
(synchronous as in Thinking Ma-
chines’ CM-1 and CM-2). Sometimes
it’s multiple instruction, multiple data,
as in networked computers; or shared
memory; or vector nodes; or multi-
threaded. And at times, it’s more or less
all of these. The debate recently
perked up when the Japanese Earth
Simulator supercomputer achieved 40
Tflops using a slightly heretical archi-
tecture. The arguments are accompa-
nied by a related discussion as to the
appropriate parallel computing model.

Whatever the machine architecture,
users would certainly like to just write
their software once and see it mapped
efficiently onto parallel hardware. How-
ever, experience has found there is an
almost irreconcilable difference be-
tween the way users would like to write
their software and the way machines
must be instructed to run efficiently. In
particular, the natural languages for se-
quential machines do not easily paral-
lelize. It is interesting that although
languages are improving (Fortran, C,
C++, Java, Python), writing parallel
code has not gotten easier. Most sci-
ence and engineering simulations are
intrinsically parallel (as “nature is par-
allel” perhaps), but the obvious expres-
sion of these problems in today’s com-
mon languages runs poorly on most

parallel machines. In fact, the resulting
parallelism is not explicit but a conse-
quence of complex dependencies that
are often only discoverable at runtime.
Of course, major efforts to build better
parallel compilers and runtime systems
continue, but it is a difficult battle.
This leads to the disappointing con-
clusion that the user must help the
computer in some way or other. Then
of course the different architectures
suggest different programming mod-
els (openMP, HPF, UPC, MPI, ...).
However, the conservative user will ex-
press the parallelism explicitly by di-
viding up the defining data domain
into parts. The system manages each
part as a separate process (the single-
program, multiple-data model) that
communicates via messages. We usu-
ally implement this messaging with
MPI today.

This use of message passing in paral-
lel computing is a reasonable decision,
because the resultant code probably runs
well on all architectures. This choice is
not a trivial decision: it requires sub-
stantial work over and above that needed
in the sequential case.

Messaging in grid and
peer-to-peer networks

Now let us consider grid and peer-

to-peer networks, which I’ve discussed
in previous columns. Here, we are not
given a single, large-scale simulation,
the archetypical parallel computing ap-
plication. Rather, we start with a set of
distributed entities—sensors, people,
codes, computers, data archives—and
the task is to integrate them. In paral-
lel computing, we decompose into
parts; in distributed computing, we as-
semble parts. In some sense, decom-
position is surely harder than compo-
sition (although Humpty Dumpty
would not necessarily agree). In our
case, the algorithmic and synchroniza-
tion issues in parallel computing are
technically very hard. For heteroge-
neous components and their linkages,
it is the software engineering that is
challenging.

In parallel computing, explicit mes-
sage passing is a necessary evil. For
grid and P2P networks, messaging is
the natural universal architecture.

Objects and messaging
Object-based programming models

are powerful, and objects naturally use
message-based interactions. They have
not been particularly helpful for the
decomposed parts of parallel applica-
tions, because these are not especially
natural objects in the system; they are
what you get by dividing the problem
by the number of processors. On the
other hand, the linked parts in a dis-
tributed system (the Web, a grid, a P2P
network) are usefully thought of as ob-
jects; in contrast, they are created for
parallel computing by adapting the
problem to the machine architecture.

70 1521-9615/02/$17.00 © 2002 IEEE COMPUTING IN SCIENCE & ENGINEERING

MESSAGE PASSING: FROM PARALLEL
COMPUTING TO THE GRID
By Geoffrey Fox

OVER THE PAST DECADES, THE COMPUTATIONAL SCIENCE

COMMUNITY HAS DEBATED THE BEST ARCHITECTURE

FOR PARALLEL COMPUTING. SOMETIMES IT’S DISTRIBUTED

MEMORY, SOMETIMES SINGLE INSTRUCTION, MULTIPLE DATA

Editor: Geoffrey Fox, gcf@indiana.edu

WEB COMPUTINGW E B C O M P U T I N G

SEPTEMBER/OCTOBER 2002 71

Requirements for a messaging
service

Messaging for distributed and paral-
lel computing share some common fea-
tures. For instance, in each case, mes-
sages have a source and a destination. In
P2P networks especially, the destination
can be specified indirectly and deter-
mined dynamically while the message is
en route using the message’s properties
(published metadata) matched to sub-
scription interest from potential recipi-
ents. Groups of potential recipients are
defined in both JXTA (www.jxta.org)
for P2P and in MPI for parallel com-
puting. Collective communication—
messages sent by hardware or software
multicast—is important in all cases;
much of MPI’s complexity is devoted to
this. Again, in both cases, we must sup-
port messages containing complex data
structures with a mix of different types
of information. We must also support
various synchronization constraints be-
tween sender and receiver; perhaps
messages should be acknowledged.
Messaging systems share these general
characteristics.

There are also many differences be-
tween distributed and parallel comput-
ing, so perhaps performance is the
most important issue. The message
passing of parallel computing is fine-
grain; latencies (overhead for zero-
length messages) should be only a few
microseconds. The bandwidth must

also be high and is application depen-
dent, and communication needs de-
crease as each node’s grain (memory)
size increases. As a rough goal, it would
be good if each process could receive
or send one word in the time it takes to
do a “few” (around 10) floating-point
operations. MPI is trying to do some-
thing quite simple extremely fast.

Now consider message passing for a
distributed system. Here, we have ele-
gant objects exchanging messages that
are themselves objects. As I mentioned,
this object structure is natural and use-
ful, because it expresses key system fea-
tures. In my May/June 2002 column, I
stressed that XML is a powerful new
approach that expresses objects in a
convenient way with a familiar syntax
that generalizes HTML. It is not sur-
prising that using XML to define dis-
tributed systems’ objects and messages
is now becoming popular. Figure 1
shows my simple view of a distributed
system—a grid or P2P network—as a
set of XML-specified resources linked
by a set of XML-specified messages.
Again, a resource is any entity with an
electronic signature, such as a com-
puter, database, program, user, or sen-
sor. The Web community has intro-
duced SOAP (www.w3.org/TR/2001/
WD-soap12-part0-20011217), which
is essentially the XML message format
described earlier plus Web services,
which are XML-specified distributed

objects. Web services are “just” com-
puter programs running on one of the
computers in a distributed set. Using
one of Apache’s popular Web servers
(www.apache.org) to host one or more
Web services is a common approach.
In this simple model, Web services
send and receive messages on so-called
ports; each port is roughly equivalent
to a subroutine or method call in the
traditional programming model. The
messages define the subroutine’s name
and its input and (if necessary) output
parameters. This message interface is
called WSDL (Web Service Definition
Language, www.w3.org/TR/wsdl), an
important W3C standard.

As an example, the simplest Web
service could be one that serves up
Web pages, with the URL as input pa-
rameter and the page itself as returned
value. By default, Web services use the
same HTTP protocol as this simple
case but use the rich XML syntax to
specify a more complex input and out-
put. The Web service is the unit of dis-
tributed computing in the same way
that processes and threads are the unit
for a single computer. Processes have
many methods; correspondingly, Web
services have many ports. As seen in
Figure 2’s P2P grid, ports are either
user-facing (messages go between user
and Web services) or service-facing
(where messages are exchanged be-
tween different Web services). Using

XML
skin

Resource

XML-specified
messages

Database

XML skinSoftware

Resource

Figure 1. XML-
specified
resources linked
by XML-specified
messages.

72 COMPUTING IN SCIENCE & ENGINEERING

Web services for a grid requires exten-
sions to WSDL. The resultant Open
Grid Service Architecture (www.globus.
org/research/papers/ogsa.pdf) is a ma-
jor effort in the Global Grid Forum
(www.gridforum.org) at the moment. (I
will explain Web services and WSDL
in more detail in a future column.)

One particularly clever idea in
WSDL is the concept that you first de-
fine not methods themselves but their
abstract specifications. Part of WSDL
“binds” the abstract specification to a
particular implementation. You can
choose to bind the message transport
not to the default HTTP but to a dif-
ferent and perhaps higher-performance
protocol. For instance, if you had ports
linking Web services on the same com-
puter, you could in principle bind them
to direct subroutine calls. This concept
has interesting implications for build-
ing systems defined largely in XML at

the level of both data structure and
methods. We can imagine some nifty
new branch of compilation that auto-
matically converts XML calls on high-
performance ports and generates the
best possible implementation.

Performance of grid
messaging systems

The latency of grid messaging sys-
tems differs from that for MPI. It can
take 10 to 100 milliseconds for data to
travel between two geographically dis-
tributed grid nodes; in fact, the transit
time becomes seconds if you must
communicate between the nodes via a
geosynchronous satellite. Thus, a grid
is often not a good environment for tra-
ditional parallel computing. Grids do
not deal with the fine-grain synchro-
nization needed in parallel computing,
which requires a few-microsecond MPI
latency. Moreover, you can use differ-

ent messaging strategies with a grid
compared to parallel computing. In
particular, you might be able to afford
to invoke an XML parser and high-
level processing for messaging. Note
that interspersing a filter in a message
stream—a Web service or Corba bro-
ker perhaps—increases a message’s
transit time by some 1 to 3 millisec-
onds (a small price compared to typical
Internet transit times). This allows us
to consider building grid messaging
systems with substantially higher func-
tionality than traditional parallel com-
puting systems. The maximum accept-
able latency is application dependent.
If you are doing relatively tightly syn-
chronized computations among multi-
ple grid nodes, and if overlapping com-
munications and computations hide
the high latency, you must control the
latency and reduce it as much as possi-
ble. On the other extreme, if the com-

W E B C O M P U T I N G

DatabaseDatabase

to

Service-facing
Web service interfaces

User-facing
Web service interfaces

Messages

Figure 2. A peer-to-peer grid constructed from Web services with both user-facing and service-facing ports to send and receive
messages.

SEPTEMBER/OCTOBER 2002 73

putations are largely independent or
pipelined, you only need to ensure that
message latency is small compared to
total execution time on each node. An-
other estimate comes from cases with
users in the loop receiving messages.
Here, a typical scale is 30 milliseconds,
the time for a single frame of video-
conferencing or a high-quality stream-
ing movie. This 30-msec scale is not
really a limit on the latency but on its
variation. In most cases, a more or less
constant offset is possible.

Now consider the bandwidth re-
quired for grid messaging. This situa-
tion is rather different: large amounts
of information might need to be trans-
ferred between grid nodes, and you will
need the highest performance the net-
work allows. In particular, numbers of-
ten must be transferred in efficient bi-
nary form (say, 64 bits each) and not in
some ridiculous XML syntax such as
<number>3.14159</number>—with
24 characters requiring more band-
width and substantial processing over-
head. There is a simple but important
strategy here; note that in Figure 1, I
specified the messages in XML. This
let me implement the messages in a dif-
ferent fashion, which could be the very
highest performance protocol. As ex-
plained earlier, this is called binding
the ports to a particular protocol in the
Web service WSDL specification. So
what do we have left if we throw away
XML for the implementation? We cer-
tainly have a human-readable interop-
erable interface specification, but there
is more—which I can illustrate with
audio–video conferencing, which is
straightforward to implement as a Web
service. Here A/V sessions require
some tricky setup process where the
clients interested in participating join
and negotiate the session details. This
part of the process has no significant
performance issues and can be imple-

mented with XML-based messages.
The actual audio and video traffic does
have performance demands; here, you
can use existing fast protocols such as
RTP (Real Time Protocol). This is
quite general; many applications con-
sist of many control messages that can
be implemented in basic Web service
fashion, and just part of the messaging
needs good performance. So, you end
up with control ports running basic
WSDL and high-performance ports
bound to a different protocol.

Messaging services
Just as a standard MPI was good for

parallel computing, so the different re-
quirements of grid and P2P systems
could lead to a new family of message-
passing systems (see Figure 3). Such
systems could handle several capabili-
ties at the message layer largely inde-
pendent of applications. These include

• Network quality of service (defined
by the application)

• Secure transmission
• Collaboration
• Filtering channels to special clients

such as PDAs or those on a slow net-
work

• Efficient collective (multicast) mes-
saging with rich matching between
those sending and those interested in
receiving information

• Tunneling through firewalls

• Allowing flexible delivery schedules
linking synchronous and asynchro-
nous schedules

These details are still at the research
stage, but I expect more attention to be
paid to messaging systems as we build
large, distributed networks needed
both in e-science (see this column in
the July/August 2002 issue) and com-
mercial service-based systems. The
motivations for grid messaging systems
will be even greater than those for par-
allel computing. You can find more in-
formation on my work in this area at
http://grids.ucs.indiana.edu/ptliupages.
Also, Shrideep Pallickara in the Com-
munity Grids Laboratory at Indiana
(www.naradabrokering.org) has devel-
oped a message system for Web re-
sources designed according to the prin-
ciples I have sketched. It has been
compared with typical commercial mes-
saging systems, such as the Java Message
Service, and that in P2P networks (www.
jxta.org). I invite you to write to me or
to the magazine (cise@computer.org) to
report on work elsewhere.

Geoffrey Fox is director of the Community

Grids Lab at Indiana University. He has a PhD

in theoretical physics from Cambridge Univer-

sity. Contact him at gcf@indiana.edu; www.

communitygrids.iu.edu/lC2.html.

Web
service 1

(Virtual)
Queue

Message or
event broker

Web
service 2

WSDL ports,
abstract

application
interface

Message
system

interface

WSDL ports,
abstract

application
interface

User
profiles and

customization
Filter WorkflowRouting

Destination
source

matching

Figure 3. A messaging system for Web services.

