
MapReduce in the Clouds for Science

Thilina Gunarathne, Tak-Lon Wu, Judy Qiu, Geoffrey Fox
School of Informatics and Computing / Pervasive Technology Institute

Indiana University, Bloomington.
{tgunarat, taklwu, xqiu,gcf}@indiana.edu

Abstract— The utility computing model introduced by cloud
computing combined with the rich set of cloud infrastructure
services offers a very viable alternative to traditional servers
and computing clusters. MapReduce distributed data
processing architecture has become the weapon of choice for
data-intensive analyses in the clouds and in commodity clusters
due to its excellent fault tolerance features, scalability and the
ease of use. Currently, there are several options for using
MapReduce in cloud environments, such as using MapReduce
as a service, setting up one’s own MapReduce cluster on cloud
instances, or using specialized cloud MapReduce runtimes that
take advantage of cloud infrastructure services. In this paper,
we introduce AzureMapReduce, a novel MapReduce runtime
built using the Microsoft Azure cloud infrastructure services.
AzureMapReduce architecture successfully leverages the high
latency, eventually consistent, yet highly scalable Azure
infrastructure services to provide an efficient, on demand
alternative to traditional MapReduce clusters. Further we
evaluate the use and performance of MapReduce frameworks,
including AzureMapReduce, in cloud environments for
scientific applications using sequence assembly and sequence
alignment as use cases.

Keywords- MapReduce, Cloud Computing,
AzureMapReduce, Elastic MapReduce, Hadoop

I. INTRODUCTION
Today, scientific research is increasingly reliant on the

processing of very large amounts of data, which Jim Gray
has dubbed the 4th paradigm [1]. Scientists are more reliant
on computing resources than ever and desire more power and
greater ease of use. At the same time, we notice that the
industry’s introduction of the concepts of Cloud Computing
and MapReduce gives scientists very viable alternatives for
their computational needs. In fact, the utility computing
model offered by cloud computing is remarkably well-suited
for scientists’ staccato computing needs [2]. While clouds
offer raw computing power combined with cloud
infrastructure services offering storage and other services,
there is a need for distributed computing frameworks to
harness the power of clouds both easily and effectively. At
the same time, it should be noted that cloud infrastructures
are known to be less reliable than their traditional cluster
counterparts and do not provide the high-speed interconnects
needed by frameworks such as MPI.

The MapReduce distributed data analysis framework
model introduced by Google [3] provides an easy-to-use
programming model that features fault tolerance, automatic
parallelization, scalability and data locality-based

optimizations. Due to their excellent fault tolerance features,
MapReduce frameworks are well-suited for the execution of
large distributed jobs in brittle environments such as
commodity clusters and cloud infrastructures. Though
introduced by the industry and used mainly in the
information retrieval community, it is shown [4-6] that
MapReduce frameworks are capable of supporting many
scientific application use cases, making these frameworks
good choices for scientists to easily build large, data-
intensive applications that need to be executed within cloud
infrastructures.

The Microsoft Azure platform currently does not provide
or support any distributed parallel computing frameworks
such as MapReduce, Dryad or MPI, other than the support
for implementing basic queue-based job scheduling. Also,
the platform-as-a-service nature of Azure makes it difficult
or rather impossible to set up an existing general purpose
runtime on Windows Azure instances. This lack of a
distributed computing framework on Azure platform
motivated us to implement AzureMapReduce, which is a
decentralized novel MapReduce run time built using Azure
cloud infrastructure services. AzureMapReduce
implementation takes advantage of the scalability, high
availability and the distributed nature of cloud infrastructure
services, guaranteed by cloud service provider, to deliver a
fault tolerant, dynamically scalable runtime with a familiar
programming model for the users.

Several options exist for executing MapReduce jobs on
cloud environments, such as manually setting up a
MapReduce (e.g.: Hadoop [7]) cluster on a leased set of
computing instances, using an on-demand MapReduce-as-
service offering such as Amazon ElasticMapReduce (EMR)
[8] or using a cloud MapReduce runtime such as
AzureMapReduce or CloudMapReduce [9]. In this paper we
explore and evaluate each of these different options for two
well-known bioinformatics applications: Smith-Waterman
GOTOH pairwise distance alignment (SWG) [10-11], Cap3
[12] sequence assembly. We have performed experiments to
gain insight about the performance of MapReduce in the
clouds for the selected applications and compare its
performance to MapReduce on traditional clusters. For this
study, we use an experimental version of AzureMapReduce.

Our work was motivated by an experience we had in
early 2010 in which we evaluated the use of Amazon EMR
for our scientific applications. To our surprise, we observed
subpar performance in EMR compared to using a manually-
built cluster on EC2 (which is not the case anymore), which
prompted us to perform the current analyses. In this paper,
we show that MapReduce computations performed in cloud

environments, including AzureMapReduce, has the ability to
perform comparably to MapReduce computations on
dedicated private clusters.

II. TECHNOLOGIES
A. Hadoop

Apache Hadoop [7] MapReduce is an open-source
MapReduce style distributed data processing framework,
which is an implementation similar to the Google
MapReduce [3]. Apache Hadoop MapReduce uses the HDFS
[13] distributed parallel file system for data storage, which
stores the data across the local disks of the computing nodes
while presenting a single file system view through the HDFS
API. HDFS is targeted for deployment on unreliable
commodity clusters and achieves reliability through the
replication of file data. When executing Map Reduce
programs, Hadoop optimizes data communication by
scheduling computations near the data by using the data
locality information provided by the HDFS file system.
Hadoop has an architecture consisting of a master node with
many client workers and uses a global queue for task
scheduling, thus achieving natural load balancing among the
tasks. The Map Reduce model reduces the data transfer
overheads by overlapping data communication with
computations when reduce steps are involved. Hadoop
performs duplicate executions of slower tasks and handles
failures by rerunning the failed tasks using different workers.

B. Amazon Web Services
Amazon Web Services (AWS) [14] is a set of on-

demand, over the wire cloud computing services offered by
Amazon. AWS offers a wide range of computing, storage
and communication services including, but not limited to,
Elastic Compute Cloud (EC2), Elastic MapReduce (EMR),
Simple Storage Service (S3) and Simple Queue Service
(SQS).

The Amazon EC2 service enables users to lease Xen
based virtual machine instances over the internet, billed
hourly with the use of a credit card, allowing users to
dynamically provision resizable virtual clusters in a matter of
minutes. EC2 is offered as an infrastructure as a service
approach, wherein the users get direct access to the virtual
machine instances. EC2 provides users with the capability to
store virtual machine snapshots in the form of Amazon
Machine Images (AMI), which can be used to launch
instances at a later time. EC2 offers a rich variety of instance
types based on the computing capacity, memory and the I/O
performance, each with a different price point, allowing
users to be economical and flexible by choosing the best
matching instances for their use case. In [15] we perform an
analysis of a select set of EC2 instance types. EC2 offers
both Linux instances as well as Windows instances.
C. Amazon Elastic Map Reduce

Amazon Elastic MapReduce (EMR) [14] provides
MapReduce as an on-demand service hosted within the
Amazon infrastructure. EMR is a hosted Apache Hadoop [7]
MapReduce framework, which utilizes Amazon EC2 for
computing power and Amazon S3 for data storage. It allows

the users to perform Hadoop MapReduce computations in
the cloud with the use of a web application interface, as well
as a command line API, without worrying about installing
and configuring a Hadoop cluster. Users can run their
existing Hadoop MapReduce program on EMR with
minimal changes.

EMR supports the concept of JobFlows, which can be
used to support multiple steps of Map & Reduce on a
particular data set. Users can specify the number and the type
of instances that are required for their Hadoop cluster. For
EMR clusters consisting of more than one instance, EMR
uses one instance exclusively as the Hadoop master node.
EMR does not provide the ability to use custom AMI
images. As an alternative to custom AMI images, EMR
provides Bootstrap actions that users can specify to run on
the computing nodes prior to the launch of the MapReduce
job, which can be used for optional custom preparation of the
images. EMR allows for debugging of EMR jobs by
providing the option to upload the Hadoop log files in to S3
and state information to SimpleDB. Intermediate data and
temporary data are stored in the local HDFS file system
while the job is executing. Users can use either the S3 native
(s3n) file system or the legacy S3 block file system to
specify input and output locations on Amazon S3. Use of s3n
is recommended, as it allows files to be saved in native
formats in S3.

The pricing for the use of EMR consists of the cost for
the EC2 computing instances, the S3 storage cost, an
optional fee for the usage of SimpleDB to store job
debugging information, and a separate cost per instance hour
for the EMR service.

D. Microsoft Azure Platform
The Microsoft Azure platform [16] is a cloud computing

platform that offers a set of cloud computing services similar
to the Amazon Web Services. Windows Azure Compute
allows the users to lease Windows virtual machine instances.
Azure Compute follows a platform as a service approach and
offers the .net runtime as the platform. Users can deploy their
programs as an Azure deployment package through a web
application. Unlike Amazon EC2, in Azure users do not have
the ability to interact directly with the Azure instances, other
than through the deployed programs. But on the other hand,
platform-as-a-service infrastructures have a greater
capability to offer quality of service and automated
management services than infrastructure-as-a-service
offerings. Azure offers a limited set of instances on a linear
price and feature scale.

The Azure storage queue is an eventual consistent,
reliable, scalable and distributed web-scale message queue
service, ideal for small, short-lived, transient messages. This
messaging framework can be used as a message-passing
mechanism to communicate between distributed components
of any application running in the cloud. Messages can only
contain text data and the size is limited to 8KB per message.
Users can create an unlimited number of queues and send an
unlimited number of messages. The Azure queue does not
guarantee the order of the messages, the deletion of messages
or the availability of all the messages for a single request,

although it guarantees the eventual availability over multiple
requests. Each message has a configurable visibility timeout.
Once it is read by a client, the message will not be visible for
other clients until the visibility time expires. The message
will reappear upon expiration of the timeout, as long as the
previous reader did not delete it.

The Azure Storage BLOB service provides a web-
scale distributed storage service where users can store and
retrieve any type of data through a web services interface.
Azure Blob service offers two types of blobs, namely block
blobs, which are optimized for streaming access, and page
blobs, which are optimized for random access.

III. CHALLENGES FOR MAPREDUCE IN THE CLOUDS
As mentioned in the introduction, MapReduce

frameworks perform much better in brittle environments than
other tightly coupled distributed programming frameworks,
such as MPI [17], due to their excellent fault tolerance
capabilities. However, cloud environments provide several
challenges for MapReduce frameworks to harness the best
performance.
• Data storage: Clouds typically provide a variety of

storage options, such as off-instance cloud storage (e.g.:
Amazon S3), mountable off-instance block storage (e.g.:
Amazon EBS) as well as virtualized instance storage
(persistent for the lifetime of the instance), which can be
used to set up a file system similar to HDFS [13]. The
choice of the storage best-suited to the particular
MapReduce deployment plays a crucial role as the
performance of data intensive applications rely a lot on
the storage location and on the storage bandwidth.

• Metadata storage: MapReduce frameworks need to
maintain metadata information to manage the jobs as
well as the infrastructure. This metadata needs to be
stored reliability ensuring good scalability and the
accessibility to avoid single point of failures and
performance bottlenecks to the MapReduce
computation.

• Communication consistency and scalability: Cloud
infrastructures are known to exhibit inter-node I/O
performance fluctuations (due to shared network,
unknown topology), which affect the intermediate data
transfer performance of MapReduce applications.

• Performance consistency (sustained performance):
Clouds are implemented as shared infrastructures
operating using virtual machines. It’s possible for the
performance to fluctuate based the load of the
underlying infrastructure services as well as based on
the load from other users on the shared physical node
which hosts the virtual machine (see Section VII).

• Reliability (Node failures): Node failures are to be
expected whenever large numbers of nodes are utilized
for computations. But they become more prevalent
when virtual instances are running on top of non-
dedicated hardware. While MapReduce frameworks can
recover jobs from worker node failures, master node
(nodes which store meta-data, which handle job
scheduling queue, etc) failures can become disastrous.

• Choosing a suitable instance type: Clouds offer users
several types of instance options, with different
configurations and price points (See Sections B and D).
It’s important to select the best matching instance type,
both in terms of performance as well as monetary wise,
for a particular MapReduce job.

• Logging: Cloud instance storage is preserved only for
the lifetime of the instance. Hence, information logged
to the instance storage would be lost after the instance
termination. This can be crucial if one needs to process
the logs afterwards, for an example to identify a
software-caused instance failure. On the other hand,
performing excessive logging to a bandwidth limited
off-instance storage location can become a performance
bottleneck for the MapReduce computation.

IV. AZUREMAPREDUCE
AzureMapReduce is a distributed decentralized

MapReduce runtime for Windows Azure that was developed
using Azure cloud infrastructure services. The usage of the
cloud infrastructure services allows the AzureMapReduce
implementation to take advantage of the scalability, high
availability and the distributed nature of such services
guaranteed by the cloud service providers to avoid single
point of failures, bandwidth bottlenecks (network as well as
storage bottlenecks) and management overheads. In this
paper, we use an experimental, pre-release version of
AzureMapReduce.

The usage of cloud services usually introduces latencies
larger than their optimized non-cloud counterparts and often
does not guarantee the time for the data’s first availability.
These overheads can be conquered, however, by using a
sufficiently coarser grained map and reduce tasks.
AzureMapReduce overcomes the availability issues by
retrying and by designing the system so it does not rely on
the immediate availability of data to all the workers. In this
paper, we use the pre-release implementation of the
AzureMapReduce runtime, which uses Azure Queues for
map and reduce task scheduling, Azure tables for metadata
& monitoring data storage, Azure blob storage for input,
output and intermediate data storage and the Window Azure
Compute worker roles to perform the computations.

Google MapReduce [3], Hadoop [7] as well as Twister
[18] MapReduce computations are centrally controlled using
a master node and assume master node failures to be rare. In
those run times, the master node handles the task assignment,
fault tolerance and monitoring for the completion of Map
and Reduce tasks, in addition to other responsibilities. By
design, cloud environments are more brittle than the
traditional computing clusters are. Thus, cloud applications
should be developed to anticipate and withstand these
failures. Because of this, it is not possible for
AzureMapReduce to make the same assumptions of
reliability about a master node as in the above-mentioned
runtimes. Due to these reasons, AzureMapReduce is
designed around a decentralized control model without a
master node, thus avoiding the possible single point of
failure. AzureMapReduce also provides users with the
capability to dynamically scale up or down the number of

computing instances, even in the middle of a MapReduce
computation, as and when it is needed. The map and reduce
tasks of the AzureMapReduce runtime are dynamically
scheduled using a global queue. In a previous study [19], we
experimentally showed that dynamic scheduling through a
global queue achieves better load balancing across all tasks,
resulting in better performance and throughput than statically
scheduled runtimes, especially when used with real-world
inhomogeneous data distributions.

A. Client API and Driver
Client driver is used to submit the Map and Reduce tasks

to the worker nodes using Azure Queues. Users can utilize
the client API to generate a set of map tasks that are either
automatically based on a data set present in the Azure Blob
storage or manually based on custom criteria, which we find
to be a very useful feature when implementing science
applications using MapReduce. Client driver uses the .net
task parallel library to dispatch tasks in parallel overcoming
the latencies of the Azure queue and the Azure table
services. It’s possible to use the client driver to monitor the
progress and completion of the MapReduce jobs.

B. Map Tasks
Users have the ability to configure the number of Map

workers per Azure instance. Map workers running on the
Azure compute instances poll and dequeue map task
scheduling messages from the scheduling queue, which were
enqueued by the client API. The scheduling messages
contain the meta-data needed for the Map task execution,
such as input data file location, program parameters, map
task ID, and so forth. Map tasks upload the generated
intermediate data to the Azure Blob Storage and put the key-
value pair meta-data information to the correct reduce task
table. At this time, we are actively working on investigating

other approaches for performing the intermediate data
transfer.

C. Reduce Tasks
Reduce task scheduling is similar to map task scheduling.

Users have the ability to configure the number of Reduce
tasks per Azure Compute instance. Each reduce task has an
associated Azure Table containing the input key-value pair
meta-data information generated by the map tasks. Reduce
tasks fetch intermediate data from the Azure Blob storage
based on the information present in the above-mentioned
reduce task table. This data transfer begins as soon as the
first Map task is completed, overlapping the data transfer
with the computation. This overlapping of data transfer with
computation minimizes the data transfer overhead of the
MapReduce computations, as found in our testing. Each
Reduce task starts processing the reduce phase; when all the
map tasks are completed, and after all the intermediate data
products bound for that particular reduce task is fetched. In
the AzureMapReduce, each reduce task will independently
determine the completion of map tasks based on the
information in the map task meta-data table and in the reduce
task meta-data table. After completion of the processing,
reduce tasks upload the results to the Azure Blob Storage and
update status in the reduce task meta-data table.

Azure table does not support transactions across tables or
guarantee the immediate availability of data, but rather
guarantees the eventual availability data. Due to that, it is
possible for a worker to notice a map task completion
update, before seeing a reduce task intermediate meta-data
record added by that particular map task. Even though rare,
this can result in an inconsistent state where a reduce task
decides all the map tasks have been completed and all the
intermediate data bound for that task have been transferred
successfully, while in reality it’s missing some intermediate

Figure 1. AzureMapReduce Architecture

data items. In order to remedy this, map tasks store the
number of intermediate data products it generated in the map
task meta-data table while doing the task completion status
update. Before proceeding with the execution, reduce tasks
perform a global count of intermediate data products in all
reduce task tables and tally it with the total of intermediate
data products generated by the map tasks. This process
ensures all the intermediate data products are transferred
before starting the reduce task processing.

D. Monitoring
We use Azure tables for the monitoring of the map and

reduce task meta-data and status information. Each job has
two separate Azure tables for map and reduce tasks. Both the
meta-data tables are used by the reduce tasks to determine
the completion of Map task phase. Other than the above two
tables, it is possible to monitor the intermediate data transfer
progress using the tables for each reduce task.

E. Fault Tolerance
Fault tolerance is achieved using the fault tolerance

features of the Azure queue. When fetching a message from
an Azure queue, a visibility timeout can be specified, which
will keep the message hidden until the timeout expires. In
Azure Map Reduce, map and reduce tasks delete messages
from the queue only after successful completion of the tasks.
If a task fails or is too slow processing, then the message will
reappear in the queue after the timeout. In this case, it would
be fetched and re-executed by a different worker. This is
made possible by the side effect-free nature of the
MapReduce computations as well as the fact that
AzureMapReduce stores each generated data product in
persistent storage, which allows it to ignore the data
communication failures. In the current implementation, we
retry each task three times before declaring the job a failure.
We use the Map & Reduce task meta-data tables to
coordinate the task status and completion. Over the course of
our testing, we were able to witness few instances of jobs
being recovered by the fault tolerance.

F. Limitations of Azure MapReduce
Currently Azure allows a maximum of 2 hours for queue

message timeout, which is not enough for Reduce tasks of
larger MapReduce jobs, as the Reduce tasks typically
execute from the beginning of the job till the end of the job.
In our current experiments, we disabled the reduce tasks fault
tolerance when it is probable for MapReduce job to execute
for more than 2 hours. Also in contrast to Amazon Simple
Queue Service, Azure Queue service currently doesn’t allow
for dynamic changes of visibility timeouts, which would
allow for richer fault tolerance patterns.

G. Related technologies
1) Google AppEngine-MapReduce: Google AppEngine-

MapReduce [20] is an open source library aimed at
performing MapReduce computations on the Google
AppEngine platform using AppEngine services. The current
experimental release only contains a Mapper library, while
supporting the Reduce phase is part of planned

enhancements. AppEngine-MapReduce supports Hadoop
API with few minimal changes, allowing users to easily port
the existing Hadoop applications to AppEngine-MapReduce
applications. Users will not be able spawn proceses,
restricting the use of executables, or threads.

2) Cloud map reduce: CloudMapReduce [9] also
implements a decentralized MapReduce architecture using
the cloud infrastructure services of Amazon Web Services.
The main differences between CloudMapReduce and the
pre-release version of AzureMapReduce lies in the method
of handling the intermediate data and meta-data, and in the
timing of the commencement of the reduce tasks, among
others.

V. PERFORMANCE EVALUATION OF MAPREDUCE IN THE
CLOUDS FOR SCIENCE

A. Methodology
We performed scalability tests using the selected

applications to evaluate the performance of the MapReduce
implementations in the cloud environments, as well as in the
local clusters. For the scalability test, we decided to increase
the workload and the number of nodes proportionally (weak
scaling), so that the workload per node remained constant.

All of the AzureMapReduce tests were performed using
Azure small instances (one CPU core). The Hadoop-Bare
Metal tests were performed on an iDataplex cluster, in which
each node had two 4-core CPUs (Intel Xeon CPU E5410
2.33GHz) and 16 GB memory, and was inter-connected
using Gigabit Ethernet network interface. The Hadoop-EC2
and EMR tests for Cap3 application were performed using
Amazon High CPU extra-large instances, as they are the
most economical per CPU core. Each high CPU extra-large
instance was considered as 8 physical cores, even though
they are billed as 20 Amazon compute units. The EC2 and
EMR tests for SWG MapReduce applications were
performed using Amazon extra-large instances as the more
economical high CPU extra instances showed memory
limitations for the SWG calculations. Each extra-large
instance was considered as 4 physical cores, even though
they are billed as 8 Amazon computing units. In all the
Hadoop-based experiments (EC2, EMR and Hadoop bare
metal), only the cores of the Hadoop slave nodes were
considered for the number of cores calculation, despite the
fact that an extra computing node was used as the Hadoop
master node.

Below are the defined parallel efficiency and relative
parallel efficiency calculations used in the results part of this
paper.

T(1) is the best sequential execution time for the

application in a particular environment using the same data
set or a representative subset. In all the cases, the sequential
time was measured with no data transfers, i.e. the input files
were present in the local disks. T(ρ) is the parallel run time
for the application while “p” is the number of processor
cores used.

We calculate that the relative parallel efficiency when
estimating the sequential run time for an application is not
straightforward. α = p/p1, where p1 is the smallest number of
CPU cores for the experiment.

B. Smith-Waterman-GOTOH(SWG) pairwise distance

calculation
 1

(1-
100)

2
(101-
200)

3
(201-
300)

4
(301-
400)

 N

1
(1-100) M1 M2 from

M6 M3 …. M#
Reduce 1

2
(101-200)

from
M2 M4 M5 from

M9 ….
Reduce 2

3
(201-300) M6 from

M5 M7 M8 ….
Reduce 3

4
(301-400)

from
M3 M9 from

M8 M10 ….
Reduce 4

 .
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

….
….
….
….

.

.

.

.

N

From
M#

 M(N*
(N+1)/2)

Reduce N

Figure 3. SWG MapReduce task decomposition

In this application, we use the Smith-Waterman [10]
algorithm with GOTOH [11] (SWG) improvement to
perform pairwise sequence alignment on FASTA sequences.
Given a sequence set we calculate the all-pairs dissimilarity
for all the sequences. When calculating the all-pairs
dissimilarity for a data set, calculating only the strictly upper
or lower triangular matrix in the solution space is sufficient,
as the transpose of the computed triangular matrix gives the
dissimilarity values for the other triangular matrix. As shown
in figure 3, this property, together with blocked
decomposition, is used when calculating the set of map tasks
for a given job. Reduce tasks aggregate the output from a

row block. In this application, the size of the input data set is
relatively small, while the size of the intermediate and the
output data are significantly larger due to the n2 result space,
stressing the performance of inter-node communication and
output data storage. SWG can be considered as a memory-
intensive application.

More details about the Hadoop-SWG application
implementation are given in [19]. The AzureMapReduce
implementation also follows the same architecture and
blocking strategy as in the Hadoop-SWG implementation.
Hadoop-SWG uses the open source JAligner [21] as the
computational kernel, while AzureMapReduce SWG uses
the C# implementation, NAligner [21] as the computational
kernel. The results of the SWG MapReduce computation get
stored in HDFS for Hadoop-SWG in bare metal and EC2
environments, while the results get stored in Amazon S3 and
Azure Block Storage for Hadoop-SWG on EMR and SWG
on AzureMapReduce, respectively.

Due to the all-pairs nature and the block-based task
decomposition of the SWG MapReduce implementations,
it’s hard to increase the workload linearly by simply
replicating the number of input sequences for the scalability
test. Hence, we modified the program to artificially reuse the
computational blocks of the smallest test case in the larger
test cases, so that the workload scaling occurs linearly. The
raw performance results of the SWG MapReduce scalability
test are given in figure 2(a). A block size of 200 * 200
sequences is used in the performance experiments resulting
in 40,000 sequence alignments per block, which resulted in
~123 million sequence comparisons in the 3072 block test
case. The AzureMapReduce SWG performance in figure 2
(a) is significantly lesser than the others. This is due to the
performance of NAligner core executing in windows

Figure 2. (a) SWG MapReduce pure performance (b) SWG MapReduce relative parallel efficiency
 (c) SWG MapReduce normalized performance (d) SWG MapReduce amortized cost for clouds

environment being slower than the JAligner core executing
in Linux environment.

Due to the sheer size of even the smallest computation in
our SWG scaling test cases, we found it impossible to
calculate the sequential execution time for the SWG test
cases. Also, due to the all-pairs nature of SWG, it’s not
possible to calculate the sequential execution time using a
subset of data. In order to compensate for the lack of
absolute efficiency (which would have negated most of the
platform and hardware differences across different
environments), we performed a moderately-sized sequential
SWG calculation in all of the environments and used that
result to normalize the performance using the Hadoop-bare
metal performance as the baseline. The normalized
performance is depicted in figure 2(c), where we can observe
that all four environments show comparable performance
and good scalability for the SWG application. Figure 2(b)
depicts the relative parallel efficiency of SWG MapReduce
implementations using the 64 core, 1024 block test case as
p1 (see section V-A).

In figure 2(d) we present the approximate computational
costs for the experiments performed using cloud
infrastructures. Even though the cloud instances are hourly
billed, costs presented in 2(d) are amortized for the actual
execution time (time / 3600 * num_instances * instance price
per hour), assuming the remaining time of the instance hour
has been put to useful work. In addition to the depicted
charges, there will be additional minor charges for the data
storage for EMR & AzureMapReduce. There will also be
additional minor charges for the queue service and table
service for AzureMapReduce. We notice that the costs for
Hadoop on EC2 and AzureMapReduce are in a similar
range, while EMR costs a fraction more. We consider the
ability to perform a large computation, such as ~123 million
sequence alignments, for under 30$ with zero up front
hardware cost, as a great enabler for the scientists, who don’t
have access to in house compute clusters.

C. Sequence assembly using Cap3
Cap3 [12] is a sequence assembly program which

assembles DNA sequences by aligning and merging
sequence fragments to construct whole genome sequences.
The Cap3 algorithm operates on a collection of gene
sequence fragments, which are presented as FASTA-
formatted files, generating consensus sequences. The Cap3
program is often used in parallel with lots of input files due
to the pleasingly parallel nature of the application. The size
of a typical data input file for Cap3 program and the
resulting data file range from hundreds of kilobytes to a few
megabytes. The output files can be collected independently
and do not need any combining steps. We use a Mapper-only
MapReduce application for Cap3. More details about the
Cap3 Hadoop implementation can be found on [15]. Cap3
can be considered as a CPU intensive application.

We used a replicated set of Fasta files as the input data in
our experiments. Every file contained 458 reads. The
input/output data was stored in HDFS in the Hadoop
BareMetal and Hadoop-EC2 experiments, while they were
stored in Amazon S3 and Azure Blob storage for EMR and

AzureMapReduce experiments respectively. Figure 4(a)
presents the pure performance of the Cap3 MapReduce
applications, while Figure 4(b) presents the absolute parallel
efficiency for the Cap3 MapReduce applications. As we can
see, all of the cloud Cap3 applications displayed
performance comparative to the bare metal clusters and good
scalability, while AzureMapReduce and Hadoop Bare metal
showed a slight edge over the Amazon counterparts in terms
of the efficiency. Figure 4(c) depicts the approximate
amortized computing cost for the Cloud MapReduce
applications, with AzureMapReduce showing an advantage.

VI. SUSTAINED PERFORMANCE OF CLOUDS
When discussing about cloud performance, the sustained

performance of the clouds is often questioned. This is a valid
question, since clouds are often implemented using a multi-
tenant shared VM-based architecture. We performed an
experiment by running the SWG EMR and SWG
AzureMapReduce using the same workload throughout

Figure 4. (a) Cap3 MapReduce scaling performance

 (b) Cap3 MapReduce parallel efficiency
 (c) Cap3 MapReduce computational cost in cloud infrastructures

different times of the week. In these tests, 32 cores were used
to align 4000 sequences. The results of this experiment are
given in Figure 5. Each of these tests was performed at +/- 2
hours 12AM/PM. Figure 5 also includes normalized
performance for AzureMapReduce, calculated using the
EMR as the baseline. We are happy to report that the
performance variations we observed were very minor, with
standard deviations of 1.56% for EMR and 2.25% for
AzureMapReduce. Additionally, we did not notice any
noticeable trends in performance fluctuation.

Figure 5. Sustained performance of cloud environments

VII. CONCLUSION
We introduced the novel decentralized controlled

AzureMapReduce framework, which fulfills the much-
needed requirement of a distributed programming framework
for Azure users. AzureMapReduce is built using Azure cloud
infrastructure services that take advantage of the quality of
service guarantees provided by the cloud service providers.
Even though cloud services have higher latencies than their
traditional counter parts, scientific applications implemented
using AzureMapReduce were able to perform comparatively
with the other MapReduce implementations, thus proving the
feasibility of AzureMapReduce architecture. We also
explored the challenges presented by cloud environments to
execute MapReduce computations and discussed how we
overcame them in the AzureMapReduce architecture.

We also presented and analyzed the performance of two
scientific MapReduce applications on two popular cloud
infrastructures. In our experiments, scientific MapReduce
applications executed in the cloud infrastructures exhibited
performance and efficiency comparable to the MapReduce
applications executed using traditional clusters. Performance
comparable to in house clusters, on demand availability,
horizontal scalability and the easy to use programming
model together with no upfront cost makes using
MapReduce in cloud environments a very viable option and
an enabler for the computational scientists, especially in
scenarios where in-house compute clusters are not readily
available. From an economical and maintenance perspective,
it even makes sense not to procure in-house clusters if the
utilization would be low. We also observed that the
fluctuation of cloud MapReduce performance is minimal
over a weeklong period, assuring consistency and
predictability of application performance in the cloud
environments.

ACKNOWLEDGMENT
We would like to thank all the SALSA group members

for their support. We appreciate Microsoft for their technical
support on Azure. This work was made possible using the
compute use grant provided by Amazon Web Service which
is titled "Proof of concepts linking FutureGrid users to
AWS". This work is partially funded by Microsoft "CRMC"
grant and NIH Grant Number RC2HG005806-02.

REFERENCES
[1] T. Hey, S. Tansley, and K. Tolle, Jim Gray on eScience: a

transformed scientific method: Microsoft Research, 2009.
[2] T. Gunarathne, T.-L. Wu, J. Qiu et al., “Cloud computing

paradigms for pleasingly parallel biomedical applications,” in
Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, Chicago, Illinois,
2010, pp. 460-469.

[3] J. Dean, and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1, pp.
107-113, 2008.

[4] J. Ekanayake, S. Pallickara, and G. Fox, "MapReduce for Data
Intensive Scientific Analyses." pp. 277-284.

[5] Qiu X., Ekanayake J., Gunarathne T. et al., "Using MapReduce
Technologies in Bioinformatics and Medical Informatics."

[6] C. Evangelinos, and C. N. Hill, “Cloud Computing for parallel
Scientific HPC Applications: Feasibility of running Coupled
Atmosphere-Ocean Climate Models on Amazon’s EC2.,” in
Cloud computing and it's applications (CCA-08), Chicago, IL,
2008.

[7] Apache Hadoop, Retrieved Aug 20, 2010, from ASF:
http://hadoop.apache.org/core/.

[8] Amazon ElasticMapReduce, Retrieved Aug 20, 2010,
http://aws.amazon.com/elasticmapreduce/.

[9] cloudmapreduce, Retrieved Aug 20, 2010:
http://sites.google.com/site/huanliu/cloudmapreduce.pdf.

[10] T. F. Smith, and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of Molecular Biology, vol.
147, no. 1, pp. 195-197, 1981.

[11] O. Gotoh, “An improved algorithm for matching biological
sequences,” Journal of Molecular Biology, vol. 162, pp. 705-
708, 1982.

[12] X. Huang, and A. Madan, “CAP3: A DNA sequence assembly
program,” Genome Res, vol. 9, no. 9, pp. 868-77, 1999.

[13] "Hadoop Distributed File System HDFS," December, 2009;
http://hadoop.apache.org/hdfs/.

[14] Amazon Web Services. http://aws.amazon.com
[15] Thilina Gunarathne, Tak-Lon Wu, Judy Qiu et al., “Cloud

Computing Paradigms for Pleasingly Parallel Biomedical
Applications,” in Proceedings of the Emerging Computational
Methods for the Life Sciences Workshop of ACM HPDC 2010
conference, Chicago, Illinois, 2010.

[16] Windows Azure Platform, Retrieved April 20, 2010, from
Microsoft: http://www.microsoft.com/windowsazure/.

[17] "MPI," Message Passing Interface, http://www-
unix.mcs.anl.gov/mpi/, 2009].

[18] J.Ekanayake, H.Li, B.Zhang et al., “Twister: A Runtime for
iterative MapReduce,” in Proceedings of the First International
Workshop on MapReduce and its Applications of ACM HPDC
2010 conference June 20-25, 2010, Chicago, Illinois, 2010.

[19] J. Ekanayake, T. Gunarathne, J. Qiu et al., “Cloud Technologies
for Bioinformatics Applications,” Accepted for publication in
Journal of IEEE Transactions on Parallel and Distributed
Systems, 2010.

[20] AppEngine-MapReduce, vol. 2010, Retrieved September 2,
2010, http://code.google.com/p/appengine-mapreduce/.

[21] "JAligner.," December, 2009; http://jaligner.sourceforge.net.

