
JANUARY/FEBRUARY 2004 Copublished by the IEEE CS and the AIP 1521-9615/04/$20.00 © 2004 IEEE 93

MAKING SCIENTIFIC APPLICATIONS
AS WEB SERVICES
By Marlon Pierce and Geoffrey Fox

Editor: Geoffrey Fox, gcf@indiana.edu

WEB COMPUTINGW E B C O M P U T I N G

sites like eBay. The potential for Web-
enabling science applications has at-
tracted a lot of attention from the sci-
entific community as well. Numerous
browser-based computing portal sys-
tems and problem-solving environ-
ments have been built since the late
’90s.1 Various commodity technologies
from the world of e-commerce, in-
cluding CGI-based Perl and Python
scripts, Java applets and servlets,
Corba, and, most recently, Web ser-
vices, have been brought to bear on the
science portal–service problem.

In past columns, we discussed Grid
technology in e-science (large-scale,
distributed scientific research). Here,
we make the ideas more concrete by
describing how to convert (or build
from scratch) a scientific resource (a
software program) to a Web service.
Modern Grids are built on top of Web
services, with interesting refinements
captured as an open Grid services ar-
chitecture (OGSA). You easily can ex-
tend the open Grid services infrastruc-
ture (OGSI) approach we present here
to be OGSA compliant.2

This article discusses the general ar-
chitecture of science portal–service sys-
tems and illustrates with a simple exam-
ple how you could build a constituent
service out of a particular application.

To make the presentation concrete, we
will develop a simple wrapper applica-
tion for a code, Disloc (authored by An-
drea Donnellan of the NASA Jet
Propulsion Laboratory), which is used
in earthquake simulation to calculate
surface displacements of observation
stations for a given underground fault.
Disloc’s fast calculation is a particularly
useful characteristic because we can
provide it as an anonymous service and
not have to worry about computer ac-
counts, allocations, and scheduling.

The Big Picture:
Services, Portals, and Grids
Before describing the details of Web
service creation, we must look at how
Web services, portals, Grids, and hard-
ware infrastructure relate (see Figure
1). Moving from right to left, we start
with the hardware resources: comput-
ing, data storage or sources, and scien-
tific instruments. These resources
might be bound into a computing
Grid2 through common invocation, se-
curity, and information systems. Access
to particular resources is virtualized
through Grid and Web services. In
turn, client applications built from var-
ious client-building toolkits access
these services. For computing portals,
the client applications also define user

interfaces using HTML for display.
We could use portlets to collect these
various clients’ displays into aggregate
portal systems, such as Jetspeed (http://
jakarta.apache.org/jetspeed/site/
index.html) and other portlet-based
products available from or planned by
BEA, IBM, Oracle, and others. These
and other companies participated in
the recent Java Community Process,
JSR 168, to define the new portlet
standard (see www.jcp.org/aboutJava/
communityprocess/review/jsr168/).

Figure 2 shows a sample screen shot
of an aggregate portal from Figure 1.
The portlet on the left is a Web inter-
face to a Disloc service (described
later); the portlet on the right is an in-
terface to a remote host file manage-
ment service. We have discussed por-
tals in the past and will provide a more
detailed look at building portlet inter-
faces in a future column.

Web Services
The Web service architecture is a sys-
tem for doing distributed computing
with XML-based service interface de-
scriptions and messages.3 We use the
Web Service Description Language
(WSDL) to describe service interfaces.
WSDL lets you describe how to invoke
a service and answers these questions:

• What are the functions, or methods,
that the service provides?

• What arguments must you pass to
the service to use the function you
want to invoke?

• What are the argument types (inte-
gers, floats, strings, arrays) of the

W EB-ENABLED E-BUSINESS AND E-COMMERCE APPLICA-

TIONS ARE EVERYDAY FACTS OF LIFE: EVERYONE IS FA-

MILIAR WITH CUSTOMIZABLE INFORMATION PORTALS LIKE YAHOO,

ONLINE ORDERING SYSTEMS LIKE AMAZON, AND WEB AUCTION

94 COMPUTING IN SCIENCE & ENGINEERING

function and what are the return
types?

Think of WSDL as the XML equiva-
lent of C header files, Java interfaces,
or the Corba Interface Definition Lan-
guage (IDL).

WSDL’s power is that it expresses a
program’s interface in language-neutral
XML syntax. WSDL does not directly
enable remote function invocation;
rather, it describes how to bind a par-

ticular interface to one or more remote
invocation protocols (ways of exchang-
ing messages between the service pro-
vider and invoker).

Usually, WSDL function invocations
and returns are bound to SOAP mes-
sages. These messages contain specific
requests and responses: pass the subrou-
tine doLUDecompose the following
two-dimensional array of double-preci-
sion values with the following integer di-
mensions, and get back the LU-decom-

posed form of the input array. When we
combine SOAP and WSDL, we can
build a lightly coupled distributed ser-
vices system that can exchange informa-
tion without worrying about program-
ming language implementations or
internal data structure representations.

Although we could write Web ser-
vices in any language, they are not
CGI scripts. Web services decouple
presentation from invocation, as illus-
trated in Figure 1. The service com-
ponent provides some specific func-
tionality, and a client accesses it. This
client is simply another program—
possibly written in another program-
ming language—that wishes to use a
remote service. The client also could
run in a Web server and generate an
HTML display.

Science
Applications as Services
Although we could develop Web ser-
vices versions of every subroutine in
Numerical Recipes (www.nr.com) or
rewrite all existing science applications
to expose their functions and subrou-
tines as services for remote compo-
nents, we’ll present a simple alternative
approach that you can use to treat an
entire existing application as a service.
This approach is useful for service-en-
abling legacy applications or commer-
cial codes (for which you may not have
source code) or to wrap applications to
run inside batch-scheduling systems.

First, let’s briefly look at how we
might do this with Java. We chose Java
because it has a comprehensive set of
freely available tools to build Web ser-
vice applications. The Jakarta Tomcat
Web server (http://jakarta.apache.org/)
is the open-source reference implemen-
tation for the Java servlet specification.
You also can build specific Web services
using the Java-based Apache Axis toolkit.
This toolkit includes a Web application

W E B C O M P U T I N G

Portal architecture Grid systems

Portlet class:
Web form

Portlet class:
IFrameportlet

Portlet class:
Jspportlet

Portlet class:
Velocityportlet

C
lie

nt
s

(p
ur

e
H

TM
L,

 Ja
va

 a
pp

le
t,

 a
nd

 s
o

on
)

A
gg

re
ga

tio
n

an
d

re
nd

er
in

g

Jetspeed
internal
services

Toolkit

Client
toolkit

Client
toolkit

Local
portlets

Remote
or proxy
portlets

Web/Grid
service

Web/Grid
service

Web/Grid
service

Computing

Data stores

Instruments

Clients Portal Portlets
(Jetspeed)

Libraries Services Resources

Hierarchical
arrangement

...
..

...
..

...
..

...
..

Figure 1. Aggregate portals collect interfaces to remote services. As shown, remote
computing, data, and instrumental resources may be accessed by Web service-
based Grids, which are, in turn, accessed through portal components via embedded
client toolkits.

Figure 2. A screen shot of an aggregate portal. User screens are organized into tabs
across the top panel. Each tab contains one or more portlets. The shown tab display
contains (left) a job submission portlet and (right) a remote file management portlet.

JANUARY/FEBRUARY 2004 95

that converts user-written Java applica-
tions into Web services, as well as tools
to create client boilerplate code (stubs)
that simplify building clients. Java- and
Apache Axis-built Web services can in-
teroperate with clients written in other
languages, such as C, and vice versa.
Other (free and commercial) Web-ser-
vice toolkits exist for other languages;
the process of creating the Web service
is roughly equivalent in these other
toolkits. (Other toolkits include Java,
http://xml.apache.org/axis/; XSOAP,
C++ and Java toolkits for WS, www.
extreme.indiana.edu/xgws/xsoap/;
gSOAP, C++ SOAP toolkit, www.cs.
fsu.edu/~engelen/soap.html; Python
Web Services, http://pywebsvcs.source-
forge.net/; and Perl,www.soaplite.com/.)

Java compiles source code into byte-
code form, which a virtual machine in-
terprets. We could call external, non-
Java programs in two ways: through the
Java Native Interface (JNI)—to
C/C++—or by executing an external
process. For example, Disloc is written
in C, but we really don’t want to bother
wrapping it directly using JNI. Instead,
we invoke the precompiled Disloc,
which is executable by forking off a sep-
arate process external to the Java run-
time environment. This approach sacri-
fices low-level integration for ease of use.

The compiled copy of Disloc takes
two commandline arguments: input
and output file names. The input file
provides parameters such as an earth-
quake fault’s latitude and longitude and
its physical dimensions and orienta-
tions, and a Grid of surface observation
points for the code. The output data
consists of the calculated displacements
of the surface Grid points. For our Dis-
loc service, we assume that the input
file exists, or can be placed, in the same
file system as the Disloc executable.
You also could generate the input file
and get it to the right place using sup-

porting Web services.
Our first step is to write a Java pro-

gram that can invoke the Disloc appli-
cation locally. Figure 3 shows what you
could write to invoke a program exter-
nal to the Java Virtual Machine.

If we compile this Java program (pro-
viding a main() method, not shown),
we can invoke Disloc as follows:

[shell> java RunExternal Dis-

loc myinput.txt myoutput.txt

In practice, we also would modify the
fragment to capture standard output
and standard error strings and put them
in the return values for runCommand().

We now could convert the fragment
into a deployed Web service, but for
security reasons in a real application,
we do not want to expose the
runExec() method directly as a ser-
vice. Instead, we would make this a pri-
vate method and surround it with pub-
licly accessible methods such as
setDislocInput(), setDisloc

Output(), and runDisloc() to con-
trol and validate the runExec()
method’s input.

We are now ready to convert our
stand-alone code for invoking Disloc
into a Web service. First, you’d set up
a Tomcat Web server and deploy the
Axis Web application. You could auto-
matically deploy our Java program into
Axis by copying it into the Axis Web
application directory and renaming it

aRunExternal.jws. This is good for
quick testing, but for more formal de-
ployment, it should be based around a
Web service deployment descriptor
(WSDD), an XML file that defines the
service and its allowed functions. You
could use written descriptors to deploy
a Web service using Axis’s Admin-
Client program. See http://ws.
apache.org/axis/ for more information.

We now have a Web service, with
methods setDislocInput(), set-
DislocOutput(), and runDisloc(),
which we expose publicly. Note that we
have not written any WSDL to describe
this Web service interface. This usually
happens automatically via the service
container (Axis in our case). You can
view the generated WSDL for this de-
ployed service at http://localhost:8080/
axis/services/RunExec?wsdl. When you
see it, you’ll be glad that you didn’t have
to write any WSDL.

Creating Clients
for Web Services
We’re now ready to write clients to our
Disloc Web service. As we previously
mentioned, clients do not need to use
Axis tools and need not be written in
Java. The general process is

1. Find or discover the service’s
WSDL file. You already might
know this because you wrote the
service, your collaborators provided
you with the WSDL’s URL, or be-

public class RunExternal {

public void runCommand(String command) throws

Exception {

//Run the command as a process external to the

//Java Runtime Environment.

Runtime rt=Runtime.getRuntime();

Process p=rt.exec(command);

}

…

}

Figure 3. A Java program to invoke a local program. A simple Java program snippet
invokes an external command. It can be embedded in a service implementation file
and invoked remotely through a service invocation.

96 COMPUTING IN SCIENCE & ENGINEERING

W E B C O M P U T I N G

cause you might have discovered it
in some online Web service registry.

2. Write a client program that gen-
erates messages that agree with
the WSDL interface. Typically,
you might write these messages
in SOAP.

3. Send the messages to the Web ser-
vice’s deployment URL. The Web
service container will inspect the
SOAP message, invoke the service
methods, get the results (if any),
and route them back to the client.

You can partially automate writing
Web services client code (step 2). One
approach for clients written in object-
oriented languages is to map the
WSDL descriptions of interfaces to
stub classes. The client can use instances
of these stub classes locally as if they
were local objects, but, in fact, they sim-
ply convert arguments passed to them
into SOAP calls to remote services and
return locally the remote method return
values. Axis, for example, provides a
tool, WSDL2Java, that creates client
stubs for a given WSDL file.

In this article, we described the sim-
plest possible service that you can

use to wrap a science application (or
any other code) as a Web service. We
did not address several other issues:
you must couple the service with secu-
rity systems that ensure only authenti-
cated, authorized users. Another im-
portant issue is service discovery, by
which we find the URLs and descrip-
tions for services that meet our re-
quirements. This is one example of an
information service (which also might
be a Web service). We also might wish
to build information services that de-
scribe, in general, how to invoke a
whole range of applications. In this
case, we must encode information such
as how many input and output files the
application takes, the location of its ex-
ecutable, and so on. We also might
want to encode in our information ser-
vices information necessary to run the
code via scheduling systems. Finally,
there is the issue of linking our service
to other services to create a chain. For
example, we might couple the Disloc
output with a visualization service that
creates images that map the output
vectors over a geo-referenced point.

The Web service–aggregate portal
approach allows science applications to
wrapped and provided as remote ser-
vices with well-defined interfaces.

Groups working independently can de-
cide how they want to build their user
interfaces to the services. This ap-
proach makes it simple to host com-
puting application services at locations
where experts can maintain the codes,
fix problems, and so on. Other groups
can use these codes as “black box”
components and without having to de-
vote computing resources.

References
1. Concurrency and Computation: Practice and

Experience, Special Issue on Grid Computing
Environments, G. Fox, D. Gannon, and M.
Thomas, eds., vol. 14, nos. 13–15. 2002.

2. I. Foster et al., “The Physiology of the Grid: An
Open Grid Services Architecture for Distrib-
uted Systems Integration,” Open Grid Service
Infrastructure WG, Global Grid Forum, 2002.

3. D. Booth et al, “Web Services Architecture,”
W3C Working Draft, 8 Aug. 2003.

Marlon Pierce is a senior postdoctoral re-

search associate at the Community Grids Lab at

Indiana University. He has a PhD in physics

from Florida State University. Contact him at

marpierc@indiana.edu.

Geoffrey Fox is director of the Community

Grids Lab at Indiana University. Contact him at

gcf@indiana.edu; www.communitygrids.iu.

edu/IC2.html.

Submissions: Send one PDF copy of articles and/or proposals to Francis Sullivan, Editor in Chief, fran@super.org. Submissions should not exceed 6,000 words
and 15 references. All submissions are subject to editing for clarity, style, and space.

Editorial: Unless otherwise stated, bylined articles and departments, as well as product and service descriptions, reflect the author’s or firm’s opinion.
Inclusion in CiSE does not necessarily constitute endorsement by the IEEE, the AIP, or the IEEE Computer Society.

Circulation: Computing in Science & Engineering (ISSN 1521-9615) is published bimonthly by the AIP and the IEEE Computer Society. IEEE Headquarters,
Three Park Ave., 17th Floor, New York, NY 10016-5997; IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, PO Box 3014, Los Ala-
mitos, CA 90720-1314, phone +1 714 821 8380; IEEE Computer Society Headquarters, 1730 Massachusetts Ave. NW, Washington, DC 20036-1903; AIP
Circulation and Fulfillment Department, 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502. Annual subscription rates for 2004: $42 for Com-
puter Society members (print only) and $48 for AIP society members (print plus online). For more information on other subscription prices, see
www.computer.org/subscribe or http://ojps.aip.org/cise/subscrib.html. Back issues cost $20 for members, $96 for nonmembers.

Postmaster: Send undelivered copies and address changes to Circulation Dept., Computing in Science & Engineering, PO Box 3014, Los Alamitos, CA
90720-1314. Periodicals postage paid at New York, NY, and at additional mailing offices. Canadian GST #125634188. Canada Post Publications Mail
Agreement Number 0605298. Printed in the USA.

Copyright & reprint permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of US
copyright law for private use of patrons those articles that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is
paid through the Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923. For other copying, reprint, or republication permission, write to
Copyright and Permissions Dept., IEEE Publications Administration, 445 Hoes Ln., PO Box 1331, Piscataway, NJ 08855-1331. Copyright © 2004 by the
Institute of Electrical and Electronics Engineers Inc. All rights reserved.

