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Abstract—  The utility computing model introduced by cloud 
computing combined with the rich set of cloud infrastructure 
services offers a very viable alternative to traditional servers 
and computing clusters. MapReduce distributed data 
processing architecture has become the weapon of choice for 
data-intensive analyses in the clouds and in commodity clusters 
due to its excellent fault tolerance features, scalability and the 
ease of use. Currently, there are several options for using 
MapReduce in cloud environments, such as using MapReduce 
as a service, setting up one’s own MapReduce cluster on cloud 
instances, or using specialized cloud MapReduce runtimes that 
take advantage of cloud infrastructure services. In this paper, 
we introduce AzureMapReduce, a novel MapReduce runtime 
built using the Microsoft Azure cloud infrastructure services. 
AzureMapReduce architecture successfully leverages the high 
latency, eventually consistent, yet highly scalable Azure 
infrastructure services to provide an efficient, on demand 
alternative to traditional MapReduce clusters. Further we 
evaluate the use and performance of MapReduce frameworks, 
including AzureMapReduce, in cloud environments for 
scientific applications using sequence assembly and sequence 
alignment as use cases. 
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I.  INTRODUCTION 
Today, scientific research is increasingly reliant on the 

processing of very large amounts of data, which Jim Gray 
has dubbed the 4th paradigm [1]. Scientists are more reliant 
on computing resources than ever and desire more power and 
greater ease of use. At the same time, we notice that the 
industry’s introduction of the concepts of Cloud Computing 
and MapReduce gives scientists very viable alternatives for 
their computational needs. In fact, the utility computing 
model offered by cloud computing is remarkably well-suited 
for scientists’ staccato computing needs [2]. While clouds 
offer raw computing power combined with cloud 
infrastructure services offering storage and other services, 
there is a need for distributed computing frameworks to 
harness the power of clouds both easily and effectively. At 
the same time, it should be noted that cloud infrastructures 
are known to be less reliable than their traditional cluster 
counterparts and do not provide the high-speed interconnects 
needed by frameworks such as MPI.   

The MapReduce distributed data analysis framework 
model introduced by Google [3] provides an easy-to-use 
programming model that features fault tolerance, automatic 
parallelization, scalability and data locality-based 

optimizations. Due to their excellent fault tolerance features, 
MapReduce frameworks are well-suited for the execution of 
large distributed jobs in brittle environments such as 
commodity clusters and cloud infrastructures. Though 
introduced by the industry and used mainly in the 
information retrieval community, it is shown [4-6] that 
MapReduce frameworks are capable of supporting many 
scientific application use cases, making these frameworks 
good choices for scientists to easily build large, data-
intensive applications that need to be executed within cloud 
infrastructures. 

The Microsoft Azure platform currently does not provide 
or support any distributed parallel computing frameworks 
such as MapReduce, Dryad or MPI, other than the support 
for implementing basic queue-based job scheduling. Also, 
the platform-as-a-service nature of Azure makes it difficult  
or rather impossible to set up an existing general purpose 
runtime on Windows Azure instances. This lack of a 
distributed computing framework on Azure platform 
motivated us to implement AzureMapReduce, which is a 
decentralized novel MapReduce run time built using Azure 
cloud infrastructure services. AzureMapReduce 
implementation takes advantage of the scalability, high 
availability and the distributed nature of cloud infrastructure 
services, guaranteed by cloud service provider, to deliver a 
fault tolerant, dynamically scalable runtime with a familiar 
programming model for the users. 

Several options exist for executing MapReduce jobs on 
cloud environments, such as manually setting up a 
MapReduce (e.g.: Hadoop [7]) cluster on a leased set of 
computing instances, using an on-demand MapReduce-as-
service offering such as Amazon ElasticMapReduce (EMR) 
[8] or using a cloud MapReduce runtime such as 
AzureMapReduce or CloudMapReduce [9]. In this paper we 
explore and evaluate each of these different options for two 
well-known bioinformatics applications: Smith-Waterman 
GOTOH pairwise distance alignment (SWG) [10-11], Cap3 
[12] sequence assembly. We have performed experiments to 
gain insight about the performance of MapReduce in the 
clouds for the selected applications and compare its 
performance to MapReduce on traditional clusters.  For this 
study, we use an experimental version of AzureMapReduce. 

Our work was motivated by an experience we had in 
early 2010 in which we evaluated the use of Amazon EMR 
for our scientific applications. To our surprise, we observed 
subpar performance in EMR compared to using a manually-
built cluster on EC2 (which is not the case anymore), which 
prompted us to perform the current analyses. In this paper, 
we show that MapReduce computations performed in cloud 



environments, including AzureMapReduce, has the ability to 
perform comparably to MapReduce computations on 
dedicated private clusters.   

II. TECHNOLOGIES 
A.  Hadoop 

Apache Hadoop [7] MapReduce is an open-source 
MapReduce style distributed data processing framework, 
which is an implementation similar to the Google 
MapReduce [3]. Apache Hadoop MapReduce uses the HDFS 
[13] distributed parallel file system for data storage, which 
stores the data across the local disks of the computing nodes 
while presenting a single file system view through the HDFS 
API. HDFS is targeted for deployment on unreliable 
commodity clusters and achieves reliability through the 
replication of file data. When executing Map Reduce 
programs, Hadoop optimizes data communication by 
scheduling computations near the data by using the data 
locality information provided by the HDFS file system. 
Hadoop has an architecture consisting of a master node with 
many client workers and uses a global queue for task 
scheduling, thus achieving natural load balancing among the 
tasks. The Map Reduce model reduces the data transfer 
overheads by overlapping data communication with 
computations when reduce steps are involved.  Hadoop 
performs duplicate executions of slower tasks and handles 
failures by rerunning the failed tasks using different workers. 

B. Amazon Web Services 
Amazon Web Services (AWS) [14] is a set of on-

demand, over the wire cloud computing services offered by 
Amazon. AWS offers a wide range of computing, storage 
and communication services including, but not limited to, 
Elastic Compute Cloud (EC2), Elastic MapReduce (EMR), 
Simple Storage Service (S3) and Simple Queue Service 
(SQS). 

The Amazon EC2 service enables users to lease Xen 
based virtual machine instances over the internet, billed 
hourly with the use of a credit card, allowing users to 
dynamically provision resizable virtual clusters in a matter of 
minutes. EC2 is offered as an infrastructure as a service 
approach, wherein the users get direct access to the virtual 
machine instances. EC2 provides users with the capability to 
store virtual machine snapshots in the form of Amazon 
Machine Images (AMI), which can be used to launch 
instances at a later time. EC2 offers a rich variety of instance 
types based on the computing capacity, memory and the I/O 
performance, each with a different price point, allowing 
users to be economical and flexible by choosing the best 
matching instances for their use case. In [15] we perform an 
analysis of a select set of EC2 instance types. EC2 offers 
both Linux instances as well as Windows instances. 
C. Amazon Elastic Map Reduce 

Amazon Elastic MapReduce (EMR) [14] provides 
MapReduce as an on-demand service hosted within the 
Amazon infrastructure. EMR is a hosted Apache Hadoop [7] 
MapReduce framework, which utilizes Amazon EC2 for 
computing power and Amazon S3 for data storage. It allows 

the users to perform Hadoop MapReduce computations in 
the cloud with the use of a web application interface, as well 
as a command line API, without worrying about installing 
and configuring a Hadoop cluster. Users can run their 
existing Hadoop MapReduce program on EMR with 
minimal changes.  

EMR supports the concept of JobFlows, which can be 
used to support multiple steps of Map & Reduce on a 
particular data set. Users can specify the number and the type 
of instances that are required for their Hadoop cluster. For 
EMR clusters consisting of more than one instance, EMR 
uses one instance exclusively as the Hadoop master node. 
EMR does not provide the ability to use custom AMI 
images. As an alternative to custom AMI images, EMR 
provides Bootstrap actions that users can specify to run on 
the computing nodes prior to the launch of the MapReduce 
job, which can be used for optional custom preparation of the 
images. EMR allows for debugging of EMR jobs by 
providing the option to upload the Hadoop log files in to S3 
and state information to SimpleDB. Intermediate data and 
temporary data are stored in the local HDFS file system 
while the job is executing. Users can use either the S3 native 
(s3n) file system or the legacy S3 block file system to 
specify input and output locations on Amazon S3. Use of s3n 
is recommended, as it allows files to be saved in native 
formats in S3. 

The pricing for the use of EMR consists of the cost for 
the EC2 computing instances, the S3 storage cost, an 
optional fee for the usage of SimpleDB to store job 
debugging information, and a separate cost per instance hour 
for the EMR service. 

D. Microsoft Azure Platform  
The Microsoft Azure platform [16] is a cloud computing 

platform that offers a set of cloud computing services similar 
to the Amazon Web Services. Windows Azure Compute 
allows the users to lease Windows virtual machine instances.  
Azure Compute follows a platform as a service approach and 
offers the .net runtime as the platform. Users can deploy their 
programs as an Azure deployment package through a web 
application. Unlike Amazon EC2, in Azure users do not have 
the ability to interact directly with the Azure instances, other 
than through the deployed programs. But on the other hand, 
platform-as-a-service infrastructures have a greater 
capability to offer quality of service and automated 
management services than infrastructure-as-a-service 
offerings. Azure offers a limited set of instances on a linear 
price and feature scale.  

The Azure storage queue is an eventual consistent, 
reliable, scalable and distributed web-scale message queue 
service, ideal for small, short-lived, transient messages.  This 
messaging framework can be used as a message-passing 
mechanism to communicate between distributed components 
of any application running in the cloud.  Messages can only 
contain text data and the size is limited to 8KB per message. 
Users can create an unlimited number of queues and send an 
unlimited number of messages. The Azure queue does not 
guarantee the order of the messages, the deletion of messages 
or the availability of all the messages for a single request, 



although it guarantees the eventual availability over multiple 
requests. Each message has a configurable visibility timeout. 
Once it is read by a client, the message will not be visible for 
other clients until the visibility time expires. The message 
will reappear upon expiration of the timeout, as long as the 
previous reader did not delete it.  

The Azure Storage  BLOB service provides a web-
scale distributed storage service where users can store and 
retrieve any type of data through a web services interface. 
Azure Blob service offers two types of blobs, namely block 
blobs, which are optimized for streaming access, and page 
blobs, which are optimized for random access. 

III. CHALLENGES FOR MAPREDUCE IN THE CLOUDS 
As mentioned in the introduction, MapReduce 

frameworks perform much better in brittle environments than 
other tightly coupled distributed programming frameworks, 
such as MPI [17], due to their excellent fault tolerance 
capabilities. However, cloud environments provide several 
challenges for MapReduce frameworks to harness the best 
performance.  
• Data storage: Clouds typically provide a variety of 

storage options, such as off-instance cloud storage (e.g.: 
Amazon S3), mountable off-instance block storage (e.g.: 
Amazon EBS) as well as virtualized instance storage 
(persistent for the lifetime of the instance), which can be 
used to set up a file system similar to HDFS [13].  The 
choice of the storage best-suited to the particular 
MapReduce deployment plays a crucial role as the 
performance of data intensive applications rely a lot on 
the storage location and on the storage bandwidth. 

• Metadata storage: MapReduce frameworks need to 
maintain metadata information to manage the jobs as 
well as the infrastructure. This metadata needs to be 
stored reliability ensuring good scalability and the 
accessibility to avoid single point of failures and 
performance bottlenecks to the MapReduce 
computation. 

• Communication consistency and scalability: Cloud 
infrastructures are known to exhibit inter-node I/O 
performance fluctuations (due to shared network, 
unknown topology), which affect the intermediate data 
transfer performance of MapReduce applications. 

• Performance consistency (sustained performance): 
Clouds are implemented as shared infrastructures 
operating using virtual machines. It’s possible for the 
performance to fluctuate based the load of the 
underlying infrastructure services as well as based on 
the load from other users on the shared physical node 
which hosts the virtual machine (see Section VII). 

• Reliability (Node failures): Node failures are to be 
expected whenever large numbers of nodes are utilized 
for computations. But they become more prevalent 
when virtual instances are running on top of non-
dedicated hardware. While MapReduce frameworks can 
recover jobs from worker node failures, master node 
(nodes which store meta-data, which handle job 
scheduling queue, etc) failures can become disastrous. 

• Choosing a suitable instance type: Clouds offer users 
several types of instance options, with different 
configurations and price points (See Sections B and D). 
It’s important to select the best matching instance type, 
both in terms of performance as well as monetary wise, 
for a particular MapReduce job. 

• Logging: Cloud instance storage is preserved only for 
the lifetime of the instance. Hence, information logged 
to the instance storage would be lost after the instance 
termination. This can be crucial if one needs to process 
the logs afterwards, for an example to identify a 
software-caused instance failure. On the other hand, 
performing excessive logging to a bandwidth limited 
off-instance storage location can become a performance 
bottleneck for the MapReduce computation. 

IV. AZUREMAPREDUCE 
AzureMapReduce is a distributed decentralized 

MapReduce runtime for Windows Azure that was developed 
using Azure cloud infrastructure services. The usage of the 
cloud infrastructure services allows the AzureMapReduce 
implementation to take advantage of the scalability, high 
availability and the distributed nature of such services 
guaranteed by the cloud service providers to avoid single 
point of failures, bandwidth bottlenecks (network as well as 
storage bottlenecks) and management overheads. In this 
paper, we use an experimental, pre-release version of 
AzureMapReduce. 

The usage of cloud services usually introduces latencies 
larger than their optimized non-cloud counterparts and often 
does not guarantee the time for the data’s first availability. 
These overheads can be conquered, however, by using a 
sufficiently coarser grained map and reduce tasks. 
AzureMapReduce overcomes the availability issues by 
retrying and by designing the system so it does not rely on 
the immediate availability of data to all the workers. In this 
paper, we use the pre-release implementation of the 
AzureMapReduce runtime, which uses Azure Queues for 
map and reduce task scheduling, Azure tables for metadata 
& monitoring data storage, Azure blob storage for input, 
output and intermediate data storage and the Window Azure 
Compute worker roles to perform the computations.  

Google MapReduce [3], Hadoop [7] as well as Twister 
[18] MapReduce computations are centrally controlled using 
a master node and assume master node failures to be rare. In 
those run times, the master node handles the task assignment, 
fault tolerance and monitoring for the completion of Map 
and Reduce tasks, in addition to other responsibilities. By 
design, cloud environments are more brittle than the 
traditional computing clusters are. Thus, cloud applications 
should be developed to anticipate and withstand these 
failures. Because of this, it is not possible for 
AzureMapReduce to make the same assumptions of 
reliability about a master node as in the above-mentioned 
runtimes. Due to these reasons, AzureMapReduce is 
designed around a decentralized control model without a 
master node, thus avoiding the possible single point of 
failure. AzureMapReduce also provides users with the 
capability to dynamically scale up or down the number of 



computing instances, even in the middle of a MapReduce 
computation, as and when it is needed. The map and reduce  
tasks of the AzureMapReduce runtime are dynamically 
scheduled using a global queue. In a previous study [19], we 
experimentally showed that dynamic scheduling through a 
global queue achieves better load balancing across all tasks, 
resulting in better performance and throughput than statically 
scheduled runtimes, especially when used with real-world 
inhomogeneous data distributions.  

A. Client API and Driver 
Client driver is used to submit the Map and Reduce tasks 

to the worker nodes using Azure Queues. Users can utilize 
the client API to generate a set of map tasks that are either 
automatically based on a data set present in the Azure Blob 
storage or manually based on custom criteria, which we find 
to be a very useful feature when implementing science 
applications using MapReduce. Client driver uses the .net 
task parallel library to dispatch tasks in parallel overcoming 
the latencies of the Azure queue and the Azure table 
services. It’s possible to use the client driver to monitor the 
progress and completion of the MapReduce jobs.  

B. Map Tasks 
Users have the ability to configure the number of Map 

workers per Azure instance. Map workers running on the 
Azure compute instances poll and dequeue map task 
scheduling messages from the scheduling queue, which were 
enqueued by the client API.  The scheduling messages 
contain the meta-data needed for the Map task execution, 
such as input data file location, program parameters, map 
task ID, and so forth. Map tasks upload the generated 
intermediate data to the Azure Blob Storage and put the key-
value pair meta-data information to the correct reduce task 
table. At this time, we are actively working on investigating 

other approaches for performing the intermediate data 
transfer. 

C. Reduce Tasks 
Reduce task scheduling is similar to map task scheduling. 

Users have the ability to configure the number of Reduce 
tasks per Azure Compute instance. Each reduce task has an 
associated Azure Table containing the input key-value pair 
meta-data information generated by the map tasks. Reduce 
tasks fetch intermediate data from the Azure Blob storage 
based on the information present in the above-mentioned 
reduce task table. This data transfer begins as soon as the 
first Map task is completed, overlapping the data transfer 
with the computation. This overlapping of data transfer with 
computation minimizes the data transfer overhead of the 
MapReduce computations, as found in our testing. Each 
Reduce task starts processing the reduce phase; when all the 
map tasks are completed, and after all the intermediate data 
products bound for that particular reduce task is fetched. In 
the AzureMapReduce, each reduce task will independently 
determine the completion of map tasks based on the 
information in the map task meta-data table and in the reduce 
task meta-data table. After completion of the processing, 
reduce tasks upload the results to the Azure Blob Storage and 
update status in the reduce task meta-data table. 

Azure table does not support transactions across tables or 
guarantee the immediate availability of data, but rather 
guarantees the eventual availability data. Due to that, it is 
possible for a worker to notice a map task completion 
update, before seeing a reduce task intermediate meta-data 
record added by that particular map task. Even though rare, 
this can result in an inconsistent state where a reduce task 
decides all the map tasks have been completed and all the 
intermediate data bound for that task have been transferred 
successfully, while in reality it’s missing some intermediate 

 
Figure 1.  AzureMapReduce Architecture 



data items.  In order to remedy this, map tasks store the 
number of intermediate data products it generated in the map 
task meta-data table while doing the task completion status 
update. Before proceeding with the execution, reduce tasks 
perform a global count of intermediate data products in all 
reduce task tables and tally it with the total of intermediate 
data products generated by the map tasks. This process 
ensures all the intermediate data products are transferred 
before starting the reduce task processing. 

D. Monitoring 
We use Azure tables for the monitoring of the map and 

reduce task meta-data and status information. Each job has 
two separate Azure tables for map and reduce tasks. Both the 
meta-data tables are used by the reduce tasks to determine 
the completion of Map task phase. Other than the above two 
tables, it is possible to monitor the intermediate data transfer 
progress using the tables for each reduce task.  

E.  Fault Tolerance 
Fault tolerance is achieved using the fault tolerance 

features of the Azure queue. When fetching a message from 
an Azure queue, a visibility timeout can be specified, which 
will keep the message hidden until the timeout expires. In 
Azure Map Reduce, map and reduce tasks delete messages 
from the queue only after successful completion of the tasks. 
If a task fails or is too slow processing, then the message will 
reappear in the queue after the timeout. In this case, it would 
be fetched and re-executed by a different worker. This is 
made possible by the side effect-free nature of the 
MapReduce computations as well as the fact that 
AzureMapReduce stores each generated data product in 
persistent storage, which allows it to ignore the data 
communication failures. In the current implementation, we 
retry each task three times before declaring the job a failure. 
We use the Map & Reduce task meta-data tables to 
coordinate the task status and completion. Over the course of 
our testing, we were able to witness few instances of jobs 
being recovered by the fault tolerance. 

F. Limitations of Azure MapReduce 
Currently Azure allows a maximum of 2 hours for queue 

message timeout, which is not enough for Reduce tasks of 
larger MapReduce jobs, as the Reduce tasks typically 
execute from the beginning of the job till the end of the job. 
In our current experiments, we disabled the reduce tasks fault 
tolerance when it is probable for MapReduce job to execute 
for more than 2 hours. Also in contrast to Amazon Simple 
Queue Service, Azure Queue service currently doesn’t allow 
for dynamic changes of visibility timeouts, which would 
allow for richer fault tolerance patterns. 

G. Related technologies 
1) Google AppEngine-MapReduce: Google AppEngine-

MapReduce [20] is an open source library aimed at 
performing MapReduce computations on the Google 
AppEngine platform using AppEngine services. The current 
experimental release only contains a Mapper library, while 
supporting the Reduce phase is part of planned 

enhancements. AppEngine-MapReduce supports Hadoop 
API with few minimal changes, allowing users to easily port 
the existing Hadoop applications to AppEngine-MapReduce 
applications. Users will not be able spawn proceses, 
restricting the use of executables, or threads. 

2) Cloud map reduce: CloudMapReduce [9] also 
implements a decentralized MapReduce architecture using 
the cloud infrastructure services of Amazon Web Services. 
The main differences between CloudMapReduce and the 
pre-release version of AzureMapReduce lies in the method 
of handling the intermediate data and meta-data, and in the 
timing of the commencement of the reduce tasks, among 
others.  

V. PERFORMANCE EVALUATION OF MAPREDUCE IN THE 
CLOUDS FOR SCIENCE 

A. Methodology 
We performed scalability tests using the selected 

applications to evaluate the performance of the MapReduce 
implementations in the cloud environments, as well as in the 
local clusters. For the scalability test, we decided to increase 
the workload and the number of nodes proportionally (weak 
scaling), so that the workload per node remained constant. 

All of the AzureMapReduce tests were performed using 
Azure small instances (one CPU core). The Hadoop-Bare 
Metal tests were performed on an iDataplex cluster, in which 
each node had two 4-core CPUs (Intel Xeon CPU E5410 
2.33GHz) and 16 GB memory, and was inter-connected 
using Gigabit Ethernet network interface. The Hadoop-EC2 
and EMR tests for Cap3 application were performed using 
Amazon High CPU extra-large instances, as they are the 
most economical per CPU core. Each high CPU extra-large 
instance was considered as 8 physical cores, even though 
they are billed as 20 Amazon compute units. The EC2 and 
EMR tests for SWG MapReduce applications were 
performed using Amazon extra-large instances as the more 
economical high CPU extra instances showed memory 
limitations for the SWG calculations. Each extra-large 
instance was considered as 4 physical cores, even though 
they are billed as 8 Amazon computing units. In all the 
Hadoop-based experiments (EC2, EMR and Hadoop bare 
metal), only the cores of the Hadoop slave nodes were 
considered for the number of cores calculation, despite the 
fact that an extra computing node was used as the Hadoop 
master node. 

Below are the defined parallel efficiency and relative 
parallel efficiency calculations used in the results part of this 
paper. 

 
T(1) is the best sequential execution time for the 

application in a particular environment using the same data 
set or a representative subset. In all the cases, the sequential 
time was measured with no data transfers, i.e. the input files 
were present in the local disks. T(ρ) is the parallel run time 
for the application while “p” is the number of processor 
cores used.  



We calculate that the relative parallel efficiency when 
estimating the sequential run time for an application is not 
straightforward. α = p/p1, where p1 is the smallest number of 
CPU cores for the experiment.  

 
B.  Smith-Waterman-GOTOH(SWG) pairwise distance 

calculation 
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Figure 3.  SWG MapReduce task decomposition 

In this application, we use the Smith-Waterman [10] 
algorithm with GOTOH [11] (SWG) improvement to 
perform pairwise sequence alignment on FASTA sequences. 
Given a sequence set we calculate the all-pairs dissimilarity 
for all the sequences. When calculating the all-pairs 
dissimilarity for a data set, calculating only the strictly upper 
or lower triangular matrix in the solution space is sufficient, 
as the transpose of the computed triangular matrix gives the 
dissimilarity values for the other triangular matrix. As shown 
in figure 3, this property, together with blocked 
decomposition, is used when calculating the set of map tasks 
for a given job. Reduce tasks aggregate the output from a 

row block.  In this application, the size of the input data set is 
relatively small, while the size of the intermediate and the 
output data are significantly larger due to the n2 result space, 
stressing the performance of inter-node communication and 
output data storage. SWG can be considered as a memory-
intensive application. 

More details about the Hadoop-SWG application 
implementation are given in [19]. The AzureMapReduce 
implementation also follows the same architecture and 
blocking strategy as in the Hadoop-SWG implementation. 
Hadoop-SWG uses the open source JAligner [21] as the 
computational kernel, while AzureMapReduce  SWG uses 
the C# implementation, NAligner [21] as the computational 
kernel. The results of the SWG MapReduce computation get 
stored in HDFS for Hadoop-SWG in bare metal and EC2 
environments, while the results get stored in Amazon S3 and 
Azure Block Storage for Hadoop-SWG on EMR and SWG 
on AzureMapReduce, respectively. 

Due to the all-pairs nature and the block-based task 
decomposition of the SWG MapReduce implementations, 
it’s hard to increase the workload linearly by simply 
replicating the number of input sequences for the scalability 
test. Hence, we modified the program to artificially reuse the 
computational blocks of the smallest test case in the larger 
test cases, so that the workload scaling occurs linearly. The 
raw performance results of the SWG MapReduce scalability 
test are given in figure 2(a). A block size of 200 * 200 
sequences is used in the performance experiments resulting 
in 40,000 sequence alignments per block, which resulted in 
~123 million sequence comparisons in the 3072 block test 
case.  The AzureMapReduce SWG performance in figure 2 
(a) is significantly lesser than the others. This is due to the 
performance of NAligner core executing in windows 

 
Figure 2.  (a) SWG MapReduce pure performance    (b) SWG MapReduce relative parallel efficiency 
              (c) SWG MapReduce normalized performance   (d) SWG MapReduce amortized cost for clouds 



environment being slower than the JAligner core executing 
in Linux environment. 

Due to the sheer size of even the smallest computation in 
our SWG scaling test cases, we found it impossible to 
calculate the sequential execution time for the SWG test 
cases. Also, due to the all-pairs nature of SWG, it’s not 
possible to calculate the sequential execution time using a 
subset of data. In order to compensate for the lack of 
absolute efficiency (which would have negated most of the 
platform and hardware differences across different 
environments), we performed a moderately-sized sequential 
SWG calculation in all of the environments and used that 
result to normalize the performance using the Hadoop-bare 
metal performance as the baseline. The normalized 
performance is depicted in figure 2(c), where we can observe 
that all four environments show comparable performance 
and good scalability for the SWG application. Figure 2(b) 
depicts the relative parallel efficiency of SWG MapReduce 
implementations using the 64 core, 1024 block test case as 
p1 (see section V-A). 

In figure 2(d) we present the approximate computational 
costs for the experiments performed using cloud 
infrastructures. Even though the cloud instances are hourly 
billed, costs presented in 2(d) are amortized for the actual 
execution time (time / 3600 * num_instances * instance price 
per hour), assuming the remaining time of the instance hour 
has been put to useful work. In addition to the depicted 
charges, there will be additional minor charges for the data 
storage for EMR & AzureMapReduce.  There will also be 
additional minor charges for the queue service and table 
service for AzureMapReduce. We notice that the costs for 
Hadoop on EC2 and AzureMapReduce are in a similar 
range, while EMR costs a fraction more.  We consider the 
ability to perform a large computation, such as ~123 million 
sequence alignments, for under 30$ with zero up front 
hardware cost, as a great enabler for the scientists, who don’t 
have access to in house compute clusters.  

C. Sequence assembly using Cap3 
Cap3 [12] is a sequence assembly program which 

assembles DNA sequences by aligning and merging 
sequence fragments to construct whole genome sequences. 
The Cap3 algorithm operates on a collection of gene 
sequence fragments, which are presented as FASTA-
formatted files, generating consensus sequences. The Cap3 
program is often used in parallel with lots of input files due 
to the pleasingly parallel nature of the application. The size 
of a typical data input file for Cap3 program and the 
resulting data file range from hundreds of kilobytes to a few 
megabytes. The output files can be collected independently 
and do not need any combining steps. We use a Mapper-only 
MapReduce application for Cap3. More details about the 
Cap3 Hadoop implementation can be found on [15]. Cap3 
can be considered as a CPU intensive application. 

We used a replicated set of Fasta files as the input data in 
our experiments. Every file contained 458 reads. The 
input/output data was stored in HDFS in the Hadoop 
BareMetal and Hadoop-EC2 experiments, while they were 
stored in Amazon S3 and Azure Blob storage for EMR and 

AzureMapReduce experiments respectively. Figure 4(a) 
presents the pure performance of the Cap3 MapReduce 
applications, while Figure 4(b) presents the absolute parallel 
efficiency for the Cap3 MapReduce applications. As we can 
see, all of the cloud Cap3 applications displayed 
performance comparative to the bare metal clusters and good 
scalability, while AzureMapReduce and Hadoop Bare metal 
showed a slight edge over the Amazon counterparts in terms 
of the efficiency. Figure 4(c) depicts the approximate 
amortized computing cost for the Cloud MapReduce 
applications, with AzureMapReduce showing an advantage. 

VI. SUSTAINED PERFORMANCE OF CLOUDS 
When discussing about cloud performance, the sustained 

performance of the clouds is often questioned. This is a valid 
question, since clouds are often implemented using a multi-
tenant shared VM-based architecture.  We performed an 
experiment by running the SWG EMR and SWG 
AzureMapReduce using the same workload throughout 

 
 

 

 
Figure 4.  (a) Cap3 MapReduce scaling performance 

 (b) Cap3 MapReduce parallel efficiency 
 (c) Cap3 MapReduce computational cost in cloud infrastructures 



different times of the week. In these tests, 32 cores were used 
to align 4000 sequences. The results of this experiment are 
given in Figure 5. Each of these tests was performed at +/- 2 
hours 12AM/PM. Figure 5 also includes normalized 
performance for AzureMapReduce, calculated using the 
EMR as the baseline. We are happy to report that the 
performance variations we observed were very minor, with 
standard deviations of 1.56% for EMR and 2.25% for 
AzureMapReduce. Additionally, we did not notice any 
noticeable trends in performance fluctuation.  

 
Figure 5.  Sustained performance of cloud environments 

VII. CONCLUSION 
We introduced the novel decentralized controlled 

AzureMapReduce framework, which fulfills the much-
needed requirement of a distributed programming framework 
for Azure users. AzureMapReduce is built using Azure cloud 
infrastructure services that take advantage of the quality of 
service guarantees provided by the cloud service providers. 
Even though cloud services have higher latencies than their 
traditional counter parts, scientific applications implemented 
using AzureMapReduce were able to perform comparatively 
with the other MapReduce implementations, thus proving the 
feasibility of AzureMapReduce architecture. We also 
explored the challenges presented by cloud environments to 
execute MapReduce computations and discussed how we 
overcame them in the AzureMapReduce architecture. 

We also presented and analyzed the performance of two 
scientific MapReduce applications on two popular cloud 
infrastructures. In our experiments, scientific MapReduce 
applications executed in the cloud infrastructures exhibited 
performance and efficiency comparable to the MapReduce 
applications executed using traditional clusters. Performance 
comparable to in house clusters, on demand availability, 
horizontal scalability and the easy to use programming 
model together with no upfront cost makes using 
MapReduce in cloud environments a very viable option and 
an enabler for the computational scientists, especially in 
scenarios where in-house compute clusters are not readily 
available. From an economical and maintenance perspective, 
it even makes sense not to procure in-house clusters if the 
utilization would be low. We also observed that the 
fluctuation of cloud MapReduce performance is minimal 
over a weeklong period, assuring consistency and 
predictability of application performance in the cloud 
environments. 
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