
MARCH/APRIL 2004 Copublished by the IEEE CS and the AIP 1521-9615/04/$20.00 © 2004 IEEE 93

Editor: Geoffrey Fox, gcf@indiana.edu

WEB COMPUTINGW E B C O M P U T I N G

scientific code preparation, execution,
and debugging. But a scientific pro-
gramming environment must address
some of the key features that differen-
tiate it from commodity or business
computing for which many good tools
exist. These special features include

• floating-point arithmetic,
• performance and support for scal-

able parallel implementations,
• specific scientific data structures and

utilities (such as mesh generation),
and

• integrating simulations with distrib-
uted data.

We have discussed the last area sev-
eral times in this department because
it is a major feature that the Grid
brings to scientific computing. This
article focuses on it again, discussing
technologies needed for software inte-
gration, which is part of the overall
struggle to develop self-contained
modules that link together to create
larger applications. Subroutines,
methods, libraries, objects, compo-
nents, distributed objects, and services
are different ways of packaging soft-
ware for greater reusability. Here, we
will look at the service model for soft-
ware modules.

Criteria for
Choosing Software
We must address the problem of de-
veloping programming environments
from two points of view. First, we must
identify requirements and then—as
best as we can—identify the best archi-
tectures and technologies to address
them. Then two difficult but more im-
portant issues surface: What is the life-
cycle model? How do you maintain the
environment and update it as the un-
derlying computing infrastructure dri-
ven by Moore’s law marches on with
major architecture and preferred ven-
dor changes on a few years’ timescale?

The lifecycle issue is particularly im-
portant in areas such as scientific and
high-performance computing where
the market is not large enough to sup-
port all the nifty capabilities that we
need. This affects hardware and soft-
ware, but I focus on the latter here.

Though you might have a great idea
for a new parallel-computing tool and
obtain funds to develop an initial and,
perhaps, highly successful prototype,
ongoing funds to refine and maintain
the system often are much harder to
obtain unless you can find a sustainable
commercial market for it. Thus, you
should look at existing commercial ap-
proaches and use them wherever pos-

sible. Sometime, this means choosing
a less-than-optimal solution, but a sup-
portable almost-good-enough solution
typically is preferable to an optimal-
though-unsustainable one.

For example, suppose your latest par-
allel-computing software tool requires
an application developer to modify or
annotate his or her code. Let’s say he or
she does it, and the new code version
works well. But when the next-genera-
tion hardware is installed, the tool isn’t
upgraded, and thus the code won’t run
at all. A developer then must start again
on its parallelization. For this reason, I
usually recommend using the rather
painful explicit message-passing ap-
proach to parallelization. It is supported
by a sustainable technology (message-
passing interface; MPI; www.mpi-fo-
rum.org/) even though there are
higher-level approaches such as
openMP (www.openmp.org) and high-
performance Fortran (HPF; www.crpc.
rice.edu/hpff/), which offer more pro-
ductive but not clearly sustainable
portable programming models.

My millisecond rule says that you
should use commodity (Internet, peer-
to-peer, or Grid) programming mod-
els for those parts of your program-
ming that can tolerate millisecond or
longer delays, or, more precisely, la-
tencies. To see how this fits, first, let’s
revisit the Grid, or Web service, pro-
gramming model.

Grid and
Web Service Programming
I’ll frame this discussion with the Grid
programming model that I covered

SOFTWARE DEVELOPMENT
AROUND A MILLISECOND
By Geoffrey Fox

I N THIS INSTALLMENT, I CONSIDER SOFTWARE-DEVELOPMENT

METHODOLOGIES, EMPHASIZING THOSE RELEVANT TO LARGE-

SCALE SCIENTIFIC COMPUTING. MANY PROJECTS AIM TO IMPROVE

THE SCIENTIFIC COMPUTING ENVIRONMENT, INCLUDING

94 COMPUTING IN SCIENCE & ENGINEERING

briefly in the March/April 2003 Web
Computing department (“Grid Com-
puting Environments,” pp. 69–72). The
article described a two-level program-
ming model for the Grid and, more
generally, the Internet (see Figure 1). At
the lower level, microscopic software is
written in familiar languages such as
Fortran, Java, and C++ to control indi-
vidual CPUs. We assume that these
languages generate nuggets, or code
modules; associating these nuggets with
a single resource is what traditional
programming addresses. Practical ex-
amples of the architecture Figure 1 il-
lustrates could be an SQL interface to
a database, a parallel image-processing
algorithm, or a finite-element solver.

After creation, this nugget with a
well-understood (but, of course, still
unsolved) programming model must be
augmented for the Grid by integrating
the distributed nuggets together into a
complete executable exemplified in Fig-
ure 1c. For the Internet, nuggets are
Web services; for the Grid, they are
Grid services; for Corba, nuggets are
distributed objects; and for Java, they

are Java objects communicating via re-
mote method invocation (RMI).

In the September/October 2002 in-
stallment of this department (“Message
Passing: From Parallel Computing to
the Grid,” pp. 70–73), I described how
the Grid programming model and sup-
port technologies are very different
from those for parallel computing,
which, at first glance, seem to be tack-
ling similar nugget-integration prob-
lems. Thus, if you are simulating a
physical system, you typically divide it
into regions and simulate each region
in a different parallel-computer node.
The software simulating each region
becomes the nuggets, and it must in-
tercommunicate as Figure 1c shows.

Parallel computing is characterized
by relatively small-sized but very fre-
quent messaging among synchronized
processing nodes. This requires high
bandwidths but, more importantly, low
latency. For a typical node with giga-
flop-per-second performance, you
might use gigabyte-per-second intern-
ode communication bandwidth and
0.01-ms latency.

In a corresponding Grid situation,
your nodes are more loosely coupled,
and you might expect a bandwidth sim-
ilar to the parallel-computing case but
with a much higher latency. As dis-
cussed in the September/October 2002
article, network transit times (hundreds
of milliseconds for transcontinental
links) determine Grid latencies. Of
course, different network performance
and programming models reflect differ-
ent requirements for those applications
suitable for parallel and distributed sys-
tems. Typically, parallel computers sup-
port nuggets coming from a single
large, application domain with data de-
composition. Grid systems support
loosely coupled components and func-
tional decompositions of problems.

A good example of a loosely cou-
pled case is the analysis of billions of
events from accelerator collisions.
Each event can be processed indepen-
dently, needing only access to the raw-
event data and then accumulation into
common statistical measures to link
the nuggets together.

Functional decompositions, such as
satellite-data image processing, often
are latency-insensitive because infor-
mation can be pipelined through dif-
ferent filters as it travels from source to
final store. These latency-insensitive
applications can cope with the hun-
dreds or thousands of milliseconds’
communication latencies implied by a
Grid implementation.

However, we are not studying this is-
sue here. Rather, we assume that for
such Grid applications, the synergy with
the commercial Web service area will
ensure the development of excellent
programming tools and runtime envi-
ronments. Already, the Organization for
the Advancement of Structured Infor-
mation Standards (OASIS; www.oasis-
open.org) and the World Wide Web
Consortium (W3C; www.w3.org) are

W E B C O M P U T I N G

(a) Compute/file nugget

(b) Database nugget

(c) Workflow linking nuggets

> file6 a.out < file5

OGSA-DAI

JDBC Data

Nugget

Nugget1 Nugget2

Nugget4Nugget3

Nugget

Figure 1. Two-level Grid programming model exposing the nuggets programmed at
the Grid level. Nuggets can be software modules or any form of electronic resource.
(a) File and program nuggets capturing a simple job reading and writing a file, (b) a
nugget representing a database and its access, and (c) a workflow linking four
nuggets, with input and output data streams between them.

MARCH/APRIL 2004 95

developing standards such as the Busi-
ness Process Execution Language
(BPEL) and Web Service Choreogra-
phy, respectively. These involve the
commercial heavy hitters, including
IBM, Microsoft, Oracle, and Sun. This
workflow area is critical for commercial
applications, and a recent e-Science
Workflow Services workshop (www.
nesc.ac.uk/action/esi/contribution.cfm?
Title=303) surveyed their use in science.

When to Use Grid
Programming Tools
Though Grid applications are charac-
terized by delays of hundreds of mil-
liseconds, the delay time includes some
typical inter-enterprise, or global, net-
work delays. The actual software over-
head is characteristic of single-CPU-
network processing time, process-
switching times, responses of typical
servlet-based Java servers, or, perhaps,
thread- or process-invocation times.
These times are more like a millisecond
for a typical server response, thus, you
can use Grid programming tools in any
application in which an approximately
1-ms delay is acceptable. These uses
need not be network based but can in-
clude linking software components
within a single CPU. We can identify
several application classes in which a
millisecond delay is acceptable.

As I said earlier, the basic distributed
service integration typical of Grid pro-
gramming includes the linkage of mul-
tiple data and computing components.
The data category includes streaming
sensors, file systems, and databases.
The computing category includes on-
the-fly filtering and large-scale simula-
tions, with, perhaps, real-time Grid
data assimilation.

This class of problem is similar to ap-
plication integration in enterprise com-
puting and multidisciplinary applications
in scientific computing. The former

class could include human resources in-
tegration, marketing, and customer sales
and satisfaction databases. Figure 2 il-
lustrates examples of the latter class—
needed in stealth-aircraft design—by the
integration of fluid structural and elec-
tromagnetic signature simulations.
However, essentially all fields of compu-
tational science need some sort of code
coupling for advanced applications. The
coupling could be loose, as in “run pro-
gram A and feed results into program
B,” or close, in which two or more pro-
grams exchange data interactively
throughout the simulation.

A loose-coupling case always can use
the Grid programming model. If the
quantity of data exchanged is large
enough to mask the latency, a close-
coupling case also can use these com-
modity technologies. This type of in-
tegration often appears in so-called
problem-solving environments (PSEs),
which offer domain-specific portals to
access needed services. PSEs need
some sort of software bus to integrate
the services and applications they con-
trol. I believe that the Grid program-
ming model will become the technol-
ogy of choice and replace today’s
often-used Java or Python coupling.

There is another, very different,
millisecond-tolerant application class
in which you can use the Web service
approach to build interactive applica-
tions. This class exploits the observa-
tion that people don’t do very much in
a millisecond, so you can use these
technologies to build traditional desk-
top or client applications such as
Word or PowerPoint. You can put the
application’s core into a Web service
and use messaging to transport user
input (such as mouse and keyboard
events) as messages from the user to
the service. This is the so-called
model–view–control (MVC) para-
digm for applications, which appeared

in our discussion of Grid computing
environments and portlets in the
March/April 2003 installment (see
Figure 3).

MVC has been around a long time,
but it’s not usually implemented with
explicit messaging. Building integrated
desktop applications like our current
ones provides higher performance than
the Grid programming model, but as
Moore’s law continues to make com-
puters faster, the Grid’s modularity and
power becomes more attractive. The
Grid approach also lets us easily re-
target applications to different client
platforms—Windows, Linux, MacOS,
PDA, Kiosk, or another interface sup-
porting access for the disabled.

Figure 4 shows another obvious ap-
plication to support collaboration with
a single model: Web services driving
multiple views, or clients. I think these
ideas could be a compelling software
architecture for a new generation of
clients we might see developed to sup-
port Linux or cell-phone clients. Note
that the architecture in Figures 3 and
4 works wherever clients and Web ser-
vices are placed—they can be sepa-
rated by the hundreds of milliseconds
characteristic of continental networks,
for example. However, they only give
acceptable interactive performance
when the model and view are run on
the same machine or nearby machines.

Other commodity technologies—

 Structural
analysis

Electromagnetic
signature

Fluid flow

Figure 2. Designing a stealth biplane
with coupled simulations and structural
properties. We can achieve this by
simulating the three characteristics
shown and optimizing system
parameters affecting them all.

scripting languages such as Python and
Perl—can tackle some of the applica-
tions I just discussed. You can expect
commercial software support to be
good for both Grid and scripting ap-
proaches. In fact, because scripting
tends to use method calls and not ex-
plicit messaging, the intrinsic overhead
can be substantially lower than the mil-
lisecond Grid-case guideline. We can
counter with two arguments in favor of
the Grid model: first, message-based

interfaces give greater modularity than
method calls, which allow side effects,
and, second, the message-based model
lets you implement Grid or Web ser-
vices if you need them. Thus, I suggest
that perhaps, three different regimes
are characterized by a module’s typical
transaction time:

• a millisecond or greater—Grid- and
Web-service-based technologies for
linking modules,

• 10 microseconds or less—high-per-
formances technologies such as
MPI, and

• 10 to 1,000 microseconds—scripting
and other object-based environments.

Further refinements of the millisecond
rule can help refine the third regime; I
will address this at another time.

I nevitable computer hardware im-
provements will change the mil-

lisecond rule by shortening it, which
could be very important in enabling
new architectures and message-based
applications. For example, the current
millisecond rule was a “10-millisecond
rule” five to 10 years ago. Then, this
overhead was comparable to user in-
terface times and thus made message-
based user interfaces difficult. As the
overhead continues to diminish, we can
expect other currently infeasible appli-
cations to become possible. Another
area previously mentioned and ready
for future development is extending
the rule to identify the region in which
scripting languages can interpolate be-
tween message-based and high-
performance architectures.

Geoffrey Fox is director of the Community

Grids Lab at Indiana University. Contact him at

gcf@indiana.edu; www.communitygrids.iu.

edu/IC2.html.

W E B C O M P U T I N G

ModelParticipant

Web service

Output port

Millisecond
overhead

Input port

Master client

Figure 4. Collaboration using a shared output port of a model–view–control message-
based application. This extends the scenario of Figure 3 by adding two users. As
before, one sends user input to the Web service and receives information to generate
the display. These correspond to input and output user-facing ports on the Web
service. This figure also shows a second collaborative user who shares the output
user-facing messages, and receives synchronous display updates from the first user.

Model Control View

Web service

Millisecond overhead

Input/Output
port

Figure 3. A model–view–control application using explicit messaging for control.
The Web service holds the logic of a desktop application, and communicates by
explicit messages with a user-interface module, which handles display rendering
and the catching and transferring of user input and mouse and keyboard events to
the Web service.

Submissions: Send one PDF copy of articles and/or proposals to Francis Sullivan, Editor in Chief, fran@super.org. Submissions should not exceed 6,000 words and 15 references. All
submissions are subject to editing for clarity, style, and space.

Editorial: Unless otherwise stated, bylined articles and departments, as well as product and service descriptions, reflect the author’s or firm’s opinion. Inclusion in CiSE does not
necessarily constitute endorsement by the IEEE, the AIP, or the IEEE Computer Society.

Circulation: Computing in Science & Engineering (ISSN 1521-9615) is published bimonthly by the AIP and the IEEE Computer Society. IEEE Headquarters, Three Park Ave., 17th Floor,
New York, NY 10016-5997; IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, PO Box 3014, Los Alamitos, CA 90720-1314, phone +1 714 821 8380; IEEE
Computer Society Headquarters, 1730 Massachusetts Ave. NW, Washington, DC 20036-1903; AIP Circulation and Fulfillment Department, 1NO1, 2 Huntington Quadrangle, Melville,
NY 11747-4502. Annual subscription rates for 2004: $42 for Computer Society members (print only) and $48 for AIP society members (print plus online). For more information on other
subscription prices, see www.computer.org/subscribe or http://ojps.aip.org/cise/subscrib.html. Back issues cost $20 for members, $96 for nonmembers.

Postmaster: Send undelivered copies and address changes to Circulation Dept., Computing in Science & Engineering, PO Box 3014, Los Alamitos, CA 90720-1314. Periodicals postage
paid at New York, NY, and at additional mailing offices. Canadian GST #125634188. Canada Post Publications Mail Agreement Number 0605298. Printed in the USA.

Copyright & reprint permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of US copyright law for private use of
patrons those articles that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood
Dr., Danvers, MA 01923. For other copying, reprint, or republication permission, write to Copyright and Permissions Dept., IEEE Publications Administration, 445 Hoes Ln., PO Box
1331, Piscataway, NJ 08855-1331. Copyright © 2004 by the Institute of Electrical and Electronics Engineers Inc. All rights reserved.

