
organization). Sometimes, we use
“grid” to describe just the technology
used to build these electronic commu-
nities or organizations. We think of grid
technology as the cyberinfrastructure
(the US National Science Foundation)
or e-infrastructure (European Union)
that supports e-science, e-business, or,
in fact, e-more-or-less-any-enterprise.

In this article, I describe how to build
systems from service-oriented grids
that let you build new grids by com-
posing and adapting existing collections
(libraries) of grids. I also suggest some
best practices for deciding how to ar-
chitect services and package systems. 

There is no firm consensus on the best
grid approach but most people would
use Web services. There is a vigorous
community debate on the “right” way to
do this and whether Web services need
enhancements to cope with a grid’s
large-scale, secure, managed distributed
services. In particular, there is much dis-
cussion on appropriate representation of
“service state” and its standardization.
Service state refers to the way the service
records its current definition, for exam-
ple, in an online shopping service, what
is in a shopping cart and whose cart it is.

The Web Service Resource Frame-
work (WSRF; www.globus.org/wsrf)
and the Web Service Grid Application

Framework (WS-GAF; www.neresc.
ac.uk/ws-gaf) are two important activ-
ities whose development and interac-
tion will have important implications
for Web services’ detailed structure
and the way state is specified. How-
ever, I’m talking here about aspects in-
dependent of these issues—namely, the
right size for a service and how to
package services and grids together.

Services
Often we consider grids as providing
seamless access to a set of resources. I
agree but also propose that the result-
ing grid architecture can consist of
many small grids. This reflects the
many different overlapping community
types and resource collections that nat-
urally form individual grids. Each indi-
vidual grid can have a seamless elegant
environment—in fact, this could be a
criterion for defining basic grids—but
a composite grid would amalgamate
multiple subgrids and provide a resul-
tant heterogeneous environment. In
other words, we don’t want just a few
grids but a large number composed, di-
vided, and overlapped to support dy-
namic communities and requirements.

The service-oriented architecture
(SOA) that grids use today differs sub-
tly from earlier distributed systems

built with Component Object Model
(COM), Corba, and Java, and includes
enhancements, especially in interoper-
ability and scalability. Key Web-ser-
vices features in today’s grids include

• Architectures that choose, wherever
possible, message-based—not
method- or Remote Procedure Call
(RPC)-based—capabilities linkage.
This produces lightweight, loosely
coupled services that can be distrib-
uted and replicated to achieve needed
performance and functionality.

• Interfaces defined with XML-based
SOAP and Web Services Description
Language (WSDL) technologies
that support a wide set of implemen-
tations that trade off performance,
ubiquity, and functionality.

Providing an accurate definition of
loose message-based coupling is not
easy. A traditional distributed object
model produces components that typi-
cally exchange messages with an RPC
or equivalent Java remote method in-
vocation (RMI). These coupled mes-
sages correspond to the distributed ver-
sion of a traditional method call and its
return. Loose coupling for services cor-
responds to a messaging strategy where
individual messages are not directly
coupled in pairs, and, if needed, re-
sponse messages are generated asyn-
chronously from the original commu-
nication. The second key services
feature—XML-based specifications of
the service interfaces and their associ-
ated messages—is important for inter-
operability but less distinctive in its ar-

2 Copublished by the IEEE CS and the AIP        1521-9615/04/$20.00 © 2004 IEEE COMPUTING IN SCIENCE & ENGINEERING

GRIDS OF GRIDS OF SIMPLE SERVICES
By Geoffrey Fox

I N PREVIOUS INSTALLMENTS, WE ADOPTED THE VIEW THAT

GRIDS REPRESENT THE SYSTEM FORMED BY THE DISTRIBUTED

COLLECTION OF ELECTRONIC CAPABILITIES MANAGED AND CO-

ORDINATED TO SUPPORT SOME SORT OF ENTERPRISE (VIRTUAL

Editor: Geoffrey Fox, gcf@indiana.edu

WEB COMPUTINGW E B  C O M P U T I N G



JULY/AUGUST 2004 3

chitectural implications; it roughly cor-
responds to a different specification
language from Corba’s Interface Defi-
nition Language (IDL) or Java’s RMI. 

Choose any software problem facing
you today and imagine how it would look
in a traditional approach of a decade or
so ago. We would get a giant glob of soft-
ware in some language, such as C++ or
Fortran. The software problem would be
divided into methods or subroutines and
we would be browbeaten to build it in
modular fashion using libraries and well-
defined interfaces. Today, we people
from the past have given up using GOTO
in Fortran and adopted better practices
for specifying control structures. As tech-
nologies developed, we added new lan-
guages, such as Java, and better software
engineering processes, which industry
adopted more broadly than academia.

As I already implied, distributed ob-
ject technology supported the imple-
mentation of this paradigm across mul-
tiple computers, with method or
procedure calls implemented as paired
messages. However, most software sys-
tems still consisted of large globs, and
each glob had multiple functionalities.
You can find many very useful and im-
portant examples of this for Java at
www.apache.org.

You can convert that code into ser-
vices by specifying each of interfaces in
XML and providing a Web-service
wrapper. This activity is important for
jump-starting our services collection
but it is an interim step. For example,
if you look at all the different Apache
projects, you will find many related but
different implementations of common
subservices, such as security and user
profiles. Building a system combining
several projects often requires an inte-
grated approach to common services.
This would be relatively easy to do if
each subservice implementation were a
separate grid service with well-defined

message-based interfaces. However,
with a traditional approach, a typical
subservice, like security, might have an
external message-based interface but,
unfortunately, also many internal
methods linking the subservice to
other parts of the software glob. Thus,
subservices, like security, can’t be ex-
tracted from the glob, and composing
such traditional software systems, even
if they run smoothly and efficiently
with service interfaces, is very hard.

Taking all that into consideration
lets us identify a strategy for defining
services. Start by examining the differ-
ent capabilities of your systems. Ser-
vices are distributed components that
have distinct functionality—especially
functionality shared usefully among
different uses.

Services must achieve acceptable per-
formance when implemented with mes-
sage-based interfaces and distributed
platforms. In an earlier installment
(“Making Scientific Applications as Web
Services,” vol. 6, no. 1, 2004, pp. 93–96),
we discussed the inevitable latency dif-
ferences between message- and method-
based interactions; messages could expe-
rience 100s of milliseconds in network
latency down to a millisecond or so for
communication between nearby services.

We should build services that are as
small as possible given the performance
implications from the decomposition.
Services are the package created by tra-
ditional programming models and lan-

guages apply. Rather than discussing
this aspect, however, we’ll look at a
higher level, with services as the atomic
unit whose management and packaging
into grids needs to be explored. I use
the term “simple service” in this arti-
cle’s title to refer to services con-
structed in this fashion to be as small as
possible given inevitable performance
and functionality constraints.

Packaging Services
and Resources into Grids
In this article, grids represent a pack-
aging and coupling approach that gen-
eralizes and distributes a familiar pro-
gression taken from the traditional
software hierarchy: lines of code →
methods (subroutines) → objects (pro-
grams) → packages (libraries). Figure 1
shows that we can consider grids this
way, using a service or a resource as the
basic building block. However, a given
grid is not the last word; it can be a
building block in a larger grid. Thus, I
propose building systems as grids of
grids, with single services or resources
viewed as a special case of (small) grids.

In Figure 1, I chose to separately
specify grids that correspond to re-
sources (made up of data repositories,
sensors, and CPUs) as well as those cor-
responding to functionalities (software
services). This can be confusing be-
cause every grid resource is represented
by a service. Thus, we could simplify all
this and just talk about services.

Methods Services

Clusters

Massively
parallel processors

Functional grids

Compute
resource grids

Federated
databases

CPUs

Databases

Sensor

Data
resource grids

Sensor nets

Overlay
and compose
grids of grids

Figure 1. Composing functionality and resources in a grid of grids. This illustrates
several different hierarchical packaging including those of traditional software
engineering, CPU clusters, federated databases, and sensor nets. The grid-of-grids
concept generalizes these ideas.



4 COMPUTING IN SCIENCE & ENGINEERING

W E B  C O M P U T I N G

This approach provides some unifi-
cation of well-known concepts; for ex-
ample, an individual grid service could
correspond to a single database using
the Open Grid Service Architec-
ture–Data Access and Integration
(OGSA–DAI) technology described in

an earlier installment (“Integrating
Computing and Information on Grids,”
vol. 5, no. 4, 2003, pp.94–96). A feder-
ated database then would correspond to
a database grid. As another example, an
individual CPU could have a grid ser-
vice interface; a cluster grid would cor-

respond to a cluster of CPUs aggregat-
ing the individual CPU simple services.

Let’s look at another example, this
time from education: science grids in
schools and universities. As Figure 2
shows, education involves many sepa-
rate communities and capabilities that
form independent electronic (virtual)
organizations supported by their own
grids. We create an education grid us-
ing a grid of grids by linking and adapt-
ing services in the component grids.

Traditional specialized educational
services are organized as a learning-
management grid; A digital library grid
could organize and deliver knowledge;
a campus grid offers digital registration
services; teacher educator grids link
pre-service (school of education) and
in-service teaching Grids comple-
mented for museums by an informal
educator grid. The learners, parents,
and other education stakeholders all
naturally form their own grids.

Finally, science education could be
addressed in this framework by linking
in research science grids such as that of
ServoGrid (Figure 3). These compo-
nents grids are interfaced and com-
posed with transformation services to
form a science education grid of grids.
The research grid includes databases,
field data, sensors, filters (to pre-
process data from sensors and data-
bases), geographical information sys-
tem (GIS) services organized as their
own grid, and discovery and simula-
tion services. Figure 3 also shows the
needed portals and user interfaces to
the grid of grids. In a previous install-
ment (“Grid Computing Environ-
ments,” vol. 5, no. 2, 2003, pp. 68–72),
we described grid portal architectures
involving portlets that support the
construction of portals for composite
grids from user interface components
for individual grids and services.

Figures 2 and 3 illustrate the key idea

Geographical
information

systems

Repositories
Federated databases Sensors

Streaming data Field trip data

Data
filter

services

Research
simulations Analysis and

visualization portal

Research ServoGrid Education

?
Discovery
services

Customization
services

from research
to education

Education grid
computer farm

Figure 3. Geoscience research and education grids. ServoGrid is a science research grid
built by a team led by the Jet Propulsion Laboratory and aimed at Solid Earth research.
Research activities are on the left and a Geoscience education grid is on the right. 

Campus or
enterprise

administrative
grid

Digital
library
grid

Learning
management
or LMS grid

Science grids
bioinformatics
earth science...

Publisher
grid

Student–parent...
community grid

Informal
education
(museum)

grid

Inservice teachers
Preservice teachers
School of education

Teacher educator
grids

Education grid

Typical science grid
service such as research
database or simulation Transformed by

grid filter to form
suitable for education

Figure 2. Science education as a grid of grids. One approach to building an
education Grid that exploits relevant resources and communities that we’d expect
to be independently organized into grids. 



JULY/AUGUST 2004 5

of using transformations or filters to
adapt services in old component grids
to the new education grid. This ap-
proach could take research simulation
or database services and simplify them
for use in education. The resulting ed-
ucation grid would consist of three ser-
vice types: those unique to education,
such as educational metacontent (lesson
plans and objectives), online knowledge
bases, and grading and homework ser-
vices. These education-specific services
are delivered by learning-management
and digital library grids. The second
category of service in an education grid
of grids is illustrated by services like
collaboration that are essentially the
same as those developed for other grids;
in the third category there are the
transformed grid resources developed
for research but transformed to directly
support teaching and learning.

Thus, we first should build the sim-
ple services discussed earlier and then
package them into atomic (building-
block) grids covering core functionali-
ties and services; geoscience, digital li-
braries, and learning-management
systems are example atomic grids. Fig-
ure 3 shows a geoscience grid that uses
a geographical information system
(GIS) grid as a component. After defin-
ing the basic grids, we can build most
operational grids by linking compo-
nent basic grids and customizing them
by adding services to filter or transform
the component grids’ services. Thus,
our end result is a grid of grids.

Figure 4 shows another grid-of-grids
example. It illustrates how we can build
grids to support a national critical in-
frastructure (CI). The US Department
of Homeland Security identified these
infrastructures to include agriculture
and food, water, health, industrial and
defense, telecommunications, energy,
transportation, banking and finance,
chemical industry and hazardous ma-

terials, and postal and shipping.
In this case, the critical atomic grids

include sensors, GIS, visualization,
computing, and collaboration. Figure
4 also shows the core grid services we
need, such as registries, database, meta-
data, security, notification, workflow,
and messaging. These core services
and atomic grids are composed with in-
frastructure-specific services to form a
particular CI grid of grids.

Figure 4 also shows how we can reuse
atomic grids in all CI grids and illustrates
important interoperability principles
with which grids are built. These CI
grids are, in turn, customized, composed,
and overlaid with other grids (such as
weather, census data, and so on) for dif-
ferent CI communities. Thus, we can
generate grids aimed at public health,
emergency response (command and con-
trol), or crisis management, infrastruc-
ture planning, education (schools), and
training (managers and first responders).
We can apply the grid-of-grids concept
recursively and dynamically.

M y approach builds grid systems
hierarchically—using traditional

software engineering to describe the

structure of individual simple services—
and aggregates them into atomic grids
that perform core functionalities. Atomic
grids are composed into higher-function
grids of grids. Using transformation ser-
vices in this integration of component
grids distinguishes this packaging ap-
proach from that common to libraries.

Although there is a lot of research on
the workflow technology supporting
the composition of services (www.ex-
treme.indiana.edu/groc/ggf10-ww/in-
dex.html), it seems that no one has
given much consideration to the capa-
bilities of modern integrated develop-
ment environments for traditional soft-
ware models and using them for the
higher level of integration necessary in
grids of grids. In fact, it is hard to sup-
port my suggestion to make services as
small as possible given the poor sup-
port for managing them. I expect the
ideas described here to receive increas-
ing attention in the future with the
growing importance of software engi-
neering and its extension to services.

Geoffrey Fox is director of the Community

grids Lab at Indiana University. Contact him at

gcf@indiana.edu; www.communitygrids.iu.

edu/IC2.html.i

Flood critical 
infrastructure grid

Gas critical 
infrastructure grid

Flood services
and filters

Gas services
and filters

Data access–storageRegistry

Security Notification Workflow Messaging

Metadata

Core grid services

Physical network

Collaboration grid

Sensor grid GIS grid Compute grid

Visualization gridPortals

Electricity critical 
infrastructure grid... ...

Figure 4. Critical infrastructure (CI) grids built in a composite fashion. A nation’s CIs,
such as water and electrical or natural gas power, can be organized hierarchically as
a set of component grids. The latter include collaboration, visualization, sensor, GIS
(geographical information system) and computing grids. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 1.8)
  /CalRGBProfile (Apple RGB)
  /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


