] Java Grande http://www.javagrande.org

