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Abstract 

 
Recently with many of blur-less or slightly blurred images, 
convolutional neural networks classify objects with around 
90 percent regression rates, even if there are variable sized 
images. However, small object regions or cropping of 
images make object detection or classification difficult and 
decreases the detection rates. In many methods related to 
convolutional neural network (CNN), Bilinear or Bicubic 
algorithms are popularly used to interpolate region of 
interests. To overcome the limitations of these algorithms, 
we introduce a super-resolution method applied to the 
cropped regions or candidates and this leads to improve 
recognition rates for object detection and classification. 
Large object candidates comparable in size of the full 
image have good results for object detections using many 
popular conventional methods. However, for smaller 
region candidates, using our super-resolution 
preprocessing and region candidates, allows a CNN to 
outperform conventional methods in the number of detected 
objects when tested on the VOC2007 and MSO datasets. 
 

1. Introduction 
Since Krizhevsky et al. [1] introduced specifically 

designed CNN architectures, there have been many 
methods to increase the rate of object classification on 
convolution neural networks (CNN). [2], [3], [4], [5], [6], 
[7] have shown performances to be increased. Nowadays, 
with many of blur-less or slightly blurred images, CNNs 
classify objects with around a 90 percent regression rates.  

Recently, there has been research focused on reducing 
the misdetection and detection failures on convolution 
neural networks with the help of generative adversarial 
network (GAN). Furthermore, GANs have been extended 
by using reinforcement learning, [8]. 

Frameworks such as Caffe and Tensorflow can help to 
design CNN models for any specific computer visioning. 
Also, from a computer infrastructure point of views, 
graphics processing unit (GPU), such as those from Nvidia 
substantially increase performance. These advances allow 

one to design systems for vision detection and classification 
designed to run in real time. 

However, even as there have been improvements of 
convolutional neural networks in multiple ways, there are 
still misdetections and detection failures for object 
classifications. For example, randomly 100 images from [9] 
were selected and preprocessed at three times lower 
resolution than the original images to build cropped images. 
Then they were interpolated by Bilinear and Bicubic 
algorithms, and finally, they were tested by  [3]. Figure 1 
shows the detection failure of the second person from left 
side of the image. The second person from the left side in 
Figure 1 is missed by the algorithm. We will compare 
several different algorithms and propose an advanced 
method in later sections. 

  

 
 
Figure 1: An example of object classification of “person” by 
CNN 
 

Alex Krizhevsky et al. in [1] described the number of 
categories and designed their network with 1,000 object 
classes from ImageNet. [2], [5] classified 22 object classes 
from PASCAL VOC 2007 [9]. There is a 200 class data set 
in ILSVRC2013, ILSVRC2017 contains several datasets 
and especially, the ImageNet dataset contains 1000 classes 
and Omniglot contains 1623 classes. But research is often 
done with VOC2007 20+1 classes even though there are 
datasets with more than several hundred classes.      

Recently, the most popular image size on CNN has been 
around 256x256. Spatial Pyramid Pooling network, Faster 
R-CNN, and ConvNet are examples testing the relevance of 
the image size. Advances in camera systems and the 
popularity of mobile devices cause consumers to demand 
higher resolution images. Moreover, in medical and 
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geometrical satellite imaging systems the demand of object 
classifications are required in strong. In [11], [12], [13], 
they shows that recurrent neural network model is capable 
of extracting information from an image by selecting a 
sequence of regions and processing by selected region at 
high resolution. 

In practical applications, there are many low quality 
image processing systems such as surveillance camera 
systems, car black-box systems, or even mobile phone 
cameras for taking pictures of long distance. For example, 
in surveillance systems it may not easy to increase the 
capacities for better image qualities because of their storage 
capacities, dark conditions on camera image sensors, and 
night visioning. In car black box systems, moving 
vibrations and the requirements of low electric power 
consumption may cause bad image compressions or lack of 
fast zooming or focusing devices. Especially, mobile phone 
pictures are blurred or have small target objects according 
to the limit of the software zooming algorithms. 

Thus, we will introduce our research to improve object 
classification rates with improvements through super 
resolution algorithms and convolution neural networks. 

2. Related works 
To support fast implementation such as video data, the 

number of classes in CNN is preferred to be kept small. The 
number of classes to detect or classify objects is a major 
factor on the design of systems. The number of neurons, 
even in a hidden layer, are required to increase to handle 
many classes and it causes the system to slow down because 
of several hidden layers associated with heavy 
computations. Papers such as [2], [14] have shown new 
methods or new parameters related to lower layers of neural 
networks. The paper [14] introduced a new feature 
extraction algorithm for object recognition. The paper [2] 
also improved CNN in region proposal. Their new methods 
speed up the detection allowing the image data set to run in 
almost real time. 

Keiming He et al. in [5] had the best results for training 
and testing with the maximum image side of 392 because 
they had image dataset from VOC 2007 and ImageNet. 
Also they showed results indicating scale matters in the 
classification processing. Thus, they suggested the spatial 
pyramid pooling model to support various image sizes in 
convolution layers which work with various image sizes 
while the standard fully connected layer requires a fixed 
image size. With Caltech101 image dataset, they found 
objects that had better performances among several scaled 
datasets. They noticed that this is mainly why the detected 
objects usually occupy large regions of the whole images. 
They evaluated cropped or warped images and got lower 
accuracy rates than the same model on the undistorted full 
image. 

In [15] Generative Adversarial Networks (GANs) are 
described as generative models that use supervised learning 

to approximate an intractable cost function and can simulate 
many cost functions, including the one used for maximum 
likelihood. More specifically, a generative model g trained 
on training data X sampled from some true distribution D is 
one which, given some standard random distribution Z, 
produces a distribution D′ which is close to D according to 
some closeness metric (a sample z ∈ Z maps to a sample 
g(z) ∈ D′). 

There are several points of researches related to the GANs 
which are training auto-encoder based GANs [4], learning 
semi-supervised and generating images that humans find 
visually realistic [16], and training for semi-supervised text 
classification [17]. Also, there are GAN extensions related 
to super resolution methods and reinforcement learning. 

Image super resolution (SR) means a deep learning 
method which infers a high resolution image from a low 
resolution image. In [18] SR algorithms are introduced in 
two groups: single image based and multiple image based 
ones. That is, in multiple image SR algorithm, to restore an 
image a couple of low resolution images of the same scene 
are fed as input and a registration algorithm to find the 
transformation between them is added while single image 
SR algorithm employs a training step to learn the 
relationship between a set of high resolution image and 
their low resolution counterparts and the relationship is 
used to predict the missing high resolution details of input 
images. They can be applied for video data to improve 
action recognition.  

As single image SR, [19], [20], [21] present methods 
using mixture of experts (MoE) which are anchor based 
local learning approach, sparse coding, and deep 
convolution neural networks, respectively. Christian Ledig 
et al. in [22] proposed a GAN method using generator 
networks and discriminator networks to recover photo 
realistic natural images with minimizing the mean squared 
reconstruction error. 

In SR and CNN algorithms, image interpolations are used 
to resize images or to crop/ warp image patches. Especially, 
small region of interest in a big image resolution is 
processed with a cropping or warping to fit into bounding 
boxes or region proposal and it results in decreased object 
detection rate.   

Current CNNs, which are using the sliding window 
method, are able to process variable size images as their 
input. However, the fully connected layer can work only 
with a fixed size of feature maps. This is why the CNNs at 
the first time had applied a fixed size of input images. 
Kaiming He et al.  [5] introduced variable size of images as 
the input of their CNNs and warped or cropped images to 
get fixed feature maps. Cropped or warped images might 
have the poor object recognition results. This caused us to 
implement super resolution instead of interpolation 
methods.  
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3. Proposed mage resolution improving algorithm 
CNN requires a target image as a fixed size one before 

processing hidden layers. Thus with a given input image, 
the network resizes it to the fixed-size of image. In [2], the 
Bilinear interpolation algorithm is applied to extend the 
image size to fit as an input for a neural network. As future 
research, the extended image size directly given by the 
super-resolution will be used. In this paper, we use the super 
resolution method to increase the image size to around 
492x324.   

Thus, we will first describe the super resolution method 
to improve the images before the input layer of CNN, then, 
how the preprocessed image can be classified by CNN. 

3.1. Super resolution image scale-up 

Most work on image processing  focuses on improving 
the deep hidden neural networks. In this section, however, 
we will describe more on pre-processing of image samples 
which have not enough qualities than on improving of 
hidden layers. For example, a cropped image whose size of 
166x110 is extracted from a normal image is too small to 
feed into the input layer of our CNN.  

In the expert method, component regressors,𝑊𝑊𝑖𝑖, and as an 
anchor point, 𝑣𝑣𝑗𝑗 have relations such as: 

min
{𝑣𝑣1,𝑣𝑣2,,…,𝑣𝑣𝑘𝑘; 𝑤𝑤1,𝑤𝑤2,…,𝑊𝑊𝑘𝑘}

𝛴𝛴𝑗𝑗=1𝑁𝑁 �𝑐𝑐𝑗𝑗𝑗𝑗|�ℎ𝑗𝑗 −  𝑊𝑊𝑖𝑖𝑙𝑙𝑗𝑗�|2
𝐾𝐾

𝑖𝑖=1

, 

where 𝑙𝑙𝑗𝑗  means a low resolution path, ℎ𝑗𝑗  is the 
corresponding high resolution patch, 𝑣𝑣𝑗𝑗  is the nearest 
anchor point for 𝑙𝑙𝑗𝑗  and 𝑐𝑐𝑗𝑗𝑗𝑗  is a continuous scalar value 
which represents the degree of membership of 𝑙𝑙𝑗𝑗.  

However, to keep the computational efficiency and the 
competitive image quality of anchor-based local learning 
method of multiple regressors, a mixture of experts which 
is one of conditional combined mixture models [23, 24] is 
proposed. Like [24] we define the model of mixture of 
experts for super-resolution images, describing the 
expectation and maximization (EM) algorithm, and also 
train and test this model.   

In a mixture of expert model, a maximum likelihood 
estimation should be solved iteratively by the EM 
algorithm. At every iteration, the posterior probabilities are 
calculated for patches and then we get the expectation of 
the log likelihood as a result of the E-step. During the M-
step, anchor points and regressors are updated which is a 
softmax regression problem. After training, super 
resolution images can be constructed by collecting all the 
patches from regressed low resolution patches and 
averaging the overlapped pixels.  

To differentiate the performance of super resolution 
method from interpolation methods, Bilinear, Bicubic 
interpolated images will be built in addition to the images 
processed by super resolution method.   
 

3.2. Object detection 

We implemented the convolution neural network based 
on the Faster R-CNN [3] because it supports variable image 
sizes as the input data of CNN and sliding widow proposal 
scanning for the convolution network. Above all, the 
detection speed is fast enough to be almost real-time. As 
mentioned earlier, Faster R-CNN uses region proposal to 
detect an object. But the size ratio of region proposal to the 
whole image is critical for the object to be detected. It 
means we can distinguish our proposed method compared 
to other interpolated data. 

The CNN is implemented based on Intel® Xeon CPU 
2.30GHz and 4 NVIDIA Tesla K80 GPU boards. Each 
GPU board has memory of 12GB and two GPUs.  

Our CNN has several convolutional layers to support a 
region proposal network in addition to the conventional 
CNN [1], [7]. Also, these convolution layers are shared with 
object detection networks as in [5]. Thus, our model works 
as a deep CNN which has more convolution and pooling 
layers too. 

As multiple-scale prediction schemes for regression 
references, there are schemes based on multiple-images, on 
multiple-filters, and on multiple-anchors in [3]. With multi-
image schemes, images are resized at multiple scales and 
feature maps are computed for each scale. Even though this 
scheme is time-consuming, our super resolution method 
can resize images to get better prediction scores. However, 
for less usage of computational resources, for fast 
detections, and for feature sharing in fully convolution 
layer, we choose the multi-anchors scheme. 

Additionally, to control the memory usages of CAFFE, 
we impose constraints on the number of images. In our deep 
CNN model allowing multiple scaled image sizes, the 
number of region proposals is w (width of the image) x h 
(height of the image) x k (the number of anchors of a region 
proposal). The memory space for the region proposal 
network needs to be limited. Therefore, we constrain the 
number of simultaneous images in hidden layers to be less 
than or equal to 20 images.  

For model training, we use pre-trained model parameters 
taken from the Faster R-CNN implementation. Faster R-
CNN was trained, validated and tested with the PASCAL 
VOC 2007 dataset of 9000 images. As the result, we 
consider that the parameters should be fitted well enough 
for our model. 

In every proposal from an image, an object is roughly 
considered and the proposal size is chosen by the 
predefined window size. Thus, this patch of an image may 
be interpolated. If instead of interpolation methods the 
super resolution method is adopted, any variable sizes of 
input images with variable sizes or shapes can be supported 
with better cropped or warped regions.   

We will not adopt super resolution method to improve 
only the specific patch image qualities now. We will keep 
this for future research. 
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4. Performance evaluations 
Before any other processing, we considered several 

image file formats to get better image quality for pre-
processing, training, and testing images. Therefore, we 
picked two image data formats and with a few images we 
processed the whole procedures of our proposed model. 
While most of image datasets are built images based on the 
JPG file format, this did not seem to offer as good results in 
super resolution processing compared with the BMP 
format. As the result of this simple testing, we decided to 
convert images from a file format of JPG into BMP format 
as a pre-processing procedure. Then, the image is taken to 
is further processed with Bilinear, Bicubic interpolations, 
and the super resolution method. 
Also, we scale down image size by 3 times smaller in each 
width and height to build images with lower quality, instead 
of collecting images by cropping or warping images.  

In our model, we implement the super resolution 
procedure based on [19]. Unlike training with less than 50 
images in which most of super resolution models are 
published, we have trained our model based on their initial 
parameters and with 100 PASCAL VOC2007 images. 
There is not overfitting with this number of images for 
training. With random images from PASCAL VOC2007 
[9], [25] and test images from [26] we have tested our super 
resolution model. We could not find any differences  

 

  

 

 
Figure 2: Images which have objects detected but labeled 
without any object or less number of objects. 

between them. Therefore we will testify object 
classification part with 520 images randomly extracted 
from VOC2007 and 1224 images from MSO [27]. 

In Figure 2, we found the dataset has a different number 
of objects compared to our intuition. For example, top-left 
image is labeled with no object but our proposed model 
detected an object or objects, like as shown in the image. 
Thus, we decide not to use the given label from dataset. 

4.1. Comparison of output pictures 

Many images from the PASCAL VOC 2007 have 
multiple objects, as shown in the results given in Table 1 
with 3 different pre-processing models, which are bilinear, 
Bicubic interpolation and a super resolution. Our model is 
set as learning rate of 0.001 and detection scores with 0.8 
or higher. 

The first column shows that by bilinear interpolation there 
are the number of detected objects in each given class. For 
the second column every rows show that the number of 
Bicubic interpolated and the number of object-detected 
images with the regression rate. And so are the same in the 
third column with super resolution. 

As shown Table 1, our model detected more objects than 
the other two models but the average detected scores are not 
much different. It means that our model made better images 
as the input image and fed into the CNN then as the results  
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there are more number of detections. Especially, Figure 3 
and Figure 4 show the cumulative number of detected 
objects and compare them. 
 

    
Figure 3: Distribution diagram of the number of classified objects 

for bilinear, Bicubic and super resolution models on 
VOC 2007 dataset. 

 
Figure 4: Histogram for convolution network models with 3 

different image pre-processing on randomly extracted 
images from VOC 2007 dataset 

 
With image dataset of Micro soft MSO, we present results 

in Table 2. Figure 5, and Figure 6. Like VOC2007 dataset, 
our proposed model detected more number of objects than 
the two other models. Unlike the case of the VOC2007, 
MSO dataset has zero object images. However, the average 
detection scores of our model are given as similar with the 
one of VOC2007. 

4.2. Big vs. small ROI pictures and their regression rates 

As mentioned previous section, if objects are big enough 
compared to the size of the image which is containing the 
object proposal, objects from interpolated images with 
Bilinear or Bicubic methods have well enough or 
sometimes may have better performance than objects from  

 
Figure 5: Diagram of the number of classified objects for bilinear, 

Bicubic and super resolution models on MSO dataset 

 
Figure 6: Histogram for convolution network models with 3 

different image pre-processing on randomly extracted 
images from MSO dataset 

 
our proposed model. 

As mentioned in previous section, if objects are big 
enough compared to the size of the image which is 
containing the object proposal, objects from interpolated 
images with Bilinear or Bicubic methods are good enough 
or sometimes may have better performance than objects 
from our proposed model. However, our proposed model 
has much better results with objects from small bounding 
boxes or small ratio of objects to the size of the image which 
contains the object. In Figure 7, our proposed model detects 
a chair which is a pretty small object in a given image but 
the other two models did not detect ‘chair’ object. Even 
though the other chair is detected in all of three models, our 
proposed model has a little bit higher score. 

5. Conclusion 
We proposed a model which is composed with super 
resolution processing and a convolution neural network. In 
this model, several kinds of classes from two different 
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datasets are scored when objects are detected. Our model 
has benefits on the number of object detections, especially 
in case of small object detections. 
 

 

 

 
 
Figure 7: Comparison of small object detection through Bilinear, 
Bicubic, and SR models 

 
In this proposal, we did not implement that only bounding 

box areas are processed with super resolution method. But 
we can pretty sure that this can save the computational 
resources and thus we can adopt this in real-time processing 
for better object detection or classification. 

Our proposed model appears powerful in scenarios such 
as relatively small objects in big pictures, warping on region 
proposals, and object detection from cropped image. 
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Table 1: Detected objects on 3 different pre-processing and convolution neural networks with PACAL VOC2007. #tp is number of true 
positives correctly predicted. The column labelled mean is average probability from method. 

 

 Bilinear Bicubic Ours 
Classes #tp mean #tp mean #tp mean 

aeroplane 25 0.9569 29 0.9472 27 0.9787 

bicycle 16 0.9602 17 0.9697 18 0.9520 

bird 18 0.9204 25 0.9178 30 0.9500 

boat 16 0.9330 18 0.9260 20 0.9276 

bottle 19 0.9222 17 0.9208 15 0.9331 

bus 26 0.9626 25 0.9639 26 0.9588 

car 93 0.9662 100 0.9671 104 0.9710 

cat 11 0.9427 10 0.9665 11 0.9739 

chair 25 0.9273 34 0.9368 45 0.9320 

cow 11 0.9149 12 0.9216 16 0.9385 

diningtable 
 

7 0.9317 7 0.9420 12 0.9193 

dog 
 

37 0.9559 36 0.9657 35 0.9565 

horse 
 

30 0.9560 34 0.9574 37 0.9694 

motorbike 
 

13 0.9467 13 0.9630 16 0.9581 

person 
 

405 0.9546 432 0.9575 466 0.9590 

pottedplant 
 

10 0.9467 12 0.9194 18 0.8767 

sheep 
 

15 0.9275 13 0.9380 14 0.9227 

sofa 
 

7 0.9191 8 0.9175 8 0.9475 

train 7 0.9193 4 0.9276 4 0.9572 

tvmonitor 25 0.9653 25 0.9729 26 0.9479 

Total  816 0.9415 871 0.9450 948 0.9465 

mis-classified 25  21  39  
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Table 2: Detected objects on 3 different pre-processing and convolution neural networks with MSO dataset. #tp is number of true 
positives correctly predicted. The column labelled mean is average probability from method. 
 

 Bilinear Bicubic Ours 

Classes #tp mean #tp mean #tp mean 

aeroplane 5 0.9650 6 0.9300 9 0.9263 

bicycle 1 0.9992 2 0.9112 1 0.9978 

bird 50 0.9512 59 0.9521 75 0.9627 

boat 1 0.8301 1 0.9771 1 0.9713 

bottle 23 0.9074 24 0.9062 21 0.9117 

bus 3 0.9954 3 0.9954 3 0.9871 

car 16 0.9641 19 0.9558 18 0.9499 

cat 11 0.9639 10 0.9829 11 0.9540 

chair 19 0.9299 20 0.9270 22 0.9393 

cow 5 0.9452 6 0.9488 7 0.9584 

diningtable 
 

3 0.9410 4 0.8927 4 0.9072 

dog 
 

42 0.9559 47 0.9636 50 0.9478 

horse 
 

11 0.9728 11 0.9726 15 0.9362 

motorbike 
 

4 0.9487 4 0.9529 4 0.9588 

person 
 

302 0.9715 318 0.9718 340 0.9719 

pottedplant 
 

4 0.9023 5 0.8756 9 0.9035 

sheep 
 

1 0.8780 1 0.9353 4 0.9064 

sofa 
 

3 0.9204 3 0.9099 6 0.9261 

train 6 0.9746 7 0.9529 8 0.9522 

tvmonitor 6 0.9720 6 0.9804 10 0.9248 

Total  516 0.9444 556 0.9447 618 0.9447 

mis-classified 86  82  92  
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