

High Performance Multi-Paradigm Messaging Runtime Integrating Grids and
Multicore Systems

Xiaohong Qiu

xqiu@indiana.edu
Research Computing UITS

Indiana University Bloomington

Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae
gcf@indiana.edu yuanh@indiana.edu sebae@indiana.edu

Community Grids Laboratory
Indiana University Bloomington

George Chrysanthakopoulos, Henrik Frystyk Nielsen

 georgioc@microsoft.com henrikn@microsoft.com
Microsoft Research

Redmond WA

Abstract

eScience applications need to use distributed Grid
environments where each component is an individual
or cluster of multicore machines. These are expected
to have 64-128 cores 5 years from now and need to
support scalable parallelism. Users will want to
compose heterogeneous components into single jobs
and run seamlessly in both distributed fashion and on
a future “Grid on a chip” with different subsets of
cores supporting individual components. We support
this with a simple programming model made up of two
layers supporting traditional parallel and Grid
programming paradigms (workflow) respectively. We
examine for a parallel clustering application, the
Concurrency and Coordination Runtime CCR from
Microsoft as a multi-paradigm runtime that integrates
the two layers. Our work uses managed code (C#) and
for AMD and Intel processors shows around a factor
of 5 better performance than Java. CCR has MPI
pattern and dynamic threading latencies of a few
microseconds that are competitive with the
performance of standard MPI for C.

1. Introduction

Grids and multicore [4-6] systems are contemporary
technologies that will have great impact on eScience.
Grids integrate the myriad of distributed resources
needed by modern science and multicore machines
will certainly allow very high performance simulation
engines. However multicore technology is also a

dominant feature of the next round of commodity
systems and this will motivate a new generation of
software environments that will address commodity
client and server applications. Thus we need to
examine the possibility of common software models
that support both these new commodity applications
and traditional scientific applications.

Future client systems are not likely to need large scale
simulations. Rather an analysis by Intel [7] identifies
gaming and more broadly datamining as critical client-
side applications with latter including speech, image
and video analysis as well processing of local sensors
and data fetched from the web. These datamining
algorithms often use “classic” scientific algorithms for
matrix arithmetic or optimization at their core and will
need good support for both dynamic threads and MPI
style loosely synchronous applications [8]. We note
that it will be the data deluge that drives eScience in
the large and the commodity software on the multicore
“small”. Note that almost certainly the software
environments developed for commodity multicore
systems will be the most attractive for (specialized)
eScience applications due to the excellent support that
is provided for commodity software.

We follow the model proposed by Berkeley [1] and
indeed used traditionally in parallel computing with
two layers called by them “productivity” and
“efficiency”. One needs a modest number of experts
working at the “efficiency” layer building libraries
(packaged as services in our approach) that implement
good parallel algorithms. We see several excellent
approaches to the “productivity” layer which can and

will be used by a broad range of programmers. This
layer was often termed coarse grained functional
parallelism in the old literature and supported by
systems like AVS, Khoros, SciRUN and HeNCE [9].
However our key idea is to use modern distributed
system (Grid) approaches at this layer. In fact Grid
workflow, Mashups, MapReduce [2], or just scripting
languages provide popular productivity models today
and we expect these to improve. However we believe
that no breakthroughs are needed to provide a good
programming model at this layer. We suggest that the
efficiency layer still needs much work and we need to
integrate support for it with the productivity layer and
between the different models in the efficiency layer;
these include MPI style collective synchronizations
and dynamic threading used in for example dynamic
graph searches and discrete event simulations.

In this paper we focus on one part of this puzzle –
namely investigating the runtime that could span these
different environments and different platforms that
would be used by the expected heterogeneous
composite applications. Note that managed code will
be important for desktop commodity applications and
so C# (mainly used here) and Java could become more
important than now for parallel programming.

Our research is looking at a variety of datamining
algorithms and the underlying runtime which allow
jobs to be composed from multiple, data sources and
visualizations and to run efficiently and seamlessly
either internally to a single CPU or across a tightly
coupled cluster or distributed Grid. We use
Cheminformatics and Geographical Information
System GIS examples built around a parallel
clustering datamining service. The parallelization of
this would traditionally use MPI but here we use the
CCR runtime running in MPI mode. CCR [10-11] was
designed for robotics applications [12] but also
investigated [13] as a general programming paradigm.
CCR supports efficient thread management for
handlers (continuations) spawned in response to
messages being posted to ports. The ports (queues) are
managed by CCR which has several primitives
supporting the initiation of handlers when different
message/port assignment patterns are recognized. Note
that CCR supports a particular flavor of threading
where information is passed by messages allowing
simple correctness criteria. Further CCR already has a
distributed “productivity layer” runtime known as
DSS (Decentralised Software Services) built on top of
it and we will use this as our productivity layer.

However this paper is not really proposing the
ultimate programming model but examining a possible

low level runtime which could support a variety of
different parallel programming models that would map
down into it. In particular the new generation of
parallel languages [14] from Darpa’s HPCS High
Productivity Computing System program supports the
three execution styles (dynamic threading, MPI,
coarse grain functional parallelism) we investigate
here and our runtime could be used by these and other
high level programming approaches.

AMD4: HPxw9300 workstation, 2 AMD Opteron CPUs
Processor 275 at 2.19GHz, L2 Cache 2x1MB (for each chip),
Memory 4GB, XP Pro 64bit
Benchmark Computational unit: 1.388 µs
Intel4: Dell Precision PWS670, 2 Intel Xeon CPUs at
2.80GHz, L2 Cache 2x2MB, Memory 4GB,
XP Pro 64bit
Benchmark Computational unit: 1.475 µs
Intel8a: Dell Precision PWS690, 2 Intel Xeon CPUs E5320 at
1.86GHz, L2 Cache 2x4M, Memory 8GB, XP Pro 64bit
Benchmark Computational unit: 1.696 µs
Intel8b: Dell Precision PWS690, 2 Intel Xeon CPUs x5355 at
2.66GHz, L2 Cache 2X4M, Memory 4GB,
Vista Ultimate 64bit
Benchmark Computational unit: 1.188 µs

We used four machine types in this study with details
recorded above in Table 1. Each machine had two
processors; one used the AMD dual core Opteron, one
dual core Intel Xeons and there were two models of
quad core Intel Xeons. As well as basic hardware, the
table indicates performance on a computational unit
used in performance test.

In the next section, we discuss the clustering
application and then in section 3 CCR and DSS.
Section 4 defines more precisely our three execution
models. Section 5 presents our basic performance
results that suggest one can build a single runtime that
supports the different execution models and so
implement the hybrid productivity-efficiency
environment. The CCR results are briefly compared
with Java [3] and MPICH2 while the DSS results are
contrasted with those of the Java Axis2. Future work
and conclusions are in section 6.

2. Clustering

We are building a suite of data mining services to test
the runtime and two layer programming model. We
are starting with data clustering which has many
important applications including clustering of
chemical properties which is an important tool [15] for
finding for example a set of chemicals similar to each
other and so likely candidates for a given drug. In GIS

Table 1. Machines used

applications, clustering is commonly used on selected
samples from population census data.

We present in Figure 1, initial results from the parallel
clustering service implemented on the 8 core Intel
machine labeled Intel8b in table 1. We chose an
improved K-means [16] algorithm whose structure can
be straightforwardly and efficiently parallelized using
MPI style programming. This method [17] uses a
multi-scale approach to avoid false minima and has a
parallel overhead [18] that decreases asymptotically
like 1/grain size as the data set increases. Here grain
size is the dataset size divided by the number of
processors (cores) which is here 8. Putting T(n) as the
execution time on n cores, we can define

Overhead f = (PT(P)-T(1))/T(1)
Efficiency ε = 1/(1+f)

Note that the advent of multicore systems is likely to
prompt a re-examination of algorithms with preference
being given to those that can be efficiently
parallelized. Our results required arrangement of data
in memory to avoid any interference in cache lines
accessed by different cores; such interference
increased memory traffic and produced factors of 2
variations in runtime [33] for our initial
implementation. We present typical results in figure 1
for Intel8b. They show an overhead decreasing
(efficiency tending to 1 and speedups to 8) as the grain
size increases.

The detailed analysis [33] is affected by cache issues
and fluctuations in run time that are much larger for
Windows than the usual HPC Linux OS. In particular
run time fluctuations give an overhead of 0.05 to 0.1
that is present even for very large grain sizes where

the traditional analysis predicts zero overhead and an
efficiency of 1. These results use CCR for all inter
process communication and messaging and will
improve when we have finished primitives optimized
on multicore systems for the equivalent of MPI
reduction operations. These initial results confirm that
we can get good performance with CCR and are
encouraging for the basic strategy of building a suite
of high performance datamining algorithms with CCR.
Now we look in detail at CCR and DSS performance
(DSS encapsulates this clustering application in the
“productivity” layer) so we can compare our new
approach with more familiar technology.

3. Overview of CCR and DSS

CCR provides a framework for building general
collective communication where threads can write to a
general set of ports and read one or more messages
from one or more ports. The framework manages both
ports and threads with optimized dispatchers that can
efficiently iterate over multiple threads. All primitives
result in a task construct being posted on one or more
queues, associated with a dispatcher. The dispatcher
uses OS threads to load balance tasks. The current
applications and provided primitives support what we
call the dynamic threading model with capabilities that
include:
1) FromHandler: Spawn threads without reading

ports
2) Receive: Each handler reads one item from a

single port
3) MultipleItemReceive: Each handler reads a

prescribed number of items of a given type from a
given port. Note items in a port can be general
structures but all must have same type.

4) MultiplePortReceive: Each handler reads a one
item of a given type from multiple ports.

5) JoinedReceive: Each handler reads one item from
each of two ports. The items can be of different
type.

6) Choice: Execute a choice of two or more port-
handler pairings

7) Interleave: Consists of a set of arbiters (port --
handler pairs) of 3 types that are Concurrent,
Exclusive or Teardown (called at end for clean
up). Concurrent arbiters are run concurrently but
exclusive handlers are not.

Our current work uses the first three a) b) c) efficient
capabilities of CCR. One can spawn handlers that
consume messages as is natural in a dynamic search
application where handlers correspond to links in a
tree. However one can also have long running handlers
where messages are sent and consumed at a
rendezvous points (yield points in CCR) as used in

Figure 1. Parallel overhead on clustering algorithm

1/G rain S ize

P
ar

al
le
l O

ve
rh

ea
d

10,000 2,50020,000 5,000G rain s ize

1/G rain S ize

P
ar

al
le
l O

ve
rh

ea
d

1/G rain S ize

P
ar

al
le
l O

ve
rh

ea
d

1/G rain S ize

P
ar

al
le
l O

ve
rh

ea
d

10,000 2,50020,000 5,000G rain s ize

traditional MPI applications. Note that “active
messages” correspond to the spawning model of CCR
and can be straightforwardly supported. Further CCR
takes care of all the needed queuing and asynchronous
operations that avoid race conditions in complex
messaging. For this paper, we did use the CCR
framework to build a custom optimized collective
operation corresponding to the MPI “exchange”
operation but used existing capabilities for the
“reduce” and “shift” patterns. We believe one can
extend this work to provide all MPI messaging
patterns.

Note that all our work was for managed code in C#
which is an important implementation language for
commodity desktop applications although slower than
C++. In this regard we note that there are plans for a
C++ version of CCR which would be faster but prone
to traditional un-managed code errors such as memory
leaks, buffer overruns and memory corruption. CCR is
very portable and runs on both CE (small devices) and
desktop windows.

DSS sits on top of CCR and provides a lightweight,
REST oriented application model that is particularly
suited for creating coarse grain applications in the
Web-style as compositions of services running in a
distributed environment. Services are isolated from
each other, even when running within the same node
and are only exposed through their state and a uniform
set of operations over that state. The DSS runtime
provides a hosting environment for managing services
and a set of infrastructure services that can be used for
service creation, discovery, logging, debugging,
monitoring, and security. DSS builds on existing Web
architecture and extends the application model
provided by HTTP through structured data
manipulation and event notification. Interaction with
DSS services happen either through HTTP or DSSP
[19] which is a SOAP-based protocol for managing
structured data manipulations and event notifications.

4. MPI and the 3 Execution Models

MPI – Message Passing Interface – dominates the
runtime support of large scale parallel applications for
technical computing. It is a complicated specification
with 128 separate calls in the original specification
[20] and double this number of interfaces in the more
recent MPI-2 including support of parallel external I/O
[21-22]. MPI like CCR is built around the idea of
concurrently executing threads (processes, programs)
that exchange information by messages. In the classic
analysis [18, 23-25], parallel technical computing
applications can be divided into four classes:

a) Synchronous problems where every process
executes the same instruction at each clock cycle.
This is a special case of b) below and only
relevant as a separate class if one considers SIMD
(Single Instruction Multiple Data) hardware
architectures.

b) Loosely Synchronous problems where each
process runs different instruction streams (often
using the same program in SPMD mode) but they
synchronize with the other processes every now
and then. Such problems divide into stages where
at the beginning and end of each stage the
processes exchange messages and this exchange
provides the needed synchronization that is
scalable as it needs no global barriers. Load
balancing must be used to ensure that all
processes execute for roughly (within say 5%) the
same time in each phase and MPI provides the
messaging at the beginning and end of each stage.
We get at each loose synchronization point a
message pattern of many overlapping joins that is
not usually seen in commodity applications and
represents a new challenge.

c) Embarrassingly or Pleasingly parallel problems
have no significant inter-process communication
and are often executed on a Grid.

d) Functional parallelism leads to what were
originally called metaproblems that consist of
multiple applications, each of which is of one of
the classes a), b), c) as seen in multidisciplinary
applications such as linkage of structural, acoustic
and fluid-flow simulations in aerodynamics.
These have a coarse grain parallelism.

Classes c) and d) today would typically be
implemented as a workflow using services to represent
the individual components. Often the components are
distributed and the latency requirements are typically
less stringent than for synchronous and loosely
synchronous problems. We view this as functional
parallelism corresponding to the “productivity layer”
and use DSS already developed for Robotics [10] on
top of CCR for this case and idealized in Figure 2(a).
Note in this paper, we only discuss run-time and do
not address the many different ways of expressing the
“productivity layer” i.e. we are discussing runtime and
not languages.

We use CCR in a mode where multiple identical
stages are executed and the run is completed by
combining the computations with a simple CCR
supported reduction as shown in Figure 2(b). This also
illustrates the simple Pipeline Spawn execution that
we used for basic performance measurements of the
dynamic threading performance. Each thread writes to

a single port that is read by a fresh thread as shown in
more detail in Figure 3.

Port0Thread0 Thread0
Message Message

Port1Thread1 Thread1

Port2Thread2 Thread2

Port3Thread3 Thread3

EndPort

Message Message

Message Message

Message Message

We take a fixed computation that takes from 12 to 17
seconds (107 stages of time complexity listed in table
1) depending on hardware and execution environment
to run sequentially on the machines we used in this
study. This computation was divided into a variable
number of stages of identical computational
complexity and then the measurement of execution
time as a function of number of stages allows one to
find the thread and messaging overhead. Note that the
extreme case of 107 stages corresponds to the basic
unit execution times of 1.188 to 1.696 µs given in
Table 1 and is a stringent test for MPI style messaging
which can require microsecond level latencies. We
concentrated on small message payloads as it is the
latency (overhead) in this case that is the critical
problem. As multicore systems have shared memories,
one would often use handles in small messages rather
than transferring large payloads.

We looked at three different message patterns for the
dynamic spawned thread case choosing structure that
was similar to MPI to allow easier comparison of the
rendezvous and spawned models. These spawned
patterns are illustrated in Figure 4(a-c) and augment
the pipeline of Figure 2(b) and 2 with a “nearest

neighbor” shift with either one or two messages
written to ports so we could time both the Receive and
MultiItemReceive modes of CCR. We note that figures
2 to 4 are drawn for 4 cores while our tests used both 4
and 8 core systems.

For our test of the final execution style, namely the
MPI style runtime, we needed rendezvous semantics
which are fully supported by CCR and we chose to use
patterns corresponding to the MPI_SENDRECV
interface with either toroidal nearest neighbor shift of
Figure 4(d) or the combination of a left and right shift,
namely an exchange, shown in Figure 4(e). Note that
posting to a port in CCR corresponds to a MPISEND
and the matching MPIRECV is achieved from
arguments of handler invoked to process the port. MPI
has a much richer set of defined methods that describe
different synchronicity options, various utilities and
collectives. These include the multi-cast (broadcast,
gather-scatter) of messages with the calculation of
associative and commutative functions on the fly. It is
not clear what primitives and indeed what
implementation will be most effective on multicore
systems [1, 26] and so we only looked at a few simple
but representative cases in this initial study. In fact it is
possible that our study which suggests one can support
in the same framework a set of execution models that
is broader than today’s MPI, could motivate a new
look at messaging standards for parallel computing.

Note we are using threads in our CCR runtime
whereas traditional MPI would use processes even on
a multicore system. We expect thread-based
parallelism to become more important in the future as
one moves to integrate the different paradigms.

Figure 3. Multiple stages in CCR Performance
Measurements

Figure 2(b). Pipeline of Spawned Threads
followed by a Reduction using CCR Interleave

Figure 2(a). 2-way notification message using DSS

Service A Service B

Figure 4. Five Communication patterns using
CCR to test spawned dynamic threading (a,b,c)
and MPI style Rendezvous’s (d,e)

Thread3 Port3

Thread2 Port2

Thread0 Port0

Thread1 Port1

(a) S pawned P ipeline

Thread2 Port2

Thread0 P ort0

Port3Thread3

Port1Thread1

(b) S pawned S hift

(e) Rendezvous E xchange

Thread0

Port3

Thread2 Port2

Port1

Port0

Thread3

Thread1

(c) S pawned Two S hifts

(d) Rendezvous S hift

Thread0

Thread2

Thread3

Thread1

Thread0

Thread2

Thread3

Thread1

R
en

de
zv

ou
s

Po
in

t

R
en

de
zv

ou
s

Po
in

t

R
en

de
zv

ou
s

Po
in

t

R
en

de
zv

ou
s

Po
in

t

Thread3 Port3

Thread2 Port2

Thread0 Port0

Thread1 Port1

(a) S pawned P ipeline

Thread2 Port2

Thread0 P ort0

Port3Thread3

Port1Thread1

(b) S pawned S hift

(e) Rendezvous E xchange

Thread0

Port3

Thread2 Port2

Port1

Port0

Thread3

Thread1

(c) S pawned Two S hifts

(d) Rendezvous S hift

Thread0

Thread2

Thread3

Thread1

Thread0

Thread2

Thread3

Thread1

R
en

de
zv

ou
s

Po
in

t

R
en

de
zv

ou
s

Po
in

t

R
en

de
zv

ou
s

Po
in

t

R
en

de
zv

ou
s

Po
in

t

Port0 Thread0 Thread0

Port1 Thread1 Thread1

Port2 Thread2 Thread2

Port3 Thread3 Thread3

One Stage

Port0 Thread0

Port1 Thread1

Port2 Thread2

Port3 Thread3

Message Message Message Message

Message Message Message Message

Message Message Message Message

Message Message Message Message

5. Performance of CCR in 3 Execution Models

5.1 CCR Message Latency and Overhead

We present detailed benchmark measurements on 3
machines labeled AMD4 Intel4 and Intel8b in Table 1
with results shown in Table 2 and Figures 5(a) and (b).
Table 2 looks at seven messaging modes shown in
Figure 3 with rendezvous exchange implemented
either as two separate shifts or as a custom CCR
primitive which is faster especially on Intel8b. We
also show pipeline implemented in both spawned and
rendezvous fashion. The results correspond to a
computation stage between messaging that is 20 times
the values of table 1 i.e. from 23 (Intel8b) to 29 µs
(Intel4). The newer Intel8b on 8 cores shows
significantly lower overheads than the older Intel4 on
4 cores and the AMD4 Opteron on 4 cores has slightly
lower overheads than Intel8b on 8 cores. Detailed
results for the slower Intel 8a are also available [32].
We see the dynamic threading has an overhead that is
around 5 µs for pipeline and shift for both AMD4 and
Intel8b on 4 or 8 cores respectively. The MPI style
rendezvous overheads increase to 9.36(11.74) µs for
Shift and 16.3(20.16) µs for the optimized exchange

operation on AMD4 (Intel8b) on 4(8) cores. We have
performed identical measurements on the recent pure
Java MPJE [3] for AMD4 which gives overheads of
185 µs for exchange and 104 µs for Shift. On the same
machine, mpiJava (which invokes MPICH2 from
Java) has for exchange a latency of 99.4 µs while the
standard MPICH2 with C has 39.3 µs latency in this
case. From table 2, CCR is faster than these but the
optimized Nemesis version of MPICH is substantially
faster than CCR. Our results show that C# with CCR
is the by far the fastest managed code for messaging
and gives competitive results to the best MPI’s in
common use for traditional scientific languages like C
and C++.

Figure 5 explores the dependence of the overhead on
the number of stages for the MPI style rendezvous
case i.e. on the amount of computation between each

Figure 5. Overhead (latency) on MPI style
Rendezvous Messaging for Shift and Exchange
implemented either as two shifts or as custom
CCR pattern for a) AMD4 with 4 threads and
b) Intel8b with 8 threads

0

5

10

15

20

25

30

0 2 4 6 8 10

AMD Exch

AMD Exch as 2 Shifts

AMD Shift

a)

0

5

10

15

20

25

30

0 2 4 6 8 10

AMD Exch

AMD Exch as 2 Shifts

AMD Shift

a)

0

10

20

30

40

50

60

70

0 2 4 6 8 10

Intel Exch

Intel Exch as 2 Shifts

Intel Shift

b)

0

10

20

30

40

50

60

70

0 2 4 6 8 10

Intel Exch

Intel Exch as 2 Shifts

Intel Shift

b)

Table 2: Messaging Overhead per stage for CCR
patterns with 0.5 million stages

AMD4: 4 Core Number of Parallel Computations
(μs) 1 2 3 4 7 8

Pipeline 1.76 4.52 4.4 4.84 1.42 8.54
Shift 4.48 4.62 4.8 0.84 8.94

Sp
aw

ne
d

Two Shifts 7.44 8.9 10.18 12.74 23.92
Pipeline 3.7 5.88 6.52 6.74 8.54 14.98
Shift 6.8 8.42 9.36 2.74 11.16
Exchange As
Two Shifts 14.1 15.9 19.14 11.78 22.6

Re
nd

ez
vo

us

Exchange 10.32 15.5 16.3 11.3 21.38
Intel4: 4 Core Number of Parallel Computations

(μs) 1 2 3 4 7 8
Pipeline 3.32 8.3 9.38 10.18 3.02 12.12
Shift 8.3 9.34 10.08 4.38 13.52

Sp
aw

ne
d

Two Shifts 17.64 19.32 21 28.74 44.02
Pipeline 9.36 12.08 13.02 13.58 16.68 25.68
Shift 12.56 13.7 14.4 4.72 15.94
Exchange As
Two Shifts 23.76 27.48 30.64 22.14 36.16

Re
nd

ez
vo

us

Exchange 18.48 24.02 25.76 20 34.56
Intel8b: 8 Core Number of Parallel Computations

(μs) 1 2 3 4 7 8
Pipeline 1.58 2.44 3 2.94 4.5 5.06
Shift 2.42 3.2 3.38 5.26 5.14

Sp
aw

ne
d

Two Shifts 4.94 5.9 6.84 14.32 19.44
Pipeline 2.48 3.96 4.52 5.78 6.82 7.18
Shift 4.46 6.42 5.86 10.86 11.74
Exchange As
Two Shifts 7.4 11.64 14.16 31.86 35.62

Re
nd

ez
vo

us

Exchange 6.94 11.22 13.3 18.78 20.16

message with the extreme case of 107 stages
corresponding to the 1.388 (1.188) µs computation
value between messages of table 1 for AMD4
(Intel8b). The overheads remain reasonable even in
these extreme conditions showing that an intense
number of small messages will not be a serious
problem. This Figure emphasizes that the CCR custom
exchange (marked just “Exch”) can be much faster
than the exchange implemented as a left followed by
right shift (Marked “Exch as 2 Shifts”).

5.2 DSS Message Latency and Overhead

We now examine CCR for the third form of
parallelism; namely the functional parallelism model
represented in Figure 1(a). The Robotics release [12]
includes a lightweight service environment DSS built
on top of CCR and we performed an initial evaluation
of DSS on the AMD4 machine. We time groups of
request-response two way messages running on
(different) cores of the AMD system. We find average
times of 30-50 microseconds or throughputs of 20,000
to 25,000 two-way messages per second after initial
start up effects are past. This result of internal service
to internal service can be compared with Apache Axis
2 where the AMD PC supports about 3,000 messages
per second throughput. This is not an entirely fair
comparison as the measurements are internal to one
machine so each service end-point has effectively just
two cores. The Axis measurements used external
clients interacting on a LAN so there is network
overhead but now the service can access the full 4
cores. We will give more complete comparisons later
and also examine the important one-way messaging
case.

6. Conclusions and Futures

This study shows that CCR and DSS form an
interesting infrastructure for eScience supporting with
uniformly acceptable performance the hybrid
efficiency-productivity layered programming model
from multicore through Grids. Current performance
results are not as good as the best for MPI [28-31] but
MPI has the benefit coming from many years of
experience. CCR and the underlying Windows
multicore scheduler have not before been applied to
this style of messaging in intense environments and
we expect significant improvements in CCR and DSS
performance for both managed code and even more so
C++ and native implementations. Further CCR
supports the important dynamic threading and the
coarse grain functional parallelism for which MPI is
usually non optimal. In particular, we expect discrete

event simulation to run well on a CCR base. We
expect our work to suggest simplifications and
extensions to MPI to support the rich messaging
needed in hybrid Grid-multicore environments We
have also finished extensive benchmarks on MPICH,
and MPJ Express [3] (and mpiJava [27]) to cover the
very best classic MPI’s. Further details of this analysis
can be found in [32, 33] which also study in depth
memory bandwidth and the Intel8a machine.

7. References

[1] David Patterson The Landscape of Parallel Computing

Research: A View from Berkeley 2.0 Presentation at
Manycore Computing 2007 Seattle June 20 2007
http://science.officeisp.net/ManycoreComputingWorks
hop07/Presentations/David%20Patterson.pdf

[2] Jeffrey Dean and Sanjay Ghemawat, MapReduce:

Simplified Data Processing on Large Clusters,
OSDI'04: Sixth Symposium on Operating System
Design and Implementation, San Francisco, CA,
December 2004
http://labs.google.com/papers/mapreduce.html

[3] Mark Baker, Bryan Carpenter, and Aamir Shafi. MPJ

Express: Towards Thread Safe Java HPC, Submitted
to the IEEE International Conference on Cluster
Computing (Cluster 2006), Barcelona, Spain, 25-28
September, 2006. http://www.mpj-
express.org/docs/papers/mpj-clust06.pdf

[4] Jack Dongarra Editor The Promise and Perils of the

Coming Multicore Revolution and Its Impact, CTWatch
Quarterly Vol 3 No. 1 February 07,
http://www.ctwatch.org/quarterly/archives/february-2007

[5] Herb Sutter, The Free Lunch Is Over: A Fundamental

Turn Toward Concurrency in Software, Dr. Dobb's
Journal, 30(3), March 2005.

[6] Annotated list of multicore Internet sites

http://www.connotea.org/user/crmc/

[7] Pradeep Dubey Teraflops for the Masses: Killer Apps of

Tomorrow Workshop on Edge Computing Using New
Commodity Architectures, UNC 23 May 2006
http://gamma.cs.unc.edu/EDGE/SLIDES/dubey.pdf

[8] Geoffrey Fox tutorial at Microsoft Research Parallel

Computing 2007: Lessons for a Multicore Future from
the Past February 26 to March 1 2007
http://grids.ucs.indiana.edu/ptliupages/presentations/PC
2007/index.html

[9] Dennis Gannon and Geoffrey Fox, Workflow in Grid

Systems Concurrency and Computation: Practice &
Experience 18 (10), 1009-19 (Aug 2006), Editorial of
special issue prepared from GGF10 Berlin

http://grids.ucs.indiana.edu/ptliupages/publications/Wo
rkflow-overview.pdf

[10] “Concurrency Runtime: An Asynchronous Messaging

Library for C# 2.0” George Chrysanthakopoulos
Channel9 Wiki Microsoft
http://channel9.msdn.com/wiki/default.aspx/Channel9.
ConcurrencyRuntime

[11] “Concurrent Affairs: Concurrent Affairs: Concurrency

and Coordination Runtime”, Jeffrey Richter Microsoft
http://msdn.microsoft.com/msdnmag/issues/06/09/Con
currentAffairs/default.aspx

[12] Microsoft Robotics Studio is a Windows-based

environment that includes end-to-end Robotics
Development Platform, lightweight service-oriented
runtime, and a scalable and extensible platform. For
details, see http://msdn.microsoft.com/robotics/

[13] Georgio Chrysanthakopoulos and Satnam Singh “An

Asynchronous Messaging Library for C#”,
Synchronization and Concurrency in Object-Oriented
Languages (SCOOL) at OOPSLA October 2005
Workshop, San Diego, CA.
http://urresearch.rochester.edu/handle/1802/2105

[14] Internet Resource for HPCS Languages

http://crd.lbl.gov/~parry/hpcs_resources.html

[15] Geoff M. Downs, John M. Barnard Clustering Methods

and Their Uses in Computational Chemistry, Reviews
in Computational Chemistry, Volume 18, 1-40 2003

[16] K-means algorithm at Wikipedia

http://en.wikipedia.org/wiki/K-means_algorithm

[17] Rose, K. Deterministic annealing for clustering,

compression, classification, regression, and related
optimization problems, Proceedings of the IEEE Vol.
86, pages 2210-2239, Nov 1998

[18] “The Sourcebook of Parallel Computing” edited by

Jack Dongarra, Ian Foster, Geoffrey Fox, William
Gropp, Ken Kennedy, Linda Torczon, and Andy White,
Morgan Kaufmann, November 2002.

[19] Henrik Frystyk Nielsen, George Chrysanthakopoulos,

“Decentralized Software Services Protocol – DSSP”
http://msdn.microsoft.com/robotics/media/DSSP.pdf

[20] Message passing Interface MPI Forum http://www.mpi-

forum.org/index.html

[21] MPICH2 implementation of the Message-Passing

Interface (MPI) http://www-unix.mcs.anl.gov/mpi/mpich/

[22] High Performance MPI Message Passing Library

http://www.open-mpi.org/

[23] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D.

Walker Solving Problems in Concurrent Processors-
Volume 1, Prentice Hall, March 1988

[24] Fox, G. C., Messina, P., Williams, R., “Parallel

Computing Works!”, Morgan Kaufmann, San Mateo
Ca, 1994.

[25] Geoffrey Fox “Messaging Systems: Parallel Computing

the Internet and the Grid”, EuroPVM/MPI 2003 Invited
Talk September 30 2003.
http://grids.ucs.indiana.edu/ptliupages/publications/grid
mp_fox.pdf

[26] J Kurzak and J J Dongarra, Pipelined Shared Memory

Implementation of Linear Algebra Routines with
arbitary Lookahead - LU, Cholesky, QR, Workshop on
State-of-the-Art in Scientific and Parallel Computing,
Umea, Sweden, June 2006
http://www.hpc2n.umu.se/para06/papers/paper_188.pdf

[27] mpiJava Java interface to the standard MPI runtime

including MPICH and LAM-MPI
http://www.hpjava.org/mpiJava.html

[28] Richard L. Graham and Timothy S. Woodall and

Jeffrey M. Squyres “Open MPI: A Flexible High
Performance MPI”, Proceedings, 6th Annual
International Conference on Parallel Processing and
Applied Mathematics, 2005 http://www.open-
mpi.org/papers/ppam-2005

[29] D.K. Panda “How will we develop and program

emerging robust, low-power, adaptive multicore
computing systems?” The Twelfth International
Conference on Parallel and Distributed Systems
ICPADS ‘06 July 2006 Minneapolis
http://www.icpads.umn.edu/powerpoint-slides/Panda-
panel.pdf

[30] Thomas Bemmerl “Pallas MPI Benchmarks Results”

http://www.lfbs.rwth-
aachen.de/content/index.php?ctl_pos=392

[31] Myricom Myri-10G and Myrinet-2000 Performance

Measurements http://www.myri.com/scs/performance/

[32] Xiaohong Qiu, Geoffrey Fox, and Alex Ho Analysis of

Concurrency and Coordination Runtime CCR and DSS,
Technical Report January 21 2007
http://grids.ucs.indiana.edu/ptliupages/publications/CC
RDSSanalysis_jan21-07.pdf

[33] Xiaohong Qiu, Geoffrey Fox, H. Yuan, Seung-Hee Bae,

George Chrysanthakopoulos, Henrik Frystyk Nielsen
Performance Measurements of CCR and MPI on
Multicore Systems Summary September 23 2007
http://grids.ucs.indiana.edu/ptliupages/presentations/M
CPerformanceSept21-07.ppt

