
Providing Portlet-Based Client Access to CIMA-Enabled Crystallographic
Instruments, Sensors, and Data

Hao Yin1, 2, Donald F. McMullen3, Mehmet A. Nacar1, Marlon Pierce1, Kianosh Huffman4,
Geoffrey Fox1, Yu Ma5

1) Community Grids Lab, The Pervasive Technology Labs at Indiana University, 501 N. Morton
St. Bloomington, Indiana 47404

2) School of Computer Science, Sichuan University, No. 24, South Section 1, Yihuan Road,
Chengdu, 610065, China

3) Knowledge Acquisition and Projection Lab, The Pervasive Technology Labs at Indiana
University, 501 N. Morton St. Bloomington, Indiana 47404

4) School of Informatics, Indiana University, 901 E. 10th St., Bloomington, Indiana 47408
5) Department of Computer Science, Indiana University, 215 Lindley Hall, 150 S.

Woodlawn, Bloomington, Indiana 47405
{hayin, mcmullen, mnacar, marpierc, kihuffma, gcf, yuma}@indiana.edu E-mail

Abstract

The Common Instrument Middleware Architecture
(CIMA) project, supported by the NSF Middleware
Initiative, aims at making scientific instruments and
sensors remotely accessible by providing a general
solution for services and user interfaces to remotely
access data from instruments and to remotely monitor
experiments. X-ray crystallography is one of several
motivating applications for the development of CIMA.
Data such as CCD frames and sensor readings may be
accessed by portals through middleware services as
they are being acquired or through persistent archives.
CIMA software may be used to federate online
instruments in multiple labs, so this project must also
address problems in data management and data
sharing. This paper describes a collaboration between
the CIMA and the Open Grid Computing
Environments projects (also supported by the NSF
Middleware Initiative) to enable remote users to
monitor instruments and interact with data gathered
from CIMA-enabled crystallography laboratories
through various Web portal components ("portlets")
running within a standards-compliant portal
container. We also discuss an approach taken to
develop portlets that use Web Services for data
management and solutions for managing distributed
identity and access control.

1. Introduction

Remote access to shared instrument resources is a
major outcome of e-Science development projects in
many disciplines [1]. Shared remote access improves
instrument utilization, collaboration between users and
instrument experts and provides “hooks” for
automating the processing of data coming from
instruments by pre-configured workflows [2, 3].

One of the key issues in developing shared
instrument systems is how to create an open and
flexible approach to user interfaces for access to
instruments and the data streams coming from them. In
related work [4] we have described how portals can be
used to organize access to instruments through the
Common Instrument Middleware Architecture (CIMA)
[5, 6] and how individual portlets can provide
specialized, role and task specific functionality as
users, technicians and system administrators interact in
the generation, analysis and management of data from
shared instrument resources. In this paper we will
focus on the approach taken to develop portlets for
managing crystallographic data in a group of
cooperating laboratories.

2. Services for X-ray Crystallography

X-ray crystallography is an analytic technique to
help scientists understand and determine the precise
molecular structure of a crystalline substance.
However the instruments (called X-ray diffractometers
[7]) required to perform these types of studies are quite
expensive and require a highly trained operator. The
relevant data from a crystallography experiment
contains a series of diffraction images usually captured
by a CCD detector, and a number of environmental
variables including crystal temperature, crystal
alignment image, CCD cooling status, and the
temperature and relative humidity of the lab.

In some cases, due to the nature of some crystalline
materials such as proteins or microcrystalline
compounds, the successful structure determination of
these compounds require the use of high brilliance
radiation sources available at national synchrotron
facilities. Gaining access to beamlines at these national
synchrotron facilities to collect data is not straight
forward. Travel to these remote facilities is costly and
time consuming, and once there, the facilities must be
used in an intensive manner. By developing
methodologies to remotely monitor and access
instruments and their data we can provide the remote
users with a “same as being there” experience with
additional flexibility in scheduling around problem
samples and equipment failures. Additionally on-site
users and technicians can share data coming from the
beamline’s instruments with remotely located
colleagues to discuss the quality of a diffraction
pattern. This remote consultation capability can
facilitate decision making such as continuing with a
questionable sample or abandoning it and starting a
new one. Effective shared access to instruments
ensures a more efficient use of the beam time,
potentially improving throughput of the beamline as a
whole. This paper will focus on the implementation
details of the CIMA crystallography portal and the
mapping of end-user functional requirements to
portlets.

3. The Common Instrument Middleware
Architecture (CIMA)

Before discussing the CIMA portal architecture, we

first review the services and instruments behind the
scenes in order to motivate the portal requirements.
Scientific instruments and sensors provide the raw
observations used to develop, verify, and falsify

theories. Data from instruments typically have an
extensive lifecycle, which includes corrections and
calibration, annotation, and then storage in a database
or file system. The Common Instrument Middleware
Architecture (CIMA) project [8], supported by the
National Science Foundation Middleware Initiative
[9], proposes a single virtualization layer to hide this
complexity, and to present a relatively simple Web
Service interface to the rest of the data pipeline.
Further aims are to integrate instruments into software
systems based on current cyber infrastructure
standards, and to improve accessibility of instruments
to both routine and non-routine users including
software agents. CIMA middleware is based on current
Grid implementation standards and supports a variety
of instrument and controller types. CIMA
implementations are being evaluated in three settings
representing a spectrum of shared instrument
applications: X-ray crystallography, remote robotic
telescopes, and small sensor network nodes for
environmental observation.

A brief description of CIMA crystallography
application is given here below, and a more detailed
description can be found in [2,5,6]. CIMA is in use in
several crystallography labs in the US and abroad,
including a synchrotron beamline, to acquire data from
diffractometers and related sensors. Figure 1 shows a
typical implementation combining data acquisition by
CIMA with data management at a site remote from the
lab where the instrument is located.

The CIMA component shown in Figure 1 as
Instrument Representative (IR) can be embedded in the
instrument or can be implemented in a proxy
somewhere remote from the instrument but connected
to it through an IP network or other interconnect bus.
Interaction with a CIMA-enabled instrument is through
the CIMA channel protocol using Web Services [5].

The IR streams real-time data over a CIMA
channel to consumer applications that register for
specific data and metadata provided by the IR. The
main consumer application is a data manager (My
Manager) that stores the data in a user defined location
prior to reduction and analysis. My Manager provides
data virtualization through the Obsidian data
management library [10], which tracks the current
physical location of data sets for reference by
subsequent processing steps. It also maintains basic
metadata about samples, runs and individual files that
make up a sample run.

Figure 1. CIMA implementation (Instrument Representative) sends data from a laboratory
to a remote data manager (My Manager) through Web Services based CIMA channel.

This paper is concerned with providing access to

data through a portal interface using the Data Manager
Web Service (DM-WS) in Figure 1, the portal client
functions that must be supported include displaying
data sets and individual components, e.g. CCD frames
[11] from the diffractometer and their bitmap images,
and other sensor readings for experiments in-progress
or completed. Another important class of functions we
must support through portlets is data stewardship tasks
such as managing ownership and access rights to each
sample collection. Future portlets will provide
interfaces to analytical applications and archival
functions.

4. Overview of Related Techniques

4.1 Data Portals and Portal Components

Web-based portals have been identified as a key

enabling technology for e-research. Early efforts are
extensively reviewed in Refs [12, 13] (see also [14,
15]) and considerable effort has been put into
developing production quality portal systems for
science. The key concept of a Web portal system is the
ability for users to login to sites through browsers.
Portals may provide publicly accessible pages for
anonymous viewing, but by logging in and establishing
identity, the portal can provide a number of additional
features, such as access to restricted resources.

The core notion of science portals is that a research
“community of interest” can provide ubiquitous access
to many types of resources and can communicate and
share knowledge through a common point of presence
on the web. In practice portals provide community
management functions such as identity management
for individual participants, single sign-on for access to
multiple communication, and compute and storage
services needed by research communities. Individual
users may be able to customize their view of the
resources. ReciprocalNet [16] is an example of a portal
for the sharing of chemical structures primarily
determined by X-ray diffraction crystallography, and
aimed at a diverse audience including researchers and
educators.

 Although portals may be built with any number of
Web technologies, the large number of science portal
activities (including the TeraGrid Science Gateway
efforts [17] such as the LEAD portal [18]) means that
the community benefits from adopting uniform,
interoperable software. Here, we can make the
distinction between portal containers, which provide
common features such as login support and content
customization, and their content components, known
as portlets.

Standards have emerged for how portlets should
communicate with their containing portal. JSR 168
[19] provides the key component definitions
(programming interface and lifecycle) for Java-based
portals. It has been widely adopted and is now

supported by a broad range of both commercial and
open source portal projects such as GridSphere [20],
uPortal, and Jetspeed2. The OGCE project [21] is
actively developing and evaluating JSR 168 compliant
portlets for e-research.

In early stages of the CIMA project (2004), a
Jetspeed1 portal was used to display the sample data
and various parameters via embedded CGI scripts in a
portlet framework. In mid 2005 the CIMA portal
project adopted the GridSphere portal container and
started implementation of portlets to access instrument
data. The portal currently serves hundreds of samples,
some of which are available for viewing by the public.

GridSphere is an open source portal implementation
compliant with JSR 168, which provides a portlet
container and a collection of core services and portlets,
such as login, logout, access control management and
layout selection. GridSphere supports user and group
management to take care of the authentication issue
so that portlets are more flexible and easier to develop
and maintain. We adopted GridSphere as our
deployment environment based on its popularity in
many of the science gateway projects, but the portlet
components of our project are in principle portable to
other containers.

4.2 JavaServer Faces for Portlet Development

Some of the limitations of the JSR 168 portlet
specification are that it provides a limited development
environment and does not provide reusable component
widgets, so we need to inherit these from
complementary development frameworks. Portlets
may be developed from a number of technologies,
including Struts, Velocity, JavaServer Pages, and
JavaServer Faces through so-called portlet bridges.
Three key requirements for this project are that portlets
will contain various GUI widgets possibly beyond
those in HTML forms, that the presentation widgets
would be decoupled from the underlying data model
they use, and that widgets be easy to test, preferably
independently from portlets that contain them.
JavaServer Faces (JSF) [22] has proven to be a good
solution for meeting these requirements.

JSF is a specification for building user interfaces for
server-side applications. One of the advantages is that
JSF provides rich tag libraries to build components
which run on the server and handle events generated
by a client and can be rendered back to the client. The
other advantage is that JSF is based on the Model-
View-Controller (MVC) model [23], so it offers a
clean separation between presentation and logic.

In addition to improving the flexibility with respect
to back end data sources and reusability of portlets in

general, GUI component beans developed for JSF
applications can easily be unit tested and can reused in
other types of applications.

4.3 Web Services

Web Services is a software system designed to
support interoperable machine-to-machine interaction
over a network [24]. Web Services interoperability and
extensibility derive from the use of XML for framing
messages and the use of Simple Object Access
Protocol (SOAP) [25] to transport them between client
and server. Web Services have been widely used to
integrate applications in different languages on
different platforms across organization boundaries. In
CIMA data portal, portlets communicate with CIMA
data management module (DM-WS) through Web
Services. These Web services are Perl-based CGI
scripts wrapped by SOAP::Lite for Perl [26], which is
a collection of Perl modules providing a simple and
lightweight interface to SOAP.

5. Implementation of the CIMA
Crystallography Portal

5.1 Requirements

For the current work, a subset of requirements
relating to user and administrative interaction with data
was chosen. These include the following:
 Remote users and in-lab crystallographers must be

able to monitor an experiment in progress,
including viewing current and previously collected
CCD frames and associated relevant
environmental and technical parameters;

 All raw data is owned by the lab which performed
the experiment and collected the data. In addition
to the lab, represented by one or more lab
administrators, individual users can view (but not
modify or delete) their samples;

 Lab administrators must be able to control sample
ownership and visibility;

 Because the notion of when an experiment ends is
not clearly defined (e.g. experiments may be
truncated after the fact or additional frames may
be gathered based on evaluations made during a
run), lab administrators should be able to set the
end time of an experiment;

 Lab administrators must be able to add and
remove users to an access control list for a sample;

 Users must be able to view their samples,
including all files and sensor readings related to
the experiment;

 Some sample data may be provided to the general
public for educational or public science awareness
purposes;

 Users must be able to view the current status of
the lab as a whole;

 Individual functions that are of general utility
should be implemented in a reusable, pluggable,
standards-based manner as portlets that can be
added or removed by administrators or end-users
as appropriate;

 The portlets must interact with a lab’s data
manager software via Web Services calls;

 Users and groups will be managed by the portals
container and access to all functions of the portal
will be provided by a single sign-on through the
portal.

A prototype implementation of the crystallography
portal was completed using Jetspeed1 and CGI scripts.
Although in the right direction, this implementation
did not meet our modularization requirement and so
with the ramp-up of the NSF middleware project and
the availability of support from the Open Grid
Computing Environments (OGCE) group, we migrated
to GridSphere and JSF-based portlet clients to CIMA
services as a fully JSR 168 compliant portal container.
This assures a degree of survivability and lateral
flexibility to move the science process specific
functionality to other containers if the need arises.

The requirements outlined above led us to develop
the following portlets:
 A lab overview portlet that provides the current

status of a facility and its instruments;
 An administrative Admin portlet to support

management of sample ownership and other
parameters related to individual experiments;

 A PublicSample portlet that provides sample data
to all portal users and the general public;

 A UserSample portlet that shows a logged-in user
their samples and other samples on whose access
control lists they appear.

PublicSample and UserSample portlets also allow
users to scan through all data objects in an experiment
(Figure 2). Per design choice some functions of the
portlets are made available as pop-up windows. These
portlets provide all of the functionality listed in the
requirements above. Extensions to the portal’s basic
group authorization mechanism (discussed in Section
5.3) provide an access control list associated with each
data collection. Scientists can view and modify sample
data from their X-ray diffraction crystallography
experiments based on their roles in this project and can
add users to the access control lists of their data sets.
Nothing more than a web browser is needed to interact
with the system.

Figure 2. UserSample portlet that allows users
to stepwise scan through an experiment.

5.2 Architecture of the CIMA Crystallography
Portal

Developing JSF Web applications includes support
for UI components, independent backing JavaBean
code, and simplified management of HTTP request and
session parameters. UI components handle the
interaction with users and communicate with Web
Services through managed beans such tasks as access
to databases. Then we use portlet to wrap web
application so that we can make use of the user, group
and layout management from the portlet container
(GridSphere), and also we can deploy these portlets
with respective configuration for different laboratories
within the same portal. Furthermore, the relationship
between our portal and data manager is loosely
coupled by using Web services, we can effortlessly
deploy the portal and Web services at diverse
locations.

JSF Web applications handle the UI events and
navigation rules to implement the application
controller logic. Stubs are generated according to the
WSDL of Web services via WSDL2Java tool provided
by Apache Axis [27]. This allows access to the Perl-
based data manager services. The managed beans in
the JSF Web application invoke on the stubs to
communicate with Web services and store the data
returned by Web services. JSF provides a value
binding mechanism to make it easy for Web
applications to represent the data combined with
managed beans to users. Figure 3 shows the class
diagram of some of these JavaBeans. The MVC
structure of JSF allows us to concentrate on
developing classes that model the instrument and lab
environment.

Figure 3. Class Diagram of JavaBeans

These beans are populated with information from

Web Services calls to DM_WS. They are used to set
up the model for sample data and related parameters.
WQuerySampleDataBean and SampleDataBean
acquire the basic information of sample data, such as
sample number, laboratory, instrument and so on.
SampleInfoBean and TemperatureBean obtain
environmental conditions related to a specific sample,
like temperature and humidity. SampleFilesBean and
FilesBean inquire CCD frames both in raw and jpeg
format pertaining to a specific sample.
SampleCameraBean and CameraBean query camera
images of laboratory and crystal during the
experimental period.

In current CIMA crystallography portal, the JSF
Portlet Integration Library [28] is used, which is built
on the top of JavaServer Faces 1.1. This open source
library deals with the low level communication
between portlet and JSF: mapping portlet lifecycle
onto JSF lifecycle; allowing JSF to interact with portlet
APIs provided by containing environment, like
GridSphere. It enables a seamless integration so that
the CIMA JSF modules can be bundled with portlet to
work inside GridSphere container.

5.3 Identity Mapping between Portal and Data
Manager Service

A significant problem faced in the design of the
CIMA crystallography portal is the mapping of

identities and associated privileges of portal users to
identities associated with data sets gathered by the My
Manager component.

The authorization model used by the portal
container is that of users assigned to a limited set of
four roles (Super, Admin, User, Guest) whereas the
data manager uses an authorization model with users,
groups and access control lists that can contain users
and groups. Gridsphere does have a notion of groups
but this is related to what users can access which
portlets rather than a Unix-like notion of a general
authorization mechanism for sets of users. Since the
portal does not provide a flexible authorization scheme
a design choice was made to perform the mapping of
portal users to data owners, groups and access control
lists in the logic of the portlets used to access the data
manager.

As mentioned above, there are three portlets,
PublicSample portlet, UserSample portlet and Admin
portlet. For UserSample and Admin portlets, users can
only access the related data according to their roles.
Thus, an approach is required to match user identities
between portal and data manager service.

A logged-in GridSphere user’s name can be
obtained through the JSF context via the portlet-based
external context supplied by [28]. The following is a
fragment of such codes:

 FacesContext cxt = FacesContext.getCurrentInstance();
 HttpServletRequest request =
 (HttpServletRequest)cxt.getExternalContext().getRequest();
 Map userInfo =
 (Map)request.getAttribute(PortletRequest.USER_INFO);
 String username = (String) userInfo.get("user.name");

 Then the username can be used to query the
database combined with GridSphere to get the
information of the user, such as user’s full name, email
address and groups, etc. Because the current version of
GridSphere doesn’t support a hierarchy of groups
containing users, we use GridSphere portal groups to
control access to portlets that, in turn, control access to
data objects. Several GridSphere portal groups are
created: “<lab>_admin” represents the lab
administrators who can access Admin portlet and are in
charge of the ownership and access control of samples;
“<lab>_client” represents portal users who are clients
from a single lab and can access UserSample portlet.
Access control lists are implemented as other groups
titled as research group names, the members of which
can view sample data from the group they belong to
(non-public samples). The lab administrator can
control the access list for a sample through Admin
portlet according to users and groups mentioned
above. The first two groups (<lab>_admin and

<lab>_client) are used to separate users from different
laboratories when there are multiple CIMA
crystallography portals deployed in the same container.
Gridsphere’s SPORTLETUSERIMPL,
SPORTLETGROUP and GROUPREQUESTIMPL
database tables are required to get these information
through JDBC [29] programming.

Finally, the user name and groups information are
transferred as parameters to Web Services to fetch
sample data.

6. Conclusion and Future Work

The work described here provides a model for
organizing and accessing data from CIMA instruments
and identifies a problem and provisional solution for
managing identity relationships more complex than
those provided by GridSphere.

The framework of CIMA crystallography portal is
based on the foundation of extensively vetted
standards, JavaServer Faces, JSR 168 Portlet and Web
services. It is easy and flexible for development,
deployment and maintenance.

More importantly, the difficulties encountered in
this project with authorization indicate that more work
is needed to provide a flexible, general solution for
authentication and authorization within and between
portal instances. As described above, we have taken a
pragmatic approach for solving a specific problem
(merging portal and data service identity). However,
our system is a good candidate for investigating Web
Service security standards [30, 31] for securely
communicating authentication tokens and access
privileges. See [32] for related work in this area.

Another interesting problem is the integration and
federation of multiple instances of the CIMA portal.
CIMA collaborates with international research groups,
some of which are setting up their own CIMA portal
instances. The Web Services for Remote Portlets
(WSRP) specification [33] (currently under revision) is
one interesting possibility for future investigation. Its
integration with Web Service security standards will
be an interesting challenge.

7. Acknowledgements

CIMA was supported by National Science
Foundation cooperative agreements and grants SCI
0330568 and MRI CDA-0116050, respectively. OGCE
development is supported by the National Science
Foundation’s Middleware Initiative, SCI 0330613.

We thank Professor Jiliu Zhou, School of Computer
Science, Sichuan University, China for supporting

H.Y.; Professor Randall Bramley and Tharaka
Devadithya, IU Computer Science Department for
contributions to CIMA design and implementation; Dr.
John C. Huffman, IU Chemistry Department, and all
the crystallographers at the various CIMA participating
laboratories worldwide for their invaluable help and
feedback; and Ji Young Chong of the IU Department
of Telecommunications for the graphical design of the
CIMA crystallography portal.

8. References

[1] Remote Instrumentation,
http://science.internet2.edu/remote.html.

[2] R. Bramley, K. Chiu, T. Devadithya, N. Gupta, C. Hart,
J. C. Huffman, K. Huffman, Y. Ma, D. F. McMullen,
“Instrument Monitoring, Data Sharing, and Archiving Using
Common Instrument Middleware Architecture (CIMA)”, J.
Chem. Inf. Model., 2006. DOI:
http://dx.doi.org/10.1021/ci050368l

[3] S. J. Coles, J. G. Frey, M. B. Hursthouse, M. E. Light, K.
E. Meacham, D. J. Marvin and M. Surridge, “ECSES –
examining crystal structures using ‘e-science’: a
demonstrator employing web and grid services to enhance
user participation in crystallographic experiments”, J. Appl.
Cryst. 2005, 38, pp. 819-826.

[4] D. F. McMullen, K. Huffman, “Connecting Users to
Instruments and Sensors: Portals as Multi-user GUIs for
Instrument and Sensor Facilities”, In Proceedings of GCE
2005: Workshop on Grid Computing Portals held in
conjunction with SC05, Seattle, WA, Nov. 18, 2005.
Submitted to the Journal of Concurrency and Computation:
Practice and Experience.

[5] T. Devadithya, K. Chiu, K. Huffman, D.F. McMullen,
“The Common Instrument Middleware Architecture:
Overview of Goals and Implementation”, In Proceedings of
the First IEEE International Conference on e-Science and
Grid Computing (e-Science 2005), Melbourne, Australia,
Dec. 5-8, 2005.
http://doi.ieeecomputersociety.org/10.1109/E-
SCIENCE.2005.77

[6] D.F. McMullen, T. Devadithya, and K. Chiu,
“Integrating Instruments and Sensors into the Grid with
CIMA Web Services”, In Proceedings of the Third APAC
Conference and Exhibition on Advanced Computing, The
APAC Conference and Exhibition on Advanced Computing,
Grid Applications and e-Research (APAC05), Gold Coast,
Australia, Sept 26-30, 2005.
http://www.vpac.org/ocs/viewpaper.php?id=55&cf=3

[7] C. Giacovazzo, Fundamentals of Crystallography,
Oxford University Press, New York, 1992.

[8] The Instrument Middleware Project, Available
http://www.instrument-middleware.org

[9] NSF Middleware Initiative, Available http://www.nsf-
middleware.org

[10] Y. Ma, R. Bramley, “Obsidian, A Composable Data
Management Architecture for Scientific Applications”, In
Proceedings of Challenges of Large Applications in
Distributed Environments, Research Triangle, NC, 2005.

[11] S. W. Muchmore, “Experiences with CCD detectors on
a home X-ray source”, Acta Cryst. 1999, D55, pp. 1669-
1671.

[12] F. Berman, G. Fox, T. Hey, (eds.). Grid Computing:
Making the Global Infrastructure a Reality, John Wiley &
Sons, Chichester, England, ISBN 0-470-85319-0 (2003).
http://www.grid2002.org.

[13] A. Hey, G. Fox, (eds.) Concurrency and Computation:
Practice and Experience, Vol. 14, No. 13-15 (2002). Special
issue on Grid Computing Environments.

[14] D.E. Atkins, K. K. Droegemeier, S. I. Feldman, H.
Garcia-Molina, M. L. Klein, D. G. Messerschmitt, P.
Messina, J. P. Ostriker, and M. H. Wright, “Revolutionizing
Science and Engineering Through Cyberinfrastructure:
Report of the National Science Foundation Blue-Ribbon
Advisory Panel on Cyberinfrastructure”, Technical Report,
January 2003.

[15] D. Gannon, G. Fox, M. Pierce, B. Plale, G. von
Laszewski, C. Severance, J. Hardin, J. Alameda, M. Thomas,
and J. Boisseau, “Grid Portals: A Scientist's Access Point for
Grid Services (DRAFT 1)”, GGF working draft, Sept. 19
2003. Available
ww.computingportals.org/meetings/next_mtg.php/docs/GCE-
Portal-working-draft.pdf

[16] L. M. Sandvoss, W. S. Harwood, A. Korkmaz, J. C.
Bollinger, J. C. Huffman, and J. N. Huffman, “Common
Molecules: Bringing Research and Teaching Together
Through an Online Collection”, Journal of Science
Education and Technology, Volume 12, Issue 3, Sep 2003,
pp. 277 – 284.

[17] TeraGrid Science Gateways Program:
http://www.teragrid.org/programs/sci_gateways/

[18] B. Plale, D. Gannon, D. A. Reed, S. J. Graves, K.
Droegemeier, B. Wilhelmson, M. Ramamurthy, “Towards
Dynamically Adaptive Weather Analysis and Forecasting in
LEAD”, International Conference on Computational Science
(2) 2005, pp. 624-631.

[19] A. Abdelnur, S. Hepper, "Java Portlet Specification
version 1.0", 2003, Available
http://www.jcp.org/aboutJava/communityprocess/final/jsr168

[20] J. Novotny, M. Russell, O. Wehrens, “GridSphere: a
portal framework for building collaborations”, Concurrency -
Practice and Experience, 2004, 16(5), pp. 503-513.

[21] J. Alameda, M. Christie, G. Fox, J. Futrelle, D. Gannon,
M. Hategan, G. Kandaswamy, G. von Laszewski, M. A.
Nacar, M. Pierce, E. Roberts, C. Severance, M. Thomas,
"The Open Grid Computing Environments Collaboration:
Portlets and Services for Science Gateways." Accepted for
publication in "Science Gateways" special issue of
Concurrency and Computation: Practice and Experience.

[22] C. McClanahan, E. Burns, and R. Kitain, Eds., "Java
Server Faces Specification version 1.1", 2004, Available
http://java.sun.com/javaee/javaserverfaces

[23] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
M. Stal, Pattern-Oriented Software Architecture, Volume 1:
A System of Patterns, John Wiley & Sons, 1996.

[24] W3C Working Group, "Web Services Architecture",
W3C, 2004, Available http://www.w3.org/TR/ws-arch

[25] Simple Object Access Protocol.
http://www.w3.org/TR/soap

[26] P. Kulchenko, SOAP Lite project, Available
http://www.soaplite.com

[27] WebServices-Axis, Available http://ws.apache.org/axis

[28] JavaServer Faces Portlet Integration Library, Available
https://javaserverfaces.dev.java.net/servlets/ProjectDocument
List?folderID=3389&expandFolder=3389&folderID=1504.

[29] JDBC Technology, Available
http://java.sun.com/products/jdbc

[30] OASIS Web Services Security TC, "WS-Security",
OASIS, Available http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss

[31] OASIS Security Services TC, "Security Assertion
Markup Language (SAML)", OASIS, Available
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security

[32] L. Fang, D. Gannon, F. Siebenlist, “XPOLA: An
Extensible Fine-grained Authorization Infrastructure for Web
Services in Grids”, In PKI R&D 05, April, 2005.

[33] A. Kropp, C. Leue, R. Thompson (eds), “Web Services
for Remote Portlets Specification 1.0” Approved as an Oasis
Standard August 2003.

