
of particular interest to you, please let
me know.

Web clients as a computing
resource

At the recent Supercomputing 2000
conference in Dallas (www.supercomp.
org), Steve Wallach’s keynote explained
how it would be possible to combine
optical interconnects with the in-
evitably improving microprocessor
technology to build supercomputers
with petaflops (1015 operations per sec-
ond) performance within the coming
decade. Of course, the same technology
trend implies that the total computing
power of clients interconnected by the
Web will be some thousand times
greater—exaops performance.1,2

In addition, most CPU cycles are
“wasted” as desktop machines sit pa-
tiently waiting while their owners chat
on the phone, drink coffee, or sleep.
Thus, SC 2000 saw several commercial
companies supporting what Larry
Smarr called megacomputing in a panel
discussion and what industry some-
times mysteriously terms peer-to-peer
computing (www.peer-to-peerwg.org).
Now, instead of purchasing a new de-
partmental machine, you can send
your computing tasks into the Internet
“cloud” to be computed between key-

strokes on some Web client. This pow-
erful idea promises cheaper computing
with greater total performance. Of
course, this model has its limitation:
the Internet cloud cannot easily sup-
port the large-scale parallel computa-
tions of our current teraflops and fu-
ture petaflops dream. Loosely coupled
machines often have lower communi-
cation bandwidth and always have
much higher latency than classic mas-
sively parallel machines. Still, we can
formulate many problems as a multi-
tude of largely independent tasks—for
example, factoring large numbers to
break RSA cryptography and searching
biological databases for patterns. Fu-
ture editions of this column will exam-
ine these technologies and explore the
applications and algorithms that can
exploit megacomputing. Some of the
key issues of security and fault toler-
ance are also fair game.

XML, Java Grande, and
distributed objects

The Internet has spawned many
technologies that are contributing to
more powerful programming environ-
ments. Good examples are XML (www.
xml.org) as the basis of new scientific
data standards and Java as a potential
new scientific programming language.

Another is MathML, which will Web-
enable us to render mathematical
equations accurately in distributed
documents, whiteboards, instant mes-
sengers, and other productivity tools.
This is an example of ScienceML, a
term that captures a plethora of emerg-
ing standards which enable the univer-
sal expression of scientific data and
greater program interoperability. Our
Web-enabled systems’ input and out-
put will no longer look like the cryptic
2I5,2F10.4 but will be the more un-
derstandable <MYDATA YEAR=1999
NUM_ITERATIONS=10 POROSITY=
0.03 DEPTH=10 DEPTH_UNITS=
METERS>Specify my ecology
</MYDATA>.

Nobody knows what the scientific
programming language in 2010 will be,
but to borrow a well-known cliché, I
suggest that it surely will not be For-
tran—or even be called Fortran. We
can debate for a long time the software
engineering advantages of languages
such as C++ and Java versus Fortran’s
simplicity and high performance, but
the next generation of students—im-
mersed from the cradle on in the Inter-
net, its technologies, and its power—
will not care. The best of these students
will not choose computational science
unless this field adopts the very best in-
formation technology. Students will
learn Java in high school and will not be
happy to switch to Fortran for science
and engineering computing.

Although Java was originally popu-
larized in the form of applets to de-
velop dynamic clients, its main indus-
trial application is to build portable

52 COMPUTING IN SCIENCE & ENGINEERING

Editor: Geoffrey Fox, fox@csit.fsu.edu

W E B C O M P U T I N G

THE WORLD WIDE WEB OFFERS MANY OPPORTUNITIES FOR

COMPUTING IN SCIENCE AND ENGINEERING. INTERPRET-

ING MY CHARGE AS DEPARTMENT EDITOR QUITE BROADLY, I’D LIKE

TO REVIEW SOME OF THESE POSSIBILITIES. IF I OMIT AREAS

INTRODUCTION TO WEB COMPUTING
By Geoffrey Fox

MARCH/APRIL 2001 53

middleware—large server-side applica-
tions to support database access and
other e-commerce applications. Thus,
it makes sense for this column to ex-
amine whether Java can be used to
code large numerical simulations. The
conferences and forums of the Java
Grande group (www.javagrande.org)
have identified several problems in this
area, including Java’s lack of a complex
data type and rectangular arrays; more-
over, there is the need for Java bindings
to libraries in areas ranging from math-
ematical functions to parallel message-
passing. Java’s floating-point rules inhibit
well-known compiler optimizations,
while commercial offerings currently
do not include Java compilers (just in-
terpreters, albeit very clever, so-called
just-in-time systems that use dynamic
compilation). We have made progress—
even though our field, which is 1% or so
of the total computer market, will find
it hard to influence commercial Java ac-
tivities. This column can discuss this as
well as the progress in C++, which has
successfully tackled the issues of perfor-
mance and expressivity needed for com-
putational science.

C++ and Java are supported by pow-
erful development environments, which
could form the basis of better scientific-
programming systems. Industry has also
built distributed-object models (Corba,
Java with RMI and Jini, COM, and
SOAP(XML)) that appear very helpful
in managing large-scale software and
data systems. The important integration
of distributed-object and Internet tech-
nologies is often called the Object Web.
This provides a powerful model of the
distributed systems that underlie mod-
ern Web computing. Perhaps we will
discuss some of these points in future
columns as well.

Computational science portals
Web systems are also used to pro-

duce integrated environments that
support computing. These used to be
called problem-solving environments
or workbenches, but in Web lingo we
usually call them portals to ride the cur-
rent commercial thrusts bringing us the
Yahoo portal (to everything), enterprise
information portals, and so on. EIPs
constitute a US$10-billion-a-year busi-
ness, providing Web-based corporate
information systems that access data-
bases, email, and Web pages with a va-
riety of communication tools. Here, I

use the adjective “Web” to describe a
distributed, networked system using In-
ternet or Object Web technologies.

In the computing field, we build a
portal by assembling a network of Web
servers and clients and then use them
as an interface to computing resources.
This approach (see, for example, https://
hotpage.npaci.edu, www.cactuscode.
org, and www.gatewayportal.org) gives
users a single Web interface, enabling
such capabilities as job application sub-
mission and monitoring, access to in-
formation resources, visualization of
results, and application linking via data
streaming or files. Such portals can also
support communication tools such as
(scientific) whiteboards, audio- and
video-conferencing, and so on. Users
can often choose which application to

run, at what level of detail, and with
what modifications (for example, by
Web-inputting parameters or choosing
a library).

We can consider such portals the
front ends to computational grids (see
www.gridforum.org), which are typically
formed by a network of computational
resources and thus are thought of as be-
ing more structured than the megacom-
puters discussed earlier. Increasingly,
such grids use Object Web Technologies
(see www.globus.org/cog). In this col-
umn, we will discuss both computing
portals and their technologies.

I need your input!
We have looked at Web computing

from three different points of view—
stressing the computer, the technolo-
gies, and the systems formed from the
Web. What interests you? Please send
me any and all topics that appeal to
you.

References
1. G. Fox, “Computing on the Web: New Ap-

proaches to Parallel Processing—Petaop and
Exaop Performance in the Year 2007,”
http://old-npac.csit.fsu.edu/users/gcf/01/
terri/SCCS_784/index.html (current 7 Dec.
2000).

2. W. Furmanski, “Petaops and Exaops: Super-
computing on the Web,” IEEE Internet Com-
puting, vol. 1, no. 2, 1997, pp. 38–46.

Geoffrey Fox is a computer science professor

at Florida State University as well as the associ-

ate director of its School of Computational Sci-

ence and Information Technology, director of

its Computational and Information Science

Laboratory, and chief technologist of its Office

of Distributed and Distance Learning. Contact

him at Computational Science and Information

Technology, Florida State University, 400 Dirac

Science Library, Tallahassee, FL 32306-4130;

fox@csit.fsu.edu.

Nobody knows what the

scientific programming

language in 2010 will be,

but it surely will

not be Fortran.

