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Abstract 

eScience applications need to use distributed Grid 
environments where each component is an individual 
or cluster of multicore machines. These are expected 
to have 64-128 cores 5 years from now and need to 
support scalable parallelism. Users will want to 
compose heterogeneous components into single jobs 
and run seamlessly in both distributed fashion and on 
a future “Grid on a chip” with different subsets of 
cores supporting individual components. We support 
this with a simple programming model made up of two 
layers supporting traditional parallel and Grid 
programming paradigms (workflow) respectively. We 
examine for a parallel clustering application, the 
Concurrency and Coordination Runtime CCR from 
Microsoft as a multi-paradigm runtime that integrates 
the two layers. Our work uses managed code (C#) and 
for AMD and Intel processors shows around a factor 
of 5 better performance than Java. CCR has MPI 
pattern and dynamic threading latencies of a few 
microseconds that are competitive with the 
performance of standard MPI for C. 
 
 
1. Introduction 
 
Grids and multicore [4-6] systems are contemporary 
technologies that will have great impact on eScience. 
Grids integrate the myriad of distributed resources 
needed by modern science and multicore machines 
will certainly allow very high performance simulation 
engines. However multicore technology is also a 

dominant feature of the next round of commodity 
systems and this will motivate a new generation of 
software environments that will address commodity 
client and server applications. Thus we need to 
examine the possibility of common software models 
that support both these new commodity applications 
and traditional scientific applications. 
 
Future client systems are not likely to need large scale 
simulations. Rather an analysis by Intel [7] identifies 
gaming and more broadly datamining as critical client-
side applications with latter including speech, image 
and video analysis as well processing of local sensors 
and data fetched from the web. These datamining 
algorithms often use “classic” scientific algorithms for 
matrix arithmetic or optimization at their core and will 
need good support for both dynamic threads and MPI 
style loosely synchronous applications [8]. We note 
that it will be the data deluge that drives eScience in 
the large and the commodity software on the multicore 
“small”. Note that almost certainly the software 
environments developed for commodity multicore 
systems will be the most attractive for (specialized) 
eScience applications due to the excellent support that 
is provided for commodity software.  
 
We follow the model proposed by Berkeley [1] and 
indeed used traditionally in parallel computing with 
two layers called by them “productivity” and 
“efficiency”. One needs a modest number of experts 
working at the “efficiency” layer building libraries 
(packaged as services in our approach) that implement 
good parallel algorithms. We see several excellent 
approaches to the “productivity” layer which can and 



will be used by a broad range of programmers. This 
layer was often termed coarse grained functional 
parallelism in the old literature and supported by 
systems like AVS, Khoros, SciRUN and HeNCE [9]. 
However our key idea is to use modern distributed 
system (Grid) approaches at this layer. In fact Grid 
workflow, Mashups, MapReduce [2], or just scripting 
languages provide popular productivity models today 
and we expect these to improve. However we believe 
that no breakthroughs are needed to provide a good 
programming model at this layer. We suggest that the 
efficiency layer still needs much work and we need to 
integrate support for it with the productivity layer and 
between the different models in the efficiency layer; 
these include MPI style collective synchronizations 
and dynamic threading used in for example dynamic 
graph searches and discrete event simulations.  
 
In this paper we focus on one part of this puzzle – 
namely investigating the runtime that could span these 
different environments and different platforms that 
would be used by the expected heterogeneous 
composite applications. Note that managed code will 
be important for desktop commodity applications and 
so C# (mainly used here) and Java could become more 
important than now for parallel programming.  
 
Our research is looking at a variety of datamining 
algorithms and the underlying runtime which allow 
jobs to be composed from multiple, data sources and 
visualizations and to run efficiently and seamlessly 
either internally to a single CPU or across a tightly 
coupled cluster or distributed Grid. We use 
Cheminformatics and Geographical Information 
System GIS examples built around a parallel 
clustering datamining service. The parallelization of 
this would traditionally use MPI but here we use the 
CCR runtime running in MPI mode. CCR [10-11] was 
designed for robotics applications [12] but also 
investigated [13] as a general programming paradigm. 
CCR supports efficient thread management for 
handlers (continuations) spawned in response to 
messages being posted to ports. The ports (queues) are 
managed by CCR which has several primitives 
supporting the initiation of handlers when different 
message/port assignment patterns are recognized. Note 
that CCR supports a particular flavor of threading 
where information is passed by messages allowing 
simple correctness criteria. Further CCR already has a 
distributed “productivity layer” runtime known as 
DSS (Decentralised Software Services) built on top of 
it and we will use this as our productivity layer. 
 
However this paper is not really proposing the 
ultimate programming model but examining a possible 

low level runtime which could support a variety of 
different parallel programming models that would map 
down into it. In particular the new generation of 
parallel languages [14] from Darpa’s HPCS High 
Productivity Computing System program supports the 
three execution styles (dynamic threading, MPI, 
coarse grain functional parallelism) we investigate 
here and our runtime could be used by these and other 
high level programming approaches. 
 
 
AMD4: HPxw9300 workstation, 2 AMD Opteron CPUs 
Processor 275 at 2.19GHz, L2 Cache 2x1MB (for each chip), 
Memory 4GB, XP Pro 64bit 
Benchmark Computational unit: 1.388 µs 
Intel4: Dell Precision PWS670, 2 Intel Xeon CPUs at 
2.80GHz, L2 Cache 2x2MB, Memory 4GB,  
XP Pro 64bit 
Benchmark Computational unit: 1.475 µs 
Intel8a: Dell Precision PWS690, 2 Intel Xeon CPUs E5320 at 
1.86GHz, L2 Cache 2x4M, Memory 8GB, XP Pro 64bit 
Benchmark Computational unit: 1.696 µs 
Intel8b: Dell Precision PWS690, 2 Intel Xeon CPUs x5355 at 
2.66GHz,  L2  Cache  2X4M,  Memory  4GB, 
Vista Ultimate 64bit 
Benchmark Computational unit: 1.188 µs 

 
We used four machine types in this study with details 
recorded above in Table 1. Each machine had two 
processors; one used the AMD dual core Opteron, one 
dual core Intel Xeons and there were two models of 
quad core Intel Xeons. As well as basic hardware, the 
table indicates performance on a computational unit 
used in performance test. 
 
In the next section, we discuss the clustering 
application and then in section 3 CCR and DSS. 
Section 4 defines more precisely our three execution 
models. Section 5 presents our basic performance 
results that suggest one can build a single runtime that 
supports the different execution models and so 
implement the hybrid productivity-efficiency 
environment. The CCR results are briefly compared 
with Java [3] and MPICH2 while the DSS results are 
contrasted with those of the Java Axis2. Future work 
and conclusions are in section 6. 
 
2. Clustering  
 
We are building a suite of data mining services to test 
the runtime and two layer programming model. We 
are starting with data clustering which has many 
important applications including clustering of 
chemical properties which is an important tool [15] for 
finding for example a set of chemicals similar to each 
other and so likely candidates for a given drug. In GIS 

Table 1.  Machines used 



applications, clustering is commonly used on selected 
samples from population census data.  
 
We present in Figure 1, initial results from the parallel 
clustering service implemented on the 8 core Intel 
machine labeled Intel8b in table 1. We chose an 
improved K-means [16] algorithm whose structure can 
be straightforwardly and efficiently parallelized using 
MPI style programming. This method [17] uses a 
multi-scale approach to avoid false minima and has a 
parallel overhead [18] that decreases asymptotically 
like 1/grain size as the data set increases. Here grain 
size is the dataset size divided by the number of 
processors (cores) which is here 8. Putting T(n) as the 
execution time on n cores, we can define 
 

Overhead f = (PT(P)-T(1))/T(1)  
Efficiency ε = 1/(1+f) 
 

Note that the advent of multicore systems is likely to 
prompt a re-examination of algorithms with preference 
being given to those that can be efficiently 
parallelized. Our results required arrangement of data 
in memory to avoid any interference in cache lines 
accessed by different cores; such interference 
increased memory traffic and produced factors of 2 
variations in runtime [33] for our initial 
implementation. We present typical results in figure 1 
for Intel8b.  They show an overhead decreasing 
(efficiency tending to 1 and speedups to 8) as the grain 
size increases. 

 
 
The detailed analysis [33] is affected by cache issues 
and fluctuations in run time that are much larger for 
Windows than the usual HPC Linux OS. In particular 
run time fluctuations give an overhead of 0.05 to 0.1 
that is present even for very large grain sizes where 

the traditional analysis predicts zero overhead and an 
efficiency of 1. These results use CCR for all inter 
process communication and messaging and will 
improve when we have finished primitives optimized 
on multicore systems for the equivalent of MPI 
reduction operations. These initial results confirm that 
we can get good performance with CCR and are 
encouraging for the basic strategy of building a suite 
of high performance datamining algorithms with CCR. 
Now we look in detail at CCR and DSS performance 
(DSS encapsulates this clustering application in the 
“productivity” layer) so we can compare our new 
approach with more familiar technology. 
 
3. Overview of CCR and DSS 

CCR provides a framework for building general 
collective communication where threads can write to a 
general set of ports and read one or more messages 
from one or more ports. The framework manages both 
ports and threads with optimized dispatchers that can 
efficiently iterate over multiple threads. All primitives 
result in a task construct being posted on one or more 
queues, associated with a dispatcher. The dispatcher 
uses OS threads to load balance tasks. The current 
applications and provided primitives support what we 
call the dynamic threading model with capabilities that 
include: 
1) FromHandler: Spawn threads without reading 

ports 
2) Receive: Each handler reads one item from a 

single port 
3) MultipleItemReceive: Each handler reads a 

prescribed number of items of a given type from a 
given port. Note items in a port can be general 
structures but all must have same type. 

4) MultiplePortReceive: Each handler reads a one 
item of a given type from multiple ports. 

5) JoinedReceive: Each handler reads one item from 
each of two ports. The items can be of different 
type. 

6) Choice: Execute a choice of two or more port-
handler pairings 

7) Interleave: Consists of a set of arbiters (port -- 
handler pairs) of 3 types that are Concurrent, 
Exclusive or Teardown (called at end for clean 
up). Concurrent arbiters are run concurrently but 
exclusive handlers are not. 

Our current work uses the first three a) b) c) efficient 
capabilities of CCR. One can spawn handlers that 
consume messages as is natural in a dynamic search 
application where handlers correspond to links in a 
tree. However one can also have long running handlers 
where messages are sent and consumed at a 
rendezvous points (yield points in CCR) as used in 

Figure 1. Parallel overhead on clustering algorithm 
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traditional MPI applications. Note that “active 
messages” correspond to the spawning model of CCR 
and can be straightforwardly supported. Further CCR 
takes care of all the needed queuing and asynchronous 
operations that avoid race conditions in complex 
messaging. For this paper, we did use the CCR 
framework to build a custom optimized collective 
operation corresponding to the MPI “exchange” 
operation but used existing capabilities for the 
“reduce” and “shift” patterns. We believe one can 
extend this work to provide all MPI messaging 
patterns.  
 
Note that all our work was for managed code in C# 
which is an important implementation language for 
commodity desktop applications although slower than 
C++. In this regard we note that there are plans for a 
C++ version of CCR which would be faster but prone 
to traditional un-managed code errors such as memory 
leaks, buffer overruns and memory corruption. CCR is 
very portable and runs on both CE (small devices) and 
desktop windows.  
 
DSS sits on top of CCR and provides a lightweight, 
REST oriented application model that is particularly 
suited for creating coarse grain applications in the 
Web-style as compositions of services running in a 
distributed environment. Services are isolated from 
each other, even when running within the same node 
and are only exposed through their state and a uniform 
set of operations over that state. The DSS runtime 
provides a hosting environment for managing services 
and a set of infrastructure services that can be used for 
service creation, discovery, logging, debugging, 
monitoring, and security. DSS builds on existing Web 
architecture and extends the application model 
provided by HTTP through structured data 
manipulation and event notification. Interaction with 
DSS services happen either through HTTP or DSSP 
[19] which is a SOAP-based protocol for managing 
structured data manipulations and event notifications.  
 
4.  MPI and the 3 Execution Models 

MPI – Message Passing Interface – dominates the 
runtime support of large scale parallel applications for 
technical computing. It is a complicated specification 
with 128 separate calls in the original specification 
[20] and double this number of interfaces in the more 
recent MPI-2 including support of parallel external I/O 
[21-22]. MPI like CCR is built around the idea of 
concurrently executing threads (processes, programs) 
that exchange information by messages. In the classic 
analysis [18, 23-25], parallel technical computing 
applications can be divided into four classes: 

a) Synchronous problems where every process 
executes the same instruction at each clock cycle. 
This is a special case of b) below and only 
relevant as a separate class if one considers SIMD 
(Single Instruction Multiple Data) hardware 
architectures. 

b) Loosely Synchronous problems where each 
process runs different instruction streams (often 
using the same program in SPMD mode) but they 
synchronize with the other processes every now 
and then. Such problems divide into stages where 
at the beginning and end of each stage the 
processes exchange messages and this exchange 
provides the needed synchronization that is 
scalable as it needs no global barriers. Load 
balancing must be used to ensure that all 
processes execute for roughly (within say 5%) the 
same time in each phase and MPI provides the 
messaging at the beginning and end of each stage. 
We get at each loose synchronization point a 
message pattern of many overlapping joins that is 
not usually seen in commodity applications and 
represents a new challenge. 

c) Embarrassingly or Pleasingly parallel problems 
have no significant inter-process communication 
and are often executed on a Grid. 

d) Functional parallelism leads to what were 
originally called metaproblems that consist of 
multiple applications, each of which is of one of 
the classes a), b), c) as seen in multidisciplinary 
applications such as linkage of structural, acoustic 
and fluid-flow simulations in aerodynamics. 
These have a coarse grain parallelism. 

 
Classes c) and d) today would typically be 
implemented as a workflow using services to represent 
the individual components. Often the components are 
distributed and the latency requirements are typically 
less stringent than for synchronous and loosely 
synchronous problems. We view this as functional 
parallelism corresponding to the “productivity layer” 
and use DSS already developed for Robotics [10] on 
top of CCR for this case and idealized in Figure 2(a). 
Note in this paper, we only discuss run-time and do 
not address the many different ways of expressing the 
“productivity layer” i.e. we are discussing runtime and 
not languages. 
 
We use CCR in a mode where multiple identical 
stages are executed and the run is completed by 
combining the computations with a simple CCR 
supported reduction as shown in Figure 2(b). This also 
illustrates the simple Pipeline Spawn execution that 
we used for basic performance measurements of the 
dynamic threading performance. Each thread writes to 



a single port that is read by a fresh thread as shown in 
more detail in Figure 3.   

Port0Thread0 Thread0
Message Message

Port1Thread1 Thread1

Port2Thread2 Thread2

Port3Thread3 Thread3

EndPort

Message Message

Message Message

Message Message  
 

We take a fixed computation that takes from 12 to 17 
seconds (107 stages of time complexity listed in table 
1) depending on hardware and execution environment 
to run sequentially on the machines we used in this 
study. This computation was divided into a variable 
number of stages of identical computational 
complexity and then the measurement of execution 
time as a function of number of stages allows one to 
find the thread and messaging overhead. Note that the 
extreme case of 107 stages corresponds to the basic 
unit execution times of 1.188 to 1.696 µs given in 
Table 1 and is a stringent test for MPI style messaging 
which can require microsecond level latencies. We 
concentrated on small message payloads as it is the 
latency (overhead) in this case that is the critical 
problem. As multicore systems have shared memories, 
one would often use handles in small messages rather 
than transferring large payloads. 
 
We looked at three different message patterns for the 
dynamic spawned thread case choosing structure that 
was similar to MPI to allow easier comparison of the 
rendezvous and spawned models. These spawned 
patterns are illustrated in Figure 4(a-c) and augment 
the pipeline of Figure 2(b) and 2 with a “nearest 

neighbor” shift with either one or two messages 
written to ports so we could time both the Receive and 
MultiItemReceive modes of CCR. We note that figures 
2 to 4 are drawn for 4 cores while our tests used both 4 
and 8 core systems.  

 
For our test of the final execution style, namely the 
MPI style runtime, we needed rendezvous semantics 
which are fully supported by CCR and we chose to use 
patterns corresponding to the MPI_SENDRECV 
interface with either toroidal nearest neighbor shift of 
Figure 4(d) or the combination of a left and right shift, 
namely an exchange, shown in Figure 4(e). Note that 
posting to a port in CCR corresponds to a MPISEND 
and the matching MPIRECV is achieved from 
arguments of handler invoked to process the port. MPI 
has a much richer set of defined methods that describe 
different synchronicity options, various utilities and 
collectives. These include the multi-cast (broadcast, 
gather-scatter) of messages with the calculation of 
associative and commutative functions on the fly. It is 
not clear what primitives and indeed what 
implementation will be most effective on multicore 
systems [1, 26] and so we only looked at a few simple 
but representative cases in this initial study. In fact it is 
possible that our study which suggests one can support 
in the same framework a set of execution models that 
is broader than today’s MPI, could motivate a new 
look at messaging standards for parallel computing.  
 
Note we are using threads in our CCR runtime 
whereas traditional MPI would use processes even on 
a multicore system. We expect thread-based 
parallelism to become more important in the future as 
one moves to integrate the different paradigms. 

Figure 3. Multiple stages in CCR Performance 
Measurements  

Figure 2(b). Pipeline of Spawned Threads 
followed by a Reduction using CCR Interleave 

Figure 2(a). 2-way notification message using DSS 

Service A  Service B 

Figure 4. Five Communication patterns using 
CCR to test spawned dynamic threading (a,b,c) 
and MPI style Rendezvous’s (d,e) 
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5. Performance of CCR in 3 Execution Models 

5.1 CCR Message Latency and Overhead 

 
We present detailed benchmark measurements on 3 
machines labeled AMD4 Intel4 and Intel8b in Table 1 
with results shown in Table 2 and Figures 5(a) and (b). 
Table 2 looks at seven messaging modes shown in 
Figure 3 with rendezvous exchange implemented 
either as two separate shifts or as a custom CCR 
primitive which is faster especially on Intel8b. We 
also show pipeline implemented in both spawned and 
rendezvous fashion. The results correspond to a 
computation stage between messaging that is 20 times 
the values of table 1 i.e. from 23 (Intel8b) to 29 µs 
(Intel4). The newer Intel8b on 8 cores shows 
significantly lower overheads than the older Intel4 on 
4 cores and the AMD4 Opteron on 4 cores has slightly 
lower overheads than Intel8b on 8 cores. Detailed 
results for the slower Intel 8a are also available [32]. 
We see the dynamic threading has an overhead that is 
around 5 µs for pipeline and shift for both AMD4 and 
Intel8b on 4 or 8 cores respectively. The MPI style 
rendezvous overheads increase to 9.36(11.74) µs for 
Shift and 16.3(20.16) µs for the optimized exchange 

operation on AMD4 (Intel8b) on 4(8) cores. We have 
performed identical measurements on the recent pure 
Java MPJE [3] for AMD4 which gives overheads of  
185 µs for exchange and 104 µs for Shift. On the same 
machine, mpiJava (which invokes MPICH2 from 
Java) has for exchange a latency of 99.4 µs while the 
standard MPICH2 with C has 39.3 µs latency in this 
case. From table 2, CCR is faster than these but the 
optimized Nemesis version of MPICH is substantially 
faster than CCR. Our results show that C# with CCR 
is the by far the fastest managed code for messaging 
and gives competitive results to the best MPI’s in 
common use for traditional scientific languages like C 
and C++.  

 
Figure 5 explores the dependence of the overhead on 
the number of stages for the MPI style rendezvous 
case i.e. on the amount of computation between each 

Figure 5. Overhead (latency) on MPI style 
Rendezvous Messaging for Shift and Exchange 
implemented either as two shifts or as custom 
CCR pattern for a) AMD4 with 4 threads and 
b) Intel8b with 8 threads 
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Table 2: Messaging Overhead per stage for CCR 
patterns with 0.5 million stages 

AMD4: 4 Core Number of Parallel Computations
(μs) 1 2 3 4 7 8 

Pipeline 1.76 4.52 4.4 4.84 1.42 8.54 
Shift  4.48 4.62 4.8 0.84 8.94 

Sp
aw

ne
d 

Two Shifts  7.44 8.9 10.18 12.74 23.92
Pipeline 3.7 5.88 6.52 6.74 8.54 14.98
Shift  6.8 8.42 9.36 2.74 11.16
Exchange As 
Two Shifts  14.1 15.9 19.14 11.78 22.6 

Re
nd

ez
vo

us
 

Exchange  10.32 15.5 16.3 11.3 21.38
Intel4: 4 Core Number of Parallel Computations 

(μs) 1 2 3 4 7 8 
Pipeline 3.32 8.3 9.38 10.18 3.02 12.12
Shift  8.3 9.34 10.08 4.38 13.52

Sp
aw

ne
d 

Two Shifts  17.64 19.32 21 28.74 44.02
Pipeline 9.36 12.08 13.02 13.58 16.68 25.68
Shift  12.56 13.7 14.4 4.72 15.94
Exchange As 
Two Shifts  23.76 27.48 30.64 22.14 36.16
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nd
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vo
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Exchange  18.48 24.02 25.76 20 34.56
Intel8b: 8 Core Number of Parallel Computations 

(μs) 1 2 3 4 7 8 
Pipeline 1.58 2.44 3 2.94 4.5 5.06 
Shift  2.42 3.2 3.38 5.26 5.14 

Sp
aw

ne
d 

Two Shifts  4.94 5.9 6.84 14.32 19.44
Pipeline 2.48 3.96 4.52 5.78 6.82 7.18 
Shift  4.46 6.42 5.86 10.86 11.74
Exchange As 
Two Shifts  7.4 11.64 14.16 31.86 35.62

Re
nd

ez
vo

us
 

Exchange  6.94 11.22 13.3 18.78 20.16



message with the extreme case of 107 stages 
corresponding to the 1.388 (1.188) µs computation 
value between messages of table 1 for AMD4 
(Intel8b). The overheads remain reasonable even in 
these extreme conditions showing that an intense 
number of small messages will not be a serious 
problem. This Figure emphasizes that the CCR custom 
exchange (marked just “Exch”) can be much faster 
than the exchange implemented as a left followed by 
right shift (Marked “Exch as 2 Shifts”). 
 
5.2 DSS Message Latency and Overhead 

We now examine CCR for the third form of 
parallelism; namely the functional parallelism model 
represented in Figure 1(a). The Robotics release [12] 
includes a lightweight service environment DSS built 
on top of CCR and we performed an initial evaluation 
of DSS on the AMD4 machine. We time groups of 
request-response two way messages running on 
(different) cores of the AMD system. We find average 
times of 30-50 microseconds or throughputs of 20,000 
to 25,000 two-way messages per second after initial 
start up effects are past. This result of internal service 
to internal service can be compared with Apache Axis 
2 where the AMD PC supports about 3,000 messages 
per second throughput. This is not an entirely fair 
comparison as the measurements are internal to one 
machine so each service end-point has effectively just 
two cores. The Axis measurements used external 
clients interacting on a LAN so there is network 
overhead but now the service can access the full 4 
cores. We will give more complete comparisons later 
and also examine the important one-way messaging 
case. 
 
6. Conclusions and Futures 
 
This study shows that CCR and DSS form an 
interesting infrastructure for eScience supporting with 
uniformly acceptable performance the hybrid 
efficiency-productivity layered programming model 
from multicore through Grids. Current performance 
results are not as good as the best for MPI [28-31] but 
MPI has the benefit coming from many years of 
experience. CCR and the underlying Windows 
multicore scheduler have not before been applied to 
this style of messaging in intense environments and 
we expect significant improvements in CCR and DSS 
performance for both managed code and even more so 
C++ and native implementations.  Further CCR 
supports the important dynamic threading and the 
coarse grain functional parallelism for which MPI is 
usually non optimal. In particular, we expect discrete 

event simulation to run well on a CCR base. We 
expect our work to suggest simplifications and 
extensions to MPI to support the rich messaging 
needed in hybrid Grid-multicore environments We 
have also finished extensive benchmarks on MPICH, 
and MPJ Express [3] ( and mpiJava [27]) to cover the 
very best classic MPI’s. Further details of this analysis 
can be found in [32, 33] which also study in depth 
memory bandwidth and the Intel8a machine. 
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