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Abstract 
 

The Common Instrument Middleware Architecture 
(CIMA) project, supported by the NSF Middleware 
Initiative, aims at making scientific instruments and 
sensors remotely accessible by providing a general 
solution for services and user interfaces to remotely 
access data from instruments and to remotely monitor 
experiments. X-ray crystallography is one of several 
motivating applications for the development of CIMA. 
Data such as CCD frames and sensor readings may be 
accessed by portals through middleware services as 
they are being acquired or through persistent archives. 
CIMA software may be used to federate online 
instruments in multiple labs, so this project must also 
address problems in data management and data 
sharing. This paper describes a collaboration between 
the CIMA and the Open Grid Computing 
Environments projects (also supported by the NSF 
Middleware Initiative) to enable remote users to 
monitor instruments and interact with data gathered 
from CIMA-enabled crystallography laboratories 
through various Web portal components ("portlets") 
running within a standards-compliant portal 
container. We also discuss an approach taken to 
develop portlets that use Web Services for data 
management and solutions for managing distributed 
identity and access control.  
 
 

1. Introduction 
 

Remote access to shared instrument resources is a 
major outcome of e-Science development projects in 
many disciplines [1]. Shared remote access improves 
instrument utilization, collaboration between users and 
instrument experts and provides “hooks” for 
automating the processing of data coming from 
instruments by pre-configured workflows [2, 3].  

One of the key issues in developing shared 
instrument systems is how to create an open and 
flexible approach to user interfaces for access to 
instruments and the data streams coming from them. In 
related work [4] we have described how portals can be 
used to organize access to instruments through the 
Common Instrument Middleware Architecture (CIMA) 
[5, 6] and how individual portlets can provide 
specialized, role and task specific functionality as 
users, technicians and system administrators interact in 
the generation, analysis and management of data from 
shared instrument resources. In this paper we will 
focus on the approach taken to develop portlets for 
managing crystallographic data in a group of 
cooperating laboratories. 

 
 
 
2. Services for X-ray Crystallography  
 



X-ray crystallography is an analytic technique to 
help scientists understand and determine the precise 
molecular structure of a crystalline substance. 
However the instruments (called X-ray diffractometers 
[7]) required to perform these types of studies are quite 
expensive and require a highly trained operator. The 
relevant data from a crystallography experiment 
contains a series of diffraction images usually captured 
by a CCD detector, and a number of environmental 
variables including crystal temperature, crystal 
alignment image, CCD cooling status, and the 
temperature and relative humidity of the lab.  

In some cases, due to the nature of some crystalline 
materials such as proteins or microcrystalline 
compounds, the successful structure determination of 
these compounds require the use of high brilliance 
radiation sources available at national synchrotron 
facilities. Gaining access to beamlines at these national 
synchrotron facilities to collect data is not straight 
forward. Travel to these remote facilities is costly and 
time consuming, and once there, the facilities must be 
used in an intensive manner. By developing 
methodologies to remotely monitor and access 
instruments and their data we can provide the remote 
users with a “same as being there” experience with 
additional flexibility in scheduling around problem 
samples and equipment failures. Additionally on-site 
users and technicians can share data coming from the 
beamline’s instruments with remotely located 
colleagues to discuss the quality of a diffraction 
pattern. This remote consultation capability can 
facilitate decision making such as continuing with a 
questionable sample or abandoning it and starting a 
new one. Effective shared access to instruments 
ensures a more efficient use of the beam time, 
potentially improving throughput of the beamline as a 
whole. This paper will focus on the implementation 
details of the CIMA crystallography portal and the 
mapping of end-user functional requirements to 
portlets. 

 
3. The Common Instrument Middleware 
Architecture (CIMA) 

 
Before discussing the CIMA portal architecture, we 

first review the services and instruments behind the 
scenes in order to motivate the portal requirements.  
Scientific instruments and sensors provide the raw 
observations used to develop, verify, and falsify 

theories. Data from instruments typically have an 
extensive lifecycle, which includes corrections and 
calibration, annotation, and then storage in a database 
or file system. The Common Instrument Middleware 
Architecture (CIMA) project [8], supported by the 
National Science Foundation Middleware Initiative 
[9], proposes a single virtualization layer to hide this 
complexity, and to present a relatively simple Web 
Service interface to the rest of the data pipeline. 
Further aims are to integrate instruments into software 
systems based on current cyber infrastructure 
standards, and to improve accessibility of instruments 
to both routine and non-routine users including 
software agents. CIMA middleware is based on current 
Grid implementation standards and supports a variety 
of instrument and controller types. CIMA 
implementations are being evaluated in three settings 
representing a spectrum of shared instrument 
applications: X-ray crystallography, remote robotic 
telescopes, and small sensor network nodes for 
environmental observation. 

A brief description of CIMA crystallography 
application is given here below, and a more detailed 
description can be found in [2,5,6]. CIMA is in use in 
several crystallography labs in the US and abroad, 
including a synchrotron beamline, to acquire data from 
diffractometers and related sensors. Figure 1 shows a 
typical implementation combining data acquisition by 
CIMA with data management at a site remote from the 
lab where the instrument is located.  

The CIMA component shown in Figure 1 as 
Instrument Representative (IR) can be embedded in the 
instrument or can be implemented in a proxy 
somewhere remote from the instrument but connected 
to it through an IP network or other interconnect bus. 
Interaction with a CIMA-enabled instrument is through 
the CIMA channel protocol using Web Services [5]. 

The IR streams real-time data over a CIMA 
channel to consumer applications that register for 
specific data and metadata provided by the IR. The 
main consumer application is a data manager (My  
Manager) that stores the data in a user defined location 
prior to reduction and analysis. My Manager provides 
data virtualization through the Obsidian data 
management library [10], which tracks the current 
physical location of data sets for reference by 
subsequent processing steps. It also maintains basic 
metadata about samples, runs and individual files that 
make up a sample run. 



 
 
Figure 1. CIMA implementation (Instrument Representative) sends data from a laboratory 
to a remote data manager (My Manager) through Web Services based CIMA channel. 

 
This paper is concerned with providing access to 

data through a portal interface using the Data Manager 
Web Service (DM-WS) in Figure 1, the portal client 
functions that must be supported include displaying 
data sets and individual components, e.g. CCD frames 
[11] from the diffractometer and their bitmap images, 
and other sensor readings for experiments in-progress 
or completed. Another important class of functions we 
must support through portlets is data stewardship tasks 
such as managing ownership and access rights to each 
sample collection. Future portlets will provide 
interfaces to analytical applications and archival 
functions. 
 
4. Overview of Related Techniques  
 
4.1 Data Portals and Portal Components  

 
Web-based portals have been identified as a key 

enabling technology for e-research.  Early efforts are 
extensively reviewed in Refs [12, 13] (see also [14, 
15]) and considerable effort has been put into 
developing production quality portal systems for 
science. The key concept of a Web portal system is the 
ability for users to login to sites through browsers. 
Portals may provide publicly accessible pages for 
anonymous viewing, but by logging in and establishing 
identity, the portal can provide a number of additional 
features, such as access to restricted resources. 

The core notion of science portals is that a research 
“community of interest” can provide ubiquitous access 
to many types of resources and can communicate and 
share knowledge through a common point of presence 
on the web. In practice portals provide community 
management functions such as identity management 
for individual participants, single sign-on for access to 
multiple communication, and compute and storage 
services needed by research communities. Individual 
users may be able to customize their view of the 
resources. ReciprocalNet [16] is an example of a portal 
for the sharing of chemical structures primarily 
determined by X-ray diffraction crystallography, and 
aimed at a diverse audience including researchers and 
educators.  

 Although portals may be built with any number of 
Web technologies, the large number of science portal 
activities (including the TeraGrid Science Gateway 
efforts [17] such as the LEAD portal [18]) means that 
the community benefits from adopting uniform, 
interoperable software. Here, we can make the 
distinction between portal containers, which provide 
common features such as login support and content 
customization, and their content components, known 
as portlets.  

Standards have emerged for how portlets should 
communicate with their containing portal. JSR 168 
[19] provides the key component definitions 
(programming interface and lifecycle) for Java-based 
portals. It has been widely adopted and is now 



supported by a broad range of both commercial and 
open source portal projects such as GridSphere [20], 
uPortal, and Jetspeed2. The OGCE project [21] is 
actively developing and evaluating JSR 168 compliant 
portlets for e-research.  

In early stages of the CIMA project (2004), a 
Jetspeed1 portal was used to display the sample data 
and various parameters via embedded CGI scripts in a 
portlet framework. In mid 2005 the CIMA portal 
project adopted the GridSphere portal container and 
started implementation of portlets to access instrument 
data. The portal currently serves hundreds of samples, 
some of which are available for viewing by the public.  

GridSphere is an open source portal implementation 
compliant with JSR 168, which provides a portlet 
container and a collection of core services and portlets, 
such as login, logout, access control management and 
layout selection. GridSphere supports user and group 
management  to take care of the  authentication issue 
so that portlets are more flexible and easier to develop 
and maintain. We adopted GridSphere as our 
deployment environment based on its popularity in 
many of the science gateway projects, but the portlet 
components of our project are in principle portable to 
other containers.  

 
4.2 JavaServer Faces for Portlet Development 
 

Some of the limitations of the JSR 168 portlet 
specification are that it provides a limited development 
environment and does not provide reusable component 
widgets, so we need to inherit these from 
complementary development frameworks.  Portlets 
may be developed from a number of technologies, 
including Struts, Velocity, JavaServer Pages, and 
JavaServer Faces through so-called portlet bridges. 
Three key requirements for this project are that portlets 
will contain various GUI widgets possibly beyond 
those in HTML forms, that the presentation widgets 
would be decoupled from the underlying data model 
they use, and that widgets be easy to test, preferably 
independently from portlets that contain them. 
JavaServer Faces (JSF) [22] has proven to be a good 
solution for meeting these requirements. 

JSF is a specification for building user interfaces for 
server-side applications. One of the advantages is that 
JSF provides rich tag libraries to build components 
which run on the server and handle events generated 
by a client and can be rendered back to the client. The 
other advantage is that JSF is based on the Model-
View-Controller (MVC) model [23], so it offers a 
clean separation between presentation and logic. 

In addition to improving the flexibility with respect 
to back end data sources and reusability of portlets in 

general, GUI component beans developed for JSF 
applications can easily be unit tested and can reused in 
other types of applications. 
 
4.3 Web Services 
 

Web Services is a software system designed to 
support interoperable machine-to-machine interaction 
over a network [24]. Web Services interoperability and 
extensibility derive from the use of XML for framing 
messages and the use of Simple Object Access 
Protocol (SOAP) [25] to transport them between client 
and server. Web Services have been widely used to 
integrate applications in different languages on 
different platforms across organization boundaries. In 
CIMA data portal, portlets communicate with CIMA 
data management module (DM-WS) through Web 
Services. These Web services are Perl-based CGI 
scripts wrapped by SOAP::Lite for Perl [26], which is 
a collection of Perl modules providing a simple and 
lightweight interface to SOAP. 
 
5. Implementation of the CIMA 
Crystallography Portal 

 
5.1 Requirements 
 

For the current work, a subset of requirements 
relating to user and administrative interaction with data 
was chosen. These include the following: 
 Remote users and in-lab crystallographers must be 

able to monitor an experiment in progress, 
including viewing current and previously collected 
CCD frames and associated relevant  
environmental and technical parameters; 

 All raw data is owned by the lab which performed 
the experiment and collected the data. In addition 
to the lab, represented by one or more lab 
administrators, individual users can view (but not 
modify or delete) their samples; 

 Lab administrators must be able to control sample 
ownership and visibility; 

 Because the notion of when an experiment ends is 
not clearly defined (e.g. experiments may be 
truncated after the fact or additional frames may 
be gathered based on evaluations made during a 
run), lab administrators should be able to set the 
end time of an experiment; 

 Lab administrators must be able to add and 
remove users to an access control list for a sample;  

 Users must be able to view their samples, 
including all files and sensor readings related to 
the experiment; 



 Some sample data may be provided to the general 
public for educational or public science awareness 
purposes; 

 Users must be able to view the current status of 
the lab as a whole; 

 Individual functions that are of general utility 
should be implemented in a reusable, pluggable, 
standards-based manner as portlets that can be 
added or removed by administrators or end-users 
as appropriate; 

 The portlets must interact with a lab’s data 
manager software via Web Services calls; 

 Users and groups will be managed by the portals 
container and access to all functions of the portal 
will be provided by a single sign-on through the 
portal. 

A prototype implementation of the crystallography 
portal was completed using Jetspeed1 and CGI scripts. 
Although in the right direction, this implementation 
did not meet our modularization requirement and so 
with the ramp-up of the NSF middleware project and 
the availability of support from the Open Grid 
Computing Environments (OGCE) group, we migrated 
to GridSphere and JSF-based portlet clients to CIMA 
services as a fully JSR 168 compliant portal container. 
This assures a degree of survivability and lateral 
flexibility to move the science process specific 
functionality to other containers if the need arises. 

The requirements outlined above led us to develop 
the following portlets: 
 A lab overview portlet that provides the current 

status of a facility and its instruments; 
 An administrative Admin portlet to support 

management of sample ownership and other 
parameters related to individual experiments; 

 A PublicSample portlet that provides sample data 
to all portal users and the general public;  

 A UserSample portlet that shows a logged-in user 
their samples and other samples on whose access 
control lists they appear. 

PublicSample and UserSample portlets also allow 
users to scan through all data objects in an experiment 
(Figure 2). Per design choice some functions of the 
portlets are made available as pop-up windows. These 
portlets provide all of the functionality listed in the 
requirements above. Extensions to the portal’s basic 
group authorization mechanism (discussed in Section 
5.3) provide an access control list associated with each 
data collection. Scientists can view and modify sample 
data from their X-ray diffraction crystallography 
experiments based on their roles in this project and can 
add users to the access control lists of their data sets. 
Nothing more than a web browser is needed to interact 
with the system.  

 

 
 
Figure 2. UserSample portlet that allows users 
to stepwise scan through an experiment. 
 
5.2 Architecture of the CIMA Crystallography 
Portal 
 

Developing JSF Web applications includes support 
for UI components, independent backing JavaBean 
code, and simplified management of HTTP request and 
session parameters. UI components handle the 
interaction with users and communicate with Web 
Services through managed beans such tasks as access 
to databases. Then we use portlet to wrap web 
application so that we can make use of the user, group 
and layout management from the portlet container 
(GridSphere), and also we can deploy these portlets 
with respective configuration for different laboratories 
within the same portal. Furthermore, the relationship 
between our portal and data manager is loosely 
coupled by using Web services, we can effortlessly 
deploy the portal and Web services at diverse 
locations.  

JSF Web applications handle the UI events and 
navigation rules to implement the application 
controller logic. Stubs are generated according to the 
WSDL of Web services via WSDL2Java tool provided 
by Apache Axis [27]. This allows access to the Perl-
based data manager services. The managed beans in 
the JSF Web application invoke on the stubs to 
communicate with Web services and store the data 
returned by Web services. JSF provides a value 
binding mechanism to make it easy for Web 
applications to represent the data combined with 
managed beans to users. Figure 3 shows the class 
diagram of some of these JavaBeans. The MVC 
structure of JSF allows us to concentrate on 
developing classes that model the instrument and lab 
environment. 



 

Figure 3. Class Diagram of JavaBeans 
 
These beans are populated with information from 

Web Services calls to DM_WS. They are used to set 
up the model for sample data and related parameters. 
WQuerySampleDataBean and SampleDataBean 
acquire the basic information of sample data, such as 
sample number, laboratory, instrument and so on. 
SampleInfoBean and TemperatureBean obtain 
environmental conditions related to a specific sample, 
like temperature and humidity. SampleFilesBean and 
FilesBean inquire CCD frames both in raw and jpeg 
format pertaining to a specific sample. 
SampleCameraBean and CameraBean query camera 
images of laboratory and crystal during the 
experimental period. 

In current CIMA crystallography portal, the JSF 
Portlet Integration Library [28] is used, which is built 
on the top of JavaServer Faces 1.1. This open source 
library deals with the low level communication 
between portlet and JSF: mapping portlet lifecycle 
onto JSF lifecycle; allowing JSF to interact with portlet 
APIs provided by containing environment, like 
GridSphere. It enables a seamless integration so that 
the CIMA JSF modules can be bundled with portlet to 
work inside GridSphere container. 
 
5.3 Identity Mapping between Portal and Data 
Manager Service 
 

A significant problem faced in the design of the 
CIMA crystallography portal is the mapping of 

identities and associated privileges of portal users to 
identities associated with data sets gathered by the My 
Manager component. 

The authorization model used by the portal 
container is that of users assigned to a limited set of 
four roles (Super, Admin, User, Guest) whereas the 
data manager uses an authorization model with users, 
groups and access control lists that can contain users 
and groups. Gridsphere does have a notion of groups 
but this is related to what users can access which 
portlets rather than a Unix-like notion of a general 
authorization mechanism for sets of users. Since the 
portal does not provide a flexible authorization scheme 
a design choice was made to perform the mapping of 
portal users to data owners, groups and access control 
lists in the logic of the portlets used to access the data 
manager.  

As mentioned above, there are three portlets, 
PublicSample portlet, UserSample portlet and Admin 
portlet.  For UserSample and Admin portlets, users can 
only access the related data according to their roles. 
Thus, an approach is required to match user identities 
between portal and data manager service.  

A logged-in GridSphere user’s name can be 
obtained through the JSF context via the portlet-based 
external context supplied by [28]. The following is a 
fragment of such codes: 

 
 FacesContext cxt = FacesContext.getCurrentInstance(); 
 HttpServletRequest request =  
       (HttpServletRequest)cxt.getExternalContext().getRequest(); 
 Map userInfo =  
       (Map)request.getAttribute(PortletRequest.USER_INFO);  
 String username = (String) userInfo.get("user.name"); 
 

  Then the username can be used to query the 
database combined with GridSphere to get the 
information of the user, such as user’s full name, email 
address and groups, etc. Because the current version of 
GridSphere doesn’t support a hierarchy of groups 
containing users, we use GridSphere portal groups to 
control access to portlets that, in turn, control access to 
data objects. Several GridSphere portal groups are 
created: “<lab>_admin” represents the lab 
administrators who can access Admin portlet and are in 
charge of the ownership and access control of samples; 
“<lab>_client” represents portal users who are clients 
from a single lab and can access UserSample portlet.  
Access control lists are implemented as other groups 
titled as research group names, the members of which 
can view sample data from the group they belong to 
(non-public samples). The lab administrator can 
control the access list for a sample through Admin 
portlet according to users and groups mentioned 
above. The first two groups (<lab>_admin and 



<lab>_client) are used to separate users from different 
laboratories when there are multiple CIMA 
crystallography portals deployed in the same container. 
Gridsphere’s SPORTLETUSERIMPL, 
SPORTLETGROUP and GROUPREQUESTIMPL 
database tables are required to get these information 
through JDBC [29] programming. 

Finally, the user name and groups information are 
transferred as parameters to Web Services to fetch 
sample data. 
 
6. Conclusion and Future Work 
 

The work described here provides a model for 
organizing and accessing data from CIMA instruments 
and identifies a problem and provisional solution for 
managing identity relationships more complex than 
those provided by GridSphere. 

The framework of CIMA crystallography portal is 
based on the foundation of extensively vetted 
standards, JavaServer Faces, JSR 168 Portlet and Web 
services. It is easy and flexible for development, 
deployment and maintenance.  

More importantly, the difficulties encountered in 
this project with authorization indicate that more work 
is needed to provide a flexible, general solution for 
authentication and authorization within and between 
portal instances. As described above, we have taken a 
pragmatic approach for solving a specific problem 
(merging portal and data service identity).  However, 
our system is a good candidate for investigating Web 
Service security standards [30, 31] for securely 
communicating authentication tokens and access 
privileges. See [32] for related work in this area.  

Another interesting problem is the integration and 
federation of multiple instances of the CIMA portal.  
CIMA collaborates with international research groups, 
some of which are setting up their own CIMA portal 
instances. The Web Services for Remote Portlets 
(WSRP) specification [33] (currently under revision) is 
one interesting possibility for future investigation. Its 
integration with Web Service security standards will 
be an interesting challenge. 
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