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Abstract. We discuss the use of cloud computing in technical (scientific) 
applications and identify characteristics such as loosely-coupled and data-intensive 
that lead to good performance. We give both general principles and several 
examples with an emphasis on use of the Azure cloud. 
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Introduction 

In the past five years cloud computing has emerged as an alternative platform for high 
performance computing [1-8].  Unfortunately, there is still confusion about the cloud 
model and its advantages and disadvantages over tradition supercomputing based 
problem solving methods. In this paper we characterize the ways in which cloud 
computing can be used productively in scientific and technical applications.   As we 
shall see there is a large set of application that can run on a cloud and a supercomputer 
equally well.  There are also applications that are better suited to the cloud and there 
are applications where a cloud is a very poor replacement for a supercomputer.  Our 
goal is to illustrate where cloud computing can complement the capabilities of a 
contemporary massively parallel supercomputer.   

1. Defining the Cloud. 

It would not be a huge exaggeration to say that the number of different definitions of 
cloud computing greatly exceeds the number of actual physical realizations of the key 
concepts.    Consequently, if we wish to provide a characterization of what works “in 
the cloud”, we need a grounding definition and we shall start with one that most 
accurately describes the commercial public clouds from Microsoft, Amazon and 
Google.    These public clouds consist of one or more large data centers with the 
following architectural characteristics 

1. The data center is composed of containers of racks of basic servers.   The total 
number of servers in one data center is between 10,000 and a million.   Each 
server has 8 or more CPU cores and a 64GB of shared memory and one or 
more terabyte local disk drives.  GPGPUs or other accelerators are not 
common. 



2. There is a network that allows messages to be routed between any two servers, 
but the bisection bandwidth of the network is very low and the network 
protocols implement the full TCP/IP stack at a sufficient enough level so that 
every server can be a full Internet host.  This is an important point of 
distinction between a cloud data center and a supercomputer.   Data center 
networks optimize traffic between users on the Internet and the servers in the 
cloud.   This is very different from supercomputer networks which are 
optimized to minimize interprocessor latency and maximize bisection 
bandwidth.  Application data communications on a supercomputer generally 
take place over specialized physical and data link layers of the network and 
interoperation with the Internet is usually very limited. 

3. Each server in the data center is host to one or more virtual machines and the 
cloud runs a “fabric controller” which schedules and manages large sets of 
VMs across the servers.  This fabric controller is the operating system for the 
data center. Using a VM as the basic unit of scheduling means that an 
application running on the data center consists of one or more complete VM 
instances that implement a web service.   This means that each VM instance 
can contain its own specific software library versions and internal application 
such as databases and web servers.   This greatly simplifies the required data 
center software stack, but it also means that the basic unit of scheduling 
involves the deployment of one or more entire operating systems.  This 
activity is much slower than installing and starting an application on a running 
OS.   Most large scale cloud services are intended to run 24x7, so this long 
start-up time is negligible.   Also the fabric controller is designed to manage 
and deal with faults.   When a VM fails the fabric controller can automatically 
restart it on another server.   On the downside, running a “batch” application 
on a large number of servers can be very inefficient because of the long time it 
may take to deploy all the needed VMs.   

4. Data in a data center is stored and distributed over many spinning disks in the 
cloud servers.  This is a very different model than found in a large 
supercomputer, where data is stored in network attached storage.  Local disks 
on the servers of supercomputers are not frequently used for data storage. 

2. Cloud Offerings as Public and Private, Commercial and Academic 

As stated above, there are more types of clouds than is described by this public data 
center model.  For example, to address a technical computing market, Amazon has 
introduced a specialized HPC cloud that uses a network with full bisection bandwidth 
and supports GPGPUs.   “Private clouds” are small dedicated data centers that have 
various combinations of the properties 1 through 4 above. FutureGrid is the NSF 
research testbed for cloud technologies and it operates a grid of cloud deployments 
running on modest sized server clusters [9].  

The major commercial clouds are those from Amazon, Google (App Engine), 
and Microsoft (Azure). These are constructed as a basic scalable infrastructure with 
higher level capabilities -- commonly termed Platform as a Service (PaaS). For 
technical computing, important platform components include tables, queues, database, 



monitoring, roles (Azure), and the cloud characteristic of elasticity (automatic scaling).  
MapReduce [10], which is described in detail below, is another major platform service 
offered by these clouds.  Currently the different clouds have different platforms 
although the Azure and Amazon platforms have many similarities. The Google 
Platform is targeted at scalable web applications and not as broadly used in technical 
computing community as Amazon or Azure, but it has been used by selected 
researchers on some very impressive projects. 

Commercial clouds also offer Infrastructure as a Service (IaaS) with compute 
and object storage features and Amazon EC2 and S3 being the early entry in this field. 
There are four major open source (academic) cloud environments Eucalyptus, Nimbus, 
OpenStack and OpenNebula (Europe) which focus at the IaaS level with interfaces 
similar to Amazon. These can be used to build "private clouds" but the interesting 
platform features of commercial clouds are not fully available. Open source Hadoop 
and Twister offer MapReduce features similar to those on commercial cloud platforms 
and there are open source possibilities for platform features like queues (RabbitMQ, 
ActiveMQ) and distributed data management system (Apache Cassandra). However, 
apart from a very new Microsoft offering [11], there is no complete packaging of PaaS 
features available today for academic or private clouds. Thus interoperability between 
private and commercial clouds is currently only at IaaS level where it is possible to 
reconfigure images between the different virtualization choices and there is an active 
cloud standards activity. The major commercial virtualization products such as 
VMware and Hyper-V are also important for private clouds but also does not have 
built-in PaaS capabilities. 

We expect more academic interest in PaaS as the value of platform capabilities 
become clearer from the ongoing application work such as that described in this paper 
for Azure. 

3. Parallel Programming Models 

Scientific Applications that are run on massively parallel supercomputers follow strict 
programming models that are designed to deliver optimal performance and scalability.   
Typically these programs are designed using a loosely synchronous or bulk 
synchronous model and the Message Passing Interface (MPI) communication library.   
In this model, each processor does a little computing and then stops to exchange data 
with other processors in a very carefully orchestrated manner and then the cycle repeats.  
Because the machine has been designed to execute MPI very efficiently, the relative 
time spent in communicating data can be made small compared to the time doing actual 
computation.   If the complexity of the communication pattern does not grow as you 
increase the problem size, then this computation scales very well to large numbers of 
processors.  



The typical cloud data center does not have a low latency high bandwidth network 
needed to run communication intensive MPI programs.   However, there is a subclass 
of traditional parallel programs called MapReduce computations that do well on clouds 
architectures. MapReduce computations have two parts.  In the first part you “map” a 
computation to each member of an input data set.   Each of these computations has an 
output.  In the second part you reduce the outputs to a single output.  For example, 
finding the minimum of some function across a large set of inputs.  First apply the 
function to each input in parallel and then compare the results to pick the smallest.  
Two variants of MapReduce are important.  In one case there is no real reduce step.  
Instead you just apply the operation to each input in parallel.   This is often called an 
“embarrassingly parallel” or “pleasingly parallel” computation.  At the other extreme 
there are computations that use MapReduce inside an iterative loop.   A large number 
of linear algebra computations fit this pattern.   Clustering and other machine learning 
computations also take this form.   Figure 1 illustrates these different forms of 
computation.   Cloud computing works well for any of these MapReduce variations.   
In fact a small industry has been built around doing analysis (typically called data 
analytics) on large data collections using MapReduce on cloud platforms.   

Note that the synchronization costs of clouds lie in between those of grids and 
supercomputers (HPC clusters) and applications suitable for clouds include all 
computational tasks appropriate for grids and HPC applications without stringent 
synchronization. Synchronization in clouds includes both effects of commodity 
networks but also overheads due to shared systems and virtualized (software) system. 
The latter is illustrated from Azure application reported by Thilina Gunarathne, 
Xiaoming Gao and Judy Qiu from Indiana University using Twister4Azure an early 
iterative MapReduce environment [12-14]. The Multidimensional Scaling application 
is dominated by two linear algebra steps denoted by alternating dark and light task 
groups in figure 2. As in many classical parallel applications, each step consists of 
many tasks that should execute for essentially identical times as they are executing 
identical number of elemental matrix operations. The graph shows a job with 
fluctuations in execution time for individual tasks, which currently limits scale at which 

Figure 1: Forms of Parallelism and their application on Clouds and Supercomputers 



good efficient parallel speed up can be obtained. All tasks must wait until the slowest 
straggler finishes. Nevertheless the observed speedups are significant and show parallel 
programming is satisfactory on this type of problem on up to 512 cores. 

4. Classes of Cloud Applications  

Limiting the applications of the cloud to classical scientific computation would miss 
the main reason that the cloud exists.   Large scale data center are the backbone of 
many ubiquitous cloud services we use every day.  Internet search, mobile maps, email, 
photo sharing, messaging, social networks are all dependent upon large data center 
clouds.  These applications all depend upon the massive scale and bandwidth to the 
Internet that the cloud provides.   Note clouds are executing jobs at scales much larger 
than those on supercomputers but that scale does not come from tightly coupled MPI. 
Rather scale can come from two aspects: Scale (or parallelism) from a multitude of 
users and scale from execution of an intrinsically parallel application within a single 
job (invoked by a single user).  

Clouds naturally exploit parallelism from multiple users or usages.  The 
Internet of things will drive many applications of the cloud.  It is projected that there 
will be 24 billion devices on the Internet by 2020.  Most will be small sensors that send 
streams of information into the cloud where it will be processed and integrated with 
other streams and turned into knowledge that will help our lives in a million small and 
big ways.  It is not unreasonable for us to believe that we will each have our own 
cloud-based personal agent that monitors all of the data about our life and anticipates 
our needs 24x7.   The cloud will become increasing important as a controller of and 
resource provider for the Internet of Things. As well as today’s use for smart phone and 
gaming console support, “smart homes” and “ubiquitous cities” build on this vision and 
we could expect a growth in cloud supported/controlled robotics. 

Beyond the Internet of things, we have the commodity applications such as 
social networking, internet search and e-commerce. Finally we mention the “long tail 
of science”  [15, 16] as an expected important usage mode of clouds. In some areas like 
particle physics and astronomy, i.e. “big science”, there are just a few major 
instruments generating now petascale data driving discovery in a coordinated fashion. 

Figure 2: Execution times of individual tasks on Azure for an Iterative MapReduce Twister4Azure 
implementation of Multidimensional Scaling 

 



In other areas such as genomics and environmental science, there are many “individual” 
researchers with distributed collection and analysis of data whose total data and 
processing needs can match the size of big science. Clouds can provide scaling use for 
this important aspect of science. 

Large scale Clouds also support parallelism within a single job with an 
obvious example of Internet search which has both “usage parallelism” listed above but 
also parallelism within each search as the summary of the web is stored on multiple 
disks on multiple computers and searched independently for each query. MapReduce 
was introduced to support successfully this type of parallelism. The examples given 
later will illustrate various forms of parallelism discussed above and summarized in 
figure 1. Today probably the “Map only” or “Pleasingly Parallel” mode is most 
common where a single job invokes multiple independent components. This is very 
similar to the parallelism from multiple users and indeed we will see examples where 
the different “map tasks” from a “single application” are generated outside the cloud 
which sees these tasks as separate usages. As well as Internet search, the second 
parallel category MapReduce is important in the Information Retrieval field with a 
good example being the well-known Latent Dirichlet Allocation algorithm for topic or 
“hidden/latent” feature determination. Basic data analysis can often be formulated as a 
simple MapReduce problem where independent event selection and processing (the 
maps) is followed by a reduction forming global statistics such as histograms. The final 
class of parallel applications explored so far is Iterative MapReduce implemented on 
Azure as Daytona from Microsoft or Twister4Azure from Indiana University. Here 
Page Rank is a well-known component of Internet search technology that corresponds 
to finding eigenvector of largest eigenvalue for the sparse matrix of internet links. This 
algorithm illustrates those that fit well Iterative MapReduce and other algorithms with 
parallel linear algebra at their core have been explored on Azure. 

Multiple usages or splitting the Internet summary over MapReduce nodes are 
all forms of a generalized data parallelism. However clouds also support well the 
functional parallelism seen where a given application breaks into multiple components 
which typically supported by workflow technology [17-20]. Workflow is an old idea 
and was developed extensively as part of Grid research. We will see from examples 
below that its use can be taken over directly by clouds without conceptual change. In 
fact the importance of Software as a Service (SaaS) for commercial clouds illustrates 
that another concept Services developed for science by the grid community is a 
successful key feature of cloud applications. Workflow as the technology to orchestrate 
or control clouds will continue to be a critical building block for cloud applications. 

Important access models for clouds include portals, which are often termed 
Science Gateways and these can be used similarly to grids. Another interesting access 
choice seen in some cases is that of the queue either implemented using conventional 
publish-subscribe technology (such as JMS) or the built in queues of the Azure and 
Amazon platforms. Applications can use the advanced platform features of clouds 
(queues, tables, blobs, SQL as a service for Azure) to build advanced capabilities more 
easily than on traditional (HPC) environments. Of course the pervasive “on demand” 
nature of cloud computing emphasizes the critical importance of task scheduling where 
either the built-in cloud facilities are used or alternatively there is some exploration of 
technologies like Condor developed for grids and clusters. Publish-Subscribe use varies 
from managing the launch of “worker jobs” to the control of sensors [21, 22] and 
robots [23, 24] from the cloud. 



The nature of the use of data [25] is another interesting aspect of cloud 
applications that currently is still in its infancy [26] but is expected to become 
important as for example future large data repositories will need cloud computing 
facilities. A key challenge as the data deluge grows is how we avoid unnecessary data 
transport and if possible bring the computing to the data [27-31]. We need to 
understand  [32, 33] the tradeoffs between traditional wide area systems like Lustre, 
Object stores which the heart of Amazon, Azure and OpenStack storage today and the 
“data-parallel” file systems popularized by HDFS, the Hadoop File System. We expect 
this to be a growing focus of future cloud applications. 

5. The Process of Building a Cloud Application 

Attempts to directly port a conventional HPC application to a cloud platform 
often fail  in their performance goals  [34-44] although an exception to this  is the 
Amazon HPC Cloud which seems to perform very well [45].    It is not unlike early 
attempts to move “vectorized” HPC application to massively parallel non-shared 
memory message passing clusters.  The challenge is to think differently and rewrite the 
application to support the new computational and programming models.   In the case of 
clouds the following practices lead to success 

1. Build the application as a service.   Because you are deploying one or more 
full virtual machines and because clouds are designed to host web services, 
you want your application to support multiple users or, at least, a sequence of 
multiple executions.   If you are not using the application, scale down the 
number of servers and scale up with demand.  Attempting to deploy 100 VMs 
to run a program that executes for 10 minutes is a waste of resources because 
the deployment may take more than 10 minutes.  To minimize start up time 
one needs to have services running continuously ready to process the 
incoming demand. 

2. Build on existing cloud deployments.   The cloud is ideal for large 
MapReduce computations so use an existing MapReduce deployment such as 
Hadoop or a similar service.  One also needs to exploit the natural elasticity 
for high throughput applications. 

3. Use PaaS if possible.  For PaaS clouds like Azure use the tools that are 
provided such as queues, web and worker roles and blob, table and SQL 
storage.   

4. Design for failure. Applications that are services that run forever will 
experience failures. The cloud has mechanisms that automatically recover lost 
resources, but the application needs to be designed to be fault tolerant. In 
particular, environments like MapReduce (Hadoop, Daytona, Twister4Azure) 
will automatically recover many explicit failures and adopt scheduling 
strategies that recover performance "failures" from for example delayed tasks. 
One expects an increasing number of such Platform features to be offered by 
clouds and users will still need to program in a fashion that allows task 
failures but be rewarded by environments that transparently cope with these 
failures. 



5. Use as a Service where possible. Capabilities such as SQLaaS (database as a 
service or a database appliance) provide a friendlier approach than the 
traditional non-cloud approach exemplified by installing MySQL on the local 
disk. We anticipate many prepackaged aaS capabilities such as Workflow as a 
Service for eScience will be developed and simplify the development of 
sophisticated applications. In fact “Research as a Service” is described in a 
recent paper [1]. 

6. Expect Changes. Clouds are still young and we can expect things to come 
and go. For example, the interesting [46-50] Dryad approach to MapReduce 
disappeared (replaced by Hadoop [51]) on Azure. Further we expect a 
growing interest in topics like GPGPU’s in the cloud [52].  

7. Moving Data is a challenge. The general rule is that one should move 
computation to the data, but if the only computational resource available is a 
cloud, you are stuck if the data is not also there. Moving a petabyte from a 
laboratory to the cloud over the Internet will take time.   The ideal situation is 
when you can gradually stream the data to the cloud over time as it is being 
created.  But if it exists in one place the best method of moving it is to 
physically ship the disk drives to the data center.   This service is available 
from some cloud providers.       

6.  The Economics of Clouds 

Comparing the cost of computing in the cloud to the cost of purchasing a cluster 
is somewhat challenging because of two factors.  First, for most researchers, the Total 
Cost of Ownership (TCO) of a cluster they purchase is often not visible to them.  Space 
and power are buried in the University’s expense overall infrastructure bills.  The 
systems administration for small clusters is often done by students, so it appears to be 
free of cost.  For large, university managed supercomputer centers the situation is 
different and the costs are known but not widely published. However, there have been 
some TCO studies. Paterson, et. al. [13] report that the 3-year total cost of ownership 
for a cluster of servers for research varies between 8 and 15 times the purchase price of 
the hardware.    In a study by IMEX Research, the 3 year TCO of a 512 node HPC 
cluster averages about $7 million dollars.   This is based on a 2005 configurations with 
1U dual core servers with 2 GB memory [14], so it is by no means current technology.    
However If we compare this to the cost of 1024 cores on Windows Azure running 24x7 
for 3 years the total is $2.6M (with “committed use” discounts). For Linux on Amazon 
EC2 the cost is $2.3M.  These costs do not include persistent storage or network 
bandwidth.   100TBytes of triply replicated on-line cloud storage for 3 years is an 
additional $400K.  Network bandwidth and data transactions add additional costs    

Based on these numbers, one may conclude a modest advantage to computing in 
the cloud, but that would miss a critical point.  The advantage of the cloud for 
researchers is the ability to use, and pay for it, on demand.  If a researcher has a need 
for 1000 cores for a week, the cost is $21K.   If the researcher needs only need a few 
cores between periods of heavy use the cost is a small increment.   In this case there is a 
clear advantage to cloud computing over purchasing a cluster that is not fully utilized.   



7. Case Studies from the Microsoft Cloud Computing Engagement Program 

In the following subsections we describe a number of case studies from the 
Microsoft Cloud Computing Engagement Program [53] which awarded time on Azure 
to 83 research teams.   The examples here are abstracted from reports from the top 30 
groups (based on resources consumed to date).   These illustrate the models described 
above with services, workflow, parallelism from multiple users or repetitive internal 
tasks, and use of MapReduce. They also demonstrate the use of the cloud as a web-
enabled “science gateway” where the application is built as a service that can be 
executed by remote users.  Many of the projects in our “top 30” use variations on the 
MapReduce theme. We have selected this collection of 12 projects because they 
demonstrate the variety and creativity of research community using the Azure cloud. 
The interesting EU partnership Venus-C [54] is part of the Azure engagement with 27 
projects covering Biodiversity and Biology (2), Molecular Cell and Genomic Biology 
(7), Medicine(3), Chemistry(3), Physics(1), Civil Engineering and Architecture (4), 
Earth Science (1), Naval/Mechanical Engineering (2), Civil Protection (1), 
Mathematics(1) and Information Technology(2). These successful project used 
extensions of the Microsoft Generic Worker [55] and Barcelona COMPSs [56] systems 
but avoided MapReduce as it was not available at the start of the project. 

7.1. University of Newcastle 

Paul Watson and Jacek Cala of The University of Newcastle use an Azure based 
system (e-Science Central  [57, 58]) to execute millions of workflows, each of which is 
a test of a target molecule for possible use as an anti-cancer drug. The scientists use a 
method known as Quantitative Structure-Activity Relationships (QSAR) to mine 
experimental data for patterns that relate the chemical structure of a drug to its kinase 
activity. The architecture of the solution is presented in Figure 3. 

 

Figure 3. Architecture of the drug discovery system based on e-Science Central and Azure. 

Workflows are modeled and stored within the e-Science Central main server 
which is the central coordination point for all workflow engines. The server dispatches 
work to a single JMS queue from which it is fetched by the engines. For every input 
data set the system issues a single top-level workflow invocation, which then results in 
a number of sub-workflow invocations. Altogether a single input dataset generates 
from 50 to 120 workflow invocations. The basic unit of work in their system — a 
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workflow invocation — contains a number of tasks. After an engine accepts an 
invocation from the queue, it executes all included tasks. A task can be as simple as 
downloading data from blob storage or transposing a data matrix, or as complex as 
building a QSAR model with neural networks, which can consume over 1 CPU hour. 

The Newcastle e-Science Central system also illustrates a two important 
characteristic of many cloud based scientific systems.  This allows the tasks to be 
spread over 300 cores, with greater than 90% efficiency.  The user input is through a 
web service that can allow multiple users to invoke the same instantiation of the service 
at the same time.  This interactive model is far different from the traditional batch 
approach used in supercomputing facilities. 

7.2. Georgia State University 

Figure 4. Crayons GIS vector overlay processing architecture.  

This basic programming model which builds the system as a web service that 
takes user input from the web or rich client to a server in the cloud and then allows a 
pool of worker servers take work that is queued by the web server is natural for the 
cloud.  The Crayons project lead by Sushil K. Prasad of Georgia State University uses a 
similar approach to doing vector overlay computations for geographic information 
systems  [59-61].   As shown in Figure 4, the system takes GML files and partitions 
them into the appropriate sub-domain tasks which are enqueued for worker servers to 
process.  Data is stored in the cloud data storage and pulled to the workers as needed. 

The Crayons project has a fixed workflow in which the tasks are distributed over 
a pool of workers.  Crayons is the first distributed GIS system over cloud capable of 
end-to-end spatial overlay analysis.  It scales well for sufficiently large data sets, 
achieving end-to-end speedup of over 40-fold employing 100 Azure processors.   



7.3. The Microsoft Research - University of Trento Centre for Computational and 
Systems Biology 

 Angela Sanger, Michele Di Cosmo and Corrado Priami at COSBI have been 
investigating the behavior of p53, one of the most important transcription factors in the 
genome. They have developed a model that includes all known reactions between p53 
and DNA, and are fitting this complex model  [62] using experimental data obtained in 
different conditions and using different mutants of p53.  COSBI has developed 
BetaSIM, a  simulator, driven by BlenX - a stochastic, process algebra based 
programming language for modeling and simulating biological systems as well as other 
complex dynamic systems which they have ported to the cloud.   AzureBetaSIM is a 
data-flow driven parallelization on Windows Azure of the BetaSIM simulator.    The 
aim of AzureBetaSIM is to provide researchers with the ability to quickly run (despite 
the length of the job queue) a large number of concurrent simulations and, in return, 
quickly gather research data. More importantly, this approach enables the execution of 
complex flows based on the aggregation of a large number of identical or slightly 
different models that, because of the stochastic nature of BetaSIM, will produce 
different outputs. In AzureBetaSIM, the user can alter the flow dynamically based on 
the previous outputs and ask the researcher remotely to continue, stop or alter manually 
the model before a new step by providing a “sparkle” python script to control the high-
level flow of execution as in Figure 5. All jobs in this use case are scripted, and the 
scripts can be provided by the user or generated automatically by another script.   

 

Figure 5.  Scripted dataflow execution in COSBI’s AzureBetaSIM. 

7.4. The University of North Carolina at Charlotte  

Zhengchang Su, Srinivas Arkela and Youjie Zhou, from the Department of 
Bioinformatics & Genomics and Computer Science at The University of North 
Carolina at Charlotte are using a similar mapreduce style workflow to annotate 
regulatory sequences in sequenced bacterial genomes using comparative genomics-
based algorithms.  Regulatory sequences specify when, how much, and where the 
genes should be expressed in the cell through their interactions with proteins called 
transcription factors (TFs).  They have built the system using the basic Web Role – 
Worker Role programming model native to Azure. Web roles are used as interfaces 
between the system and the users. After jobs are submitted by the users, web roles 
build job messages and send them through Azure's queues. Worker roles automatically 
pull messages from the queues and perform real tasks.   The have also implemented 
this same system on top of Hadoop.    



7.5. Pacific Ecoinformatics and Computational Ecology Lab (Berkeley, CA) and the 
Santa Fe Institute 

Jennifer Dunne, Sanghyuk Yoon and Neo Martinez from the Pacific Ecoinformatics 
and Computational Ecology Lab (Berkeley, CA) and the Santa Fe Institute are looking 
at the grand challenge in the science of ecology of explaining and predicting the 
behavior of complex ecosystems comprised of many interacting species. The long-term 
scientific goal is the development of theory that accurately predicts the response of 
different species and whole ecosystems to physical, biological and chemical changes.  
The team has developed a tool called Network3D which is used to simulate the 
complex non-linear systems that characterize these problems. They have ported 
Network3D to Azure  [63].  The Network3D engine uses Windows Workflow 

Foundation to 
implement long-
running processes as 
workflows. Given 
requests which 
contain a number of 
manipulations, each 
manipulation is 
delivered to a worker 
instance to execute. 
The result of each 
manipulation is saved 
to SQL Azure. A web 
role provides the user 
with an interface 
where the user can 
initiate, monitor and 
manage their 

manipulations as wells as web services for other sites and visualization clients. Once 
the request is submitted through the web role interface, the manipulation workflow 
starts the task and a manipulation is assigned to an available worker to process. The 
Network3D visualization client communicates through web services and visualizes the 
ecological network and population dynamics results. 

7.6. University of Washington Baker Lab 



A classic example of embarrassingly parallel computation in science is the Seti@home 
[64].   This is based on volunteer computing where thousands of people make their pc 
available for an external agent to download tasks to it when it is not being heavily used.   
A standard framework for these applications is BOINC from Berkeley.   In David 
Baker’s lab at the University of Washington, they have built a protein folding 
application (Rosetta@home) based on BOINC.   The problem with traditional 

volunteer computing is that volunteers are 
not very reliable.  On the other hand, the 
cloud can be considered a very large pool 
of capability that can easily be turned into a 
“high thoughput” BOINC service  [65].   
To demonstrate this they used 2000 Azure 
cores to run a substantial folding challenge 
provided by Dr. Nikolas Sgourakis, a 
postdoc in the lab.  Specifically the 
challenge was to elucidate the structure of a 
molecular machine called the needle 
complex, which is involved in the transfer 
between cells of dangerous bacteria, such 
as salmonella, e-coli, and others.  One of 

the main advantages of using Azure is that they did'nt have to handle support of the 
system, a very common problem with Rosetta@home.  Of course on a real volunteer 
system the price is free.   Consequently one has a choice.   You can get the job done 
quickly, or you can get it for free.    

7.7. University of Nottingham 

A novel use of the cloud for science was provided by Dominic Price at the University 
of Nottingham as part the Horizon Digital Britain project to Horizon research focuses 
on the role of “always on, always with you” ubiquitous computing technology.  Their 
use of Azure was to build support for crowd-sourcing  [66].   Specifically they are 
building a “marketplace” for crowd-sourcing activities. This takes the form of a toolkit 
that provides an infrastructure in which crowd-sourcing modules that support a 
particular activity can be developed and then different crowd-sourcing workflows 
constructed by combining different modules. These modules can then be shared with 
other users to facilitate their crowd-sourcing activities. This enables non-programmers 
to reuse existing modules in creating new crowd-sourcing applications. At the heart of 
the toolkit is the crowd-sourcing factory which is an application running in the cloud, 
providing the front-end interface for crowd-sourcing administrators (the user group 
which requests crowd-sourcing activities) and developers (the user group which 
develops crowd-sourcing modules).  This allows the administrators and developers to 
log in and create crowd-sourcing modules and create an activity from selected modules. 
Once the workflow has been defined, the factory generates a crowd-sourcing instance, 
a separate application that is sandboxed from the factory and all other crowd-sourcing 
instances. This instance contains all of the necessary functionality for recruiting and 
managing crowd-sourcing participants as well as some storage for storing the results of 
the activity to be retrieved by the administrator once the activity ends.   



7.8. Old Dominion University 

Harris Wu, Kurt Maly and Mohammad Zubair of Old Dominion University are 
developing a web-based system (FACET) that allows users to collaboratively organize 
multimedia collections into an evolving faceted classification. The FACET system 
includes a wiki-like interface that allows users manually classify documents into their 
personal document hierarchies as well as the global faceted classification schema, and 
backend algorithms that automatically classify documents. Evaluating FACET with 
millions of documents and thousands of users allows them to answer research questions 
specific to large-scale deployment of social systems that harness and cultivate 
collective intelligence. For example, how to merge thousands of users’ individual 
document hierarchies into a global schema? How to build a knowledge map of 
thousands of experts in different domains?  

Users of the FACET system are served by multiple Web Role instances  [67]. 
Browsing and classification are supported by queries to SQL Azure. Evaluation has 
shown that a single Web Role instance of medium size (2 core processors, 3.5GB 
RAM ) can support ~200 concurrent users.  The backend classification algorithms run 
on Worker Role instances. One of the most computing intensive backend procedures is 
to compute the similarities (both textual and structural) among user-created categories. 
By dividing the work into 2 extra-large instances, the pair-wise similarity computation 
of over 10,000 user categories can be computed with 24 hours.  

The FACET system is a research prototype built on Joomla, a popular open-
source content management system, and originally on the LAMP stack: Linux, Apache, 
MySQL and PHP. To deploy the FACET system on Azure, we had to move the 
metadata repository and session management from MySQL to SQL Azure. To continue 
to benefit from evolving features in the Joomla community, however, we chose to keep 
MySQL to support Joomla’s core non-data intensive features. 

7.9. Virginia Tech  

Kwa-Sur Tam of Virginia Tech have been 
developing a “Forecast-as-a-Service (FaaS) 
Framework for Renewable Energy Sources” 
such as wind and solar.   To generate wind 
power forecasts at specific locations, 
additional data such as orography, land 
surface condition, wind turbine 
characteristics, etc., need to be obtained 
from multiple sources.  In addition to the 
diversity of the types of data and the 
sources of data, there are different 
forecasting models that have been 
developed using different approaches.  A 
goal of the project is to support on-demand 

delivery of forecasts of different types and at different levels of detail for different 
prices. The FaaS framework consists of the Forecast Generation Framework (FGF), the 
Internal Data Retrieval Framework (IDRF), the External Data Collection Framework 
(EDCF) and the FaaS controller.  The FGF, IDRF and EDCF all adopt service-oriented 



architecture (SOA) and the activities of these three frameworks are orchestrated by the 
FaaS controller. Since Windows Azure and the associated .NET technologies support 
the implementation of service- oriented architecture and its design principles, this 
project can focus on achieving its goals rather than dealing with the underlying support 
infrastructure. 

7.10. The University South Carolina and the University of Virginia 

Jon Goodall at the University of South Carolina and Marty Humphrey at the University 
of Virginia are creating  a cloud-enabled hydrologic model and data processing 
workflows to examine the Savannah River Basin in the Southeastern United States [68]. 
Understanding hydrologic systems at the scale of large watersheds is critically 
important to society when faced with extreme events, such as floods and droughts, or 
with concern about water quality. This project will advance hydrologic science and our 
ability to manage water resources.  Today, models that are used for engineering 
analysis of hydrologic systems are insufficient for addressing current water resource 
challenges such as the impact of land use change and climate change on water 
resources. The challenge being faced extends beyond modeling and includes the entire 
workflow from data collection to decision making.  The project is being built in three 
stages.  First they will create a cloud-enabled hydrologic model. Second, they will 
improve the process of hydrologic model parameterization by creating cloud-based data 
processing workflows. Third, in Windows Azure, they will apply the model and data 
processing tool to a large watershed.    

They plan to use Windows Azure for data preparation, model calibration, and 
large-scale model execution. To date, they have focused on model calibration, whose 
goal is to search the space of potential model parameters for the best match against 
observed data. In their system the user uploads her model and then specifies the set of 
parameters and range of values for each parameter, effectively defining the search 
space. Their architecture is based on cloudbursting, which uses the Microsoft HPC 
support extensively. When a user submits a job, the first resources sought are the 
Microsoft HPC Cluster  at the University of Virginia. When there is too much work in 
the queue, they “burst” onto Windows Azure. This architecture has shown to be very 
flexible, and they are able to spin up new compute nodes in Windows Azure (and shut 
them down) whenever they desire. Within Windows Azure, they use Blob storage to 
prepare the nodes – i.e., when they boot, they automatically load our generic watershed 
modeling code. They use the Windows Azure Virtual Private Network (VPN ) support 
to make the Windows Azure nodes appear to be local to their enterprise – they have 
found that this has greatly simplified the use of the cloud.   

7.11. The University of Washington 

Bill Howe, Garret Cole, Alicia Key, Nodira Khoussainova and Leilani Battle of the 
University of Washington have developed “SQLShare: Database-as-a-Service for Long 
Tail Science” [69, 70].   This project addresses a growing problem in science involving 
the ability of researchers to save, share and query the data results from scientific 
research.  Spreadsheets and ASCII files remain the most popular tools for data 
management, especially in the long tail.  But as data volumes continue to explode, cut-
and-paste manipulation of spreadsheets cannot scale, and the relatively cumbersome 



development cycle of scripts and workflows for ad hoc, iterative data manipulation 
becomes the bottleneck to scientific discovery and a fundamental barrier to those 
without programming experience.  SQLShare (http://sqlshare.escience.washington.edu) 
is cloud-based relational data sharing and analysis platform that allows users to upload 
their data and immediately query it using SQL — no schema design, no reformatting, 
no DBAs. These queries can be named, associated with metadata, saved as views, and 
shared with collaborators.   

The SQLShare platform is 
implemented as an Azure Web Role 
that issues queries against a SQL 
Azure back end. The Azure Web 
Role implements a REST API and 
manages communication with the 
database, enforcing SQLShare 
semantics when they differ from 
conventional databases. In particular, 
the Web Role manages fault-tolerant 
and incremental upload of large 

datasets, analyzes the uploaded data to infer types and recommend example queries, 
manages authentication with external authentication services, operates on the system 
catalog, parses and formats data for interoperability with external systems, provides 
asynchronous semantics for all operations that may operate on large datasets, and 
handles all REST requests. Windows Azure was essential to the success of the project 
by empowering a single developer to build, deploy, and manage a production-quality 
web service.  

7.12. Kyoto University  

Daisuke Kawahara and Sadao Kurohashi of Kyoto University have been developing a 
search engine infrastructure, TSUBAKI [71], which is based on deep Natural Language 
Processing. While most of conventional search engines register only words to their 
indices, TSUBAKI provides a framework that indexes synonym relations, hypernym-
hyponym relations, dependency/case/ellipsis relations and so forth. These indices 
enable TSUBAKI to capture the semantic matching between a given query and 
documents more precisely and flexibly.   Case/ellipsis relations have not been indexed 
in a large scale because the speed of these analyses is not fast enough due to the 
necessity of referring to a large database of predicate-argument patterns (case frames).   
To apply case/ellipsis analysis to millions of Web pages of TSUBAKI in a practical 
time, it is necessary to use 10,000 CPU cores.   Because of limits on the Azure fabric 
controller, it was necessary to divide this into 29 hosted services of 350 CPUs each.   
This was the largest experiment of any of the research engagement projects. 

8. Conclusions 

We have discussed both general principles and some specific examples – mainly in the 
last section. There are many other important examples that have omitted including 
those on Amazon [72] and Google platforms [73, 74]. Particular technical computing 



cloud uses are graph and text mining [75, 76] (see also subsections 7.7, 7.8, 7.12), 
Seismic processing  [77], Earth and Environment Science including Geographical 
Information systems  [68, 78-80] (see also subsections 7.2, 7.5, 7.10), Particle Physics 
data analysis  [81], Astrophysics [82] and Astronomy [83], Chemistry with NAMD 
[84] application, and NASA applications [45, 85, 86]. 

Subsections 7.1, 7.3, 7.4 and 7.6 describe Life Science applications in the cloud. 
This is a particularly important area as it is both rapidly growing in needed 
computational resources [87, 88] and very well suited to clouds [89-91]. Two large 
collaborations make major use of cloud technology; iPlant [92] for the NSF Plant 
Biology community and Kbase [93] for DoE systems biology. Genomics has important 
cloud applications including Blast  [94-97], Crossbow [98], a novel hybrid MapReduce 
for secure processing [99], and MapReduce [100-105]. This field and others show the 
clear importance of the long tail [15] of science where an interesting approach is 
Datascope linking Excel to the cloud[106] (see also sections 4 and 7.11). 
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