
Grid computing environments (GCEs),
which essentially describe the user side
of a computing system—how users in-
teract via a set of distributed back-end
resources.

Figure 1 illustrates a typical Grid ar-
chitecture, in which there is a fuzzy divi-
sion between GCEs and what is called
the “Core” Grid in the figure. The latter
includes access to resources, manage-
ment of and interaction between them,
security, and other such capabilities.

The new Open Grid Services Archi-
tecture (OGSA; www.gridforum.org/
ogsi-wg/drafts/ogsa_draft2.9_2002-6
-22.pdf), which is itself evolving, at-
tempts to describe these core capabili-
ties. The Globus project (www.globus.
org) is perhaps the best-known example
of core software implementation. In this
article, we will elaborate on GCEs and
discuss their relationship to portals and
Grid programming environments.

We base our analysis on a recent col-
lection of 28 articles on various ap-

proaches to GCEs (www3.interscience.
wi ley.com/cgi-bin/ i ssuetoc?ID
=102522447). This collection stemmed
from work of the GCE research group
of the Global Grid Forum (www.
gridforum.org/7_APM/GCE.htm).

Grid aspects that form GCEs are not
cleanly defined, although there is an op-
erational definition stemming from the
work areas of the GCE research group
of the Global Grid Forum. In this article
we describe the two major areas covered
by this research group today. First we
discuss “programming the Grid” and
then we follow with a discussion of por-
tals that control the user view of the
Grid. Together they provide a linked
component model for the middleware
and user interface to the Grid.

Programming the Grid
If we analyze the just-mentioned collec-
tion and similar papers, we find common
Grid features. The papers suggest a dia-
gram similar to that of Figure 1, but they

differ in the technology used (Perl versus
Python, for example), capability dis-
cussed, and the emphasis on the user ver-
sus program (back-end resource) view.

GCEs fulfill at least two functions:

• Programming the user side of the Grid
• Controlling user interaction—such as

rendering output and allowing user
input to certain Web pages

We’ve discussed the role of Web services
and the Grid in previous installments of
this column, so we can assume that our
Grid is implemented in terms of XML-
specified Web services. This assumption
might seem unreasonable, but the Web
services model really is a distributed object
model, and it has proven to be straightfor-
ward in converting other object models to
this approach. Thus, we can think of the
general approach of most modern GCE
work in terms of Web services.

A Programming Model
For this discussion, let’s think of appli-
cation software in a simple, two-level
hierarchy. Microscopic software written
in Fortran, C++, and Python controls
the individual CPUs. We assume that
these languages generate nuggets or
code modules. Traditional program-
ming then attempts to associate these
nuggets with a single resource.

Let’s look at some examples. The
nugget could be the SQL interface to a
database, a parallel image-processing al-
gorithm, or a finite-element solver. This
nugget programming must be augmented
for the Grid by integrating the distributed
nuggets into a complete executable.

68 Copublished by the IEEE CS and the AIP 1521-9615/03/$17.00 © 2003 IEEE COMPUTING IN SCIENCE & ENGINEERING

GRID COMPUTING ENVIRONMENTS
By Geoffrey Fox

T HE GRID IS RAPIDLY EVOLVING IN CONCEPT AND IMPLE-

MENTATION, BUT WITH THIS EVOLUTION COMES CORRE-

SPONDING EXCITEMENT AND CONFUSION AS TO THE “RIGHT”

WAY TO THINK ABOUT GRID SYSTEMS. ONE AREA OF INTEREST IS

Editor: Geoffrey Fox, gcf@indiana.edu

WEB COMPUTINGW E B C O M P U T I N G

Feedback?

Geoffrey Fox wants to hear from you. Comments? Applause? Criticism? Sug-
gestions? What topic shall we tackle next? We want to hear about interest-

ing topics and potential authors that could benefit Web Computing readers.

MARCH/APRIL 2003 69

Programming the nugget internals
is currently viewed as being outside
the Grid, although projects such as
Grid Application Development Soft-
ware (GrADS; www.hipersoft.rice.
edu/grads) are looking to integrate in-
dividual resource (nugget) and Grid
programming.

For this discussion, let’s assume that
each nugget is programmed and that we
just need to look at the nuggets’ overall
integration. This integration is actually
quite familiar, because it generalizes the
Shell and Perl scripts used in single re-
sources for Unix operating systems and
the Microsoft COM and ActiveX inter-
faces in the PC environment.

Several other examples of this style of
Grid programming exist. One broad class
is called the problem-solving environment
(PSE), which includes a portal interface to
a set of carefully chosen tool and applica-
tion services usually customized to a par-
ticular problem domain. This portal in-
terface has a graphical user interface
described later and some sort of “software
bus” to link the PSE’s different parts.

The integration of application nug-
gets is often called workflow; it offers
users many different paradigms. One
common model is a graphical interface
in which users can choose nuggets from
a palette and link nugget ports (or
channels). This approach is familiar
from visualization and image process-
ing, in which systems such as AVS (www.
avs.com) and Khoros (www.khoral.com)
are well established.

Industry has also developed XML
specifications for nugget linkage. Ex-
amples include the BPEL4WS Busi-
ness Process Execution Language for
Web Services (www-106.ibm.com/
developerworks/webservices/library/
ws-bpel) and the WSCL Web Services
Conversation Language (www.w3.org/
TR/wscl10).

Simpler and perhaps more powerful is

“just” programming the linkage with
scripting (such as Python) or compiled
(like Java) languages. We expect multiple
paradigms and multiple languages to be
useful, but it is unlikely that any one of
these is “best.” Important Grid ap-
proaches for describing the programming
of nuggets include the US Department of
Energy’s Common Component Archi-
tecture (www.cca-forum.org) and the Im-
perial College e-Science Networked In-
frastructure project (www.lesc.ic.ac.uk/
iceni) of the UK e-Science Program.

Programming Services. Although re-
lated to tasks familiar in programming
PCs or workstations, the “program-
ming the user view of the Grid” func-
tion in GCEs is significantly more
complicated. As Figure 1 shows, the
executable (integrated nuggets) is a
mixture of both system and application
services. We use system services on a
single workstation, but the Grid’s

meta-operating system services have
programmable interfaces; many of the
corresponding workstation (Windows,
Unix) services are more opaque.

Part of the OGSA initiative plans to
define and implement many of the system
services shown in Figure 1. In fact, all ser-
vices could be OGSA services when the
dust clears—certainly all will be Web ser-
vices. Alternatively, the OGSA and Web
service specifications might just merge.

Many Grid systems separately main-
tain both “real” entities (such as a soft-
ware nugget) and separate entities repre-
senting the metadata describing the “real”
entity. We expect this separation to con-
tinue and even expand because there is a
clear need to define more metadata. This
metadata will most likely be stored sepa-
rately from the resource it describes.
There is growing interest in using on-
tologies (rich application-specific infor-
mation) to describe the “semantics” (true
inner meaning versus “just” the program

User
services

Middleware

Raw
(HPC)

resources

Portal
services

Grid
computing

environments

“Core"
 Grid

System
services

System
services

System
services

Application
services

System
services

Portal
services

Database

Massively parallel
processor

Figure 1. A Grid architecture showing portal services and Grid computing
environments. We show typical resources at the bottom (a parallel computer, server,
and database from left to right); the terminal at the top represents the user. The
user and resources are linked by middleware built as (Web) services. At the bottom,
we have “Core” services such as registration and look-up, security, and basic
information. This is followed by less generic services that include applications built
as Web services. These are interfaced to the user via the portal services described in
the article. Grid computing environments support the portal services and the
interface of application services between themselves and to system services.

70 COMPUTING IN SCIENCE & ENGINEERING

interfaces) of services. This topic, which
is related to the W3C’s Semantic Web
initiative, deserves an article itself.

As a typical nugget programming
challenge, we must take into account the
needed latency and bandwidth of appli-
cation and network constraints (fire-
walls) to decide the most appropriate
communication mechanism between
nuggets. This runtime specification of a
service–service interaction’s implemen-
tation has no agreed-upon approach.
There are, of course, many examples;
agents, brokers, and profiles are typical
of the language we often use to describe
this adaptive mechanism.

All the articles and papers we re-
viewed are partly differentiated by their
emphasis on two different aspects:

• The programming paradigm and
within a paradigm, particular lan-
guages (scripted, visual, or compiled)

• The runtime library (which could be
shared among different paradigms in
functionality but might be expressed

rather differently in each separate
approach)

The GCE Shell. We can borrow fa-
miliar ideas from Unix with the basic
Grid programming primitives, usefully
expressed as a GCE shell, which is a cat-
alog of the primitive functions needed
to program the Grid. Shell primitives
are exposed to users in different ways
using different paradigms and expres-
sions of those paradigms. One way of
exposing the shell primitives is as a
command-line interface, but in many
cases, we would present a higher-level
view. Complete domain-specific, high-
level systems are “just” PSEs.

The Legion Grid system (http://
legion.virginia.edu) illustrates the GCE
shell clearly, with the Legion shell be-
ing a natural extension of a familiar one
from Unix. The GCE shell has some
features in common with the Unix
shell—for example, file manipulation is
critical in both Unix and the Grid.
However, there are some interesting

differences. For instance, the Grid (and
hence the GCE shell) must express

• The negotiated interaction between
nuggets and users

• Files and services hierarchies at all
levels of system, including local client,
middle-tier, and back-end resource

• The distinction between an object
and its metadata (copying an object
might be a major high-performance
task, but copying the metadata is
typically a modest effort)

Looking at the primitives needed, the
GCE shell must add several features
(compared to the Unix shell) such as

• Search
• Discovery
• Registration
• Security
• Better workflow than pipe or tee in

Unix shell
• Groups and other collaboration fea-

tures as in JXTA (www.jxta.org)
• Metadata handling
• Management and Scheduling
• Networks
• Negotiation primitives for service

interaction

We can simplify the discussion by us-
ing a uniform service model so that files
and executables are services and not dis-
tinct (as in Unix). To do this, we need a
“virtual service” concept so that an indi-
vidual file access is a service in the shell,
even though it could be implemented
differently. This is an example of possi-
ble areas for new compiler research.

Portal Services
Portal services control and render the
user interface–interaction; Figure 2
shows a key architectural idea emerging
in this area. We assume that all mater-
ial presented to users originates from a

W E B C O M P U T I N G

Portal services

Portal
aggregate

WS user-facing
fragments

Other Web services
user-facing ports

Render

Other Web services

User-facing
ports

Resource-facing
ports

Current provider

WSDL

Web service

U

O

F
I

R

O

F
I

JAVA

Figure 2. This illustration shows a portal providing an aggregation service for
document fragments produced by user-facing ports (on the right) of a content-
providing Web service. Generally, portals let you take multiple Web pages,
automatically produce controls to link between them, and let subsets of them be
displayed on a single Web page. Note that the Web service on the left consists of
content or some way of producing content (such the output of a simulation)
surrounded by input and output channels (or ports). Some ports (shown on the left)
communicate with other services or resources; another set (on the right)
communicate with the user. Several such Web services (each with user-facing ports)
are aggregated for the user into a single client environment.

MARCH/APRIL 2003 71

Web service, called a content provider
in this case. This content could come
from a simulation, data repository, or
stream from an instrument.

Each Web service has resource- or
service-facing ports that communicate
with other services. However, we are
more concerned with the user-facing
ports, which produce content for users
and accept input from client devices.
These ports use an extension of the
Web Services Definition Language
(WSDL), which is being standardized
by the Organization for the Advance-
ment of Structured Information Stan-
dards (OASIS). This extension of the
WSDL is called Web Services for Re-
mote Portals (WSRP; www.oasis-open.
org/committees/wsrp). Web Services
compatible with WSRP implement the
so-called portlet interface, which is be-
ing standardized in Java as part of a
Java Community Process project.

Most user interfaces need informa-
tion from more than one content
provider. For example, a computing
portal could feature separate panels for
job submittal, job status, visualization,
and other services. We could integrate
this in a custom, application-specific
Web service, but providing a generic
aggregation service is more attractive.
This lets users and administrators
choose which content providers to dis-
play and what portion of the display
real estate the content will occupy.

In this model, each content provider
defines its own user-facing document
fragment, which is integrated by a por-
tal. Major computer vendors, such as
Apache in its Jetspeed project (http://
jakarta.apache.org/jetspeed) provide
such aggregating portals. Portlets rep-
resent a component model for user in-
terfaces in the same way that Web ser-
vices represent a middleware com-
ponent model. Using this approach has
obvious advantages of reusability and

modularity. It gives us an elegant view
of the system, with workflow-integrat-
ing components (Web-services-repre-
senting nuggets) in the middle tier and

aggregating portals integrating them
for the user interface.

A portal being developed for the
NCSA Alliance illustrates these ideas.

Figure 3. This screen shows an example of the Jetspeed-based portal with an
aggregation of interfaces to several computing services. This NCSA computing
portal shows a set of “tabs” below the banner at the top. The tab shown has four
separate portlets (produced by four separate Web services); for example, there is a
file browser on the right and a Job Monitor interface at the bottom left.

Current provider

WSDL

Web service

U

O

F
I

R

O

F
I

Portal
(aggregator)

Selector

Filter

Selection
view

Customized
view

Control
channel

Customized
view

Control
channel User

profile

JAVA

Render

Figure 4. Portal services showing user-facing ports and negotiated interaction
between the user and content-providing Web services. This interaction can provide
universal access. It also expands the capabilities shown in Figure 2. The Web service
interacts with the aggregation portal through a control channel that lets the user-
facing ports declare support of multiple client renderings. The client user profile is
combined with this declaration to select a customized view displayed as a portlet.

COMPUTING IN SCIENCE & ENGINEERING

Figure 3 shows four separate interfaces (three left and one right)
to different GCE shell commands implemented as Web ser-
vices. Further capabilities are aggregated using tabs at the top.

This project involves many different institutions develop-
ing particular user interface fragments, with the component
interface architecture providing convenient integration. The
aggregation of the work of the different groups is provided by
Web services in the middle tier and by systematic use of
portlets at the user interface.

Figure 4 illustrates some other portal services that corre-
spond to the ability of adapting rendered content to accom-
modate particular clients. This approach addresses both dif-
ferences between devices (for example, immersive versus
desktop versus handheld) and issues of universal access (to ac-
commodate possible user physical limitations).

The architecture in Figure 2 becomes more complex be-
cause now we need negotiation between the client and the
content provider to define the rendered view. This requires a
portal selection service to process user profiles and choose ap-
propriate content. We can package common filters, for exam-
ple, to reduce resolution for multimedia content. This work
on universal access is familiar in audio–video conferencing and
is being pursued by W3C as part of its accessibility initiative.

The collection of aggregator, selector, and filtering capa-
bilities illustrates common portal services multiple Grid ap-
plications can share.

W e have described two very different aspects of Grid
computing environments. The Grid consists of a set

of distributed services covering application and system func-
tionalities. GCEs support the integration or orchestration of
these services, which you can think of as a set of middleware
components that form a GCE shell. This middleware com-
ponent model induces a corresponding component model for
the user interface supported by aggregation portals.

The component view should lead to more modular
reusable and productive environments with lower life-cycle
costs. The Grid programming ideas supported by GCEs are
active and exciting research topics. GCEs spanning both
software engineering and research are one of the most ac-
tive areas of progress for the Grid community.

Geoffrey Fox is director of the Community Grids Lab at Indiana Uni-

versity. He has a PhD in theoretical physics from Cambridge University.

Contact him at gcf@indiana.edu; www.communitygrids.iu.edu/lC2.

html.

Member Societies
American Physical Society
Optical Society of America
Acoustical Society of America
The Society of Rheology
American Association of Physics Teachers
American Crystallographic Association
American Astronomical Society
American Association of Physicists in Medicine
AVS
American Geophysical Union
Other Member Organizations
Sigma Pi Sigma, Physics Honor Society
Society of Physics Students
Corporate Associates

The American Institute of Physics is a not-for-profit membership
corporation chartered in New York State in 1931 for the purpose of
promoting the advancement and diffusion of the knowledge of
physics and its application to human welfare. Leading societies in the
fields of physics, astronomy, and related sciences are its members.

The Institute publishes its own scientific journals as well as those of
its Member Societies; provides abstracting and indexing services;
provides online database services; disseminates reliable information
on physics to the public; collects and analyzes statistics on the pro-
fession and on physics education; encourages and assists in the doc-
umentation and study of the history and philosophy of physics; co-
operates with other organizations on educational projects at all
levels; and collects and analyzes information on Federal programs
and budgets.

The scientists represented by the Institute through its Member
Societies number approximately 120,000. In addition, approxi-
mately 5,400 students in over 600 colleges and universities are
members of the Institute’s Society of Physics Students, which in-
cludes the honor society Sigma Pi Sigma. Industry is represented
through 47 Corporate Associates members.

Governing Board*
John A. Armstrong, (Chair), Marc H. Brodsky (Executive Director),
Benjamin B. Snavely (Secretary), Martin Blume (APS), William F. I.
Brinkman (APS), Judy R. Franz (APS),Donald R. Hamann (APS),
Myriam P. Sarachik (APS), Thomas J. McIlrath (APS), George H.
Trilling (APS), Michael D. Duncan (OSA), Ivan P. Kaminow (OSA),
Anthony M. Johnson (OSA), Elizabeth A. Rogan (OSA), Anthony A.
Atchley (ASA), Lawrence A. Crum (ASA), Charles E. Schmid (ASA),
Arthur B. Metzner (SOR), Christopher J. Chiaverina (AAPT),
Charles H. Holbrow (AAPT), John Hubisz (AAPT), Bernard V.
Khoury (AAPT), Charlotte Lowe-Ma (ACA), S. Narasinga Rao
(ACA), Leonard V. Kuhi (AAS), Arlo U. Landolt (AAS), Robert W.
Milkey (AAS), James B. Smathers (AAPM), Christopher H. Marshall
(AAPM), Rudolf Ludeke (AVS), N. Rey Whetten (AVS), Dawn A.
Bonnell (AVS), James L. Burch (AGU), Robert E. Dickinson (AGU),
Jeffrey J. Park (AGU), Judy C. Holoviak (AGU), Louis J. Lanzerotti
(AGU), Fred Spilhaus (AGU), Brian Clark (2002) MAL, Frank L.
Huband (MAL)
*Executive Committee members are printed in italics.

Management Committee
Marc H. Brodsky, Executive Director and CEO; Richard Baccante,
Treasurer and CFO; Theresa C. Braun, Vice President, Human
Resources; James H. Stith, Vice President, Physics Resources; Dar-
lene A. Walters, Senior Vice President, Publishing; Benjamin B.
Snavely, Secretary

Subscriber Services
AIP subscriptions, renewals, address changes, and single-copy or-
ders should be addressed to Circulation and Fulfillment Division,
American Institute of Physics, 1NO1, 2 Huntington Quadrangle,
Melville, NY 11747-4502. Tel. (800) 344-6902; e-mail
subs@aip.org. Allow at least six weeks’ advance notice. For address
changes please send both old and new addresses, and, if possible,
include an address label from the mailing wrapper of a recent issue.

