


CLOUD	COMPUTING

Gregor	von	Laszewski

(c)	Gregor	von	Laszewski,	2018,	2019



CLOUD	COMPUTING

1	PREFACE
1.1	Learning	Objectives	☁
1.2	ePub	Readers	☁
1.3	Corrections	☁
1.4	Contributors	☁
1.5	Notation	☁
1.5.1	Figures
1.5.2	Hyperlinks	in	the	document
1.5.3	Equations
1.5.4	Tables

1.6	Updates	☁
2	OVERVIEW	☁
3	DEFINITION	OF	CLOUD	COMPUTING	☁
3.1	Defining	the	term	Cloud	Computing
3.2	History	and	Trends
3.3	Job	as	a	Cloud/Data	Engineer
3.4	You	must	be	that	TALLL

4	DATACENTER
4.1	Data	Center	☁
4.1.1	Motivation:	Data
4.1.1.1	How	much	data?

4.1.2	Cloud	Data	Centers
4.1.3	Data	Center	Infrastructure
4.1.4	Data	Center	Characteristics
4.1.5	Data	Center	Metrics
4.1.5.1	Data	Center	Energy	Costs
4.1.5.2	Data	Center	Carbon	Footprint
4.1.5.3	Data	Center	Operational	Impact
4.1.5.4	Power	Usage	Effectiveness
4.1.5.5	Hot-Cold	Aisle
4.1.5.5.1	Containment
4.1.5.5.1.1	Water	Cooled	Doors

4.1.5.6	Workload	Monitoring
4.1.5.6.1	Workload	of	HPC	in	the	Cloud



4.1.5.6.2	Scientific	Impact	Metric
4.1.5.6.3	Clouds	and	Virtual	Machine	Monitoring
4.1.5.6.4	Workload	of	Containers

4.1.6	Example	Data	Centers
4.1.6.1	AWS
4.1.6.2	Azure
4.1.6.3	Google
4.1.6.4	IBM
4.1.6.5	XSEDE
4.1.6.5.1	Comet
4.1.6.5.2	Jetstream

4.1.6.6	Chameleon	Cloud
4.1.6.7	Indiana	University
4.1.6.8	Shipping	Containers

4.1.7	Server	Consolidation
4.1.8	Data	Center	Improvements	and	Consolidation
4.1.9	Project	Natick
4.1.10	Renewable	Energy	for	Data	Centers
4.1.11	Societal	Shift	Towards	Renewables
4.1.12	Datacenter	Risks	and	Issues
4.1.13	Exercises

5	ARCHITECTURE
5.1	Architectures	☁
5.1.1	Evolution	of	Compute	Architectures
5.1.1.1	Mainframe	Computing
5.1.1.2	PC	Computing
5.1.1.3	Intranet	and	Server	Computing
5.1.1.4	Grid	Computing	Computing
5.1.1.5	Internet	Computing
5.1.1.6	Cloud	Computing
5.1.1.7	Mobile	Computing
5.1.1.8	Internet	of	Things	Computing
5.1.1.9	Edge	Computing
5.1.1.10	Fog	Computing

5.1.2	As	a	Servise	Architecture	Model
5.1.3	Product	or	Functional	Based	Model
5.1.4	NIST	Cloud	Architecture



5.1.5	Cloud	Security	Alliance	Reference	Architecture
5.1.6	Multicloud	Architectures
5.1.6.1	Cloudmesh	Architecture

5.1.7	Resources
5.2	NIST	Big	Data	Referenece	Architecture	☁
5.2.1	Pathway	to	the	NIST-BDRA
5.2.2	Big	Data	Characteristics	and	Definitions
5.2.3	Big	Data	and	the	Cloud
5.2.4	Big	Data,	Edge	Computing	and	the	Cloud
5.2.5	Reference	Architecture
5.2.6	Framework	Providers
5.2.7	Application	Providers
5.2.8	Fabric
5.2.9	Interface	definitions

5.3	The	Y-Scheduling	Architecture	View	☁
6	REST
6.1	Introduction	to	REST	☁
6.1.0.1	Collection	of	Resources
6.1.0.2	Single	Resource
6.1.0.3	REST	Tool	Classification

6.2	OPENAPI	3.0
6.2.1	REST	Specifications	☁
6.2.1.1	OPENAPI
6.2.1.1.1	Open	API	3.0	Specification	(OAS	3.0)
6.2.1.1.1.1	Definitions

6.2.1.2	RAML
6.2.1.3	API	Blueprint
6.2.1.4	JsonAPI
6.2.1.5	Tinyspec
6.2.1.6	Tools
6.2.1.6.1	Connexion

6.2.2	OpenAPI	3.0	REST	Service	via	Introspection	☁
6.2.2.1	Verification
6.2.2.2	Swagger-UI
6.2.2.3	Mock	service
6.2.2.4	Exercise

6.2.3	REST	AI	services	Example	☁



6.2.3.1	Service	Endpoints/	Paths
6.2.3.1.1	Path	kmeans/upload
6.2.3.1.2	Path	kmeans/fit
6.2.3.1.3	Path	kmeans/predict

6.2.3.2	Files
6.2.3.3	Running	the	example
6.2.3.4	Notes

6.3	Flask	RESTful	Services	☁
6.4	Django	REST	Framework	☁
6.5	Github	REST	Services	☁
6.5.1	Issues
6.5.2	Exercise

6.6	OpenAPI	REST	Services	with	Swagger	☁
6.6.1	Swagger	Tools
6.6.2	Swagger	Community	Tools
6.6.2.1	Converting	Json	Examples	to	OpenAPI	YAML	Models

6.7	REST	WITH	EVE
6.7.1	Rest	Services	with	Eve	☁
6.7.1.1	Ubuntu	install	of	MongoDB
6.7.1.2	macOS	install	of	MongoDB
6.7.1.3	Windows	10	Installation	of	MongoDB
6.7.1.4	Database	Location
6.7.1.5	Verification
6.7.1.6	Building	a	simple	REST	Service
6.7.1.7	Interacting	with	the	REST	service
6.7.1.8	Creating	REST	API	Endpoints
6.7.1.9	REST	API	Output	Formats	and	Request	Processing
6.7.1.10	REST	API	Using	a	Client	Application
6.7.1.11	Towards	cmd5	extensions	to	manage	eve	and	mongo	

6.7.2	HATEOAS	☁
6.7.2.1	Filtering
6.7.2.2	Pretty	Printing
6.7.2.3	XML

6.7.3	Extensions	to	Eve	☁
6.7.3.1	Object	Management	with	Eve	and	Evegenie
6.7.3.1.1	Installation
6.7.3.1.2	Starting	the	service



6.7.3.1.3	Creating	your	own	objects
6.8	OPENAPI	2.0
6.8.1	OpenAPI	2.0	Specification	☁
6.8.1.1	The	Virtual	Cluster	example	API	Definition
6.8.1.1.1	Terminology
6.8.1.1.2	Specification

6.8.1.2	References
6.8.2	OpenAPI	REST	Service	via	Introspection	☁
6.8.2.1	Verification
6.8.2.2	Mock	service
6.8.2.3	Exercise

6.8.3	OpenAPI	REST	Service	via	Codegen	☁
6.8.3.1	Step	1:	Define	Your	REST	Service
6.8.3.2	Step	2:	Server	Side	Stub	Code	Generation	and	Implementation
6.8.3.2.1	Setup	the	Codegen	Environment
6.8.3.2.2	Generate	Server	Stub	Code
6.8.3.2.3	Fill	in	the	actual	implementation

6.8.3.3	Step	3:	Install	and	Run	the	REST	Service:
6.8.3.3.1	Start	a	virtualenv:
6.8.3.3.2	Make	sure	you	have	the	latest	pip:
6.8.3.3.3	Install	the	requirements	of	the	server	side	code:
6.8.3.3.4	Install	the	server	side	code	package:
6.8.3.3.5	Run	the	service
6.8.3.3.6	Verify	the	service	using	a	web	browser:

6.8.3.4	Step	4:	Generate	Client	Side	Code	and	Verify
6.8.3.4.1	Client	side	code	generation:
6.8.3.4.2	Install	the	client	side	code	package:
6.8.3.4.3	Using	the	client	API	to	interact	with	the	REST	service

6.8.3.5	Towards	a	Distributed	Client	Server
6.9	Exercises	☁

7	GRAPHQL	☁
7.1	Prerequisites
7.1.1	Install	Graphene
7.1.2	Install	Django
7.1.3	Install	GraphiQL

7.2	GraphQL	type	system	and	schema
7.2.1	Type	System



7.2.2	Scalar	Types
7.2.3	Enumeration	Types
7.2.4	Interfaces
7.2.5	Union	Types

7.3	GraphQL	Query
7.3.1	Fields
7.3.2	Arguments
7.3.3	Fragments
7.3.4	Variables
7.3.5	Directives
7.3.6	Mutations
7.3.7	Query	Validation

7.4	GraphQL	in	Python
7.5	Developing	your	own	GraphQL	Server
7.5.1	GraphQL	server	implementation
7.5.2	GraphQL	Server	Querying
7.5.3	Mutation	example
7.5.4	GraphQL	Authentication
7.5.5	JSON	Web	Token	Authentication
7.5.5.1	Using	Authentication	with	Curl
7.5.5.2	Expiration	of	JWT	tokens

7.5.6	GitHub	API	v4
7.6	Dynamic	Queries	with	GraphQL
7.7	Advantages	of	Using	GraphQL
7.8	Disadvantages	of	Using	GraphQL
7.9	Conclusion
7.9.1	Resources

7.10	Excersises
8	HYPERVISOR
8.1	Virtualization	☁
8.1.1	Virtual	Machines
8.1.2	System	Virtual	Machines
8.1.3	Hosted	Virtualization
8.1.4	Summary
8.1.5	Virtualization	Approches
8.1.5.1	Full	virtualization
8.1.5.2	Paravirtualization



8.1.6	Virtualization	Technologies
8.1.6.1	Selected	Hardware	Virtualization	Technologies
8.1.6.2	AMD-V	and	Intel-VT
8.1.6.3	I/O	MMU	virtualization	(AMD-Vi	and	Intel	VT-d)
8.1.6.4	Selected	VM	Virtualization	Software	and	Tools
8.1.6.4.1	Libvirt
8.1.6.4.2	QEMU
8.1.6.4.3	KVM
8.1.6.4.3.1	KVM	vs	QEMU

8.1.6.4.4	Xen
8.1.6.4.5	Hyper-V
8.1.6.4.6	VMWare

8.1.6.5	Parallels
8.1.6.5.1	VirtualBox
8.1.6.5.2	Wine	–	Wine	is	not	an	emulator
8.1.6.5.3	Comparison	of	some	technologies

8.1.6.6	Selected	Storage	Virtualization	Software	and	Tools
8.1.6.7	Selected	Network	Virtualization	Software	and	Tools

8.2	Virtual	Machine	Management	with	QEMU	☁
8.2.1	Install	QEMU
8.2.2	Create	a	Virtual	Hard	Disk	with	QEMU
8.2.3	Install	Ubuntu	on	the	Virtual	Hard	Disk
8.2.4	Start	Ubuntu	with	QEMU
8.2.5	Emulate	Raspberry	Pi	with	QEMU
8.2.6	Resources

8.3	Manage	VM	guests	with	virsh	☁
9	IAAS
9.1	Introduction	☁
9.2	Amazon	Web	Services	☁
9.2.1	AWS	Products
9.2.1.1	Virtual	Machine	Infrastructure	as	a	Services
9.2.1.2	Container	Infrastructure	as	a	Service
9.2.1.3	Serverless	Compute	using	AWS	Lambda
9.2.1.4	Serverless	Compute	using	AWS	Lambda
9.2.1.5	Storage
9.2.1.6	Databases

9.2.2	Locations



9.2.3	Creating	an	account
9.2.4	AWS	Command	Line	Interface
9.2.4.1	Introduction
9.2.4.2	Prerequisites
9.2.4.2.1	Install	CLI
9.2.4.2.2	Configure	CLI

9.2.5	AWS	Admin	Access
9.2.5.1	Introduction
9.2.5.2	Prerequisites
9.2.5.3	Setting	up	admin	access	using	AWS	CLI
9.2.5.3.1	Create	an	admin	security	group
9.2.5.3.2	Assign	a	security	policy	to	the	created	group	granting	full
admin	access

9.2.6	Understanding	the	free	tier
9.2.7	Important	Notes
9.2.8	Introduction	to	the	AWS	console
9.2.8.1	Starting	a	VM
9.2.8.1.1	Setting	up	key	pair

9.2.8.2	Stopping	a	VM
9.2.9	Access	from	the	Command	Line
9.2.10	Access	from	Python
9.2.11	Boto
9.2.12	libcloud

9.3	Microsoft	Azure	☁
9.3.1	Products
9.3.1.1	Virtual	Machine	Infrastructure	as	a	Services
9.3.1.2	Container	Infrastructure	as	a	Service
9.3.1.3	Databases
9.3.1.4	Networking

9.3.2	Registration
9.3.3	Introduction	to	the	Azure	Portal
9.3.4	Creating	a	VM
9.3.5	Create	a	Ubuntu	Server	18.04	LTS	Virtual	Machine	in	Azure
9.3.6	Remote	access	the	Virtual	Machine
9.3.7	Starting	a	VM
9.3.8	Stopping	the	VM
9.3.9	Exercises



9.4	What	is	IBM	Watson	and	why	is	it	important?	☁
9.4.1	How	can	we	use	Watson?
9.4.2	Creating	an	account
9.4.3	Understanding	the	free	tier

9.5	Google	IaaS	Cloud	Services	☁
9.5.1	Cloud	Computing	Services	and	Products
9.5.1.1	Overview
9.5.1.2	AI	and	Machine	Learning
9.5.1.3	API	management
9.5.1.4	Compute
9.5.1.5	Data	Analytics
9.5.1.6	Databases
9.5.1.7	Developer	Tools
9.5.1.8	Internet	of	Things
9.5.1.9	Management	Tools
9.5.1.10	Media	and	Migration

9.5.2	Migration
9.5.2.1	Networking
9.5.2.2	Security
9.5.2.3	Storage
9.5.2.4	Google	IaaS	Example
9.5.2.5	Google	Cloud	Console	Overview
9.5.2.6	Use	GCP	Resources
9.5.2.7	Project	navigation
9.5.2.8	Navigate	Google	Cloud	Services
9.5.2.9	Section	pinning
9.5.2.10	View	activity	across	your	GCP	resources
9.5.2.11	Search	across	Cloud	Console
9.5.2.12	Get	support	anytime
9.5.2.13	Manage	users	and	permissions
9.5.2.14	Access	the	command	line	from	your	browser

9.5.3	Create	a	VM	Example
9.5.3.1	Create	a	virtual	machine	instance
9.5.3.2	VM	instances	page
9.5.3.3	Connect	to	your	instance
9.5.3.4	Run	a	simple	web	server
9.5.3.5	Visit	your	application



9.5.3.6	Cleanup
9.6	OpenStack	☁
9.6.1	Introduction
9.6.2	OpenStack	Architecture
9.6.3	Components
9.6.4	Core	Services
9.6.4.1	Nova	-	Compute
9.6.4.2	Glance	-	Image	Services
9.6.4.3	Swift	-	Object	Storage
9.6.4.4	Cinder	-	Block	Storage
9.6.4.5	Neutron	-	Networking
9.6.4.6	Horizon	-	Dashboard
9.6.4.7	Keystone	-	Identity	Service
9.6.4.8	Ceilometer	-	Telemetry
9.6.4.9	Heat	-	Orchestration

9.6.5	Access	from	Python	and	Scripts
9.6.5.1	Libcloud
9.6.5.2	DevStack

9.7	Python	Libcloud	☁
9.7.1	Service	categories
9.7.1.0.1	Compute
9.7.1.0.2	Key	Pair	Management
9.7.1.0.3	Block	Storage

9.7.2	Installation
9.7.3	Quick	Example
9.7.4	Managing	your	cloud	credentials
9.7.5	Working	with	cloud	services
9.7.5.1	Authenticating	with	cloud	providers
9.7.5.1.1	Amazon	AWS
9.7.5.1.2	Azure
9.7.5.1.2.1	Azure	Classic	Driver
9.7.5.1.2.2	Azure	New	Driver

9.7.5.1.3	OpenStack
9.7.5.1.4	Google

9.7.5.2	Invoking	services
9.7.5.2.1	Creating	Nodes
9.7.5.2.2	Listing	Nodes



9.7.5.2.3	Starting	Nodes
9.7.5.2.4	Stoping	Nodes

9.7.6	Cloudmesh	Community	Program	to	Manage	Clouds
9.7.7	Amazon	Simple	Storage	Service	S3	via	libcloud	
9.7.7.1	Access	key
9.7.7.2	Create	a	new	bucket	on	AWS	S3
9.7.7.3	List	Containers
9.7.7.4	List	container	objects
9.7.7.5	Upload	a	file
9.7.7.6	References

9.8	AWS	Boto	 	☁
9.8.1	Boto	versions
9.8.2	Boto	Installation
9.8.3	Access	key
9.8.4	Boto	configuration
9.8.5	Boto	configuration	with	cloudmesh
9.8.6	EC2	interface	of	Boto
9.8.6.0.1	Create	connection

9.8.7	List	EC2	instances
9.8.7.0.1	Launch	a	new	instance
9.8.7.0.2	Check	running	instances
9.8.7.0.3	Stop	instance
9.8.7.0.4	Terminate	instance
9.8.7.1	Reboot	instances

9.8.8	Amazon	S3	interface	of	Boto
9.8.8.0.1	Create	connection
9.8.8.0.2	Create	new	bucket	in	S3
9.8.8.0.3	Upload	data
9.8.8.0.4	List	all	buckets
9.8.8.0.5	List	all	objects	in	a	bucket
9.8.8.0.6	Delete	object
9.8.8.0.7	Delete	bucket

9.8.9	References
9.8.10	Excersises

10	MAPREDUCE
10.1	Introduction	to	Mapreduce	☁
10.1.1	MapReduce	Algorithm



10.1.1.1	MapReduce	Example:	Word	Count
10.1.2	Hadoop	MapReduce	and	Hadoop	Spark
10.1.2.1	Apache	Spark
10.1.2.2	Hadoop	MapReduce
10.1.2.3	Key	Differences

10.1.3	References
10.2	HADOOP
10.2.1	Hadoop	☁
10.2.1.1	Hadoop	and	MapReduce
10.2.1.2	Hadoop	EcoSystem
10.2.1.3	Hadoop	Components
10.2.1.4	Hadoop	and	the	Yarn	Resource	Manager
10.2.1.5	PageRank

10.2.2	Installation	of	Hadoop	☁
10.2.2.1	Releases
10.2.2.2	Prerequisites
10.2.2.3	User	and	User	Group	Creation
10.2.2.4	Configuring	SSH
10.2.2.5	Installation	of	Java
10.2.2.6	Installation	of	Hadoop
10.2.2.7	Hadoop	Environment	Variables

10.2.3	Hadoop	Distributed	File	System	(Hadoop	HDFS)	☁
10.2.3.1	Introduction
10.2.3.2	Features
10.2.3.3	HDFS	Components
10.2.3.3.1	NameNode	and	DataNodes

10.2.3.4	Usage
10.2.3.4.1	Java	Client	API
10.2.3.4.2	FS	Shell

10.2.3.5	References
10.2.3.6	Exercises

10.2.4	Apache	HBase	☁
10.2.4.1	Introduction
10.2.4.2	Features
10.2.4.3	Configuration
10.2.4.4	Usage
10.2.4.4.1	Connect	to	HBase.



10.2.4.4.2	Create	a	table
10.2.4.4.3	Describe	a	table
10.2.4.4.4	HBase	MapReduce	job

10.2.4.5	References
10.2.5	Hadoop	Virtual	Cluster	Installation	Using	Cloudmesh	 	☁
10.2.5.1	Cloudmesh	Cluster	Installation
10.2.5.1.1	Create	Cluster
10.2.5.1.2	Check	Created	Cluster
10.2.5.1.3	Delete	Cluster

10.2.5.2	Hadoop	Cluster	Installation
10.2.5.2.1	Create	Hadoop	Cluster
10.2.5.2.2	Delete	Hadoop	Cluster

10.2.5.3	Advanced	Topics	with	Hadoop
10.2.5.3.1	Hadoop	Virtual	Cluster	with	Spark	and/or	Pig
10.2.5.3.2	Word	Count	Example	on	Spark

10.3	SPARK
10.3.1	Spark	Lectures	☁
10.3.1.1	Motivation	for	Spark
10.3.1.2	Spark	RDD	Operations
10.3.1.3	Spark	DAG
10.3.1.4	Spark	vs.	other	Frameworks

10.3.2	Installation	of	Spark	☁
10.3.2.1	Prerequisites
10.3.2.2	Installation	of	Java
10.3.2.3	Install	Spark	with	Hadoop
10.3.2.4	Spark	Environment	Variables
10.3.2.5	Test	Spark	Installation
10.3.2.6	Install	Spark	With	Custom	Hadoop
10.3.2.7	Configuring	Hadoop
10.3.2.8	Test	Spark	Installation

10.3.3	Spark	Streaming	☁
10.3.3.1	Streaming	Concepts
10.3.3.2	Simple	Streaming	Example
10.3.3.3	Spark	Streaming	For	Twitter	Data
10.3.3.3.1	Step	1
10.3.3.3.2	Step	2
10.3.3.3.3	Step	3



10.3.3.3.4	Step	4
10.3.3.3.5	step	5
10.3.3.3.6	step	6

10.3.4	User	Defined	Functions	in	Spark	☁
10.3.4.1	Resources
10.3.4.2	Instructions	for	Spark	installation
10.3.4.2.1	Linux

10.3.4.3	Windows
10.3.4.4	MacOS
10.3.4.5	Instructions	for	creating	Spark	User	Defined	Functions
10.3.4.5.1	Example:	Temperature	conversion
10.3.4.5.1.1	Description	about	data	set
10.3.4.5.1.2	How	to	write	a	python	program	with	UDF
10.3.4.5.1.3	How	to	execute	a	python	spark	script
10.3.4.5.1.4	Filtering	and	sorting

10.3.4.6	Instructions	to	install	and	run	the	example	using	docker
10.4	HADOOP	ECOSYSTEM
10.4.1	ELASTIC	MAP	REDUCE
10.4.1.1	AWS	Elastic	Map	Reduce	(AWS	EMR)	☁
10.4.1.1.1	Introduction
10.4.1.1.2	Why	EMR?
10.4.1.1.3	Understanding	Clusters	and	Nodes
10.4.1.1.4	Prerequisites
10.4.1.1.5	Creating	EMR	Cluster	Using	CLI
10.4.1.1.5.1	Create	Security	Roles
10.4.1.1.5.2	Setting	up	authentication
10.4.1.1.5.3	Determine	the	applicable	subnet
10.4.1.1.5.4	Create	the	EMR	cluster
10.4.1.1.5.5	Check	the	status	of	your	cluster
10.4.1.1.5.6	Terminate	your	cluster

10.4.1.1.6	Creating	EMR	Cluster	Using	AWS	Web	Console
10.4.1.1.6.1	Set	up	authentication
10.4.1.1.6.2	Create	the	EMR	cluster
10.4.1.1.6.3	View	status	and	terminate	EMR	cluster
10.4.1.1.6.4	Submit	Work	to	a	Cluster
10.4.1.1.6.5	Processing	Data

10.4.1.1.7	AWS	Storage



10.4.1.1.8	Create	EMR	in	AWS
10.4.1.1.8.1	Create	the	buckets
10.4.1.1.8.2	Create	Key	Pairs

10.4.1.1.9	Create	Step	Execution	–	Hadoop	Job
10.4.1.1.10	Create	a	Hive	Cluster
10.4.1.1.10.1	Create	a	Hive	Cluster	-	Screen	shots

10.4.1.1.11	Create	a	Spark	Cluster
10.4.1.1.11.1	Create	a	Spark	Cluster	-	Screenshots

10.4.1.1.12	Run	an	example	Spark	job	on	an	EMR	cluster
10.4.1.1.12.1	Spark	Job	Description
10.4.1.1.12.2	Creating	the	S3	bucket
10.4.1.1.12.3	Copy	files	to	S3
10.4.1.1.12.4	Execute	the	Spark	job	on	a	running	cluster
10.4.1.1.12.5	Execute	the	Spark	job	while	creating	clusters
10.4.1.1.12.6	View	the	results	of	the	Spark	job

10.4.1.1.13	Conclusion
10.4.2	TWISTER
10.4.2.1	Twister2	☁
10.4.2.1.1	Introduction
10.4.2.1.2	Twister2	API’s
10.4.2.1.2.1	TSet	API
10.4.2.1.2.2	Task	API

10.4.2.1.3	Operator	API
10.4.2.1.3.1	Resources

10.4.2.2	Twister2	Installation	☁
10.4.2.2.1	Prerequisites
10.4.2.2.1.1	Maven	Installation
10.4.2.2.1.2	OpenMPI	Installation
10.4.2.2.1.3	Install	Extras
10.4.2.2.1.4	Compiling	Twister2
10.4.2.2.1.5	Twister2	Distribution

10.4.2.3	Twister2	Examples	☁
10.4.2.3.1	Submitting	a	Job
10.4.2.3.2	Batch	WordCount	Example

10.4.3	HADOOP	RDMA	☁
10.4.3.1	 Launching	 a	 Virtual	 Hadoop	 Cluster	 on	 Bare-metal
InfiniBand	Nodes	with	SR-IOV	on	Chameleon



10.4.3.2	Launching	Virtual	Machines	Manually
10.4.3.3	Extra	Initialization	when	Launching	Virtual	Machines
10.4.3.4	 Important	 Note	 for	 Tearing	 Down	 Virtual	 Machines	 and
Deleting	Network	Ports

11	CONTAINER
11.1	Introduction	to	Containers	☁
11.1.1	Motivation	-	Microservices
11.1.2	Motivation	-	Serverless	Computing
11.1.3	Docker
11.1.4	Docker	and	Kubernetes

11.2	DOCKER
11.2.1	Introduction	to	Docker	☁
11.2.1.1	Docker	Engine
11.2.1.2	Docker	Architecture
11.2.1.3	Docker	Survey

11.2.2	Running	Docker	Locally	☁
11.2.2.1	Instillation	for	OSX
11.2.2.2	Installation	for	Ubuntu
11.2.2.3	Installation	for	Windows	10
11.2.2.4	Testing	the	Install

11.2.3	Dockerfile	☁
11.2.3.1	Specification
11.2.3.2	References

11.2.4	Docker	Hub	☁
11.2.4.1	Create	Docker	ID	and	Log	In
11.2.4.2	Searching	for	Docker	Images
11.2.4.3	Pulling	Images
11.2.4.4	Create	Repositories
11.2.4.5	Pushing	Images
11.2.4.6	Resources

11.2.5	Docker	Compose	☁
11.2.5.1	Introduction
11.2.5.2	Installation
11.2.5.2.1	Install	on	MacOS
11.2.5.2.2	Install	on	Linux
11.2.5.2.3	Install	on	Windows	10
11.2.5.2.3.1	System	Requirements



11.2.5.2.4	Test	the	installation
11.2.5.3	Docker	Compose	File	Directives
11.2.5.3.1	Configuration
11.2.5.3.1.1	build
11.2.5.3.1.2	context
11.2.5.3.1.3	ARGS
11.2.5.3.1.4	command
11.2.5.3.1.5	depends_on
11.2.5.3.1.6	image
11.2.5.3.1.7	ports
11.2.5.3.1.8	volumes

11.2.5.4	Usages
11.2.5.4.1	Build	A	Service	depending	on	MongoDB

11.3	DOCKER	PAAS
11.3.1	Docker	Clusters	☁
11.3.2	Docker	Swarm	☁
11.3.2.1	Terminology
11.3.2.2	Creating	a	Docker	Swarm	Cluster
11.3.2.3	Create	a	Swarm	Cluster	with	VirtualBox
11.3.2.4	Initialize	the	Swarm	Manager	Node	and	Add	Worker	Nodes
11.3.2.5	Deploy	the	application	on	the	swarm	manager

11.3.3	Docker	and	Docker	Swarm	on	FutureSystems	☁
11.3.3.1	Getting	Access
11.3.3.2	Creating	a	service	and	deploy	to	the	swarm	cluster
11.3.3.3	Create	your	own	service
11.3.3.4	Publish	an	image	privately	within	the	swarm	cluster
11.3.3.5	Exercises

11.3.4	Hadoop	with	Docker	☁
11.3.4.1	Building	Hadoop	using	Docker
11.3.4.2	Hadoop	Configuration	Files
11.3.4.3	Virtual	Memory	Limit
11.3.4.4	hdfs	Safemode	leave	command
11.3.4.5	Examples
11.3.4.5.1	Statistical	Example	with	Hadoop
11.3.4.5.1.1	Base	Location
11.3.4.5.1.2	Input	Files
11.3.4.5.1.3	Compilation



11.3.4.5.1.4	Archiving	Class	Files
11.3.4.5.1.5	HDFS	for	Input/Output
11.3.4.5.1.6	Run	Program	with	a	Single	Input	File
11.3.4.5.1.7	Result	for	Single	Input	File
11.3.4.5.1.8	Run	Program	with	Multiple	Input	Files
11.3.4.5.1.9	Result	for	Multiple	Files

11.3.4.5.2	Conclusion
11.3.4.6	Refernces

11.3.5	Docker	Pagerank	☁
11.3.5.1	Use	the	automated	script
11.3.5.2	Compile	and	run	by	hand

11.3.6	Apache	Spark	with	Docker	☁
11.3.6.1	Pull	Image	from	Docker	Repository
11.3.6.2	Running	the	Image
11.3.6.2.1	Running	interactively
11.3.6.2.2	Running	in	the	background

11.3.6.3	Run	Spark
11.3.6.3.1	Run	Spark	in	Yarn-Client	Mode
11.3.6.3.2	Run	Spark	in	Yarn-Cluster	Mode

11.3.6.4	Observe	Task	Execution	from	Running	Logs	of	SparkPi
11.3.6.5	Write	a	Word-Count	Application	with	Spark	RDD
11.3.6.5.1	Launch	Spark	Interactive	Shell
11.3.6.5.2	Program	in	Scala
11.3.6.5.3	Launch	PySpark	Interactive	Shell
11.3.6.5.4	Program	in	Python

11.3.6.6	Docker	Spark	Examples
11.3.6.6.1	K-Means	Example
11.3.6.6.2	Join	Example
11.3.6.6.3	Word	Count

11.3.6.7	Interactive	Examples
11.3.6.7.1	Stop	Docker	Container
11.3.6.7.2	Start	Docker	Container	Again
11.3.6.7.3	Remove	Docker	Container

11.4	KUBERNETES
11.4.1	Introduction	to	Kubernetes	☁
11.4.1.1	What	are	containers?
11.4.1.2	Terminology



11.4.1.3	Kubernetes	Architecture
11.4.1.4	Minikube
11.4.1.4.1	Install	minikube
11.4.1.4.2	Start	a	cluster	using	Minikube
11.4.1.4.3	Create	a	deployment
11.4.1.4.4	Expose	the	servi
11.4.1.4.5	Check	running	status
11.4.1.4.6	Call	service	api
11.4.1.4.7	Take	a	look	from	Dashboard
11.4.1.4.8	Delete	the	service	and	deployment
11.4.1.4.9	Stop	the	cluster

11.4.1.5	Interactive	Tutorial	Online
11.4.2	Using	Kubernetes	on	FutureSystems	☁
11.4.2.1	Getting	Access
11.4.2.2	Example	Use
11.4.2.3	Exercises

11.5	Running	Singularity	Containers	on	Comet	☁
11.5.1	Background
11.5.2	Tutorial	Contents
11.5.3	Why	Singularity?
11.5.4	Hands-On	Tutorials
11.5.5	Downloading	&	Installing	Singularity
11.5.5.1	Download	&	Unpack	Singularity
11.5.5.2	Configure	&	Build	Singularity
11.5.5.3	Install	&	Test	Singularity

11.5.6	Building	Singularity	Containers
11.5.6.1	Upgrading	Singularity

11.5.7	Create	an	Empty	Container
11.5.8	Import	Into	a	Singularity	Container
11.5.9	Shell	Into	a	Singularity	Container
11.5.10	Write	Into	a	Singularity	Container
11.5.11	Bootstrapping	a	Singularity	Container
11.5.12	Running	Singularity	Containers	on	Comet
11.5.12.1	Transfer	the	Container	to	Comet
11.5.12.2	Run	the	Container	on	Comet
11.5.12.3	Allocate	Resources	to	Run	the	Container
11.5.12.4	Integrate	the	Container	with	Slurm



11.5.12.5	Use	Existing	Comet	Containers
11.5.13	Using	Tensorflow	With	Singularity
11.5.14	Run	the	job
11.5.15	Resources	☁
11.5.15.1	Tutorialspoint

11.6	Exercises	☁
12	SERVERLESS
12.1	FaaS	☁
12.1.1	Introduction
12.1.2	Serverless	Computing
12.1.3	Faas	provider
12.1.4	Resources
12.1.5	Usage	Examples

12.2	AWS	Lambda	☁
12.2.1	AWS	Lambda	Features
12.2.2	Understanding	Function	limitations
12.2.2.1	Execution	Time
12.2.2.2	Function	size

12.2.3	Understanding	the	free	Tier
12.2.4	Writing	your	fist	Lambda	function
12.2.5	AWS	Lambda	Usecases
12.2.6	AWS	Lambda	Example

12.3	Apache	OpenWhisk	☁
12.3.1	OpenWhisk	Workflow
12.3.1.1	The	Action	and	Nginx
12.3.1.2	Controller:	The	System’s	Interface
12.3.1.3	CouchDB
12.3.1.4	Load	Balancer
12.3.1.5	Kafka
12.3.1.6	Invoker
12.3.1.7	CouchDB	again

12.3.2	Setting	Up	OpenWhisk	Locally
12.3.2.1	Debugging	quick-start

12.3.3	Hello	World	in	OpenWhisk
12.3.4	Creating	a	custom	action

12.4	Kubeless	☁
12.4.1	Introduction



12.4.2	Programing	model
12.4.3	System	Architecture

12.5	Microsoft	Azure	Function	 	☁
12.6	Google	Cloud	Functions	☁
12.6.1	Google	Cloud	Function	Example

12.7	OpenFaaS	☁
12.7.1	OpenFaas	Components	and	Architecture
12.7.1.1	API	Gateway
12.7.1.2	Function	Watchdog
12.7.1.3	OpenFaas	CLI
12.7.1.4	Monitoring

12.7.2	OpenFaas	in	Action
12.7.2.1	Prerequistics
12.7.2.2	Single	Node	Cluster
12.7.2.3	Deploy	OpenFaas
12.7.2.4	To	Run	OpenFaas

12.7.3	OpenFaaS	Function	with	Python
12.8	OpenLamda	☁
12.8.1	Suggested	Materials
12.8.2	Development
12.8.3	OpenLambda
12.8.4	Getting	Started
12.8.4.1	Install	Dependencies
12.8.4.2	Start	a	Test	Cluster

12.8.5	Administration
12.8.5.1	Writing	Handlers
12.8.5.2	Cluster	Directory

12.8.6	Configuration
12.8.7	Architecture

13	MESSAGING
13.1	MQTT	☁
13.1.1	Introduction
13.1.2	Publish	Subscribe	Model
13.1.2.1	Topics
13.1.2.2	Callbacks
13.1.2.3	Quality	of	Service

13.1.3	Secure	MQTT	Services



13.1.3.1	Using	TLS/SSL
13.1.3.2	Using	OAuth

13.1.4	Integration	with	Other	Services
13.1.5	MQTT	in	Production
13.1.6	Installation
13.1.6.1	MacOS	install
13.1.6.2	MacOS	Advanced	Service	install
13.1.6.3	Ubuntu	install
13.1.6.4	Raspberry	Pi	Setup
13.1.6.4.1	Broker
13.1.6.4.2	Client

13.1.7	Server	Usecase
13.1.8	IoT	Use	Case	with	a	Raspberry	PI
13.1.8.1	Requirements	and	Setup
13.1.8.2	Results

13.1.9	Conclusion
13.1.10	Exercises

13.2	Python	Apache	Avro	☁
13.2.1	Download,	Unzip	and	Install
13.2.2	Defining	a	schema
13.2.3	Serializing
13.2.4	Deserializing
13.2.5	Resources

14	GO
14.1	Introduction	to	Go	for	Cloud	Computing	☁
14.1.1	Organization	of	the	chapter
14.1.2	References

14.2	Installation	☁
14.3	Editors	Supporting	Go	☁
14.4	Go	Language	☁
14.4.1	Concurrency	in	Go
14.4.1.1	GoRoutines	(execution)
14.4.1.2	Channels	(communication)
14.4.1.3	Select	(coordination)

14.5	Libraries	☁
14.6	Go	CMD	☁
14.6.1	CMD



14.6.2	DocOpts
14.7	Go	REST	☁
14.7.1	Gorilla
14.7.2	REST,	RESTful
14.7.3	Router
14.7.4	Full	code

14.8	Open	API	☁
14.8.1	Install	from	Homebrew
14.8.2	serve	specification	UI
14.8.3	validate	a	specification
14.8.4	Generate	a	Go	OpenAPI	server
14.8.5	generate	a	Go	OpenAPI	client
14.8.6	generate	a	spec	from	the	source
14.8.7	generate	a	data	model
14.8.8	other	editors

14.9	Create	an	Echo	service	using	Swagger	and	Go
14.9.1	Dependencies
14.9.2	Initialize	a	Golang	project
14.9.3	Define	APIs	and	generate	code	in	Go
14.9.4	Implement	the	functionality
14.9.5	Run	and	test	the	server
14.9.6	References

14.10	Go	Cloud	☁
14.10.1	Golang	Openstack	Client
14.10.2	OpenStack	from	Go
14.10.2.1	GohperCloud
14.10.2.1.1	Authentication
14.10.2.1.2	Virtual	machines
14.10.2.1.3	Resources

14.11	Go	Links	☁
14.11.1	Introductory	Material
14.11.2	The	GO	Language
14.11.3	How	popular	is	Go?
14.11.4	OpenAPI	and	Go

14.12	Exercises	☁
15	REFERENCES



1	PREFACE

Sat	Nov	23	05:21:29	EST	2019	☁

1.1	LEARNING	OBJECTIVES	☁

	Learning	Objectives

Learn	about	how	we	distribute	material	as	ePub’s.
Learn	how	to	create	an	ePub	with	our	material	from	source.
Introduce	elementary	notations	we	use	in	the	ePub’s.
See	who	contributed	to	the	ePub’s.

1.2	EPUB	READERS	☁
This	 document	 is	 distributed	 in	 ePub	 format.	 Every	 OS	 has	 a	 suitable	 ePub
reader	 to	 view	 the	 document.	 Such	 readers	 can	 also	 be	 integrated	 into	 a	Web
browser	 so	 that	when	you	click	on	an	ePub	 it	 is	 automatically	opened	 in	your
browser.	 As	 we	 use	 ePubs	 the	 document	 can	 be	 scaled	 based	 on	 the	 user’s
preference	If	you	ever	see	a	content	that	does	not	fit	on	a	page	we	recommend
you	zoom	out	to	make	sure	you	can	see	the	entire	content.

We	have	made	good	experiences	with	the	following	readers:

macOSX:	Books,	which	is	a	build	in	ebook	reader
Windows	10:	Microsoft	edge,	but	 it	must	be	 the	newest	version,	as	older
versions	have	bugs.	Alternatively,	use	calibre
Linux:	calibre

If	you	have	an	iPad	or	Tablet	with	enough	memory,	you	may	also	be	able	to	use
them.

Sometimes	 you	 may	 want	 to	 adjust	 the	 zoom	 of	 your	 reader	 to	 increase	 or
decrease	 it.	Please	adjust	your	zoom	to	a	 level	 that	 is	comfortable	 for	you.	On
macOS	with	a	larger	monitor,	we	found	that	zooming	out	multiple	times	results

https://github.com/cloudmesh-community/book/blob/master/chapters/version.md
https://github.com/cloudmesh-community/book/blob/master/chapters/preface/learning.md
https://github.com/cloudmesh-community/book/blob/master/chapters/preface/reader.md
https://www.apple.com/apple-books
https://www.microsoft.com/en-us/windows/microsoft-edge
https://calibre-ebook.com/
https://calibre-ebook.com/


in	very	good	rendering	allowing	you	 to	see	 the	source	code	without	horizontal
scrolling.

1.3	CORRECTIONS	☁
The	material	collected	in	this	document	is	managed	in

https://github.com/cloudmesh-community/book/chapters

In	case	you	see	an	error	or	 like	 to	make	a	contribution	of	your	own	section	or
chapter,	you	can	do	so	in	github	via	pull	requests.

The	easiest	way	 to	 fix	an	error	 is	 to	 read	 the	ePub	and	click	on	 the	cloud	
symbol	in	a	heading	where	you	see	the	error.	This	will	bring	you	to	an	editable
document	in	github.	You	can	directly	fix	the	error	in	the	web	browser	and	create
there	a	pull	request.	Naturally,	you	need	to	be	signed	into	github	before	you	can
edit	and	create	a	pull	request.

As	a	 result	 contributors	 and	authors	will	 be	 integrated	automatically	next	 time
we	compile	the	material.	Thus	even	if	you	corrected	a	single	spelling	error,	you
will	be	acknowledged.

1.4	CONTRIBUTORS	☁
Contributors	 are	 sorted	 by	 the	 first	 letter	 of	 their	 combined	 Firstname	 and
Lastname	and	if	not	available	by	their	github	ID.	Please,	note	that	the	authors	are
identified	through	git	logs	in	addition	to	some	contributors	added	by	hand.	The
git	 repository	 from	 which	 this	 document	 is	 derived	 contains	 more	 than	 the
documents	 included	 in	 this	document.	Thus	not	everyone	 in	 this	 list	may	have
directly	contributed	to	this	document.	However	if	you	find	someone	missing	that
has	contributed	(they	may	not	have	used	this	particular	git)	please	let	us	know.
We	will	add	you.	The	contributors	that	we	are	aware	of	include:

Anand	 Sriramulu,	 Ankita	 Rajendra	 Alshi,	 Anthony	 Duer,	 Arnav,
Averill	Cate,	Jr,	Bertolt	Sobolik,	Bo	Feng,	Brad	Pope,	Brijesh,	Dave
DeMeulenaere,	De’Angelo	Rutledge,	Eliyah	Ben	Zayin,	Eric	Bower,
Fugang	 Wang,	 Geoffrey	 C.	 Fox,	 Gerald	 Manipon,	 Gregor	 von

https://github.com/cloudmesh-community/book/blob/master/chapters/preface/corrections.md
https://github.com/cloudmesh-community/book/chapters
https://github.com/cloudmesh-community/book/blob/master/chapters/authors.md


Laszewski,	 Hyungro	 Lee,	 Ian	 Sims,	 IzoldaIU,	 Javier	 Diaz,	 Jeevan
Reddy	Rachepalli,	Jonathan	Branam,	Juliette	Zerick,	Keith	Hickman,
Keli	Fine,	Kenneth	Jones,	Mallik	Challa,	Mani	Kagita,	Miao	Jiang,
Mihir	 Shanishchara,	 Min	 Chen,	 Murali	 Cheruvu,	 Orly	 Esteban,
Pulasthi	 Supun,	 Pulasthi	 Supun	 Wickramasinghe,	 Pulkit	 Maloo,
Qianqian	 Tang,	 Ravinder	 Lambadi,	 Richa	 Rastogi,	 Ritesh	 Tandon,
Saber	Sheybani,	Sachith	Withana,	Sandeep	Kumar	Khandelwal,	Sheri
Sanders,	 Shivani	 Katukota,	 Silvia	 Karim,	 Swarnima	 H.	 Sowani,
Tharak	 Vangalapat,	 Tim	 Whitson,	 Tyler	 Balson,	 Vafa	 Andalibi,
Vibhatha	Abeykoon,	Vineet	Barshikar,	Yu	Luo,	ahilgenkamp,	aralshi,
azebrowski,	 bfeng,	 brandonfischer99,	 btpope,	 garbeandy,
harshadpitkar,	 himanshu3jul,	 hrbahramian,	 isims1,	 janumudvari,
joshish-iu,	 juaco77,	 karankotz,	 keithhickman08,	 kkp,	 mallik3006,
manjunathsivan,	 niranda	 perera,	 qianqian	 tang,	 rajni-cs,	 rirasto,
sahancha,	 shilpasingh21,	 swsachith,	 toshreyanjain,	 trawat87,
tvangalapat,	varunjoshi01,	vineetb-gh,	xianghang	mi,	zhengyili4321

1.5	NOTATION	☁
The	material	here	uses	the	following	notation.	This	is	especially	helpful,	if	you
contribute	content,	so	we	keep	the	content	consistent.

if	you	like	to	see	the	details	on	how	to	create	them	in	the	markdown	documents,
you	will	have	to	look	at	the	file	source	while	clicking	on	the	cloud	in	the	heading
of	the	Notation	section	(Section	1.5).	This	will	bring	you	to	the	markdown	tex,
but	you	will	still	have	to	look	at	the	raw	content	to	see	the	details.

☁	or	 	![Github](images/github.png)

If	you	click	on	the	☁	or	 	in	a	heading,	you	can	go	directly	to	the
>	 document	 in	 github	 that	 contains	 the	 next	 content.	 This	 is	 >
convenient	 to	 fix	errors	or	make	additions	 to	 the	content.	The	cloud
will	be	automatically	added	upon	 inclusion	of	a	new	markdown	 file
that	includes	in	its	first	line	a	section	header.

$

https://github.com/cloudmesh-community/book/blob/master/chapters/preface/notation.md
https://raw.githubusercontent.com/cloudmesh-community/book/master/chapters/preface/notation.md


Content	in	bash	is	marked	with	verbatim	text	and	a	dollar	sign

[1]

References	 are	 indicated	with	 a	 number	 and	 are	 included	 in	 the	>
reference	chapter	[1].	Use	 it	 in	markdown	with	>	 [@las14cloudmeshmultiple].
References	must	be	added	to	the	refernces.bib	file	in	BibTex	format.

	or	

Chapters	marked	with	this	emoji	are	not	yet	complete	or	have	some
issue	that	we	know	about.	These	chapters	need	to	be	fixed.	If	you	like
to	help	us	fixing	this	section,	please	let	us	know.	Use	it	in	markdown
with	:o2:	or	if	you	like	to	use	the	image	with	![No](images/no.png).

	REST	36:02

Example	 for	 a	 video	 with	 the	 ![Video](images/video.png)	 emoji.	 Use	 it	 in
markdown	with	[![Video](images/video.png)	REST	36:02](https://youtu.be/xjFuA6q5N_U)

	Slides	10

Example	 for	 slides	with	 the	 ![Presentation](images/presentation.png)	 emoji.	 These
slides	may	or	may	not	include	audio.

	Slides	10

Slides	without	any	audio.	They	may	be	faster	to	download.	Use	it	 in
markdown	with	[![Presentation](images/presentation.png)	Slides	10](TBD).

A	set	of	learning	objectives	with	the	![Learning](images/learning.png)	emoji.

$	This	is	a	bash	text

https://youtu.be/xjFuA6q5N_U


A	section	is	release	when	it	is	marked	with	this	emoji	in	the	syllabus.
Use	it	in	markdown	with	![Ok](images/ok.png).

Indicates	opportunities	 for	contributions.	Use	 it	 in	markdown	with	 !
[Question](images/question.png).

Indicates	 sections	 that	 are	 worked	 on	 by	 contributors.	 Use	 it	 in
markdown	with	![Construction](images/construction.png).

Sections	marked	by	the	contributor	with	this	emoji	![Smiley](images/smile.png)
when	they	are	ready	to	be	reviewed.

Sections	that	need	modifications	are	indicated	with	this	emoji	![Comment]
(images/comment.png).

A	warning	that	we	need	to	look	at	in	more	detail	![Warning](images/warning.png)

Notes	are	indicated	with	a	bulb	![Idea](images/idea.png)

Other	emojis

Other	 emojis	 can	 be	 found	 at
https://gist.github.com/rxaviers/7360908.	 However,	 note	 that	 emojis
may	not	be	viewable	 in	other	 formats	or	on	all	platforms.	We	know
that	some	emojis	do	not	show	in	calibre,	but	they	do	show	in	macOS

https://gist.github.com/rxaviers/7360908


iBooks	and	MS	Edge

This	 is	 the	 list	 of	 emojis	 that	 canbe	 converted	 to	 PDF.	 So	 if	 you	 like	 a	 PDF,
please	limit	your	emojis	to

:cloud:	☁	 :o2:	 	 :relaxed:	☺	 :sunny:	☀	 :baseball:	⚾	 :spades:	♠	 :hearts:	♥	 :clubs:	♣	 :diamonds:	 ♦	
:hotsprings:	♨	:warning:	⚠	:parking:	 	:a:	 	:b:	 	:recycle:	♻	:copyright:	©	:registered:	®	:tm:	™	
:bangbang:	‼	:interrobang:	⁉	:scissors:	✂	:phone:	☎

1.5.1	Figures

Figures	have	a	caption	and	can	be	refereed	to	in	the	ePub	simple	with	a	number.
We	show	such	a	reference	pointer	while	referring	to	Figure	1.

Figure	1:	Figure	example

Figures	must	be	written	in	the	md	as

Note	 that	 the	 text	must	be	 in	one	 line	 and	must	not	be	broken	up	even	 if	 it	 is
longer	than	80	characters.	You	can	refer	to	them	with	@fig:code-example.	Please	note	in
order	for	numbering	to	work	figure	references	must	include	the	#fig:	followed	by
a	 unique	 identifier.	 Please	 note	 that	 identifiers	must	 be	 really	 unique	 and	 that
identifies	such	as	#fig:cloud	or	similar	simple	identifiers	are	a	poor	choice	and	will
likely	not	work.	To	check,	please	list	all	lines	with	an	identifier	such	as.

and	see	if	your	identifier	is	truly	unique.

1.5.2	Hyperlinks	in	the	document

To	create	hyperlinks	in	the	document	other	than	images,	we	need	to	use	proper
markdown	syntax	in	the	source.	This	is	achieved	with	a	refernce	for	example	in

![Figure	example](images/code.png){#fig:code-example	width=1in}

$	grep	-R	"#fig:"	chapters



sections	 headers.	 Let	 us	 discuss	 the	 refernce	 header	 for	 this	 section,
e.g.	Notation.	We	have	augmented	the	section	header	as	follows:
#	Notation	{#sec:notation}

Now	we	can	use	the	refernce	in	the	text	as	follows:
In	@sec:notation	we	explain	...

It	will	be	rendered	as:	In	Section	1.5	we	explain	…

1.5.3	Equations

Equations	can	be	written	as
$$a^2+b^2=c^2$${#eq:pythagoras}

and	used	in	text:

a2 + b2 = c2 (1)

It	will	render	as:	As	we	see	in	Equation	1.

The	equation	number	is	optional.	Inline	equations	just	use	one	dollar	sign	and	do
not	need	an	equation	number:
This	is	the	Pythagoras	theorem:	$a^2+b^2=c^2$

Which	renders	as:

This	is	the	Pythagoras	theorem:	a2 + b2 = c2.

1.5.4	Tables

Tables	can	be	placed	in	text	as	follows:

As	usual	make	sure	the	label	is	unique.	When	compiling	it	will	result	in	an	error
if	 labels	 are	 not	 unique.	 Additionally	 there	 are	 several	 md	 table	 generators

:	Sample	Data	Table	{#tbl:sample-table}

x			y			z

---	---	---

1			2			3

4			5			42



available	on	the	internet	and	make	creating	table	more	efficient.

1.6	UPDATES	☁
As	all	documents	are	managed	in	github,	the	list	of	updates	is	documented	in	the
commit	history	at

https://github.com/cloudmesh-community/book/commits/master

In	case	you	do	a	lecture	withus	we	recommend	that	you	download	a	new	version
oof	the	ePub	every	week.	This	way	you	are	typically	staying	up	to	date.	You	can
check	the	commit	history	and	identify	if	the	version	of	the	ePub	is	older	than	the
committed	version,	if	so	we	recommend	that	you	download	a	new	version.

	We	 typically	 will	 not	 make	 announcements	 to	 the	 class	 as	 the
GitHub	 commit	 history	 is	 sufficient	 and	 you	 are	 responsible	 to
monitor	it	as	part	of	your	class	activities.

https://github.com/cloudmesh-community/book/blob/master/chapters/preface/updates.md
https://github.com/cloudmesh-community/book/commits/master


2	OVERVIEW	☁

	Learning	Objectives

Gain	an	overview	what	currently	is	in	this	book
Review	the	high	level	goals
Be	aware	that	this	book	is	not	complete	and	is	worked	on	as	we	speak
Be	aware	to	check	out	the	book	on	a	weekly	basis	to	stay	up	to	date
Be	 aware	 that	 additional	material	 is	 distributed	 in	 separate	 books	 such	 as
Linux,	Python,	and	Writing	in	Markdown.
Be	aware	that	books	you	may	purchase	may	already	be	outdated	by	the	time
you	order	them.

In	 this	book	we	provide	a	number	of	chapters	 that	will	allow	you	to	easily	get
knowledge	in	cloud	computing	on	theoretical	and	practical	levels.

Although	the	following	was	originally	covered	in	this	book,	we	decided	to	split
out	its	contents	as	to	make	the	core	cloud	engineering	book	smaller.	In	case	you
take	one	of	our	classes	using	the	book,	we	expect	that	you	pick	up	the	material
covered	also	by	 these	additional	books.	Please	be	aware	 that	some	of	 the	class
material	is	based	on	Python	and	Linux.	You	will	need	no	knowledge	of	them	as
you	can	pick	it	up	while	reading	this	book.

Cloud	Computing
Linux	for	Cloud	Computing
Python	for	Cloud	Computing
Scientific	Writing	with	Markdown

The	book	is	organized	as	follows:

Definition	of	Cloud	Computing

We	will	start	with	the	definition	of	what	cloud	computing	is	and	motivate
why	 it	 is	 important	 to	 not	 only	 know	 technologies	 such	 as	AI	 or	ML	 or

https://github.com/cloudmesh-community/book/blob/master/chapters/class/516/overview.md
https://laszewski.github.io/book/cloud/
https://laszewski.github.io/book/linux/
https://laszewski.github.io/book/python/
https://laszewski.github.io/book/writing/


Databases.	 We	 present	 you	 with	 evidence	 that	 Clouds	 are	 absolutely
relevant	 to	 todays	 technologies.	We	 see	 furthermore	 a	 trend	 to	 utilize	AI
and	ML	services	on	in	the	cloud.	Technologies	such	as	virtual	machine	and
containers	 and	 Function	 as	 a	 Service	 are	 essential	 to	 the	 repertoire	 of	 a
modern	Cloud	or	Data	engineer.	There	is	more	than	ML	…	☺

Data	Center

This	chapter	will	explain	you	why	we	need	cloud	data	centers,	how	a	cloud
data	 center	 look	 likes	 and	which	 environmental	 impact	 such	 data	 centers
have.

Architecture

This	 chapter	 will	 introduce	 you	 to	 the	 basic	 architectural	 features	 and
designs	 of	 cloud	 computing.	We	 will	 discuss	 architectures	 for	 IaaS,	 and
contrast	it	to	other	architectures.	We	will	discuss	the	NIST	definition	of	the
cloud	 and	 the	 Cloud	 Security	 Alliance	 Reference	 Architecture.	 We	 will
discuss	the	multi-cloud	architecture	introduced	by	cloudmesh	as	well	as	the
Big	Data	Reference	Architecture.

REST

This	chapter	will	 introduce	you	 to	a	way	on	how	to	define	services	 in	 the
cloud	 that	 you	 can	 easily	 access	 via	 language	 independent	 client	APIs.	 It
will	 introduce	 you	 to	 the	 fundamental	 concepts	 of	 REST.	We	 will	 more
importantly	 introduce	 you	 to	 OpenAPI	 that	 allows	 you	 to	 specify	 REST
services	 via	 a	 specification	 document	 so	 you	 can	 create	APIs	 and	 clients
form	 the	 document	 automatically.	We	will	 showcase	 you	 how	 to	 do	 that
with	flask.

We	will	 showcase	 you	 on	 a	 very	 popular	 service	 such	 as	GitHub	how	 to
easily	interface	with	REST	services	in	Python.

GraphQL

In	 this	 chapter	 we	 will	 introduce	 you	 to	 GraphQL	 which	 allows	 you	 to
access	data	 through	a	query	language.	It	allows	clients	 to	easily	formulate
queries	 that	 retrieve	 desired	 data.	 Restrictions	 to	 the	 queries	 can	 be



formulated	 to	 download	 what	 is	 needed.	 Other	 features	 include	 a	 type
system.	Github	has	added	in	addition	to	its	REST	service	also	a	GraphQL
interface.	 You	 will	 have	 the	 opportunity	 to	 explore	 GraphQl	 while
interfacing	with	GitHub.

Hypervisors

Virtualization	 is	 one	 of	 the	 important	 technologies	 that	 started	 the	 cloud
revolution.	It	provides	the	basic	underlying	principles	for	the	development
and	adoption	of	clouds.	The	concept,	although	old	and	already	used	in	the
early	 days	 of	 computing,	 has	 recently	 been	 exploited	 to	 lead	 to	 better
utilization	of	servers	as	part	of	data	centers,	but	also	the	local	desktops.

In	 this	chapter	we	 introduce	you	 to	 the	basic	concepts	and	distinguish	 the
various	forms	of	virtualization.

We	list	virtualization	frameworks	such	as	Libvirt,	Qemu,	KVM,	Xen,	and
Hyper-V.	 Dependent	 on	 your	 hardware	 you	 will	 be	 encouraged	 to
experiment	with	one	or	more	of	them.

IaaS

In	 the	 IaaS	chapter	we	will	be	 reviewing	many	of	 the	services	offered	by
providers	 usch	 as	 AWS,	 Azure,	 Google,	 and	 OpenStack	 that	 is	 used	 by
some	academic	clouds	such	as	chameleon	cloud.

In	 addition	we	will	 introduce	 you	 to	 elementary	 command	 line	 tools	 and
programs	to	access	this	infrastructure.

In	this	section	we	will	also	provide	you	with	information	about	multicloud
management	 with	 cloudmesh	 which	 makes	 it	 extremly	 easy	 to	 switch
between	and	use	services	from	multiple	cloud.s

Important	to	note	is	that	the	appendix	contains	very	useful	information	that
augments	 this	 section.	 This	 includes	 a	 more	 detailed	 list	 of	 services	 for
some	IaaS	providers	as	well	as	information	on	how	to	use	chameleon	cloud
which	has	been	adapted	by	us	for	this	chapter.

Map/Reduce



In	this	chapter	we	discuss	about	the	background	of	Mapreduce	along	with
Hadoop	and	it’s	core	components.	We	will	also	introduce	Spark	to	you	in
this	section	to	Spark.	you	in	this	section.

You	will	be	presented	on	how	you	can	use	the	systems	on	a	single	resource
so	you	can	explore	them	more	easily,	but	we	will	also	let	you	know	how	to
install	them	on	a	cluster	in	principal.

We	 conclude	 this	 section	 with	 some	 important	 Map/Reduce	 frameworks
used	 as	 part	 of	 the	 larger	 Map/Reduce	 ecosystem	 such	 as	 AWS	 Elastic
Map/Reduce	(AWS	EMR).	This	also	includes	a	discussion	about	Twister2
which	 is	 a	 version	 of	 Map/Reduce	 that	 could	 perform	 even	 faster	 then
Spark.

	In	fact	we	have	here	two	sections	that	need	to	be	delineated	a	bit	better
which	we	hope	we	can	do	with	your	help.

Container

In	 the	 container	 chapter	we	will	 introduce	 you	 to	 the	 basic	 concepts	 of	 a
container	and	delineate	it	from	virtual	machines	as	we	have	introduced	you
earlier.	We	will	 start	 the	chapter	with	an	 introduction	 to	Docker	and	 than
introduce	you	how	to	manage	clusters	capable	of	running	many	containers
with	the	help	of	docker	swarm	and	kubernetes.	To	showcase	you	its	use	on
other	 PaaS	 and	 applications	we	 even	 show	 you	 how	 to	 run	Hadoop	with
docker	as	well	as	how	to	conduct	a	pagerank	analysis.	Kubernetes	will	be
discussed	in	its	own	section.

As	 many	 academic	 datacenters	 do	 run	 queuing	 system,	 we	 will	 also
showcase	Singularity	allowing	you	to	use	containers	within	a	batch	queuing
system.

	you	will	help	us	improving	this	section	if	you	elect	to	conduct	a	project
on	comet.

We	conclude	the	section	with	letting	you	know	how	to	run	Tensorflow	via
singularity,

Serverless	Computing



Recently	a	new	paradigm	in	cloud	computing	has	been	introduced.	Instead
of	 using	 virtual	 machines	 or	 containers	 functions	 with	 limited	 resource
requirements	 are	 specified	 that	 can	 than	 be	 executed	 on	 function	 capable
execution	services	hosted	by	cloud	providers.

We	will	introduce	you	to	this	concept	and	showcase	you	some	examples	of
FaaS	services	and	frameworks.

Messaging	Services

Many	 devices	 in	 the	 cloud	 need	 to	 communicate	with	 each	 other.	 In	 this
chapter	we	look	into	how	we	can	provide	alternatives	to	REST	services	that
provide	 messaging	 capabilities.	We	 will	 focus	 on	MQTT	 which	 is	 often
used	to	connect	cloud	edge	devices	between	each	other	and	the	cloud.

GO

Go	is	a	programming	language	used	by	Google	and	has	been	most	famously
used	 to	 implement	 Kubernetes.	 In	 this	 chapter	 we	 introduce	 you	 to	 the
elementary	features	of	Go	and	also	take	a	closer	look	on	how	we	can	define
REST	services,	use	OpenAPI,	and	interface	with	clouds.

Cloud	AI	Services

As	part	of	the	class	we	will	be	exploring	AI	services	that	are	are	hosted	in
cloud	and	offered	as	service.	 If	 interested	you	will	be	able	 to	use	 them	in
your	projects.	As	part	of	this	class	you	will	also	be	developing	AI	services
and	 those	 can	 be	 hosted	 in	 the	 cloud	 and	 reused	 by	 others.	While	 using
cross-platform	specifications,	clients	for	Java,	Python,	Scala,	Go,	and	other
programming	 languages	 will	 be	 automatically	 created	 for	 you.	 This	 will
allow	others	to	reuse	your	services.



3	DEFINITION	OF	CLOUD	COMPUTING	☁

	Learning	Objectives

Compare	different	definitions	of	cloud	computing.
Review	the	History	of	cloud	computing.
Identify	trends.
The	current	hot	 job	 is	data	engineer	which	 is	sought	after	more	 than	data
scientists	(a	new	trend).	You	have	chosen	the	right	course	☺
Be	TALLL	to	be	successful	in	cloud	computing.

Videos:

	Definition	of	Cloud	Computing	2019

3.1	DEFINING	THE	TERM	CLOUD	COMPUTING

In	 this	 presentation	 we	 review	 three	 definitions	 of	 cloud	 computing.	 This
includes	the	definitions	by

NIST
Wikipedia
Gartner

3.2	HISTORY	AND	TRENDS

We	 review	 some	 of	 the	 historical	 aspects	 that	 lead	 to	 cloud	 computing	 and
especially	 look	 into	more	 recent	 trends.	These	 trends	motivate	 that	we	need	 to
look	 at	 enhancements	 to	 the	 traditional	 Service	 Model	 that	 include
Infrastructure-,	 Platform-	 and	 Software-	 as	 a	 Service.	 These	 enhancements
especially	are	targeting	Function-,	and	Container	as	a	Service.

https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/definition.md
https://youtu.be/KaQte-2elVo


3.3	JOB	AS	A	CLOUD/DATA	ENGINEER

We	look	at	some	job	related	 trends	 that	especially	focus	on	 the	newest	hot	 job
description	 called	Data	Engineer.	 It	 is	motivated	 that	 current	 job	 offerings	 as
data	 engineer	 is	 13%	 versus	 1%	 for	 data	 scientists.	 As	 this	 class	 is	 targeted
towards	 bringing	 the	 engineering	 component	 towards	 the	 data	 scientists,
computer	 scientists,	 and	 application	 developer,	 This	 class	 is	 ideally	 suited	 for
increasing	your	marketability.

3.4	YOU	MUST	BE	THAT	TALLL

We	 close	 this	 class	 with	 Gregor’s	 TALLL	 principle	 to	 succeed	 in	 Cloud
Computing:

You	must	be	that	TALLL	to	survive	in	Cloud	Computing	and	Big	Data

This	principle	includes	the	following	characteristics

Trend	Awareness	(TA)

We	need	 to	be	aware	not	only	what	 is	currently	a	 trend,	but	what	will	be
future	trends

Longevity	Planning	(L)

We	 need	 to	 be	 able	 to	 reproduce	 our	 services	 and	 results	 (e.g.	 can	 we
reproduce	them	still	in	six	month).

Leap	Detection	(L)

We	need	to	be	able	to	deal	with	technology	Leaps

Learning	Willingness	(L)

We	 need	 to	 constantly	 learn	 to	 keep	 up	 as	 technology	 changes	 every	 6
month

Naturally	this	principal	can	be	applied	to	other	disciplines.



4	DATACENTER

4.1	DATA	CENTER	☁

	Learning	Objectives

What	is	a	data	center.
What	are	import	metrics.
What	 is	 the	 difference	 between	 a	 Cloud	 data	 center	 and	 a	 traditional
datacenter.
What	are	examples	of	Cloud	data	centers.

4.1.1	Motivation:	Data

Before	we	go	into	more	details	of	a	data	center	we	like	to	motivate	why	we	need
them.	Here	we	start	with	looking	at	the	amount	of	data	that	recently	got	created
and	 provide	 one	 of	many	motivational	 aspects.	Not	 all	 data	will	 or	 should	 be
stored	 in	 data	 centers.	 However	 a	 significant	 amount	 of	 data	 will	 be	 in	 such
centers.

4.1.1.1	How	much	data?

One	of	the	issues	we	have	is	to	comprehend	how	much	data	is	created.	It’s	hard
to	imagine	and	put	into	a	perspective	how	much	total	data	is	created	over	a	year,
a	 month,	 a	 week,	 a	 day	 or	 even	 just	 an	 hour.	 Instead	 to	 easily	 visualize	 the
amount	of	data	produced	we	often	find	graphics	easier	to	comprehend	that	shows
how	 much	 data	 was	 generated	 in	 a	 minute.	 Such	 depictions	 usually	 include
examples	of	data	generated	as	a	part	of	popular	cloud	services	or	the	internet	in
general.

One	 such	 popular	 depiction	 is	Data	Never	 Sleeps	 (see	 Figure	 3).	 It	 has	 been
produced	a	number	of	times	over	the	years	and	is	now	at	version	7.0	released	in
2019.	If	you	identify	a	newer	version,	please	let	us	know.

https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/datacenter.md


Observations	for	2019:	It	is	worth	while	to	study	this	image	in	detail	and	identify
some	of	 the	data	 that	you	can	relate	 to	of	service	you	use.	 It	 is	also	a	possible
indication	to	study	other	services	 that	are	mentioned.	For	 the	data	for	2019	we
observe	 that	 a	 staggering	 ~4.5Mil	 google	 searches	 are	 executed	 every	minute
which	 is	 slightly	 lower	 than	 the	number	of	videos	watched	on	youtube.	18Mil
text	messages	are	 send	every	minute.	Naturally	 the	numbers	are	averages	over
time.





Figure	2:	Data	Never	Sleeps	[2]

In	contrast	 in	2017	we	observed:	A	3.8Mil	google	searches	are	executed	every
minute.	Surprisingly	 the	weather	channel	receives	over	18Mil	forecast	requests
which	is	even	higher	than	the	12Mil	text	messages	send	every	minute.	Youtube
certainly	serving	a	significant	number	of	users	by	4.3Mil	videos	watched	every
minute.





Figure	3:	Data	Never	Sleeps	[3]

A	different	source	publishes	what	is	happening	on	the	internet	in	a	minute,	but
we	have	been	able	to	locate	a	version	from	2018	(see	Figure	4).	While	some	data
seems	the	same,	others	are	slightly	different.	For	example	this	graph	has	a	lower
count	 for	 Google	 searches,	 while	 the	 number	 of	 text	 messages	 send	 is
significantly	higher	in	contrast	to	Figure	3.



Figure	4:	Internet	Minute	2018	[4]

While	 reviewing	 the	 image	 from	 last	 year	 from	 the	 same	 author,	 we	 find	 not
only	increases,	but	also	declines.	Looking	at	facebook	showcases	a	loss	of	73000
logins	per	minute.	This	loss	is	substantial.	We	can	see	that	facebook	services	are
replaced	 by	 other	 services	 that	 are	more	 popular	 with	 the	 younger	 generation
who	tend	to	pick	up	new	services	quickly	(see	Figure	5).



Figure	5:	Internet	Minute	2017-2018	[4]

It	 is	 also	 interesting	 to	 compare	 such	 trends	 over	 a	 longer	 period	 of	 time	 (see
Figure	6,	Figure	7).	An	example	is	provided	by	looking	at	Google	searches

http://www.internetlivestats.com/google-search-statistics/.

and	visualized	in	Figure	6.

http://www.internetlivestats.com/google-search-statistics/


Figure	6:	Google	searches	over	time



Figure	7:	Big	data	trend.	2012	[5]

When	 looking	 at	 the	 trends,	many	predict	 an	 exponential	 growth	 in	 data.	This
trend	is	continuing.

4.1.2	Cloud	Data	Centers

A	data	center	is	a	facility	that	hosts	the	information	technology	related	to	servers
and	 data	 serving	 a	 large	 number	 of	 customers.	 data	 centers	 evolved	 from	 the
need	to	originally	have	large	rooms	as	the	original	computers	filled	in	the	early
days	 of	 the	 compute	 revolution	 filled	 rooms.	 Once	 multiple	 computers	 were
added	 to	 such	 facilities	 super	 computer	 centers	 created	 for	 research	 purposes.
With	the	introduction	of	the	internet	and	offering	services	such	as	Web	hosting
large	 business	 oriented	 server	 rooms	 were	 created.	 The	 need	 for	 increased
facilities	was	even	accelerated	by	the	development	of	virtualization	and	servers
being	rented	to	customers	in	shared	facilities.	As	the	need	of	web	hosting	still	is
important	but	has	been	taken	over	by	cloud	data	centers,	the	terms	internet	data
center,	and	cloud	data	center	are	no	longer	used	to	distinguish	it.	Instead	we	use
today	 just	 the	 term	 data	 center.	 There	 may	 be	 still	 an	 important	 difference
between	 research	 data	 centers	 offered	 in	 academia	 and	 industry	 that	 focus	 on
providing	computationally	potent	clusters	focus	on	numerical	computation.	Such
data	 centers	 are	 typically	 centered	 around	 the	 governance	 around	 a	 smaller
number	of	users	that	are	either	part	of	an	organization	or	a	virtual	organization.
However,	we	see	that	even	in	the	research	community	data	centers	not	only	host



supercomputers,	but	also	Web	server	infrastructure	and	these	days	even	private
clouds	that	support	the	organizational	users.	In	case	of	the	latter	we	speak	about
supporting	the	long	tail	about	science.

The	latter	is	driven	by	the	80%-20%	rule.	E.g.	20%	of	the	users	use	80%	of	the
compute	 power.	 This	 means	 that	 the	 top	 20%	 of	 scientists	 are	 served	 by	 the
leadership	class	super	computers	in	the	nation,	while	the	rest	are	either	served	by
other	servers,	cloud	offerings	through	research	and	public	clouds.

4.1.3	Data	Center	Infrastructure

Due	 to	 the	 data	 and	 the	 server	 needs	 in	 the	 cloud	 and	 in	 research	 such	 data
centers	 may	 look	 very	 different.	 Some	 focus	 on	 large	 scale	 computational
resources,	some	on	commodity	hardware	offered	to	the	community.	The	size	of
them	is	also	very	different.	While	a	supercomputing	center	as	part	of	a	university
was	one	of	the	largest	such	data	centers	two	decades	ago,	they	dwarf	the	centers
now	deployed	by	industry	to	serve	the	long	tail	of	customers.

In	general	a	data	center	will	have	the	following	components:

Facility:	 the	 entire	 data	 center	will	 be	 hosted	 in	 a	 building.	 The	 building
may	have	specific	requirements	related	to	security,	environmental	concerns,
or	 even	 the	 integration	 into	 the	 local	 community	 with	 for	 example
providing	heat	to	surrounding	residences.

Support	 infrastructure:	 This	 building	will	 include	 a	 significant	 number	 of
support	infrastructure	that	addresses	for	example	continuous	power	supply,
air	conditioning,	and	security	For	this	reason	you	find	in	such	centers

Uninterruptible	Power	Sources	(UPS)
Environmental	Control	Units
Physical	Security	Systems

Information	Technology	Equipment:	Naturally	the	facility	will	host	 the	IT
equipment	including	the	following:

Servers
Network	Services



Disks
Data	Backup	Services

Operations	staff:	The	facility	will	need	to	be	staffed	with	the	various	groups
that	support	such	data	centers.	It	includes

IT	Staff
Security	and	Facility	Staff
Support	Infrastructure	Staff

With	regards	 to	 the	number	of	people	serving	such	a	 facility	 it	 is	obvious
that	 through	automation	 is	quite	 low.	According	 to	 [6]	 proper	 data	 center
staffing	is	a	key	to	a	reliable	operation	(see	Figure	8).

According	to	Figure	8	operational	sustainability	contains	three	elements	of
operational	 sustainability,	 namely	 management	 and	 operations,	 building
characteristics,	and	site	location	[6].



Figure	8:	Datacenter	Staff	Impact	[6]

Another	 interesting	 observation	 is	 the	 root	 cause	 of	 incidents	 in	 a	 data	 center.
Everyone	has	probably	experienced	 some	outage,	 so	 it	 is	 important	 to	 identify
where	they	come	from	in	order	to	prevent	them.	As	we	see	in	Figure	9	not	every
error	 is	 caused	 by	 an	 operational	 issue.	 External,	 installation,	 design,	 and
manufacturer	 issues	 are	 together	 the	 largest	 issue	 for	 datacenter	 incidents	 (see
Figure	9).	Figure	Outage.	According	to	the	Uptime	Institute	Abnormal	Incident
Reports	(AIRs)	database,	the	root	cause	of	39%	of	data	center	incidents	falls	into
the	operational	area	[6].



Figure	9:	Datacenter	outage	[6]

4.1.4	Data	Center	Characteristics

Next	 we	 identify	 a	 number	 of	 characteristics	 when	 looking	 at	 different	 data
centers.

Variation	in	Size:	Data	centers	range	in	size	from	small	edge	 facilities	 to
megascale	or	hyperscale	filling	large	ware	houses.

Variation	in	cost	per	server:	Although	many	data	centers	standardize	their
components,	specialized	services	may	be	offered	not	on	a	1K	server,	but	on
a	50K	server.

Variation	in	Infrastructure:	Servers	in	centers	serve	a	variation	of	needs
and	 motivate	 different	 infrastructure:	 Use	 cases,	 Web	 Server,	 E-mail,
Machine	Learning,	Pleasantly	Parallel	problem,	traditional	super	computing
jobs.

Energy	Cost:	Data	centers	use	a	lot	of	energy.	The	energy	cost	varies	per
region.	A	motivation	to	reduce	energy	use	and	cost	is	also	been	trended	by
environmental	awareness,	not	only	by	the	operators,	but	by	the	community
in	which	such	centers	operate.



Reliability:	 Although	 through	 operational	 efforts	 the	 data	 center	 can	 be
made	more	reliable,	failure	still	can	happen.	Examples	are

https://www.zdnet.com/article/microsoft-south-central-u-s-datacenter-
outage-takes-down-a-number-of-cloud-services/
https://www.datacenterknowledge.com/archives/2011/08/07/lightning-in-
dublin-knocks-amazon-microsoft-data-centers-offline

https://techcrunch.com/2012/10/29/hurricane-sandy-attacks-the-web-
gawker-buzzfeed-and-huffington-post-are-down/

Hence	Data	Center	IaaS	advantages	include

Reduced	operational	cost
Increased	reliability
Increased	scalability
Increased	flexibility
Increased	support
Rapid	deployment
Decrease	 management:	 Outsourcing	 expertise	 that	 is	 not	 related	 to	 core
business

Datacenter	disadvantages	include

Loss	of	control	of	the	HW
Loss	of	control	of	the	data
Model	is	preferring	many	users
Software	to	control	infrastructure	is	not	accessible
Variations	in	performance	due	to	sharing
Integration	requires	effort	beyond	login
Failures	can	have	a	humongous	impact

4.1.5	Data	Center	Metrics

One	 of	 the	 most	 important	 factor	 to	 ensure	 smooth	 operation	 and	 offering	 of
services	 is	 to	employ	metrics	 that	will	be	able	 to	provide	significant	 impacting
the	operations.	Having	metrics	allows	the	staff	to	monitor	and	adapt	to	dynamic
situations	but	also	to	plan	operations.

https://www.zdnet.com/article/microsoft-south-central-u-s-datacenter-outage-takes-down-a-number-of-cloud-services/
https://www.datacenterknowledge.com/archives/2011/08/07/lightning-in-dublin-knocks-amazon-microsoft-data-centers-offline
https://techcrunch.com/2012/10/29/hurricane-sandy-attacks-the-web-gawker-buzzfeed-and-huffington-post-are-down/


4.1.5.1	Data	Center	Energy	Costs

One	of	the	easiest	to	monitor	metrics	for	a	datacenter	is	the	cost	of	energy	used
to	operate	all	of	 the	equipment.	Energy	 is	one	of	 the	 largest	costs	a	datacenter
incurs	 during	 its	 operation	 as	 all	 of	 the	 servers,	 networking,	 and	 cooling
equipment	 require	 power	 24/7.	 For	 electricity,	 billing	 is	 usually	 measured	 in
terms	of	kilowatt	hours	(kWh)	and	kilowatts	(kW).	Depending	on	circumstances,
there	may	also	be	costs	for	public	purpose	programs,	cost	recovery,	and	stranded
costs,	but	they	are	beyond	the	scope	of	this	book.

To	provide	a	quick	understanding,	 it	 is	best	 to	understand	 the	relation	between
kilowatt	hours	and	kilowatts.	kWh	is	typically	referred	to	as	consumption	while
kW	 is	 referred	 to	 as	 demand	 and	 it’s	 important	 to	 understand	 how	 these	 two
concepts	relate	to	each	other.	The	easiest	analogy	to	describe	the	relationship	is
to	 think	of	kilowatts	(demand)	as	 the	size	of	a	water	pipe	while	kilowatt-hours
(consumption)	 is	 how	 much	 water	 has	 passed	 through	 the	 pipe.	 If	 a	 server
requires	1.2	kW	to	operate	then,	after	an	hour	has	passed,	it	will	have	consumed
1.2	kWh.	However,	if	the	server	operates	at	1.2	kW	for	30	minutes	and	then	goes
idle	and	drops	to	0.3	kW	for	another	30	minutes,	then	total	power	consumed	will
be:

kWh = 0.3 * 30/60 + 1.2 * 30/60 = 0.75 (2)

Energy	 costs	 for	 a	 datacenter,	 then,	 are	 composed	 of	 two	 things:	 charges	 for
energy	and	charges	for	demand.	Energy	is	the	amount	of	total	energy	consumed
by	 the	 datacenter	 and	 will	 be	 the	 total	 kWh	multiplied	 by	 the	 cost	 per	 kWh.
Demand	 is	 somewhat	 more	 complicated:	 it	 is	 the	 highest	 total	 consumption
measured	 in	 a	 15	minute	 period.	Taking	 the	 previous	 example,	 if	 a	 datacenter
has	1,000	servers,	the	total	energy	consumption	would	be	750	kWh	in	the	hour,
but	the	demand	charge	would	be	based	off	of	1,200	kW	(or	1.2	MW).

The	costs,	then,	are	how	the	utility	company	recoups	its	expenses:	the	charge	per
kWh	 is	 it	 recouping	 the	generation	 cost	while	 the	kW	charge	 is	 recouping	 the
cost	 of	 transmission	 and	 distribution	 (T&D).	 Typically,	 the	 demand	 charge	 is
much	higher	and	will	depend	on	utility	constraints	-	if	a	utility	is	challenged	on
the	T&D	front,	 expect	 these	costs	 to	be	over	$6-$10/kW.	 If	 the	assumed	cost-
per-kWh	is	$0.12	and	cost-per-kW	is	$8,	the	cost	to	run	our	servers	for	a	month
would	be:



kWh = 0.75 * 24 * 30 * 0.12 * 1000 = 64, 800 (3)

kW = 1.2 * 8 * 1000 = 9, 600 (4)

This	would	 total	 to	$74,400.	 It’s	 important	 to	note	 that	 fixing	demand	charges
can	have	a	tremendous	payback:	had	the	servers	simply	consumed	750	kW	over
the	course	of	the	hour,	then	our	demand	charges	would’ve	been	halved	to	$4,800
while	the	energy	costs	remained	the	same.	This	is	also	why	server	virtualization
can	have	a	positive	impact	on	energy	costs:	by	having	fewer	servers	running	at	a
higher	utilization,	the	demand	charge	will	tend	to	level	itself	out	as,	on	average,
each	server	will	be	more	 fully	utilized.	For	example,	 it’s	better	 to	pay	 for	500
servers	at	100%	utilization	than	1000	servers	at	50%	utilization	even	though	the
amount	 of	 work	 done	 is	 the	 same	 since,	 if	 the	 1,000	 servers	 momentarily	 all
operate	 at	 100%	 utilization	 for	 even	 a	 brief	 amount	 of	 time	 in	 a	 month,	 the
demand	charge	for	the	datacenter	will	be	much	higher.

4.1.5.2	Data	Center	Carbon	Footprint

Scientists	world	wide	have	identified	a	link	between	carbon	emission	and	global
warming.	As	the	energy	consumption	of	a	data	center	is	substantial,	it	is	prudent
to	estimate	the	overall	carbon	emission.	Schneider	Electric	(formerly	APC)	has
provided	a	report	on	how	to	estimate	 the	Carbon	footprint	of	a	data	center	[7].
Although	this	report	is	already	a	bit	older,	it	provides	still	valuable	information.
It	defines	key	terms	such	as

Carbon	dioxide	emissions	coefficient	(carbon	footprint):

With	 the	 increasing	 demand	 of	 data,	 bandwidth	 and	 high	 performance
systems,	 there	 is	 substantial	 amount	 of	 power	 consumption.	This	 leads	 to
high	amount	of	greenhouses	gases	 emission	 into	 the	atmosphere,	 released
due	to	any	kind	of	basic	activities	like	driving	a	vehicle	or	running	a	power
plant.

“The	measurement	includes	power	generation	plus	transmission
and	distribution	losses	incurred	during	delivery	of	the	electricity
to	its	point	of	use.”

Data	 centers	 in	 total	 used	 91	 billion	 kilowatt-hours	 (kWh)	 of	 electrical



energy	in	2013,	and	they	will	use	139	billion	kWh	by
2020.	 Currently,	data	centers	consume	up	to	3	percent	of	all	global	electricity

production	while	producing	200	million	metric	tons	of	carbon	dioxide.
Since	 world	 is	 moving	 towards	 cloud,	 causing	 more	 and	 more	 data
center	capacity	leading	more	to	power	consumption.

Peaker	plant:

Peaking	power	plants,	 also	known	as	 peaker	 plants,	 and	occasionally	 just
peakers,	 are	 power	 plants	 that	 generally	 run	 only	 when	 there	 is	 a	 high
demand,	known	as	peak	demand,	for	electricity.	Because	they	supply	power
only	occasionally,	 the	power	supplied	commands	a	much	higher	price	per
kilowatt	hour	than	base	load	power.	Peak	load	power	plants	are	dispatched
in	combination	with	base	load	power	plants,	which	supply	a	dependable	and
consistent	 amount	 of	 electricity,	 to	 meet	 the	 minimum	 demand.	 These
plants	 are	 generally	 coal-fired	 which	 causes	 a	 huge	 amount	 of	 CO2
emissions.	A	peaker	plant	may	operate	many	hours	a	day,	or	it	may	operate
only	 a	 few	 hours	 per	 year,	 depending	 on	 the	 condition	 of	 the	 region’s
electrical	grid.	Because	of	the	cost	of	building	an	efficient	power	plant,	if	a
peaker	plant	 is	only	going	 to	be	run	for	a	short	or	highly	variable	 time,	 it
does	not	make	economic	sense	to	make	it	as	efficient	as	a	base	load	power
plant.	In	addition,	the	equipment	and	fuels	used	in	base	load	plants	are	often
unsuitable	for	use	in	peaker	plants	because	the	fluctuating	conditions	would
severely	 strain	 the	 equipment.	 For	 these	 reasons,	 nuclear,	 geothermal,
waste-to-energy,	 coal	 and	 biomass	 are	 rarely,	 if	 ever,	 operated	 as	 peaker
plants.

Avoided	emissions:

Emissions	 avoidance	 is	 the	 most	 effective	 carbon	 management	 strategy
over	 a	 multi-decadal	 timescale	 to	 achieve	 atmospheric	 CO2	 stabilization
and	 a	 subsequent	 decline.	 This	 prevents,	 in	 the	 first	 place,	 stable
underground	 carbon	 deposits	 from	 entering	 either	 the	 atmosphere	 or	 less
stable	carbon	pools	on	land	and	in	the	oceans.

Carbon	offsets	based	on	energy	efficiency	rely	on	technical	efficiencies	to
reduce	 energy	 consumption	 and	 therefore	 reduce	 CO2	 emissions.	 Such
improvements	 are	 often	 achieved	 by	 introducing	 more	 energy	 efficient



lightening,	cooking,	heating	and	cooling	 systems.	These	are	 real	 emission
reduction	strategies	and	have	created	valid	offset	projects.

This	 type	of	 carbon	offset	provides	perhaps	 the	 simplest	options	 that	will
ease	 the	 adoption	 of	 low	 carbon	 practice.	 When	 these	 practices	 become
generally	accepted	 (or	 compulsory),	 they	will	no	 longer	qualify	as	offsets
and	further	efficiencies	will	need	to	be	promoted.

CO2	(carbon	dioxide,	or	carbon):

Carbon	dioxide	is	the	main	cause	of	the	greenhouse	effect,	it	 is	emitted	in
huge	 amount	 into	 our	 atmosphere	 with	 a	 life	 cycle	 of	 almost	 100	 years.
Data	centers	emit	during	 the	manufacturing	process	of	all	 the	components
that	populate	a	data	center	(servers,	UPS,	building	shell,	cooling,	etc.)	and
during	 operation	 of	 data	 centers	 (in	 terms	 of	 electricity	 consumed),	 the
maintenance	 of	 the	 data	 centers	 (i.e.	 replacement	 of	 consumables	 like
batteries,	 capacitors,	 etc.),	 and	 the	disposal	of	 the	components	of	 the	data
centers	 at	 the	 end	 of	 the	 lifecycle.	 Until	 now,	 power	 plants	 have	 been
allowed	to	dump	unlimited	amounts	of	carbon	pollution	into	the	atmosphere
-	no	rules	were	in	effect	that	limited	their	emissions	of	carbon	dioxide,	the
primary	 driver	 of	 global	 warming.	 Now,	 for	 the	 first	 time,	 the	 EPA	 has
finalized	 new	 rules,	 or	 standards,	 that	will	 reduce	 carbon	 emissions	 from
power	 plants.	 Known	 as	 the	 Clean	 Power	 Plan,	 these	 historic	 standards
represent	the	most	significant	opportunity	in	years	to	help	curb	the	growing
consequences	of	climate	change.

The	data	center	will	have	a	total	carbon	profile,	that	includes	the	many	different
aspects	 of	 a	 data	 center	 contributing	 to	 carbon	 emissions.	 This	 includes
manufacturing,	packaging,	 transportation,	 storage,	operation	of	 the	data	center,
and	 decommissioning.	Thus	 it	 is	 important	 to	 notice	 that	we	 not	 only	 need	 to
consider	the	operation	but	also	the	construction	and	decommission	phases.

4.1.5.3	Data	Center	Operational	Impact

One	of	 the	main	operational	 impacts	 is	 the	cost	and	emissions	of	a	data	center
cause	 by	 running,	 and	 cooling	 the	 servers	 in	 the	 data	 center.	Naturally	 this	 is
dependent	 on	 the	 type	 of	 fuel	 that	 is	 used	 to	 produce	 the	 energy.	 The	 actual



carbon	impact	using	electricity	certainly	depends	on	the	type	of	powerplant	that
is	 used	 to	 provide	 it.	These	 energy	 costs	 and	 distribution	 of	where	 the	 energy
comes	 from	can	often	be	 looked	up	by	geographical	 regions	on	 the	 internet	or
form	 the	 local	 energy	provider.	Municipal	 government	 organizations	may	 also
have	such	information.	Tools	such	as	the	Indiana	State	Profile	and	Energy	Use
[8].

may	 provide	 valuable	 information	 to	 derive	 such	 estimates.	Correlating	 a	 data
center	with	cheap	energy	is	a	key	factor.	To	estimate	both	costs	in	terms	of	price
and	carbon	emission	Schneider	provides	a	convenient	Carbon	estimate	calculator
based	on	energy	consumption.

https://www.schneider-electric.com/en/work/solutions/system/s1/data-
center-and-network-systems/trade-off-tools/data-center-carbon-footprint-
comparison-calculator/tool.html
http://it-resource.schneider-electric.com/digital-tools/calculator-data-center-
carbon

If	we	calculate	the	total	cost,	we	need	naturally	add	all	costs	arising	from	build
and	teardown	phase	as	well	as	operational	upgrades.

4.1.5.4	Power	Usage	Effectiveness

One	of	the	frequent	measurements	in	data	centers	that	is	used	is	the	Power	usage
effectiveness	or	PUE	in	short.	It	is	a	measurement	to	identify	how	much	energy
is	 ued	 for	 the	 computing	 equipment	 versus	 other	 energy	 costs	 such	 as	 air
conditioning.

Formally	we	define	it	as

PUE	is	the	ratio	of	total	amount	of	energy	used	by	a	computer	data
center	facility	to	the	energy	delivered	to	computing	equipment.

PUE	was	published	in	2016	as	a	global	standard	under	ISO/IEC	30134-2:2016.

The	inverse	of	PUE	is	the	data	center	infrastructure	efficiency	(DCIE).

The	best	value	of	PUE	is	1.0.	Any	data	center	must	be	higher	than	this	value	as

https://www.eia.gov/state/?sid=IN
https://www.schneider-electric.com/en/work/solutions/system/s1/data-center-and-network-systems/trade-off-tools/data-center-carbon-footprint-comparison-calculator/tool.html
http://it-resource.schneider-electric.com/digital-tools/calculator-data-center-carbon
https://www.iso.org/standard/63451.html


offices	and	other	cost	surely	will	arise	when	we	look	at	the	formula

PUE =

PUE = 1 +

According	to	the	PUE	calculator	at

https://www.42u.com/measurement/pue-dcie.htm

The	following	ratings	are	given

PUE DCIS Level	of	Efficiency
3.0 33% Very	Inefficient
2.5 40% Inefficient
2.0 50% Average

1.5 67% Efficient
1.2 83% Very	Efficient

PUE	is	a	very	popular	metric	as	it	is	relatively	easy	to	calculate	and	provides	a
metric	that	can	easily	compare	data	centers	between	each	other.

This	metric	comes	also	with	some	drawbacks:

It	does	not	integrate	for	example	climate	based	differences,	such	as	that	the
energy	use	 to	cool	a	data	center	 in	colder	climates	 is	 less	 than	 in	warmer
climates.	 However,	 this	 may	 actually	 be	 a	 good	 side-effect	 as	 this	 will
likely	result	in	less	cooling	needs	sand	therefor	energy	costs.
It	 also	 forces	 large	 data	 centers	 with	 many	 shared	 servers	 in	 contrast	 to
small	data	centers	where	operational	cost	may	become	relevant.
It	does	not	take	in	consideration	recycled	energy	to	for	example	heat	other
buildings	outside	of	the	data	center.

Hence	it	is	prudent	not	to	just	look	at	the	PUE	but	also	at	other	metrics	that	lead
to	 the	 overall	 cost	 and	 energy	 usage	 of	 the	 total	 ecosystem	 the	 data	 center	 is
located	in.

Total Facility Energy

IT Equipment Energy

Non IT Facility Energy

IT Equipment Energy

https://www.42u.com/measurement/pue-dcie.htm


Already	 in	 2006,	 Google	 reported	 its	 six	 data	 centers	 efficiency	 as	 1.21	 and
Microsoft	 as	 1.22	which	 at	 that	 time	were	 considered	 very	 efficient.	However
over	 time	these	target	has	shifted	and	today’s	data	centers	achieve	much	lower
values.	 The	 Green	 IT	 Cube	 in	 Darmstadt,	 Germany	 even	 reported	 1.082.
According	to	Wikipedia	an	unnamed	Fortune	500	company	achieved	with	30000
SuperMicro	blades	a	PUE	of	1.06	in	2017.

Exercises

E.PUE.1:	Lowest	PUE	you	can	find

What	 is	 the	 lowest	 PUE	 you	 can	 find.	 Provide	 details	 about	 the
system	as	well	as	the	date	when	the	PUE	was	reported.

4.1.5.5	Hot-Cold	Aisle

To	 understand	 hot-cold	 aisles,	 one	 must	 take	 a	 brief	 foray	 into	 the	 realm	 of
physics	and	energy.	Specifically,	understanding	how	a	temperature	gradient	tries
to	equalize.	The	most	important	formula	to	know	is	the	heat	transfer	Equation	5.

q = hcA(ta − ts) (5)

Here,	q	 is	 the	 amount	of	 heat	 transferred	 for	 a	given	 amount	of	 time.	For	 this
example,	we	will	calculate	it	as	W/hour	as	that	is,	conveniently,	how	energy	is
billed.	Air	moving	at	a	moderate	 speed	will	 transfer	approximately	8.47	Watts
per	Square	Foot	per	Hour.	A	1U	server	 is	19	 inches	wide	and	about	34	 inches
deep.	Multiplying	the	two	values	gives	us	a	cross	section	of	646	square	inches,
or	4.48	square	feet.	Plugging	these	values	into	our	Equation	5	us:

q = 8.47 * 4.48 *(ta − ts)) (6)

This	 begins	 to	 point	 us	 towards	 why	 hot-cold	 aisles	 are	 important.	 If	 we
introduce	cold	 air	 from	 the	AC	system	 into	 the	 same	aisle	 that	 the	 servers	 are
exhausting	 into,	 the	air	will	mix	and	begin	 to	average	out.	For	example,	 if	our
servers	are	producing	exhaust	at	100F	and	our	AC	unit	provides	65F	at	the	same
rate,	then	the	average	air	temperature	will	become	82.5F	(assuming	balanced	air
pressure).	This	has	a	deleterious	effect	on	our	server	cooling	-	warmer	air	takes
heat	away	from	warmer	surfaces	slower	than	cooler	air:



1, 328.2 = 8.47 * 4.48 *(100 − 65)

664.0 = 8.47 * 4.48 *(100 − 82.5))

From	the	previous	listing,	we	can	see	that	a	35	degree	delta	allows	the	center	to
dissipate	1,300	Watts	of	waste	heat	from	a	1U	server	while	a	17.5	degree	delta
allows	us	to	only	dissipate	664	Watts	of	energy.	If	a	server	is	consuming	more
than	 664	 Watts,	 it’ll	 continue	 to	 get	 warmer	 and	 warmer	 until	 it	 eventually
reaches	 a	 temperature	 differential	 high	 enough	 to	 create	 an	 equilibrium	 (or
reaches	a	thermal	throttle	and	begins	to	reduce	performance).

To	combat	this,	engineers	developed	the	idea	of	designating	alternating	aisles	as
either	hot	or	cold.	All	servers	in	a	given	aisle	are	then	oriented	such	that	the	AC
system	provides	 cool	 air	 into	 the	 cold	 aisle	where	 it	 is	 drawn	 in	by	 the	 server
which	then	exhausts	it	into	the	hot	aisle	where	the	ventilation	system	removes	it
from	 the	 room.	 This	 has	 the	 benefit	 of	 maximizing	 the	 temperature	 delta
between	the	provided	air	and	the	server’s	processor(s),	 reducing	the	amount	of
quantity	of	air	 that	must	be	provided	in	order	to	cool	the	server	and	improving
overall	system	efficiency.

See	Figure	10	to	understand	how	the	hot-cold	isle	configuration	is	setup	in	a	data
center.

Figure	10:	Hot	Cold	Isle	[9]



4.1.5.5.1	Containment

While	 modern	 data	 centers	 employ	 highly	 sophisticated	 mechanisms	 to	 be	 as
energy	 efficient	 as	 possible.	 One	 such	 mechanism	 which	 can	 be	 seen	 as	 a
improvement	 on	 top	 of	 the	 Hot-Cold	 isle	 arrange	 is	 to	 use	 either	 hot	 isle
containment	or	cold	 isle	containment.	Using	a	containment	system	can	remove
the	issue	with	free	flowing	air.

As	 the	 name	 somewhat	 implies	 in	 cold	 air	 containment,	 the	 data	 centers	 is
designed	 so	 that	 only	 cold	 air	 goes	 into	 the	 cold	 isle,	 this	makes	 sure	 that	 the
system	 only	 draws	 in	 cold	 air	 for	 cooling	 purposes.	 Conversely	 in	 hot	 isle
containment	design,	the	hot	isle	is	contained	so	that	the	hot	air	collected	in	the
hot	isle	is	drawn	out	by	the	cooling	system	and	so	that	the	cold	air	does	not	flow
into	the	hot	isles[10].

4.1.5.5.1.1	Water	Cooled	Doors

Another	good	way	of	reducing	the	energy	consumption	is	to	install	water	cooled
doors	directly	at	he	 rack	as	 shown	 in	Figure	11.	Cooling	 even	 can	 be	 actively
controlled	 so	 that	 in	 case	 of	 idle	 servers	 less	 energy	 is	 spend	 to	 conduct	 the
cooling.	There	are	many	vendors	that	provide	such	cooling	solutions.



Figure	11:	Active	Rear	Door	link

4.1.5.6	Workload	Monitoring

4.1.5.6.1	Workload	of	HPC	in	the	Cloud

Clouds	 and	 especially	 university	 data	 centers	 do	 not	 just	 provide	 virtual
machines	but	provide	traditional	super	computer	services.	This	includes	the	NSF
sponsored	XSEDE	 project.	 As	 part	 of	 this	 project	 the	 "XDMoD	 auditing	 tool
provides,	for	the	first	time,	a	comprehensive	tool	to	measure	both	utilization	and
performance	of	high-end	cyberinfrastructure	(CI),	with	initial	focus	on	XSEDE.
Several	 case	 studies	 have	 shown	 its	 utility	 for	 providing	 important	 metrics
regarding	resource	utilization	and	performance	of	TeraGrid/XSEDE	that	can	be
used	 for	 detailed	 analysis	 and	 planning	 as	 well	 as	 improving	 operational
efficiency	 and	 performance.	 Measuring	 the	 utilization	 of	 high-end
cyberinfrastructure	 such	 as	 XSEDE	 helps	 provide	 a	 detailed	 understanding	 of
how	a	given	CI	resource	is	being	utilized	and	can	lead	to	improved	performance
of	 the	 resource	 in	 terms	 of	 job	 throughput	 or	 any	 number	 of	 desired	 job
characteristics.

Detailed	 historical	 analysis	 of	 XSEDE	 usage	 data	 using	 XDMoD	 clearly
demonstrates	the	tremendous	growth	in	the	number	of	users,	overall	usage,	and
scale"	[11].

Having	 access	 to	 a	 detailed	 metrics	 analysis	 allows	 users	 and	 center
administrators,	 as	 well	 as	 project	 managers	 to	 better	 evaluate	 the	 use	 and
utilization	of	such	large	facilities	justifying	their	existence	(see	Figure	12)

https://www.mainlinecomputer.com/t/product-lines/cabinets-and-racks/rear-door-heat-exchangers/chilled-doorr-high-density-rack-cooling-system/


Figure	12:	XDMod:	XSEDE	Metrics	on	Demand

Additional	information	is	available	at

https://open.xdmod.org/7.5/index.html

4.1.5.6.2	Scientific	Impact	Metric

Gregor	 von	 Laszewski	 and	 Fugang	 Wang	 are	 providing	 a	 scientific	 impact
metric	to	XDMoD	and	XSEDE.	It	is	a	framework	that	(a)	integrates	publication
and	 citation	 data	 retrieval,	 (b)	 allows	 scientific	 impact	 metrics	 generation	 at
different	 aggregation	 levels,	 and	 (c)	 provides	 correlation	 analysis	 of	 impact
metrics	 based	 on	 publication	 and	 citation	 data	 with	 resource	 allocation	 for	 a
computing	facility.	This	framework	is	used	to	conduct	a	scientific	impact	metrics
evaluation	of	XSEDE,	and	to	carry	out	extensive	statistical	analysis	correlating
XSEDE	allocation	size	to	the	impact	metrics	aggregated	by	project	and	Field	of
Science.	 This	 analysis	 not	 only	 helps	 to	 provide	 an	 indication	 of	 XSEDE’S
scientific	 impact,	but	also	provides	 insight	 regarding	maximizing	 the	 return	on

https://open.xdmod.org/7.5/index.html


investment	 in	 terms	 of	 allocation	 by	 taking	 into	 account	 Field	 of	 Science	 or
project	based	impact	metrics.	The	findings	from	this	analysis	can	be	utilized	by
the	XSEDE	 resource	 allocation	 committee	 to	 help	 assess	 and	 identify	 projects
with	 higher	 scientific	 impact.	 Through	 the	 general	 applicability	 of	 the	 novel
metrics	 we	 invented,	 it	 can	 also	 help	 provide	metrics	 regarding	 the	 return	 on
investment	for	XSEDE	resources,	or	campus	based	HPC	centers	[12].

4.1.5.6.3	Clouds	and	Virtual	Machine	Monitoring

Although	 no	 longer	 in	 operation	 in	 its	 original	 form	 FutureGrid	 [13]	 has
pioneered	 the	 extensive	monitoring	 and	 publication	 of	 its	 virtual	machine	 and
project	usage.	We	are	not	aware	of	a	current	system	that	provides	 this	 level	of
detail	as	sof	yet.	However,	efforts	as	part	of	XSEDE	within	the	XDMoD	project
are	under	way	at	this	time	but	are	not	integrated.

Futuregrid	provided	access	 to	all	virtual	machine	information,	as	well	as	usage
across	 projects.	 An	 archived	 portal	 view	 is	 available	 at	 FutureGrid	 Cloud
Metrics	[13].

http://archive.futuregrid.org/metrics/html/results/2014-Q3/reports/rst/india-All.html
http://archive.futuregrid.org/metrics/html/results/2014-Q3/reports/rst/india-All.html


Figure	13:	FutureGrid	Cloud	Metric

Futuregrid	 offered	 multiple	 clouds	 including	 clouds	 based	 on	 OpenStack,
Eucalyptus,	and	Nimbus.	Nimbus	and	Eucalyptus	are	systems	that	are	no	longer
used	in	the	community.	Only	OpenStack	is	the	only	viable	solution	in	addition	to
the	cloud	offerings	by	Comet	that	do	not	uses	OpenStack	(see	Figure	13).

Futuregrid,	 could	 monitor	 all	 of	 them	 and	 published	 its	 result	 in	 its	 Metrics
portal.	Monitoring	 the	VMs	 is	 an	 important	 activity	 as	 they	 can	 identify	VMs
that	may	 no	 longer	 be	 used	 (the	 user	 has	 forgotten	 to	 terminate	 them)	 or	 too
much	usage	of	a	user	or	project	can	be	detected	in	early	stages.

We	like	to	emphasize	several	examples	where	such	monitoring	is	helpful:

Assume	a	student	participates	in	a	class,	metrics	and	logs	allow	to	identify
students	 that	 do	 not	 use	 the	 system	 as	 asked	 for	 by	 the	 instructors.	 For
example	it	is	easy	to	identify	if	they	logged	on	and	used	VMs.	Furthermore



the	length	of	running	a	VM	ba
Let	 us	 assume	 a	 user	 with	 willful	 ignorance	 does	 not	 shut	 down	 VMs
although	 they	 are	 not	 used	 because	 research	 clouds	 are	 offered	 to	 us	 for
free.	 In	 fact,	 this	 situation	 happened	 to	 us	 recently	 while	 using	 another
cloud	 and	 such	 monitoring	 capacities	 were	 not	 available	 to	 us	 (on
jetstream).	The	user	single-handedly	used	up	the	entire	allocation	that	was
supposed	to	be	shared	with	30	other	users	in	the	same	project.	All	accounts
of	 all	 users	were	 quasi	 deactivated	 as	 the	 entire	 project	 they	 belonged	 to
were	deactivated.	Due	to	allocation	review	processes	it	took	about	3	weeks
to	reactivate	full	access.	sed	on	the	tasks	to	be	completed	can	be	compared
against	other	student	members.
In	commercial	clouds	you	will	be	charged	money.	Therefore,	it	is	less	likely
that	you	forget	to	shutdown	your	machine
In	 case	 you	 use	GitHub	 carelessly	 and	post	 your	 cloud	passwords	 or	 any
other	 passwords	 in	 it,	 you	 will	 find	 that	 within	 five	 minutes	 your	 cloud
account	 will	 be	 compromised.	 There	 are	 individuals	 on	 the	 network	 that
cleverly	mine	GitHub	for	such	security	lapses	and	will	use	your	password	if
you	indeed	have	stored	them	in	it.	In	fact	GitHub’s	deletion	of	a	file	does
not	delete	the	history,	so	as	a	non	expert	deleting	the	password	form	GitHub
is	not	sufficient.	You	will	have	to	either	delete	and	rewrite	the	history,	but
definitely	in	 this	case	you	will	need	to	reset	 the	password.	Monitoring	the
public	cloud	usage	 in	 the	data	center	 is	 important	not	only	 in	your	 region
but	 other	 regions	 as	 the	 password	 is	 valid	 also	 there	 and	 intruders	 could
hijack	and	start	services	in	regions	that	you	have	never	used.

In	 addition	 to	 FutureGrid,	 we	 like	 to	 point	 out	 Comet	 (see	 other	 sections).	 It
contains	 an	 exception	 for	 VM	 monitoring	 as	 it	 uses	 a	 regular	 batch	 queuing
system	to	manage	the	jobs.	Monitoring	of	the	jobs	is	conducted	through	existing
HPC	tools.

4.1.5.6.4	Workload	of	Containers

Monitoring	tools	for	containers	such	as	for	kubernetes	are	listed	at:

https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-
monitoring/

Such	 tools	 can	 be	 deployed	 alongside	 kubernetes	 in	 the	 data	 center,	 but	 will

https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/


likely	 have	 restrictions	 to	 its	 access.	 They	 are	 for	 those	 who	 operate	 such
services	 for	 example	 in	 kubernetes.	We	will	 discuss	 this	 in	 future	 sections	 in
more	detail.

4.1.6	Example	Data	Centers

In	 this	 section	we	will	 be	 giving	 some	 data	 center	 examples	while	 looking	 at
some	of	the	mayor	cloud	providers.

4.1.6.1	AWS

AWS	focuses	on	security	aspects	of	their	data	centers	that	 include	four	aspects
[14]:

Perimeter	Layer
Infrastructure	Layer
Data	Layer
Environmental	Layer

The	global	infrastructure	[15]	as	of	January	2019	includes	60	Availability	Zones
within	 20	 geographic	 Regions.	 Plans	 exists	 to	 add	 12	 Availability	 Zones	 and
four	 additional	 Regions	 in	 Bahrain,	 Hong	 Kong	 SAR,	 Sweden,	 and	 a	 second
AWS	GovCloud	Region	in	the	US	(see	Figure	14).

https://aws.amazon.com/compliance/data-center/perimeter-layer/
https://aws.amazon.com/compliance/data-center/infrastructure-layer/
https://aws.amazon.com/compliance/data-center/data-layer/
https://aws.amazon.com/compliance/data-center/environmental-layer/
https://aws.amazon.com/about-aws/global-infrastructure/


Figure	14:	AWS	regions	[15]

Amazon	strives	to	achieve	high	availability	through	multiple	availability	zones,
improved	continuity	with	replication	between	regions,	meeting	compliance	and
data	 residency	 requirements	 as	 well	 as	 providing	 geographic	 expansion.	 See
Figure	15

The	regions	and	number	of	availability	zones	are	as	follows:

Region	 US	 East:	 N.	 Virginia	 (6),	 Ohio	 (3)	 US	 West	 N.	 California	 (3),
Oregon	(3)
Region:	 Asia	 Pacific	 Mumbai	 (2),	 Seoul	 (2),	 Singapore	 (3),	 Sydney	 (3),
Tokyo	(4),	Osaka-Local	(1)1	Canada	Central	(2)	China	Beijing	(2),	Ningxia
(3)
Region:	 Europe	 Frankfurt	 (3),	 Ireland	 (3),	 London	 (3),	 Paris	 (3)	 South
America	São	Paulo	(3)
Region	Gov	Cloud:	AWS	GovCloud	(US-West)	(3)
New	 Region	 (coming	 soon):	 Bahrain,	 Hong	 Kong	 SAR,	 China,	 Sweden,
AWS	GovCloud	(US-East)

4.1.6.2	Azure

Azure	 claims	 to	 have	more	global	 regions	[16]	 than	 any	 other	 cloud	 provider.

https://azure.microsoft.com/en-us/global-infrastructure/regions/


They	motivate	this	by	their	advertisement	to	bring	and	applications	to	the	users
around	the	world.	The	goal	is	similar	as	other	commercial	hyper-scale	providers
by	 introducing	 preserving	 data	 residency,	 and	 offering	 comprehensive
compliance	 and	 resilience.	 As	 of	 Aug	 29,	 2018	 Azure	 supports	 54	 regions
worldwide.	These	 regions	 can	 currently	 be	 accessed	 by	 users	 in	 140	 countries
(see	Figure	15).	Not	 every	 service	 is	 offered	 in	 every	 region	 as	 the	 service	 to
region	matrix	shows:

https://azure.microsoft.com/en-us/global-infrastructure/services/

Figure	15:	Azure	regions	[16]

4.1.6.3	Google

From	Google	 [17]	 we	 find	 that	 on	 Aug.	 29th	 Google	 has	 the	 following	 data
center	locations	(see	Figure	16):

North	America:	Berkeley	County,	South	Carolina;	Council	Bluffs,	 Iowa;
Douglas	 County,	 Georgia;	 Jackson	 County,	 Alabama;	 Lenoir,	 North
Carolina;	Mayes	County,	Oklahoma;	Montgomery	County,	Tennessee;	The
Dalles,	Oregon
South	America:	Quilicura,	Chile
Asia:	Changhua	County,	Taiwan;	Singapore
Europe:	 Dublin,	 Ireland;	 Eemshaven,	 Netherlands;	 Hamina,	 Finland;	 St
Ghislain,	Belgium

https://azure.microsoft.com/en-us/global-infrastructure/services/
https://www.google.com/about/datacenters/inside/locations/index.html


Figure	16:	Google	data	centers	[17]

Each	 data	 center	 is	 advertised	 with	 a	 special	 environmental	 impact	 such	 as	 a
unique	cooling	system,	or	wildlife	on	premise.	Google’s	data	centers	support	its
service	 infrastructure	 and	 allow	 hosting	 as	 well	 as	 other	 cloud	 services	 to	 be
offered	to	it’s	customers.

Google	highlights	its	efficiency	strategy	and	methods	here:

https://www.google.com/about/datacenters/efficiency/

They	summarize	their	offers	are	based	on

Measuring	the	PUE
Managing	airflow
Adjusting	the	temperature
Use	free	Cooling
Optimizing	the	power	distribution

https://www.google.com/about/datacenters/efficiency/


Figure	17:	PUE	data	for	all	large-scale	Google	data	centers

The	PUE	[18]	data	for	all	large-scale	Google	data	centers	is	shown	in	Figure	17

An	 important	 lesson	 from	Google	 is	 the	 PUE	 boundary.	 That	 is	 the	 different
efficiency	based	on	the	closeness	of	the	IT	infrastructure	to	the	actual	data	center
building.	This	indicates	that	it	is	important	to	take	at	any	providers	definition	of
PUE	 in	 order	 not	 to	 report	 numbers	 that	 are	 not	 comparable	 between	 other
vendors	and	are	all	encompassing.

Figure	18:	Google	data	center	PUE	measurement	boundaries	[18]

Figure	 18	 shows	 the	 Google	 data	 center	 PUE	 measurement	 boundaries.	 The
average	PUE	[18]	for	all	Google	data	centers	is	1.12,	although	we	could	boast	a
PUE	as	low	as	1.06	when	using	narrower	boundaries.

https://www.google.com/about/datacenters/efficiency/internal/
https://www.google.com/about/datacenters/efficiency/internal/


As	a	consequence,	Google	is	defining	its	PUE	in	detail	in	Equation	7.

PUE = (7)

where	the	abbreviations	stand	for

ESIS	=	Energy	consumption	for	supporting	infrastructure	power	substations
feeding	 the	 cooling	 plant,	 lighting,	 office	 space,	 and	 some	 network
equipment
EITS	 =	 Energy	 consumption	 for	 IT	 power	 substations	 feeding	 servers,
network,	storage,	and	computer	room	air	conditioners	(CRACs)
ETX	=	Medium	and	high	voltage	transformer	losses
EHV	=	High	voltage	cable	losses
ELV	=	Low	voltage	cable	losses
EF	=	Energy	consumption	from	on-site	 fuels	 including	natural	gas	&	fuel
oils
ECRAC	=	CRAC	energy	consumption
EUPS	=	Energy	loss	at	uninterruptible	power	supplies	(UPSes)	which	feed
servers,	network,	and	storage	equipment
ENet1	=	Network	room	energy	fed	from	type	1	unit	substitution

For	more	details	see	[18].

4.1.6.4	IBM

IBM	maintains	 almost	 60	data	 centers,	which	 are	 placed	globally	 in	 6	 regions
and	18	availability	zones.	IBM	targets	businesses	while	offering	local	access	to
its	centers	to	allow	for	low	latency.	IBM	states	that	trough	this	localization	users
can	 decide	 where	 and	 how	 data	 and	 workloads	 and	 address	 availability,	 fault
tolerance	and	scalability.	As	IBM	is	business	oriented	it	also	stresses	its	certified
security.

More	information	can	be	obtained	from:

https://www.ibm.com/cloud/data-centers/

A	special	service	offering	is	provided	by	Watson.

ESIS + EIT S + ETX + EHV + ELV + EF

EIT S − ECRAC − EUPS −ELV + ENet1

https://www.google.com/about/datacenters/efficiency/internal/
https://www.ibm.com/cloud/data-centers/


https://www.ibm.com/watson/

which	 is	 focusing	 on	 AI	 based	 services.	 It	 includes	 PaaS	 services	 for	 deep
learning,	 but	 also	 services	 that	 are	 offered	 to	 the	 healthcare	 and	 other
communities	as	SaaS

4.1.6.5	XSEDE

XSEDE	 is	 an	NSF	sponsored	 large	distributed	 set	of	 clusters,	 supercomputers,
data	services,	and	clouds,	building	a	“single	virtual	system	that	scientists	can	use
to	 interactively	share	computing	 resources,	data	and	expertise”.	The	Web	page
of	XSEDE	is	located	at

https://www.xsede.org/

Primary	compute	resources	are	listed	in	the	resource	monitor	at

https://portal.xsede.org/resource-monitor

For	cloud	Computing	the	following	systems	are	of	especial	importance	although
selected	 others	may	 also	 host	 container	 based	 systems	while	 using	 singularity
(see	Figure	19):

Comet	virtual	clusters
Jetstream	OpenStack

https://www.ibm.com/watson/
https://www.xsede.org/
https://portal.xsede.org/resource-monitor


Figure	19:	XSEDE	distributed	resource	infrastructure

4.1.6.5.1	Comet

The	comet	machine	is	a	larger	cluster	and	offers	bare	metal	provisioning	based
on	KVM	and	SLURM.	Thus	it	is	a	unique	system	that	can	run	at	the	same	time
traditional	 super	 computing	 jobs	 such	 as	MPI	based	programs,	 as	well	 as	 jobs
that	 utilize	 virtual	machines.	With	 its	 availability	 of	 >46000	 cores	 it	 provides
one	 of	 the	 larges	 NSF	 sponsored	 cloud	 environment.	 Through	 its	 ability	 to
provide	bare	metal	provisioning	and	the	access	to	Infiniband	between	all	virtual
machines	it	is	an	ideal	machine	for	exploring	performance	oriented	virtualization
techniques.

Comet	has	about	3	times	more	cores	than	Jetstream.

4.1.6.5.2	Jetstream

Jetstream	 is	 a	 machine	 that	 specializes	 in	 offering	 a	 user	 friendly	 cloud
environment.	 It	 utilizes	 an	 environment	 called	 atmosphere	 that	 is	 targeting
inexperienced	 scientific	 cloud	 users.	 It	 also	 offers	 an	 OpenStack	 environment
that	 is	used	by	atmosphere	and	 is	 for	classes	such	as	ours	 the	preferred	access



method.	More	information	about	the	system	can	be	found	at

https://dcops.iu.edu/

4.1.6.6	Chameleon	Cloud

Chameleon	 cloud	 is	 a	 configurable	 experimental	 environment	 for	 large-scale
cloud	 research.	 It	 is	 offering	 OpenStack	 as	 a	 service	 including	 some	 more
advanced	services	that	allow	experimentation	with	the	infrastructure.

https://www.chameleoncloud.org/

An	overview	of	the	hardware	can	be	obtained	from

https://www.chameleoncloud.org/hardware/

4.1.6.7	Indiana	University

Indiana	University	has	a	data	center	in	which	many	different	systems	are	housed.
This	 includes	 not	 only	 jetstream,	 but	 also	 many	 other	 systems.	 The	 systems
include	production,	business,	and	research	clusters	and	servers.	See	Figure	20

Figure	20:	IU	Data	Center

On	the	research	cluster	side	it	offers	Karst	and	Carbonate:

https://kb.iu.edu/d/bezu	(Karst)
https://kb.iu.edu/d/aolp	(Carbonate)

One	of	the	special	systems	located	in	the	data	center	and	managed	by	the	Digital

https://dcops.iu.edu/
https://www.chameleoncloud.org/
https://www.chameleoncloud.org/hardware/
https://kb.iu.edu/d/bezu
https://kb.iu.edu/d/aolp


Science	Center	is	called	Futuresystems,	which	provides	a	great	resource	for	the
advanced	 students	 of	 Indiana	 University	 focusing	 on	 data	 engineering.	While
systems	such	as	Jetstream	and	Chameleon	cloud	specialize	in	production	ready
cloud	 environments,	 Futuresystems,	 allows	 the	 researchers	 to	 experiment	with
state-of-the-art	 distributed	 systems	 environments	 supporting	 research.	 It	 is
available	with	Comet	 and	 thus	 could	 also	 serve	 as	 an	 on-ramp	 to	 using	 larger
scale	resources	on	comet	while	experimenting	with	the	setup	on	Futuresystems.

Such	an	offering	 is	 logical	as	researchers	 in	 the	data	engineering	 track	want	 to
further	develop	systems	such	as	Hadoop,	SPark,	or	container	based	distributed
environments	and	not	use	the	tools	that	are	released	for	production	as	they	do	not
allow	improvements	to	the	infrastructure.	Futuresystems	is	managed	and	offered
by	by	the	Digital	Science	Center.

Hence	IU	offers	very	important	but	needed	services

Karst	for	traditional	supercomputing
Jetstream	for	production	use	with	focus	on	virtual	machines
Futuresystems	 for	 research	 experiment	 environments	 with	 access	 to	 bare
metal.

4.1.6.8	Shipping	Containers

A	few	years	ago	data	centers	build	from	shipping	containers	were	very	popular.
This	includes	several	main	Cloud	providers.	Such	providers	have	found	that	they
are	 not	 the	 best	 way	 to	 develop	 centers	 at	 scale.	 This	 includes	Microsoft	 and
Google	The	current	trend	however	is	to	build	mega	or	hyperscale	data	centers.

4.1.7	Server	Consolidation

One	of	 the	driving	 factors	 in	 cloud	 computing	 and	 the	 rise	 of	 large	 scale	 data
centers	is	the	ability	to	use	server	virtualization	to	place	more	than	one	server	on
the	 same	 hardware.	 Formerly	 the	 services	 were	 hosted	 on	 their	 own	 servers.
Today	they	are	managed	on	the	sae	hardware	although	they	look	to	the	customer
like	separate	servers.

As	a	result	we	find	the	following	advantages:

https://www.datacenterknowledge.com/archives/2016/04/20/microsoft-moves-away-from-data-center-containers
https://blogs.technet.microsoft.com/msdatacenters/2013/04/22/microsofts-itpac-a-perfect-fit-for-off-the-grid-computing-capacity/


reduction	 of	 administrative	 and	 operations	 cost:	While	 we	 reduce	 the
number	 of	 servers	 and	 utilize	 hardware	 to	 host	 multiple	 on	 them
management	cost,	space,	power,	and	maintenance	cost	are	reduced.

better	resource	utilization:	Through	load	balancing	strategies	servers	can
be	 better	 utilized	 while	 for	 example	 increase	 load	 so	 resource	 idling	 is
avoided.

increased	 reliability:	 As	 virtualized	 servers	 can	 be	 snapshotted,	 and
mirrored,	these	features	can	be	utilized	in	strategies	to	increase	reliability	in
case	of	failure.

standardization:	 As	 the	 servers	 are	 deployed	 in	 large	 scale,	 the
infrastructure	is	implicitly	standardized	based	on	server,	network,	and	disk,
making	 maintenance	 and	 replacements	 easier.	 This	 also	 includes	 the
software	 that	 is	 running	 on	 such	 servers	 (OS,	 platform	 and	 may	 even
include	applications).

4.1.8	Data	Center	Improvements	and	Consolidation

Due	to	the	immense	number	of	servers	in	data	centers,	as	well	as	the	increased
workload	on	its	servers,	the	energy	consumption	of	data	centers	is	large	not	only
to	run	the	servers,	but	to	provide	the	necessary	cooling.	Thus	it	 is	 important	to
revisit	the	impact	such	data	centers	have	on	the	energy	consumption.	One	of	the
studies	that	looked	into	this	is	from	2016	and	is	published	by	LBNL	[19]	In	this
study	 the	 data	 center	 electricity	 consumption	 back	 to	 2000	 is	 analyzed	 while
using	previous	studies	and	historical	shipment	data.	A	forecast	is	with	different
assumption	is	contrasts	till	2020

Figure	Energy	Forecast	depicts	“an	estimate	of	total	U.S.	data	center	electricity
use	 (servers,	 storage,	network	equipment,	 and	 infrastructure)	 from	2000-2020”
(see	Figure	21).

While	 in	 “2014	 the	 data	 centers	 in	 the	U.S.	 consumed	 an	 estimated	70	billion
kWh”	 or	 “about	 1.8%	 of	 total	 U.S.	 electricity	 consumption”.	 However,	 more
recent	 studies	 find	 an	 increase	 by	 about	 4%	 from	2010-2014.	This	 contrasts	 a
large	derivation	from	the	24%	that	were	originally	predicted	several	years	ago.
The	study	finds	that	the	predicted	energy	use	would	be	approximately	73	billion

https://cloudfront.escholarship.org/dist/prd/content/qt84p772fc/qt84p772fc.pdf


kWh	in	2020.

Figure	21:	Energy	Forecast	[19]

It	 is	clear	 that	 the	original	prediction	of	 large	energy	consumption	motivated	a
trend	in	industry	to	provide	more	energy	efficient	data	centers.	However	if	such
energy	efficiency	efforts	would	not	be	conducted	or	encouraged	we	would	see	a
completely	different	scenario.

The	scenarios	are	identified	that	will	significantly	impact	the	prediction:

improved	management	increases	energy-efficiency	through	operational	or
technological	 changes	 with	 minimal	 investment.	 Strategies	 include
improving	the	least	efficient	components.

best	 practices	 increases	 the	 energy-efficiency	 gains	 that	 can	 be	 obtained
through	 the	widespread	 adoption	 the	most	 efficient	 technologies	 and	 best
management	 practices	 applicable	 to	 each	 data	 center	 type.	 This	 scenario
focuses	on	maximizing	the	efficiency	of	each	type	of	data	center	facility.

hyperscale	 data	 centers	 where	 the	 infrastructure	 will	 be	 moved	 from
smaller	data	centers	to	larger	hyperscale	data	centers.

4.1.9	Project	Natick



To	 reduce	 energy	 consumption	 in	 data	 centers	 and	 reduce	 cost	 of	 cooling
Microsoft	has	developed	Project	Natick.	 To	 tackle	 this	 problem	Microsoft	 has
built	underwater	datacenter.	Another	benefit	of	this	project	is	that	data	center	can
be	deployed	in	large	bodies	of	water	to	serve	customers	residing	in	that	area	so	it
helps	 to	 reduce	 latency	 by	 reducing	 distance	 to	 users	 and	 therefore	 increasing
data	transfer	speed.	There	are	two	phases	of	this	project.

The	project	was	executed	in	two	phases.

Phase	 1	 was	 executed	 between	 August	 to	 November	 2015.	 In	 this	 phase
Microsoft	was	 successfully	 able	 to	 deploy	 and	 operate	 vessel	 underwater.	The
vessel	 was	 able	 to	 tackle	 cooling	 issues	 and	 effect	 of	 biofouling	 as	 well.
Biofouling	 is	 referred	 to	 as	 the	 fouling	 of	 pipes	 and	 underwater	 surfaces	 by
organisms	such	as	barnacles	and	algae.

The	PUE	(Power	Usage	Effectiveness)	of	Phase1	vessel	was	1.07	which	is	very
efficient	 and	 a	 perfect	WUE	 (Water	 Usage	 Effectiveness)	 of	 exactly	 0,	 while
land	data	centers	consume	~4.8	liters	of	water	per	KWH.	This	vessel	consumed
computer	 power	 equivalent	 to	 300	Desktop	 PCs	 and	was	 of	 38000	 lbs	 and	 it
operated	for	105	days.



Figure	22:	The	Leona	Philpot	prototype

See	Figure	22,	The	Leona	Philpot	prototype	was	deployed	off	 the	central	coast
of	California	on	Aug.	10,	2015.	Source:	Microsoft	[20]

The	phase	2	started	in	June	2018	and	lasted	for	90	days.	Microsoft	deployed	a
vessel	at	the	European	Marine	Energy	Center	in	UK.

The	 phase	 2	 vessel	 was	 40ft	 long	 and	 had	 12	 racks	 containing	 864	 servers.
Microsoft	 powered	 this	 data	 center	 using	 100%	 renewable	 energy.	 This	 data
ceter	 is	 claimed	 to	 be	 able	 to	 operate	 without	 maintenance	 for	 5	 years.	 For
cooling	Microsoft	used	infrastructure	which	pipes	sea	water	through	radiators	in
back	on	server	racks	and	then	move	water	back	in	to	ocean.

The	 total	 estimated	 lifespan	 of	 a	 Natick	 datacenter	 is	 around	 20	 years,	 after
which	it	will	be	retrieved	and	recycled.

https://news.microsoft.com/features/microsoft-research-project-puts-cloud-in-ocean-for-the-first-time/


Figure	23:	The	Northern	Isles	prototype

Source:	Microsoft	[21]

Figure	23	shows	the	Northern	Isles	prototype	being	deployed	near	Scotland.

Although	 the	 cooling	 provides	 a	 significant	 benefit	while	 using	 seawater,	 it	 is
clear	that	long	time	studies	need	to	be	conducted	with	this	approach	and	not	just
studies	 over	 a	 very	 short	 period	 of	 time.	 The	 reason	 for	 this	 is	 not	 just	 the
measurement	of	 a	PUE	 factor	or	 the	 impact	of	 algae	on	 the	 infrastructure,	 but
also	how	such	a	vessel	impacts	the	actual	ecosystem	itself.

Some	thought	on	this	include:

1.	 How	doe	 the	vesil	 increase	 the	surrounding	water	 temperature	and	effects
the	ecosystem

2.	 If	 places	 in	 saltwater,	 corrosion	 can	 occur	 that	 may	 not	 only	 effect	 the
vesel,	but	also	the	ecosystem

3.	 Positive	effects	could	also	be	created	on	ecosystems,	which	is	for	example
demonstrated	by	creation	of	artificial	reefs.	However	if	the	structure	has	to
be	removed	after	20	years,	which	impat	has	it	than	on	the	ecosystem.

Find	more	about	this	at	[22]

https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-datacenter-thats-quick-to-deploy-could-provide-internet-connectivity-for-years/


4.1.10	Renewable	Energy	for	Data	Centers

Due	 to	 the	 high	 energy	 consumption	 of	 data-centers,	 especially	 of	 hyper-scale
data	 centers.	 It	 is	 prudent	 to	 evaluate	 renewable	 energies	 for	 the	 operation	 of
such	data	centers.	In	particular	this	includes:

Solar:	https://9to5google.com/2019/01/17/largest-ever-solar-farms-google/
Wind:	https://www.datacenterknowledge.com/wind-powered-data-centers
Hydro:	 http://www.hydroquebec.com/data-center/advantages/clean-
energy.html	there	will	be	others
Thermal:	 find	 better	 resource
https://spectrum.ieee.org/energywise/telecom/internet/iceland-data-center-
paradise
Recyclers:	 https://www.datacenterknowledge.com/data-centers-that-
recycle-waste-heat

Other	aspects	may	include	the	storage	of	energy	including:

Batteries
Store	energy	in	other	forms	such	as	potential	energy.

4.1.11	Societal	Shift	Towards	Renewables

We	find	a	world	wide	trend	in	society	to	shift	towards	renewables.	This	includes
government	efforts	to	support	renewable	in	benefit	of	the	society:

Germany,	China,	Island,	and	many	more,

but	it	also	includes	commitments	by	Corporations	such	as

Google,	AWS,	IBM,	…

Also	look	at	the	US	state	of	California	and	others	that	project	renewable	energy.

Information	about	this	is	provided	for	example	in

https://www.irena.org/-
/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf

https://9to5google.com/2019/01/17/largest-ever-solar-farms-google/
https://www.datacenterknowledge.com/wind-powered-data-centers
http://www.hydroquebec.com/data-center/advantages/clean-energy.html
https://spectrum.ieee.org/energywise/telecom/internet/iceland-data-center-paradise
https://www.datacenterknowledge.com/data-centers-that-recycle-waste-heat
https://blog.google/outreach-initiatives/sustainability/our-biggest-renewable-energy-purchase-ever/
https://aws.amazon.com/about-aws/sustainability/
https://www.ibm.com/ibm/green/data_center.html
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf


We	predict	that	any	country	not	being	heavily	committed	in	renewable	energies
will	 fall	 behind	 while	 missing	 out	 on	 research	 opportunities	 in	 renewable
energies	themselfs.	Today	the	cost	of	renewable	energy	producing	power	plants
have	so	drastically	improved	they	are	not	only	producing	less	green	house	gasses
but	are	 today	even	cheaper	 to	operate	and	build	 than	combustion	based	energy
producing	power	plants.

4.1.12	Datacenter	Risks	and	Issues

Data	Centers	may	be	encounter	issues	such	as	outages	of	a	variety	of	reasons.	In
this	 section	 you	 will	 identify	 risks	 and	 issues	 that	 you	 encounter	 as	 part	 of
information	you	find	on	the	Web	or	literature.

It	 is	 important	 that	we	 recognize	 that	 datacenter	 outages	 can	 happen	 and	 thus
such	 outages	 must	 be	 build	 into	 the	 operations	 of	 the	 cloud	 services	 that	 are
offered	to	the	customers	to	assure	an	expectation	level	of	quality	of	service.

Here	is	an	example:

Date:	Mar	02	2017
Datacenter:	AWS
Category:	Operator	error
Description:	Mistake	during	a	routine	debugging	exercise.
Duration:	Several	hours
Impact:	large
Cost	impact	>	$160	million

Reference

FACEBOOK,	 WHATSAPP,	 INSTAGRAM	 DOWN?	 WORLD’S
BIGGEST	 SOCIAL	 NETWORKS	 SUFFER	 OUTAGES	 AND	 STOP
LOADING	IMAGES,	Newsweek

https://www.datacenterknowledge.com/archives/2017/03/02/aws-outage-that-broke-the-internet-caused-by-mistyped-command/
https://www.newsweek.com/facebook-whatsapp-instagram-down-offline-outages-social-media-not-working-1447367


Figure	24:	Instagram	Outage	Ref

4.1.13	Exercises

Exercises

Prerequisite:	Knowledge	about	plagiarism.

E.Datacenter.1:	Carbon	footprint	of	a	data	center

Complete	the	definitions	of	the	terms	used	in	the	relevant	section

E.Datacenter.2:	Carbon	footprint	of	data	centers

E.Datacenter.2.a:	Table

World	wide	we	have	many	data	centers.	Your	task	will	be	to	find	the
carbon	emission	of	a	data	center	and	 its	 cost	 in	$	based	on	energy
use	on	a	yearly	basis.	Make	sure	you	avoid	redundant	reporting	and
find	a	new	datacenter.	Add	your	data	 to	 the	 table	 in	 this	 link	under
the	Sheet	DataCenter

E.Datacenter.2.b:	Table

place	a	file	in	your	repository	called	datacenter.md	 (note	 the	spelling	all	 lower
case)	 and	 describe	 details	 about	 you	 data	 center	 without	 plagiarizing.	 Provide

https://downdetector.com/status/instagram/map/?ref=DJ-D-L-CC-
https://docs.google.com/spreadsheets/d/1gh869zfjA4sVxL8-ga0af2_HLTTuOoD1IReuRSrbq4I/edit?usp=sharing


references	to	back	up	your	data	and	description.

TAs	will	integrate	your	information	into	the	following	table

Table:	Cost	of	the	data	center

.

Data
Center Location Year Electricity

Cost*
IT
Load

Yearly
Cost

Yearly
CO2
Footprint

Equivalent
in	Cars

*as	adjusted	in	calculator

If	you	find	other	estimates	for	a	data	center	or	an	entire	data	center
fleet	such	as	AWS	world	wide,	please	provide	citations.

E.Datacenter.3:	Your	own	Carbon	footprint

It	is	interesting	to	compare	and	measure	your	own	carbon	footprint.
We	will	 ask	 you	anonymously	 to	 report	 your	 carbon	 footprint	 via	a
form	we	will	prepare	 in	 future.	As	 the	 time	 to	do	 this	 is	 less	 than	2
minutes,	We	ask	all	students	to	report	their	footprint.

Please	use	the	calculator	at:

http://carbonfootprint.c2es.org/

Add	 your	 data	 to	 the	 table	 in	 this	 link	 under	 the	 Sheet
CarbonFootPrint

E.Datacenter.4:

Pick	 a	 renewal	 energy	 from	Section	4.1.10	 and	 describe	what	 it	 is.
Find	data	centers	that	use	this	energy	form.	Include	the	information
in	your	hid	directory	under	the	file	datacenter.md.

http://carbonfootprint.c2es.org/
https://docs.google.com/spreadsheets/d/1gh869zfjA4sVxL8-ga0af2_HLTTuOoD1IReuRSrbq4I/edit?usp=sharing


You	will	do	the	energy	form	based	on	taking	the	last	digit	from	your
HID	and	getting	the	modulo	6	and	looking	up	the	value	in	this	table

0.	 Solar
1.	 Wind
2.	 Hydro
3.	 Thermal
4.	 Recyclers
5.	 Others

If	your	modulo	is	undefined	please	use	5	(e.g.	if	your	digit	at	the	end
of	your	hid	0)

E.Datacenter.5:

Pick	a	country,	state,	or	company	from	Section	4.1.11	and	summarize
their	 efforts	 towards	 renewable	 energy	 and	 impacts	 within	 the
society.	Create	a	section	and	contribute	 it	 to	 the	datacenter.md	 file.
Use	internet	resources	and	cite	them.

E.Datacenter.6:

Write	about	cooling	 technologies	 in	datacenter	rack	doors	so	 it	can
be	contributed	to	Section	4.1.5.5.1.1.

E.Datacenter.7:

Review:	Nature	Article.	Is	there	any	more	up	to	data	available?	What
lessons	do	we	take	away	from	the	article?

E.Datacenter.8:

Find	major	data	center	outages	and	discuss	 the	concrete	 impact	 on
the	 internet	and	user	 community.	Concrete	means	here	not	users	of
the	center	xyz	 lost	services,	but	can	you	identify	how	many	users	or
how	many	services	were	impacted	and	which?	Is	there	a	cost	revenue
loss	 projected	 somewhere?	 If	 you	 find	 an	 outage	 do	 significant
research	on	it.	For	example	other	metrics	could	include	what	media
impact	did	this	outage	have?

https://www.nature.com/articles/d41586-018-06610-y


E.Datacenter.9:

We	encourage	you	to	contribute	to	this	section	if	you	like	and	enjoy
doing	so.



5	ARCHITECTURE

5.1	ARCHITECTURES	☁

	Learning	Objectives

Review	classical	architectural	models	leading	up	to	cloud	computing.
Review	some	mayor	cloud	architecture	views.
Visualize	the	NIST	cloud	architecture
Discuss	an	architecture	for	multicloud	frameworks.

While	we	have	introduced	in	our	introductory	section	a	number	of	definitions	for
cloud	computing,	as	well	as	an	architectural	view	for	clouds	based	on	the	as	a
Service	model,	we	will	look	a	bit	closer	at	other	alternative	views.	These	views
are	 in	 some	 cases	 important	 as	 they	 provide	 appropriate	 abstractions	 for	more
detailed	implementations.

5.1.1	Evolution	of	Compute	Architectures

We	 start	 our	 observation	 with	 some	 a	 depiction	 of	 some	 of	 the	 important
architectural	 models	 motivating	 the	 current	 state	 of	 information	 technology
services	we	 provide	 in	 Figure	 25.	 The	 are	 computers	 used	 primarily	 by	 large
organizations	 for	 critical	 applications;	 bulk	 data	 processing,	 such	 as	 census,
industry	 and	 consumer	 statistics,	 enterprise	 resource	 planning;	 and	 transaction
processing.	 The	 term	 originally	 referred	 to	 the	 large	 cabinets	 called	 “main
frames”	 that	 housed	 the	 central	 processing	 unit	 and	 main	 memory	 of	 early
computers.	has	been	updated	by	von	Laszewski	to	include	the	mobile	computing
and	 the	 internet	 of	 things	 phase	 that	 is	 bringing	 rapid	 changes	 to	 how	 we
perceive	and	use	the	cloud	in	the	near	future.

https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/arch.md


Figure	25:	Evolution	of	Compute	Architectures

We	 define	 the	 following	 terminology	 based	 on	 the	 evolution	 of	 compute
architectures.

5.1.1.1	Mainframe	Computing

Mainframe	computing	is	using	the	larger	and	more	reliable	computers,	like	IBM
System	 z9,	 to	 run	 the	 critical	 applications,	 bulk	 data	 processing,	 enterprise
resource	planning	and	business	transaction	processing.

According	 to	 Wikipedia,	 the	 term	 mainframe	 originally	 referred	 to
the	 large	 cabinets	 called	 “main	 frames”	 that	 housed	 the	 central
processing	unit	and	main	memory	of	early	computers.	Later,	the	term
was	 used	 to	 distinguish	 high-end	 commercial	 machines	 from	 less
powerful	units.	Most	large-scale	computer	system	architectures	were
established	 in	 the	 1960s,	 but	 continue	 to	 evolve.	 Mainframe
computers	 are	 used	 primarily	 by	 large	 organizations	 for	 critical
applications;	 bulk	 data	 processing,	 such	 as	 census,	 industry	 and
consumer	 statistics,	 enterprise	 resource	 planning;	 and	 transaction
processing.	The	term	originally	referred	to	the	large	cabinets	called
“main	 frames”	 that	 housed	 the	 central	 processing	 unit	 and	 main
memory	of	early	computers.

https://en.wikipedia.org/wiki/Mainframe_comp


Some	 key	 attributes	 of	 Mainframes	 that	 distingishes	 it	 from	 other	 computers
include	 its	 larger	 size,	 speed,	 throughput,	 power	 and	 environmental
requirements,	and	operating	system.	Furthermore,	we	find	that	they	have	inbuilt
redundency	to	address	high	uptimes	as	required	by	business	applications.	Even
some	 of	 the	 earliest	 Mainfraims	 supported	 fast	 I/O	 and	 computation	 via
virtualization.	The	concept	of	hot	swapping	of	hardware	help	these	machines	to
run	without	faliure	for	years.

5.1.1.2	PC	Computing

The	 term	PC	 is	 short	 for	personal	computer.	The	 first	PCs	were	 introduced	by
IBM	to	the	market.	PCs	need	an	operating	system	such	as	Windows,	macOS,	or
Linux

PC	Computing	refers	to

an	era	where	consumers	predominantly	used	personal	computers	 to
conduct	their	work.	Such	computers	were	mostly	stand	alone	without
network	as	early	networks	were	not	available	to	consumers.

5.1.1.3	Intranet	and	Server	Computing

We	refer	to	Intranet	and	Server	Computing	as	an	environment	in	which

the	 computers	 are	 part	 of	 an	 private	 network,	 also	 called,	 intranet,
that	 is	 contained	 within	 an	 enterprise	 and	 later	 on	 also	 homes.
Intranets	are	able	to	connect	many	local	resources	within	a	Local	but
also	a	wide	area	network

5.1.1.4	Grid	Computing	Computing

and	 its	 evolution	 is	 defined	 in	 The	 Grid-Idea	 and	 Its	 Evolution.	 The	 original
definition	of	Grid	computing	has	been	summarised	as	follows:

A	computational	Grid	is	a	hardware	and	software	infrastructure	that
provides	dependable,	consistent,	pervasive,	and	inexpensive	access	to
high-end	computational	capabilities.	[23]

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.196&rep=rep1&type=pdf


However,	in	the	paper	we	also	define	that	Grids	were	not	just	about	computing,
but	introduced	an	approach	that	through	the	introduction	of	virtual	organizations
lead	to	the	following	definition

A	production	Grid	is	a	shared	computing	infrastructure	of	hardware,
software,	 and	 knowledge	 resources	 that	 allows	 the	 coordinated
resource	sharing	and	problem	solving	in	dynamic,	multi-institutional
virtual	 organizations	 to	 enable	 sophisticated	 international	 scientific
and	business-oriented	collaborations.

This	 definition	 is	 certainly	 including	 services	 that	 are	 today	 offered	 by	 the
Cloud.	 Hence	 in	 the	 early	 days	 of	 cloud	 computing	 there	 was	 a	 large	 debate
occurring	 if	cloud	 is	 just	another	 term	for	Grid.	 In	Cloud	Computing	and	Grid
Computing	 360-Degree	 Compared	 an	 analysis	 is	 conducted	 between	 the
different	architecture	models	outlining	that	collective	resources	and	connectivity
protocols	 introduced	 by	 the	Grid	 community	 have	 been	 replaced	 by	 the	 cloud
with	platform	and	unified	resources.

To	provide	a	very	simple	but	possibly	incomplete	comparison,	Cloud	computing
integrated	infrastructure	such	as	supercomputers	and	other	large	scale	resources
through	 unified	 protocols.	 The	 effort	 was	 initially	 provided	 by	 research
institutions	but	have	been	introduced	in	business.	However,	with	the	growth	of
the	 data	 centers	 to	 foster	 common	 tasks	 such	 as	Web	 hosting,	 we	 see	 a	 clear
difference:

while	the	Grid	was	originally	designed	to	give	a	few	scientist	access	to	the
biggest	agglomerated	research	supercomputers,
business	focused	on	serving	originally	millions	of	users	with	the	need	to	run
only	a	view	data	or	compute	services.

This	certainly	resulted	in	independent	development,	while	cloud	computing	has
today	consumed	Grids.	Tools	such	as	 the	GLobus	 toolkit	are	no	 longer	widely
used,	and	the	development	has	shifted	to	the	support	of	data	services	only.

5.1.1.5	Internet	Computing

With	 the	ocurance	of	 the	WWW	protocols,	 internet	 commuting	brought	 to	 the
consumers	 a	 global	 computer	 network	 providing	 a	 variety	 of	 information	 and

http://datasys.cs.iit.edu/publications/2008_GCE08_Clouds_Grids.pdf


communication	facilities.

Internet	Computing	refers	to

the	 infrastructure	 that	 enables	 sharing	 of	 data,	 within	 the	WWWW
community.

Internet	 computing	 also	 comprises	 early	 infrastructures	 such	 as	 AOL,	 which
poularized	the	term	you	got	mail

5.1.1.6	Cloud	Computing

Cloud	Computing	refers	to

delivery	 of	 services	 such	 as	 database,	 server,	 network	 storage	 and
others	 over	 the	 internet	 so	 the	 user	 doesnot	 have	 to	 maintain	 a
datacenter	 and	 only	 pays	 for	 services	 in	 use.	 This	 reduces	 the	 cost
and	increases	the	productivity	as	services	can	be	available	in	minutes
on	demand	with	state	of	the	art	security	and	no	hardware	datacenter
staff	needed	on	the	users	side.

We	have	provided	a	lecture	about	the	definition	of	cloud	computing	previously.

5.1.1.7	Mobile	Computing

Mobile	Computing	refers	to

a	diverse	set	of	devices	allowing	users	to	access	data	and	information
from	wherever	 they	 are	with	mobile	 devices	 such	as	 cell	 phones	 or
tablet	computers.	mobile	computing	is	dominated	by	transmission	of
data,	voice,	and	video	over	a	network	via	the	mobile	device

5.1.1.8	Internet	of	Things	Computing

Internet	of	Things	Computing	refers	to

devices	 that	 are	 interconnected	 via	 the	 internet	 while	 they	 are
embedded	 in	 things	or	common	objects.	The	dives	 send	and	receive



data	 to	 be	 integrated	 into	 a	 network	 with	 sensors	 and	 actuators
reacting	upon	sensory	and	other	data.

5.1.1.9	Edge	Computing

In	addition,	we	need	to	point	out	 two	additional	 terms	that	we	will	 integrate	in
this	 image.	Edge	Computing	and	Fog	Computing.	Currently	 there	 is	 still	 some
debate	about	what	these	terms	are,	but	we	will	follow	the	following	definitions:

Edge	Computing	refers	to

computing	conducted	on	the	very	edge	of	infrastructure.	This	means
that	data	that	is	not	needed	in	the	data	center	can	be	calculated	and
analyzed	on	 the	edge	devices	 instead.	No	 interaction	between	cloud
services	 is	 needed.	 Only	 the	 absolute	 required	 data	 is	 send	 to	 the
cloud.

5.1.1.10	Fog	Computing

FoG	Computing	refers	to

computing	conducted	in-between	the	cloud	and	the	edge	devices.	This
could	be	for	example	part	of	a	smart	network,	that	hosts	a	small	set	of
analytics	capabilities,	so	that	the	data	does	not	have	to	travel	back	to
the	data	center,	but	the	edge	device	is	not	powerful	enough	to	do	the
calculation.	Thus	a	Fog	computing	infrastructure	provides	tha	ability
to	conduct	the	analysis	closer	to	the	edge	saving	valuable	resources
while	not	needing	to	 transmit	all	data	to	 the	data	center	although	it
will	be	analyzed

5.1.2	As	a	Servise	Architecture	Model

The	 as	 a	 Service	 architecture	 was	 one	 of	 the	 earliest	 definitions	 of	 cloud
architecture	 while	 focusing	 on	 the	 service	 aspect	 provided	 by	 the	 cloud.	 the
layers	 such	as	 IaaS,	PaaS,	 and	SaaS	provide	a	 layered	architecture	view	while
separating	 infrastructure,	 platform,	 and	 services.	 This	 allows	 a	 separation	 of
concerns	 typically	 between	 infrastructure	 providers,	 platform	 developers,	 and



software	architects	using	platforms	and	or	infrastructure	services.

The	typical	triangular	diagram	(see	Figure	26)	is	often	used	to	represent	it.

Figure	26:	Infrastructure	as	a	Service	Source

5.1.3	Product	or	Functional	Based	Model

When	we	inspect	prominent	providers	such	as	Amazon,	Azure,	and	Google,	we
find	that	on	their	Web	pages	they	do	provide	their	customers	an	alternative	view
that	 is	motivated	by	exposing	numerous	products	 to	 the	customers	grouped	by
functions.	These	services	are	often	in	 the	hundrest.	To	achieve	the	exposure	of
the	 products	 in	 a	 meaningful	 fashion,	 they	 introduce	 a	 functional	 view
motivation	a	functional	architecture	view	of	the	cloud.

When	we	analyse	these	functions	for	example	for	Amazon	Web	services	we	find
the	following

Compute
Storage
Databases

https://blog.crozdesk.com/tapping-saas-paas-iaas/


Migration
Networking	&	Content	Delivery
Developer	Tools
Management	Tools
Media	Services
Security,	Identity	&	Compliance
Machine	Learning
Analytics
Mobile
Augmented	reality	and	Virtual	Reality
Application	Integration
Customer	Engagement
Business	Productivity
Desktop	&	App	Streaming
Internet	of	Things
Game	Development
AWS	Marketplace	Software
AWS	Cost	Management

From	this	we	derive	that	for	the	initial	contact	to	the	customer	the	functionality
is	put	in	foreground,	rather	than	the	distinction	between	SaaS,	PaaS,	and	IaaS.	If
we	sort	these	services	into	the	as	a	Service	mode	we	find:

IaaS

Compute
Storage
Databases
Migration
Networking	&	Content	Delivery

PaaS
Developer	Tools
Management	Tools
Media	Services
Security,	Identity	&	Compliance
Machine	Learning
Analytics
Mobile



Augmented	reality	and	Virtual	Reality
Application	Integration
Customer	Engagement
Business	Productivity
Desktop	&	App	Streaming
Game	Development
AWS	Marketplace	Software
AWS	Cost	Management
Internet	of	Things

We	 observe	 that	 AWS	 focuses	 on	 providing	 infrastructure	 and	 platforms	 so
others	can	provide	integrated	service	to	its	customers.

Other	examples	for	product	lists	such	as	the	one	from	Azure	are	provided	in	the
Appendix.

5.1.4	NIST	Cloud	Architecture

In	the	introduction	we	have	extensively	discussed	the	NIST	cloud	architecture.	A
Nice	visual	representation	is	provided	in	Figure	27.



Figure	 27:	 Visual	 representation	 of	 the	 NIST	 Cloud	 Architecture
Source

5.1.5	Cloud	Security	Alliance	Reference	Architecture

Founded	in	2008,	the	Cloud	Security	Alliance	(CSA)	is	a	nonprofit	organization
that	provides	a	variety	of	security	resources	to	institutions	including	guidelines,
education	and	best	practices	for	adoption.

This	 is	 a	 great	 organization	 to	 lean	 on	 if	 you	 have	 open	 questions	 about
architecture	 and	 the	best	way	 to	 secure	 it.	There	 are	working	groups	 that	 look
across	38	domains	of	Cloud	Security.	These	groups	meet	actively	and	they	cover
current	 topics,	 opportunities	 and	 ask	 relevant	 questions.	 It	 is	 a	 great	 place	 to
networks	with	experts	in	the	field	and	ask	questions	specific	to	your	company	or
academic	 project.	You	may	 also	 find	 an	 answer	 to	 your	 question	 in	 the	white
papers,	reports,	tools,	trainings,	and	services	they	have	available.

The	group	of	industry	experts	based	use	the	following	guiding	principles	when
publishing	their	reference	Architecture.

Define	protections	that	enable	trust	in	the	cloud.

https://downloads.cloudsecurityalliance.org/assets/research/security-guidance/csaguide.v3.0.pdf


Develop	cross-platform	capabilities	and	patterns	for	proprietary	and	open-
source	providers.
Will	facilitate	trusted	and	efficient	access,	administration	and	resiliency	to
the	customer/consumer.
Provide	direction	to	secure	information	that	is	protected	by	regulations.
The	 Architecture	 must	 facilitate	 proper	 and	 efficient	 identification,
authentication,	authorization,	administration	and	auditability.
Centralize	security	policy,	maintenance	operation	and	oversight	functions.
Access	to	information	must	be	secure	yet	still	easy	to	obtain.
Delegate	or	Federate	access	control	where	appropriate.
Must	 be	 easy	 to	 adopt	 and	 consume,	 supporting	 the	 design	 of	 security
patterns
The	 Architecture	 must	 be	 elastic,	 flexible	 and	 resilient	 supporting	 multi-
tenant,	multi-landlord	platforms
The	 architecture	 must	 address	 and	 support	 multiple	 levels	 of	 protection,
including	network,	operating	system,	and	application	security	needs.

An	overview	of	the	architecture	is	shown	in	the	diagram	from	the	Cloud	Security
Alliance.	See	Figure	28

Figure	28:	Cloud	Security	Alliance	Reference	Architecture	Source

5.1.6	Multicloud	Architectures

https://downloads.cloudsecurityalliance.org/initiatives/tci/TCI_Reference_Architecture_v2.0.pdf


One	of	the	issues	we	see	today	is	that	it	is	unrealistic	to	assume	clouds	are	only
provided	by	one	vendor,	or	that	they	have	all	the	same	interface.	Each	vendor	is
advertising	their	special	services	to	distinguish	themselves	from	the	competitors.
For	 the	end	user	and	 the	developer	 that	projects	 the	problem	of	vendor	 lockin.
However,	 we	 need	 to	 be	 aware	 of	 efforts	 that	 allow	 an	 easy	 of	 such	 vendor
lockin	 while	 for	 example	 providing	 multi	 cloud	 solutions.	 Such	 solutions
integrate	multiple	vendors	and	technologies	into	a	single	architecture	allowing	to
use	multiple	cloud	vendors	at	the	same	time.

5.1.6.1	Cloudmesh	Architecture

One	of	the	earliest	such	tools	is	Cloudmesh.org,	which	is	lead	by	von	Laszewski.
The	 tool	 was	 developed	 at	 a	 time	 when	 AWS	 and	 Nimbus,	 and	 Eucalyptus
where	predominant	players.	At	that	time	OpenStack	had	just	transitioned	from	a
NASA	project	to	a	community	development.

FutureGrid	 was	 one	 of	 the	 earliest	 academic	 cloud	 offerings	 to	 explore	 the
effectiveness	 of	 the	 different	 cloud	 infrastructure	 solutions.	 It	was	 clear	 that	 a
unifying	framework	and	abstraction	layer	was	needed	allowing	us	to	utilize	them
easily.	 In	 fact	 cloudmesh	 did	 not	 only	 provide	 a	REST	 based	API,	 but	 also	 a
commandline	shell	allowing	to	switch	between	clouds	with	a	single	variable.	It
also	 provided	 bare	 metal	 provisioning	 before	 OpenStack	 even	 offered	 it.
Through	an	 evolution	of	developments	 the	 current	 cloudmesh	 architecture	 that
allows	multicloud	services	is	depicted	in	the	next	figure.	We	still	distinguish	the
IaaS	 level	which	 included	not	only	IaaS	Abstractions,	but	also	Containers,	and
HPC	 services.	 Platforms	 are	 typically	 integrated	 through	 DevOps	 that	 can	 be
hosted	on	the	IaaS.	Examples	are	Hadoop,	and	Spark	The	services	are	exposed
through	 a	 client	 API	 hiding	 much	 of	 the	 internals	 to	 the	 user.	 A	 portal	 and
application	 services	 have	 successfully	 demonstrated	 the	 feasibility	 of	 this
approach	(see	Figure	29).



Figure	29:	Cloudmesh	Arch	[1]

Within	 the	 hour	 e516	 class	 we	 will	 be	 developing	 a	 modern	 version	 of
cloudmesh	 from	 the	 ground	 up	 by	 only	 using	 python	 3	 as	 implementation
language,	 integration	 of	 containers,	 and	 REST	 services	 based	 on	 OpenAPI.
Local	data	to	manage	the	different	services	are	hosted	in	a	mongo	DB	database
and	 exposed	 through	 portable	 containers,	 so	 that	 a	 single	 cross-platform
environment	exists	as	part	of	the	project	deliverables.

Students	 from	e516	 can	 and	 are	 in	 fact	 expected	 to	 participate	 actively	 on	 the
development	of	Cloudmesh	v4.0.	In	addition	the	OpenAPI	service	specifications
developed	for	 the	project	will	be	 integrated	 in	Volume	8	of	 the	NIST	Big	data
reference	architecture,	which	is	discussed	elsewhere.

The	advantage	of	developing	such	an	environment	is	that	we	can	look	at	various
aspects	of	cloudcomputing	while	demonstrating	integrated	use	patterns.

5.1.7	Resources

[24]	http://www.lifl.fr/iwaise12/presentations/tata.pdf

http://www.lifl.fr/iwaise12/presentations/tata.pdf


[25]
https://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf
[26]
http://staff.polito.it/alessandro.mantelero/cloud_computing/Sun_Wp2009.pdf
[27]
https://resources.sei.cmu.edu/asset_files/Presentation/2010_017_001_23337.pdf
[28]	 https://www.oracle.com/technetwork/articles/entarch/orgeron-top-10-
cloud-1957407.pdf
[29]	 http://www.oracle.com/technetwork/topics/entarch/oracle-wp-cloud-
ref-arch-1883533.pdf
[30]
https://pdfs.semanticscholar.org/cecd/c193b73ec1e7b42d132b3c340e6dd348d3f4.pdf

5.2	NIST	BIG	DATA	REFERENECE	ARCHITECTURE	☁

	Learning	Objectives

Obtain	an	overview	of	the	NIST	Big	Data	Refernce	Architecture.
Understand	that	you	can	contribute	to	it	as	part	of	this	class.

One	of	the	major	technical	areas	in	the	cloud	is	to	define	architectures	that	can
work	 with	 Big	 Data.	 For	 this	 reason	 NIST	 has	 work	 now	 for	 some	 time	 on
identifying	how	to	create	a	data	interoperability	framework.	The	idea	here	is	that
at	 one	 point	 architecture	 designers	 can	 pick	 services	 that	 they	 can	 chose	 to
combine	them	as	part	of	their	data	pipeline	and	integrate	in	a	convenient	fashion
into	their	solution.

Besides	just	being	a	high	level	description	NIST	also	encourages	the	verification
of	 the	 architecture	 through	 interface	 specifications,	 especially	 those	 that	 are
currently	under	way	in	Volume	8	of	the	document	series.	You	have	the	unique
opportunity	to	help	shape	this	interface	and	contribute	to	it.	We	will	provide	you
not	 only	mechanisms	 on	 how	 you	 theoretically	 can	 do	 this,	 but	 also	 how	 you
practically	can	contribute.

As	part	of	your	projects	 in	516	you	will	need	 to	 integrate	a	 significant	 service

https://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf
http://staff.polito.it/alessandro.mantelero/cloud_computing/Sun_Wp2009.pdf
https://resources.sei.cmu.edu/asset_files/Presentation/2010_017_001_23337.pdf
https://www.oracle.com/technetwork/articles/entarch/orgeron-top-10-cloud-1957407.pdf
http://www.oracle.com/technetwork/topics/entarch/oracle-wp-cloud-ref-arch-1883533.pdf
https://pdfs.semanticscholar.org/cecd/c193b73ec1e7b42d132b3c340e6dd348d3f4.pdf
https://github.com/cloudmesh-community/book/blob/master/chapters/nist/bdra.md


that	you	can	contribute	to	the	NIST	document	in	form	of	a	specification	and	in
form	of	an	implementation.

5.2.1	Pathway	to	the	NIST-BDRA

The	 Nist	 Big	 Data	 Public	 Working	 Group	 (NBD-PWG)	 was	 established	 as
collaboration	 between	 industry,	 academia	 and	 government	 “to	 create	 a
consensus-based	 extensible	 Big	 Data	 Interoperability	 Framework	 (NBDIF)
which	 is	 a	 vendor-neutral,	 technology-	 and	 infrastructure-independent
ecosystem”	 [31].	 It	 will	 be	 helpful	 for	 Big	 Data	 stakeholders	 such	 as	 data
architects,	data	scientists,	researchers,	implementers	to	integrate	and	utilize	“the
best	available	analytics	tools	to	process	and	derive	knowledge	through	the	use	of
standard	 interfaces	 between	 swappable	 architectural	 components”	 [31].	 The
NBDIF	is	being	developed	in	three	stages:

Stage	 1:	 “Identify	 the	 high-level	 Big	 Data	 reference	 architecture	 key
components,	 which	 are	 technology,	 infrastructure,	 and	 vendor	 agnostic,”
[31]	introduction	of	the	Big	Data	Reference	Architecture	(NBD-RA);
Stage	2:	“Define	general	interfaces	between	the	NBD-RA	components	with
the	 goals	 to	 aggregate	 low-level	 interactions	 into	 high-level	 general
interfaces	 and	 produce	 set	 of	white	 papers	 to	 demonstrate	 how	NBD-RA
can	be	used”	[31];
Stage	3:	“Validate	the	NBD-RA	by	building	Big	Data	general	applications
through	the	general	interfaces.[31]”

Nist	has	developed	the	following	volumes	as	listed	in	Table:	BDRA	volumes	that
surround	the	creation	of	the	NIST-BDRA.	We	recommend	that	you	take	a	closer
look	at	these	documents	as	in	this	section	we	provide	a	focussed	summary	with
the	aspect	of	cloud	computing	in	mind.

Table:	NIST	BDRA	Volumes

.

Volumes Volume Title
NIST	SP1500-1r1 Volume	1 Definitions
NIST	SP1500-2r1 Volume	2 Taxonomies

https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-1r1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-2r1.pdf


NIST	SP1500-3r1 Volume	3 Use	Cases	and	Requirements
NIST	SP1500-4r1 Volume	4 Security	and	Privacy
NIST	SP1500-5 Volume	5 Reference	Architectures	White	Paper	Survey
NIST	SP1500-6r1 Volume	6 Reference	Architecture
NIST	SP1500-7r1 Volume	7 Standards	Roadmap
NIST	SP1500-9 Volume	8 Reference	Architecture	Interface	(new)
NIST	SP1500-10 Volume	9 Adoption	and	Modernization	(new)

5.2.2	Big	Data	Characteristics	and	Definitions

Volume	1	of	the	series	introduces	the	community	to	common	definitions	that	are
used	as	part	of	the	field	of	Big	data.	This	includes	the	analysis	of	characteristics
such	 as	 volume,	 velocity,	 variety,	 variability	 and	 the	 use	 of	 structures	 and
unstructured	data.	As	part	of	 the	field	of	data	science	and	engineering	it	 lists	a
number	of	areas	that	are	to	be	believed	to	be	essential	including	that	they	must
master	 including	 data	 structures,	 parallelism,	 metadata,	 flow	 rate,	 visual
communication.	 In	 addition	 we	 believe	 that	 an	 additional	 skill	 set	 must	 be
prevalent	 that	 allows	 a	 data	 engineer	 to	 deploy	 such	 technologies	 onto	 actual
systems.

We	have	submitted	the	following	proposal	to	NIST:

3.3.6.	Deployments:

A	 significant	 challange	 exists	 for	 data	 engineers	 to	 develop
architectures	and	their	deployment	implications.	The	volume	of	data
and	the	processing	power	needed	to	analysis	them	may	require	many
thousands	 of	 distributed	 compute	 resources.	 They	 can	 be	 part	 of
private	data	centers,	virtualized	with	the	help	of	virtual	machines	or
containers	and	even	utilize	serverless	computing	to	focus	integration
of	 Big	 Data	 Function	 as	 a	 Service	 based	 architectures.	 As	 such
architectures	are	assumed	to	be	 large	community	standards	such	as
leveraging	DevOps	will	be	necessary	 for	 the	engineers	 to	setup	and
manage	such	architectures.	This	is	especially	important	with	the	swift
development	 of	 the	 field	 that	 may	 require	 rolling	 updates	 without
interruption	of	the	services	offered.

https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-3r1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-4r1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-5.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-6r1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-7r1.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-9.pdf
https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-10.pdf


This	addition	reflects	the	newest	insight	into	what	a	data	scientist	needs	to	know
and	the	newest	job	trends	that	we	observed.

To	identify	what	big	data	is	we	find	the	following	characteristics

Volume:	 Big	 for	 data	 means	 lots	 of	 bytes.	 This	 could	 be	 achieved	 in	 many
different	ways.	Typically	we	look	at	 tha	actual	size	of	a	data	set,	but	also	how
this	data	set	is	stored	for	example	in	many	thousands	of	smaller	files	that	are	part
of	the	data	set.	It	is	clear	that	in	many	of	such	cases	analysis	of	a	large	volume	of
data	will	 impact	 the	 architectural	design	 for	 storage,	but	 also	 the	workflow	on
how	this	data	is	processed.

Velocity:	 We	 see	 often	 that	 big	 data	 is	 associated	 with	 high	 data	 flow	 rates
caused	 by	 for	 example	 streaming	 data.	 It	 can	 however	 also	 be	 caused	 by
functions	 that	 are	 applied	 to	 large	 volumes	 of	 data	 and	 need	 to	 be	 integrated
quickly	to	return	the	result	as	fast	as	posible.	Needs	for	real	time	processing	as
part	 of	 the	 quality	 of	 service	 offered	 contribute	 also	 to	 this.	 Examples	 of	 IoT
devices	that	integrate	not	only	data	in	the	cloud,	but	also	on	the	edge	need	to	be
considered.

Variety:	 In	 todays	world	we	have	many	different	data	 resources	 that	motivate
sophisticated	 data	 mashup	 strategies.	 Big	 data	 hence	 not	 only	 deals	 with
information	 from	 one	 source	 but	 a	 variety	 of	 sources.	 The	 architectures	 and
services	 utilized	 are	 multiple	 and	 needed	 to	 enable	 automated	 analysis	 while
incorporating	various	data	source.

Another	 aspect	 of	 variety	 is	 that	 data	 can	 be	 structured	 or	 unstructured.	NIST
finds	this	aspect	so	important	that	they	included	its	own	section	for	it.

Variability:	Any	data	over	time	will	change.	Naturally	that	is	not	an	exception
in	Big	data	where	data	may	be	a	time	to	live	or	needs	to	be	updated	in	order	not
to	 be	 stale	 or	 obsolete.	 Hence	 one	 of	 the	 characteristics	 that	 big	 data	 could
exhibit	is	that	its	data	be	variable	and	is	prone	to	changes.

In	 addition	 to	 these	 general	 observations	 we	 also	 have	 to	 adress	 important
characteristics	that	are	attached	with	the	Data	itself.	This	includes

Veracity:	Veracity	refers	to	the	accuracy	of	the	data.	Accuracy	can	be	increased



by	adding	metadata.

Validity:	Refers	to	data	that	is	valid.	While	data	can	be	accurately	measured,	it
could	be	invalid	by	the	time	it	is	processed.

Volatility:	Volatility	refers	to	the	change	in	the	data	values	over	time.

Value:	Naturally	we	can	store	lots	of	 information,	but	 if	 the	information	is	not
valuable	then	we	may	not	need	to	store	it.	This	is	recently	been	seen	as	a	trend	as
some	 companies	 have	 transitioned	 data	 sets	 to	 the	 community	 as	 they	 do	 not
provide	value	to	the	service	provider	to	justify	its	prolonged	maintenance.

In	other	cases	the	data	has	become	so	valuable	and	that	the	services	offered	have
been	 reduced	 for	 example	 as	 they	 provide	 too	 many	 resource	 needs	 by	 the
community.	A	 good	 example	 is	Google	 scholar	 that	 used	 to	 have	much	more
liberal	use	and	today	its	services	are	significantly	scaled	back	for	public	users.

5.2.3	Big	Data	and	the	Cloud

While	looking	at	the	characteristics	of	Big	Data	it	is	obvious	that	Big	data	is	on
the	one	hand	a	motivator	for	cloud	computing,	but	on	the	other	hand	existing	Big
Data	frameworks	are	a	motivator	for	developing	Big	Data	Architectures	a	certain
way.

Hence	 we	 have	 to	 always	 look	 from	 both	 sides	 towards	 the	 creation	 of
architectures	related	to	a	particular	application	of	big	data.

This	 is	 also	motivated	 by	 the	 rich	 history	we	have	 in	 the	 field	 of	 parallel	 and
distributed	 computing.	 For	 a	 long	 time	 engineers	 have	 dealt	with	 the	 issue	 of
horizontal	scaling,	which	is	defined	by	adding	more	nodes	or	other	resources	to
a	cluster.	Such	resources	may	include

shared	disk	file	systems,
distributed	file	systems,
distributed	 data	 processing	 and	 concurrency	 frameworks,	 such	 as
Concurrent	 sequential	 processes,	 workflows,	MPI,	 map/reduce,	 or	 shared
memory,
resource	negotiation	to	establish	quality	of	service,



data	movement,
and	data	tiers	(as	showcased	in	high	energy	physics	Ligo	[32]	and	Atlas)

In	 addition	 to	 the	 horizontal	 scaling	 issues	 we	 also	 have	 to	 worry	 about	 the
vertical	scaling	issues,	this	is	how	the	overall	sytem	architecture	fits	together	to
adress	an	end-to-end	use	case.	In	such	efforts	we	look	at

interface	designs,
workflows	between	components	and	services,
privacy	of	data	and	other	security	issues,
reusability	within	other	use-cases.

Naturally	the	cloud	offers	the	ability	to	cloudify	existing	relational	databases	as
cloud	services	while	leveraging	the	increased	performance	and	special	hardware
and	software	support	that	may	be	otherwise	unaffordable	for	an	individual	user.
However	we	see	also	the	explosive	growth	of	non	sql	databases	because	some	of
them	 can	 more	 effectively	 deal	 with	 the	 characteristics	 of	 big	 data	 than
traditional	 mostly	 weel	 structured	 data	 bases.	 In	 addition	 many	 of	 these
frameworks	 are	 able	 to	 introduce	 advanced	 capability	 such	 as	 distributed	 and
reliable	service	integration.

Although	we	have	been	used	to	the	term	cloud	wile	using	virtualized	resources
and	 the	 term	 Grid	 by	 offering	 a	 network	 of	 supercomputers	 in	 a	 virtual
organization,	We	should	not	forget	that	Cloud	service	providers	also	offer	High
performance	computers	resources	for	some	of	their	most	advanced	users.

Naturally	 such	 resources	 can	 be	 used	 not	 only	 for	 numerical	 intensif
computations	 but	 also	 for	 big	 data	 applications	 as	 the	 Physics	 community	 has
demonstrated.

5.2.4	Big	Data,	Edge	Computing	and	the	Cloud

When	looking	at	the	number	of	devices	that	are	being	added	daily	to	the	global
IT	 infrastructure	we	observe	 that	cellphones	and	soon	 Internet	of	Things	 (IoT)
devices	will	produce	the	bulk	of	all	data.	However	not	all	data	will	be	moved	to
the	 cloud	 and	 lots	 of	 data	will	 be	 analyzed	 locally	 on	 the	 devices	 or	 even	not
being	considered	to	be	uploaded	to	the	cloud	either	because	it	project	to	low	or
to	 high	 value	 to	 be	 moved.	 However	 a	 considerable	 portion	 will	 put	 new



constraints	on	our	services	we	offer	in	the	cloud	and	any	architecture	addressing
this	 must	 be	 properly	 deal	 with	 scaling	 early	 on	 in	 the	 architectural	 design
process.

5.2.5	Reference	Architecture

Next	we	present	the	Big	data	reference	architecture.	It	is	Depicted	in	Figure	30.
According	to	the	document	(Volume	2)	 the	five	main	components	representing
the	central	roles	include

System	Orchestrator:	Defines	 and	 integrates	 the	 required	 data	 application
activities	into	an	operational	vertical	system;
Data	Provider:	Introduces	new	data	or	information	feeds	into	the	Big	Data
system;
Big	Data	Application	Provider:	Executes	a	 life	cycle	 to	meet	security	and
privacy	requirements	as	well	as	System	Orchestrator-defined	requirements;
Big	 Data	 Framework	 Provider:	 Establishes	 a	 computing	 framework	 in
which	 to	 execute	 certain	 transformation	 applications	 while	 protecting	 the
privacy	and	integrity	of	data;	and
Data	Consumer:	Includes	end	users	or	other	systems	who	use	the	results	of
the	Big	Data	Application	Provider.

In	addition	we	recognize	two	fabrics	layers:

Security	and	Privacy	Fabric
Management	Fabric



Figure	30:	NIST-BDRA	(see	Volume	2)

While	 looking	at	 the	actors	depicted	 in	Figure	31	we	need	 to	be	aware	 that	 in
each	of	the	categories	a	service	can	be	added.	This	is	an	important	distinction	to
the	 original	 depiction	 in	 the	 definition	 as	 it	 is	 clear	 that	 an	 automated	 service
could	act	in	behalf	of	the	actors	listed	in	each	of	the	categories.

https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-2r1.pdf


Figure	31:	NIST	Roles	(see	Volume	2)

For	a	detailed	definition	wich	is	beyond	the	scope	of	this	document	we	refer	to
the	Volume	2	of	the	documents.

5.2.6	Framework	Providers

Traditionally	cloud	computing	has	started	with	offering	IaaS,	followed	by	PaaS
and	SaaS.	We	see	the	IaaS	reflected	in	three	categories	for	big	data:

1.	 Traditional	 compute	 and	 network	 resources	 including	 virtualization
frameworks

2.	 Data	 Organization	 and	 Distribution	 systems	 such	 as	 offered	 in	 Indexed
Storage	and	File	Systems

3.	 Processing	 engines	 offering	 batch,	 interactive,	 and	 streaming	 services	 to
provide	computing	and	analytics	activities

Messaging	 and	 communication	 takes	place	between	 these	 layer	while	 resource
management	is	used	to	address	efficiency.

Frameworks	 such	 as	 Spark	 and	Hadoop	 include	 components	 form	multiple	 of
these	categories	to	create	a	vertical	integrated	system.	Often	they	are	offered	by
a	service	provider.	However,	one	needs	to	be	reminded	that	such	offerings	may

https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-2r1.pdf


not	be	 tailored	 to	 the	 individual	use-case	 and	 inefficiencies	 could	be	prevalent
because	the	service	offer	is	outdated,	or	it	is	not	explicitly	tuned	to	the	problem
at	hand.

5.2.7	Application	Providers

The	 underlaying	 infrastructure	 is	 reused	 by	 big	 data	 application	 providers
supporting	services	and	task	such	as

Data	collections
Data	curation
Data	Analytics
Data	Visualization
Data	Access

Through	the	interplay	between	these	services	data	consumer	sand	data	producers
can	be	served.

5.2.8	Fabric

Security	and	general	management	are	part	of	the	governing	fabric	in	which	such
an	architecture	is	deployed.

5.2.9	Interface	definitions

The	interface	definitions	for	the	BDRA	are	specified	in	Volume	8.	We	are	in	the
second	 phase	 of	 our	 document	 specification	 while	 we	 switch	 from	 our	 pure
Resource	descripyion	to	an	OpenAPI	specification.	Before	we	can	provide	more
details	we	need	to	 introduce	you	to	REST	which	is	an	essential	 technology	for
many	moder	cloud	computing	services.

5.3	THE	Y-SCHEDULING	ARCHITECTURE	VIEW	☁
Previous	architecture	views	were	concerned	about	high	level	interactions	such	as
the	 view	 projected	 by	 nist	 that	 introduces	 a	 service	 model	 based	 on
infrastructure,	platform	and	application.

https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/arch-scheduling.md


However	such	a	view	my	provide	too	little	detail	to	develop	meaningful	services
that	 ises	 cloud	 resources	 in	 a	 multi-cloud	 environment.	 For	 this	 reason	 von
Laszewski	has	devised	a	Y	diagram	that	showcases	the	interaction	between	the
different	 layers	 more	 clearly	 we	 like	 to	 refer	 the	 reader	 to	 the	 Y-cloud
scheduling	diagram.

In	this	taxonomy	we	are	concerned	about	how	resources	are	placed	on	physical
models	 and	 are	 interconnected	 with	 each	 other	 to	 facilitate	 for	 example
scheduling	algorithms.	@{fig:graph-y}	depicts	the	different	models	integrated	in
the	Taxonomy.	It	includes:

Physical	Model:	that	represents	major	physical	resource	layers	to	enable	a
hierarchical	 scheduling	 strategy	across	multiple	data	 centers,	 data	 centers,
racks,	servers,	and	computing	cores.

Resource	 Model:	 that	 represents	 models	 that	 the	 scheduling	 algorithm
addresses	 including	 containers	 and	 functions,	 virtual	 machines	 and	 jobs,
virtual	 clusters,	 provider	 managed	 resources,	 and	 multi-region	 provider
managed	resources.

Connectivity	Model:	 that	 introduces	 a	 connectivity	 between	 components
when	 addressing	 scheduling.	 This	 includes	 components	 such	 as	memory,
processes,	connectivity	 to	distributed	resources,	hyper-graphs	 to	 formulate
hierarchies	of	provider	based	resources,	and	region	enhanced	hyper-graphs.
The	 connectivity	 model	 allows	 us	 to	 leverage	 classical	 scheduling
algorithms	while	applying	such	models	and	 leveraging	established	or	new
scheduling	algorithms	for	these	models.

To	for	example	develop	scheduling	algorithms	a	layered	approach	can	be	chosen
to	 separate	 concerns	 between	 different	 layers	 while	 utilizing	 an	 abstracting
services	the	models	project	in	each	layer.



Figure	32:	Von	Laszewski’s	Y-scheduling	Cloud	Architecture	view



6	REST

6.1	INTRODUCTION	TO	REST	☁

	Learning	Objectives

Understand	REST	Servioces.
Understand	OpenAPI.
Develop	REST	services	in	Python	using	Eve.
Develop	REST	services	in	Python	using	OpenAPI	with	swagger.

REST	stands	for	REpresentational	State	Transfer.	REST	is	an	architecture	style
for	 designing	 networked	 applications.	 It	 is	 based	 on	 stateless,	 client-server,
cacheable	 communications	 protocol.	 In	 contrast	 to	 what	 some	 others	 write	 or
say,	 REST	 is	 not	 a	 standard.	 Although	 not	 based	 on	 http,	 in	 most	 cases,	 the
HTTP	protocol	is	used.	In	that	case,	RESTful	applications	use	HTTP	requests	to
(a)	 post	 data	 while	 creating	 and/or	 updating	 it,	 (b)	 read	 data	 while	 making
queries,	and	(c)	delete	data.

REST	was	first	introduced	in	a	thesis	from	Roy	T.	Fielding	[33].

Hence	REST	can	use	HTTP	for	the	four	CRUD	operations:

Create	resources
Read	resources
Update	resources
Delete	resources

As	part	of	the	HTTP	protocol	we	have	methods	such	as	GET,	PUT,	POST,	and
DELETE.	These	methods	can	than	be	used	to	implement	a	REST	service.	This	is
not	 surprising	 as	 the	 HTTP	 protocol	 was	 explicitly	 designed	 to	 support	 these
operations.	As	REST	introduces	collections	and	items	we	need	to	implement	the
CRUD	 functions	 for	 them.	We	 distinguish	 single	 resources	 and	 collection	 of
resources.	The	semantics	for	accessing	them	is	explained	next	illustrating	how	to

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest.md
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm


implement	them	with	HTTP	methods	(See	REST	on	Wikipedia	[34]).

6.1.0.1	Collection	of	Resources

Let	us	assume	the	following	URI	identifies	a	collection	of	resources
http://.../resources/

than	we	need	to	implement	the	following	CRUD	methods:

GET

List	the	URIs	and	perhaps	other	details	of	the	collections	members

PUT

Replace	the	entire	collection	with	another	collection.

POST

Create	 a	 new	 entry	 in	 the	 collection.	 The	 new	 entry’s	 URI	 is	 assigned
automatically	and	is	usually	returned	by	the	operation.

DELETE

Delete	the	entire	collection.

6.1.0.2	Single	Resource

Let	us	assume	the	following	URI	 identifies	a	single	 resource	 in	a	collection	of
resources
http://.../resources/item42

than	we	need	to	implement	the	following	CRUD	methods:

GET

Retrieve	 a	 representation	 of	 the	 addressed	 member	 of	 the	 collection,
expressed	in	an	appropriate	internet	media	type.

https://en.wikipedia.org/wiki/Representational_state_transfer


PUT

Replace	 the	 addressed	 member	 of	 the	 collection,	 or	 if	 it	 does	 not	 exist,
create	it.

POST

Not	generally	used.	Treat	the	addressed	member	as	a	collection	in	its	own
right	and	create	a	new	entry	within	it.

DELETE

Delete	the	addressed	member	of	the	collection.

6.1.0.3	REST	Tool	Classification

Due	 to	 the	well	 defined	 structure	 that	REST	 provides	 a	 number	 of	 tools	 have
been	created	 that	manage	 the	creation	of	 the	specification	for	 rest	services	and
their	programming.	We	distinguish	several	different	categories:

REST	Specification	Frameworks:

These	 are	 frameworks	 that	 help	 defining	 rest	 servicice	 through
specifications	 to	 generate	 REST	 services	 in	 a	 language	 and	 framework
independent	way.	 This	 includes	 for	 example	 Swagger	 2.0	 [35],	OpenAPI
3.0	[36],	and	RAML	[37].

REST	programming	language	support:

These	 tools	and	services	are	 targeting	a	particular	programming	 language.
Such	tools	include	Flask	Rest	[38],	and	Django	Rest	Services	[39],	some	of
which	we	will	explore	in	more	detail.

REST	documentation	based	tools:

These	 tools	 are	 primarily	 focusing	 on	 documenting	 REST	 specifications.
Such	tools	include	Swagger	[40],	which	we	will	explore	in	more	detail.

REST	design	support	tools:



These	 tools	 are	 used	 to	 support	 the	 design	 process	 of	 developing	 REST
services	while	abstracting	on	top	of	the	programming	languages	and	define
reusable	 specifications	 that	 can	 be	 used	 to	 create	 clients	 and	 servers	 for
particular	 technology	 targets.	 Such	 tools	 include	 also	 swagger	 [40]	 as
additional	 tools	 are	 available	 that	 can	 generate	 code	 from	 OpenAPI
specifications	[41],	which	we	will	explore	in	more	detail.

A	list	of	such	efforts	is	available	at	OpenAPI	Tools	[42]

6.2	OPENAPI	3.0

6.2.1	REST	Specifications	☁

RESTful	services	have	undoubtedly	become	the	de-facto	software	architectural
style	 for	 creating	Web	 services.	A	REST	API	 specification	would	 defines	 the
attributes	and	constraints	to	be	used	in	the	web	service.	There	have	been	multiple
specifications	that	have	been	in	use	such	as	OpenAPI	(formally	called	Swagger)
[36],	RAML	[37],	tinyspec	[43],	and	API	Blueprint	[44].

6.2.1.1	OPENAPI

Over	 the	 years,	 Open	 API	 specification	 has	 become	 the	 most	 popular	 with	 a
much	 larger	 community	 behind	 it.	 Therefore,	 this	 section	would	 focus	 on	 the
latest	specification,	OpenAPI	3.0	(OAS	3.0)	[45].

According	to	the	OAS	documentation	[46],	it	allows	users	to,

Describe	endpoints	and	operations	on	each	endpoint
Specify	operation	parameters,	inputs,	and	outputs	for	each	operation
Handle	authentication
Describe	contact,	license,	terms	of	use	and	other	information

API	specifications	can	be	written	 in	YAML	or	 JSON.	OAS	also	comes	with	a
rich	 toolkit	 that	 includes	 Swagger	 Editor	 [47],	 Swagger	UI	 [48]	 and	 Swagger
Codegen	[41],	that	creates	an	end-to-end	development	environment,	even	for	the
users	who	are	new	to	OAS.

https://openapi.tools/
https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest-spec.md
https://github.com/OAI/OpenAPI-Specification
https://raml.org/
https://github.com/Ajaxy/tinyspec
https://apiblueprint.org/
https://swagger.io/blog/news/announcing-openapi-3-0/
https://swagger.io/docs/specification/about/
http://editor.swagger.io/
https://swagger.io/swagger-ui/
https://github.com/swagger-api/swagger-codegen


Section	OpenAPI	Specification	details	more	on	the	OAS	2.0	specification.

6.2.1.1.1	Open	API	3.0	Specification	(OAS	3.0)

OAS	3.0	key	definitions	can	be	depicted	in	the	following	figure.



Figure	33:	Components	of	OAS	3.0	Source

Basic	structure	of	the	definitions	would	look	like	this.	The	sample	REST	service,
exposes	 http://localhost:8080/cloudmesh	 basepath.	 Under	 that	 base	 path,	 an
endpoint	 has	 been	 exposed	 as	 cloudmesh/cpu	 which	 would	 return	 CPU
information	of	the	server.	It	uses	a	predefined	schema	to	return	the	results,	which
is	 defined	 under	 the	 components/schemas.	 See	 the	 Section	 OpenAPI	 REST

https://blog.readme.io/an-example-filled-guide-to-swagger-3-2/


Service	via	Introspection	for	the	detailed	example.

6.2.1.1.1.1	Definitions

Metadata:

OAS	3.0	requires	a	specification	definition	at	the	start	under	the	openapi	field.

Next,	 metadata	 can	 be	 specified	 under	 info	 field	 such	 as	 title,	 version,
description,	etc.	Additionally,	license,	contact	information	can	also	be	specified.
tile	and	version	are	mandatory	fields	under	info.

Servers:

The	 servers	 section	 defines	 the	 server	 URLs	 with	 the	 basepath.	 Optionally,	 a
description	can	be	added.

openapi:	3.0.2

info:

		title:	cpuinfo

		description:	A	simple	service	to	get	cpuinfo	as	an	example	of	using	OpenAPI	3.0

		license:

				name:	Apache	2.0

		version:	0.0.1

servers:

		-	url:	http://localhost:8080/cloudmesh

paths:

		/cpu:

				get:

						summary:	Returns	cpu	information	of	the	hosting	server

						operationId:	cpu.get_processor_name

						responses:

								'200':

										description:	cpu	info

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/cpu"

components:

		schemas:

				cpu:

						type:	"object"

						required:

								-	"model"

						properties:

								model:

										type:	"string"

openapi:	3.0.2

info:

		title:	cpuinfo

		description:	

						A	simple	service	to	get	cpuinfo	as	an	example	of	using	OpenAPI	3.0

		license:

				name:	Apache	2.0

		version:	0.0.1



Paths:

The	paths	section	specifies	all	the	endpoints	exposed	by	the	API	and	the	HTTP
operations	supported	by	these	endpoints.

Operation	ID:

When	using	introspection	for	REST	services	(using	Connexion),	we	would	need
to	 point	 to	 the	 operation	 that	 would	 ultimately	 carry	 out	 the	 request.	 This
operation	is	specified	by	the	operationID.

Parameters:

If	the	service	endpoint	accepts	URL	parameters	(ex:	/cpu/cache/{cache_level}	or
/cpu?arch=x86),	headers	or	cookies,	those	can	also	be	specified	under	a	path.

Request	Body:

When	a	request	is	sent	with	a	body,	such	as	POST,	that	will	be	specified	in	the

servers:

		-	url:	http://localhost:8080/cloudmesh

				description:	Cloudmesh	server	basepath	

paths:

		/cpu:

				get:

						summary:	Returns	cpu	information	of	the	hosting	server

						operationId:	cpu.get_processor_name

						responses:

								'200':

										description:	cpu	info

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/cpu"

...

paths:

		/cpu:

...

						operationId:	cpu.get_processor_name

paths:

		/cpu/cache/{cache_level}:

				get:

						summary:	Returns	the	cache	size	of	the	specified	level	

						parameters:

								-	name:	cache_level

										in:	path

										required:	true

										description:	Parameter	description	in	CommonMark	or	HTML.

										schema:

												type	:	string

												minimum:	1

						responses:	

								'200':

										description:	OK



requestBody	under	a	path.

Responses:

For	 each	path,	 responses	 can	 be	 specified	with	 the	 corresponding	 status	 codes
such	as	200	OK	or	404	Not	Found.	A	response	may	return	a	response	body,	that
can	be	defined	under	content.

Schemas:

The	components/schemas	 section	 allows	 users	 to	 define	 schemas	 for	 inputs	 or
outputs	that	can	be	referenced	via	$ref	tag.

paths:

		/upload:

				post:

						summary:	upload	input

						requestBody:

								content:

										multipart/form-data:

												schema:

														type:	object

														properties:

																file:

																		type:	string

																		format:	binary

						responses:	

								'200':

										description:	OK

...

paths:

		/cpu:

...

								responses:

												'200':

														description:	cpu	info

														content:

																application/json:

																		schema:

																				$ref:	"#/components/schemas/cpu"

...

paths:

		/cpu:

...

						responses:

								'200':

										description:	cpu	info

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/cpu"

...

components:

		schemas:

				cpu:

						type:	"object"

						required:

								-	"model"

						properties:

								model:

										type:	"string"



Authentication:

Under	 the	components	 sections,	 securitySchemes	 can	 also	be	 specified	 such	 as
Basic	Auth.

According	to	the	current	OAS	3.0,	supported	authentication	methods	are,

HTTP	authentication:	Basic,	Bearer,	and	so	on.
API	key	as	a	header	or	query	parameter	or	in	cookies
OAuth2
OpenID	Connect	Discovery

6.2.1.2	RAML

RAML	[37]	 (RESTful	API	Modeling	Language)	 is	a	 specification	proposed	 in
2013	 and	 it	 is	 based	 on	 YAML	 format.	 The	 specification	 is	 managed	 by	 the
RAML	Worker	 Group.	 It	 initially	 came	 out	 as	 a	 proprietary	 vendor	 language
(specification)	 but	 later	 was	 open-sourced.	 As	 of	 Sep	 2019,	 the	 latest
specification	is	RAML	1.0	[49].

Following	is	an	example	RAML	specification	from	the	RAML.org

components:

		securitySchemes:

				BasicAuth:

						type:	http

						scheme:	basic

security:

		-	BasicAuth:	[]

#%RAML	1.0

title:	Hello	world	#	required	title

/helloworld:	#	optional	resource

		get:	#	HTTP	method	declaration

				responses:	#	declare	a	response

						200:	#	HTTP	status	code

								body:	#	declare	content	of	response

										application/json:	#	media	type

												type:	|	#	structural	definition	of	a	response	(schema	or	type)

														{

																"title":	"Hello	world	Response",

																"type":	"object",

																"properties":	{

																		"message":	{

																				"type":	"string"

																		}

																}

														}

												example:	|	#	example	of	how	a	response	looks

														{

																"message":	"Hello	world"

														}

https://raml.org/
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md
https://github.com/raml-org/raml-examples/blob/master/helloworld/helloworld.raml


In	 the	 current	 context,	 the	 industry	 seems	 to	 be	 adopting	OpenAPI	more	 than
RAML.	 Consequently,	 some	 of	 the	 main	 contributors	 of	 RAML	 such	 as
MuleSoft	 have	 joined	 the	Open	API	 Initiative	 since	 2017.	Hence,	 it	 is	 safe	 to
conclude	that	Open	API	would	be	the	dominant	REST	API	specification	in	the
web	services	domain.

Furthermore,	there	are	tools	available	to	switch	between	the	specifications,	such
as	RAML	Web	API	Parser	which	 can	 convert	 RAML	 to	Open	API	 and	 vice-
versa.

6.2.1.3	API	Blueprint

API	 Blueprint	 [44]	 is	 another	 specification	 available	 currently	 which	 uses
Markdown	syntax.	As	of	Sep,	2019	the	latest	version	available	is	1A-rev9.

6.2.1.4	JsonAPI

As	 the	 name	 suggests,	 JSON	 API[50]	 attempts	 to	 leverage	 web	 services
specifications	using	JSON	format.	It	reached	a	stable	version	1.0	in	May,	2015,
but	there	have	been	no	revisions	since	then.

6.2.1.5	Tinyspec

Tinyspec[43]	 is	a	 lightweight	alternative	 to	Open	API.	 It	has	not	being	able	 to
enter	into	the	mainstream	thus	far,	unfortunately.

6.2.1.6	Tools

There	 are	 a	 number	 of	 tools	 available	 in	 the	 REST	webservices	 specification
domain.	 A	 classification	 of	 REST	 tools	 can	 be	 found	 in	 the	 Section	 6.1.1.3
section.

6.2.1.6.1	Connexion

Connexion[51]	is	one	such	tool	that	is	based	on	Open	API	and	it	is	widely	used
in	the	Python	environment.	This	framework	allows	users	to	define	webservices

https://github.com/raml-org/webapi-parser
https://apiblueprint.org/
https://jsonapi.org
https://github.com/Ajaxy/tinyspec
https://github.com/zalando/connexion


in	Open	API	and	then	map	those	services	to	Python	functions	conveniently.	We
would	be	using	Connexion	when	we	create	REST	services	using	 introspection
Section	6.2.2.

Here	is	an	example	from	the	Connexion	official	website	[51].

This	service	would	map	to	the	following	post_greeting	Python	function.

6.2.2	OpenAPI	3.0	REST	Service	via	Introspection	☁

The	simplest	way	 to	create	an	OpenAPI	 service	 is	 to	use	 the	conexion	service
and	read	in	the	specification	from	its	yaml	file.	It	will	than	be	introspected	and
dynamically	 methods	 are	 created	 that	 are	 used	 for	 the	 implementation	 of	 the
server.

The	full	example	for	this	is	available	in

openapi:	"3.0.0"

info:

		title:	Hello	World

		version:	"1.0"

servers:

		-	url:	http://localhost:9090/v1.0

paths:

		/greeting/{name}:

				post:

						summary:	Generate	greeting

						description:	Generates	a	greeting	message.

						operationId:	hello.post_greeting

						responses:

								200:

										description:	greeting	response

										content:

												text/plain:

														schema:

																type:	string

																example:	"hello	dave!"

						parameters:

								-	name:	name

										in:	path

										description:	Name	of	the	person	to	greet.

										required:	true

										schema:

												type:	string

												example:	"dave"

import	connexion

def	post_greeting(name:	str)	->	str:

				return	'Hello	{name}'.format(name=name)

if	__name__	==	'__main__':

				app	=	connexion.FlaskApp(__name__,	port=9090,	specification_dir='openapi/')

				app.add_api('helloworld-api.yaml',	arguments={'title':	'Hello	World	Example'})

				app.run()

https://github.com/zalando/connexion/blob/master/examples/openapi3/helloworld/openapi/helloworld-api.yaml
https://github.com/cloudmesh-community/book/blob/master/chapters/rest/swagger-introspection.md


https://github.com/cloudmesh-
community/book/tree/master/examples/rest/cpu

An	extensive	documentation	is	available	at

https://media.readthedocs.org/pdf/connexion/latest/connexion.pdf

This	 example	 will	 return	 dynamically	 the	 cpu	 information	 of	 a	 computer	 to
demonstrate	 how	 simple	 it	 is	 to	 generate	 in	 python	 a	 REST	 service	 from	 an
OpenAPI	specification.

Our	requirements.txt	file	includes

as	dependencies.	The	server.py	file	simply	contains	the	following	code:

This	will	run	our	REST	service	under	the	assumption	we	have	a	cpu.yaml	and	a	cpu.py
files	as	our	yaml	file	calls	out	methods	from	cpu.py

The	yaml	file	looks	as	follows

flask

connexion[swagger-ui]

from	flask	import	jsonify

import	connexion

#	Create	the	application	instance

app	=	connexion.App(__name__,	specification_dir="./")

#	Read	the	yaml	file	to	configure	the	endpoints

app.add_api("cpu.yaml")

#	create	a	URL	route	in	our	application	for	"/"

@app.route("/")

def	home():

				msg	=	{"msg":	"It's	working!"}

				return	jsonify(msg)

if	__name__	==	"__main__":

				app.run(port=8080,	debug=True)

openapi:	3.0.2

info:

		title:	cpuinfo

		description:	A	simple	service	to	get	cpuinfo	as	an	example	of	using	OpenAPI	3.0

		license:

				name:	Apache	2.0

		version:	0.0.1

servers:

		-	url:	http://localhost:8080/cloudmesh

paths:

		/cpu:

				get:

						summary:	Returns	cpu	information	of	the	hosting	server

https://github.com/cloudmesh-community/book/tree/master/examples/rest/cpu
https://media.readthedocs.org/pdf/connexion/latest/connexion.pdf


Here	we	 simply	 implement	 a	 get	method	 and	 associate	 is	with	 the	URL	 /cpu.
The	 operationid,	 defines	 the	 method	 that	 we	 call	 which	 as	 we	 used	 the	 local
directory	 is	 included	 in	 the	 file	 cpu.py.	 This	 is	 controlled	 by	 the	 prefix	 in	 the
operation	id.

A	very	simple	function	to	return	the	cpu	information	is	defined	in	cpu.py	which	we
list	next

We	have	 implemented	 this	 function	 to	 return	 a	 jsonified	 information	 from	 the
dict	pinfo.

To	simplify	working	with	this	example,	we	also	provide	a	makefile	for	OSX	that
allows	us	to	call	the	server	and	the	call	to	the	servoer	in	two	different	terminals

						operationId:	cpu.get_processor_name

						responses:

								'200':

										description:	cpu	info

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/cpu"

components:

		schemas:

				cpu:

						type:	"object"

						required:

								-	"model"

						properties:

								model:

										type:	"string"

import	os,	platform,	subprocess,	re

from	flask	import	jsonify

def	get_processor_name():

				if	platform.system()	==	"Windows":

								p	=	platform.processor()

				elif	platform.system()	==	"Darwin":

								command	=	"/usr/sbin/sysctl	-n	machdep.cpu.brand_string"

								p	=	subprocess.check_output(command,	shell=True).strip().decode()

				elif	platform.system()	==	"Linux":

								command	=	"cat	/proc/cpuinfo"

								all_info	=	subprocess.check_output(command,	shell=True).strip().decode()

								for	line	in	all_info.split("\n"):

												if	"model	name"	in	line:

																p	=	re.sub(".*model	name.*:",	"",	line,	1)

				else:

								p	=	"cannot	find	cpuinfo"

				pinfo	=	{"model":	p}

				return	jsonify(pinfo)

define	terminal

				osascript	-e	'tell	application	"Terminal"	to	do	script	"cd	$(PWD);	$1"'

endef

install:

				pip	install	-r	requirements.txt

demo:

				$(call	terminal,	python	server.py)

				sleep	3

				@echo	"==============================================================================="



When	we	call

our	demo	is	run.

6.2.2.1	Verification

It	is	important	to	be	able	to	verify	if	a	yaml	file	is	correct.	To	identify	this,	the
easiest	method	is	to	use	the	swagger	editor.	There	is	an	online	verion	available
at:

https://editor.swagger.io/

Go	to	the	Web	site,	remove	the	current	petstore	example	and	simply	paste	your
yaml	file	in	it.	Debug	meessages	will	be	helping	you	to	correct	things.

A	terminal	based	command	may	als	be	helpful,	but	is	a	bit	difficult	to	read.

6.2.2.2	Swagger-UI

Swagger	comes	with	a	convenient	UI	to	invoke	REST	API	calls	using	the	web
browser	rather	than	relying	on	the	curl	commands.

Once	 the	 request	and	 response	definitions	are	properly	 specified,	you	can	start
the	server	by,

Then	 the	 UI	 would	 also	 be	 spawned	 under	 the	 service	 URL	 http://[service
url]/ui/

Example:	http://localhost:8080/cloudmesh/ui/

6.2.2.3	Mock	service

				@echo	"Get	the	info"

				@echo	"==============================================================================="

				curl	http://localhost:8080/cloudmesh/cpu

				@echo

				@echo	"==============================================================================="

make	demo

$	connexion	run	cpu.yaml	--stub	--debug

$	python	server.py

https://editor.swagger.io/
http://localhost:8080/cloudmesh/ui/


In	some	cases	it	may	be	useful	to	develop	the	API	without	having	yet	developed
methods	that	you	call	with	the	OperationI.	In	this	case	it	is	useful	to	run	a	mock
service.	YOu	can	invoce	such	a	service	with

6.2.2.4	Exercise

OpenAPI.Conexion.1:

Modify	the	makefile	so	it	works	also	on	ubuntu,	but	do	not	disable	the
ability	to	run	it	correctly	on	OSX.	Tip	use	if’s	in	makefiles	base	on	the
OS.	You	can	look	at	 the	makefiles	 that	create	 this	book	as	example.
find	alternatives	to	sarting	a	terminal	in	Linux.

OpenAPI.Conexion.2:

Modify	 the	 makefile	 so	 it	 works	 also	 on	 Windows	 10,	 but	 do	 not
disable	the	ability	to	run	it	correctly	on	OSX.	Tip	use	ifs	in	makefiles.
You	can	look	at	the	makefiles	that	create	this	book	as	example.	Find
alternatives	to	start	a	powershell	or	cmd.exe	in	windows.	Maybe	you
need	to	use	gitbash.

OpenAPI.Conexion.3:

Implement	 a	 swagger	 specification	 of	 an	 issue	 related	 to	 the	 NIST
BDRA.	 Implement	 it.	Please	remember	 this	could	prepare	you	 for	a
project	good	topics	include:

virtual	 compute	 service	 interfacing	with	 aws,	 azure,	 google	 or
openstack
virtual	 directory	 service	 interfacing	 with	 google	 drive,	 box,
github,	iCloud,	ftp,	scp,	and	others

As	there	are	so	many	possibilities	to	contribute,	come	up	in	class	with
one	 specification	and	 than	 implement	 it	 for	different	 providers.	The
difficulty	here	is	 that	 it	 is	not	done	for	one	IaaS,	but	 for	all	of	 them
and	all	can	be	integrated.

$	connexion	run	cpu.yaml	--mock=all	-v



This	exercise	is	typically	growing	to	be	part	of	your	class	project.

OpenAPI.Conexion.4:

Develop	 instructions	 on	 how	 to	 integrate	 the	 OpenAPI	 service
framework	in	a	WSGI	based	Web	service.	Chose	a	service	you	like	so
that	the	service	could	run	in	production.

OpenAPI.Conexion.5:

Develop	 instructions	 on	 how	 to	 integrate	 the	 OpenAPI	 service
framework	in	Tornado	so	the	service	could	run	in	production.

6.2.3	REST	AI	services	Example	☁

This	 is	 a	 more	 involved	 example	 which	 uses	 OpenAPI	 3.0	 specification	 to

invoke	 	K-means	Clustering	routine	in	scikit-learn	[52].	Scikit-learn	k-means
user-guide	can	be	found	Scikit-learn	K-Means	package	[53].

This	involves	the	following.

Upload	a	file	with	points	to	create	the	k-means	clustering	model.
Method	to	call	scikit-learn	KMeans	module
Upload	a	file	with	points	that	need	to	be	predicted	and	return	a	file	with	the
predicted	cluster	IDs.
Additionally,	 scikit-learn	 KMeans	 module	 provides	 routines	 to	 get	 the
cluster	centers,	labels,	etc.	which	can	also	be	exposed	as	REST	services.

To	create	the	REST	services,	we	would	be	using	OpenAPI	3.0	REST	service	via
introspection.

6.2.3.1	Service	Endpoints/	Paths

6.2.3.1.1	Path	kmeans/upload

A	POST	 request	with	 a	 file	 containing	points	 to	 create	 the	k-means	 clustering
model.	POST	content	would	be	multipart/form-data.

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest-ai.md
https://www.youtube.com/watch?v=aGRdp4TKc4c&list=PLy0VLh_GFyz9fRbuhUS59rUThN_G1VCdX&index=2


For	an	example	consider	the	following	6	points	in	XY	dimensions,

Curl	command:

Service	implementation	would	look	like	this.	File	content	will	be	received	as	a
werkzeug.datastructures.FileStorage	 object	 in	 Flask,	 which	 can	 be	 used	 to
stream	 into	 the	 filesystem.	Backend	keeps	 two	dicts	 to	map	Job	 ID	 to	 file	and
vise-versa	(inputs	and	inputs_r).

If	the	request	is	successful,	a	JSON	will	be	returned	with	the	file	name	and	the
associated	job	ID.	Job	ID	can	be	considered	ID	that	would	connect,	inputs	to	the
models	and	the	predicted	outputs.

6.2.3.1.2	Path	kmeans/fit

A	POST	request	with	a	JSON	body	containing	Job	ID	and	model	parameters	that
need	 to	 passed	 on	 to	 the	 scikit-learn	 KMeans	 model	 initialization	 such	 as,
number	of	clusters	(n_clusters),	maximum	iterations	(max_iter),	etc.

Example:

1,	2

1,	4

1,	0

10,	2

10,	4

10,	0	

$	curl	-X	POST	"http://localhost:8080/kmeans/upload"	\

								-H	"accept:	application/json"	\	

								-H	"Content-Type:	multipart/form-data"	\	

								-F	"file=@model.csv;type=text/csv"

def	upload_file(file=None):

				filename	=	file.filename

				in_file	=	INPUT_DIR	+	'/'	+	filename

				if	not	os.path.exists(in_file):

								file.save(in_file)		#	save	the	input	file

				if	in_file	not	in	inputs_r:

								job_id	=	len(inputs)

								inputs.update({job_id:	in_file})

								inputs_r.update({in_file:	job_id})

				else:

								job_id	=	inputs_r[in_file]

				return	jsonify({'job_id':	job_id,	'filename':	filename})

{

		"filename":	"model.csv",	

		"job_id":	0

}

{

https://werkzeug.palletsprojects.com/en/0.15.x/datastructures/#werkzeug.datastructures.FileStorage


curl	command:

Service	implementation	looks	like	this.	POST	request	body	will	be	populated	as
a	dict	and	passed	on	to	the	method	by	Flask	(body).	Once	the	model	is	fitted,	it
will	 be	 put	 into	 a	 in	memory	 dict	 (models)	 against	 its	 Job	 ID.	 Labels	will	 be
written	to	disk	as	a	file,	and	the	content	will	be	returned	as	a	CSV.

The	 response	 CSV	 file	 will	 be	 returned	with	 the	 corresponding	 labels	 for	 the
input	points.

6.2.3.1.3	Path	kmeans/predict

A	 POST	 request	 with	 a	 file	 containing	 the	 points	 to	 be	 predicted	 and	 the
corresponding	Job	ID	as	multipart/form-data.

		"job_id":	0,

		"model_params":	{

				"n_clusters":	3

		}

}

$	curl	-X	POST	"http://localhost:8080/kmeans/fit"	\

								-H	"accept:	text/csv"	\

								-H	"Content-Type:	application/json"	\

								-d	"{\"job_id\":0,\"model_params\":{\"n_clusters\":3}}"

def	kmeans_fit(body):

			print(body)

			job_id	=	body['job_id']

			if	job_id	not	in	inputs	or	not	os.path.exists(inputs[job_id]):

							abort(500,	"input	file	missing	for	job	id	"	+	str(job_id))

							return

			in_file	=	inputs[job_id]

			X	=	np.genfromtxt(in_file,	delimiter=",")		#	create	the	model

			params	=	dict(default_model_params)

			params.update(body['model_params'])

			kmeans	=	KMeans(**params).fit(X)

			models.update({job_id:	kmeans})		#	add	the	model	in	to	the	dict

			labels	=	OUTPUT_DIR	+	"/"	+	str(job_id)	+	".labels"

			np.savetxt(labels,	kmeans.labels_,	delimiter=",")

			return	send_file(labels)

1.000000000000000000e+00

1.000000000000000000e+00

1.000000000000000000e+00

0.000000000000000000e+00

0.000000000000000000e+00

2.000000000000000000e+00

job_id=0



Points	to	be	predicted

curl	command:

Service	 implementation	 looks	 like	 this.	Note	 that	 there	 is	a	strange	behavior	 in
Flask	with	Connextion	where	the	file	content	will	be	passed	on	to	the	file	object
as	 a	werkzeug.datastructures.FileStorage	 object	 but	 the	 Job	 ID	 is	 passed	 as	 a
dict	to	body	object.

The	response	would	send	out	the	corresponding	labels	of	the	passed	points	as	a
CSV	file.

6.2.3.2	Files

Files	of	this	example	can	be	found	here.

Open	API	3	service	definitions	-	api.yaml
Flask	server	-	server.py
Kmeans	service	implementation	-	kmeans.py

0,	0

12,	3

$	curl	-X	POST	"http://localhost:8080/kmeans/predict"	\

								-H	"accept:	text/csv"	\

								-H	"Content-Type:	multipart/form-data"	\	

								-F	"job_id=0"	\

								-F	"file=@predict.csv;type=text/csv"

def	kmeans_predict(body,	file=None):

				job_id	=	int(body['job_id'])

				if	job_id	in	models:

								p_file	=	OUTPUT_DIR	+	'/'	+	str(job_id)	+	'.p'

								file.save(p_file)

								p	=	np.genfromtxt(p_file,	delimiter=',')		#	read	the	predictions

								result	=	models[job_id].predict(p)

								print(result)

								res_file	=	OUTPUT_DIR	+	"/"	+	str(job_id)	+	".out"

								np.savetxt(res_file,	result,	delimiter=",")

								return	send_file(res_file)

				else:

								abort(500,	"model	not	found	for	job	id	"	+	str(job_id))

								return

1.000000000000000000e+00

0.000000000000000000e+00

https://werkzeug.palletsprojects.com/en/0.15.x/datastructures/#werkzeug.datastructures.FileStorage
https://github.com/cloudmesh-community/book/tree/master/examples/rest/kmeans
https://github.com/cloudmesh-community/book/blob/master/examples/rest/kmeans/api.yaml
https://github.com/cloudmesh-community/book/blob/master/examples/rest/kmeans/server.py
https://github.com/cloudmesh-community/book/blob/master/examples/rest/kmeans/kmeans.py


Python	requirements	-	requirements.txt
Example	files	model.csv	and	predict.csv

6.2.3.3	Running	the	example

Go	to	the	example	directory.
Activate	the	Python3	venv	used	for	Cloudmesh
Install	requirements.txt

Start	the	server

Upload	a	file

Fit	the	kmeans	model

Predict	using	the	fitted	kmeans	model

Additionally,	 you	 can	 access	 the	 Swagger	UI	 for	 kmeans	 service	 in	 your
Flask	server	from	here

6.2.3.4	Notes

Above	services	can	easily	be	combined	together	in	the	backend	to	accept	a
model	file,	together	with	a	prediction	input
File	 and	 to	 return	 the	 predicted	 output	 file	 (synchronous	 operation).	 But
usually,	we	can	expect	AI	jobs	to	be	long	running,	hence	the	services	would

$	pip	install	-r	requirements.txt

$	python	server.py

$	curl	-X	POST	"http://localhost:8080/kmeans/upload"	\

				-H	"accept:	application/json"	\

				-H	"Content-Type:	multipart/form-data"	\

				-F	"file=@model.csv;type=text/csv"

$	curl	-X	POST	"http://localhost:8080/kmeans/fit"	\

				-H	"accept:	text/csv"	\

				-H	"Content-Type:	application/json"	\

				-d	"{\"job_id\":0,\"model_params\":{\"n_clusters\":3}}"

$	curl	-X	POST	"http://localhost:8080/kmeans/predict"	\

				-H	"accept:	text/csv"	\

				-H	"Content-Type:	multipart/form-data"	\

				-F	"job_id=0"	\

				-F	"file=@predict.csv;type=text/csv"

https://github.com/cloudmesh-community/book/blob/master/examples/rest/kmeans/requirements.txt
https://github.com/cloudmesh-community/book/blob/master/examples/rest/kmeans/model.csv
https://github.com/cloudmesh-community/book/blob/master/examples/rest/kmeans/predict.csv
http://localhost:8080/kmeans/ui/


need	to	be	handled	asynchronously.
Additionally,	once	a	model	is	fitted,	users	should	be	able	to	reuse	the	model
for	multiple	predictions.	Hence	 it	 is	 sensible	 to	 separate	out	model	 fitting
and	predictions	into	separate	services.

6.3	FLASK	RESTFUL	SERVICES	☁
Flask	 is	 a	micro	 services	 framework	 allowing	 to	write	web	 services	 in	 python
quickly.	One	of	its	extensions	is	Flask-RESTful.	It	adds	for	building	REST	APIs
based	on	a	class	definition	making	it	relatively	simple.	Through	this	interface	we
can	than	integrate	with	your	existing	Object	Relational	Models	and	libraries.	As
Flask-RESTful	 leverages	 the	 main	 features	 from	 Flask	 an	 extensive	 set	 of
documentation	 is	available	allowing	you	 to	get	started	quickly	and	 thoroughly.
The	Web	page	contains	extensive	documentation:

https://flask-restful.readthedocs.io/en/latest/

We	will	provide	a	simple	example	 that	showcases	some	hard	coded	data	 to	be
served	as	a	rest	service.	It	will	be	easy	to	replace	this	for	example	with	functions
and	 methods	 that	 obtain	 such	 information	 dynamically	 from	 the	 operating
system.

This	 example	 has	 not	 been	 tested.	 We	 like	 that	 the	 class	 defines	 a	 beautiful
example	to	contribute	to	this	section	and	explains	what	happens	in	this	example.
				from	flask	import	Flask

				from	flask_restful	import	reqparse,	abort

				from	flask_restful	import	Api,	Resource

				app	=	Flask(__name__)

				api	=	Api(app)

				COMPUTERS	=	{

								'computer1':	{

										'processor':	'iCore7'

								},

								'computer2':	{

										'processor':	'iCore5'

								},

								'computer3':	{

										'processor':	'iCore3'

								},

				}

				def	abort_if_cluster_doesnt_exist(computer_id):

								if	computer_id	not	in	COMPUTERS:

												abort(404,	message="Computer	{}	does	not	exist".format(computer_id))

				parser	=	reqparse.RequestParser()

				parser.add_argument('processor')

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest-restful.md
https://flask-restful.readthedocs.io/en/latest/


6.4	DJANGO	REST	FRAMEWORK	☁
Django	REST	framework	is	a	large	toolkit	to	develop	Web	APIs.	The	developers
of	 the	 framework	 provide	 the	 following	 reasons	 for	 using	 it	 aggording	 to	 the
developers	of	that	module:

1.	 The	Web	browsable	API	improves	usability.
2.	 Authentication	 policies	 including	 packages	 for	 OAuth1a	 and
OAuth2.

3.	 Serialization	 that	 supports	 both	 ORM	 and	 non-ORM	 data
sources.

4.	 Customizable	all	the	way	down	-	just	use	regular	function-based
views	if	you	do	not	need	the	more	powerful	features.

5.	 Extensive	documentation,	and	great	community	support.
6.	 Used	 and	 trusted	 by	 internationally	 recognised	 companies

				class	Computer(Resource):

								'''	shows	a	single	computer	item	and	lets	you	delete	a	computer

												item.'''

								def	get(self,	computer_id):

												abort_if_computer_doesnt_exist(computer_id)

												return	COMPUTERS[computer_id]

								def	delete(self,	computer_id):

												abort_if_computer_doesnt_exist(computer_id)

												del	COMPUTERS[computer_id]

												return	'',	204

								def	put(self,	computer_id):

												args	=	parser.parse_args()

												processor	=	{'processor':	args['processor']}

												COMPUTERS[computer_id]	=	processor

												return	processor,	201

				#	ComputerList

				class	ComputerList(Resource):

								'''	shows	a	list	of	all	computers,	and	lets	you	POST	to	add	new	computers'''

								def	get(self):

												return	COMPUTERS

								def	post(self):

												args	=	parser.parse_args()

												computer_id	=	int(max(COMPUTERS.keys()).lstrip('computer'))	+	1

												computer_id	=	'computer%i'	%	computer_id

												COMPUTERS[computer_id]	=	{'processor':	args['processor']}

												return	COMPUTERS[computer_id],	201

				##

				##	Setup	the	Api	resource	routing	here

				##

				api.add_resource(ComputerList,	'/computers')

				api.add_resource(Computer,	'/computers/<computer_id>')

				if	__name__	==	'__main__':

								app.run(debug=True)

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest-django.md


including	Mozilla,	Red	Hat,	Heroku,	and	Eventbrite."

https://www.django-rest-framework.org/

En	example	is	provided	on	their	Web	Page	at

https://www.django-rest-framework.org/#example

To	 document	 your	 django	 framework	 with	 Swagger	 you	 can	 look	 at	 this
example:

https://www.django-rest-framework.org/topics/documenting-your-api/

However,	we	believe	that	for	our	purposes	the	approach	to	use	conexion	from	an
OpenAPI	 is	much	more	 appealing,	 also	 using	 conexion	 and	 also	 flask	 for	 the
REST	 service	 is	 easier	 to	 acomplish.	Django	 is	 a	 large	 package	 that	will	 take
mor	time	to	getting	used	to.

6.5	GITHUB	REST	SERVICES	☁
In	this	section	we	want	to	explore	a	more	features	of	REST	services	and	how	to
access	them.	Naturally	many	cloud	services	provide	such	REST	sinterfaces.	This
is	valid	for	IaaS,	PaaS,	and	SaaS.

Instead	of	using	a	REST	service	for	IaaS,	let	us	here	inspect	a	REST	service	for
the	Github.com	platform.

Its	interfaces	are	documented	nicely	at

https://developer.github.com/v3/

We	 see	 that	 Github	 offers	 many	 resources	 that	 can	 be	 accessed	 by	 the	 users
which	includes

Activities
Checks
Gists
Git	Data

https://www.django-rest-framework.org/
https://www.django-rest-framework.org/#example
https://www.django-rest-framework.org/topics/documenting-your-api/
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/github.md
https://developer.github.com/v3/


GitHub	Apps
Issues
Migrations
Miscellaneous
Organizations
Projects
Pull	Requests
Reactions
Repositories
Searches
Teams
Users

Most	 likely	 we	 forgot	 the	 one	 or	 the	 other	 Resource	 that	 we	 can	 access	 via
REST.	It	will	be	out	of	scope	for	us	to	explore	all	of	these	issues,	so	let	us	focus
on	how	we	for	example	access	Github	Issues.	In	fact	we	will	use	the	script	that
we	use	to	create	issue	tables	for	this	book	to	showcase	how	easy	the	interaction
is	and	to	retrieve	the	information.

6.5.1	Issues

The	 REST	 service	 for	 issues	 is	 described	 in	 the	 following	 Web	 page	 as
specification

https://developer.github.com/v3/issues/

We	see	the	following	functionality:

List	issues
List	issues	for	a	repository
Get	a	single	issue
Create	an	issue
Edit	an	issue
Lock	an	issue
Unlock	an	issue
Custom	media	types

As	 we	 have	 learned	 in	 our	 REST	 section	 we	 need	 to	 issue	 GET	 requests	 to

https://developer.github.com/v3/issues/
https://developer.github.com/v3/issues/#list-issues
https://developer.github.com/v3/issues/#list-issues-for-a-repository
https://developer.github.com/v3/issues/#get-a-single-issue
https://developer.github.com/v3/issues/#edit-an-issue
https://developer.github.com/v3/issues/#edit-an-issue
https://developer.github.com/v3/issues/#lock-an-issue
https://developer.github.com/v3/issues/#unlock-an-issue
https://developer.github.com/v3/issues/#custom-media-types


obtain	information	about	the	issues.	Such	as

As	 response	 we	 obtain	 a	 json	 object	 with	 the	 information	 we	 need	 to	 further
process	it.	Unfortunately,	the	free	tier	of	github	has	limitations	in	regards	to	the
frequency	we	can	issue	such	requests	to	the	service,	as	well	as	in	the	volume	in
regards	to	number	of	pages	returned	to	us.

Let	us	now	explore	how	 to	easily	query	some	 information.	 In	our	example	we
like	 to	 retrive	 the	 list	 of	 issues	 for	 a	 repository	 as	 LaTeX	 table	 but	 also	 as
markdown.	 This	 way	we	 can	 conveniently	 integrate	 it	 in	 documents	 of	 either
format.	As	LaTeX	has	a	more	sophisticated	table	management,	let	us	first	create
a	 LaTeX	 table	 document	 and	 than	 use	 a	 program	 to	 convert	 LaTeX	 to
markdown.	For	the	later	we	can	reuse	a	program	called	pandoc	that	can	convert	the
table	for	LaTeX	to	markdown.

Let	us	assume	we	have	a	program	called	issues.py	that	prints	the	table	in	markdown
format

An	example	for	such	a	program	is	listes	at.

https://github.com/cloudmesh-community/book/blob/master/bin/issues.py

Although	python	provides	the	very	nice	module	requests	which	we	typically	use	for
such	issues.	we	have	here	just	wrapped	the	commandline	call	to	curl	into	a	system
command	 and	 redirect	 its	 output	 to	 a	 file.	 However,	 as	 we	 only	 get	 limited
information	back	in	pages,	we	need	to	continue	such	a	request	multiple	times.	To
keep	things	simple	we	identified	that	for	the	project	at	this	time	not	more	that	n
pages	need	to	be	fetched,	so	we	append	the	output	from	each	page	to	the	file.

Your	 task	 is	 it	 to	 improve	 this	 script	 and	 automatize	 this	 activity	 so	 that	 no
maximum	fetches	have	to	be	entered.

The	reason	why	this	program	is	so	short	is	that	we	leverage	the	build	in	function
for	json	data	structure	manipulation,	hear	a	read	and	a	dump.	When	we	look	in	the
issue.json	file	that	is	created	as	intermediary	file	we	see	a	list	of	items	such	as

GET	/issues

GET	/user/issues

$	python	issues.py

https://github.com/cloudmesh-community/book/blob/master/bin/issues.py


[

...

	{

								"url":	"https://api.github.com/repos/cloudmesh-community/book/issues/46",

								"repository_url":	"https://api.github.com/repos/cloudmesh-community/book",

								"labels_url":	"https://api.github.com/repos/cloudmesh-community/book/issues/46/labels{/name}",

								"comments_url":	"https://api.github.com/repos/cloudmesh-community/book/issues/46/comments",

								"events_url":	"https://api.github.com/repos/cloudmesh-community/book/issues/46/events",

								"html_url":	"https://github.com/cloudmesh-community/book/issues/46",

								"id":	360613438,

								"node_id":	"MDU6SXNzdWUzNjA2MTM0Mzg=",

								"number":	46,

								"title":	"Taken:	Virtualization",

								"user":	{

												"login":	"laszewsk",

												"id":	425045,

												"node_id":	"MDQ6VXNlcjQyNTA0NQ==",

												"avatar_url":	"https://avatars1.githubusercontent.com/u/425045?v=4",

												"gravatar_id":	"",

												"url":	"https://api.github.com/users/laszewsk",

												"html_url":	"https://github.com/laszewsk",

												"followers_url":	"https://api.github.com/users/laszewsk/followers",

												"following_url":	"https://api.github.com/users/laszewsk/following{/other_user}",

												"gists_url":	"https://api.github.com/users/laszewsk/gists{/gist_id}",

												"starred_url":	"https://api.github.com/users/laszewsk/starred{/owner}{/repo}",

												"subscriptions_url":	"https://api.github.com/users/laszewsk/subscriptions",

												"organizations_url":	"https://api.github.com/users/laszewsk/orgs",

												"repos_url":	"https://api.github.com/users/laszewsk/repos",

												"events_url":	"https://api.github.com/users/laszewsk/events{/privacy}",

												"received_events_url":	"https://api.github.com/users/laszewsk/received_events",

												"type":	"User",

												"site_admin":	false

								},

								"labels":	[],

								"state":	"open",

								"locked":	false,

								"assignee":	{

												"login":	"laszewsk",

												"id":	425045,

												"node_id":	"MDQ6VXNlcjQyNTA0NQ==",

												"avatar_url":	"https://avatars1.githubusercontent.com/u/425045?v=4",

												"gravatar_id":	"",

												"url":	"https://api.github.com/users/laszewsk",

												"html_url":	"https://github.com/laszewsk",

												"followers_url":	"https://api.github.com/users/laszewsk/followers",

												"following_url":	"https://api.github.com/users/laszewsk/following{/other_user}",

												"gists_url":	"https://api.github.com/users/laszewsk/gists{/gist_id}",

												"starred_url":	"https://api.github.com/users/laszewsk/starred{/owner}{/repo}",

												"subscriptions_url":	"https://api.github.com/users/laszewsk/subscriptions",

												"organizations_url":	"https://api.github.com/users/laszewsk/orgs",

												"repos_url":	"https://api.github.com/users/laszewsk/repos",

												"events_url":	"https://api.github.com/users/laszewsk/events{/privacy}",

												"received_events_url":	"https://api.github.com/users/laszewsk/received_events",

												"type":	"User",

												"site_admin":	false

								},

								"assignees":	[

												{

																"login":	"laszewsk",

																"id":	425045,

																"node_id":	"MDQ6VXNlcjQyNTA0NQ==",

																"avatar_url":	"https://avatars1.githubusercontent.com/u/425045?v=4",

																"gravatar_id":	"",

																"url":	"https://api.github.com/users/laszewsk",

																"html_url":	"https://github.com/laszewsk",

																"followers_url":	"https://api.github.com/users/laszewsk/followers",

																"following_url":	"https://api.github.com/users/laszewsk/following{/other_user}",

																"gists_url":	"https://api.github.com/users/laszewsk/gists{/gist_id}",

																"starred_url":	"https://api.github.com/users/laszewsk/starred{/owner}{/repo}",

																"subscriptions_url":	"https://api.github.com/users/laszewsk/subscriptions",

																"organizations_url":	"https://api.github.com/users/laszewsk/orgs",

																"repos_url":	"https://api.github.com/users/laszewsk/repos",

																"events_url":	"https://api.github.com/users/laszewsk/events{/privacy}",

																"received_events_url":	"https://api.github.com/users/laszewsk/received_events",

																"type":	"User",

																"site_admin":	false

												}

								],

								"milestone":	null,

								"comments":	0,

								"created_at":	"2018-09-16T07:35:35Z",



As	we	can	see	from	this	entry	there	is	a	lot	of	information	associated	that	for	our
purposes	we	do	not	need,	but	certainly	could	be	used	to	mine	github	in	general.

We	like	to	point	out	that	github	is	actively	mined	for	exploits	where	passwords
are	 posted	 in	 clear	 text	 for	AWS,	Azure	 and	 other	 clouds.	 This	 is	 a	 common
mistake	as	many	sample	programs	ask	the	student	to	place	the	password	directly
into	their	programs	instead	of	using	a	configuration	file	that	is	never	part	of	the
code	repository.

6.5.2	Exercise

E.github.issues.1:

Develop	 a	 new	 code	 like	 the	 one	 in	 this	 section,	 but	 use	 python
requests	instead	of	the	os.system	call.

E.github.issues.2:

In	 the	 simple	 program	we	 hardcoded	 the	 number	 of	 page	 requests.
How	can	we	 find	out	exactly	how	many	pages	we	need	 to	 retrieve?
Implement	your	solution

E.github.issues.3:

Be	 inspired	by	 the	many	REST	 interfaces.	How	can	 they	be	used	 to
mine	interesting	things.

E.github.issues.4:

Can	 you	 create	 a	 project,	 author,	 or	 technology	 map	 based	 on
information	that	is	available	in	github.	For	example	python	projects
may	 include	 a	 requirements	 file,	 or	 developers	 may	 work	 on	 some
projects	 together,	 but	 others	 do	 other	 projects	 with	 others	 can	 you
create	a	network?

								"updated_at":	"2018-09-16T07:35:35Z",

								"closed_at":	null,

								"author_association":	"CONTRIBUTOR",

								"body":	"Develop	a	section	about	Virtualization"

				},

...

]



E.github.issues.5:

Use	 github	 to	 develop	 some	 cool	 python	 programs	 that	 show	 some
statistics	 about	 github.	 An	 example	 would	 be:	 Given	 a	 github
repository,	show	the	checkins	by	data	and	visualize	them	graphically
for	one	committer	and	all	committers.	Use	bokeah	or	matplotlib.

E.github.issues.6:

Develop	 a	 python	 program	 that	 retrieves	 a	 file.	 Deevlop	 a	 python
program	that	uploads	a	file.	Develop	a	class	that	does	this	and	use	it
in	 your	 proggram.	 Use	 docopt	 to	 create	 a	 manual	 page.	 Please
remember	this	prepares	you	for	your	project	so	this	is	very	useful	to
do.

6.6	OPENAPI	REST	SERVICES	WITH	SWAGGER	☁
Swagger	https://swagger.io/	is	a	tool	for	developing	API	specifications	based	on
the	OpenAPI	Specification	 (OAS).	 It	 allows	not	only	 the	specification,	but	 the
generation	of	code	based	on	the	specification	in	a	variety	of	languages.

Swagger	 itself	 has	 a	 number	 of	 tools	 which	 together	 build	 a	 framework	 for
developing	REST	services	for	a	variety	of	languages.

6.6.1	Swagger	Tools

The	major	Swagger	tools	of	interest	are:

Swagger	Core

includes	 libraries	 for	 working	 with	 Swagger	 specifications
https://github.com/swagger-api/swagger-core.

Swagger	Codegen

allows	 to	 generate	 code	 from	 the	 specifications	 to	 develop	 Client	 SDKs,
servers,	 and	 documentation.	 https://github.com/swagger-api/swagger-
codegen

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/swagger.md
https://swagger.io/
https://github.com/swagger-api/swagger-core
https://github.com/swagger-api/swagger-codegen


Swagger	UI

is	 an	 HTML5	 based	 UI	 for	 exploring	 and	 interacting	 with	 the	 specified
APIs	https://github.com/swagger-api/swagger-ui

Swagger	Editor

is	a	Web-browser	based	editor	 for	composing	specifications	using	YAML
https://github.com/swagger-api/swagger-editor

Swagger	Hub

is	a	Web	service	to	collaborativly	develop	and	host	OpenAPI	specifications
https://swagger.io/tools/swaggerhub/

The	developed	APIs	can	be	hosted	and	further	developed	on	an	online	repository
named	 SwaggerHub	 https://app.swaggerhub.com/home	 The	 convenient	 online
editor	 is	available	which	also	can	be	 installed	 locally	on	a	variety	of	operating
systems	including	macOS,	Linux,	and	Windows.

6.6.2	Swagger	Community	Tools

notify	us	about	other	tools	that	you	find	and	would	like	us	to	mention	here.

6.6.2.1	Converting	Json	Examples	to	OpenAPI	YAML	Models

Swagger	 toolbox	 is	 a	utility	 that	 can	convert	 json	 to	 swagger	compatible	yaml
models.	It	is	hosted	online	at

https://swagger-toolbox.firebaseapp.com/

The	source	code	to	this	tool	is	available	on	github	at

https://github.com/essuraj/swagger-toolbox

It	is	important	to	make	sure	that	the	json	model	is	properly	configured.	As	such
each	datatype	must	be	wrapped	in	“quotes”	and	the	last	element	must	not	have	a	
,	behind	it.

https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-editor
https://swagger.io/tools/swaggerhub/
https://app.swaggerhub.com/home
https://swagger-toolbox.firebaseapp.com/
https://github.com/essuraj/swagger-toolbox


In	case	you	have	large	models,	we	recommend	that	you	gradually	add	more	and
more	 features	 so	 that	 it	 is	 easier	 to	debug	 in	 case	of	 an	 error.	This	 tool	 is	 not
designed	to	provide	back	a	full	 featured	OpenAPI,	but	help	you	getting	started
deriving	one.

Let	us	look	at	a	small	example.	Let	us	assume	we	want	to	create	a	REST	service
to	execute	a	command	on	the	remote	service.	We	know	this	may	not	be	a	good
idea	if	it	is	not	properly	secured,	so	be	extra	careful.	A	good	way	to	simulate	this
is	to	just	use	a	return	string	instead	of	executing	the	command.

Let	us	assume	the	json	schema	looks	like:

The	output	the	swagger	toolbox	creates	is

As	you	can	see	it	is	far	from	complete,	but	it	could	be	used	to	get	you	started.

Based	on	this	tool	develop	a	rest	service	to	which	you	send	a	schema	in	JSON
format	from	which	you	get	back	the	YAML	model.

6.7	REST	WITH	EVE

6.7.1	Rest	Services	with	Eve	☁

Next,	we	will	 focus	on	how	to	make	a	RESTful	web	service	with	Python	Eve.
Eve	 makes	 the	 creation	 of	 a	 REST	 implementation	 in	 python	 easy.	 More
information	about	Eve	can	be	found	at:

http://python-eve.org/

Although	we	do	recommend	Ubuntu	17.04,	at	this	time	there	is	a	bug	that	forces

{

			"host":	"string",

			"command":	"string"

}

---

		required:

				-	"host"

				-	"command"

		properties:

				host:

						type:	"string"

				command:

						type:	"string"

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest-eve.md
http://python-eve.org/


us	to	use	16.04.	Furthermore,	we	require	you	to	follow	the	instructions	on	how
to	 install	pyenv	and	use	 it	 to	set	up	your	python	environment.	We	recommend
that	 you	 use	 either	 python	 2.7.14	 or	 3.6.4.	We	 do	 not	 recommend	 you	 to	 use
anaconda	as	it	is	not	suited	for	cloud	computing	but	targets	desktop	computing.
If	you	use	pyenv	you	also	avoid	the	issue	of	interfering	with	your	system	wide
python	install.	We	do	recommend	pyenv	regardless	if	you	use	a	virtual	machine
or	are	working	directly	on	your	operating	system.	After	you	have	set	up	a	proper
python	 environment,	 make	 sure	 you	 have	 the	 newest	 version	 of	 pip	 installed
with

To	install	Eve,	you	can	say

As	Eve	also	needs	a	backend	database,	and	as	MongoDB	is	an	obvious	choice
for	 this,	 we	 will	 have	 to	 first	 install	 MongoDB.	 MongoDB	 is	 a	 Non-SQL
database	which	helps	to	store	light	weight	data	easily.

6.7.1.1	Ubuntu	install	of	MongoDB

On	Ubuntu	you	can	install	MongoDB	as	follows

6.7.1.2	macOS	install	of	MongoDB

On	macOS	you	can	use	the	command

6.7.1.3	Windows	10	Installation	of	MongoDB

A	student	or	student	group	of	this	class	are	invited	to	discuss	on	piazza	on	how
to	 install	 mongoDB	 on	 Windows	 10	 and	 come	 up	 with	 an	 easy	 installation

$	pip	install	pip	-U

$	pip	install	eve

$	sudo	apt-key	adv	--keyserver	hkp://keyserver.ubuntu.com:80	\

																			--recv	2930ADAE8CAF5059EE73BB4B58712A2291FA4AD5

$	echo	"deb	[	arch=amd64,arm64	]	https://repo.mongodb.org/apt/ubuntu	\

				xenial/mongodb-org/3.6	multiverse"	|	\

				sudo	tee	/etc/apt/sources.list.d/mongodb-org-3.6.list

$	sudo	apt-get	update

$	sudo	apt-get	install	-y	mongodb-org

$	brew	update

$	brew	install	mongodb



solution.	Naturally	we	have	the	same	2	different	ways	on	how	to	run	mongo.	In
user	 space	 or	 in	 the	 system.	 As	 we	 want	 to	 make	 sure	 your	 computer	 stays
secure.	 the	 solution	must	 have	 an	 easy	way	 on	 how	 to	 shut	 down	 the	Mongo
services.

An	enhancement	of	this	task	would	be	to	integrate	this	function	into	cloudmesh
cmd5	with	 a	 command	mongo	 that	 allows	 for	 easily	 starting	 and	 stopping	 the
service	from	cms.

6.7.1.4	Database	Location

After	 downloading	Mongo,	 create	 the	 db	 directory.	 This	 is	 where	 the	Mongo
data	files	will	live.	You	can	create	the	directory	in	the	default	location	and	assure
it	has	 the	right	permissions.	Make	sure	 that	 the	 /data/db	directory	has	 the	right
permissions	by	running

6.7.1.5	Verification

In	order	to	check	the	MongoDB	installation,	please	run	the	following	commands
in	one	terminal:

In	another	terminal	we	try	to	connect	to	mongo	and	issue	a	mongo	command	to
show	the	databases:

If	 they	 execute	 without	 errors,	 you	 have	 successfully	 installed	 MongoDB.	 In
order	to	stop	the	running	database	instance	run	the	following	command.	simply
CTRL-C	the	running	mongod	process

6.7.1.6	Building	a	simple	REST	Service

In	this	section	we	will	focus	on	creating	a	simple	rest	service.	To	organize	our
work	we	will	create	the	following	directory:

$	mkdir	-p	~/cloudmesh/data/db

$	mongod	--dbpath	~/cloudmesh/data/db

$	mongo	--host	127.0.0.1:27017

$	show	databases

$	mkdir	-p	~/cloudmesh/eve

$	cd	~/cloudmesh/eve



As	Eve	needs	a	configuration	and	it	is	read	in	by	default	from	the	file	settings.py	we
place	the	following	content	in	the	file	~/cloudmesh/eve/settings.py:

The	DOMAIN	object	specifies	the	format	of	a	student	object	that	we	are	using	as
part	of	our	REST	service.	In	addition	we	can	specify	RESOURCE_METHODS	which	methods
are	 activated	 for	 the	 REST	 service.	 This	 way	 the	 developer	 can	 restrict	 the
available	 methods	 for	 a	 REST	 service.	 To	 pass	 along	 the	 specification	 for
mongoDB,	we	 simply	 specify	 the	 hostname,	 the	 port,	 as	well	 as	 the	 database
name.

Now	that	we	have	defined	the	settings	for	our	example	service,	we	need	to	start
it	with	a	simple	python	program.	We	could	name	that	program	anything	we	like,
but	often	it	is	called	simply	run.py.	This	file	is	placed	in	the	same	directory	where
you	 placed	 the	 settings.py.	 In	 our	 case	 it	 is	 in	 the	 file	 ~/cloudmesh/eve/run.py	 and
contains	the	following	python	program:

This	is	the	most	minimal	application	for	Eve,	that	uses	the	settings.py	file	for	its
configuration.	 Naturally,	 if	 we	 were	 to	 change	 the	 configuration	 file	 and	 for
example	 change	 the	 DOMAIN	 and	 its	 schema,	 we	 would	 naturally	 have	 to
remove	 the	 database	 previously	 created	 and	 start	 the	 service	 new.	 This	 is
especially	important	as	during	the	development	phase	we	may	frequently	change

MONGO_HOST	=	'localhost'

MONGO_PORT	=	27017

MONGO_DBNAME	=	'student_db'

DOMAIN	=	{

				'student':	{

								'schema':	{

												'firstname':	{

																'type':	'string'

												},

												'lastname':	{

																'type':	'string'

												},

												'university':	{

																'type':	'string'

												},

												'email':	{

																'type':	'string',

																	'unique':	True

												}

												'username':	{

																'type':	'string',

																	'unique':	True

												}

								}

				}

}

RESOURCE_METHODS	=	['GET',	'POST']

from	eve	import	Eve

app	=	Eve()

if	__name__	==	'__main__':

				app.run()



the	schema	and	the	database.	Thus	it	is	convenient	to	develop	necessary	cleaning
actions	as	part	of	a	Makefile	which	we	leave	as	easy	exercise	for	the	students.

Next,	we	need	 to	 start	 the	 services	which	can	easily	be	achieved	 in	a	 terminal
while	running	the	commands:

Previously	we	started	the	mongoDB	service	as	follows:

This	 is	 done	 in	 its	 own	 terminal,	 so	we	 can	 observe	 the	 log	messages	 easily.
Next	we	start	in	another	window	the	Eve	service	with

You	 can	 find	 the	 codes	 and	 commands	 up	 to	 this	 point	 in	 the	 following
document.

6.7.1.7	Interacting	with	the	REST	service

Yet	in	another	window,	we	can	now	interact	with	the	REST	service.	We	can	use
the	commandline	to	save	the	data	in	the	database	using	the	REST	api.	The	data
can	be	 retrieved	 in	XML	or	 in	 json	 format.	 Json	 is	 often	more	 convenient	 for
debugging	as	it	is	easier	to	read	than	XML.

Naturally,	we	need	first	to	put	some	data	into	the	server.	Let	us	assume	we	add
the	user	Albert	Zweistein.

To	achieve	this,	we	need	to	specify	the	header	using	H	 tag	saying	we	need	the
data	to	be	saved	using	json	format.	And	X	tag	says	the	HTTP	protocol	and	here
we	use	POST	method.	And	the	tag	d	specifies	 the	data	and	make	sure	you	use
json	format	to	enter	the	data.	Finally,	the	REST	api	endpoint	to	which	we	must
save	data.	This	allows	us	to	save	the	data	in	a	table	called	student	in	MongoDB
within	a	database	called	eve.

In	order	to	check	if	the	entry	was	accepted	in	mongo	and	included	in	the	server

$	mongod	--dbpath	~/cloudmesh/data/db/

$	cd	~/cloudmesh/eve

$	python	run.py

$	curl	-H	"Content-Type:	application/json"	-X	POST	\

							-d	'{"firstname":"Albert","lastname":"Zweistein",	\

							"school":"ISE","university":"Indiana	University",	\

							"email":"albert@iu.edu",	"username":	"albert"}'	\

							http://127.0.0.1:5000/student/



issue	the	following	command	sequence	in	another	terminal:

Now	you	can	query	mongo	directly	with	its	shell	interface

Naturally	this	is	not	really	necessary	for	A	REST	service	such	as	eve	as	we	show
you	next	how	to	gain	access	to	the	data	via	mongo	while	using	REST	calls.	We
can	simply	retrieve	the	information	with	the	help	of	a	simple	URI:

Naturally,	 you	 can	 formulate	 other	URLs	 and	 query	 attributes	 that	 are	 passed
along	after	the	?.

This	will	now	allow	you	to	develop	sophisticated	REST	services.	We	encourage
you	 to	 inspect	 the	 documentation	 provided	 by	 Eve	 to	 showcase	 additional
features	that	you	could	be	using	as	part	of	your	efforts.

Let	us	explore	how	to	properly	use	additional	REST	API	calls.	We	assume	you
have	MongoDB	up	and	running.	To	query	the	service	itself	we	can	use	the	URI
on	the	Eve	port

Your	payload	should	look	like	the	one	listed	next,	if	your	output	is	not	formatted
like	this	try	adding	?pretty=1

Remember	that	the	API	entry	points	include	additional	information	such	as	links

$	mongo

>	show	databases

>	use	student_db

>	show	tables	#	query	the	table	names

>	db.student.find().pretty()		#	pretty	will	show	the	json	in	a	clear	way

$	curl	http://127.0.0.1:5000/student?firstname=Albert

$	curl	-i	http://127.0.0.1:5000

$	curl	-i	http://127.0.0.1:5000?pretty=1

HTTP/1.0	200	OK

Content-Type:	application/json

Content-Length:	150

Server:	Eve/0.7.6	Werkzeug/0.11.15	Python/2.7.16

Date:	Wed,	17	Jan	2018	18:34:07	GMT

{

				"_links":	{

								"child":	[

												{

																"href":	"student",

																"title":	"student"

												}

								]

				}



and	a	child,	and	href.

Set	 up	 a	 python	 environment	 that	 works	 for	 your	 platform.	 Provide	 explicit
reasons	why	 anaconda	 and	 other	 prepackaged	 python	 versions	 have	 issues	 for
cloud	related	activities.	When	may	you	use	anaconda	and	when	should	you	not
use	anaconda.	Why	would	you	want	to	use	pyenv?

What	is	the	meaning	and	purpose	of	links,	child,	and	href

In	this	case	how	many	child	resources	are	available	through	our	API?

Develop	a	REST	service	with	Eve	and	start	and	stop	it

Define	curl	calls	to	store	data	into	the	service	and	retrieve	it.

Write	 a	 Makefile	 and	 in	 it	 a	 target	 clean	 that	 cleans	 the	 data	 base.	 Develop
additional	 targets	 such	 as	 start	 and	 stop,	 that	 start	 and	 stop	 the	mongoDB	 but
also	the	Eve	REST	service

Issue	the	command

What	does	the	_links	section	describe?

What	does	the	_items	section	describe?

6.7.1.8	Creating	REST	API	Endpoints

Next	we	wont	 to	 enhance	 our	 example	 a	 bit.	 First,	 let	 us	 get	 back	 to	 the	 eve

$	curl	-i	http://127.0.0.1:5000/people

				{

								"_items":	[],

								"_links":	{

												"self":	{

																"href":	"people",

																"title":	"people"

												},

												"parent":	{

																"href":	"/",

																"title":	"home"

												}

								},

								"_meta":	{

												"max_results":	25,

												"total":	0,

												"page":	1

								}

				}



working	directory	with

Add	the	following	content	to	a	file	called	run2.py

After	 creating	 and	 saving	 the	 file.	 Run	 the	 following	 command	 to	 start	 the
service

After	running	the	command,	you	can	interact	with	the	service	while	entering	the
following	url	in	the	web	browser:

You	can	also	open	up	a	second	terminal	and	type	in	it

The	following	information	will	be	returned:

This	example	illustrates	how	easy	it	is	to	create	REST	services	in	python	while
combining	information	from	a	dict	with	information	retrieved	from	the	system.
The	 important	 part	 is	 to	 understand	 the	 decorator	 app.route.	 The	 parameter
specifies	the	route	of	the	API	endpoint	which	will	be	the	address	appended	to	the

	$	cd	~/cloudmesh/eve

from	eve	import	Eve

from	flask	import	jsonify

import	os

import	getpass

	app	=	Eve	()

	@app.route('/student/albert')

def	alberts_information():

				data	=	{

								'firstname':	'Albert',

								'lastname':	'Zweistsein',

								'university':	'Indiana	University',

								'email':	'albert@example.com'

								}

				try:

								data['username']	=	getpass.getuser()

				except:

								data['username']	=	'not-found'

				return	jsonify(**data)

if	__name__	==	'__main__':

				app.run(debug=True,	host="127.0.0.1")

	$	python	run2.py

http://127.0.0.1:5000/student/alberts

$	curl	http://127.0.0.1:5000/student/alberts

{

		"firstname":	"Albert",

		"lastname":	"Zweistain",

		"university":	"Indiana	University",

		"email":	"albert@example.com",

		"username":	"albert"

}



base	path,	http://127.0.0.1:5000.	It	is	important	that	we	return	a	jsonified	object,	which
can	easily	be	done	with	the	jsonify	function	provided	by	flask.As	you	can	see	the
name	of	the	decorated	function	can	be	anything	you	lok.	The	route	specifies	how
we	access	it	from	the	service.

6.7.1.9	REST	API	Output	Formats	and	Request	Processing

Another	way	 of	managing	 the	 data	 is	 to	 utilize	 class	 definitions	 and	 response
types	that	we	explicitly	define.

If	we	want	 to	create	an	object	 like	Student,	we	can	first	define	a	python	class.
Create	a	file	called	student.py.	Please,	note	the	get	method	that	returns	simply
the	 information	 in	 the	 dict	 for	 the	 class.	 It	 is	 not	 related	 to	 the	 REST	 get
function.

Next	we	define	a	REST	service	with	Eve	as	shown	in	the	following	listing

class	Student(object):

				def	__init__(self,	firstname,	lastname,	university,	email):

								self.firstname	=	firstname

								self.lastname	=	lastname

								self.university	=	university

								self.email	=	email

								self.username	=	'undefined'

					def	get(self):

							return	self.__dict__

					def	setUsername(self,	name):

							self.username	=	name

							return	name

from	eve	import	Eve

from	student	import	Student

import	platform

import	psutil

import	json

from	flask	import	Response

import	getpass

	app	=	Eve()

		@app.route('/student/albert',	methods=['GET'])

def	processor():

				student	=	Student("Albert",

																						"Zweistein",

																						"Indiana	University",

																						"albert@example.edu")

				response	=	Response()

				response.headers["Content-Type"]	=	"application/json;	charset=utf-8"

				try:

								student.setUsername(getpass.getuser())

								response.headers["status"]	=	200

				except:

								response.headers["status"]	=	500

				response.data	=	json.dumps(student.get())

				return	response

if	__name__	==	'__main__':

				app.run(debug=True,	host='127.0.0.1')



In	contrast	to	our	earlier	example,	we	are	not	using	the	jsonify	object,	but	create
explicitly	a	response	that	we	return	to	the	clients.	The	response	includes	a	header
that	we	return	the	information	in	json	format,	a	status	of	200,	which	means	the
object	was	returned	successfully,	and	the	actual	data.

6.7.1.10	REST	API	Using	a	Client	Application

	This	example	is	not	tested.	Please	provide	feedback	and	improve.

In	the	Section	Rest	Services	with	Eve	we	created	our	own	REST	API	application
using	 Python	 Eve.	Now	 once	 the	 service	 running,	 a	we	 need	 to	 learn	 how	 to
interact	with	it	through	clients.

First	go	back	to	the	working	folder:

Here	we	create	a	new	python	file	called	client.py.	The	file	include	the	following
content.

Run	the	following	command	in	a	new	terminal	to	execute	the	simple	client	by

	$	cd	~/cloudmesh/eve

import	requests

import	json

def	get_all():

				response	=	requests.get("http://127.0.0.1:5000/student")

				print(json.dumps(response.json(),	indent=4,	sort_keys=True))

def	save_record():

				headers	=	{

								'Content-Type':	'application/json'

				}

				data	=	'{"firstname":"Gregor",

													"lastname":"von	Laszewski",

													"university":	"Indiana	University",

													"email":"jane@iu.edu",

													"username":	"jane"}'

				response	=	requests.post('http://localhost:5000/student/',

																														headers=headers,

																														data=data)

				print(response.json())

if	__name__	==	'__main__':

				save_record()

				get_all()

	$	python	client.py



Here	when	you	run	this	class	for	the	first	time,	it	will	run	successfully,	but	if	you
tried	 it	 for	 the	 second	 time,	 it	will	 give	 you	 an	 error.	 Because	we	 did	 set	 the
email	to	be	a	unique	field	in	the	schema	when	we	designed	the	settings.py	file	in
the	beginning.	So	if	you	want	to	save	another	record	you	must	have	entries	with
unique	emails.	In	order	to	make	this	dynamic	you	can	include	a	input	reading	by
using	the	terminal	to	get	the	student	data	first	and	instead	of	the	static	data	you
can	use	 the	user	 input	data	 from	the	 terminal	 to	get	dynamic	data.	But	 for	 this
exercise	we	do	not	expect	that	or	any	other	form	data	functionality.

In	order	to	get	the	saved	data,	you	can	comment	the	record	saving	function	and
uncomment	the	get	all	function.	In	python	commenting	is	done	by	using	#.

This	client	 is	using	 the	requests	 python	 library	 to	 send	GET,	POST	and	other
HTTP	 requests	 to	 the	 server	 so	you	can	 leverage	build	 in	methods	 to	 simplify
your	work.

The	 get_all	 function	provides	a	way	 to	get	 the	output	 to	 the	console	with	all	 the
data	in	the	student	database.	The	save_record	function	provides	a	way	to	save	data	in
the	database.	You	can	create	dynamic	functions	in	order	 to	save	dynamic	data.
However	it	may	take	some	time	for	you	to	apply	as	exercise.

Write	a	RESTful	service	to	determine	a	useful	piece	of	information	off	of	your
computer	i.e.	disk	space,	memory,	RAM,	etc.	In	this	exercise	what	you	need	to
do	is	use	a	python	library	to	extract	data	about	computer	information	mentioned
previously	 and	 send	 these	 information	 to	 the	 user	 once	 the	 user	 calls	 an	 API
endpoint	 like	 http://localhost:5000/performance/ram,	 it	 must	 return	 the	 RAM	 value	 of	 the
given	machine.	For	each	information	like	disk	space,	RAM,	etc	you	can	use	an
endpoint	per	each	feature	needed.	As	a	tip	for	this	exercise,	use	the	psutil	library
in	python	to	retrieve	the	data,	and	then	get	these	information	into	an	string	then
populate	a	class	called	Computer	and	try	to	save	the	object	like	wise.

6.7.1.11	Towards	cmd5	extensions	to	manage	eve	and	mongo	

	 Part	 of	 this	 section	 related	 to	 management	 of	 the	 mongo	 db
serviceis	done	by	the	cm4	command	we	will	be	developping	as	part	of



this	 class	 cms	mongo	admin	 that	 does	 all	 of	 the	 things	 explained	 next	 and
more.

Naturally	it	is	of	advantage	to	have	in	cms	administration	commands	to	manage
mongo	and	eve	from	cmd	instead	of	targets	in	the	Makefile.	Hence,	we	propose
that	 the	 class	develops	 such	an	extension.	We	will	 create	 in	 the	 repository	 the
extension	 called	 admin	 and	hope	 that	 students	 through	 collaborative	work	 and
pull	requests	complete	such	an	admin	command.

The	proposed	command	is	located	at:

https://github.com/cloudmesh/cloudmesh.rest/blob/master/cloudmesh/admin/command/admin.py

It	will	be	up	to	the	class	to	implement	such	a	command.	Please	coordinate	with
each	other.

The	implementation	based	on	what	we	provided	in	the	Make	file	seems	straight
forward.	 A	 great	 extension	 is	 to	 load	 the	 objects	 definitions	 or	 eve
e.g.	settings.py	not	from	the	class,	but	from	a	place	in	.cloudmesh.	I	propose	to
place	the	file	at:

the	location	of	 this	file	 is	used	when	the	Service	class	 is	 initialized	with	None.
Prior	 to	 starting	 the	 service	 the	 file	 needs	 to	 be	 copied	 there.	 This	 could	 be
achieved	with	a	set	command.

6.7.2	HATEOAS	☁

In	 the	 previous	 section	 we	 discussed	 the	 basic	 concepts	 about	 RESTful	 web
service.	Next	we	introduce	you	to	the	concept	of	HATEOAS

HATEOAS	stands	for	Hypermedia	as	the	Engine	of	Application	State	and	this	is
enabled	 by	 the	 default	 configuration	 within	 Eve.	 It	 is	 useful	 to	 review	 the
terminology	and	attributes	used	as	part	of	this	configuration.	HATEOS	explains
how	REST	API	endpoints	are	defined	and	it	provides	a	clear	description	on	how
the	API	can	be	consumed	through	these	terms:

_links

~/.cloudmesh/db/settings.py

https://github.com/cloudmesh/cloudmesh.rest/blob/master/cloudmesh/admin/command/admin.py
https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest-haetos.md


Links	describe	the	relation	of	current	resource	being	accessed	to	the	rest	of
the	 resources.	 It	 is	 like	 if	 we	 have	 a	 set	 of	 links	 to	 the	 set	 of	 objects	 or
service	endpoints	that	we	are	referring	in	the	RESTful	web	service.	Here	an
endpoint	 refers	 to	a	service	call	which	 is	 responsible	 for	executing	one	of
the	CRUD	operations	on	a	particular	object	or	set	of	objects.	More	on	the
links,	the	links	object	contains	the	list	of	serviceable	API	endpoints	or	list
of	 services.	When	we	are	calling	a	GET	 request	or	 any	other	 request,	we
can	 use	 these	 service	 endpoints	 to	 execute	 different	 queries	 based	 on	 the
user	 purpose.	 For	 instance,	 a	 service	 call	 can	 be	 used	 to	 insert	 data	 or
retrieve	 data	 from	 a	 remote	 database	 using	 a	 REST	 API	 call.	 About
databases	we	will	discuss	in	detail	in	another	chapter.

title

The	 title	 in	 the	 rest	 endpoint	 is	 the	 name	 or	 topic	 that	 we	 are	 trying	 to
address.	It	describes	the	nature	of	the	object	by	a	single	word.	For	instance
student,	bank-statement,	salary,etc	can	be	a	title.

parent

The	 term	 parent	 refers	 to	 the	 very	 initial	 link	 or	 an	 API	 endpoint	 in	 a
particular	RESTful	web	service.	Generally	this	is	denoted	with	the	primary
address	like	http://example.com/api/v1/.

href

The	term	href	refers	to	the	url	segment	that	we	use	to	access	the	a	particular
REST	 API	 endpoint.	 For	 instance	 “student?page=1”	 will	 return	 the	 first
page	of	student	list	by	retrieving	a	particular	number	of	items	from	a	remote
database	 or	 a	 remote	 data	 source.	 The	 full	 url	 will	 look	 like	 this,
“http://www.exampleapi.com/student?page=1”.

In	 addition	 to	 these	 fields	 eve	 will	 automatically	 create	 the	 follwoing
information	when	resources	are	created	as	showcased	ot

http://python-eve.org/features.html

Field Description

http://python-eve.org/features.html


_created item	creation	date.
_updated item	last	updated	on.
_etag ETag,	to	be	used	for	concurrency	control	and	conditional	requests.
_id unique	item	key,	also	needed	to	access	the	individual	item	endpoint.

Pagenation	information	can	be	included	in	the	_meta	field.

6.7.2.1	Filtering

Clients	can	submit	query	strings	to	the	rest	service	to	retrieve	resources	based	on
a	 filter.	This	 also	 allows	 sorting	of	 the	 results	 queried.	One	nice	 feature	 about
using	 mongo	 as	 a	 backend	 database	 is	 that	 Eve	 not	 only	 allows	 python
conditional	expressions,	but	also	mongo	queries.

A	number	of	examples	to	conduct	such	queries	include:

A	python	expression

6.7.2.2	Pretty	Printing

Pretty	printing	is	typically	supported	by	adding	the	parameter	?pretty	or	?pretty=1

If	this	does	not	work	you	can	always	use	python	to	beautify	a	json	output	with

or

6.7.2.3	XML

If	for	some	reason	you	like	to	retrieve	the	information	in	XML	you	can	specify
this	for	example	through	curl	with	an	Accept	header

$	curl	-i	-g	http://eve-demo.herokuapp.com/people?where={%22lastname%22:%20%22Doe%22}

$	curl	-i	http://eve-demo.herokuapp.com/people?where=lastname=="Doe"

$	curl	-i	http://localhost/people?pretty

$	curl	-i	http://localhost/people	|	python	-m	json.tool

$	curl	-H	"Accept:	application/xml"	-i	http://localhost



6.7.3	Extensions	to	Eve	☁

A	number	of	extensions	have	been	developed	by	the	community.	This	includes
eve-swagger,	eve-sqlalchemy,	eve-elastic,	eve-mongoengine,	eve-neo4j,	eve.net,
eve-auth-jwt,	and	flask-sentinel.

Naturally	there	are	many	more.

Students	 have	 the	 opportunity	 to	 pic	 one	 of	 the	 community	 extensions	 and
provide	a	section	for	the	handbook.

Pick	 one	 of	 the	 extension,	 research	 it	 and	 provide	 a	 small	 section	 for	 the
handbook	so	we	add	it.

6.7.3.1	Object	Management	with	Eve	and	Evegenie

http://python-eve.org/

Eve	 makes	 the	 creation	 of	 a	 REST	 implementation	 in	 python	 easy.	 We	 will
provide	you	with	an	implementation	example	that	showcases	that	we	can	create
REST	services	without	writing	a	single	line	of	code.	The	code	for	this	is	located
at	https://github.com/cloudmesh/rest

This	code	will	have	a	master	branch	but	will	also	have	a	dev	branch	in	which	we
will	add	gradually	more	objects.	Objects	in	the	dev	branch	will	include:

virtual	directories
virtual	clusters
job	sequences
inventories

You	 may	 want	 to	 check	 our	 active	 development	 work	 in	 the	 dev	 branch.
However	for	the	purpose	of	this	class	the	master	branch	will	be	sufficient.

6.7.3.1.1	Installation

First	we	have	to	install	mongodb.	The	installation	will	depend	on	your	operating
system.	For	the	use	of	 the	rest	service	it	 is	not	 important	 to	integrate	mongodb

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest-eve-extensions.md
http://python-eve.org/
https://github.com/cloudmesh/rest


into	 the	 system	 upon	 reboot,	 which	 is	 focus	 of	 many	 online	 documents.
However,	 for	 us	 it	 is	 better	 if	we	 can	 start	 and	 stop	 the	 services	 explicitly	 for
now.

On	ubuntu,	you	need	to	do	the	following	steps:

	TODO:	Section	can	be	contributed	by	student.

On	windows	10,	you	need	to	do	the	following	steps:

	TODO:	Section	can	be	contributed	by	student.	If	you	elect	Windows	10.	You
could	be	using	the	online	documentation	provided	by	starting	it	on	Windows,	or
running	it	in	a	docker	container.

On	macOS	you	can	use	home-brew	and	install	it	with:

In	future	we	may	want	to	add	ssl	authentication	in	which	case	you	may	need	to
install	it	as	follows:

6.7.3.1.2	Starting	the	service

We	have	provided	a	convenient	Makefile	that	currently	only	works	for	macOS.
It	will	be	easy	for	you	to	adapt	it	to	Linux.	Certainly	you	can	look	at	the	targets
in	the	makefile	and	replicate	them	one	by	one.	Important	targets	are	deploy	and
test.

When	using	the	makefile	you	can	start	the	services	with:

IT	will	start	two	terminals.	IN	one	you	will	see	the	mongo	service,	in	the	other
you	 will	 see	 the	 eve	 service.	 The	 eve	 service	 will	 take	 a	 file	 called
sample.settings.py	 that	 is	 base	 on	 sample.json	 for	 the	 start	 of	 the	 eve	 service.
The	mongo	 service	 is	 configured	 in	 such	 a	way	 that	 it	 only	 accepts	 incoming
connections	from	the	local	host	which	will	be	sufficient	for	our	case.	The	mongo
data	is	written	into	the	$USER/.cloudmesh	directory,	so	make	sure	it	exists.

$	brew	update

$	brew	install	mongodb

$	brew	install	mongodb	--with-openssl

$	make	deploy



To	test	the	services	you	can	say:

You	will	se	a	number	of	json	text	been	written	to	the	screen.

6.7.3.1.3	Creating	your	own	objects

The	example	demonstrated	how	easy	 it	 is	 to	create	a	mongodb	and	an	eve	rest
service.	 Now	 let	 us	 use	 this	 example	 to	 create	 your	 own.	 For	 this	 we	 have
modified	a	tool	called	evegenie	to	install	it	onto	your	system.

The	original	documentation	for	evegenie	is	located	at:

http://evegenie.readthedocs.io/en/latest/

However,	 we	 have	 improved	 evegenie	 while	 providing	 a	 commandline	 tool
based	on	it.	The	improved	code	is	located	at:

https://github.com/cloudmesh/evegenie

You	clone	it	and	install	on	your	system	as	follows:

This	should	install	in	your	system	evegenie.	YOu	can	verify	this	by	typing:

If	 you	 see	 the	 path	 evegenie	 is	 installed.	With	 evegenie	 installed	 its	 usage	 is
simple:

It	takes	a	json	file	as	input	and	writes	out	a	settings	file	for	the	use	in	eve.	Lets
assume	 the	 file	 is	 called	 sample.json,	 than	 the	 settings	 file	 will	 be	 called
sample.settings.py.	Having	 the	 evegenie	program	will	 allow	us	 to	generate	 the
settings	 files	 easily.	 You	 can	 include	 them	 into	 your	 project	 and	 leverage	 the

$	make	test

$	cd	~/github

$	git	clone	https://github.com/cloudmesh/evegenie

$	cd	evegenie

$	python	setup.py	install

$	pip	install	.

$	which	evegenie

$	evegenie

Usage:

		evegenie	--help

		evegenie	FILENAME

http://evegenie.readthedocs.io/en/latest/
https://github.com/cloudmesh/evegenie


Makefile	 targets	 to	start	 the	services	 in	your	project.	 In	case	you	generate	new
objects,	make	sure	you	rerun	evegenie,	kill	all	previous	windows	in	which	you
run	 eve	 and	 mongo	 and	 restart.	 In	 case	 of	 changes	 to	 objects	 that	 you	 have
designed	and	run	previously,	you	need	to	also	delete	the	mongod	database.

6.8	OPENAPI	2.0

6.8.1	OpenAPI	2.0	Specification	☁

Swagger	 provides	 through	 its	 specification	 the	 definition	 of	 REST	 services
through	a	YAML	or	JSON	document.

When	 following	 the	 API-specification-first	 approach	 to	 define	 and	 develop	 a
RESTful	service,	the	first	and	foremost	step	is	to	define	the	API	conforming	to
the	 OpenAPI	 specification,	 and	 then	 using	 codegen	 tools	 to	 conveniently
generate	server	side	stub	code,	client	code,	documentations,	in	the	language	you
desire.	In	Section	REST	Service	Generation	with	OpenAPI	we	have	introduced
the	codegen	tool	and	how	to	use	that	to	generate	server	side	and	client	side	code
and	documentation.	In	this	Section	The	Virtual	Cluster	example	API	Definition
we	will	 use	 a	 slightly	more	 complex	 example	 to	 show	 how	 to	 define	 an	API
following	 the	 OpenAPI	 2.0	 specification.	 The	 example	 is	 to	 retrieve	 virtual
cluster	(VC)	object	from	the	server.

The	 OpenAPI	 Specification	 is	 formerly	 known	 as	 Swagger	 RESTful	 API
Documentation	Specification.	It	defines	a	specification	to	describe	and	document
a	RESTful	service	API.	It	is	also	known	under	version	3.0	of	swagger.	However,
as	 the	 tools	 for	 3.0	 are	 not	 yet	 completed,	 we	 will	 continue	 for	 now	 to	 use
version	swagger	2.0,	till	the	transition	has	been	completed.	This	is	especially	of
importance,	as	we	need	to	use	the	swagger	codegen	tool,	which	currently	support
only	up	to	specification	v2.	Hence	we	are	at	this	time	using	OpenAPI/Swagger
v2.0	in	our	example.	There	are	some	structure	and	syntax	changes	in	v3,	while
the	essence	is	very	similar.	For	more	details	of	the	changes	between	v3	and	v2,
please	 refer	 to	 A	 document	 published	 on	 the	 Web	 titled	 Difference	 between
OpenAPI	3.0	and	Swagger	2.0.

You	 can	write	 the	API	 definition	 in	 json	 for	 yaml	 format.	 Let	 us	 discuss	 this
format	briefly	and	focus	on	yaml	as	it	is	easier	to	read	and	maintain.

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/swagger-spec.md
https://blog.readme.io/an-example-filled-guide-to-swagger-3-2/


On	the	root	level	of	the	yaml	document	we	see	fields	like	swagger,	info,	and	so
on.	Among	these	fields,	swagger,	info,	and	path	are	required.	Their	meaning	is
as	follows:

swagger

specifies	the	version	number.	In	our	case	a	string	value	‘2.0’	is	used	as	we
are	writing	the	definition	conforming	to	the	v2.0	specification.

info

defines	metadata	information	related	to	the	API.	E.g.,	the	API	version,	title
and	 description,	 termsOfService	 if	 applicable,	 contact	 information	 and
license,	 etc.	 Among	 these	 attributes,	 version	 and	 title	 are	 required	 while
others	are	optional.

path

defines	 the	 actual	 endpoints	 of	 the	 exposed	 RESTful	 API	 service.	 Each
endpoint	has	a	field	pattern	as	the	key,	and	a	Path	Item	Object	as	the	value.
In	 this	 example	 we	 have	 defined	 /vc	 and	 /vc/{id}	 as	 the	 two	 service
endpoints.	They	will	 be	part	of	 the	 final	 service	URL,	appended	after	 the
service	host	and	basePath,	which	will	be	explained	later.

Let	 us	 focus	 on	 the	Path	 Item	Object.	 It	 contains	 one	 or	more	 supported
operations	on	the	service	endpoint.	An	operation	is	keyed	by	a	valid	HTTP
operation	verb,	e.g.,	one	of	get,	put,	post,	delete,	or	patch.	It	has	a	value	of
Operation	Object	that	describes	the	operations	in	more	detail.

The	Operation	Object	will	always	require	a	Response	Object.	A	Response
Object	 has	 a	HTTP	status	code	 as	 the	 key,	 e.g.,	200	 as	 successful	 return;
40X	 as	 authentication	 and	 authorization	 related	 errors;	 and	 50x	 as	 other
server	side	servers.	It	can	also	has	a	default	response	keyed	by	default	 for
undeclared	 http	 status	 return	 code.	 The	 Response	 Object	 value	 has	 a
required	description	field,	and	if	anything	is	returned,	a	schema	indicating
the	object	type	to	be	returned,	which	could	be	a	primitive	type,	e.g.,	string,
or	an	array	or	customized	object.	 In	case	of	object	 or	 an	array	 of	object,
use	$ref	to	point	to	the	definition	of	the	object.	In	this	example,	we	have



$ref:	“#/definitions/VC”

to	 point	 to	 the	 VC	 definition	 in	 the	 definitions	 section	 in	 the	 same
specification	file,	which	will	be	explained	later.

Besides	 the	 required	 field,	 the	Operation	Object	 can	 have	 summary	 and
description	 to	 indicate	 what	 the	 operation	 is	 about;	 and	 operationId	 to
uniquely	 identify	 the	 operation;	 and	 consumes	 and	 produces	 to	 indicate
what	MIME	types	it	expects	as	input	and	for	returns,	e.g.,	application/json
in	most	modern	RESTful	APIs.	It	can	further	specify	what	input	parameter
is	 expected	using	parameters,	which	 requires	 a	name	 and	 in	 fields.	 name
specifies	the	name	of	the	parameter,	and	in	specifies	from	where	to	get	the
parameter,	 and	 its	 possible	 values	 are	 query,	 header,	 path,	 formData	 or
body.	In	this	example	in	the	/vc/{id}	path	we	obtain	the	id	parameter	 from
the	URL	path	wo	it	has	the	path	value.	When	the	 in	has	path	as	its	value,
the	required	field	is	required	and	has	to	be	set	as	true;	when	the	in	has	value
other	than	body,	a	type	field	is	required	to	specify	the	type	of	the	parameter.

While	the	three	root	level	fields	mentioned	previously	are	required,	in	most
cases	we	will	also	use	other	optional	fields.

host

to	indicate	where	the	service	is	to	be	deployed,	which	could	be	localhost	or
a	 valid	 IP	 address	 or	 a	DNS	name	of	 the	 host	where	 the	 service	 is	 to	 be
deployed.	 If	other	port	number	other	 than	80	 is	 to	be	used,	write	 the	port
number	as	well,	e.g.,	localhost:8080.

schemas

to	specify	the	transfer	protocol,	e.g,	http	or	https.

basePath

to	specify	 the	common	base	URL	 to	be	append	after	 the	host	 to	 form	 the
base	path	for	all	the	endpoints,	e.g.,	/api	or	/api/1.0/.	 In	 this	example	with
the	 values	 specified	 we	 would	 have	 the	 final	 service	 endpoints
http://localhost:8080/api/vcs	 and	 http://localhost:8080/api/vc/{id}	 by
combining	the	schemas,	host,	basePath	and	paths	values.



consumes	and	produces

can	also	be	specified	on	the	top	level	to	specify	the	default	MIME	types	of
the	input	and	return	if	most	paths	and	the	defined	operations	have	the	same.

definitions

as	 used	 in	 in	 the	 paths	 field,	 in	 order	 to	 point	 to	 a	 customized	 object
definition	with	a	$ref	keyword.

The	definitions	field	really	contains	the	object	definition	of	the	customized
objects	 involved	 in	 the	 API,	 similar	 to	 a	 class	 definition	 in	 any	 Object
Oriented	programming	language.	In	this	example,	we	defined	a	VC	object,
and	hierarchically	a	Node	object.	Each	object	defined	is	a	 type	of	Schema
Object	in	which	many	field	could	be	used	to	specify	the	object	(see	details
in	the	REF	link	at	top	of	the	document),	but	the	most	frequently	used	ones
are:

type

to	specify	the	type,	and	in	the	customized	definition	case	the	value	is	mostly
object.

required

field	to	list	the	names	of	the	required	attributes	of	the	object.

properties

has	 the	 detailed	 information	 of	 each	 attribute/property	 of	 the	 object,	 e.g,
type,	format.	It	also	supports	hierarchical	object	definition	so	a	property	of
one	 object	 could	 be	 another	 customized	 object	 defined	 elsewhere	 while
using	schema	and	$ref	keyword	 to	point	 to	 the	definition.	 In	 this	example
we	have	defined	a	VC,	 or	virtual	 cluster,	object,	while	 it	 contains	another
object	definition	of

Node



as	part	of	a	cluster.

6.8.1.1	The	Virtual	Cluster	example	API	Definition

6.8.1.1.1	Terminology

VC

A	 virtual	 cluster,	 which	 has	 one	 Front-End	 (FE)	 management	 node	 and
multiple	compute	nodes.	A	VC	object	also	has	id	and	name	 to	identify	the
VC,	and	nnodes	to	indicate	how	many	compute	nodes	it	has.

FE

A	management	node	from	which	to	access	the	compute	nodes.	The	FE	node
usually	connects	to	all	the	compute	nodes	via	private	network.

Node

A	computer	node	object	that	the	info	ncores	to	indicate	number	of	cores	it
has,	and	ram	and	localdisk	to	show	the	size	of	RAM	and	local	disk	storage.

6.8.1.1.2	Specification

swagger:	"2.0"

info:

		version:	"1.0.0"

		title:	"A	Virtual	Cluster"

		description:	"Virtual	Cluster	as	a	test	of	using	swagger-2.0	specification	and	codegen"

		termsOfService:	"http://swagger.io/terms/"

		contact:

				name:	"IU	ISE	software	and	system	team"

		license:

				name:	"Apache"

host:	"localhost:8080"

basePath:	"/api"

schemes:

		-	"http"

consumes:

		-	"application/json"

produces:

		-	"application/json"

paths:

		/vcs:

				get:

						description:	"Returns	all	VCs	from	the	system	that	the	user	has	access	to"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"A	list	of	VCs."

										schema:

												type:	"array"

												items:

														$ref:	"#/definitions/VC"



6.8.1.2	References

		/vcs/{id}:

				get:

						description:	"Returns	all	VCs	from	the	system	that	the	user	has	access	to"

						operationId:	getVCById

						parameters:

								-	name:	id

										in:	path

										description:	ID	of	VC	to	fetch

										required:	true

										type:	string

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"The	vc	with	the	given	id."

										schema:

												$ref:	"#/definitions/VC"

								default:

										description:	unexpected	error

										schema:

												$ref:	'#/definitions/Error'

definitions:

		VC:

				type:	"object"

				required:

						-	"id"

						-	"name"

						-	"nnodes"

						-	"FE"

						-	"computes"

				properties:

						id:

								type:	"string"

						name:

								type:	"string"

						nnodes:

								type:	"integer"

								format:	"int64"

						FE:

								type:	"object"

								schema:

										$ref:	"#/definitions/Node"

						computes:

								type:	"array"

								items:

										$ref:	"#/definitions/Node"

						tag:

								type:	"string"

		Node:

				type:	"object"

				required:

						-	"ncores"

						-	"ram"

						-	"localdisk"

				properties:

						ncores:

								type:	"integer"

								format:	"int64"

						ram:

								type:	"integer"

								format:	"int64"

						localdisk:

								type:	"integer"

								format:	"int64"

		Error:

				required:

				-	code

				-	message

				properties:

						code:

								type:	integer

								format:	int32

						message:

								type:	string



The	official	OpenAPI	2.0	Documentation

6.8.2	OpenAPI	REST	Service	via	Introspection	☁

The	simplest	way	 to	create	an	OpenAPI	 service	 is	 to	use	 the	conexion	service
and	read	in	the	specification	from	its	yaml	file.	It	will	than	be	introspected	and
dynamically	 methods	 are	 created	 that	 are	 used	 for	 the	 implementation	 of	 the
server.

The	full	example	for	this	is	available	in

https://github.com/cloudmesh-community/nist/tree/master/examples/flask-
connexion-swagger

An	extensive	documentation	is	avalable	at

https://media.readthedocs.org/pdf/connexion/latest/connexion.pdf

This	 example	 will	 return	 dynamically	 the	 cpu	 information	 of	 a	 computer	 to
demonstrate	 how	 simple	 it	 is	 to	 generate	 in	 python	 a	 REST	 service	 from	 an
OpenAPI	specification.

Our	requirements.txt	file	includes

as	dependencies.	The	server.py	file	simply	contains	the	following	code:

This	will	run	our	REST	service	under	the	assumption	we	have	a	cpu.yaml	and	a	cpu.py

flask

connexion[swagger-ui]

from	flask	import	jsonify

import	connexion

#	Create	the	application	instance

app	=	connexion.App(__name__,	specification_dir="./")

#	Read	the	yaml	file	to	configure	the	endpoints

app.add_api("cpu.yaml")

#	create	a	URL	route	in	our	application	for	"/"

@app.route("/")

def	home():

				msg	=	{"msg":	"It's	working!"}

				return	jsonify(msg)

if	__name__	==	"__main__":

				app.run(port=8080,	debug=True)

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/cloudmesh-community/book/blob/master/chapters/rest/swagger-introspection-2-0.md
https://github.com/cloudmesh-community/nist/tree/master/examples/flask-connexion-swagger
https://media.readthedocs.org/pdf/connexion/latest/connexion.pdf


files	as	our	yaml	file	calls	out	methods	from	cpu.py

The	yaml	file	looks	as	follows

Here	we	 simply	 implement	 a	 get	method	 and	 associate	 is	with	 the	URL	 /cpu.
The	 operationid,	 defines	 the	 method	 that	 we	 call	 which	 as	 we	 used	 the	 local
directory	 is	 included	 in	 the	 file	 cpu.py.	 This	 is	 controlled	 by	 the	 prefix	 in	 the
operation	id.

A	very	simple	function	to	return	the	cpu	information	is	defined	in	cpu.py	which	we
list	next

swagger:	"2.0"

info:

		version:	"0.0.1"

		title:	"cpuinfo"

		description:	"A	simple	service	to	get	cpuinfo	as	an	example	of	using	swagger-2.0	specification	and	codegen"

		termsOfService:	"http://swagger.io/terms/"

		contact:

				name:	"Cloudmesh	REST	Service	Example"

		license:

				name:	"Apache"

host:	"localhost:8080"

basePath:	"/cloudmesh"

schemes:

		-	"http"

consumes:

		-	"application/json"

produces:

		-	"application/json"

paths:

		/cpu:

				get:

						tags:

								-	CPU

						operationId:	cpu.get_processor_name

						description:	"Returns	cpu	information	of	the	hosting	server"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"CPU	info"

										schema:

												$ref:	"#/definitions/CPU"

definitions:

		CPU:

				type:	"object"

				required:

						-	"model"

				properties:

						model:

						type:	"string"

import	os,	platform,	subprocess,	re

from	flask	import	jsonify

def	get_processor_name():

				if	platform.system()	==	"Windows":

								p	=	platform.processor()

				elif	platform.system()	==	"Darwin":

								command	=	"/usr/sbin/sysctl	-n	machdep.cpu.brand_string"

								p	=	subprocess.check_output(command,	shell=True).strip().decode()

				elif	platform.system()	==	"Linux":

								command	=	"cat	/proc/cpuinfo"

								all_info	=	subprocess.check_output(command,	shell=True).strip().decode()

								for	line	in	all_info.split("\n"):

												if	"model	name"	in	line:

																p	=	re.sub(".*model	name.*:",	"",	line,	1)



We	have	 implemented	 this	 function	 to	 return	 a	 jsonified	 information	 from	 the
dict	pinfo.

To	simplify	working	with	this	example,	we	also	provide	a	makefile	for	OSX	that
allows	us	to	call	the	server	and	the	call	to	the	servoer	in	two	different	terminals

When	we	call

our	demo	is	run.

6.8.2.1	Verification

It	is	important	to	be	able	to	verify	if	a	yaml	file	is	correct.	To	identify	this,	the
easiest	method	is	to	use	the	swagger	editor.	There	is	an	online	verion	available
at:

https://editor.swagger.io/

Go	to	the	Web	site,	remove	the	current	petstore	example	and	simply	paste	your
yaml	file	in	it.	Debug	meessages	will	be	helping	you	to	correct	things.

A	terminal	based	command	may	als	be	helpful,	but	is	a	bit	difficult	to	read.

6.8.2.2	Mock	service

				else:

								p	=	"cannot	find	cpuinfo"

				pinfo	=	{"model":	p}

				return	jsonify(pinfo)

define	terminal

				osascript	-e	'tell	application	"Terminal"	to	do	script	"cd	$(PWD);	$1"'

endef

install:

				pip	install	-r	requirements.txt

demo:

				$(call	terminal,	python	server.py)

				sleep	3

				@echo	"==============================================================================="

				@echo	"Get	the	info"

				@echo	"==============================================================================="

				curl	http://localhost:8080/cloudmesh/cpu

				@echo

				@echo	"==============================================================================="

make	demo

$	connexion	run	cpu.yaml	--stub	--debug

https://editor.swagger.io/


In	some	cases	it	may	be	useful	to	develop	the	API	without	having	yet	developed
methods	that	you	call	with	the	OperationI.	In	this	case	it	is	useful	to	run	a	mock
service.	YOu	can	invoce	such	a	service	with

6.8.2.3	Exercise

OpenAPI.Conexion.1:

Modify	the	makefile	so	it	works	also	on	ubuntu,	but	do	not	disable	the
ability	to	run	it	correctly	on	OSX.	Tip	use	if’s	in	makefiles	base	on	the
OS.	You	can	look	at	 the	makefiles	 that	create	 this	book	as	example.
find	alternatives	to	sarting	a	terminal	in	Linux.

OpenAPI.Conexion.2:

Modify	 the	 makefile	 so	 it	 works	 also	 on	 Windows	 10,	 but	 do	 not
disable	the	ability	to	run	it	correctly	on	OSX.	Tip	use	ifs	in	makefiles.
You	can	look	at	the	makefiles	that	create	this	book	as	example.	Find
alternatives	to	start	a	powershell	or	cmd.exe	in	windows.	Maybe	you
need	to	use	gitbash.

OpenAPI.Conexion.3:

Implement	 a	 swagger	 specification	 of	 an	 issue	 related	 to	 the	 NIST
BDRA.	 Implement	 it.	Please	remember	 this	could	prepare	you	 for	a
project	good	topics	include:

virtual	 compute	 service	 interfacing	with	 aws,	 azure,	 google	 or
openstack
virtual	 directory	 service	 interfacing	 with	 google	 drive,	 box,
github,	iCloud,	ftp,	scp,	and	others

As	there	are	so	many	possibilities	to	contribute,	come	up	in	class	with
one	 specification	and	 than	 implement	 it	 for	different	 providers.	The
difficulty	here	is	 that	 it	 is	not	done	for	one	IaaS,	but	 for	all	of	 them
and	all	can	be	integrated.

$	connexion	run	cpu.yaml	--mock=all	-v



This	exercise	is	typically	growing	to	be	part	of	your	class	project.

OpenAPI.Conexion.4:

Develop	 instructions	 on	 how	 to	 integrate	 the	 OpenAPI	 service
framework	in	a	WSGI	based	Web	service.	Chose	a	service	you	like	so
that	the	service	could	run	in	production.

OpenAPI.Conexion.5:

Develop	 instructions	 on	 how	 to	 integrate	 the	 OpenAPI	 service
framework	in	Tornado	so	the	service	could	run	in	production.

6.8.3	OpenAPI	REST	Service	via	Codegen	☁

	REST	36:02	Swagger

In	 this	 subsection	 we	 are	 discussing	 how	 to	 use	 OpenAPI	 2.0	 and	 Swagger
Codegen	to	define	and	develop	a	REST	Service.

We	assume	you	have	been	familiar	with	the	concept	of	REST	service,	OpenAPI
as	discussed	in	section	Overview	of	Rest.

In	next	section	we	will	further	look	into	the	Swagger/OpenAPI	2.0	specification
Swagger	 Specification	 and	 use	 a	 slight	 more	 complex	 example	 to	 walk	 you
through	 the	 design	 of	 a	 RESTful	 service	 following	 the	 OpenAPI	 2.0
specifications.

We	will	use	a	simple	example	to	demonstrate	the	process	of	developing	a	REST
service	with	Swagger/OpenAPI	2.0	specification	and	the	tools	related	to	is.	The
general	steps	are:

Step	 1	 (Section	 Step	 1:	 Define	 Your	 REST	 Service.	 Define	 the	 REST
service	 conforming	 to	Swagger/OpenAPI	2.0	 specification.	 It	 is	 a	YAML
document	 file	 with	 the	 basics	 of	 the	 REST	 service	 defined,	 e.g.,	 what
resources	it	has	and	what	actions	are	supported.

Step	 2	 (Section	 Step	 2:	 Server	 Side	 Stub	 Code	 Generation	 and

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/swagger-codegen.md
https://youtu.be/0_Ub13py_K8


Implementation.	 Use	 Swagger	 Codegen	 to	 generate	 the	 server	 side	 stub
code.	Fill	in	the	actual	implementation	of	the	business	logic	portion	in	the
code.

Step	3	(Section	Step	3:	Install	and	Run	the	REST	Service.	Install	the	server
side	code	and	run	it.	The	service	will	then	be	available.

Step	 4	 (Section	 Step	 4:	 Generate	 Client	 Side	 Code	 and	Verify.	Generate
client	side	code.	Develop	code	to	call	the	REST	service.	Install	and	run	to
verify.

6.8.3.1	Step	1:	Define	Your	REST	Service

In	 this	 example	 we	 define	 a	 simple	 REST	 service	 that	 returns	 the	 hosting
server’s	basic	CPU	info.	The	example	specification	in	yaml	is	as	follows:

6.8.3.2	Step	2:	Server	Side	Stub	Code	Generation	and	Implementation

With	 the	REST	 service	 having	 been	 defined,	we	 can	 now	 generate	 the	 server

swagger:	"2.0"

info:

		version:	"0.0.1"

		title:	"cpuinfo"

		description:	"A	simple	service	to	get	cpuinfo	as	an	example	of	using	swagger-2.0	specification	and	codegen"

		termsOfService:	"http://swagger.io/terms/"

		contact:

				name:	"Cloudmesh	REST	Service	Example"

		license:

				name:	"Apache"

host:	"localhost:8080"

basePath:	"/api"

schemes:

		-	"http"

consumes:

		-	"application/json"

produces:

		-	"application/json"

paths:

		/cpu:

				get:

						description:	"Returns	cpu	information	of	the	hosting	server"

						produces:

								-	"application/json"

						responses:

								"200":

										description:	"CPU	info"

										schema:

												$ref:	"#/definitions/CPU"

definitions:

		CPU:

				type:	"object"

				required:

						-	"model"

				properties:

						model:

								type:	"string"



side	stub	code	easily.

6.8.3.2.1	Setup	the	Codegen	Environment

You	will	need	to	install	the	Swagger	Codegen	tool	if	not	yet	done	so.	For	macOS
we	recommend	that	you	use	the	homebrew	install	via

On	Ubuntu	you	can	install	swagger	as	follows	(update	the	version	as	needed):

Add	the	alias	to	your	.bashrc	or	.bash_profile	 file.	After	you	start	a	new	terminal	you
can	use	in	that	terminal	now	the	command

For	other	platforms	you	can	just	use	the	.jar	file,	which	can	be	downloaded	from
this	link.

Also	make	sure	Java	7	or	8	is	installed	in	your	system.	To	have	a	well	defined
location	we	recommend	that	you	place	the	code	in	the	directory	~/cloudmesh.	In	this
directory	you	will	also	place	the	cpu.yaml	file.

6.8.3.2.2	Generate	Server	Stub	Code

After	 you	have	 the	 codegen	 tool	 ready,	 and	with	 Java	7	or	 8	 installed	 in	your
system,	you	can	run	the	following	to	generate	the	server	side	stub	code:

or	if	you	have	not	created	an	alias

$	brew	install	swagger-codegen

$	mkdir	~/swagger

$	cd	~/swagger

$	wget	https://oss.sonatype.org/content/repositories/releases/io/swagger/swagger-codegen-cli/2.3.1/swagger-codegen-cli-2.3.1.jar

$	alias	swagger-codegen="java	-jar	~/swagger/swagger-codegen-cli-2.3.1.jar"

swagger-codegen

$	swagger-codegen	generate	\

				-i	~/cloudmesh/cpu.yaml	\

				-l	python-flask	\

				-o	~/cloudmesh/swagger_example/server/cpu/flaskConnexion	\

				-D	supportPython2=true

$	java	-jar	swagger-codegen-cli.jar	generate	\

				-i	~/cloudmesh/cpu.yaml	\

				-l	python-flask	\

				-o	~/cloudmesh/swagger_example/server/cpu/flaskConnexion	\

				-D	supportPython2=true

https://swagger.io/docs/swagger-tools/
https://oss.sonatype.org/content/repositories/releases/io/swagger/swagger-codegen-cli/2.3.1/swagger-codegen-cli-2.3.1.jar


In	 the	 specified	 directory	 under	 flaskConnexion	 you	 will	 find	 the	 generated
python	 flask	code,	with	python	2	compatibility.	 It	 is	best	 to	place	 the	swagger
code	under	the	directory	~/cloudmesh	to	have	a	location	where	you	can	easily	find	it.
If	you	want	to	use	python	3	make	sure	to	chose	the	appropriate	option.	To	switch
between	python	2	and	python	3	we	recommend	that	you	use	pyenv	as	discussed
in	our	python	section.

6.8.3.2.3	Fill	in	the	actual	implementation

Under	 the	 flaskConnexion	 directory,	 you	will	 find	 a	 swagger_server	 directory,
under	which	you	will	find	directories	with	models	defined	and	controllers	code
stub	resides.	The	models	code	are	generated	from	the	definition	in	Step	1.	On	the
controller	 code	 though,	we	will	 need	 to	 fill	 in	 the	 actual	 implementation.	You
may	 see	 a	 default_controller.py	 file	 under	 the	 controllers	 directory	 in	 which	 the
resource	and	action	 is	defined	but	yet	 to	be	 implemented.	 In	our	example,	you
will	find	such	a	function	definition	which	we	list	next:

Please	note	 the	 do	some	magic!	 string	 at	 the	 return	 of	 the	 function.	This	 ought	 to	 be
replaced	with	actual	implementation	what	you	would	like	your	REST	call	to	be
really	 doing.	 In	 reality	 this	 could	 be	 some	 call	 to	 a	 backend	 database	 or
datastore;	 a	 call	 to	 another	 API;	 or	 even	 calling	 another	 REST	 service	 from
another	location.	In	this	example	we	simply	retrieve	the	cpu	model	information
from	the	hosting	server	through	a	simple	python	call	to	illustrate	this	principle.
Thus	you	can	define	the	following	code:

def	cpu_get():		#	noqa:	E501

				"""cpu_get

				Returns	cpu	info	of	the	hosting	server	#	noqa:	E501

				:rtype:	CPU

				"""

				return	'do	some	magic!'

import	os,	platform,	subprocess,	re

def	get_processor_name():

				if	platform.system()	==	"Windows":

								return	platform.processor()

				elif	platform.system()	==	"Darwin":

								command	=	"/usr/sbin/sysctl	-n	machdep.cpu.brand_string"

								return	subprocess.check_output(command,	shell=True).strip()

				elif	platform.system()	==	"Linux":

								command	=	"cat	/proc/cpuinfo"

								all_info	=	subprocess.check_output(command,	shell=True).strip()

								for	line	in	all_info.split("\n"):

												if	"model	name"	in	line:

																return	re.sub(".*model	name.*:",	"",	line,	1)

				return	"cannot	find	cpuinfo"



And	then	change	the	cpu_get()	function	to	the	following:

Please	 note	 we	 are	 returning	 a	 CPU	 object	 as	 defined	 in	 the	 API	 and	 later
generated	by	the	codegen	tool	in	the	models	directory.

It	is	best	not	to	include	the	definition	of	get_processor_name()	in	the	same	file	as	you	see
the	definition	of	cpu_get().	The	reason	for	this	is	that	in	case	you	need	to	regenerate
the	 code,	 your	modified	 code	will	 naturally	be	overwritten.	Thus,	 to	minimize
the	changes,	we	do	recommend	to	maintain	that	portion	in	a	different	filename
and	import	the	function	as	to	keep	the	modifications	small.

At	this	step	we	have	completed	the	server	side	code	development.

6.8.3.3	Step	3:	Install	and	Run	the	REST	Service:

Now	we	can	install	and	run	the	REST	service.	It	is	strongly	recommended	that
you	run	this	in	a	pyenv	or	a	virtualenv	environment.

6.8.3.3.1	Start	a	virtualenv:

In	case	you	are	not	using	pyenv,	please	use	virtual	env	as	follows:

6.8.3.3.2	Make	sure	you	have	the	latest	pip:

6.8.3.3.3	Install	the	requirements	of	the	server	side	code:

6.8.3.3.4	Install	the	server	side	code	package:

def	cpu_get():		#	noqa:	E501

				"""cpu_get

				Returns	cpu	info	of	the	hosting	server	#	noqa:	E501

				:rtype:	CPU

				"""

				return	CPU(get_processor_name())

$	virtualenv	RESTServer

$	source	RESTServer/bin/activate

$	pip	install	-U	pip

$	cd	~/cloudmesh/swagger_example/server/cpu/flaskConnexion

$	pip	install	-r	requirements.txt



Under	the	same	directory,	run:

6.8.3.3.5	Run	the	service

Under	the	same	directory:

You	should	see	a	message	like	this:

6.8.3.3.6	Verify	the	service	using	a	web	browser:

Open	a	web	browser	and	visit:

http://localhost:8080/api/cpu

to	see	if	it	returns	a	json	object	with	cpu	model	info	in	it.

Assignment:	How	would	you	verify	that	your	service	works	with	a	curl	call?

6.8.3.4	Step	4:	Generate	Client	Side	Code	and	Verify

In	addition	to	the	server	side	code	swagger	can	also	create	a	client	side	code.

6.8.3.4.1	Client	side	code	generation:

Generate	 the	client	side	code	 in	a	similar	 fashion	as	we	did	 for	 the	server	side
code:

6.8.3.4.2	Install	the	client	side	code	package:

Although	 we	 could	 have	 installed	 the	 client	 in	 the	 same	 python	 pyenv	 or
virtualenv,	we	 showcase	 here	 that	 it	 can	 be	 installed	 in	 a	 completely	 different

$	python	setup.py	install

$	python	-m	swagger_server

*	Running	on	http://0.0.0.0:8080/	(Press	CTRL+C	to	quit)

$	java	-jar	swagger-codegen-cli.jar	generate	\

				-i	~/cloudmesh/cpu.yaml	\

				-l	python	\

				-o	~/cloudmesh/swagger_example/client/cpu	\

				-D	supportPython2=true



environment.	That	would	make	 it	 even	possible	 to	use	a	python	3	based	client
and	 a	 python	 2	 based	 server	 showcasing	 interoperability	 between	 python
versions	(although	we	just	use	python	2	here).	Thus	we	create	ane	new	python
virtual	environment	and	conduct	our	install.

6.8.3.4.3	Using	the	client	API	to	interact	with	the	REST	service

Under	 the	directory	swagger_example/client/cpu	you	will	 find	a	README.md
file	which	serves	as	an	API	documentation	with	example	client	code	in	it.	E.g.,	if
we	save	the	following	code	into	a	.py	file:

We	 can	 then	 run	 this	 code	 to	 verify	 the	 calling	 to	 the	 REST	 service	 actually
works.	We	are	expecting	to	see	a	return	similar	to	this:

Obviously,	we	could	have	applied	additional	cleanup	of	the	information	returned
by	the	python	code,	such	as	removing	duplicated	spaces.

6.8.3.5	Towards	a	Distributed	Client	Server

Although	we	develop	and	 run	 the	example	on	one	 localhost	machine,	you	can
separate	the	process	into	two	separate	machines.	E.g.,	on	a	server	with	external
IP	or	even	DNS	name	 to	deploy	 the	server	side	code,	and	on	a	 local	 laptop	or
workstation	to	deploy	the	client	side	code.	In	this	case	please	make	changes	on
the	API	definition	accordingly,	e.g.,	the	host	value.

$	virtualenv	RESTClient

$	source	RESTClient/bin/activate

$	pip	install	-U	pip

$	cd	swagger_example/client/cpu

$	pip	install	-r	requirements.txt

$	python	setup.py	install

from	__future__	import	print_function

import	time

import	swagger_client

from	swagger_client.rest	import	ApiException

from	pprint	import	pprint

#	create	an	instance	of	the	API	class

api_instance	=	swagger_client.DefaultApi()

try:

				api_response	=	api_instance.cpu_get()

				pprint(api_response)

except	ApiException	as	e:

				print("Exception	when	calling	DefaultApi->cpu_get:	%s\n"	%	e)

{'model':	'Intel(R)	Core(TM)2	Quad	CPU				Q9550		@	2.83GHz'}



6.9	EXERCISES	☁
E.OpenAPI.1:

In	 Section	 OpenAPI	 3.0	 REST	 Service	 via	 Introspection,	 we
introduced	 a	 schema.	 The	 question	 relates	 to	 termsOfService:
Investigate	what	 the	 termOfService	attribute	 is	and	suggest	a	better
value.	Discuss	on	piazza.

E.OpenAPI.2:

In	 Section	 OpenAPI	 3.0	 REST	 Service	 via	 Introspection,	 we
introduced	 a	 schema.	 The	 question	 relates	 to	 model:	 What	 is	 the
meaning	of	model	under	the	definitions?

E.OpenAPI.3:

In	 Section	 OpenAPI	 3.0	 REST	 Service	 via	 Introspection,	 we
introduced	 a	 schema.	 The	 question	 relates	 to	 $ref:	 what	 is	 the
meaning	 of	 the	 $ref.	 Discuss	 on	 piazza,	 come	 up	 with	 a	 student
answer	in	class.

E.OpenAPI.4:

In	 Section	 OpenAPI	 3.0	 REST	 Service	 via	 Introspection,	 we
introduced	a	schema.	What	does	the	response	200	mean.	Do	you	need
other	responses?

E.OpenAPI.5:

After	you	have	gone	through	the	entire	section	and	verified	it	works
for	 you	 add	 create	 a	 more	 sophisticated	 schema	 and	 add	 more
attributes	exposing	more	information	from	your	system.

How	can	you	for	example	develop	a	rest	service	that	exposes	portions
of	your	 file	 system	serving	 large	 files,	 e.g.	 their	 filenames	and	 their
size?	 How	 would	 you	 download	 these	 files?	 Would	 you	 use	 a	 rest
service,	 or	 would	 you	 register	 an	 alternative	 service	 such	 as	 ftp,

https://github.com/cloudmesh-community/book/blob/master/chapters/rest/rest-excersises.md


DAV,	or	others?	Please	discuss	in	piazza.	Note	this	will	be	a	helping
you	to	prepare	a	larger	assignment.	Think	about	this	first	before	you
implement.

You	 can	 try	 expand	 the	 API	 definition	 with	 more	 resources	 and
actions	included.	E.g.,	to	include	more	detailed	attributes	in	the	CPU
object	 and	 to	 have	 those	 information	 provided	 in	 the	 actual
implementation	 as	 well.	 Or	 you	 could	 try	 defining	 totally	 different
resources.

The	codegen	 tool	provides	a	convenient	way	 to	have	 the	code	stubs
ready,	which	frees	the	developers	to	focus	more	on	the	API	definition
and	the	real	 implementation	of	 the	business	logic.	Try	with	complex
implementation	on	 the	 back	 end	 server	 side	 code	 to	 interact	with	 a
database/datastore	or	a	3rd	party	REST	service.

For	 advanced	 python	 users,	 you	 can	 naturally	 use	 function
assignments	 to	 replace	 the	 cpu_get()	 entirely	 even	 after	 loading	 the
instantiation	of	the	server.	However,	this	is	not	needed.	If	you	are	an
advanced	python	developer,	please	feel	free	to	experiment	and	let	us
know	how	you	suggest	to	integrate	things	easily.



7	GRAPHQL	☁

	Learning	Objectives

Learn	about	GraphQL
Develop	a	GraphQL	Server	in	Python

GraphQL	is	a	data	query	language	developed	by	Facebook.

GraphQL	 allows	 clients	 to	 request	 they	 need	 while	 specifing	 attributes	 in	 the
query	without	thinking	much	about	the	API	implementation.	It	simplifies	access
and	 reduces	 traffic	as	 the	application	has	control	over	 the	data	 it	needs	and	 its
format.	Hence	GraphQL	reduces	the	network	traffic	as	only	the	necessary	data	is
transfered	from	server	to	client.

Unlike	 REST	 APIs,	 which	 require	 often	 loading	 data	 via	 multiple	 queries,
GraphQL	can	get	 typically	 all	 the	data	 in	 a	 single	 request.	GraphQL	APIs	 are
defined	 in	 terms	of	 types	and	fields.	Types	help	GraphQL	to	ensure	 that	client
only	asks	 for	what	 is	possible	and	 in	case	of	 faults,	provides	clear	and	helpful
errors.

Initially	GraphQL	was	implemented	in	JavaScript.	Today	there	are	several	other
implementations	 in	 different	 languages	 available.	 To	 show	 case	 how	 to	 use
GraphQL,	we	will	 explore	 the	graphql-python	 implementation	 in	 this	 chapter.
The	official	documentation	of	GraphQL	is	available	at	[54]

7.1	PREREQUISITES

Before	we	start	we	need	to	install	a	number	of	tools	that	we	use	throughout	the
chapter

7.1.1	Install	Graphene

In	 this	 chapter,	 we	 will	 use	 Graphene	 which	 is	 a	 library	 for	 implementing

https://github.com/cloudmesh-community/book/blob/master/chapters/graphql/graphql.md
https://graphene-python.org/


GraphQL	APIs	in	Python.	Use	pip	to	install	Graphene

7.1.2	Install	Django

For	the	purpose	of	demonstrating	in	this	chapter,	we	will	use	Django	as	Python
web	 framework.	 Django	 is	 a	 popular	 Python	 web	 framework	 which	 already
comes	 with	 a	 lot	 of	 boilerplate	 code.	 It	 is	 mature	 and	 has	 a	 very	 large
community.	It	has	inbuilt	support	for	Object	Relational	Mapping	which	is	based
on	 Database	 Code-First	 approach.	 Please	 refer	 [55]	 for	 more	 Django
information.	Use	pip	to	install	Django

7.1.3	Install	GraphiQL

In	 case	 you	 prefer	 to	 use	 a	 browser	 interface	 which	 could	 be	 useful	 for
debugging	 purposes	 a	 number	 of	 GraphQL	 browsers	 are	 available.	 A	 free
version	 is	 GraphiQL.	 It	 is	 an	 IDE(Interactive	 Development	 Environment)	 for
GraphQL	 where	 you	 can	 run	 a	 GraphQL	 Query.	 There	 are	 many
implementations	of	GraphiQL	available.	For	this	chapter	we	will	use	GraphiQL.
You	 can	 download	 the	GraphiQL	 installation	 files	 specific	 to	 your	 OS	 from
GraphiQL	Releases.

For	MacOS,	you	can	even	use	homebrew	to	install	it

Commercial	GraphQL	browsers	are	available	from

Insomnia
Altair

7.2	GRAPHQL	TYPE	SYSTEM	AND	SCHEMA

To	get	started	with	GraphQL	we	will	first	explore	the	GraphQL	type	system	and
schema	creation.

$	pip	install	graphene==2.0.1	graphene-django==2.0.0

$	pip	install	django==2.0.2	django-filter==1.1.0

brew	cask	install	graphiql

https://github.com/skevy/graphiql-app
https://github.com/skevy/graphiql-app/releases
https://insomnia.rest/graphql/
https://altair.sirmuel.design/


7.2.1	Type	System

In	GraphQL	 a	 query	 is	 what	 a	 client	 requests	 from	 the	GraphQL	 server.	 The
result	 will	 be	 obtained	 in	 a	 structure	 defined	 by	 type	 and	 schema.	 Thus,	 the
client	will	know	ahead	of	time	what	it	is	going	to	get	as	result	as	part	of	a	well
formed	 response.	 For	 this	 to	work,	 the	 data	 is	 often	 assumed	 to	 be	 structured
data.

To	demonstrate	the	type	system	we	will	use	a	simple	example	while	looking	at
authors	and	co-authors	of	papers.	We	represent	 in	 this	example	a	database	 that
contains	a	number	of	authors.	Each	author	has	a	publication	count	and	a	number
of	coauthors	that	are	identified	by	name.	We	assume	for	this	simple	example	that
all	author	names	are	unique.

Here	is	how	a	simple	GraphQL	query	would	look	like
{

				author	{

								name

								publication_count

								coauthors	{

												name

								}

				}

}

The	response	is

For	this	to	work,	we	need	to	define	the	types	that	are	going	to	be	honored	by	the
GraphQL	 service	 so	 that	 when	 a	 query	 is	 received	 by	 the	 server,	 it	 is	 first
validated	against	a	schema	that	defines	the	types	contained	within	the	GraphQL
service.

Hence,	types	must	be	defined	as	part	of	each	GraphQL	service.	They	are	defined
with	 the	GraphQL	schema	 language	which	 is	programming	 language	agnostic.
An	example	of	a	GraphQL	type	is:

{

				"author":	{

								"name":	"John	Doe",

								"publication_count":	25,

								"coauthors":	[

												{

																"name":	"Mary	Jane"

												},

												{

																"name":	"David	Miller"

												}

								]

				}

}



type	Author	{

				name:	String!

				publication_count:	Int

				coauthors:	[Author!]!

}

Here	we	define	 the	 type	author	with	 three	 fields	 name,	 publication,	 and	 coauthors.	Note
that	 the	 !	 indicates	 a	 field	 value,	 that	 cannot	 be	 null	 and	must	 have	 a	 defined
value.	[Author!]!	means	that	an	array	is	returned,	but	that	array	cannot	be	null	and
also	none	of	the	items	in	the	array	can	be	null.

7.2.2	Scalar	Types

GraphQL	supports	the	following	scalar	types:

String:	UTF8	characters
Int:	32	bit	signed	integer
Float:	Double	precision	floating	point	value
Boolean:	true	or	false
ID:	Represents	 a	unique	 identifier	which	can	be	used	as	a	key	 to	 fetch	 the
object

7.2.3	Enumeration	Types

enum	 is	 a	 scalar	 type	 which	 defines	 restricted	 set	 of	 values.	 When	 a	 GraphQL
schema	defines	a	field	of	enum	type,	we	expect	that	the	field’s	value	be	of	the	type	
enum	including	only	the	values	that	are	included	in	that	enumeration.	An	example
of	an	enum	type	is
enum	ContainerType	{

				Docker

				Kubernetes

				DockerSwarm

}

7.2.4	Interfaces

Similar	 to	 common	 programming	 languages,	 the	 GraphQL	 type	 system	 also
supports	an	interface.	Interfaces	allow	us	to	assure	that	certain	fields	are	part	of	the
definition	of	a	type.	When	a	type	implements	an	interface,	it	needs	to	specify	all	the
fields	that	are	defined	through	the	interface.

We	 will	 illustrate	 this	 in	 the	 following	 example,	 where	 we	 define	 simple	
ComputeService	 interface	type.	This	 interface	declares	id,	name	and	 memory	 fields.	This	means



that	a	Container	and	a	VirtualMachine	both	of	which	implement	ComputeService,	must	have	the
fields	defined	in	the	interface.	They	may	or	may	not	have	additional	fields	like	we
demonstrate	 in	 our	 example	with	 the	 field	 systemType	 of	 type	 ContainerType	 in	 case	 of	
Container	and	field	systemType	of	type	VMBackend	in	case	of	the	VirtualMachine.
interface	ComputeService	{

				id:	ID!

				name:	String!

				memory:	Int!

}

type	Container	implements	ComputeService	{

				id:	ID!

				name:	String!

				memory:	Int!

				systemType:	ContainerType!

}

type	VirtualMachine	implements	ComputeService	{

				id:	ID!

				name:	String!

				memory:	Int!

				systemType:	VMBackend!

}

7.2.5	Union	Types

As	the	name	suggests	a	union	type	represents	the	union	of	two	or	more	types.	The
following	example	shows	how	we	can	define	a	union	type.	As	you	can	see	we	use
the	|	character	to	indicate	the	union	operator.
union	ComputeType	=	Container	|	VirtualMachine

Now	when	we	write	a	GraphQL	query	to	get	the	ComputeType	information,	we	can	ask
some	of	the	common	fields	and	some	of	the	specific	fields	conditionally.	In	the
next	 example	we	 request	 AllComputeTypes	 with	 common	 fields	 like	 id,	 name	 and	 fields
specific	to	either	VirtualMachine	or	Container.
{

				AllComputeTypes	{

								id

								name

								...	on	VirtualMachine	{

												user

								}

								...	on	Container	{

												type

								}

				}

}

7.3	GRAPHQL	QUERY

An	 application	 asks	 for	 data	 from	 server	 in	 form	 of	 a	 GraphQL	 query.	 A
GraphQL	query	can	have	different	 fields	and	arguments	and	in	 this	section	we
describe	how	to	use	them.



7.3.1	Fields

A	very	simple	definition	of	a	query	is	to	ask	for	specific	fields	that	belong	to	an
object	stored	in	GraphQL.

In	the	next	examples	we	will	use	data	related	to	repositories	in	github.

When	asking	the	query
{

				repository	{

								name

				}

}

we	obtain	the	following	response

As	we	can	see	the	response	data	format	looks	exactly	like	the	query.	This	way	a
client	knows	exactly	what	data	it	has	to	consume.	In	the	previous	example,	the	
name	 field	 returns	 the	 data	 of	 type	 String.	 Clients	 can	 also	 ask	 for	 an	 object
representing	any	match	within	the	GraphQL	database.

For	example	following	query
{

				community	{

								name

								repositories	{

												name

								}

				}

}

returns	the	response

{

				"data":	{

								"repository":	{

												"name":	"cm"

								}

				}

}

{

				"data":	{

								"community":	{

												"name":	"cloudmesh-community",

												"repositories":	[{

																"name":	"S.T.A.R	boat"

												},	{

																"name":	"book"

												}]

								}

				}

}



7.3.2	Arguments

As	you	may	already	know	in	REST	services	you	can	pass	parameters	as	part	of	a
request	 via	 query	 parameters	 through	GET	 or	 a	 request	 body	 through	 POST.
However	 in	GraphQL,	 for	every	 field,	you	provide	an	argument	 restricting	 the
data	returned	to	only	the	information	that	you	need.	This	reduces	the	traffic	for
returning	the	information	that	is	needed	without	doing	the	postprocessing	on	the
client.	These	restricting	arguments	can	be	of	scalar	 type,	enumeration	 type	and
others.

Let	us	look	at	an	example	of	a	query	where	we	only	ask	for	first	3	repositories	in
cloudmesh	community
{

				repositories(first:	3)	{

								name

								url

				}

}

The	response	will	be	similar	to

7.3.3	Fragments

Fragments	 allow	us	 to	 reuse	 portions	 of	 a	 query.	Let	 us	 look	 at	 the	 following
complex	query,	which	includes	repetitive	fields:
{

				boatRepositoryExample:	repository(name:	boat)	{

								name

								full_name

								url

								description

				}

				cloudRepositoryExample:	repository(name:	cm)	{

								name

								full_name

								url

								description

				}

}

{

				"data":	{

								"repositories":	[{

												"name":	"boat",

												"url":	"https://github.com/cloudmesh-community/boat"

								},	{

												"name":	"book",

												"url":	"https://github.com/cloudmesh-community/book"

								},	{

												"name":	"case",

												"url":	"https://github.com/cloudmesh-community/case"

								}]

				}

}



As	the	query	gets	bigger	and	more	complex,	we	can	use	a	 fragment	 to	split	 it	 into
smaller	chunks.	This	 fragment	can	 then	be	re-used,	which	can	significantly	 reduce
the	query	size	and	also	make	it	more	readable.

A	fragment	can	be	defined	as
fragment	repositoryInfo	on	Repository	{

				name

				full_name

				url

				description

}

and	can	be	used	in	a	query	like	this
{

				boatRepositoryExample:	repository(name:	boat)	{

								...repositoryInfo

				}

				cloudRepositoryExample:	repository(name:	cm)	{

								...repositoryInfo

				}

}

The	response	for	this	query	will	look	like

7.3.4	Variables

Variables	are	used	 to	pass	dynamic	values	 to	queries.	 Instead	of	passing	hard-
coded	values	 to	 a	 query,	 variables	 can	be	defined	 for	 these	values.	Now	 these
variables	can	be	passed	to	queries.

Variables	 can	 be	 passed	 to	 GraphQL	 queries	 directly	 through	 commandline.
Please	note	that	we	pretty	print	the	json	output	with	python’s	json.tool.	So	it	is	not
actually	part	of	 the	querry,	but	convenient	 to	 format	 the	output.	Try	 to	see	 the
difference	with	and	without	the	pipe	to	json.tool

{

				"data":	{

								"boatRepositoryExample":	{

												"name":	"boat",

												"fullName":	"cloudmesh-community/boat",

												"url":	"https://github.com/cloudmesh-community/boat",

												"description":	"S.T.A.R.	boat"

								},

								"cloudRepositoryExample":	{

												"name":	"cm",

												"fullName":	"cloudmesh-community/cm",

												"url":	"https://github.com/cloudmesh-community/cm",

												"description":	"Cloudmesh	v4"

								}

				}

}

curl	-X	POST	\

-H	"Content-Type:	application/json;"	\

-d	'{"query":	"{	repository	(name:	$name)	{	name	url	}	}",	"variables":	\



In	case	you	use	GraphiQL,	variables	can	be	defined	in	the	Query	Variables	panel
at	left	bottom	of	the	GraphiQL	client.	It	is	defined	as	a	JSON	object	and	this	is
how	it	looks	like

and	it	can	be	used	in	the	query	like	this
{

				repository(name:	$name)	{

								name

								url

				}

}

which	will	result	in	the	response

7.3.5	Directives

Directives	are	used	to	change	the	structure	of	queries	at	runtime	using	variables.
Directives	provide	a	way	to	describe	additional	options	 to	GraphQL	executors.
Currently	the	core	GraphQL	specification	supports	two	directives

@skip	(if:	Boolean)	-	It	skips	the	field	if	argument	is	true
@Include	(if:	Boolean)	-	It	includes	the	field	if	argument	is	true

To	demonstrate	its	usage,	we	define	the	variable	isAdmin	and	assign	a	value	of	true	to
it.

This	variable	is	passed	as	an	argument	showOwnerInfo	to	the	query.	This	argument	is	in
turn	 passed	 to	 @include	 directive	 to	 determine	whether	 to	 include	 the	 ownerInfo	 sub-
query.
{

{	"name":	"book"	}}'	\

http://localhost:8000/graphql/	|	python	-m	json.tool

{

				"name":	"book"

}

{

				"data":	{

								"repository":	{

												"name":	"book",

												"url":	"https://github.com/cloudmesh-community/book"

								}

				}

}

{

				"isAdmin":	true

}



				repositories(showOwnerInfo:	$isAdmin)	{

								name

								url

								ownerInfo	@Include(if:	$showOwnerInfo)	{

												name

								}

				}

}

Since	we	have	defined	showOwnerInfo	as	true,	the	response	includes	ownerInfo	data.

7.3.6	Mutations

Mutations	 are	 used	 to	modify	 the	 server	 side	 data.	To	 demonstrate	 this,	 let	 us
look	at	the	query	and	the	data	to	be	passed	along	with	it
mutation	CreateRepositoryForCommunity($community:	Community!,	$repository:	Repository!)	{

				createRepository(community:	$community,	repository:	$repository)	{

								name

								url

				}

}

The	response	will	be	as	follow,	indicating	that	a	repository	has	been	added.

7.3.7	Query	Validation

GraphQL	 is	 a	 language	with	 strong	 type	 system.	 So	 requesting	 and	 providing
wrong	data	will	generate	an	error.

For	example	the	query

{

				"data":	{

								"repositories":	[{

												"name":	"book",

												"url":	"https://github.com/cloudmesh-community/book",

												"ownerInfo":	{

																"name":	"cloudmesh-community"

												}

								}]

				}

}

{

				"community":	"cloudmesh-community",

				"repository":	{

								"name":	"cm-burn",

								"url":	"https://github.com/cloudmesh/cm-burn"

				}

}

{

				"data":	{

								"createRepository":	{

												"name":	"cm-burn",

												"url":	"https://github.com/cloudmesh/cm-burn"

								}

				}

}



{

				repositories	{

								name

								url

								type

				}

}

will	give	the	response

In	an	application	we	need	to	validate	the	user	input.	If	it	is	invalid	we	can	use	the
GraphQLError	class	or	Python	exceptions	to	raise	validation	errors.

Let	 us	 take	 an	 example	 of	 mutation	 query.	 We	 want	 to	 validate	 whether
repository	name	 is	 empty	or	not.	We	can	use	 GraphQLError	 to	 raise	 validation	 error
from	our	mutation	function	like	this

7.4	GRAPHQL	IN	PYTHON

We	will	cover	a	basic	server	 implementation	with	schema	and	queries	 to	 fetch
and	mutate	data.

To	 develop	 a	 GraphQL	 server	 in	 Python	 we	 will	 use	 Django	 as	 Python	 web
framework	 and	 the	 Graphene	 library	which	 alllows	 us	 to	 develop	GraphQL	APIs.
Naturally	other	frameworks	such	as	Flask	could	be	used,	but	for	this	example	we
focus	 on	 Django.	 The	 installation	 for	 Graphene	 and	 Django	 been	 already
described	at	 the	beginning	of	 this	 chapter.	Our	example	 is	 located	 in	 the	book
repository	which	you	can	clone	with

The	example	itself	is	located	in	the	directory

{

				"errors":	[{

								"message":	"Cannot	query	field	\"type\"	on	type	\"Repository\".",

								"locations":	[{

												"line":	5,

												"column":	3

								}]

				}]

}

def	mutate(self,	info,	url,	name,	full_name,	description):

				if	not	name:

								raise	GraphQLError('Repository	name	is	required')

				repository	=	Repository(url=url,

																												name=name,

																												full_name=full_name,

																												description=description)

				repository.save()

$	git	clone	https://github.com/cloudmesh-community/book.git



book/examples/graphql/cloudmeshrepo	 -	 A	 graphql	 server	 example	 with
local	database

To	 execute	 the	 example	 you	 need	 to	 go	 in	 the	 specific	 directory.	 Thus,	 for	
cloudmeshrepo	say

Then	you	can	execute	following	steps

The	last	command	will	start	a	server	on	localhost	and	you	can	access	it	at

http://localhost:8000

It	 will	 show	 you	 a	 graphical	 interface	 based	 on	 GraphiQL,	 allowing	 you	 to
execute	your	queries	in	it.

7.5	DEVELOPING	YOUR	OWN	GRAPHQL	SERVER

If	 you	 want	 to	 create	 GraphQL	 server	 while	 using	 django	 as	 the	 web	 server
backend	yourself,	you	can	start	with	following	steps

The	last	command	will	start	a	server	on	the	localhost	and	you	can	access	it	at	the
URL

http://localhost:8000

It	will	show	you	the	welcome	page	for	django.	Now	open	the	file
cloudmeshrepo/cloudmeshrepo/settings.py

file	under	folder	and	append	following	to	INSTALLED_APPS:

$	cd	book/examples/graphql/cloudmeshrepo

$	pip	install	django-graphql-jwt==0.1.5

$	python	manage.py	migrate

$	python	manage.py	runserver

$	mkdir	-p	example/graphql

$	cd	example/graphql

$	pip	install	django-graphql-jwt==0.1.5

$	django-admin	startproject	cloudmeshrepo

$	cd	cloudmeshrepo

$	python	manage.py	migrate

$	python	manage.py	runserver

INSTALLED_APPS	=	(

				#	After	the	default	packages

https://github.com/cloudmesh-community/book/tree/master/examples/graphql/cloudmeshrepo
http://localhost:8000
http://localhost:8000


At	the	end	of	settings.py	add	following	line

7.5.1	GraphQL	server	implementation

Clients	can	request	for	data	to	GraphQL	server	via	GraphQL	queries.	They	can
also	use	mutations	to	insert	data	into	GraphQL	server’s	database.	Django	follows
the	 principle	 of	 separating	 different	 modules	 in	 a	 project	 into	 apps.	 For	 this
example,	we	will	have	two	apps,	one	for	Users	and	one	for	Repositories.	For	the
demo	purpose,	we	have	decided	not	use	backend	such	as	MongoDB	but	instead
we	will	use	SQLite.

Django	provides	startapp	utility	to	create	blank	app	with	some	biolerplate	code.

Go	 to	 the	 root	 dir	 of	 project	 and	 execute	 the	 following	 command	which	 will
create	an	app	for	repository.

Now	open	Repositories/models.py	and	add	the	Repository	model	class.

Now	 open	 the	 file	 cloudmeshRepository/settings.py	 and	 append	 following	 line	 into
INSTALLED_APPS

Go	to	root	folder	and	execute	following	commands.	It	will	create	table	for	new
model

Naturally,	for	us	to	demonstrate	the	server,	we	need	to	ingest	some	data	into	the

				'graphene_django',

)

GRAPHENE	=	{

				'SCHEMA':	'cloudmeshrepo.schema.schema',

}

python	manage.py	startapp	repository

class	Repository(models.Model):

				url	=	models.URLField()

				name	=	models.TextField(blank=False)

				full_name	=	models.TextField(blank=False)

				description	=	models.TextField(blank=True)

INSTALLED_APPS	=	(

				#	After	the	graphene_django	app

				'Repositories',

)

$	python	manage.py	makemigrations

$	python	manage.py	migrate



server.	We	can	easily	do	this	with	the	django	shell	while	calling

Inside	 the	shell,	execute	 following	command	 to	create	some	example	data.	We
have	 taken	 this	 data	 from	 github’s	 API	 and	 used	 the	 repositories	 in	 the
cloudmesh	community	at

https://api.github.com/users/cloudmesh-community/repos.

You	could	use	either	wget	or	curl	command	to	download	this	data	through	shell.	As
this	data	is	huge,	we	have	used	a	small	subset	for	this	example.	You	can	have	a
python	script,	shell	script	or	any	other	program	to	clean	and	remodel	the	data	as
per	your	need;	the	implementation	details	for	the	cleaning	process	is	out	of	scope
for	this	chapter.

Now	create	the	file	Repositories/schema.py	with	the	following	code.	The	code	will	create
a	custom	type	 Repository	 and	query	with	a	resolver	 function	 for	Repositories.	The
GraphQL	 server	 uses	 a	 resolver	 function	 to	 resolve	 the	 incoming	 queries.
Queries	can	respond	to	only	those	fields	or	entities	of	schema	for	which	resolver
function	has	been	defined.	A	Resolver	function’s	responsibility	is	to	return	data	for
that	specific	field	or	entity.	We	will	create	one	for	Repositories	list.	When	you
query	repositories,	resolver	function	will	return	all	the	repositories	objects	from
database.

$	python	manage.py	shell

from	Repositories.models	import	Repository

Repository.objects.create(

				name="boat",

				full_name="cloudmesh-community/boat",

				url="https://github.com/cloudmesh-community/boat",

				description="S.T.A.R.	boat")

Repository.objects.create(

				name="book",full_name="cloudmesh-community/book",

				url="https://github.com/cloudmesh-community/book",

				description="Gregor	von	Laszewski")

Repository.objects.create(name="cm",

				full_name="cloudmesh-community/cm",

				url="https://github.com/cloudmesh-community/cm",

				description="Cloudmesh	v4")

Repository.objects.create(name="cm-burn",

				full_name="cloudmesh-community/cm-burn",

				url="https://github.com/cloudmesh/cm-burn",

				description="Burns	many	SD	cards	so	we	can	build	a	Raspberry	PI	cluster")

exit()

import	graphene

from	graphene_django	import	DjangoObjectType

from	.models	import	Repository

class	RepositoryType(DjangoObjectType):

				class	Meta:

								model	=	Repository

https://api.github.com/users/cloudmesh-community/repos


Next	create	the	file	 cloudmeshRepository/schema.py	with	following	code.	It	 just	 inherits	the
query	 defined	 in	Repositories	 app.	 This	way	we	 are	 able	 to	 isolate	 schema	 to
their	apps.

7.5.2	GraphQL	Server	Querying

Next,	we	create	a	Schema	and	use	it	within	GraphiQL	which	is	a	playground	for
GraphQL	 queries.	 Open	 the	 file	 cloudmeshrepository/urls.py	 and	 append	 the	 following
code

Start	your	server	using	the	command

Now	open	in	your	browser	the	URL

http://localhost:8000/graphql

You	will	see	GraphiQL	window.	In	the	left	pane	you	can	add	queries.	Let	us	add
the	following	query
{

		repositories	{

				name

				fullName

				url

				description

		}

}

class	Query(graphene.ObjectType):

				Repositories	=	graphene.List(RepositoryType)

				def	resolve_Repositories(self,	info,	**kwargs):

								return	Repository.objects.all()

import	graphene

import	Repositories.schema

class	Query(Repositories.schema.Query,	graphene.ObjectType):

				pass

schema	=	graphene.Schema(query=Query)

from	django.views.decorators.csrf	import	csrf_exempt

from	graphene_django.views	import	GraphQLView

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('graphql/',	csrf_exempt(GraphQLView.as_view(graphiql=True))),

]

$	python	manage.py	runserver

http://localhost:8000/graphql


In	the	right	pane	you	will	see	following	output

7.5.3	Mutation	example

Similar	to	a	query,	you	can	add	a	mutation	to	create	your	own	data.	To	achieve
this,	 add	 a	 CreateRepository	 class	 for	 new	 repository	 object	which	will	 inherit	 from
graphene’s	 Mutation	 class.	 This	 class	 will	 accept	 a	 new	 repository	 as	 an
argument.	 Please	 see	 the	 following	 code	 snippet	 which	 is	 added	 to	
repositories/models.py.

Similar	 to	 A	 Query,	 add	 a	 Mutation	 class	 in	 the	 repository’s	 schema	 in	

{

		"data":	{

				"repositories":	[

						{

								"name":	"boat",

								"fullName":	"cloudmesh-community/boat",

								"url":	"https://github.com/cloudmesh-community/boat",

								"description":	"S.T.A.R.	boat"

						},

						{

								"name":	"book",

								"fullName":	"cloudmesh-community/book",

								"url":	"https://github.com/cloudmesh-community/book",

								"description":	"Gregor	von	Laszewski"

						},

						{

								"name":	"cm",

								"fullName":	"cloudmesh-community/cm",

								"url":	"https://github.com/cloudmesh-community/cm",

								"description":	"Cloudmesh	v4"

						},

						{

								"name":	"cm-burn",

								"fullName":	"cloudmesh-community/cm-burn",

								"url":	"https://github.com/cloudmesh/cm-burn",

								"description":	"Burns	many	SD	cards	so	we	can	build	a	Raspberry	PI	cluster"

						}

				]

		}

}

class	CreateRepository(graphene.Mutation):

				url	=	graphene.String()

				name	=	graphene.String()

				full_name	=	graphene.String()

				description	=	graphene.String()

				class	Arguments:

								url	=	graphene.String()

								name	=	graphene.String()

								full_name	=	graphene.String()

								description	=	graphene.String()

				def	mutate(self,	info,	url,	name,	full_name,	description):

								repository	=	Repository(url=url,	name=name,

																																full_name=full_name,

																																description=description)

								repository.save()

								return	CreateRepository(url=repository.url,

												name=repository.name,

												full_name=repository.full_name,

												description=repository.description)



repositories/schema.py.

Now	you	can	run	the	following	mutation	on	GraphiQL	to	add	a	new	repository
mutation	{

		createRepository	(

				url:	"https://github.com/cloudmesh-community/repository-test",

				name:	"repository-test",

				fullName:	"cloudmesh-community/repository-test",

				description:	"Test	repository"

		)	{

				url

				name

				fullName

				description

		}

}

This	will	insert	a	new	repository	repository-test	and	also	immediately	return	its
inserted	data	fields	(url,	name,	fullName,	description).

7.5.4	GraphQL	Authentication

There	a	number	of	ways	to	add	authentication	to	your	GraphQL	server

We	can	 add	 a	REST	API	 endpoint	which	will	 take	 care	of	 authenticating
the	 user	 and	 only	 the	 logged	 in	 users	 can	 make	 GraphQL	 queries.	 This
method	can	also	be	used	to	restrict	only	a	subset	of	GraphQL	queries.	This
is	 ideal	 for	 existing	applications,	which	have	REST	endpoints,	 and	which
are	trying	to	migrate	over	to	GraphQL.
We	 can	 add	 basic	 authentication	 to	 the	 GraphQL	 server	 which	 will	 just
accept	credentials	in	raw	format	and	once	authenticated,	logged	in	user	can
start	GraphQL	querying
We	 can	 add	 JSON	Web	 Token	 authentication	 to	 GraphQL	 server,	 since
most	of	the	applications	these	days	are	stateless.

7.5.5	JSON	Web	Token	Authentication

class	Mutation(graphene.ObjectType):

				create_repository	=	CreateRepository.Field()

{

		"data":	{

				"createRepository":	{

						"url":	"https://github.com/cloudmesh-community/repository-test",

						"name":	"repository-test",

						"fullName":	"cloudmesh-community/repository-test",

						"description":	"Test	repository"

				}

		}

}



Next	 we	 focus	 on	 the	 JSON	 web	 token	 (JWT)	 authentication.	 It	 is	 tyically
prefered	as	it	provides	a	more	secure	and	sophisticated	way	of	authentication.	As
part	 of	 the	 authentication	 process,	 a	 client	 has	 to	 provide	 a	 username	 and	 a
password.	 A	 limited	 life	 time	 token	 is	 generated	 that	 is	 used	 during	 the
authentication	process.	Once	the	token	is	generated,	it	needs	to	be	provided	with
each	subsequent	GraphQL	API	call	to	assure	the	authentication	is	valid.

JWT	 tokens	are	bearer	 tokens	which	need	 to	be	passed	 in	HTTP	authorization
header.	 JWT	 tokens	 are	 very	 safe	 against	 CSRF	 attacks	 and	 are	 trusted	 and
verified	since	they	are	digitally	signed.

The	 advantage	 of	 using	 frameworks	 such	 as	 the	 python	 implementation	 of
GraphQL	 is	 that	 it	 can	 leverage	existing	authentication	modules,	 so	we	do	not
have	 to	 develop	 them	 ourselves.	 One	 such	 module	 is	 JSON	 Web	 Token
Authentication	or	*JWT	Authentication.	To	use	this	module,	please	add	it	to	the	
settings.py	file	as	follows

Add	the	Token	mutation	to	cloudmeshrepo/schema.py.

Run	 the	 server	 using	 runserver	 command	 and	 fire	 the	 token	 mutation	 providing
username	and	password.	You	can	either	run	this	mutation	on	GraphiQL	or	using	
curl	command.

For	GraphiQL	run	this	on	query	panel.
mutation	{

		tokenAuth	(username:"user1",	password:"Testing123")	{

				token

		}

}

Or	if	you	are	on	bash	shell,	use	this	curl	command

MIDDLEWARE	=	[

				'graphql_jwt.middleware.JSONWebTokenMiddleware',

[

AUTHENTICATION_BACKENDS	=	[

				'graphql_jwt.backends.JSONWebTokenBackend',

				'django.contrib.auth.backends.ModelBackend',

]

class	Mutation(users.schema.Mutation,	repositories.schema.Mutation,	graphene.ObjectType):

				token_auth	=	graphql_jwt.ObtainJSONWebToken.Field()

curl	-X	POST	\

-H	"Content-Type:	application/json;"	\

-d	'{"query":	"{	mutation	{	tokenAuth	(username:	\"user1\",	'	\

'	password:\"Testing123\")	{	token	}	}	}"}'	\

http://localhost:8000/graphql/	|	python	-m	json.tool



This	will	create	a	token	for	us	to	use	in	our	subsequent	calls.

The	JWT	library	comes	with	a	built-in	directive	called	login_required.	You	can
add	 this	 to	any	of	your	Query	 resolvers	 to	prevent	unauthenticated	access.	We
have	annotated	it	to	the	resolve_repositories	which	means	it	will	 throw	authentication
error	 to	query	which	does	not	have	JWT	token	passed.	Whenever	a	valid	JWT
token	 is	 present	 in	 the	 query,	 it	 is	 considered	 as	 authenticated	 or	 logged	 in
request,	and	data	will	be	served	only	to	these	queries.

Now	if	you	try	to	query	our	repositories	from	GraphQL,	you	will	see	this	error

Henceforth	you	need	to	pass	token	with	every	repository	query.	This	token	needs
to	be	passed	as	header.	Unfortunately,	the	GraphiQL	UI	client	does	not	support
this.	 Hence	 you	 can	 use	 either	 a	 curl	 query	 from	 command	 line	 or	 more
advanced	GraphQL	clients	that	support	authentication.

7.5.5.1	Using	Authentication	with	Curl

{

		"data":	{

				"tokenAuth":	{

						"token":	"eyJ0eXAiOiJKV1....	(cut	to	fit	in	line)"

				}

		}

}

from	graphql_jwt.decorators	import	login_required

...

class	Query(graphene.ObjectType):

				repositories	=	graphene.List(RepositoryType)

				@login_required

				def	resolve_repositories(self,	info,	**kwargs):

								return	Repository.objects.all()

{

		"errors":	[

				{

						"message":	"You	do	not	have	permission	to	perform	this	action",

						"locations":	[

								{

										"line":	2,

										"column":	3

								}

						],

						"path":	[

								"repositories"

						]

				}

		],

		"data":	{

				"repositories":	null

		}

}



To	 use	 authentication	with	 curl,	 you	 can	 pass	 the	 token	 to	 the	 command.	 For
simplicity	we	created	a	TOKEN	environment	variable	in	with	we	stor	the	token
so	it	is	easier	for	us	to	refer	to	it	in	our	examples.

The	result	obtained	from	running	this	command	is:

7.5.5.2	Expiration	of	JWT	tokens

JWT	tokens	have	a	time-to-life	and	expire	after	a	while.	This	is	controlled	by	the
GraphQL	 server	 and	 is	 usually	 communicated	 to	 the	 client	 in	 transparent
documented	fashion.

If	the	token	is	about	to	expire,	you	can	call	the	refreshToken	mutation	to	refresh	the
Token	and	to	return	the	refreshed	token	to	the	client.	However,	if	the	token	has
already	expired	we	will	need	to	request	a	new	token	by	calling	tokenAuth	mutation.

More	 information	 about	 JWT	 tokens	 can	 be	 found	 at	 [56]	 and	 the	 GraphQL
authentication	page	at	[57].

7.5.6	GitHub	API	v4

GraphQL	 has	 made	 already	 an	 impact	 in	 the	 cloud	 services	 community.	 In
addition	 to	 Facebook,	 Twitter	 and	 Pinterest,	Github	 is	 now	 also	 providing	 a
GraphQL	interface,	making	it	an	ideal	example	for	us.

GitHub	has	implemented	as	part	of	its	API	v4	also	GraphQL	which	allows	you
to	 query	 or	 mutate	 data	 of	 repositories	 that	 you	 can	 access	 via	 github.com.	 To
demonstrate	its	use,	we	will	use	GraphiQL.

export	TOKEN=eyJ0eXAiOiJKV1....	(cut	to	fit	in	line)

curl	-X	POST	\

-H	"Content-Type:	application/json;"	\

-H	"Authorization:	JWT	$TOKEN"	\

-d	'{"query":	"{	repositories	{	url	}	}"}'	\

http://localhost:8000/graphql/		|	python	-m	json.tool

{"data":{"repositories":[

		{"url":"https://github.com/cloudmesh-community/boat"},

		{"url":"https://github.com/cloudmesh-community/book"},

		{"url":"https://github.com/cloudmesh-community/cm"},

		{"url":"https://github.com/cloudmesh/cm-burn"},

		{"url":"https://github.com/cloudmesh-community/vineet-test-1"},

		{"url":"https://github.com/cloudmesh-community/vineet-test"}

		]}

}



To	access	the	information,	we	need	an	OAuth	token	to	access	GitHub	API.	You
can	generate	an	OAuth	token	by	following	the	steps	listed	at

https://help.github.com/articles/creating-a-personal-access-token-for-the-
command-line/

Next	we	demonstrate	the	use	of	Github	within	a	GraphQL	browser	called	Open
GraphiQL.	First	you	need	to	click	edit	headers	at	upper-right	corner	and	add	a
new	header	with	key	Authorization	and	value	Bearer	your_token.

Next	you	enter	the	URL

https://api.github.com/graphql

in	the	GraphQL	endpoint	textbox	and	keep	the	method	as	POST	only.	To	test	if
the	changes	have	been	applied	successfully	you	can	use	the	query
query	{

		viewer	{

				login

				name

		}

}

The	query	gives	the	following	response

To	get	a	list	of	our	own	repositories	add	following	query
query($number_of_repositories:Int!)	{

		viewer	{

				name

					repositories(last:	$number_of_repositories)	{

							nodes	{

									name

							}

					}

			}

}

To	limit	the	responses	we	can	define	a	use	the	variable	number_of_repositories

{

		"data":	{

				"viewer":	{

						"login":	"*Your	GitHub	UserId*",

						"name":	"*Your	Full	Name*"

				}

		}

}

{

			"number_of_repositories":	3

}

https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
https://api.github.com/graphql


The	query	gives	the	following	response

To	add	a	comment	using	mutation	we	need	to	get	the	issue	id	with	the	query
{

		repository(owner:"MihirNS",	name:"Temp_Repository")	{

				issue(number:	1)	{

						id

				}

		}

}

The	query	gives	the	following	response

Now	we	can	use	the	id	as	subjectId	for	mutation	to	add	a	comment	to	an	issue	with
the	query
mutation	AddComment	{

		addComment(input:{subjectId:"MDU6SXNzdWUzNjUxMDIwOTE=",body:"This	comment	is	done	using	GitHub	API	v4"})	{

				commentEdge	{

						node	{

								repository{

										nameWithOwner

								}

								url

						}

				}

		}

}

The	query	gives	the	following	response

{

		"data":	{

				"viewer":	{

						"name":	"*your	name*",

						"repositories":	{

								"nodes":	[

										{

												"name":	"*Repository	1*"

										},

										{

												"name":	"*Repository	2*"

										},

										{

												"name":	"*Repository	3*"

										}

								]

						}

				}

		}

}

{

		"data":	{

				"repository":	{

						"issue":	{

								"id":	"MDU6SXNzdWUzNjUxMDIwOTE="

						}

				}

		}

}

{

		"data":	{

				"addComment":	{

						"commentEdge":	{

								"node":	{

										"repository":	{



7.6	DYNAMIC	QUERIES	WITH	GRAPHQL

The	previous	examples	served	data	to	and	from	a	database.	However,	often	we
need	to	access	dynamic	data	that	is	provided	through	function	or	system	calls.

For	 this	 reason	 we	 like	 you	 to	 be	 reminded	 about	 the	 Section	 describing	 the
resolver	function.	It	allows	us	to	add	functions	on	the	server	side	that	return	the
data	from	various	data	sources.

It	is	similar	in	nature	than	our	example	in	the	REST	OpenAPI	section,	where	we
associate	 call	 backs	 that	 execute	 dynamic	 operations.	More	 information	 about
the	functionality	 in	REST	is	provided	 in	 the	Section	OpenAPI	Specification	as
part	of	the	path	definition.

7.7	ADVANTAGES	OF	USING	GRAPHQL

Unlike	 REST	 APIs,	 only	 the	 required	 data	 is	 fetched	 minimizing	 the	 data
transferred	over	network.

Seperation	of	concern	is	achieved	between	client	and	server.	Client	requests	data
entities	with	 fields	needed	 for	 the	UI	 in	one	query	 request	while	 server	knows
about	the	data	structure	and	how	to	resolve	the	data	from	its	sources	which	could
be	database,	web	service,	microservice,	external	APIs,	etc.

Versioning	is	simpler	than	REST,	since	we	only	have	to	take	care	of	it	when	we
want	 to	 remove	 any	 of	 the	 fields.	 We	 can	 even	 introduce	 the	 property	 of	 a
deprecated	field	for	a	while	to	inform	the	service	users.	At	a	later	time	the	field
could	be	entirely	be	removed.
type	Car	{

				id:	ID!

				make:	String

				description:	String	@deprecated(reason:	"Field	is	deprecated!")

}

												"nameWithOwner":	"MihirNS/Temp_Repository"

										},

										"url":	"https://github.com/MihirNS/Temp_Repository/issues/1#issuecomment-425620312"

								}

						}

				}

		}

}



7.8	DISADVANTAGES	OF	USING	GRAPHQL

GraphQL	query	can	get	very	complex.	A	client	may	not	necessarily	know	how
expensive	 the	queries	can	be	 for	 server	 to	go	and	gather	 the	data.	This	can	be
overcome	by	limiting,	for	example,	the	query	depth	and	recursion.

Caching	 gets	 pretty	 tricky	 and	messy	 in	 case	 of	GraphQL.	 In	REST,	 you	 can
have	separate	API	url	 for	each	 resource	 requested,	caching	can	be	done	at	 this
resource	 level.	However,	 in	GraphQL	you	 can	 have	 different	 queries	 but	 they
can	operate	over	a	single	API	url.	This	means	that	caching	needs	to	be	done	at
the	field	level	introducing	additional	complexity.

7.9	CONCLUSION

GraphQL	 is	 gaining	 momentum	 as	 growing	 and	 the	 integration	 into	 services
such	as	Github,	Pinterest,	Intuit,	Coursera,	and	Shopify,	demonstrates	this.	Many
GraphQL	editors,	IDEs	and	packages	have	recently	been	developed.

In	 general	 there	 are	 several	 reasons	 to	 use	GraphQL	 due	 to	 its	 simplicity	 and
flexibility.	 It	 also	 fits	well	with	 the	microservices	 architecture	which	 is	 a	 new
trend	in	cloud	architectures.	With	that	being	said,	REST	APIs	still	have	it	is	own
place	 and	 may	 prove	 better	 choice	 in	 certain	 use	 cases.	 Both	 REST	 and
GraphQL	 have	 some	 tradeoffs	 which	 need	 to	 be	 understood	 before	 making	 a
choice	between	the	one	or	the	other.	Github	shows	that	both	can	be	used.

7.9.1	Resources

Official	documentation	of	Github	API	v4	is	available	at	[58]
More	GraphQL	Python	examples	available	at	[59]

7.10	EXCERSISES

E.GraphQL.1:

GIthub	 provides	 a	 good	 playground	 for	 experimenting	 with
GrapohQL.	Develop	a	command	 in	python	 that	 lists	all	 repositories



of	an	organization.	Expand	upon	this	while	listing	through	options	all
members	of	each	repository.	build	your	own	extension.	Use	docopts
or	 easier	 just	 us	 cloudmesh	sys	generate	 to	 create	 a	 command	 cms	git	list	

ORGANIZATION	[--users]

E.GraphQL.2:

The	 chapter	 shows	 you	 how	 to	 develop	 a	 GraphQL	 server	 with
Django.	 Instead	 of	 Django	 we	 like	 you	 to	 use	 Flask.	 Develop	 a
documented	 section	 showcasing	 this.	 Use	 the	 resolver	 class	 to
demonstrate	 a	 dynamic	 information	 example	 such	 as	 the	 cpu	 type.
Showcase	 integration	 with	 mongoengine	 and	 dynamic	 information
retrieval	form	another	information	source.

See	an	example

https://github.com/graphql-python/graphene-
mongo/tree/master/examples/flask_mongoengine
https://graphene-mongo.readthedocs.io/en/latest/tutorial.html

E.GraphQL.3:

Develop	 a	 GraphQL	 server	 and	 client	 that	 queries	 your	 CPU
information	through	a	dynamic	query	using	a	resolver

E.GraphQL.4:	OpenStack	VMS

Develop	 a	GraphQL	 server	 that	 returns	 the	 information	 of	 running
virtual	machines	on	OpenStack

E.GraphQL.5:	OpenStack	Azure

Develop	 a	GraphQL	 server	 that	 returns	 the	 information	 of	 running
virtual	machines	on	OpenStack

E.GraphQL.6:	OpenStack	Aws

Develop	 a	GraphQL	 server	 that	 returns	 the	 information	 of	 running
virtual	machines	on	OpenStack

https://github.com/graphql-python/graphene-mongo/tree/master/examples/flask_mongoengine
https://graphene-mongo.readthedocs.io/en/latest/tutorial.html


E.GraphQL.7:	Cloud	Service

Pick	a	Cloud	Service	and	develop	a	GraphQL	interface	for	it.

E.GraphQL.8:	Cloudmesh

Develop	a	cloudmesh	framework	that	uses	all	previous	clouds	while
returning	the	information	of	all	running	VMS	in	a	Web	page.	YOu	are
allowed	 to	 make	 the	 Web	 page	 beautiful	 with	 HTML5	 and/or
JavaScript	 if	 you	 have	 the	 background	 to	 do	 so.	Contact	Gregor	 if
you	like	to	work	on	this	for	your	project.



8	HYPERVISOR

8.1	VIRTUALIZATION	☁

	Learning	Objectives

Gain	understanding	of	the	basic	the	concepts	of	virtualization
Understand	what	a	virtual	machine	is
Understand	what	a	Hypervisor	is

Virtualization	 is	 one	 of	 the	 important	 technologies	 that	 started	 the	 cloud
revolution.	 It	provides	 the	basic	underlying	principles	 for	 the	development	and
adoption	of	clouds.	The	concept,	although	old	and	already	used	in	the	early	days
of	computing,	has	recently	been	exploited	to	lead	to	better	utilization	of	servers
as	part	of	data	centers,	but	also	the	local	desktops.

Virtualization	 enables	 to	 execute	multiple	 applications	 in	 such	 a	 way	 that	 the
applications	seem	to	run	independently	form	each	other	in	their	own	virtualized
context.

Examples	of	 the	usefulness	of	virtualization	 include	 testing	of	applications	and
run	 experiments	 on	 a	 different	 operating	 system	 than	 the	 one	 on	 our	 host
computer.	To	enable	this	we	need	virtual	machines.

8.1.1	Virtual	Machines

We	define	a	virtual	machine	as	follows:

A	virtual	machine	(VM)	is	a	software-based	emulation	of	a	computer
system.	 This	 can	 include	 process	 virtualization	 and	 physical
computer	 virtualization	 such	 as	 running	 an	 operating	 system.
Multiple	 virtual	 machines	 share	 the	 resources	 of	 the	 computer	 or
system	on	which	they	run.

https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/virtualization.md


We	distinguish	the	following	types	of	Virtual	machines

System	Virtual	Machines	 or	Hardware	Virtual	Machine,	 which	 is	 the
virtualization	of	the	operating	system	providing	a	complete	system	platform
environment	 emulating	 the	 hardware.	 Here	 we	 essentially	 run	 another
operating	 system	 on	 top	 of	 the	 existing	 OS	 while	 using	 a	 software
abstraction	between	them	allowing	the	virtualization.

Examples	of	such	virtualization	include	VirtualBox	and	VMWare.

Process	 Virtual	 Machines	 or	 Application	 Virtual	 Machine	 which
provides	 a	 platform	 independent	 programming	 environment	 that	 abstracts
the	details	of	the	underneath	hardware	or	OS	from	software	or	application
runtime.

Examples	 of	 such	 virtual	 machines	 include	 Java	 Virtual	Machine	 (JVM)
and	the	.NET	Framework

Next	we	will	be	analyzing	 the	system	machine	virtualization	 in	more	detail,	as
they	are	one	of	the	reasons	for	the	clouds	revolution.

8.1.2	System	Virtual	Machines

The	use	of	a	system	as	a	virtual	machine	has	its	clear	advantages	for	the	cloud.
We	distinguish	two	main	ways	of	system	virtualizing:

Bare-metal	 Virtualization	 in	 which	 the	 virtual	 machine	 monitor	 is
installed	directly	on	 top	of	 the	hardware	so	 that	 the	 it	has	direct	access	 to
the	underlying	hardware.	 It	hosts	 the	operating	system.	The	VMM	is	also
called	 hypervisor.	We	 also	 use	 for	 bare-metal	 supporting	VMM	 the	 term
Type	1	hypervisor.

Hosted	Virtualization	 in	which	 the	base	operating	 system	 is	 installed	on
the	hardware.	Here	a	virtual	machine	monitor	(VMM)	is	installed	on	top	of
the	host	OS	allowing	the	users	to	run	other	operating	systems	on	the	VMM.
In	 addition,	 the	 Virtual	 Machine	 Monitor	 or	 Hypervisor	 manages	 the
deployments	 of	 potentially	 multiple	 virtual	 machines	 on	 top	 of	 the
underlying	Operating	system.	We	also	use	for	hosted	VMM	the	term	Type	2



hypervisor.

In	 either	 case	 the	 functionality	 a	 virtual	 machine	 is	 supported	 through
configuration	 files,	 specifications,	 and	 access	 to	 the	 physical	 resources	 either
directly	or	indirectly	through	the	host	OS.	A	virtual	machine	provides	the	same
functionality	 as	 a	 physical	 computer,	 but	 with	 the	 advantage	 that	 through
virtualization	 the	 are	 portable,	 can	 be	managed	 and	 provide	 increased	 security
while	shielding	the	underlying	OS	from	harmful	actions.	As	a	virtual	machine	is
in	principle	a	program,	it	consists	of	several	files	including	a	configuration	file,
virtual	disk	files,	virtual	RAM,	and	a	log	file.	Virtual	machines	are	configured	to
run	 a	 virtual	 operating	 system	 that	 allows	 applications	 to	 run	 on	 them.	 Each
virtual	machine	 has	 its	 own	 copy	 of	 the	OS	making	 it	 independent	 and	more
secure.

End	users	and	developers	will	benefit	from	using	virtual	machines	in	case	they
need	to	operate	or	support	on	different	hardware	or	porting	software	on	it.

8.1.3	Hosted	Virtualization

As	 in	 the	 hosted	 virtualization	 the	 guest	 operating	 system	 accessed	 the
underlying	 hardware	 through	 the	 host	OS,	 it	 usually	 has	 limited	 access	 to	 the
hardware	as	defined	by	the	host	OS.	This	allows	the	host	OS	to	impose	policies
that	 govern	 the	 operation	 of	 multiple	 guest	 OS	 concurrently.	 This	 includes
management	 and	 scheduling	 of	 processes,	 memory,	 I/O	 operations	 to	 assign
them	 appropriately	 to	 the	 guest	 OS.	 Through	 this	 mechanism	 the	 hypervisor
provides	an	emulation	of	available	hardware	to	each	Virtual	Machine	run	on	top
of	 it	 in	 time-sharing	 fashion	 for	 resource	 constrained	 or	 resource	 shared
activities.

As	example,	the	hypervisor	has	the	ability	to	present	generic	I/O	devices	and	it
has	 no	 access	 to	 non-generic	 I/O	 devices.	 Generic	 I/O	 devices	 are	 network,
interface	cards,	CD-ROMs.	Examples	for	non-generic	I/O	devices	are	PCI	data
acquisition	card,	etc.	However	with	appropriate	driver	support	even	such	devices
could	be	made	accessible	to	the	VMs.

Often	we	also	find	that	hosted	virtualization	supports	connected	USB	drives	in
the	 VMs	 which	 becomes	 very	 practical	 for	 USB	 attached	 devices	 needed	 in
storage,	or	even	edge	computing	applications.



Advantages	of	Hosted	Virtualization	include

Multiple	Operating	systems	run	on	separate	virtual	machines	on	a	VMM.
Different	Operating	systems	run	on	separate	virtual	machines	on	a	VMM.
Hardware	level	driver	support	is	controlled	by	VMM,	allowing	an	isolation
of	certain	security	aspects	for	accessing	the	hardware.
Installation	 of	 software	 can	 be	 done	 by	 the	 owner	 of	 the	 virtual	machine
and	does	not	have	to	be	conducted	by	the	provider	of	the	hypervisor.

Disadvantages	of	Hosted	Virtualization	include

Increased	resource	requirements	as	the	Guest	OS	is	running	a	full	copy	of
the	 OS.	 In	 its	 worst	 case	 this	 will	 lead	 to	 a	 significant	 performance
reduction	while	using	resources	that	are	in	contention.
The	 user	 of	 hypervisors	 must	 be	 familiar	 with	 operating	 system
management	and	security	to	ensure	it	is	safe	to	use.

8.1.4	Summary

To	 showcase	 how	 these	 technologies	 relate	 to	 each	 other	 you	 may	 review
Figure	34

Figure	34:	Virtualization	Taxonomy	[60]

We	summarize	the	following	hypervisor	types:

Type-1	hypervisors	 supporting	native	 or	 bare-metal.	They	 run	directly	 on
the	host’s	hardware	to	control	the	hardware	and	to	manage	guest	operating
systems.

Type-2	 hypervisors	 supporting	 hosted	 virtualization.	 They	 run	 on	 a
conventional	operating	system	(OS)	just	as	other	computer	programs	do.	A
guest	operating	system	runs	as	a	process	on	the	host.

8.1.5	Virtualization	Approches



Next	 we	 look	 at	 different	 virtualization	 approaches	 that	 relate	 to	 resource
utilization.

8.1.5.1	Full	virtualization

When	 looking	 at	 virtualization	 we	 often	 identify	 it	 with	 being	 a	 full
virtualization.	 The	 hypervisor	 provides	 a	 full	 abstraction	 of	 the	 hardware
exposed	to	the	guest	OSs.	In	this	case,	the	guest	OSs	the	virtual	machine	just	run
without	 any	 special	 modification	 on	 the	 host	 OS.	 It	 just	 looks	 like	 an
independent	running	computer	[60].

8.1.5.2	Paravirtualization

Para	–	alongside/partial	–	virtualization	is	developed	to	improve	performance	by
interacting	 between	 the	OS	 and	 the	 hypervisor.	 This	 is	 done	 for	 complex	 and
time-consuming	 tasks	 that	 otherwise	 could	 not	 be	 managed	 by	 the	 VMM
manager.	Commands	 sent	 from	 the	OS	 to	 the	 hypervisor	 are	 called	hypercalls
[60].

8.1.6	Virtualization	Technologies

In	 this	 section	we	 cover	 introduction	 to	 underlying	 virtualization	 technologies
used	on	some	mainstream	platforms.

Cloud	 providers,	 such	 as	 AWS,	 Azure,	 and	 Google,	 and	 OpenStack	 use	 for
example	QEMU	and	KVM	technologies	for	compute	instance	virtualization.

8.1.6.1	Selected	Hardware	Virtualization	Technologies

8.1.6.2	AMD-V	and	Intel-VT

The	 hardware	 virtualization	 support	 enabled	 by	 AMD-V	 and	 Intel	 VT
technologies	 introduces	 virtualization	 in	 the	 x86	 processor	 architecture.
According	to	Intel,	Intel	Hyper-Threading	Technology	allows	a	single	processor
to	execute	two	or	more	separate	threads	concurrently.	When	it	is	enabled,	multi-
threaded	 software	 applications	 can	 execute	 their	 threads	 in	 parallel,	 thereby



improving	their	performance.

8.1.6.3	I/O	MMU	virtualization	(AMD-Vi	and	Intel	VT-d)

The	 term	 IOMMU	 is	 an	 abbreviation	 for	 input–output	 memory	 management
unit.	 An	 IOMMU	 allows	 through	 virtual	 addresses	 to	 interface	 with	 physical
addresses,	 allowing	 external	 direct-memory-access–capable	 IO	 devices	 to
interface	 with	 the	 main	 memory	 [61].	 AMD’s	 I/O	 Virtualization	 Technology
(AMD-Vi)	was	originally	called	IOMMU.

To	 use	 Intel’s	 Virtualization	 Technology	 for	 Directed	 I/O	 (VT-d),	 both	 the
motherboard	chipset	and	system	firmware	(BIOS	or	UEFI)	need	to	fully	support
the	IOMMU	I/O	virtualization	functionality	for	it	to	be	usable	[62].

8.1.6.4	Selected	VM	Virtualization	Software	and	Tools

A	number	of	noteworthy	virtualization	software	and	tools	exist	which	make	the
development	and	use	of	virtualization	on	the	hardware	possible.	They	include

Libvirt
KVM
Xen
Hyper-V
QEMU
VMWare
VirtualBox

We	will	be	discussing	them	next.

8.1.6.4.1	Libvirt

Libvirt	 is	 an	 library	with	an	API	 for	managing	virtualization	 solutions	 such	as
provided	by	KVM	and	Xen.	It	provides	a	common	management	API	for	 them,
allowing	 uniform,	 cross-hypervisor	 interfaces	 for	 higher-level	 management
tools.	Libvirt	provides	a	toolkit	to	manage	virtualization	hosts	and	supports	a	wide
set	 of	 languages,	 such	 as	 C,	 Python,	 Perl,	 and	 Java.	 Drivers	 are	 the	 basic
building	 block	 for	 libvirt	 functionality	 to	 support	 the	 capability	 to	 handle

https://libvirt.org/api.html


specific	 hypervisor	 driver	 calls.	 Drivers	 are	 discovered	 and	 registered	 during
connection	processing	as	part	of	 the	 virInitializeAPI.	 Each	 driver	 has	 a	 registration
API	which	loads	up	the	driver	specific	function	references	for	the	libvirt	APIs	to
call.	 The	 following	 is	 a	 simplistic	 view	 of	 the	 hypervisor	 driver	 mechanism.
Furthermore,	 it	provides	APIs	 for	management	of	virtual	networks	and	storage
on	 the	VM	Host	 Server.	 The	 configuration	 of	 each	VM	Guest	 is	 stored	 in	 an
XML	file	[63].	The	official	website	for	libvirt	is	located	at

https://libvirt.org/

8.1.6.4.2	QEMU

QEMU	is	a	virtualization	technology	emulator	that	allows	you	to	run	operating
systems	and	Linux	distributions	on	your	current	system	without	installing	them
or	burn	their	ISO	files.	When	used	as	a	machine	emulator,	QEMU	can	run	OSs
and	 programs	 made	 for	 one	 machine	 (e.g.	 an	 ARM	 board)	 on	 a	 different
machine	 (e.g.	 your	 own	 PC).	 By	 using	 dynamic	 translation,	 it	 achieves	 very
good	performance.	QEMU	provides	two	generic	functions.	One	of	them	is	open
source	machine	emulator	and	the	other	is	a	virtualizer.

Machine	 emulation:	 using	 it	 as	 a	 machine	 emulator	 it	 runs	 the	 OSs	 and
programs	 designed	 for	 one	 machine	 on	 a	 different	 machine	 of	 potential
different	architecture.	It	uses	dynamic	translation	through	which	it	achieves
very	good	performance.

Virtualizer:	Using	is	as	a	virtualizer	 it	executes	 the	guest	code	directly	on
the	host	CPU.	This	enables	QEMU	to	achieve	near	native	performance.

Once	QEMU	has	been	installed,	it	should	be	ready	to	run	a	guest	OS	from	a	disk
image.	This	image	is	a	file	that	represents	the	filesystem	and	OS	on	a	hard	disk.
From	the	perspective	of	the	guest	OS,	it	actually	is	a	file	on	hard	disk,	and	it	can
create	its	own	filesystem	on	the	virtual	disk.

QEMU	supports	either	XEN	or	KVM	to	enable	virtualization.	With	the	help	of
KVM,	 QEMU	 can	 virtualize	 x86,	 server	 and	 embedded	 PowerPC,	 64-bit
POWER,	 S390,	 32-bit	 and	 64-bit	 ARM,	 and	 MIPS	 guests	 according	 to	 the
QEMU	Wiki.

https://libvirt.org/
https://wiki.qemu.org/Main_Page


Useful	links	include	the	following:

An	 extensive	 manual	 is	 provided	 at	 https://qemu.weilnetz.de/doc/qemu-
doc.html.

QEMU	can	be	downloaded	from	http://www.qemu.org/download/.

A	 collection	 of	 images	 for	 testing	 purposes	 is	 provided	 at
https://wiki.qemu.org/Testing/System_Images

An	 example	 for	 using	 QEMU	 is	 provided	 in	 Section	 [Virtual	 Machine
Management	with	QEMU]{???}

8.1.6.4.3	KVM

KVM,	 or	 Kernel-based	 Virtual	 Machine	 is	 a	 popular	 open-source	 hypervisor
solution.	It	was	released	as	a	virtualization	solution	for	Linux	based	systems,	and
later	 was	 merged	 into	 Linux	 Kernel	 since	 version	 2.6.20.	 It	 was	 originally
supporting	x86	hardware	with	virtualization	 extensions	 (Intel	VT	or	AMD-V),
but	later	supporting	of	PowerPC	and	ARM	were	added.	It	supports	a	variety	of
different	 guest	 OSs,	 e.g.,	 Windows	 family,	 Darwin	 (the	 core	 of	 MacOS),	 in
addition	 to	 the	different	distros	 from	various	 linux	operating	 systems.	The	 full
supported	 guest	 list	 can	 be	 found	 at:	 http://www.linux-
kvm.org/page/Guest_Support_Status

The	 full	 list	 of	 KVM	 fatures	 can	 be	 found	 here:	 http://www.linux-
kvm.org/page/KVM_Features.	 Among	 them,	 some	 cool	 features	 include	 hot-
plugging	of	hardware	even	CPU	and	PCI	devices.	It	supports	 live	migration	of
VMs	too.

8.1.6.4.3.1	KVM	vs	QEMU

KVM	includes	a	fork	of	the	QEMU	executable.	The	QEMU	project	focuses	on
hardware	 emulation	 and	 portability.	 KVM	 focus	 on	 the	 kernel	 module	 and
interfacing	 with	 the	 rest	 of	 the	 userspace	 code.	 KVM	 comes	 with	 a	 kvm-qemu

executable	 that	 just	 like	QEMU	manages	 the	 resources	while	 allocating	RAM,
loading	 the	code.	However	 instead	of	 recompiling	 the	code	 it	 spawns	a	 thread
which	calls	the	KVM	kernel	module	to	switch	to	guest	mode.	It	than	proceeds	to

https://qemu.weilnetz.de/doc/qemu-doc.html
http://www.qemu.org/download/
https://wiki.qemu.org/Testing/System_Images
http://www.linux-kvm.org/page/Guest_Support_Status
http://www.linux-kvm.org/page/KVM_Features


execute	the	VM	code.	When	privileged	instructions	are	found,	it	switches	back
to	the	KVM	kernel	module,	and	if	necessary,	signals	the	QEMU	thread	to	handle
most	of	the	hardware	emulation.	This	means	that	the	guest	code	is	emulated	in	a
posix	thread	which	can	be	managed	with	common	Linux	tools	[64].

8.1.6.4.4	Xen

Xen	is	one	of	the	most	widely	adopted	hypervisors	by	IaaS	cloud.	It	is	supported
by	the	earliest	and	still	the	most	popular	public	cloud	offering,	i.e.,	Amazon	Web
Service	(AWS).	Eucalyptus,	one	open-source	effort	to	replicate	what	AWS	had
to	offer,	and	the	then	most	popular	private	cloud	software,	supported	Xen	from
the	start.	And	later	Openstack,	the	most	popular	open-source	IaaS	cloud	software
at	present,	also	supports	Xen.

Some	notable	features	of	Xen	includes:

Supporting	x86-64	and	ARM	for	host	architecture.

Supporting	live	migration	of	VMs	between	different	physical	hosts	without
losing	the	availability.

More	 detailed	 list	 can	 be	 found	 at
https://wiki.xenproject.org/wiki/Xen_Project_Release_Features.

8.1.6.4.5	Hyper-V

Hyper-V	 is	 a	 product	 from	 Microsoft	 to	 support	 virtualization	 on	 systems
running	Windows.	Hyper-V	was	originally	released	along	with	Windows	Server
2008,	with	a	separate	free	version	with	limited	functionality.	In	later	releases	it
adds	 more	 features,	 e.g.,	 better	 support	 of	 Linux	 guest	 OS,	 live	 migration	 of
VMs,	etc.

Hyper-V	is	still	getting	a	lot	of	popularity	comparing	to	XEN	and	KVM	which
we	attribute	to	the	increasing	presence	of	Microsoft’s	Azure	cloud	offering.

https://wiki.xenproject.org/wiki/Xen_Project_Release_Features


Figure	 35:	 Popularity	 of	 KVM,	 Xen,	 and	 Hyper-V	 according	 to
Google	Trends	Source

However	overall	 the	search	popularity	of	hypervisors	have	been	decreasing,	as
other	 lightweight	 virtualization	 solutions,	 i.e.,	 container	 technologies	 become
more	main	stream.	We	will	covered	them	in	a	later	chapter.

More	 detailed	 information	 about	 Hyper-V	 can	 be	 found	 at
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-
windows/reference/hyper-v-architecture

8.1.6.4.6	VMWare

VMware	 is	 well	 known	 for	 the	 company	 bringing	 hypervisors	 to	 the	 amss
market.	The	company	 is	now	owned	by	Dell.	 It	has	developed	 the	 first	 type	2
hypervisor.	 Today	 VMWare	 offer	 type	 1	 hypervisors	 and	 type	 2	 hypervisors
[65].

Because	the	initial	software	virtualized	“hardware	for	a	video	adapter,	a	network
adapter,	and	hard	disk	adapters”	as	well	as	“pass-through	drivers	for	guest	USB,
serial,	 and	parallel	devices”	 [65]	 it	provided	an	attractive	 solution	 for	many	 to
use	it	to	run	different	OSs	on	their	host	computers.	One	important	advantage	is

https://trends.google.com/trends/?geo=US
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-architecture


that	 it	does	not	 rely	on	virtualization	extensions	 to	 the	x86	 instruction	set	as	 it
was	 developed	 before	 they	 became	 available.	 This	means	 it	 can	 run	 on	many
other	 platforms.	 However	 this	 advantage	 is	 diminished	 with	 the	 ubiquitous
available	of	these	features	in	the	hardware.

8.1.6.5	Parallels

Another	interesting	company	offering	hypervisors	is	Parallels.	This	company	has
two	main	products	in	that	regards:

Parallels	 Desktop	 for	 Mac,	 which	 for	 x86	 machines	 allows	 users	 to	 run
virtual	machines	independently	using	Windows,	Linux,	Solaris.

Parallels	Workstation	 for	Microsoft	Windows	 and	 Linux	 users	which	 for
x86	 machines	 allows	 user	 to	 run	 virtual	 machines	 independently	 on	 the
Windows	host.

8.1.6.5.1	VirtualBox

VirtualBox	 is	 a	 free	 open-source	 hypervisor	 for	 x86	 architectures.	 It	 is	 now
owned	 by	 Oracle	 while	 transitioning	 from	 SUN	 which	 in	 turn	 acquired	 the
original	technology	from	Innotek.

One	of	 the	nice	features	for	us	 is	 thet	VirtualBox	is	able	 to	create	and	manage
guest	virtual	machines	such	as	Windows,	Linux,	BSD,	OSx86	and	even	in	part
also	macOS	(on	Apple	hardware).	Hence	it	makes	it	for	us	a	very	valuable	tool
while	 being	 able	 to	 run	 virtual	 machines	 on	 a	 local	 desktop	 or	 computer	 to
simulate	 cloud	 resources	without	 charging	 cost.	 In	 addition	we	 find	 command
line	 tools	 such	 as	 Vagrant	 that	 make	 the	 use	 convenient	 while	 not	 having	 to
utilize	 the	GUI	or	 the	more	complex	virtual	box	command	 interfaces.	A	guest
additions	package	allows	compatibility	with	 the	host	OS,	 to	 for	example	allow
window	management	between	host	and	guest	OS.

In	Section	VirtualBox	we	have	provided	a	practical	introduction	to	VirtualBox.

8.1.6.5.2	Wine	–	Wine	is	not	an	emulator

The	next	software	that	we	introduce	is	actually	not	a	hypervisor.	However	it	 is



very	 interesting	 as	 a	 contrast	 to	 the	 other	 approach.	 The	 term	Wine	 has	 been
originally	introduced	as	an	acronym	for	Wine	Is	Not	an	Emulator.	In	contrast	to
the	 other	 approaches	Wine	 introduces	 a	 compatibility	 layer	 that	 allows	 to	 run
Windows	applications	on	a	number	of	POSIX-compliant	operating	systems.	This
includes	 Linux,	 macOS	 and	 BSD.	 In	 contrast	 to	 using	 a	 virtual	 machine	 or
emulator,	Wine	 translates	Windows	API	calls	 into	POSIX	calls	 [66].	Hence,	 it
allows	to	pass	the	Windows	API	calls	directly	to	operating	system	calls	leading
to	good	performance	[66].	The	disadvantage	of	this	approach	is	that	in	the	early
days	and	till	today	some	of	the	underlying	calls	may	not	be	ported	yet	and	may
lead	 to	 applications	 not	 running.	 Those	 of	 us	 that	 wanted	 to	 run	 for	 example
Microsoft	Word	on	Linux	or	macOS,	may	remember	that	Wine	was	the	tool	we
used	to	do	so	even	before	Word	was	released	on	macOS.

8.1.6.5.3	Comparison	of	some	technologies

QEMU	and	KVM	are	better	integrated	in	Linux	and	has	a	smaller	footprint.	This
may	 result	 in	 better	 performance.	 VirtualBox	 is	 targeted	 as	 virtualization
software	and	limited	to	x86	and	amd64.	As	Xen	uses	QEMU	it	allows	hardware
virtualization.	 However,	 Xen	 can	 also	 use	 paravirtualization	 [67].	 In	 the
following	table	we	summarize	support	for	full-	and	paravirtualization

XEN KVM VirtualBox VMWare
Paravirtualization yes no no no
Full	virtualization yes yes yes yes

8.1.6.6	Selected	Storage	Virtualization	Software	and	Tools

Storage	 virtualization	 allows	 the	 system	 to	 integrate	 the	 logical	 view	 of	 the
physical	storage	resources	into	a	single	pool	of	storage.	Users	are	unaware	while
using	virtual	storage	that	it	is	not	hosted	on	the	same	hardware	resources,	such	as
disks.	Storage	virtualization	is	done	across	the	various	layers	that	build	state	of
the	 art	 storage	 infrastructures.	 This	 includes	 Storage	 devices,	 the	 Block
aggregation	layer,	the	File/record	layer,	and	the	Application	layer.	Most	recently
hosting	 files	 as	 part	 of	 the	 application	 layer	 in	 the	 cloud	 is	 changing	 how	we
approach	data	storage	needs	in	the	enterprise.	A	good	example	for	a	cloud	based
virtual	storage	is	google	drive.	Other	systems	include	Box,	AWS3	and	Azure.



8.1.6.7	Selected	Network	Virtualization	Software	and	Tools

Network	virtualization	allows	hardware	and	software	network	resources	as	well
as	 network	 functionality	 to	 be	 combined	 into	 a	 single,	 software-defined
administrative	 unit	 which	 is	 called	 a	 virtual	 network.	We	 distinguish	 external
network	 virtualization	 that	 combines	many	 networks	 into	 a	 unifying	 network,
and	 internal	 network	 virtualization	 that	 provides	 network	 functionality	 to	 the
processes	and	containers	running	on	a	single	server.

Note,	 that	 we	 will	 not	 cover	 this	 topic	 in	 this	 introductory	 class.	 However
students	can	contribute	a	section	or	chapter

8.2	VIRTUAL	MACHINE	MANAGEMENT	WITH	QEMU	☁
In	this	section	we	provide	a	short	example	on	how	to	use	QUEMU.	We	will	be
starting	with	the	instalation,	then	create	a	virtual	hard	disk,	install	ubuntu	on	the
disk	 and	 start	 the	 virtual	 machine.	 Next	 we	 will	 demonstrate	 how	 we	 can
emulate	a	Raspery	Pi	with	QEMU.	Lastly,	we	sho	how	to	use	virsh.

8.2.1	Install	QEMU

To	install	QEMU+KVM	on	Ubuntu/Linux	Mint	please	use

On	OSX	QEMU	can	be	installed	with	Homebrew

8.2.2	Create	a	Virtual	Hard	Disk	with	QEMU

To	create	an	image	file	with	the	size	of	10GB	and	qcow2	format	(default	format	for
QEMU	images),	run:

Note	that	a	new	file	called	testing-image.img	is	now	created	at	your	home	folder	(or	the
place	where	you	run	 the	 terminal).	Note	also	 that	 the	size	of	 this	 file	 is	not	10
Gigabytes,	 it	 is	 around	 150KB	 only;	 QEMU	 will	 not	 use	 any	 space	 unless

$	sudo	apt	install	qemu	qemu-kvm	libvirt-bin

$	brew	install	qemu

$	qemu-img	create	-f	qcow2	testing-image.img	10G

https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/qemu.md


needed	 by	 the	 virtual	 operating	 system,	 but	 it	 will	 set	 the	 maximum	 allowed
space	for	that	image	to	10	Gigabytes	only.

8.2.3	Install	Ubuntu	on	the	Virtual	Hard	Disk

Now	 that	we	 have	 created	 our	 image	 file,	 if	we	 have	 an	 ISO	 file	 for	 a	Linux
distribution	or	any	other	operating	system	and	we	want	 to	 test	 it	using	QEMU
and	use	the	new	image	file	we	created	as	a	hard	drive,	we	can	run:

Explain	the	previous	command	part	by	part:

-m	1024:

Here	we	chose	the	RAM	amount	that	we	want	to	provide	for	QEMU
when	running	the	ISO	file.	We	chose	1024MB	here.	You	can	change	it
if	you	like	according	to	your	needs.

-boot	-d:

The	 boot	 option	 allows	 us	 to	 specify	 the	 boot	 order,	 which	 device
should	be	booted	first?	-d	means	that	the	CD-ROM	will	be	the	first,
then	 QEMU	 will	 boot	 normally	 to	 the	 hard	 drive	 image.	 We	 have
used	the	-cdrom	option	as	you	can	see	at	the	end	of	the	command.	You
can	use	-c	if	you	want	to	boot	the	hard	drive	image	first.

-enable-kvm:

This	 is	 a	 very	 important	 option.	 It	 allows	 us	 to	 use	 the	 KVM
technology	 to	 emulate	 the	 architecture	we	want.	Without	 it,	QEMU
will	use	software	rendering	which	is	very	slow.	That	is	why	we	must
use	 this	 option,	 just	 make	 sure	 that	 the	 virtualization	 options	 are
enabled	from	your	computer	BIOS.

-smp	3:

qemu-system-x86_64	\

				-m	1024	\

				-boot	d	\

				-enable-kvm	\

				-smp	3	\

				-net	nic	-net	user	\

				-hda	testing-image.img	\

				-cdrom	ubuntu-16.04.iso



If	we	want	to	use	more	than	1	core	for	the	emulated	operating	system,
we	 can	 use	 this	 option.	We	 chose	 to	 use	 3	 cores	 to	 run	 the	 virtual
image	 which	 will	 make	 it	 faster.	 You	 should	 change	 this	 number
according	to	your	computer’s	CPU.

-net	nic	-net	user:

By	 using	 these	 options,	 we	 will	 enable	 an	 Ethernet	 Internet
connection	to	be	available	in	the	running	virtual	machine	by	default.

-hda	testing-image.img:

Here	we	specified	the	path	for	the	hard	drive	which	will	be	used.	In
our	case,	it	was	the	testing-image.img	file	which	we	created	before.

-cdrom	ubuntu-16.04.iso:

Finally	we	told	QEMU	that	we	want	to	boot	our	ISO	file	ubuntu-16.04.iso.

8.2.4	Start	Ubuntu	with	QEMU

Now,	 if	 you	 want	 to	 just	 boot	 from	 the	 image	 file	 without	 the	 ISO	 file	 (for
example	 if	 you	 have	 finished	 installing	 and	 now	you	 always	want	 to	 boot	 the
installed	system),	you	can	just	remove	the	-cdrom	option:

Please	note	QEMU	qemu-system-x86_64	emulates	a	64-bit	architecture.

8.2.5	Emulate	Raspberry	Pi	with	QEMU

First	you	have	to	download	a	pre-built	kernel

Next,	 you	 have	 to	 download	 the	 Raspbian	 image.	 Download	 a	 .img	 file	 from
Raspbian	website:

https://www.raspberrypi.org/downloads/raspbian/

$	qemu-system-x86_64	-m	1024	-boot	d	-enable-kvm	-smp	3	-net	nic	-net	user	-hda	testing-image.img

$	wget	https://raw.githubusercontent.com/dhruvvyas90/qemu-rpi-kernel/master/kernel-qemu-4.4.34-jessie

https://www.raspberrypi.org/downloads/raspbian/


To	start	the	emulator	type	in	the	following	command	to	have	QEMU	emulate	an
ARM	architecture:

Pleaee	not	that

kernel-qemu-4.4.34-jessie	is	the	pre-built	kernel	file.
raspbian-stretch-lite.img	is	the	Raspbian	image	file.

8.2.6	Resources

General

Official	website	for	libvirt	is	here:	https://libvirt.org/
Home	page	of	KVM	is	here:	https://www.linux-kvm.org/page/Main_Page
QEMU	home	page:	https://www.qemu.org/
QEMU	User	Documentation:	https://qemu.weilnetz.de/doc/qemu-doc.html
Wikipedia	page	for	QEMU:	https://en.wikipedia.org/wiki/QEMU

Comparison

http://opensourceforu.com/2012/05/virtualisation-faceoff-qemu-virtualbox-
vmware-player-parallels-workstation/
https://stackoverflow.com/questions/43704856/what-is-the-difference-
qemu-vs-virtualbox

8.3	MANAGE	VM	GUESTS	WITH	VIRSH	☁
virsh	is	a	command	line	interface	tool	for	managing	guests	and	the	hypervisor.

To	initiate	a	hypervisor	session	with	virsh	:

Where	is	the	machine	name	of	the	hypervisor.	If	you	want	to	initiate	a	read-only
connection,	append	the	previous	command	with	-readonly.

$	qemu-system-arm	-kernel	./kernel-qemu-4.4.34-jessie	\

				-append	"root=/dev/sda2	panic=1	rootfstype=ext4	rw"	\

				-hda	raspbian-stretch-lite.img	\

				-cpu	arm1176	-m	256	-machine	versatilepb	\

				-no-reboot	-serial	stdio

virsh	connect	<name>

https://libvirt.org/
https://www.linux-kvm.org/page/Main_Page
https://www.qemu.org/
https://qemu.weilnetz.de/doc/qemu-doc.html
https://en.wikipedia.org/wiki/QEMU
http://opensourceforu.com/2012/05/virtualisation-faceoff-qemu-virtualbox-vmware-player-parallels-workstation/
https://stackoverflow.com/questions/43704856/what-is-the-difference-qemu-vs-virtualbox
https://github.com/cloudmesh-community/book/blob/master/chapters/cloud/virsh.md


To	display	the	guest	list	and	their	current	states	with	virsh:

The	–inactive	option	 lists	 inactive	domains	 (domains	 thxsat	have	been	defined
but	are	not	currently	active).	The	–all	domain	lists	all	domains,	whether	active	or
not.

A	manual	page	can	be	found	on	line	at

https://linux.die.net/man/1/virsh

A	practical	example	of	using	virsh	is	provided	at

Redhat	 Customer	 Portal:	 CHAPTER	 26.	 MANAGING	 GUESTS	 WITH
VIRSH

virsh	list	[	--inactive		|		--all]

https://linux.die.net/man/1/virsh
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/virtualization/chap-virtualization-managing_guests_with_virsh


9	IAAS

9.1	INTRODUCTION	☁

	Learning	Objectives

Review	IaaS	servise	by	prominent	cloud	providers.
Understand	how	 to	write	Python	programs	on	managing	virtual	machines
with	libcloud.
Understand	how	to	write	Python	programs	on	managing	data	services	with
libcloud.
Experiment	with	cloud	providers	while	practially	testing	them.

	Be	careful	with	your	allocation.

NIST	defines	the	term

Infrastructure	as	a	Service	(IaaS)	as	follows:

The	capability	provided	 to	 the	consumer	 is	 to	provision	processing,
storage,	networks,	and	other	fundamental	computing	resources	where
the	consumer	is	able	to	deploy	and	run	arbitrary	software,	which	can
include	operating	 systems	and	applications.	The	consumer	does	not
manage	 or	 control	 the	 underlying	 cloud	 infrastructure	 but	 has
control	over	operating	 systems,	 storage,	and	deployed	applications;
and	 possibly	 limited	 control	 of	 select	 networking	 components	 (e.g.,
host	firewalls).

The	 key	 term	 is	 to	provision	 fundamental	 computing	 resources.	 This	means	 a
user	 does	 not	 have	 to	worry	 about	managing	 the	 hardware	 allowing	 low	 level
services	such	as	the	operating	system	or	the	network	fabric	to	be	the	next	higher
interface	 for	 the	 user.	 The	 hardware	 fabric	 is	managed	 by	 the	 cloud	 provider,
while	 the	 operating	 system	 level	 and	 their	 connectivity	 with	 each	 other	 is

https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/iaas.md
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf


managed	by	the	user.

We	distinguish	the	following	categories	of	infrastructure:

compute	resources
network	resources
storage	resources

We	 also	 like	 to	 remind	 you	 that	 such	 IaaS	 as	 parts	 of	 clouds	 can	 either	 be
accessed	public,	private	or	in	a	hybrid	fashion.

Within	 the	 next	 view	 section	we	will	 focus	 on	 some	of	 the	main	 providers	 of
IaaS.

This	includes

Amazon	Web	Services
Azure
Google

Additionally,	we	also	have

Watson

which	 although	 provides	 IaaS	 focusses	 more	 on	 delivering	 AI	 platforms	 and
related	services	to	the	community.

On	the	research	side	wi	will	be	focussing	on

Chameleon	Cloud.

Some	of	the	services	listed	provide	a	free	small	contingent	of	IaaS	offerings	that
you	can	use.	The	use	of	this	free	tier	will	be	sufficient	to	conduct	this	class.

A	set	of	introductory	slides	is	available	at

	Virtual	Machines	(21)

https://1drv.ms/p/s!AvpSEd2J24STjBbo4k35C5v-ra8g


9.2	AMAZON	WEB	SERVICES	☁

9.2.1	AWS	Products

Amazon	 Web	 Services	 offers	 a	 large	 number	 of	 products	 that	 are	 centered
around	 their	 cloud	 services.	 These	 services	 have	 grown	 considerably	 over	 the
years	 from	 the	 core	 offering	 related	 to	 virtual	machine	 (EC2)	 and	 datastorage
(S3).	An	overview	of	them	is	provided	by	Amazon	in	the	following	document:

https://d0.awsstatic.com/whitepapers/aws-overview.pdf

We	list	the	product	in	screenshots	from	their	Product	Web	page	panel	in	Figure:
Figure	36,	Figure	37.

https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/aws/aws.md
https://d0.awsstatic.com/whitepapers/aws-overview.pdf


Figure	36:	AWS	Products	1	Source

Figure	37:	AWS	Products	2	Source

Service	offerings	are	grouped	by	categories:

Compute
Storage
Database
Migration
Networking	and	Content	Delivery
Developer	Tools
Management	Tools
Media	Services

https://aws.amazon.com/
https://aws.amazon.com/


Machine	Learning
Analytics
Security	and	Identity	Compliance
Mobile	Services
AR	and	VR
Application	Integration
Customer	Engagement
Business	Productivity
Desktop	and	App	Streaming
Internet	of	Things
Game	Development
Software
Aws	Core	Management

Within	each	category	you	have	several	products.	When	choosing	products	form
AWS	it	is	best	to	start	with	the	overview	paper	and	identify	products	that	can	be
of	 benefit	 to	 you.	 For	 our	 purpose	 we	 focus	 on	 the	 traditional	 Compute	 and
Storage	offerings.	We	list	the	products	that	are	available	In	Sep.	2018	next.

9.2.1.1	Virtual	Machine	Infrastructure	as	a	Services

Amazon	 offers	 a	 large	 number	 of	 services	 relatesd	 to	 virtual	 machine
management

Amazon	EC2	[Source](https://aws.amazon.com/)
Amazon	EC2	Auto	Scaling	[Source](https://aws.amazon.com/)

9.2.1.2	Container	Infrastructure	as	a	Service

Amazon	offers	the	following	container	based	services

Amazon	Elastic	Container	Service	[Source](https://aws.amazon.com/)
Amazon	 Elastic	 Container	 Service	 for	 Kubernetes	 [Source]
(https://aws.amazon.com/)
Amazon	Elastic	Container	Registry	[Source](https://aws.amazon.com/)

9.2.1.3	Serverless	Compute	using	AWS	Lambda

https://aws.amazon.com/ec2/?nc2=h_mo
https://aws.amazon.com/ec2/autoscaling/?nc2=h_mo
https://aws.amazon.com/ecs/?nc2=h_mo
https://aws.amazon.com/eks/?nc2=h_mo
https://aws.amazon.com/ecr/?nc2=h_mo


In	addition	to	these	services	a	number	of	additional	compute	services	Serverless
computing	 or	 FaaS	 is	 a	 new	 cloud	 computing	 paradigm	 that	 has	 are	 offered
which	you	can	 find	 in	 the	Appendix.	This	 includes	gained	popularity	 recently.
Serverless	Computing	with	AWS	Lambda.	Serverless	computing	or	Function	as
a	Service	(FaaS)	is	a	new	cloud	computing	paradigm	that	has	gained	popularity
recently.	AWS	Lambda	was	one	of	 the	 first	 serverless	computing	services	 that
was	made	available	to	the	public,	Serverless	computing	allows	users	to	run	small
functions	 in	 the	 cloud	 without	 having	 to	 worry	 about	 resource	 requirements.
More	 information	 regarding	 AWS	 Lambda	 can	 be	 found	 in	 the	 following
document

https://aws.amazon.com/lambda/

9.2.1.4	Serverless	Compute	using	AWS	Lambda

Serverless	 computing	 or	 FaaS	 is	 a	 new	 cloud	 computing	 paradigm	 that	 has
gained	popularity	recently.

9.2.1.5	Storage

AWS	 provides	 many	 storage	 services	 that	 users	 can	 leverage	 for	 developing
applications	 and	 solutions.	 The	 next	 list	 showcases	 AWS	 storage	 services.
Amazon	offers	the	following	storage	services

Amazon	Simple	Storage	Service	(S3)
Amazon	Elastic	Block	Store	(EBS)
Amazon	Elastic	File	System	(EFS)
Amazon	Glacier
AWS	Storage	Gateway
AWS	Snowball
AWS	Snowball	Edge
AWS	Snowmobile
AWS	Marketplace

9.2.1.6	Databases

AWS	 also	 provides	 many	 data	 base	 solutions.	 AWS	 has	 both	 SQL	 based

https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/?nc2=h_mo
https://aws.amazon.com/ebs/?nc2=h_mo
https://aws.amazon.com/efs/?nc2=h_mo
https://aws.amazon.com/glacier/?nc2=h_mo
https://aws.amazon.com/storagegateway/?nc2=h_mo
https://aws.amazon.com/snowball/?nc2=h_mo
https://aws.amazon.com/snowball-edge/?nc2=h_mo
https://aws.amazon.com/snowmobile/?nc2=h_mo
https://aws.amazon.com/marketplace/b/2649337011/ref=mkt_ste_l2_S3CDN?page=1&category=2649337011&nc2=h_mo


databases	and	NoSQL	based	databases.	The	next	list	shows	the	database	services
that	AWS	offers.	And	other	database	related	services

Amazon	Aurora
Amazon	RDS
Amazon	DynamoDB
Amazon	ElastiCache
Amazon	Redshift
Amazon	Neptune
AWS	Database	Migration	Service
AWS	Marketplace

9.2.2	Locations

As	the	following	figure	shows:	Figure	38.

https://aws.amazon.com/rds/aurora/?nc2=h_mo
https://aws.amazon.com/rds/?nc2=h_mo
https://aws.amazon.com/dynamodb/?nc2=h_mo
https://aws.amazon.com/elasticache/?nc2=h_mo
https://aws.amazon.com/redshift/?nc2=h_l3_db
https://aws.amazon.com/neptune/?nc2=h_mo
https://aws.amazon.com/dms/?nc2=h_mo
https://aws.amazon.com/marketplace/search/results/ref=mkt_ste_l2_database_category?page=1&category=2649364011&nc2=h_mo


Figure	38:	AWS-Locations	Source

9.2.3	Creating	an	account

In	order	to	create	a	AWS	account	you	will	need	the	following

A	valid	email	address
A	credit/debit	card
A	valid	phone	number

First	you	need	to	visit	the	AWS	signup	page	[Source](https://aws.amazon.com/)
and	click	“Create	Free	Account”.	You	will	then	be	asked	to	provide	some	basic
details	including	your	email	address	as	shown	in	the	image:	Figure	39.

https://aws.amazon.com/
https://aws.amazon.com/free/


Figure	39:	AWS	Signup	Source

Next	you	will	be	asked	to	provide	further	details	such	as	your	name,	address	and
phone	number.	After	 the	 additional	 details	 have	been	provided.	AWS	will	 ask
for	credit/debit	card	details	as	shown:	Figure	40.	They	require	this	information	to
verify	your	identity	and	make	sure	they	have	a	method	to	charge	you	if	needed.
However	no	charges	will	be	applied	to	your	credit/debit	card	unless	you	use	the
AWS	services	and	exceed	the	free	tier	limits,	which	will	be	discussed	in	the	next
section.

https://aws.amazon.com/


Figure	40:	Payment	Information	Source

After	the	credit/debit	card	has	been	verified	AWS	will	use	your	phone	number	to
verify	your	identity.	Once	you	are	logged	into	your	account	you	will	be	able	to
sign	into	the	console,	from	the	link	on	the	top	right	corner	in	your	account.	Once
you	are	in	the	AWS	console	the	services	tab	in	the	left	top	corner	will	allow	you
to	access	all	the	services	that	are	available	to	you	through	AWS	as	shown	in	the
image	:	Figure	41.

https://aws.amazon.com/


Figure	41:	AWS	Console	Source

9.2.4	AWS	Command	Line	Interface

9.2.4.1	Introduction

Amazon’s	CLI	allows	for	programatic	interaction	with	AWS	product	through	the
command	 line.	CLI	provide	many	pre-built	 functions	 that	allow	for	 interaction
with	Amazon’s	Elastic	Compute	Cloud	(EC2)	instances	and	S3	storage.

9.2.4.2	Prerequisites

Linux
Python
PIP
AWS	Account
AWS	Key	Pair

9.2.4.2.1	Install	CLI

Run	the	follwoing	code	to	install	CLI.
pip	install	awscli

https://aws.amazon.com/
https://github.com/cloudmesh-community/book/blob/master/chapters/linux/linux.md
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/python/python-install.md
https://pip.pypa.io/en/stable/installing/
https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/aws/aws.md#creating-an-account
https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/aws/aws.md#setting-up-key-pair


9.2.4.2.2	Configure	CLI

Using	the	following	code	to	configure	AWS	using.	You	will	need	to	specify	four
parameters:

1.	 AWS	Access	Key	ID
2.	 AWS	Secret	Access	Key
3.	 Default	region	name	(this	is	the	default	region	that	will	be	used	when	you

create	EC2	instances)
4.	 Default	output	format	(the	default	format	is	json)

9.2.5	AWS	Admin	Access

9.2.5.1	Introduction

In	order	to	access	various	AWS	functionality	remotely	(through	command-line)
you	must	enable	administrative	access.

9.2.5.2	Prerequisites

Set	up	AWS	account

Install	and	configure	AWS	CLI

Linux	environment

AWS	Key	Pair

9.2.5.3	Setting	up	admin	access	using	AWS	CLI

9.2.5.3.1	Create	an	admin	security	group

9.2.5.3.2	Assign	a	security	policy	to	the	created	group	granting	full	admin	access

aws	configure

aws	iam	create-group	--group-name	Admins

aws	iam	attach-group-policy	--group-name	Admins	--policy-arn	arn:aws:iam::aws:policy/AdministratorAccess

https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/aws/aws.md#creating-an-account
https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/aws/aws.md#aws-command-line-interface
https://github.com/cloudmesh-community/book/blob/master/chapters/linux/linux.md
https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/aws/aws.md#setting-up-key-pair


9.2.6	Understanding	the	free	tier

AWS	provides	a	set	of	services	free	of	charge.	These	free	services	are	to	allow
new	 users	 test	 and	 experiment	 with	 various	 AWS	 services	 without	 worrying
about	any	cost.	Free	services	are	provided	as	a	product	that	is	free	until	a	certain
amount	of	usage,	 that	 is	 if	you	exceed	those	 limits	you	will	be	charged	for	 the
additional	usage.	However	the	free	quotas	are	typically	more	than	sufficient	for
testing	and	learning	purposes.	For	example	under	the	free	tier	you	are	able	to	use
750	 hours	 of	 EC2	 resources	 per	 month	 for	 the	 first	 12	 months	 after	 account
creation.	 However	 it	 is	 important	 to	 make	 note	 of	 important	 details	 that	 are
included	in	the	limits.	For	example	for	the	750	hours	of	free	EC2	usage,	you	can
only	 use	 “EC2	Micro”	 instances,	 using	 any	 other	 instance	 type	 for	 your	 EC2
machine	will	not	fall	under	the	free	tier	agreement	and	you	will	be	charged	for
them,	 see	picture:	Figure	42.	To	view	all	 the	AWS	free	 tier	details	visit	AWS
Free	Tier

Figure	42:	Free	tier

Basically	there	are	two	categories	in	the	free	tier,

https://aws.amazon.com/free/


12	months	free
Always	free

12	months	free	offer	are	only	good	for	the	first	12	months	after	you	create	your
AWS	account.	The	always	free	offer	are	valid	even	after	the	first	12	months.

9.2.7	Important	Notes

	When	 using	AWS	 services	make	 sure	 you	 understand	 how	 and
when	you	will	be	charged	for.

For	 example	 if	 you	 are	 using	 an	 EC2	 to	 run	 some	 application,	 usage	 of	 the
instance	will	be	calculated	from	the	time	you	started	the	instance	to	the	time	you
stop	or	terminate	the	instance.	So	even	if	you	do	not	use	the	application	itself,	if
you	are	have	the	instance	in	an	active	mode	that	will	be	added	to	the	usage	hours
and	you	will	be	billed	if	you	exceed	the	750	hour	limit.	In	EC2	even	if	you	stop
the	 instance	 you	 might	 be	 charged	 for	 data	 that	 is	 stored	 in	 the	 instance	 so
terminating	it	would	be	the	most	safest	option	if	you	do	not	have	any	important
data	 stored	 in	 the	 instance.	 You	 can	 look	 up	 other	 such	 tricky	 scenarios	 at
Avoiding	Unexpected	Charges	to	make	sure	you	will	not	get	an	unexpected	bill

9.2.8	Introduction	to	the	AWS	console

As	we	discussed	previously	we	can	access	all	the	service	and	product	offerings
that	are	provided	by	AWS	from	the	AWS	console.	In	the	following	section	we
will	 look	 into	 how	we	 can	 start	 and	 stop	 a	 virtual	 machine	 using	 AWS	 EC2
service.	Please	keep	in	mind	that	this	will	reduce	time	from	your	free	tier	limit	of
750	hours/month,	So	be	careful	when	starting	EC2	 instances	and	make	sure	 to
terminate	them	after	you	are	done.

9.2.8.1	Starting	a	VM

To	 go	 to	 the	 EC2	 services	 you	 can	 click	 on	 the	 services	 link	 on	 the	 top	 left
corner	 in	 the	console	and	 then	click	on	EC2	which	 is	 listed	under	“Compute”.
Then	you	will	see	a	blue	button	labeled	“Launch	instance”.	Click	on	the	button
and	the	console	will	take	you	to	the	page	shown	next:	Figure	43.	Notice	that	the
check	 box	 for	 “Free	 tier	 only”	 is	 clicked	 to	 make	 sure	 the	 instance	 type	 we

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/checklistforunwantedcharges.html


choose	is	eligible	for	the	free	tier	hours.	The	instance	type	you	select	defines	the
properties	 of	 the	 virtual	 machine	 you	 are	 staring	 such	 as	 RAM,	 Storage,
processing	power.	However	since	we	are	using	instance	that	are	free	tier	eligible
we	will	only	be	able	to	use	“EC2	Micro	instances”.	You	can	also	select	a	OS	that
you	want	 to	 be	 started	 as	 the	 virtual	machine.	We	will	 select	 “Ubuntu	 Server
16.04	LTS”	as	our	Operating	system.	press	the	blue	select	button	to	do	so.



Figure	43:	Launch	Instance

Once	you	select	the	OS	type	you	will	be	asked	to	select	the	instance	type.	You
can	notice	that	only	the	“t2.micro”	is	marked	as	free	tier	eligible	as	shown	in	the
image:	 Figure	 44.	 Now	 that	 you	 have	 selected	 all	 the	 basic	 details	 press	 the
“Review	and	Launch”	button	 located	 in	 the	button	 right	corner.	This	will	give
you	a	summary	of	your	current	selections.

Figure	44:	Instance	Type

9.2.8.1.1	Setting	up	key	pair

Before	we	can	 launch	 the	VM	we	need	 to	perform	one	more	step.	We	need	 to
setup	a	SSH	key	pair	for	the	new	VM.	Creating	this	will	allow	us	to	access	our
VM	 through	 SSH.	 Once	 you	 click	 on	 the	 launch	 button,	 you	 will	 get	 the
following	dialog	box:	Figure	45.	 If	you	already	have	a	worked	with	SSH	keys
and	if	you	already	have	a	key	pair	you	can	use	it,	otherwise	you	can	create	a	new



key	pair	as	we	will	do.	To	create	a	new	key	pair	select	 the	“Create	a	new	key
pair”	in	the	first	drop	down	box	and	enter	a	name	of	your	choosing	as	the	name.
Next	you	need	to	download	and	save	the	private	key,	Keep	the	private	key	in	a
safe	place	and	do	not	delete	it	since	you	will	need	it	when	you	are	accessing	the
VM	(This	tutorial	will	not	cover	accessing	the	VM	through	SSH	but	you	need	to
keep	 the	 private	 key	 so	 you	 can	use	 the	 same	key	value	 pair	 later).	Once	you
have	 downloaded	 the	 private	 key,	 the	 “Launch	 Instance”	 button	will	 activate.
Press	this	button	to	start	the	VM.

Figure	45:	Key	Pair

After	 starting	 the	 instance	 go	 back	 to	 the	 EC2	 dashboard	 (	 Services	 ->	 EC2).
Now	the	dashboard	will	 show	the	number	of	 running	 instance	as	shown	 in	 the
image:	 Figure	 46.	 If	 you	 do	 not	 see	 is	 initially,	 refresh	 the	 page	 after	 a	 little
while,	 starting	 the	 VM	 may	 take	 a	 little	 time	 so	 the	 dashboard	 will	 not	 be
updated	until	the	VM	starts.



Figure	46:	Running	Instance1

Now	to	get	a	more	detailed	view	click	on	the	“Running	Instances”	link.	This	will
give	you	the	following	view:	Figure	47.	 Is	shows	 the	current	 instance	 that	you
are	running

Figure	47:	Running	Instance2

9.2.8.2	Stopping	a	VM

In	AWS	EC2	you	can	either	stop	a	VM	or	terminate	it.	If	you	terminate	it	you
will	 loose	all	 the	data	 that	was	stored	 in	 the	VM	as	well,	 simply	stopping	will
save	the	data	for	future	use	if	you	restart	the	instance	again.	In	order	to	stop	the
VM	you	can	select	the	VM	machines	you	want	to	stop	from	the	GUI	and	go	to
“Actions	 ->	 Instance	 status”	 and	 click	 on	 stop:	 Figure	48.	 This	will	 stop	 your
VM	machine.



Figure	48:	Instance	Stop

After	 a	 little	 while	 the	 dashboard	 will	 show	 the	 instance	 as	 stopped	 as	 the
following:	Figure	49.	 If	you	want	 to	go	 further	and	 terminate	 the	 instance	you
can	 again	 go	 to	 “Actions	 ->	 Instance	 status”	 and	 select	 terminate,	 which	will
terminate	the	VM.

Figure	49:	Stopped	Instance

9.2.9	Access	from	the	Command	Line

AWS	also	provides	an	command	line	interface	that	can	be	used	to	manage	all	the
AWS	services	through	simple	commands.	Next	are	two	example	commands.

You	 can	 find	 more	 information	 regarding	 the	 AWS	 CLI	 in	 the	 following
documents.

AWS	Command	Line:	https://aws.amazon.com/cli/
AWS	 Command	 Line	 reference:
https://docs.aws.amazon.com/cli/latest/reference/
EC2:	https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
S3:	https://docs.aws.amazon.com/cli/latest/reference/s3/index.html

Amazon	Web	Services	(AWS)	is	a	cloud	platform	that	provides	a	large	number
os	services	for	individuals	and	enterprises.	You	can	get	an	overview	of	the	AWS
offering	at	Amazon	Web	Services	Overview.	This	section	will	guide	through	the
processes	of	 creating	 an	AWS	account	 and	 explain	 the	 free	 tier	 details	 so	 that
you	 can	 leverage	 the	 tools	 and	 products	 available	 in	AWS	 for	 your	work	 and

aws	s3	<Command>	[<Arg>	...]

aws	ec2	<Command>	[<Arg>	...]

https://aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html


research.

9.2.10	Access	from	Python

9.2.11	Boto

Boto	 is	a	Python	software	development	kit	specifically	 targeting	Amazon	Web
Services	 (AWS).	 It	 allows	 access	 to	 services	 such	 as	 S3	 and	 EC2.	 It	 is	 using
object	oriented	programming	paradigms	ta	access	the	lower	level	services.	The
advantage	 is	 that	 it	 is	written	 just	 for	Amazon	 and	 thus	we	 assume	 it	will	 be
developed	with	 high	 quality	 due	 to	 its	 specialization.	However	 this	 is	 also	 its
limitation	 as	 in	 contrast	 to	 libcloud	 it	 does	 not	 support	 other	 cloud	 providers.
Hence	it	bares	the	risk	of	vendor	lockin.	Boto	is	maintained	in	github.

Documentation	about	boto	can	be	found	at

https://boto3.readthedocs.io/en/latest/
https://github.com/boto/boto3

9.2.12	libcloud

“Libcloud	 is	 a	 Python	 library	 for	 interacting	 with	 many	 of	 the	 popular	 cloud
service	 providers	 using	 a	 unified	 API.	 It	 was	 created	 to	 make	 it	 easy	 for
developers	 to	 build	 products	 that	 work	 between	 any	 of	 the	 services	 that	 it
supports.”	A	more	detailed	description	on	Libcloud	and	how	you	can	use	 it	 to
connect	with	AWS	is	provided	in	the	Section	Python	libcloud.

For	more	information	about	the	features	and	supported	providers,	please	refer	to
the	documentation

9.3	MICROSOFT	AZURE	☁
Microsoft	Azure	is	a	cloud	computing	service	created	by	Microsoft.	It	includes
computing	services	and	products	for	building,	testing,	deploying,	and	managing
applications	and	services	 through	a	global	network	of	Microsoft-managed	data
centers.	 It	 provides	 software	 as	 a	 service	 (SaaS),	 platform	 as	 a	 service	 (PaaS)
and	infrastructure	as	a	service	(IaaS)	and	supports	many	different	programming

https://boto3.readthedocs.io/en/latest/
https://github.com/boto/boto3
https://libcloud.readthedocs.org/en/latest/
https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/azure/azure.md


languages,	 tools	 and	 frameworks,	 including	 both	Microsoft-specific	 and	 third-
party	software	and	systems.

9.3.1	Products

Microsoft	offers	a	large	number	of	services.	We	included	the	from	Microsoft	a
number	of	services	in	the	appendix,	with	convenient	links	to	them.

The	services	are	organized	in	the	following	categories:

AI	+	Machine	Learning
Analytics
Compute
Containers
Databases
Developer	Tools
DevOps
Identity
Integration
Internet	of	Things
Management	Tools
Media
Migration
Mobile
Networking
Security
Storage
Web

We	focus	next	on	the

compute,
container,	and
data	resources

For	a	more	elaborate	list	please	consult	our	Appendix.	To	see	the	complete	list
lease	visit	the	Microsoft	Web	page	via	this	link.

https://azure.microsoft.com/en-us/services/#compute


9.3.1.1	Virtual	Machine	Infrastructure	as	a	Services

Source:	https://support.microsoft.com/en-us/allproducts

Microsoft	 offers	 core	 IaaS	 Compute	 compute	 resources.	 This	 includes	 the
following	services:

Virtual	Machines	to	provision	Windows	and	Linux	virtual	machines
Virtual	Machine	Scale	 Sets	 to	manage	 and	 scale	 thousands	 of	 Linux	 and
Windows	virtual	machines

9.3.1.2	Container	Infrastructure	as	a	Service

Microsoft	 offers	 Containers	 to	 allow	 for	 the	 development	 of	 containerized
applications.	This	includes:

Azure	 Kubernetes	 Service	 (AKS)	 to	 provide	 access	 to	 Kubernetes	 as	 a
Service	so	that	deployment,	management,	and	operations	of	Kubernetes	can
be	conducted	on	the	cloud	resources	offered.
Service	 Fabric	 to	 develop	 microservices	 and	 orchestrate	 containers	 on
Windows	or	Linux	as	part	of	the	infrastructure
Container	 Instances	 to	 run	 containers	 on	Azure	without	managing	 servers
which	seems	unrelated	to	kubernetes
Container	Registry	to	store	and	manage	container	images	for	deployments

9.3.1.3	Databases

Storage	 is	offered	 through	a	variety	of	Database	servicess	 to	provide	access	 to
enterprise-grade,	and	fully	managed	services.

Azure	Cosmos	DB	is	a	globally	distributed,	multi-model	database	for	any
scale
Azure	SQL	Database	is	a	managed	relational	SQL	database	as	a	service
Azure	Database	for	MySQL	is	a	managed	MySQL	database	as	a	service
Azure	Database	for	PostgreSQL	is	a	managed	PostgreSQL	database	service
SQL	Server	 on	Virtual	Machines	 allowing	 to	 host	 enterprise	 SQL	Server
apps	in	the	cloud

https://support.microsoft.com/en-us/allproducts
https://azure.microsoft.com/en-us/product-categories/compute/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machine-scale-sets/
https://azure.microsoft.com/en-us/overview/containers/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/product-categories/databases/%20%22Databases%22
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/mysql/
https://azure.microsoft.com/en-us/services/postgresql/
https://azure.microsoft.com/en-us/services/virtual-machines/sql-server/


SQL	 Data	 Warehouse	 is	 an	 elastic	 data	 warehouse	 as	 a	 service	 with
enterprise-class	features
Azure	 Database	 Migration	 Service	 simplifies	 on-premises	 database
migration	to	the	cloud
Redis	Cache	which	 provides	 a	Redis	Cache	 as	 a	 service	 to	 support	 high-
throughput	and	low-latency	data	access
SQL	 Server	 Stretch	 Database	 which	 supports	 dynamically	 stretch	 on-
premises	SQL	server	databases	to	Azure

9.3.1.4	Networking

We	will	not	go	much	into	the	network	offerings	at	this	time

9.3.2	Registration

In	order	for	you	to	register	in	Azure	and	start	your	free	account,	you	will	need	to
go	to

https://azure.microsoft.com/en-us/free/

You	will	see	an	image	such	as:	Figure	50.

https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/database-migration/
https://azure.microsoft.com/en-us/services/cache/
https://azure.microsoft.com/en-us/services/sql-server-stretch-database/
https://azure.microsoft.com/en-us/free/


Figure	50:	Registration

On	that	image	you	click	the	Start	free	button	to	obtain	a	free	one	year	account.	You
will	have	to	either	create	a	new	Microsoft	account	or	use	the	one	from	Indiana
University	which	will	be	your	 IU	 id	 followed	by	 the	???	domain.	You	will	be
redirected	 to	 the	 single	 sign	on	 from	 IU	 to	proceed.	 If	 you	use	 another	 e-mail
you	 can	 certainly	 do	 that	 and	 you	 free	 account	 sis	 not	 associated	with	 the	 IU
account.	 This	 could	 be	 your	 Skype	 account	 or	 some	 other	 e-mail.	 After
registration	you	will	be	provided	with	12	months	of	free	usage	of	a	few	selected
services	and	$200	credits	for	30	days.	At	the	end	of	30	days,	Azure	disables	your
subscription.	 Your	 subscription	 is	 disabled	 to	 protect	 you	 from	 accidentally
incurring	 charges	 for	 usage	 beyond	 the	 credit	 and	 free	 services	 included	with
your	 subscription.	 To	 continue	 using	 Azure	 services,	 you	 must	 upgrade	 your
subscription	 to	 a	 Pay-As-You-Go	 subscription.	 After	 you	 upgrade,	 your
subscription	still	has	access	to	free	services	for	12	months.	You	only	get	charged
for	usage	beyond	 the	 free	 services	 and	quantities.	The	Azure	Student	Account
requires	 that	 you	 to	 activate	 the	 account	 after	 30	 days	 of	 use.	 If	 you	 do	 not
activate,	you	will	lose	access	to	your	Azure	Student	Account	and	can	not	use	the



services.

The	Azure	 student	 account	 FAQ	will	 likely	 answer	 questions	 you	might	 have
pertaining	to	an	Azure	Student	Account,	what	you	will	have	access	to,	how	long
you	 will	 enjoy	 access,	 and	 additional	 general	 overview	 information	 including
terms	 of	 the	 account.	 https://azure.microsoft.com/en-us/free/free-account-
students-faq

Once	you	have	set	up	the	Azure	Student	account,	you	will	gain	access	the	Azure
environment	through	the	Azure	Portal	https://portal.azure.com.	To	log	in,	please
use	the	credentials	you	determined	during	the	set	up.

The	services	that	you	have	access	to	include:

Linux	Virtual	Machines	(750	Hours)
Windows	Virtual	Machines	(750	Hours)
Managed	Disks	(64	GB	X	2)
Blob	Storage	(5	GB)
File	Storage	(5	GB)
SQL	Database	(250	GB)
Azure	Cosmos	DB	(5	GB)
Bandwidth	(Data	Transfer	15	GB)
In	case	Azure	changes	the	product	list,	please	refer	to	the	official	page	for	a
full	list	of	free	products:	https://azure.microsoft.com/en-us/free/

9.3.3	Introduction	to	the	Azure	Portal

Azure	 can	 be	 accessed	 via	 a	 portal.	 An	 introductory	 video	 from	 Microsoft
provides	you	with	some	elementary	information:

	Introduction	to	Azure	Portal

9.3.4	Creating	a	VM

Choose	 Create	a	resource	 in	 the	 upper	 left-hand	 corner	 of	 the	Azure	 portal.	 Select	 a
VM	name,	 and	 the	disk	 type	 as	SSD,	 then	provide	 a	username.	The	password
must	 be	 at	 least	 12	 characters	 long	 and	 meet	 the	 defined	 complexity

https://azure.microsoft.com/en-us/free/free-account-students-faq
https://portal.azure.com
https://channel9.msdn.com/Blogs/Azure/Get-Started-with-Azure-Portal/player


requirements.	As	the	following:	Figure	51.

Figure	51:	Creating	a	VM

Source:	 https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/media/quick-create-portal/create-windows-vm-portal-basic-
blade.png

9.3.5	Create	a	Ubuntu	Server	18.04	LTS	Virtual	Machine	in
Azure

Here	 are	 the	 steps	 to	 create	 a	 Ubuntu	 Server	 18.04	 LTS	 Virtual	 Machine	 in
Azure.

To	start,	go	to	the	Azure	Portal	https://portal.azure.com.

Next,	the	locate	the	Virtual	Machines	option	and	select	it:(see	Figure	52).

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/media/quick-create-portal/create-windows-vm-portal-basic-blade.png
https://portal.azure.com


Figure	52:	virtualmachines

Then	to	create	a	new	virtual	machine,	select	Add:(see	Figure	53).

Figure	53:	addvirtualmachines

This	will	 present	 you	 the	 configuration	options	needed	 to	 create	 a	 new	virtual
machine:(see	Figure	54).



Figure	54:	createavirtualmachine

To	 configure	 the	 virtual	 machine,	 choose	 the	 following	 options	 or	 modify	 to



your	situational	needs.

Subscription:	Azure	for	Students	(default)

Resource	 Group:	 YourResourceGroupHere	 (Create	 a	 new	 one	 if	 you	 do	 not	 have	 an
available	option.)

Virtual	Machine	Name:	EfiveothreeTest

Region:	Central	US	(default)

Availability	Options:	No	infrastructure	redundancy	required	(default)

Image:	Ubuntu	Server	18.04	LTS

Size:	Standard	D2s	v3,	2	vcpus,	8GB	memory

Authentication	 type:	 password	 (Choose	 a	 username	 and	 a	 password	 that	meet	 the
requirements).

The	next	configuration	section	is	Disks:(see	Figure	55).

Figure	55:	disks



Choose	the	default	configurations	settings	or	modify	to	your	liking	the	OS	disk	type.
This	example	uses	the	Standard	SSD	option.

For	 Networking	 you	 can	 choose	 all	 the	 default	 configuration	 settings	 or	modify	 to
your	liking:(see	Figure	56).

Figure	56:	networking

For	 Management	 you	 can	 choose	 all	 the	 default	 configuration	 settings	 or	modify	 to
your	liking:(see	Figure	57).



Figure	57:	management

Last,	create	the	virtual	machine:(see	Figure	58).



Figure	58:	createvmvalidation

Once	the	new	VM	has	been	created,	Naviagate	back	to	the	Virtual	machines	and	now
discover	your	Virtual	Machine:(see	Figure	59).

Figure	59:	newvmaftercreation

After	 creation	 the	 virtual	machine	 will	 be	 in	 a	 running	 status.	 You	 will	 want	 to
decide	 if	you	want	your	virtual	machine	 in	a	 running	 status,	else	 stop	 the	VM	so



that	you	do	not	waste	resources.

9.3.6	Remote	access	the	Virtual	Machine

To	remote	access	a	virtual	machine,	you	can	use	a	client	application	like	Putty:
https://www.putty.org	.

To	use	Putty	 and	access	 the	virtual	machine,	you	can	configure	DNS	name	 in
Azure	 instead	 of	 using	 an	 IP.	 This	 is	 performed	 in	 the	 Virtual	 Machine
configuration	under	DNS	name:(see	Figure	60).

Figure	60:	dns

Click	Configure.	You	can	chose	a	static	IP	setting	or	a	dynamic	IP	(This	example	uses	a
static	IP	setting):(see	Figure	61).

Figure	61:	static

To	apply	the	setting,	click	save.

Note:	 If	 you	 have	 not	 configured	 the	 port	 that	 connection	 will	 use,	 then
connection	will	not	be	successful.

In	your	Virtual	machine	settings	click	Connect	and	review	the	connection	settings.
This	example	shows	the	designated	port	22	to	be	the	port	that	will	remote	connect
to	the	virtual	machine:(see	Figure	62).

https://www.putty.org


Figure	62:	connectandport

To	 learn	 more	 about	 working	 with	 ports	 you	 can	 review	 the	 following:
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-
quickstart-portal

Next,	to	connect	to	the	virtual	machine,	lauch	the	Putty	client	and	enter	the	DNS
name	of	the	virtual	machine	to	connect	to	the	virtual	machine:(see	Figure	63).

Figure	63:	putty

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-quickstart-portal


The	first	time	the	environment	is	accessed	Putty,	Putty	will	prompt	to	cache	your
servers	host	key.	Select	Yes	when	prompted:(see	Figure	64).

Figure	64:	cacheputtykey

After	 the	key	 is	cached,	 it	will	be	 remember	 the	next	 time	you	access	 the	VM
with	the	Putty	client.	After	the	VM	is	successfully	accessed	in	Puty,	you	will	be
prompted	 to	 enter	 your	 server	 credentials	 as	 specified	 in	 the	 virtual	 machine
setup.

Once	credentials	are	provided,	you	will	be	logged	into	your	virtual	machine:(see
Figure	65).



Figure	65:	loggedinviaputty

To	 learn	 more	 about	 connecting	 to	 Azure	 virtual	 machines	 you	 can	 visit:
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/connect-logon

9.3.7	Starting	a	VM

Now	we	like	to	introduce	you	how	to	start	a	VM.	Please	note	that	VMS	do	cost
and	 reduce	 your	 free	 hours	 on	 Azure.	 Hence	 you	 need	 to	 make	 sure	 you
carefully	review	the	charging	rates	and	chose	VM	sizes	and	types	that	minimize
your	charges.

A	VM	can	be	started	through	the	Portal	as	follows:	Figure	66.

On	the	overview	tab,	a	VM	can	be	started	by	clicking	the	Start	button.

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/connect-logon


Figure	66:	Start	button

9.3.8	Stopping	the	VM

It	is	the	most	important	to	stop	your	VMS	once	they	are	not	in	used,	or	you	get
continuously	charged.	The	portal	allows	you	to	see	the	list	of	VM	that	you	run	as
follows

To	shut	a	VM	down,	please	do	the	following:	see	Figure	67.

On	the	overview	tab,	a	VM	can	be	started	by	clicking	the	Stop	button.

Figure	67:	Stop	button

9.3.9	Exercises

E.Azure.0:



Identify	all	products	related	to	IaaS	service	offerings	and	mark	them
with	⭐ 	 after	 the	 bullet.	 Do	 copy	 the	 aws.md	 file	 into	 your	 own
repository,	do	not	yet	create	a	pull	request.	Confirm	in	a	team	your
findings	and	agree	with	each	other.

E.Azure.1:

What	 is	 the	 difference	 between	 terminating,	 shutting	 down,	 and
suspension?

E.Azure.2:

Do	I	get	charged	when	the	VM	is	suspended,	terminated,	shutdown?

E.Azure.3:

How	do	I	resume	a	VM	if	it	is	suspended?

9.4	WHAT	IS	IBM	WATSON	AND	WHY	IS	IT	IMPORTANT?	☁
In	 years	 past	 we	 traditionally	 typed	 our	 questions	 into	 a	 query	 based	 search
engine	 and	 it	 would	 return	 relevant	 content.	 As	 we	 start	 interacting	 with	 our
devices	more	 in	conversation	 through	natural	 language	processing,	we	need	an
answer	to	a	question	-	not	a	list	of	relevant	information.	We	need	the	power	of
question	answering	(QA)	technology.

IBM’s	Watson’s	 is	well	known	 for	 its	 ability	 to	play	and	 successfully	win	 the
popular	gameshow,	jeopardy!	IBM	startled	the	world	in	2011	when	Watson	beat
Jeopardy!	 pros	 Ken	 Jennings	 and	 Brad	 Rutter	 over	 several	 rounds.	 Watson
completed	the	formidable	task	by	combining	15	terabytes	of	human	knowledge
with	 a	 variety	 of	 computer	 disciplines	 including	 automated	 reasoning,	 natural
language	 processing,	 knowledge	 representation,	 information	 retrieval	 and
machine	learning.

IBM’s	 goal	 of	 having	 computers	 understand	 the	 questions	 humans	 ask	 while
providing	 answers	 in	 a	 similar	 fashion	 is	 not	 unique	 to	 them.	 In	 recent	 years,
products	like	Amazon’s	Alexa	and	Google	Home	have	brought	the	awareness	of
this	capability	mainstream	for	millions	of	households.	In	short,	it	has	become	a

https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/watson/watson.md


race	 to	 serve	 up	 relevant	 content	 with	 the	 least	 amount	 of	 effort	 in	 the	 most
consumable	format.

9.4.1	How	can	we	use	Watson?

IBM’s	 Watson	 has	 a	 rich	 set	 of	 Developer	 Services
(https://www.ibm.com/watson/developer/)	 that	 allow	 users	 to	 stand	 on	 the
shoulders	of	the	IBM	developers	using	their	AI	framework	to	“bolt	on”	new	or
improved	applications	that	sit	on	top.

There	 are	 a	 breadth	 of	 services	 available.	Watson	 Discovery	 is	 used	 to	 mine
through	data	 to	 find	 trends	and	surface	patterns.	Watson	Visual	Recognition	 is
used	 to	 classify	 content	 using	 machine	 learning.	Watson	 Assistant	 provides	 a
framework	for	chatbots	and	virtual	agents.

While	 The	 next	 section	 walks	 through	 how	 to	 create	 a	 free	 account,	 let’s
continue	with	an	example	of	 leveraging	a	 foundation	and	building	on-top	with
Watson	 Assistant	 Basic.	 Please	 see	 steps:	 Figure	 68,	 Figure	 69,	 Figure	 70,
Figure	71,	Figure	72,	Figure	73

Instead	 of	 starting	with	 a	 blank	 page	 IBM	 steps	 are	 put	 in	 place	 and	working
examples	can	be	customized.



Figure	68:	Step	1



Figure	69:	Step	2

Figure	70:	Step	3

Figure	71:	Step	4



Figure	72:	Step	5

Figure	73:	Step	6

In	the	previous	case	when	I	was	trying	the	Watson	Assistant	It	was	not	personal
when	I	asked	the	Assistant’s	name	so	it	can	be	modified	to	digress!

In	addition	to	using	these	modules	to	help	build	there	is	also	a	variety	of	APIs
and	services	that	can	be	used:



The	list	of	APIs	and	services	include:	*	Watson	Assistant	*	Watson	Discovery	*
Natural	 Language	 Understanding	 *	 Discovery	 News	 *	 Knowledge	 Studio	 *
Language	 Translator	 *	 Natural	 Language	 Classifier	 *	 Personality	 Insights	 *
Tone	Analyzer	*	Visual	Recognition	*	Speech	to	Text	*	Text	to	Speech

9.4.2	Creating	an	account

This	 section	 will	 guide	 through	 the	 processes	 of	 creating	 an	 IBM	 Watson
account	and	explain	 the	 free	 tier	details	 so	 that	you	can	 leverage	 the	 tools	and
products	available	in	AWS	for	your	work	and	research.

A	valid	email	address

First	you	need	to	visit	the	IBM	Watson	home	page	and	click	in	the	“Get	Started
Free”	link	on	the	top	right	corner.	You	will	then	be	asked	to	provide	some	basic
details	including	your	email	address	as	shown	in	the	image	Figure	74.

https://www.ibm.com/watson/index.html


Figure	74:	Watson	Signup

Once	you	have	submitted	the	signup	form	an	confirmation	email	will	be	sent	to
your	email	account,	check	your	inbox	and	click	on	the	confirm	account	link	in
the	email	you	receive.	This	will	activate	your	 IBM	Watson	account.	Once	you
have	 accepted	 the	 terms	 and	 conditions	 you	 will	 be	 taken	 to	 the	 product	 and
service	catalog	of	IBM	Watson	as	shown	in	the	image	Figure	75.



Figure	75:	Watson	Catalog	Source

9.4.3	Understanding	the	free	tier

IBM	watson	provides	a	set	of	services	for	free	with	their	Lite	account.	Since	you
did	not	provide	any	credit/debit	card	information	when	creating	the	account,	by
default	 you	will	 have	 a	 Lite	 account.	 The	 lite	 plan	 does	 apply	 usage	 caps	 for
services	offered	under	 the	plan.	 If	you	need	 to	expand	and	 remove	such	 limits
you	 would	 have	 to	 upgrade	 to	 a	 payed	 account	 However	 the	 free	 quotas	 are
typically	 more	 than	 sufficient	 for	 testing	 and	 learning	 purposes.	 For	 example
under	the	Lite	plan	you	can	use	the	“Watson	Assistant”	service	with	caps	such	as
10K	API	calls	per	month.

9.5	GOOGLE	IAAS	CLOUD	SERVICES	☁
Google	Cloud,	 offered	 by	Google,	 is	 a	 suite	 of	 cloud	 computing	 services	 that
runs	 on	 the	 same	 infrastructure	 that	 Google	 uses	 internally	 for	 its	 end-user
products,	such	as	Google	Search	and	YouTube.	Alongside	a	set	of	management
tools,	 it	provides	a	 series	of	modular	 cloud	 services	 including	computing,	data
storage,	data	analytics	and	machine	learning.	Registration	requires	a	credit	card
or	 bank	 account	 details.	 Pricing	 is	 on	 a	 pay-as-you-go	 per	 second	 basis,	 and
discounts	 are	offered	 for	 certain	 services	 that	 run	 for	 extended	periods.	A	 free
trial	of	$300	worth	of	services	is	available	for	the	first	12	months.	Many	services
are	always	free	up	to	a	certain	amount	of	use.

https://www.ibm.com/watson/index.html
https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/gcloud/gcloud.md


Google	 Cloud	 Platform	 provides	 Infrastructure	 as	 a	 Service,	 Platform	 as	 a
Service,	and	Server-less	Computing	environments.

Google	Cloud	Platform	 is	 a	 part	 of	Google	Cloud,	which	 includes	 the	Google
Cloud	Platform	public	cloud	 infrastructure,	as	well	as	G	Suite,	Cloud	 Identity,
Apigee,	Firebase,	 enterprise	versions	of	Android	 and	Chrome	OS,	 and	Google
Maps	 Platform.	 The	 platform	 and	 all	 its	 offerings	 can	 be	 managed	 via	 a
customizable	dashboard	Figure	76.

Figure	76:	Gcloud	dashboard	Source

9.5.1	Cloud	Computing	Services	and	Products

All	products	here	and	their	links	can	be	found	on

https://cloud.google.com

We	have	copied	the	information	form	that	location	and	made	them	conveniently
available	in	this	section.

9.5.1.1	Overview

A	list	of	the	Google	Cloud	Services	is	shown	in	Figure	77.

https://cloud.google.com/
https://cloud.google.com


Figure	77:	Google	Cloud	Services	Source

9.5.1.2	AI	and	Machine	Learning

Google	offers	many	machine	learning	and	artificial	intelligence	tools,	including
tools	for	text-to-speech,	speech-to-text,	translation,	and	image	and	video	analysis
as	 well	 as	 various	 tools	 for	 making	 models	 and	 predictions	 and	 deploying
pipelines	and	out-of-the-box	algorithms.

AI	Hub	(alpha):	Discover,	share,	and	deploy	AI	on	Google	Cloud.
Cloud	AutoML	(beta):	Easily	train	high-quality,	custom	ML	models.
Cloud	TPU	Train	and	run	ML	models	faster	than	ever.
Cloud	Machine	Learning	Engine:	Build	 superior	models	 and	deploy	 them
into	production.
Cloud	Talent	Solution:	Put	AI	to	work	on	your	hiring	needs.
Dialogflow	 Enterprise	 Edition:	 Create	 conversational	 experiences	 across
devices	and	platforms.
Cloud	Natural	Language:	Derive	insights	from	unstructured	text.
Cloud	Speech-to-Text:	Speech-to-text	conversion	powered	by	ML.
Cloud	Text-to-Speech:	Text-to-speech	conversion	powered	by	ML.

https://github.com/gregsramblings/google-cloud-4-words/blob/master/Poster-lowres.png
https://cloud.google.com/ai-hub/
https://cloud.google.com/automl/
https://cloud.google.com/tpu/
https://cloud.google.com/ml-engine/
https://cloud.google.com/solutions/talent-solution/
https://cloud.google.com/dialogflow-enterprise/
https://cloud.google.com/natural-language/
https://cloud.google.com/speech-to-text/
https://cloud.google.com/text-to-speech/


Cloud	Translation:	Dynamically	translate	between	languages.
Cloud	Vision:	Derive	insight	from	images	powered	by	ML
Cloud	Video	Intelligence:	Extract	metadata	from	videos.
Cloud	 Inference	 API	 (alpha):	 Quickly	 run	 large-scale	 correlations	 over
typed	time-series	datasets.
Firebase	Predictions:	Smart	user	segmentation	based	on	predicted	behavior.
Cloud	 Deep	 Learning	 VM	 Image:	 Preconfigured	 VMs	 for	 deep	 learning
applications.

9.5.1.3	API	management

API	 tools	 include	monetization	and	analytic	 tools	as	well	as	deployment	 tools.
Apigee	Edge	 integrates	 these	 tools	 together	 into	a	platform	for	managing	APIs
through	the	use	of	API	proxies,	which	are	combined	together	with	a	service	plan
into	an	API	product.

Apigee	 API	 Platform:	 Develop,	 secure,	 deploy,	 and	 monitor	 your	 APIs
everywhere.
API	Analytics:	Insight	into	operational	and	business	metrics	for	APIs.
API	 Monetization:	 Flexible,	 easy-to-use	 solution	 to	 realize	 value	 from
APIs.
Apigee	Sense:	Intelligent	behavior	detection	to	protect	APIs	from	attacks.
Cloud	Endpoints:	Develop,	deploy,	and	manage	APIs	on	GCP.
DeveloperPortal:	 Enable	 developers	 and	 API	 teams	 with	 a	 turnkey	 self-
service	platform.
Apigee	healthcare	APIx:	Accelerate	building	new	FHIR	API-based	digital
services.
Apigee	 Open	 Banking	 APIx:	 Accelerate	 open	 banking	 and	 PSD2
compliance.
Cloud	 Healthcare	 API:	 Secure	 APIs	 powering	 actionable	 healthcare
insights.

https://cloud.google.com/translate/
https://cloud.google.com/vision/
https://cloud.google.com/video-intelligence/
https://cloud.google.com/inference/
https://firebase.google.com/products/predictions/
https://cloud.google.com/deep-learning-vm-image/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/api-analytics/
https://cloud.google.com/api-monetization/
https://cloud.google.com/apigee-sense/
https://cloud.google.com/endpoints/
https://cloud.google.com/developer-portal/
https://apigee.com/about/solutions/apigee-health-apix
https://apigee.com/about/solutions/apigee-open-banking-apix
https://cloud.google.com/healthcare-api/


Figure	78:	Google	API	management	Source

9.5.1.4	Compute

Google	Cloud	Compute	services	offer	infrastructure	as	a	service	tools	including
virtual	machines,	containers,	as	well	as	an	app	engine	for	deploying	web,	mobile
and	IoT	apps.

Compute	Engine:	Scalable,	high-performance	VMs.
App	Engine:	Serverless	application	platform	for	apps	and	backends.
Google	Kubernetes	Engine:	Run	containerized	applications.
GKE	On-Prem	 (alpha):	Make	 apps	 “cloud-ready”	 and	 move	 them	 to	 the
cloud	at	your	own	pace.
Cloud	Functions:	Event-driven	serverless	compute	platform.
Cloud	Functions	for	Firebase:	Run	mobile	backend	code	without	managing
servers.
Knative:	 Components	 to	 create	 modern,	 Kubernetes-native	 cloud-based
software.
Shielded	VMs	(beta):	Hardened	virtual	machines	on	GCP.
Container	security:	Secure	your	container	environment	on	GCP.
Graphics	 Processing	 Unit	 (GPU):	 Leverage	 GPUs	 on	 Google	 Cloud	 for
machine	learning,	scientific	computing,	and	3D	visualization.

https://cloud.google.com/
https://cloud.google.com/compute/
https://cloud.google.com/appengine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/gke-on-prem/
https://cloud.google.com/functions/
https://firebase.google.com/docs/functions/
https://cloud.google.com/knative/
https://cloud.google.com/shielded-vm/
https://cloud.google.com/containers/security/
https://cloud.google.com/gpu/


9.5.1.5	Data	Analytics

Google	 Cloud’s	 data	 analytics	 services	 include	 serverless	 data	 warehousing,
tools	 for	 running	Hadoop	 and	Spark	 clusters,	 data	 preparation	 and	 processing,
creating	 dashboards	 and	 reports,	 NoSQL	 databases,	 and	 a	 tool	 that	 lets	 you
experiment	with	transforming,	analyzing,	modeling,	and	predicting	data.

BigQuery:	A	 fully	managed,	 highly	 scalable	data	warehouse	with	built-in
ML.
Cloud	Dataflow:	Real-time	batch	and	stream	data	processing.
Cloud	Dataproc:	Managed	Spark	and	Hadoop	service.
Cloud	Datalab:	Explore,	analyze,	and	visualize	large	datasets.
Cloud	Dataprep:	Cloud	data	service	to	explore,	clean,	and	prepare	data	for
analysis.
Cloud	Pub/Sub:	Ingest	event	streams	from	anywhere,	at	any	scale.
Cloud	Composer:	A	fully	managed	workflow	orchestration	service	built	on
Apache	Airflow.*	Genomics:	Power	your	science	with	Google	Genomics.
Google	 Marketing	 Platform:	 Enterprise	 analytics	 for	 better	 customer
experiences.
Google	 Data	 Studio:	 Tell	 great	 data	 stories	 to	 support	 better	 business
decisions.
Firebase	 Performance	 Monitoring:	 Gain	 insight	 into	 your	 app’s
performance.

9.5.1.6	Databases

Google	 offers	 a	 range	 of	 databases	 including	 NoSQL,	 managed	 file	 system
storage,	and	VM	and	container	storage.

Cloud	SQL:	MySQL	and	PostgreSQL	database	service.
Cloud	Bigtable:	NoSQL	wide-column	database	service.
Cloud	Spanner:	Mission-critical,	scalable,	relational	database	service.
Cloud	Memorystore:	Fully	managed	in-memory	data	store	service.
Cloud	Firestore:	Store	mobile	and	web	app	data	at	global	scale.
Firebase	Realtime	Database:	Store	and	sync	data	in	real	time.

A	 flow	 chart	 is	 even	 provided	 for	 helping	 determine	 the	 best	 service	 for	 your

https://cloud.google.com/bigquery/
https://cloud.google.com/dataflow/
https://cloud.google.com/dataproc/
https://cloud.google.com/datalab/
https://cloud.google.com/dataprep/
https://cloud.google.com/pubsub/
https://cloud.google.com/composer/
https://cloud.google.com/genomics/
https://marketingplatform.google.com/about/enterprise/#?modal_active=none
https://marketingplatform.google.com/about/data-studio/
https://firebase.google.com/products/performance/
https://cloud.google.com/sql/
https://cloud.google.com/bigtable/
https://cloud.google.com/spanner/
https://cloud.google.com/memorystore/
https://cloud.google.com/firestore/
https://firebase.google.com/products/realtime-database/


needs	Figure	79.

Figure	79:	Gcloud	db	flow

9.5.1.7	Developer	Tools

Google’s	developer	tools	include	tools	for	Visual	Studio,	IntelliJ,	Google	Cloud,
and	Powershell,	cloud-hosted	git	repositories,	a	infrastructure	for	testing	mobile
apps,	and	a	deployment	management	tool.

Cloud	SDK:	CLI	for	GCP	products	and	services.
Container	 Registry:	 Store,	 manage,	 and	 secure	 your	 Docker	 container
images.
Cloud	Build:	Continuously	build,	test,	and	deploy.
Cloud	Source	Repositories:	A	single	place	for	your	team	to	store,	manage,
and	track	code.
Cloud	Scheduler	(beta):	Fully	managed	cron	job	service.
Cloud	Tasks	(beta):	Asynchronous	task	execution.
Cloud	Tools	for	IntelliJ:	Debug	production	cloud	apps	inside	IntelliJ.
Cloud	Tools	for	PowerShell:	Full	cloud	control	from	Windows	PowerShell.
Cloud	Tools	for	Visual	Studio:	Deploy	Visual	Studio	applications	to	GCP.
Cloud	Tools	for	Eclipse:	Deploy	Eclipse	projects	to	GCP.

https://cloud.google.com/sdk/
https://cloud.google.com/container-registry/
https://cloud.google.com/cloud-build/
https://cloud.google.com/source-repositories/
https://cloud.google.com/scheduler/
https://cloud.google.com/tasks/
https://cloud.google.com/intellij/
https://cloud.google.com/powershell/
https://cloud.google.com/visual-studio/
https://cloud.google.com/eclipse/docs/


Gradle	App	Engine	Plugin:	Use	Gradle	for	your	App	Engine	projects.
Maven	App	EnginePlugin:	Use	Maven	for	your	App	Engine	projects.
Cloud	Test	Lab:	On-demand	testing	infrastructure	for	Android	apps.
Firebase	Crashlytics:	Prioritize	and	fix	stability	issues	faster.

9.5.1.8	Internet	of	Things

Google’s	 internet	 of	 things	 offerings	 include	 a	 tool	 for	 device	 connection
management	and	two	tools	for	edge	computing,	one	of	which	is	in	beta	and	the
other	is	only	accessible	by	request	currently.

Cloud	IoT	Core:	Secure	device	connection	and	management.
Edge	TPU	(early	access):	Purpose-built	ASIC	designed	to	run	inference	at
the	edge.
Cloud	IoT	Edge	(alpha):	Deliver	Google	AI	capabilities	at	the	edge.

9.5.1.9	Management	Tools

Management	tools	provide	a	variety	of	services	for	managing	cloud	applications.
Google’s	Stackdriver	has	components	for	managing	logs,	monitoring	exceptions,
latency	 information,	 and	 overall	 health	 and	 also	 has	 a	 debugger	 component.
Google	 also	offers	 a	web	UI,	 a	mobile	 app,	 and	 a	 command	 line	 interface	 for
monitoring	 and	 managing	 cloud	 applications.	 Their	 cost	 management	 service
includes	 components	 for	 monitoring	 and	 reporting,	 controlling	 spending	 and
billing,	and	sizing	recommendations	for	virtual	machines.

Stackdriver:	 Monitoring	 and	 management	 for	 services,	 containers,
applications,	and	infrastructure.
Monitoring:	Monitoring	for	applications	on	GCP	and	AWS.
Service	Monitoring	(early	access):	Stackdriver	Service	monitoring	for	Istio
and	Google	App	Engine	services.
Logging:	Logging	for	applications	on	GCP	and	AWS.
Error	Reporting:	Identifies	and	helps	you	understand	application	errors.
Trace:	Find	performance	bottlenecks	in	production.
Debugger:	Investigate	code	behavior	in	production.
Profiler	(beta):	Low-impact	CPU	and	heap	profiling	to	reduce	latency.
Transparent	Service	Level	 Indicators:	Monitor	Google	Cloud	services	and

https://github.com/GoogleCloudPlatform/app-gradle-plugin
https://github.com/GoogleCloudPlatform/app-maven-plugin
https://firebase.google.com/docs/test-lab/
https://firebase.google.com/products/crashlytics/
https://cloud.google.com/iot-core/
https://cloud.google.com/edge-tpu/
https://cloud.google.com/iot-edge/
https://cloud.google.com/stackdriver/
https://cloud.google.com/monitoring/
https://cloud.google.com/service-monitoring/
https://cloud.google.com/logging/
https://cloud.google.com/error-reporting/
https://cloud.google.com/trace/
https://cloud.google.com/debugger/
https://cloud.google.com/profiler/
https://cloud.google.com/transparent-sli/


their	effects	on	your	workloads.
Cloud	 Deployment	 Manager:	 Manage	 cloud	 resources	 with	 simple
templates.
Cloud	Console:	GCP’s	integrated	management	console.
Cloud	Shell:	Command-line	management	from	any	browser.
Cloud	Mobile	App:	Manage	GCP	services	from	your	mobile	device.
Cost	management:	Tools	 for	monitoring,	 controlling,	 and	optimizing	your
costs.
Cloud	APIs:	Programmatic	interfaces	for	all	GCP	services.

9.5.1.10	Media	and	Migration

Google	currently	offers	two	media	tools,	Anvato	for	live-streaming	videos,	and
Zync	Render	for	rendering	videos.

Anvato:	Stream	live	and	on-demand	video	to	any	device.
Zync	Render:	Render	 directly	 from	 your	 3D	modeling	 tools,	 quickly	 and
cost	efficiently.

9.5.2	Migration

Google’s	 migration	 tools	 are	 geared	 towards	 transferring	 data	 or	 applications
fully	or	partially	to	the	cloud.

Cloud	Data	Transfer:	 Command-line	 tools	 for	 developers	 to	 transfer	 data
over	the	network.
Transfer	Appliance:	Rackable	storage	server	for	shipping	large	volumes	of
data	to	Google	Cloud.
Cloud	 Storage	 Transfer	 Service:	 Transfer	 data	 between	 cloud	 storage
services	such	as	AWS	S3	and	Google	Cloud	Storage.
BigQuery	 Data	 Transfer	 Service:	 Fully	 managed	 data	 import	 service	 for
BigQuery.
Velostrata:	Purpose-built,	enterprise-grade	migration	to	Google	Cloud.
VM	Migration:	 Migrating	 VMs	 is	 a	 fast,	 effective	 way	 to	 get	 started	 in
Google	Cloud.

9.5.2.1	Networking

https://cloud.google.com/deployment-manager/
https://cloud.google.com/cloud-console/
https://cloud.google.com/shell/
https://cloud.google.com/console-app/
https://cloud.google.com/cost-management/
https://cloud.google.com/apis/
https://www.anvato.com/
https://www.zyncrender.com/
https://cloud.google.com/data-transfer/
https://cloud.google.com/transfer-appliance/
https://cloud.google.com/storage/transfer/
https://cloud.google.com/bigquery/transfer/
https://cloud.google.com/velostrata/
https://cloud.google.com/vm-migrate/


The	 Google	 Virtual	 Private	 Cloud	 Network	 is	 Google’s	 own	 world-wide
network	where	you	can	host	your	applications	and	services.	Google	also	has	load
balancing,	DNS,	CDN,	and	connectivity	tools	for	working	with	this	network.

Virtual	Private	Cloud	(VPC):	VPC	networking	for	GCP	resources.
Cloud	Load	Balancing:	High-performance,	scalable	load	balancing.
Cloud	Armor:	Protect	your	services	against	DoS	and	web	attacks.
Cloud	CDN:	Content	delivery	on	Google’s	global	network.
Cloud	 NAT:	 GCP-managed	 high-performance	 Network	 Address
Translation.
Cloud	Interconnect:	Connect	directly	to	GCP’s	network	edge.
Cloud	VPN:	Securely	connect	to	your	GCP	VPC	via	the	public	internet.
Cloud	DNS:	Reliable,	resilient,	low-latency	DNS	serving.
Network	Service	Tiers:	Optimize	your	network	for	performance	or	cost.
Network	 Telemetry:	 In-depth	 network	 telemetry	 to	 keep	 your	 services
secure.

9.5.2.2	Security

Google’s	security	offerings	are	aimed	at	protection	from	phishing,	ransomware,
and	 DoS	 attacks,	 controlling	 the	 transfer	 of	 data,	 controlling	 access	 to
applications	 and	 resources,	 and	monitoring	 and	 controlling	 vulnerabilities	 and
incidents.

Cloud	IAM:	Fine-grained	identity	and	access	management.
Cloud	 Identity	 for	 Customers	 and	 Partners	 (beta):	 Add	 Google-grade
identity	and	access	management	to	your	apps.
Firebase	Authentication:	Simple,	free	multi-platform	sign-in.
Cloud	 Identity-Aware	Proxy:	Use	 identity	 and	 context	 to	 guard	 access	 to
your	applications	and	VMs.
Cloud	Data	Loss	Prevention:	Discover	and	redact	sensitive	data.
Security	Key	Enforcement:	Enforce	the	use	of	security	keys	to	help	prevent
phishing.
Titan	 Security	 Key:	 Defend	 against	 account	 takeovers	 from	 phishing
attacks.
Cloud	HSM:	 Protect	 cryptographic	 keys	 with	 a	 fully	 managed	 hardware
security	module	service.

https://cloud.google.com/vpc/
https://cloud.google.com/load-balancing/
https://cloud.google.com/armor/
https://cloud.google.com/cdn/
https://cloud.google.com/nat/
https://cloud.google.com/hybrid-connectivity/
https://cloud.google.com/hybrid-connectivity/
https://cloud.google.com/dns/
https://cloud.google.com/network-tiers/
https://cloud.google.com/network-telemetry/
https://cloud.google.com/iam/
https://cloud.google.com/identity-cp/
https://firebase.google.com/products/auth/
https://cloud.google.com/iap/
https://cloud.google.com/dlp/
https://cloud.google.com/security-key/
https://cloud.google.com/titan-security-key/
https://cloud.google.com/hsm/


VPC	Service	Controls	(beta):	Define	security	perimeters	for	sensitive	data
in	Google	Cloud	Platform	services.
Cloud	 Key	 Management	 Service:	 Manage	 encryption	 keys	 on	 GCP	 and
encrypt	secrets	in	GKE.
Resource	Manager:	Hierarchically	manage	resources	on	GCP.
Cloud	Security	Command	Center	(beta):	Comprehensive	security	and	data
risk	platform	for	GCP.
Cloud	Security	Scanner:	Automatically	scan	your	App	Engine	apps.
Access	Transparency:	Get	visibility	over	your	cloud	provider	through	near
real-time	logs.
Binary	Authorization	(beta):	Deploy	only	trusted	containers	on	Kubernetes
Engine.

9.5.2.3	Storage

Google’s	 storage	 services	 include	 all	 the	 services	 mentioned	 in	 its	 database
services	 as	 well	 as	 Persistent	 Disk,	 which	 offers	 block	 service	 for	 virtual
machines	and	containers.

Cloud	Storage:	Object	storage	with	global	edge-caching.
Persistent	Disk:	Block	storage	for	VM	instances.
Cloud	Storage	for	Firebase:	Store	and	serve	content	with	ease.
Cloud	Filestore:	High-performance	file	storage.
Drive	Enterprise:	Cloud-based	content	collaboration	and	storage.

9.5.2.4	Google	IaaS	Example

To	demonstrate	an	example	of	what	Google	IaaS	solutions	are	available,	Google
has	provided	theese	options:	https://cloud.google.com/solutions/

Locate	the	Try	for	Free	button	option	on	 the	 top	right	portion	of	 the	webpage.	The
free	 trial	 allows	 a	 person	 access	 to	 all	 Cloud	 Platform	 Products.	 You	 get
everything	you	need	to	build	and	run	your	apps,	websites	and	services,	including
Firebase	and	the	Google	Maps	API.	Note,	you	will	be	asked	you	for	your	credit
card	 to	 make	 sure	 you	 are	 not	 a	 robot.	 You	 will	 not	 be	 charged	 unless	 you
manually	upgrade	 to	a	paid	account.	Disclaimer:	Please	be	aware	 that	you	pay
for	 this	 service	only	after	you	accrue	costs,	via	an	automatic	charge	when	you

https://cloud.google.com/vpc-service-controls/
https://cloud.google.com/kms/
https://cloud.google.com/resource-manager/
https://cloud.google.com/security-command-center/
https://cloud.google.com/security-scanner/
https://cloud.google.com/access-transparency/
https://cloud.google.com/binary-authorization/
https://cloud.google.com/storage/
https://cloud.google.com/persistent-disk/
https://firebase.google.com/products/storage/
https://cloud.google.com/filestore/
https://cloud.google.com/drive-enterprise/
https://cloud.google.com/solutions/


reach	 your	 billing	 threshold	 or	 30	 days	 after	 your	 last	 automatic	 payment,
whichever	comes	first.	You	will	be	presented	the	option	to	agree	and	continue.
Once	you	satisfy	all	the	formalities	you	will	be	granted	the	12-month	free	trial.

9.5.2.5	Google	Cloud	Console	Overview

This	material	was	obtained	from	Google	on	 the	 Cloud	Console	Tour.	 This	 information
covers	the	core	features	of	Cloud	Console	to	get	you	ready	to	build	and	manage
your	applications	on	Google	Cloud	Platform.	You	will	learn	about	the	following
concepts:	 *	 GCP	 projects	 and	 resources	 *	 High-level	 resource	 overview	 and
activity	 logs	 *	 Console	 navigation	 and	 search	 *	 User	 and	 permissions
management	*	Technical	support	*	GCP’s	browser-based	command	line

9.5.2.6	Use	GCP	Resources

GCP	resources	are	the	fundamental	components	that	make	up	all	Google	Cloud
services.	Resources	are	organized	hierarchically	and	help	organize	your	work	on
GCP.	Projects	are	the	first	level	of	the	resource	hierarchy,	and	they	contain	other
low-level	resources	like	Cloud	Storage	buckets	and	Compute	Engine	instances.
Project	 navigation	 Easily	 navigate	 across	 your	 GCP	 projects	 using	 the
scopepicker	 in	 Cloud	 Console.	 Switching	 projects	 will	 tailor	 the	 view	 to	 that
project	and	all	of	its	child	resources.

9.5.2.7	Project	navigation

Easily	 navigate	 across	 your	 GCP	 projects	 using	 the	 scopepicker	 in	 Cloud
Console.	Switching	projects	will	tailor	the	view	to	that	project	and	all	of	its	child
resources.	



Figure	80:	Scope	Picker	Example

More	 detail	 regarding	 resources	 can	 be	 found	 at:
https://cloud.google.com/resource-manager/docs/cloud-platform-resource-
hierarchy

9.5.2.8	Navigate	Google	Cloud	Services

Service	 navigation	 Google	 Cloud	 services	 are	 accessible	 in	 the	 left-hand
navigation	 menu	 organized	 by	 product	 area	 including	 Big	 Data,	 Compute,
Networking,	etc.

https://cloud.google.com/resource-manager/docs/cloud-platform-resource-hierarchy


Figure	81:	Left-Hand	Navigation	Example

9.5.2.9	Section	pinning

For	 any	 service	 that	 you	 visit	 regularly,	 pin	 the	 section	 to	 the	 top	 of	 the
navigation	menu	by	hovering	over	the	section	item	and	clicking	the	pin	icon.	See
a	high-level	overview	of	 any	project	*	Home	dashboard	The	Home	dashboard
provides	 a	 high-level	 overview	 of	 the	 selected	 GCP	 project,	 highlighting	 key
metrics,	 billing,	 and	 other	 useful	 information.	 *	 Customization	 You	 can
customize	 your	 dashboard	 by	 clicking	 Customize.	 Any	 card	 can	 be	 hidden,
shown,	and	reordered	on	the	page.	Each	card	also	has	custom	options	accessible
from	the	overflow	menu	when	hovering	a	card.	Customize	Figure:

9.5.2.10	View	activity	across	your	GCP	resources

With	Activity	Stream,	you	will	be	able	to	understand	all	the	activities	that	occur
across	your	GCP	resources	in	one	place.	See	what	your	teammates	are	updating
in	 any	 project	 to	 track	 down	 issues	 and	 audit	 access.	 Easily	 filter	 through	 the
feed	to	find	exactly	what	you	need.

Figure	82:	Activity	Example

9.5.2.11	Search	across	Cloud	Console



The	 search	 bar	 in	Cloud	Console	 allows	 you	 to	 quickly	 access	Google	Cloud
products	and	any	of	your	 resources	across	GCP.	Try	running	a	search	for	App
Engine	or	the	name	of	one	of	your	projects.

Figure	83:	Searchbar	Example

9.5.2.12	Get	support	anytime

If	 you	 ever	 get	 stuck,	 or	 need	 help	 navigating	 the	world	 of	GCP,	 the	Google
support	team	is	here	to	help.	Access	support	from	the	navigation	menu.

More	 information	 regarding	 support	 options	 and	 details	 can	 be	 found	 at:
https://cloud.google.com/support

9.5.2.13	Manage	users	and	permissions

Google	 Cloud	 Identity	 and	 Access	Management	 (Cloud	 IAM)	 enables	 you	 to
manage	and	create	permissions	for	your	GCP	resources.	As	your	team	continues
to	 grow,	 you	 can	 grant	 access	 to	 teammates	 using	Cloud	 IAM	 in	 the	 IAM	&	Admin
section.	Add	users,	groups,	or	service	accounts	and	assign	them	any	number	of
roles	to	grant	them	the	permissions	they	need.

Additional	 resources	 for	 Google	 Cloud	 Identity	 and	 Access	 Management
documentation:	https://cloud.google.com/iam/docs

9.5.2.14	Access	the	command	line	from	your	browser

Google	 Cloud	 Shell	 provides	 you	 with	 command-line	 access	 to	 your	 cloud
resources	directly	from	your	browser.	You	can	easily	manage	your	projects	and
resources	without	having	to	install	the	Google	Cloud	SDK	or	other	tools	on	your
system.	With	Cloud	Shell,	the	Cloud	SDK	gcloud	command-line	tool	and	other
utilities	you	need	are	always	available,	up	to	date	and	fully	authenticated	when
you	need	them.

Figure	84:	Cloudshell	Example

https://cloud.google.com/support
https://cloud.google.com/iam/docs


Reference	 to	 more	 documented	 detail	 about	 the	 Cloudshell:
https://cloud.google.com/shell

9.5.3	Create	a	VM	Example

Since	 we	 have	 been	 exploring	 virtual	 machines	 in	 this	 class,	 I	 thought	 that	 I
would	provide	an	additional	 example	 explaining	how	 to	 create	 a	Linux	virtual
machine	instance	in	Compute	Engine	using	the	Google	Cloud	Platform	Console.
Navigate	 to	 Compute	 Engine	 Open	 the	 menu	 on	 the	 left	 side	 of	 the	 console.
Then,	select	the	Compute	Engine	section.

Figure	85:	Menu	Example

9.5.3.1	Create	a	virtual	machine	instance

Click	the	Create	instance	button.	*	Select	a	name	and	zone	for	this	instance.	*	In
the	Firewall	selector,	select	Allow	HTTP	traffic.	This	opens	port	80	(HTTP)	to
access	the	app.	*	Click	the	Create	button	to	create	the	instance.	Note:	Once	the
instance	is	created	your	billing	account	will	start	being	charged	according	to	the
GCE	pricing.	You	will	remove	the	instance	later	to	avoid	extra	charges.

9.5.3.2	VM	instances	page

While	the	instance	is	being	created	take	your	time	to	explore	the	VM	instances
page.	*	At	the	bottom	you	can	see	the	list	of	your	VMs	*	At	the	top	you	can	see
a	control	panel	allowing	you	to	*	Create	a	new	VM	instance	or	an	instance	group
*	Start,	stop,	reset	and	delete	instances.

Compute	 Engine	 lets	 you	 use	 virtual	 machines	 that	 run	 on	 Google’s
infrastructure.	Create	micro-VMs	or	larger	instances	running	Debian,	Windows,
or	 other	 standard	 images.	 Create	 your	 first	 VM	 instance,	 import	 it	 using	 a
migration	service,	or	try	a	quickstart	to	build	a	sample	app.	More	detail	can	be
found	 at	 the	 following	 link	 regarding	 VM	 instances:
https://cloud.google.com/compute/?

https://cloud.google.com/shell
https://cloud.google.com/compute/?hl=en_US&_ga=2.98598104.-779866669.1550427921


hl=en_US&_ga=2.98598104.-779866669.1550427921

9.5.3.3	Connect	to	your	instance

When	 the	 VM	 instance	 is	 created,	 you’ll	 run	 a	 web	 server	 on	 the	 virtual
machine.	 The	 SSH	 buttons	 in	 the	 table	 will	 open	 up	 an	 SSHsession	 to	 your
instance	in	a	separate	window.

For	 this	 tutorial	 you	will	 connect	 using	Cloud	 Shell.	 Cloud	 Shell	 is	 a	 built-in
command	line	tool	for	the	console.

Open	the	Cloud	Shell	Open	Cloud	Shell	by	clicking	the	Activate	Cloud	Shell	button	 in
the	navigation	bar	in	the	upper-right	corner	of	the	console.	Wait	for	the	instance
creation	 to	 finish	 The	 instance	 creation	 needs	 to	 finish	 before	 the	 tutorial	 can
proceed.	The	activity	can	be	tracked	by	clicking	the	notification	menu	from	the
navigation	bar	at	the	top.

To	Connect	to	the	instance,	enter	the	following	command	to	SSH	into	the	VM.	If
this	 is	 your	 first	 time	 using	 SSH	 from	Cloud	 Shell,	 you	will	 need	 to	 create	 a
private	key.	Enter	the	zone	and	name	of	the	instance	you	created.

9.5.3.4	Run	a	simple	web	server

Create	 a	 simple	 index.html	 file	 with	 the	 following	 command	 inside	 the
parenthesis	and	double	quotes:	echo	Hello	World	index.html

Then,	enter	this	command	to	run	a	simple	Python	webserver:

9.5.3.5	Visit	your	application

Visit	your	webserver	at	the	IP	address	listed	in	the	External	IP	column.

9.5.3.6	Cleanup

$		gcloud	compute	--project	\"regal-buckeye-232200"	ssh	--zone	\<vm-zone>	<vm-name>

$		sudo	python	-m	SimpleHTTPServer	80



To	 remove	your	 instance,	 select	 the	 checkbox	next	 to	your	 instance	name	and
click	the	Delete	button.

It	is	recommended	to	review	the	Google	Cloud	Platform	on	Github	for	additional
examples.	 Here	 is	 the	 link	 to	 the	 GCP	 on	 GitHub:
https://github.com/GoogleCloudPlatform.

9.6	OPENSTACK	☁
9.6.1	Introduction

OpenStack	can	be	described	as	a	cloud	operating	system.	OpenStack	can	be	used
on	 private	 or	 public	 clouds	 to	manage	 large	 amounts	 of	 compute,	 storage	 and
network	resources.	OpenStack	is	built	up	using	a	large	number	or	small	software
components,	 which	 will	 be	 described	 in	 more	 detail	 in	 the	 next	 couple	 of
sections.	 Another	 important	 aspect	 of	 OpenStack	 is	 that	 it	 is	 completely
OpenSource,	which	means	 that	anyone	can	access	and	use	 the	product	without
having	 to	 pay	 any	 licensing	 or	 any	 other	 fee.	 And	 since	 the	 source	 code	 is
publicly	available	under	the	Apache-2.0	License	developers	can	modify	and	use
OpenStack	as	needed.

OpenStack	 is	 managed	 and	 maintained	 by	 the	 “The	 OpenStack	 Foundation”,
which	 is	 an	 non-profit	 organization	 which	 organizers	 the	 development	 of
OpenStack	and	keeps	the	OpenStack	community	running.

9.6.2	OpenStack	Architecture

OpenStack	consists	of	a	large	number	of	small	components.	Which	components
to	 use	 for	 your	 OpenStack	 deployment	 depends	 on	 your	 usecases	 and
requirements.	The	existing	components	can	be	integrated	to	achieve	the	desired
deployment	 by	 carefully	 examining	 and	 understanding	 each	 component.
Figure	86	shows	an	high-level	architecture	diagram	of	OpenStack	which	gives	a
clear	understanding	of	how	the	overall	framework	is	organized.

https://github.com/GoogleCloudPlatform
https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/openstack/openstack.md


Figure	86:	OpenStack	Overview

Image	reference	-	https://www.openstack.org/software

However	 each	 of	 the	 high-level	 components	 are	 in	 constructed	 using	 several
small	 components.	 Figure	 87	 shows	 one	 such	 popular	 deployment	 and	 its
architecture.

https://www.openstack.org/software


Figure	87:	OpenStack	Architecture

Image	reference	-	https://docs.openstack.org/arch-design/design.html

9.6.3	Components

The	components	in	OpenStack	can	be	divided	into	several	sub-groups.	And	each
group	has	several	components	which	specialize	in	various	tasks.	The	following
list	shows	all	the	major	component	groups	and	components	that	are	listed	under
each	 group.	 The	 list	 is	 referenced	 from	 the	 OpenStack	 documentation	 -
OpenStack	Service	List

Compute

NOVA	-	Compute	Service
ZUN	-	Containers	Service
QINLING	-	Functions	Service

Bare	Metal

https://docs.openstack.org/arch-design/design.html
https://www.openstack.org/software/project-navigator/openstack-components#openstack-services


IRONIC	-	Bare	Metal	Provisioning	Service
CYBORG	-	Accelerators	resource	management

Storage

SWIFT	-	Object	store
CINDER	-	Block	Storage
MANILA	-	Shared	filesystems

Networking

NEUTRON	-	Networking
OCTAVIA	-	Load	balancer
DESIGNATE	-	DNS	service

Shared	Services

KEYSTONE	-	Identity	service
GLANCE	-	Image	service
BARBICAN	-	Key	management
KARBOR	-	Application	Data	Protection	as	a	Service
SEARCHLIGHT	-	Indexing	and	Search

Orchestration

HEAT	-	Orchestration
SENLIN	-	Clustering	service
MISTRAL	-	Workflow	service
ZAQAR	-	Messaging	Service
BLAZAR	-	Resource	reservation	service
AODH	-	Alarming	Service

Workload	Provisioning

MAGNUM	-	Container	Orchestration	Engine	Provisioning
SAHARA	-	Big	Data	Processing	Framework	Provisioning
TROVE	-	Database	as	a	Service

Application	Lifecycle



MASAKARI	-	Instances	High	Availability	Service
MURANO	-	Application	Catalog
SOLUM	-	Software	Development	Lifecycle	Automation
FREEZER	-	Backup,	Restore,	and	Disaster	Recovery

API	Proxies

EC2API	-	EC2	API	proxy

Web	Frontend

HORIZON	-	Dashboard

This	 list	 just	 includes	 the	 open	 stack	 services.	 Additionally,	 there	 are	 several
other	 major	 component	 groups	 such	 as	 Operational	 Services,	 Add-Ons	 to
Services	 and	 Bridges	 for	 Adjacent	 Tech	 listed	 in	 the	 services	 page	 at	 -
OpenStack	Services.

9.6.4	Core	Services

Among	all	the	service	components	that	are	available	for	OpenStack,	there	are	9
services	 that	are	considered	 to	be	Core	 services,	 these	services	are	essential	 to
any	OpenStack	deployment.

9.6.4.1	Nova	-	Compute

Nova	is	provides	services	to	manage	virtual	machines	in	cloud	environments.	It
is	 also	 capble	 of	 handing	 other	 compute	 resources	 such	 as	 containers	 and	 is
highly	scalable.

9.6.4.2	Glance	-	Image	Services

Glance	 adds	 image	 services	 capabilities	 to	 OpenStack,	 this	 allows	 open	 stack
users	 to	manage	 virtual	machine	 images	 and	 provides	 services	 such	 as	 image
registration	and	discovery.

9.6.4.3	Swift	-	Object	Storage

https://www.openstack.org/software/project-navigator/openstack-components#openstack-services


Swift	allows	developers	refer	to	files	and	other	data	similar	to	object	references.
All	actual	storage	and	management	is	handled	by	Swift	so	the	developers	do	not
need	to	worry	about	were	to	store	data	and	files

9.6.4.4	Cinder	-	Block	Storage

Cinder	 provides	 block	 storage	 management	 capabilities	 to	 OpenStack,	 Cinder
supports	several	block	storage	devices	underneath	and	provides	an	unified	API
so	that	developers	do	not	need	to	worry	or	think	about	what	device	is	been	used
underneath.

9.6.4.5	Neutron	-	Networking

Neutron	 provides	 networking	 capabilities	 to	OpenStack.	 It	 allows	 the	 creation
and	 management	 of	 various	 networks	 that	 are	 used	 as	 the	 communication
medium	for	OpenStack	deployments.	Neutron	supports	multi-tenancy	and	scale
to	large	deployments	with	ease.	Extension	frameworks	for	Neutron	allow	users
to	 deploy	 more	 advance	 network	 features	 such	 as	 VPN’s,	 firewalls,	 load-
balancer,	etc.

9.6.4.6	Horizon	-	Dashboard

Horizon	 is	 the	 graphical	 user	 interface(GUI)	 for	OpenStack,	which	developers
can	use	to	manage	and	monitor	their	OpenStack	deployment.

9.6.4.7	Keystone	-	Identity	Service

Keystone	 is	 the	 identity	management	 services	 in	OpenStack,	 it	 keeps	 a	 list	 of
users	and	maps	all	the	access	rights	for	each	user	for	all	the	cloud	services	that
are	 available	 in	 the	 OpenStack	 deployment.	 Keystone	 supports	 several
authentication	 mechanisms	 such	 as	 classical	 user	 name	 password	 based
authentication	and	token	based	systems

9.6.4.8	Ceilometer	-	Telemetry

Ceilometer	 provides	 developers	 with	 billing	 and	 usage	 services	 that	 allow



developers	 to	 bill	 end	 users	 based	 on	 each	 individuals	 usage	 amounts.	 It	 also
records	and	saves	usage	values	of	 the	cloud	for	each	user	so	that	anything	that
needs	verification	can	be	done.

9.6.4.9	Heat	-	Orchestration

Heat	is	the	orchestration	component	of	OpenStack.	It	allows	developers	to	use	a
requirement	 files	 that	 define	 the	 resources	 requirements	 for	 cloud	 application,
which	can	later	be	referenced	when	needed.

9.6.5	Access	from	Python	and	Scripts

9.6.5.1	Libcloud

Libcloud	 provides	 for	 some	 selected	 functionalitya	 a	 reasonable	 interface	 to
OpenStack.	 More	 information	 is	 provided	 in	 Section	 Python	 libcloud.	 More
advanced	 resources	 are	 exposed	 through	 REST	 interfaces	 that	 may	 not	 be
available	in	Libcloud.	To	access	them	new	client	libraroes	that	are	not	included
in	libcloud	need	to	be	developed.	Such	functionality	was	exposed	for	example	in
FutureGrid	to	access	cloud	metric	data.

9.6.5.2	DevStack

It	 is	 very	 convenient	 to	 be	 able	 to	 set	 up	 an	 OpenSTack	 depoyment	 for
development	purposes	on	our	own	single	computer.

DevStack	 is	 a	 set	 of	 scripts	 that	 can	 be	 used	 by	 developers	 to	 manage	 and
maintain	their	OpenStack	development.	DevStack	was	developed	to	increase	the
ease	 of	 use	 for	 developers.	 It	 is	 very	 useful	 to	 setup	 a	 developer	 environment
where	 you	 can	 test	 your	 deployment.	 More	 detailed	 information	 regarding
DevStack	can	be	found	in	their	official	documentaion	-	DevStack	documentation

9.7	PYTHON	LIBCLOUD	☁

Construction

https://docs.openstack.org/devstack/latest/
https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/libcloud.md


	This	section	has	some	features	missing	and	does	not	yet	use	cloudmesh	v4

With	 all	 the	 cloud	 providers	 and	 cloud	 services	 that	 are	 currently	 available,	 it
becomes	hard	to	manage	and	maintain	services	that	work	with	several	services.
Therefore	 it	 is	 good	 to	have	a	unified	 service	 that	 allows	developers	 to	 access
many	of	 the	 cloud	 services	 through	a	 single	 abstraction.	Apache	Libcloud	 is	 a
python	library	that	was	developed	for	this	purpose.	Apache	Libcloud	provides	a
unified	API	for	many	of	the	popular	cloud	providers	and	services.

Apache	 Libcloud	 currently	 supports	 many	 providers,	 the	 complete	 list	 of
providers	that	are	supported	can	be	found	at	Supported	Providers

However,	 it	 is	 good	 to	 keep	 in	mind	 that	 the	Libcloud	API	might	 not	 support
some	of	the	advanced	features	that	are	provided	by	some	cloud	services	or	some
of	the	most	recent	features	that	are	yet	to	be	integrated	into	Libcloud

9.7.1	Service	categories

Libcloud	 provides	many	 services	 and	 defines	 several	 categories	 to	 distinguish
between	 the	main	 types	 of	 services.	 The	 list	 of	 categories	 is	 as	 bellow,	More
details	 about	 this	 list	 can	be	 found	at	Categories	The	 list	 is	extracted	 from	 the
LibCloud	documentation	LibCloud	Docs

Cloud	 Servers	 and	 Block	 Storage	 -	 services	 such	 as	 Amazon	 EC2	 and
Rackspace	CloudServers
Cloud	 Object	 Storage	 and	 CDN	 -	 services	 such	 as	 Amazon	 S3	 and
Rackspace	CloudFiles
Load	 Balancers	 as	 a	 Service	 -	 services	 such	 as	 Amazon	 Elastic	 Load
Balancer	and	GoGrid	LoadBalancers
DNS	as	a	Service	-	services	such	as	Amazon	Route	53	and	Zerigo
Container	Services	-	container	virtualization	like	Docker	and	Rkt	as	well	as
container	based	services
Backup	 as	 a	 Service	 -	 services	 such	 as	 Amazon	 EBS	 and	 OpenStack
Freezer

each	category	has	a	set	of	 terms	 that	 represent	various	constructs	and	services.
For	example	 the	 following	 list	 is	 the	 list	of	 terms	used	 in	 for	Compute	 related
services,	this	list	is	extracted	from	the	Compute	docs

https://libcloud.readthedocs.io/en/latest/supported_providers.html
https://libcloud.readthedocs.io/en/latest/index.html
https://libcloud.readthedocs.io/en/latest/index.html
https://libcloud.readthedocs.io/en/latest/compute/index.html


9.7.1.0.1	Compute

Node	-	represents	a	cloud	or	virtual	server.
NodeSize	-	represents	node	hardware	configuration.	Usually	this	is	amount
of	 the	 available	RAM,	bandwidth,	CPU	 speed	 and	disk	 size.	Most	 of	 the
drivers	also	expose	an	hourly	price	(in	dollars)	for	the	Node	of	this	size.
NodeImage	-	represents	an	operating	system	image.
NodeLocation	-	represents	a	physical	location	where	a	server	can	be.
NodeState	-	represents	a	node	state.	Standard	states	are:	running,	rebooting,
terminated,	pending,	stopped,	suspended,	paused,	erro,	unknown.

9.7.1.0.2	Key	Pair	Management

KeyPair	-	represents	an	SSH	key	pair	object.

9.7.1.0.3	Block	Storage

StorageVolume	-	represents	a	block	storage	volume
VolumeSnapshot	-	represents	a	point	in	time	snapshot	of	a	StorageVolume

You	 can	 find	 more	 complete	 information	 on	 Libcloud	 in	 the	 official
documentations,	 this	 article	 will	 only	 provide	 a	 brief	 summary	 in	 most	 part:
Apache	Libcloud	Documentaions

9.7.2	Installation

Libcloud	can	be	 installed	via	pip.	Execute	 the	 following	command	 in	order	 to
install	Libcloud

9.7.3	Quick	Example

The	following	basic	example	shows	you	how	the	Python	Libcloud	library	can	be
used	to	access	information	in	a	cloud	provider
from	pprint	import	pprint

import	libcloud

cls	=	libcloud.get_driver(

				libcloud.DriverType.COMPUTE,

				libcloud.DriverType.COMPUTE.OPENSTACK)

pip	install	apache-libcloud

https://libcloud.readthedocs.io/en/latest/index.html


driver	=	cls('username',	'api	key')

pprint(driver.list_sizes())

pprint(driver.list_nodes())

9.7.4	Managing	your	cloud	credentials

Often	you	will	need	as	part	of	your	code	to	access	cloud	credentails.	Theas	could
be	read	in	interactively,	from	environment	variables,	or	from	a	configuration	file.
To	make	things	easy	for	now,	we	assume	the	credentials	are	stored	in	a	yaml	file
that	is	stores	in	~/.cloudmesh/cloudmesh.4.yaml.	An	example	is	listed	at

https://raw.githubusercontent.com/cloudmesh/cloudmesh-
configuration/master/cloudmesh/configuration/etc/cloudmesh.yaml

With	the	help	of	this	yaml	file	it	is	now	easy	to	manage	credentials	for	multiple
clouds.	We	provide	next	a	simple	example	on	how	to	get	the	credentials	for	the
cloud	calles	aws.

The	last	function	can	also	be	called	via

Which	is	a	convenient	method	to	access	the	credentials	for	a	named	cloud.

Certianly	you	should	be	encrypting	this	file	and	an	extension	could	be	developed
by	you	to	manage	the	encryption	and	decryption	for	example	while	using	your
password	protected	public/private	keypair	or	other	methods.

9.7.5	Working	with	cloud	services

In	the	following	section	we	will	look	into	how	Libcloud	can	be	used	to	perform
various	 functions	 in	 specific	 cloud	 providers.	 One	 of	 the	 main	 aspects	 that
change	between	different	cloud	providers	is	how	authentication	is	done.	Because
of	the	unified	API	most	of	the	other	features	are	executed	in	the	same	manner.

9.7.5.1	Authenticating	with	cloud	providers

from	cloudmesh.common.util	import	path_expand

from	cloudmesh.management.configuration.config	import	Config

name="aws"

credentials	=	Config()["cloudmesh"]["cloud"][name]["credentials"]

credentials	=	Config().credentials("cloud",	name)

https://raw.githubusercontent.com/cloudmesh/cloudmesh-configuration/master/cloudmesh/configuration/etc/cloudmesh.yaml


Depending	on	the	cloud	provider,	how	Libcloud	is	granted	access	to	your	cloud
account	may	differ,	next	we	will	look	at	some	such	examples

There	are	two	main	steps	that	are	common	to	all	providers

1.	 Using	 the	get_driver()	method	 to	obtain	 a	 reference	 to	 the	 cloud	provider
driver

2.	 Instantiating	the	driver	with	the	credentials	to	access	the	cloud

After	you	obtain	the	connection,	it	can	be	used	to	invoke	various	services

9.7.5.1.1	Amazon	AWS

o	get	a	driver	via	libcloud	for	AWS	you	first	have	to	set	up	the	cloudmesh.yaml
file	and	install	the	convenience	methods	from	cloudmesh	as	documented	in

https://cloudmesh-community.github.io/cm/install.html#installation-via-
pip-development

This	 will	 provide	 you	 with	 a	 convenient	 config	 method	 that	 reads	 the	 Azure
configuration	parameters	from	the	cloudmesh.yaml	file	which	you	need	to	place
in	~/.cloudmesh

9.7.5.1.2	Azure

from	libcloud.compute.types	import	Provider

from	libcloud.compute.providers	import	get_driver

from	cloudmesh.common.util	import	path_expand

from	cloudmesh.management.configuration.config	import	Config

from	pprint	import	pprint

#	Azure	related	variables

name	=	"azure"

#	This	assumes	the	cloudname	for	azure	to	be	*azure*

credentials	=	Config().credentials("cloud",	name)

pprint(credentials)

#AZURE_MANAGEMENT_CERT_PATH	=	path_expand('~/.cloudmesh/azure_cert.pem')

driver	=	get_driver(Provider.AZURE)

connection	=	self.driver(

				credentials["EC2_ACCESS_ID"],

				credentials["EC2_SECRET_KEY"],

				region=credentials["region"])

pprint(connection.__dict__)

https://cloudmesh-community.github.io/cm/install.html#installation-via-pip-development


9.7.5.1.2.1	Azure	Classic	Driver

Please	 note	 that	 libcloud	 has	 multiple	 drivers	 to	 interact	 with	 Azure.	 The
following	is	an	example	using	the	classic	method.

To	get	a	driver	via	libcloud	for	azure	you	first	have	to	set	up	the	cloudmesh.yaml
file	and	install	the	convenience	methods	from	cloudmesh	as	documented	in

https://cloudmesh-community.github.io/cm/install.html#installation-via-
pip-development

This	 will	 provide	 you	 with	 a	 convenient	 config	 method	 that	 reads	 the	 Azure
configuration	parameters	from	the	cloudmesh.yaml	file	which	you	need	to	place
in	~/.cloudmesh

9.7.5.1.2.2	Azure	New	Driver

The	 following	 is	 an	 example	 using	 the	 Azure	 Resource	 Management	 (ARM)
method.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-
group-overview

To	 connect	 to	Azure	 you	 need	 your	 tenant	 ID	 and	 subscription	 ID.	Using	 the
Azure	cross	platform	CLI,	use	azure	account	list	to	get	these	values.

from	libcloud.compute.types	import	Provider

from	libcloud.compute.providers	import	get_driver

from	cloudmesh.common.util	import	path_expand

from	cloudmesh.management.configuration.config	import	Config

from	pprint	import	pprint

#	Azure	related	variables

name	=	"azure"

#	This	assumes	the	cloudname	for	azure	to	be	*azure*

credentials	=	Config().credentials("cloud",	name)

pprint(credentials)

#AZURE_MANAGEMENT_CERT_PATH	=	path_expand('~/.cloudmesh/azure_cert.pem')

driver	=	get_driver(Provider.AZURE)

connection	=	driver(

				subscription_id=credentials["AZURE_SUBSCRIPTION_ID"],

				key_file=path_expand(credentials["AZURE_KEY_FILE"])

)

pprint(connection.__dict__)

https://cloudmesh-community.github.io/cm/install.html#installation-via-pip-development
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview


9.7.5.1.3	OpenStack

To	 get	 a	 driver	 via	 libcloud	 for	 OpenStack	 you	 first	 have	 to	 set	 up	 the
cloudmesh.yaml	 file	 and	 install	 the	 convenience	 methods	 from	 cloudmesh	 as
documented	in

https://cloudmesh-community.github.io/cm/install.html#installation-via-
pip-development

This	 will	 provide	 you	 with	 a	 convenient	 config	 method	 that	 reads	 the	 Azure
configuration	parameters	from	the	cloudmesh.yaml	file	which	you	need	to	place
in	~/.cloudmesh

azure	ad	app	create	--name	"<Your	Application	Display	Name>"	--home-page	"<https://YourApplicationHomePage>"	--identifier-uris	

azure	ad	sp	create	"<Application_Id>"

azure	role	assignment	create	--objectId	"<Object_Id>"	-o	Owner	-c	/subscriptions/{subscriptionId}/

from	libcloud.compute.types	import	Provider

from	libcloud.compute.providers	import	get_driver

from	cloudmesh.management.configuration.config	import	Config

from	pprint	import	pprint

#	Azure	related	variables

name	=	"azure_arm"

#	This	assumes	the	cloudname	for	azure	to	be	*azure_arm*

credentials	=	Config().credentials("cloud",	name)

pprint(credentials)

driver	=	get_driver(Provider.AZURE_ARM)

connection	=	driver(

				tenant_id=credentials["TENANT_ID"],

				subscription_id=credentials["AZURE_SUBSCRIPTION_ID"],

				key=credentials["APPLICATION_ID"],

				secret=credentials["PASSWORD"]

)

pprint(connection.__dict__)

from	libcloud.compute.types	import	Provider

from	libcloud.compute.providers	import	get_driver

from	cloudmesh.common.util	import	path_expand

from	cloudmesh.management.configuration.config	import	Config

from	pprint	import	pprint

#	Azure	related	variables

name	=	"chameleon"

#	This	assumes	the	cloudname	for	azure	to	be	*azure*

credentials	=	Config().credentials("cloud",	name)

pprint(credentials)

#AZURE_MANAGEMENT_CERT_PATH	=	path_expand('~/.cloudmesh/azure_cert.pem')

driver	=	get_driver(Provider.AZURE)

https://cloudmesh-community.github.io/cm/install.html#installation-via-pip-development


9.7.5.1.4	Google

Google	cloud	and	account	setup:

1.	 Go	to	the	Google	Developers	Console
2.	 Select	your	project
3.	 In	the	left	sidebar,	go	to	“APIs	&	auth”
4.	 Click	on	“Credentials”	then	“Create	New	Client	ID”
5.	 Select	“Installed	application”	and	“Other”	then	click	“Create	Client	ID”
6.	 For	authentication,	you	will	need	the	“Client	ID”	and	the	“Client	Secret”
7.	 You	will	also	need	your	“Project	ID”	(a	string,	not	a	numerical	value)	that

can	be	found	by	clicking	on	the	“Overview”	link	on	the	left	sidebar.

https://libcloud.readthedocs.io/en/latest/compute/drivers/gce.html

9.7.5.2	Invoking	services

In	 this	 section	 we	 will	 look	 into	 how	 we	 can	 use	 the	 connection	 created	 as
previously	instructed	to	perform	various	services	such	as	creating	nodes,	listing
nodes,	starting	nodes	and	stopping	nodes.

Appropriate	authentication	code	as	described	in	the	previous	section	is	assumed.

connection	=	self.driver(

				credentials["OS_USERNAME"],

				credentials["OS_PASSWORD"],

				ex_force_auth_url=credentials['OS_AUTH_URL'],

				ex_force_auth_version='2.0_password',

				ex_tenant_name=credentials['OS_TENANT_NAME'])

pprint(connection.__dict__)

from	libcloud.compute.types	import	Provider

from	libcloud.compute.providers	import	get_driver

from	cloudmesh.common.util	import	path_expand

from	cloudmesh.management.configuration.config	import	Config

from	pprint	import	pprint

credentials	=	Config().credentials("cloud",	"GCE")

pprint(credentials)

driver	=	get_driver(Provider.GCE)

#	Datacenter	is	set	to	'us-central1-a'	as	an	example,	but	can	be	set	to	any

#	zone,	like	'us-central1-b'	or	'europe-west1-a'

connection	=	driver(

				credentials['SERVICE_ACCOUNT_EMAIL'],

				credentials['PATH_TO_PEM_FILE'],

				datacenter=credentials['DATA_CENTER'],

				project=credentials['PROJECT_ID'])

pprint(connection.__dict__)

https://libcloud.readthedocs.io/en/latest/compute/drivers/gce.html


This	 will	 give	 us	 an	 variable	 named	 conn	 which	 we	 will	 use	 for	 invoking
Services.	It	is	in	the	next	sections	not	explicitly	listed.	It	is	indicated	by	our	…	at
the	beginning

9.7.5.2.1	Creating	Nodes

In	this	section	we	will	look	at	the	code	that	can	be	used	to	create	a	node	in	the
provider	a	node	which	represents	a	virtual	server

9.7.5.2.2	Listing	Nodes

In	 this	 section	we	will	 look	 at	 the	 code	 that	 can	be	used	 to	 list	 the	nodes	 that
have	been	created	in	the	provider

9.7.5.2.3	Starting	Nodes

After	the	node	(Virtual	server)	has	been	created	the	following	code	can	be	used
to	start	the	node

9.7.5.2.4	Stoping	Nodes

When	needed	the	following	command	can	be	used	to	stop	a	node	that	has	been
started

...

#	retrieve	available	images	and	sizes

images	=	conn.list_images()

sizes	=	conn.list_sizes()

#	create	node	with	first	image	and	first	size

node	=	conn.create_node(

				name='yourservername',

				image=images[0],

				size=sizes[0])

...

nodes	=	connection.list_nodes()

print	(nodes)

...

nodes	=	connection.list_nodes()

node	=	[n	for	n	in	nodes	if	'yourservername'	in	n.name][0]

connection.ex_start(node=node)

...

nodes	=	connection.list_nodes()

node	=	[n	for	n	in	nodes	if	'yourservername'	in	n.name][0]

connection.ex_stop(node=node)



9.7.6	Cloudmesh	Community	Program	to	Manage	Clouds

As	you	have	noticed	since	the	authentication	can	change	from	cloud	services	to
cloud	 service	 it	 would	 be	 much	 easier	 to	 use	 a	 simple	 python	 script	 to
automatically	handle	the	differences	in	the	code.

We	 have	 provided	 such	 a	 python	 script	 which	 you	 can	 leverage	 to	 manage
different	cloud	providers.	You	can	find	the	python	script	and	the	corresponding
.yaml	file	in	the	cloudmesh-community	github	repository.

Python	 Script	 -	 https://github.com/cloudmesh-
community/cm/blob/master/cm.py
Yaml	 File	 -	 https://github.com/cloudmesh-
community/cm/blob/master/cloudmesh.yaml

When	using	the	script	and	yaml	file	please	keep	in	mind	the	following	steps	to
make	sure	you	do	not	share	your	private	keys	and	passwords	on	your	publicly
accessible	Github	account.

1.	 Create	a	folder	in	your	computer	that	is	not	within	a	git	clone	that	you	have
made.	For	example	maybe	you	can	use	a	new	directory	on	your	desktop

2.	 Copy	the	cm.py	and	 cloudmesh.yaml	 files	 into	this	folder.	Just	 to	make	sure	you
are	 not	 working	 with	 the	 files	 under	 the	 git	 repo	 you	 should	 delete	 the
cloudmesh.yaml	file	in	that	is	in	your	local	git	repo.

3.	 change	the	needed	fields	in	the	yaml	file	and	use	the	python	script	to	access
the	cloud	services	using	libcloud.

To	illustrate	how	simple	 the	program	is	and	 that	 it	significantly	 improves	your
management	of	credentials	we	provide	the	follwoing	code:

NOTE:	This	is	to	be	implemented	by	you

To	switch	to	a	different	cloud,	you	just	have	to	create	it	in	the	yaml	file	and	use

from	cm	import	cloudmesh

cm	=	cloudmesh()

cm.config()

driver	=	cm.get_driver("aws")

print("driver=",	driver)

https://github.com/cloudmesh-community/cm/blob/master/cm.py
https://github.com/cloudmesh-community/cm/blob/master/cloudmesh.yaml


that	name.

It	will	be	your	task	to	add	more	providers	to	it.

We	intent	to	host	the	code	sometime	soon	on	pypi	so	you	can	issue	the	command

and	this	library	will	be	installed	for	you.

9.7.7	Amazon	Simple	Storage	Service	S3	via	libcloud	

No

Next	 we	 explain	 how	 to	 use	 Amazon	Web	 Services	 (AWS)	 S3	 via	 libcloud.
Apache	libcloud	is	a	python	library	that	provides	abstraction	layer	and	hides	the
complexities	 of	 directly	 integrating	with	AWS	API’s,	 for	 that	matter	 it	 allows
you	 to	 do	 so	 for	 different	 cloud	 providers.	 In	 the	 next	 sections	more	 detailed
steps	are	shown	to	install	and	use	libcloud	for	AWS	S3.

9.7.7.1	Access	key

To	 be	 able	 to	 access	 AWS	 S3	 from	 libcloud	 we	 need	 the	 access	 key	 to	 be
specified	in	the	call.	Access	key	can	be	setup	on	AWS	console	by	navigating	to	
My	Security	credentials->Encryption	Keys->Access	Keys.

9.7.7.2	Create	a	new	bucket	on	AWS	S3

In	S3	you	first	need	 to	create	a	bucket	which	 is	nothing	but	a	container	where
you	store	your	data	in	the	form	of	files.	This	is	where	you	can	also	define	access
controls.

Click	on	S3	link	on	the	AWS	console	under	storage	section,	this	will	bring
you	to	the	create	bucket	window.
Click	on	“Create	Bucket”	button,	this	opens	up	a	wizard.
Answer	all	mandatory	questions	on	each	page.
Important	point	here	 is	 to	note	 the	“Bucket	Name”	and	 the	“Region”	you

$	pip	install	cm-community



are	creating	this	bucket	in,	as	this	information	will	be	used	while	calling	the
API.

9.7.7.3	List	Containers

List	Containers	function	list	all	the	containers	of	buckets	available	for	the	user	in
that	particular	region.

	TODO	change	this	example	to	use	the	cloudmesh.yaml	file

9.7.7.4	List	container	objects

List	 container	 objects	 function	 shows	 the	 list	 of	 all	 objects	 in	 that	 container.
Please	 note	 the	 output	 could	 be	 large	 depending	 on	 the	 files	 present	 in	 the
bucket.

	TODO	change	this	example	to	use	the	cloudmesh.yaml	file

9.7.7.5	Upload	a	file

Upload	a	file	helps	in	uploading	a	local	file	to	S3	bucket.

from	libcloud.storage.types	import	Provider

from	libcloud.storage.providers	import	get_driver

cls	=	get_driver(Provider.S3_US_EAST2)

driver	=	cls('api	key',	'api	secret	key')

d	=	driver.list_containers()

print	(d)

from	libcloud.storage.types	import	Provider

from	libcloud.storage.providers	import	get_driver

#	Note	I	have	used	S3_US_EAST2	as	this	is	the

#	"region"	where	my	S3	bucket	is	located.

cls	=	get_driver(Provider.S3_US_EAST2)

driver	=	cls('api	key',	'api	secret	key')

container	=	driver.get_container(

				container_name='<bucket	name>')

d	=	driver.list_container_objects(container)

print(d)



	TODO	change	this	example	to	use	the	cloudmesh.yaml	file

9.7.7.6	References

https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html

Documentation	 about	 libcloud	 can	 be	 found	 at
https://libcloud.readthedocs.org

storage	 driver
http://libcloud.readthedocs.io/en/latest/_modules/libcloud/storage/drivers/s3.html
Examples:
https://libcloud.readthedocs.io/en/latest/storage/examples.html
API	 docs
http://libcloud.apache.org/apidocs/0.6.1/libcloud.storage.base.StorageDriver.html

9.8	AWS	BOTO	 	☁

Construction

	This	section	has	some	features	missing	and	does	not	yet	use	cloudmesh	v4

from	libcloud.storage.types	import	Provider

from	libcloud.storage.providers	import	get_driver

FILE_PATH	=	'/<file	path>/<filename>'

#	Note	I	have	used	S3_US_EAST2	as	this	is

#	the	"region"	where	my	S3	bucket	is	located.

cls	=	get_driver(Provider.S3_US_EAST2)

driver	=	cls('api	key',	'api	secret	key')

container	=	driver.get_container(

				container_name='<bucket	name>')

extra	=	{

		'meta_data':	{

				'owner':	'<owner	name>',

				'created':	'2018-03-24'

				}

		}

with	open(FILE_PATH,	'rb')	as	iterator:

				obj	=	driver.upload_object_via_stream(

								iterator=iterator,

								container=container,

								object_name='backup.tar.gz',

								extra=extra)

https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html
https://libcloud.readthedocs.org
http://libcloud.readthedocs.io/en/latest/_modules/libcloud/storage/drivers/s3.html
https://libcloud.readthedocs.io/en/latest/storage/examples.html
http://libcloud.apache.org/apidocs/0.6.1/libcloud.storage.base.StorageDriver.html
https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/boto.md


Boto	 is	 a	 software	 development	 kit	 (SDK)	 that	 provides	 AWS	 interface	 for
Python	applications.	It	enables	to	write	applications	in	Python	that	make	use	of
Amazon	Web	Services.

Boto	 supports	 different	AWS	 services	 such	 as,	 Elastic	Compute	Cloud	 (EC2),
DynamoDB,	AWS	Config,	CloudWatch	and	Simple	Storage	Service	(S3).

In	contrast	to	libcloud	it	only	focusses	to	support	AWS.

9.8.1	Boto	versions

The	current	version	of	Boto	is	Boto3	and	is	available	from:

https://github.com/boto/boto3

The	documentation	from	amazon	is	provided	here:

http://aws.amazon.com/sdk-for-python

It	supports	Python	versions	2.6.5,	2.7	and	3.3+.

9.8.2	Boto	Installation

To	install	boto	with	its	latest	release,	use

To	install	boto	from	source,	use

Before	you	install	it	we	suggest	that	you	either	use	pyenv	or	venv.

To	 install	 additional	 modules	 to	 use	 boto.cloudsearch,	 boto.manage,
boto.mashups	 and	 to	 get	 all	 modules	 required	 for	 test	 suite,	 than	 the	 run
command

$	pip	install	boto3

$	git	clone	https://github.com/boto/boto3.git

$	cd	boto3

$	python	setup.py	install

$	python	setup.py	install

https://github.com/boto/boto3
http://aws.amazon.com/sdk-for-python


9.8.3	Access	key

An	initial	setup	is	required	to	be	able	to	access	AWS	EC2	from	BOTO	wherein
you	provide	the	key	and	region	details.	You	can	find	the	key	details	from	IAM
console	on	AWS.

9.8.4	Boto	configuration

BOTO	 can	 be	 configured	 in	 two	 ways,	 either	 by	 using	 the	 aws	 configure
command	 if	 you	 have	 AWS	 Command	 line	 interface	 installed	 or	 simply	 by
manually	 creating	 and	 editing	 the	 ~/.aws/credentials	 file	 to	 include	 important
parameters	highlighted	next.

Similar	to	libcloud,	BOTO	also	requires	the	region	where	you	would	create	your
EC2	instance,	the	same	can	be	maintained	by	creating	a	config	file.

9.8.5	Boto	configuration	with	cloudmesh

	please	also	document	here	how	to	use	the	cloudmesh.yaml	file

9.8.6	EC2	interface	of	Boto

9.8.6.0.1	Create	connection

To	access	EC2	instance,	first	import	the	required	package.

Make	a	connection	to	from	application	by	specifying	AWS	region	in	which	the
user	 account	 is	 created,	 aws	 access	 key	 and	 secret	 key.	AWS	provides	 access
key	and	secret	key	when	a	new	user	is	created.	Access	key	and	secret	key	helps
to	identify	the	user.

[default]

aws_access_key_id	=	<YOUR_ACCESS_KEY>

aws_secret_access_key	=	<YOUR_SECRET_KEY>

				$	emacs	.aws/config

				[default]

				region=<region	name>	#	for	example	us-east

import	boto3.ec2



	TODO	use	the	cloudmesh	config	file	here

connection	object	now	points	to	EC2Connection	object	returned	by	the	function	
connect_to_region.

9.8.7	List	EC2	instances

The	code	to	list	the	running	instances	(if	you	have	some)	is	very	simple:

9.8.7.0.1	Launch	a	new	instance

To	launch	a	new	instance	with	default	properties

Additional	 parameters	 can	 be	 specified	 to	 create	 instance	 of	 specific	 type	 and
security	group.

Instance	 type	 specifies	 the	 storage	 and	 type	 of	 platform.	 Secutity	 groups	 are
required	to	provide	access	rights	such	as	access	to	SSH	into	the	instance.

9.8.7.0.2	Check	running	instances

The	get_all_reservations	 function	of	EC2Connection	object	will	 return	 list	of	 running
instances.

9.8.7.0.3	Stop	instance

Up	and	running	instances	can	be	stopped.	Thw	stop_instances	function	of	connection

connection	=	boto3.ec2.connect_to_region(

				'<region	name>',

				aws_access_key_id='<access	key>',

				aws_secret_access_key='<secret	key'>)

import	boto3

ec2	=	boto3.client('ec2')

response	=	ec2.describe_instances()

print(response)

connection.run_instances('<ami-id>')

connection.run_instances('<ami-id>',key_name='<key>',	instance_type='<type>',

security_groups=['<security	group	list>'])

reservations	=	connection.get_all_reservations()

instances	=	reservations[0].instances



object	enables	multiple	instances	to	be	stopped	in	one	command.

9.8.7.0.4	Terminate	instance

To	 terminate	 one	 or	 more	 instances	 simultaneously,	 use	 the	 terminate_instances

function.

9.8.7.1	Reboot	instances

The	next	example	 showcases	how	 to	 reboot	an	 instance,	which	 is	 copied	 from
http://boto3.readthedocs.io/en/latest/guide/ec2-example-managing-
instances.html

9.8.8	Amazon	S3	interface	of	Boto

9.8.8.0.1	Create	connection

Import	required	packages

Create	a	connection

9.8.8.0.2	Create	new	bucket	in	S3

connection.stop_instances(instance_ids=['<id1>','<id2>',	...])

connection.terminate_instances(instance_ids=['<id1>','<id2>',	..])

#	Code	copied	form

#	http://boto3.readthedocs.io/en/latest/guide/ec2-example-managing-instances.html

import	boto3

from	botocore.exceptions	import	ClientError

ec2	=	boto3.client('ec2')

try:

				ec2.reboot_instances(InstanceIds=['INSTANCE_ID'],	DryRun=True)

except	ClientError	as	e:

				if	'DryRunOperation'	not	in	str(e):

								print("You	don't	have	permission	to	reboot	instances.")

								raise

try:

				response	=	ec2.reboot_instances(InstanceIds=['INSTANCE_ID'],	DryRun=False)

				print('Success',	response)

except	ClientError	as	e:

				print('Error',	e)

import	boto3.s3

from	boto3.s3.key	import	Key

connection	=	boto.connect_s3('<access-key>','<secret-key>')

http://boto3.readthedocs.io/en/latest/guide/ec2-example-managing-instances.html


Amazon	S3	stores	all	its	data	in	Bucket.	There	is	no	limitation	specified	by	AWS
about	number	of	data	files	allowed	per	bucket.

Bucket	 name	 has	 to	 be	 unique	 name	 accross	 all	 the	 AWS	 regions	 and	 hence
globally	unique.

If	 bucket	 name	 is	 unique,	 a	 new	bucket	 of	 specified	 name	will	 get	 created.	 If
bucket	name	is	not	unique,	application	will	throw	error	as

9.8.8.0.3	Upload	data

To	 upload	 a	 file	 in	 the	 S3	 bucket,	 first	 create	 a	 key	 object	 from	 new_key()
function	of	bucket.

This	will	create	hello.txt	file	with	content	Hello	World!	in	the	text	file.	This	file
can	be	found	inside	the	bucket	in	which	new	key	is	created.

9.8.8.0.4	List	all	buckets

One	 account	 can	 have	 maximum	 100	 buckets	 in	 which	 data	 objects	 can	 be
stored.

The	get_all_buckets	function	of	S3Connection	lists	all	 the	buckets	within	account.	It
returns	ResultSet	object	which	has	list	of	all	buckets.

9.8.8.0.5	List	all	objects	in	a	bucket

Data	 objects	 stored	 in	 a	 bucket	 has	 a	 metadata	 associated	 with	 it	 such	 as
LastModified	date	and	time.	This	information	can	also	be	captured.

bucket	=	conn.create_bucket('<bucket_name>')

boto.exception.S3CreateError:	S3Error[409]:	Conflict

key	=	bucket.new_key('hello2.txt')

key.set_contents_from_string('Hello	World!')

result	=	connection.get_all_buckets()

#	To	list	files	in	selected	bucket

for	key	in	bucket.list():

				print	("{name}".format(**key))

				print	("{size}".format(**key))

				print	("{last_modified}".format(**key))



9.8.8.0.6	Delete	object

To	delete	any	data	object	from	bucket,	delete_key	function	of	bucket	is	used.

9.8.8.0.7	Delete	bucket

To	 delete	 a	 bucket,	 provide	 a	 bucket	 name	 and	 call	 the	 delete_bucket	 function	 of
S3Connection	object.

9.8.9	References

https://github.com/boto/boto3
https://boto3.readthedocs.io/en/latest/guide/quickstart.html#installation
http://boto3.readthedocs.io/en/latest/guide/ec2-example-managing-
instances.html

9.8.10	Excersises

E.boto.cloudmesh.1:

will	will	nw	create	a	cloudmesh	 tool	 that	manages	virtual	machines
on	the	commandline.	For	that	we	copy	the	code	published	at

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/ec2-
example-managing-instances.html.

Modify	this	code	using	docopts	and	look	at	samples	in

https://github.com/cloudmesh-community/cm

where	we	use	libcloud.	The	code	from	Amazon	is.

k	=	Key(<bucket-name>,	<file-name>)

k.delete()

connection.delete_bucket('<bucket-name>')

import	sys

import	boto3

from	botocore.exceptions	import	ClientError

instance_id	=	sys.argv[2]

action	=	sys.argv[1].upper()

https://github.com/boto/boto3
https://boto3.readthedocs.io/en/latest/guide/quickstart.html#installation
http://boto3.readthedocs.io/en/latest/guide/ec2-example-managing-instances.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/ec2-example-managing-instances.html
https://github.com/cloudmesh-community/cm


E.boto.cloudmesh.2:

Integrate,	start,	stop,	rebot,	and	other	useful	functions

E.boto.cloudmesh.3:

Discuss	the	advantages	of	docopts.

ec2	=	boto3.client('ec2')

if	action	==	'ON':

				#	Do	a	dryrun	first	to	verify	permissions

				try:

								ec2.start_instances(InstanceIds=[instance_id],	DryRun=True)

				except	ClientError	as	e:

								if	'DryRunOperation'	not	in	str(e):

												raise

				#	Dry	run	succeeded,	run	start_instances	without	dryrun

				try:

								response	=	ec2.start_instances(InstanceIds=[instance_id],	DryRun=False)

								print(response)

				except	ClientError	as	e:

								print(e)

else:

				#	Do	a	dryrun	first	to	verify	permissions

				try:

								ec2.stop_instances(InstanceIds=[instance_id],	DryRun=True)

				except	ClientError	as	e:

								if	'DryRunOperation'	not	in	str(e):

												raise

				#	Dry	run	succeeded,	call	stop_instances	without	dryrun

				try:

								response	=	ec2.stop_instances(InstanceIds=[instance_id],	DryRun=False)

								print(response)

				except	ClientError	as	e:

								print(e)



10	MAPREDUCE

10.1	INTRODUCTION	TO	MAPREDUCE	☁
In	 this	 section	 we	 discuss	 about	 the	 background	 of	 Mapreduce	 along	 with
Hadoop	and	core	components	of	Hadoop.

We	start	out	our	section	with	a	review	of	the	python	lambda	expression	as	well
as	 the	 map	 function.	 Understanding	 these	 concepts	 is	 helpful	 for	 our	 overall
understanding	of	map	reduce.

So	before	you	watch	the	video,	we	encourage	you	to	learn	Sections	{#s-python-
lambda}	and	{#s-python-map}.

Now	that	you	have	a	basic	understanding	of	the	map	function	we	recommend	to
watch	our	videos	about	mapreduce,	hadoop	and	spark	which	we	provide	within
this	chapter.

	Map	Reduce,	Hadoop,	and	Spark	(19:02)	Hadoop	A

MapReduce	is	a	programming	technique	or	processing	capability	which	operates
in	 a	 cluster	 or	 a	 grid	 on	 a	 massive	 data	 set	 and	 brings	 out	 reliable	 output.	 It
works	 on	 essentially	 two	 main	 functions	 –	 map()	 and	 reduce().	 MapReduce
processes	 large	 chunks	 of	 data	 so	 its	 highly	 beneficial	 to	 operate	 in	 multi-
threaded	 fashion	 meaning	 parallel	 processing.	 MapReduce	 can	 also	 take
advantage	of	data	 locality	 so	 that	we	do	not	 loose	much	on	communication	of
data	from	place	to	another.

10.1.1	MapReduce	Algorithm

MapReduce	 can	 operate	 on	 a	 filesystem,	 which	 is	 an	 unstructured	 data	 or	 a
database,	 a	 structured	 data	 and	 these	 are	 the	 following	 three	 stages	 of	 its
operation	(see	Figure	88):

1.	 Map:	This	method	processes	the	very	initial	data	set.	Generally,	the	data	is
in	 file	 format	which	 can	 be	 stored	 in	HDFS	 (Hadoop	 File	 System).	Map

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/mapreduce.md
https://youtu.be/HfuP2RJnQ6k?t=73


function	reads	the	data	line	by	line	and	creates	several	chunks	of	data	and
that	is	again	stored	in	HDFS.	This	broken	set	of	data	is	in	key/value	pairs.
So	 in	 multi-threaded	 environment,	 there	 will	 be	 many	 worker	 nodes
operating	on	the	data	using	this	map()	function	and	write	this	intermediate
data	in	form	of	key/value	to	temporary	data	storage.

2.	 Shuffle:	In	this	stage,	worker	nodes	will	shuffle	or	redistribute	the	data	in
such	a	way	that	there	is	only	one	copy	for	each	key.

3.	 Reduce:	 This	 function	 always	 comes	 at	 last	 and	 it	 works	 on	 the	 data
produced	 by	map	 and	 shuffle	 stages	 and	 produces	 even	 smaller	 chunk	 of
data	which	is	used	to	calculate	output.

Figure	88:	MapReduce	Conceptual	diagram

The	Shuffle	 operation	 is	 very	 important	 here	 as	 that	 is	mainly	 responsible	 for
reducing	 the	 communication	 cost.	 The	 main	 advantage	 of	 using	 MapReduce
algorithm	is	that	it	becomes	very	easy	to	scale	up	data	processing	just	by	adding
some	 extra	 computing	 nodes.	 Building	 up	 map	 and	 reduce	 methods	 are
sometimes	nontrivial	but	once	done,	scaling	up	the	applications	is	so	easy	that	it
is	just	a	matter	of	changing	configuration.	Scalability	is	really	big	advantage	of
MapReduce	model.	 In	 the	 traditional	way	of	 data	processing,	 data	was	moved
from	nodes	to	the	master	and	then	the	processing	happens	in	master	machine.	In
this	approach,	we	lose	bandwidth	and	time	on	moving	data	to	master	and	parallel
operation	 cannot	 happen.	 Also	 master	 can	 get	 over-burdened	 and	 fail.	 In
MapReduce	approach,	Master	node	distributes	the	data	to	the	worker	machines
which	 are	 in	 themselves	 a	 processing	 unit.	 So	 all	 worker	 process	 the	 data	 in
parallel	 and	 the	 time	 taken	 to	 process	 the	 data	 is	 reduced	 tremendously.	 (see
Figure	89)



Figure	89:	MapReduce	Master	worker	diagram

10.1.1.1	MapReduce	Example:	Word	Count

Let	us	understand	MapReduce	by	an	example.	For	example:	we	have	a	text	file
as	 Sample.txt	 as	Cat,	 Bear,	Camel,	Bird,	Cat,	Bird,	Camel,	Cat,	Bear,	Camel,
Cat,	Camel

1.	 First	we	divide	the	input	into	four	parts	so	that	individual	nodes	can	handle
the	load.

2.	 We	tokenize	each	word	and	assign	weightage	of	value	“1”	to	each	word.
3.	 This	way	we	will	have	a	list	of	key-value	pairs	with	key	being	the	word	and

value	as	1.
4.	 After	this	mapping	phase,	shuffling	phase	starts	where	all	maps	with	same

key	are	sent	corresponding	reducer.
5.	 Now	each	reducer	will	have	a	unique	key	and	a	list	of	values	for	each	key

which	in	this	case	is	all	1s.
6.	 After	that,	each	reducer	will	count	the	total	number	of	1s	and	assigns	final

count	to	each	word.
7.	 The	final	output	is	then	written	to	a	file.	(see	Figure	90)



Figure	90:	MapReduce	WordCount	[68]

Let	 us	 see	 an	 example	 of	 map()	 and	 reduce()	 methods	 in	 code	 for	 this	 word
count	example.

Here	 we	 have	 created	 a	 class	 Map	 which	 extends	 Mapper	 from	 MapReduce
framework	and	we	override	map()	method	to	declare	the	key/value	pairs.	Next,
there	will	be	a	reduce	method	defined	inside	Reduce	class	as	next	and	both	input
and	output	here	is	a	key/value	pairs:

10.1.2	Hadoop	MapReduce	and	Hadoop	Spark

public	static	class	Map	extends	Mapper<LongWritable,

																																Text,

																																Text,

																																IntWritable>	{

			public	void	map(LongWritable	key,

																			Text	value,

																			Context	context)

																			throws	IOException,InterruptedException	{

							String	line	=	value.toString();

							StringTokenizer	tokenizer	=	new	StringTokenizer(line);

							while	(tokenizer.hasMoreTokens())	{

											value.set(tokenizer.nextToken());

											context.write(value,	new	IntWritable(1));

							}

}

public	static	class	Reduce	extends	Reducer<Text,

																																			IntWritable,

																																			Text,IntWritable>	{

			public	void	reduce(Text	key,

																						Iterable<IntWritable>	values,

																						Context	context)

					throws	IOException,InterruptedException	{

									int	sum=0;

									for(IntWritable	x:	values)	{

												sum+=x.get();

									}

									context.write(key,	new	IntWritable(sum));

				}

}



In	earlier	version	of	Hadoop,	we	could	use	MapReduce	with	HDFS	directly	but
from	2.0	onwards,	YARN(Cluster	Resource	Management)	 is	 introduced	which
acts	 as	 a	 layer	 between	MapReduce	 and	 HDFS	 and	 using	 this	 YARN,	 many
other	BigData	frameworks	can	connect	to	HDFS	as	well.	(see	Figure	91)

Figure	91:	MapReduce	Hadoop	and	Spark	[69]

There	are	many	big	data	frameworks	available	and	there	is	always	a	question	as
to	which	one	is	the	right	one.	Leading	frameworks	are	Hadoop	MapReduce	and
Apache	 Spark	 and	 choice	 depends	 on	 business	 needs.	 Let	 us	 start	 comparing
both	of	these	frameworks	with	respect	to	their	processing	capability.

10.1.2.1	Apache	Spark

Apache	 Spark	 is	 lightning	 fast	 cluster	 computing	 framework.	 Spark	 is	 in-
memory	system.	Spark	is	100	time	faster	than	Hadoop	MapReduce.

10.1.2.2	Hadoop	MapReduce

Hadoop	MapReduce	reads	and	writes	on	disk	because	of	this	it	is	a	slow	system
and	that	affects	the	volume	of	data	been	processed.	But	Hadoop	is	a	scalable	and
fault	tolerant,	it	us	good	for	linear	processing.

10.1.2.3	Key	Differences

The	key	differences	between	them	are	as	follows:



1.	 Speed:	Spark	is	lightning	fast	cluster	computing	framework	and	operates	up
to	100	time	faster	in-memory	and	10	times	faster	than	Hadoop	on	disk.	In-
memory	 processing	 reduces	 the	 disk	 read/write	 processes	which	 are	 time
consuming.

2.	 Complexity:	Spark	is	easy	to	use	since	there	are	many	APIs	available	but
for	Hadoop,	developers	need	to	code	the	functions	which	makes	it	harder.

3.	 Application	Management:	Spark	can	perform	batch	processing,	interactive
and	Machine	Learning	and	Streaming	of	data,	all	in	the	same	cluster,	which
makes	it	a	complete	framework	for	data	analysis	whereas	Hadoop	is	just	a
batch	engine	and	it	requires	other	frameworks	for	other	tasks	which	makes
it	somewhat	difficult	to	manage.

4.	 Real-Time	Data	Analysis	 Spark	 is	 capable	 of	 processing	 real	 time	 data
with	 great	 efficiency.	 But	 Hadoop	 was	 designed	 primarily	 for	 batch
processing	so	it	cannot	live	data.

5.	 Fault	Tolerance:	Both	the	systems	are	fault	tolerant	so	there	is	no	need	to
restart	the	applications	from	scratch.

6.	 Data	Volume:	As	the	data	for	spark	is	held	in	memory	larger	data	volumes
are	better	managed	in	Hadoop.

10.1.3	References

[70]	https://www.ibm.com/analytics/hadoop/mapreduce
[71]	https://en.wikipedia.org/wiki/MapReduce
[72]	https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm
[68]	 https://www.edureka.co/blog/mapreduce-tutorial/?
utm_source=youtube&utm_campaign=mapreduce-tutorial-161216-
wr&utm_medium=description
[73]	 https://www.quora.com/What-is-the-difference-between-Hadoop-and-
Spark
[74]	https://data-flair.training/blogs/apache-spark-vs-hadoop-mapreduce
[69]	 https://www.youtube.com/watch?
v=SqvAaB3vK8U&list=WL&index=25&t=2547s

10.2	HADOOP

10.2.1	Hadoop	☁

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/hadoop-lectures.md


Hadoop	is	an	open	source	framework	for	storage	and	processing	of	large	datasets
on	commodity	clusters.	Hadoop	internally	uses	its	own	file	system	called	HDFS
(Hadoop	Distributed	File	System).

The	motivation	for	Hadoop	was	introduced	in	Section	Mapreduce

10.2.1.1	Hadoop	and	MapReduce

In	this	section	we	discuss	about	the	usage	Hadoop	MapReduce	architecture.

	Hadoop	13:19	Hadoop	B

10.2.1.2	Hadoop	EcoSystem

In	this	section	we	discuss	about	the	Hadoop	EcoSystem	and	the	architecture.

	Hadoop	12:57	Hadoop	C

10.2.1.3	Hadoop	Components

In	this	section	we	discuss	about	Hadoop	Components	in	detail.

	Hadoop	15:14	Hadoop	D

10.2.1.4	Hadoop	and	the	Yarn	Resource	Manager

In	this	section	we	discuss	about	Yarn	resource	manager	and	novel	components
added	 to	 the	 Hadoop	 framework	 in	 case	 of	 improving	 the	 performance	 and
minimizing	fault	tolerance.

	Hadoop	14:55	Hadoop	E

10.2.1.5	PageRank

In	 this	section	we	discuss	about	a	 real	world	problem	that	can	be	solved	using

https://youtu.be/-N5PpD2sy3Q?t=17
https://youtu.be/BaRHay32I80?t=18
https://youtu.be/MYOosbF6-dA?t=20
https://youtu.be/DVbtubsKrdg?t=40


the	MapReduce	technique.	PageRank	is	a	problem	solved	by	the	earliest	stages
of	 the	Google.inc.	 In	 this	 section	we	 discuss	 about	 the	 theoretical	 background
about	this	problem	and	we	discuss	how	this	can	be	solved	using	the	map	reduce
concepts.

	Hadoop	25:41	Hadoop	F

10.2.2	Installation	of	Hadoop	☁

This	 section	 is	using	Hadoop	version	3.1.1	 in	Ubuntu	18.04.	We	also	describe
the	installation	of	the	Yarn	resource	manager.	We	assume	that	you	have	ssh,	and
rsync	installed	and	use	emacs	as	editor.

If	you	use	a	newer	version,	and	like	to	update	this	text	please	help

10.2.2.1	Releases

Hadoop	changes	on	regular	basis.	Before	follwoing	this	section,	we	recommend
that	you	visit

https://hadoop.apache.org/releases.html

The	list	of	downloadable	files	is	also	available	at

and	verify	 that	you	use	an	up	 to	dat	version.If	 the	verison	of	 this	 instalation	 is
outdated.	we	ask	you	as	excrsise	to	update	it.

10.2.2.2	Prerequisites

10.2.2.3	User	and	User	Group	Creation

For	security	reasons	we	will	 install	hadoop	in	a	particular	user	and	user	group.
We	will	use	the	following

sudo	apt-get	install	ssh

sudo	apt-get	install	rsync

sudo	apt-get	install	emacs

sudo	addgroup	hadoop_group

sudo	adduser	--ingroup	hadoop_group	hduser

https://youtu.be/qr6mU04d69o?t=30
https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/hadoop-installation.md
https://hadoop.apache.org/releases.html


These	steps	will	provide	sudo	privileges	to	the	created	hduser	user	and	add	the
user	to	the	group	hadoop_group.

10.2.2.4	Configuring	SSH

Here	we	configure	SSH	key	for	the	local	user	to	install	hadoop	with	a	ssh-key.
This	 is	 different	 from	 the	 ssh-key	 you	 used	 for	 Github,	 FutureSystems,	 etc.
Follow	this	section	to	configure	it	for	Hadoop	installation.

The	 ssh	 content	 is	 included	 here	 because,	 we	 are	 making	 a	 ssh	 key	 for	 this
specific	user.	Next,	we	have	to	configure	ssh	to	be	used	by	the	hadoop	user.

Follow	 the	 instructions	 as	 provided	 in	 the	 commandline.	 When	 you	 see	 the
following	console	input,	press	ENTER.	Here	only	we	will	create	password	less
keys.	IN	general	this	is	not	a	good	idea,	but	for	this	case	we	make	an	exception.

Next	you	will	be	asked	to	enter	a	password	for	ssh	configuration,

Here	enter	the	same	password

Finally	you	will	see	something	like	this	after	these	steps	are	finished.

sudo	adduser	hduser	sudo

				sudo	su	-	hduser

				ssh-keygen	-t	rsa

Enter	file	in	which	to	save	the	key	(/home/hduser/.ssh/id_rsa):

Enter	passphrase	(empty	for	no	passphrase):

Enter	same	passphrase	again:

				Generating	public/private	rsa	key	pair.

				Enter	file	in	which	to	save	the	key	(/home/hduser/.ssh/id_rsa):

				Created	directory	'/home/hduser/.ssh'.

				Enter	passphrase	(empty	for	no	passphrase):

				Enter	same	passphrase	again:

				Your	identification	has	been	saved	in	/home/hduser/.ssh/id_rsa.

				Your	public	key	has	been	saved	in	/home/hduser/.ssh/id_rsa.pub.

				The	key	fingerprint	is:

				SHA256:0UBCPd6oYp7MEzCpOhMhNiJyQo6PaPCDuOT48xUDDc0	hduser@computer

				The	key's	randomart	image	is:

				+---[RSA	2048]----+

				|				.+ooo								|

				|	.			oE.oo							|

				|+		..	...+.						|

				|X+=		.		o..						|

				|XX.o		o.S								|

				|Bo+	+	.o									|

				|*o	*	+.										|

				|*..	*.											|



You	have	successfully	configured	ssh.

10.2.2.5	Installation	of	Java

If	you	are	already	logged	into	su,	you	can	skip	the	next	command:

Now	execute	the	following	commands	to	download	and	install	java

Please	note	that	users	must	accept	Oracle	OTN	license	before	downloading	JDK.

10.2.2.6	Installation	of	Hadoop

First	we	will	take	a	look	on	how	to	install	Hadoop	3.1.1	on	Ubuntu

16.04.	We	may	need	a	prior	folder	structure	to	do	the	installation	properly.

10.2.2.7	Hadoop	Environment	Variables

In	Ubuntu	the	environmental	variables	are	setup	in	a	file	called	bashrc	at	it	can
be	accessed	the	following	way

Now	add	the	following	to	your	~/.bashrc	file

In	Emacs	to	save	the	file	Ctrl-X-S	and	Ctrl-X-C	to	exit.	After	editing	you	must	update

				|	+.o..											|

				+----[SHA256]-----+

su	-	hduser

mkdir	-p	~/cloudmesh/bin

cd	~/cloudmesh/bin

wget	-c	--header	"Cookie:	\

oraclelicense=accept-securebackup-cookie"	\

"http://download.oracle.com/otn-pub/java/jdk/8u191-b12/2787e4a523244c269598db4e85c51e0c/jdk-8u191-linux-x64.tar.gz"

	tar	xvzf	jdk-8u191-linux-x64.tar.gz

cd	~/cloudmesh/bin/

wget	http://mirrors.sonic.net/apache/hadoop/common/hadoop-3.1.1/hadoop-3.1.1.tar.gz

tar	-xzvf	hadoop-3.1.1.tar.gz

emacs	~/.bashrc

export	JAVA_HOME=~/cloudmesh/bin/jdk1.8.0_191

export	HADOOP_HOME=~/cloudmesh/bin/hadoop-3.1.1

export	YARN_HOME=$HADOOP_HOME

export	HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

export	PATH=$HADOOP_HOME/bin:$JAVA_HOME/bin:$PATH



the	variables	in	the	system.

If	 you	 have	 installed	 things	 properly	 there	will	 be	 no	 errors.	 It	 will	 show	 the
version	as	follows,

And	verifying	the	hadoop	installation,

If	you	have	successfully	installed	this,	there	must	be	a	message	shown	as	next.

10.2.3	Hadoop	Distributed	File	System	(Hadoop	HDFS)	☁

10.2.3.1	Introduction

The	 Hadoop	 Distributed	 File	 System	 (HDFS)	 is	 a	 distributed	 file	 system
designed	 to	 run	 on	 commodity	 hardware	 (75).	 It	 has	 many	 similarities	 with
existing	distributed	file	systems.	HDFS	is	highly	fault-tolerant	and	is	designed	to
be	 deployed	 on	 low-cost	 hardware.	HDFS	 provides	 high	 throughput	 access	 to
application	data	and	is	suitable	for	applications	that	have	large	data	sets.	HDFS
relaxes	 a	 few	 POSIX	 requirements	 to	 enable	 streaming	 access	 to	 file	 system
data.	The	project	URL	is	https://hadoop.apache.org/hdfs/.

10.2.3.2	Features

source	~/.bashrc

java	-version

java	version	"1.8.0_191"

Java(TM)	SE	Runtime	Environment	(build	1.8.0_191-b12)

Java	HotSpot(TM)	64-Bit	Server	VM	(build	25.191-b12,	mixed	mode)

hadoop

				Usage:	hadoop	[--config	confdir]	COMMAND

											where	COMMAND	is	one	of:

						fs																			run	a	generic	filesystem	user	client

						version														print	the	version

						jar	<jar>												run	a	jar	file

						checknative	[-a|-h]		check	native	hadoop	and	compression	libraries	availability

						distcp	<srcurl>	<desturl>	copy	file	or	directories	recursively

						archive	-archiveName	NAME	-p	<parent	path>	<src>*	<dest>	create	a	hadoop	archive

						classpath												prints	the	class	path	needed	to	get	the

						credential											interact	with	credential	providers

																											Hadoop	jar	and	the	required	libraries

						daemonlog												get/set	the	log	level	for	each	daemon

						trace																view	and	modify	Hadoop	tracing	settings

					or

						CLASSNAME												run	the	class	named	CLASSNAME

				Most	commands	print	help	when	invoked	w/o	parameters.

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/hadoop-hdfs.md


Detect	 Hardware	 Failure	 Hardware	 failure	 is	 the	 norm	 rather	 than	 the
exception.	 An	 HDFS	 instance	 may	 consist	 of	 hundreds	 or	 thousands	 of
server	machines,	 each	 storing	 part	 of	 the	 file	 system’s	 data.	Detection	 of
faults	and	quick,	automatic	recovery	from	them	is	a	core	architectural	goal
of	HDFS.

Support	 Streaming	 Data	 Access	 Applications	 that	 run	 on	 HDFS	 need
streaming	 access	 to	 their	 data	 sets.	 They	 are	 not	 general	 purpose
applications	 that	 typically	 run	 on	 general	 purpose	 file	 systems.	 HDFS	 is
designed	more	for	batch	processing	rather	than	interactive	use	by	users.

Support	 Large	Data	 Sets	Applications	 that	 run	 on	HDFS	 have	 large	 data
sets.	A	typical	file	in	HDFS	is	gigabytes	to	terabytes	in	size.	Thus,	HDFS	is
tuned	 to	 support	 large	 files.	 It	 should	 provide	 high	 aggregate	 data
bandwidth	 and	 scale	 to	 hundreds	 of	 nodes	 in	 a	 single	 cluster.	 It	 should
support	tens	of	millions	of	files	in	a	single	instance.

10.2.3.3	HDFS	Components

Figure	92:	Hadoop	HDFS	[75]



10.2.3.3.1	NameNode	and	DataNodes

HDFS	 has	 a	 master/slave	 architecture.	 An	 HDFS	 cluster	 consists	 of	 a	 single
NameNode,	 a	 master	 server	 that	 manages	 the	 file	 system	 namespace	 and
regulates	 access	 to	 files	 by	 clients	 (see	 Figure	 92).	 In	 addition,	 there	 are	 a
number	of	DataNodes,	usually	one	per	node	in	the	cluster,	which	manage	storage
attached	to	the	nodes	that	they	run	on.	HDFS	exposes	a	file	system	namespace
and	allows	user	data	to	be	stored	in	files.

Internally,	a	file	is	split	into	one	or	more	blocks	and	these	blocks	are	stored	in	a
set	 of	 DataNodes.	 The	NameNode	 executes	 file	 system	 namespace	 operations
like	opening,	closing,	and	renaming	files	and	directories.	It	also	determines	the
mapping	 of	 blocks	 to	 DataNodes.	 The	 DataNodes	 are	 responsible	 for	 serving
read	 and	 write	 requests	 from	 the	 file	 system’s	 clients.	 The	 DataNodes	 also
perform	 block	 creation,	 deletion,	 and	 replication	 upon	 instruction	 from	 the
NameNode.

The	 NameNode	 and	 DataNode	 are	 pieces	 of	 software	 designed	 to	 run	 on
commodity	machines.	A	 typical	deployment	has	a	dedicated	machine	 that	 runs
only	the	NameNode	software.	Each	of	the	other	machines	in	the	cluster	runs	one
instance	of	 the	DataNode	software.	The	architecture	does	not	preclude	running
multiple	DataNodes	on	the	same	machine	but	in	a	real	deployment	that	is	rarely
the	case.

The	 existence	 of	 a	 single	 NameNode	 in	 a	 cluster	 greatly	 simplifies	 the
architecture	of	the	system.	The	NameNode	is	the	arbitrator	and	repository	for	all
HDFS	metadata.

10.2.3.4	Usage

10.2.3.4.1	Java	Client	API

HDFS	 can	 be	 accessed	 from	 applications	 in	 many	 different	 ways.	 Natively,
HDFS	provides	 a	 Java	API	 for	 applications	 to	use.	A	C	 language	wrapper	 for
this	Java	API	is	also	available.	In	addition,	an	HTTP	browser	can	also	be	used	to
browse	 the	 files	 of	 an	 HDFS	 instance.	Work	 is	 in	 progress	 to	 expose	 HDFS
through	the	WebDAV	protocol.



Here	is	an	example	of	Java	code	to	read	and	write	files	on	HDFS:

10.2.3.4.2	FS	Shell

HDFS	allows	user	 data	 to	 be	 organized	 in	 the	 form	of	 files	 and	directories.	 It
provides	a	commandline	interface	called	FS	shell	that	lets	a	user	interact	with	the
data	 in	 HDFS.	 The	 syntax	 of	 this	 command	 set	 is	 similar	 to	 other	 shells
(e.g.	 bash,	 csh)	 that	 users	 are	 already	 familiar	 with.	 Here	 are	 some	 sample
action/command	pairs:

10.2.3.5	References

HDFS	Java	API:	https://hadoop.apache.org/core/docs/current/api/
HDFS	source	code:	https://hadoop.apache.org/hdfs/version_control.html

10.2.3.6	Exercises

//	======	Init	HDFS	File	System	Object

Configuration	conf	=	new	Configuration();

//	Set	FileSystem	URI

conf.set("fs.defaultFS",	hdfsuri);

//	Because	of	Maven

conf.set("fs.hdfs.impl",	org.apache.hadoop.hdfs.DistributedFileSystem.class.getName());

conf.set("fs.file.impl",	org.apache.hadoop.fs.LocalFileSystem.class.getName());

//	Set	HADOOP	user

System.setProperty("HADOOP_USER_NAME",	"hdfs");

System.setProperty("hadoop.home.dir",	"/");

//Get	the	filesystem	-	HDFS

FileSystem	fs	=	FileSystem.get(URI.create(hdfsuri),	conf);

//====	Read	file

logger.info("Read	file	from	hdfs");

//Create	a	path

Path	hdfsreadpath	=	new	Path(newFolderPath	+	"/"	+	fileName);

//Init	input	stream

FSDataInputStream	inputStream	=	fs.open(hdfsreadpath);

//Classical	input	stream	usage

String	out=	IOUtils.toString(inputStream,	"UTF-8");

logger.info(out);

inputStream.close();

fs.close();

//====	Write	file

logger.info("Begin	Write	file	into	hdfs");

//Create	a	path

Path	hdfswritepath	=	new	Path(newFolderPath	+	"/"	+	fileName);

//Init	output	stream

FSDataOutputStream	outputStream=fs.create(hdfswritepath);

//Cassical	output	stream	usage

outputStream.writeBytes(fileContent);

outputStream.close();

logger.info("End	Write	file	into	hdfs");

bin/hadoop	dfs	-mkdir	/foodir

bin/hadoop	dfs	-rmr	/foodir

bin/hadoop	dfs	-cat	/foodir/myfile.txt



Hadoop	Installation	on	your	own	Laptop/Desktop
Hadoop	MapReduce	programming	in	Python
Hadoop	Installation	on	a	cluster	(at	least	two	nodes	in	the	cluster)
Run	MapReduce	in	a	cluster

10.2.4	Apache	HBase	☁

10.2.4.1	Introduction

Apache	HBase	is	the	Hadoop	database,	a	distributed,	scalable,	big	data	store.

Use	Apache	HBase	when	you	need	random,	realtime	read/write	access	 to	your
Big	Data.	This	project’s	goal	is	the	hosting	of	very	large	tables	–	billions	of	rows
X	millions	of	columns	–	atop	clusters	of	commodity	hardware.	Apache	HBase	is
an	 open-source,	 distributed,	 versioned,	 non-relational	 database	 modeled	 after
Google’s	Bigtable:	A	Distributed	Storage	System	for	Structured	Data	by	Chang
et	 al.	 Just	 as	 Bigtable	 leverages	 the	 distributed	 data	 storage	 provided	 by	 the
Google	File	System,	Apache	HBase	provides	Bigtable-like	capabilities	on	top	of
Hadoop	and	HDFS.

10.2.4.2	Features

Linear	and	modular	scalability.
Strictly	consistent	reads	and	writes.
Automatic	and	configurable	sharding	of	tables
Automatic	failover	support	between	RegionServers.
Convenient	base	classes	for	backing	Hadoop	MapReduce	jobs	with	Apache
HBase	tables.
Easy	to	use	Java	API	for	client	access.
Block	cache	and	Bloom	Filters	for	real-time	queries.
Query	predicate	push	down	via	server	side	Filters
Thrift	gateway	and	a	REST-ful	Web	service	that	supports	XML,	Protobuf,
and	binary	data	encoding	options
Extensible	jruby-based	(JIRB)	shell
Support	for	exporting	metrics	via	the	Hadoop	metrics	subsystem	to	files	or
Ganglia;	or	via	JMX

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/hadoop-hbase.md


10.2.4.3	Configuration

10.2.4.4	Usage

10.2.4.4.1	Connect	to	HBase.

Connect	 to	 your	 running	 instance	 of	 HBase	 using	 the	 hbase	 shell	 command,
located	in	the	bin/	directory	of	your	HBase	install.	In	this	example,	some	usage
and	 version	 information	 that	 is	 printed	 when	 you	 start	 HBase	 Shell	 has	 been
omitted.	The	HBase	Shell	prompt	ends	with	a	>	character.

10.2.4.4.2	Create	a	table

10.2.4.4.3	Describe	a	table

<configuration>

		<property>

				<name>hbase.rootdir</name>

				<value>file:///home/testuser/hbase</value>

		</property>

		<property>

				<name>hbase.zookeeper.property.dataDir</name>

				<value>/home/testuser/zookeeper</value>

		</property>

		<property>

				<name>hbase.unsafe.stream.capability.enforce</name>

				<value>false</value>

				<description>

						Controls	whether	HBase	will	check	for	stream	capabilities	(hflush/hsync).

						Disable	this	if	you	intend	to	run	on	LocalFileSystem,	denoted	by	a	rootdir

						with	the	'file://'	scheme,	but	be	mindful	of	the	NOTE	below.

						WARNING:	Setting	this	to	false	blinds	you	to	potential	data	loss	and

						inconsistent	system	state	in	the	event	of	process	and/or	node	failures.	If

						HBase	is	complaining	of	an	inability	to	use	hsync	or	hflush	it's	most

						likely	not	a	false	positive.

				</description>

		</property>

</configuration>

$	./bin/hbase	shell

hbase(main):001:0>

hbase(main):001:0>	create	'test',	'cf'

0	row(s)	in	0.4170	seconds

=>	Hbase::Table	-	test

describe	'test'

Table	test	is	ENABLED

test

COLUMN	FAMILIES	DESCRIPTION

{NAME	=>	'cf',	VERSIONS	=>	'1',	EVICT_BLOCKS_ON_CLOSE	=>	'false',	NEW_VERSION_BEHAVIOR	=>	'false',	KEEP_DELETED_CELLS	=>	

'false',	DATA_BLOCK_ENCODING	=>	'NONE',	TTL	=>	'FOREVER',	MIN_VERSIONS	=>	'0',	REPLICATION_SCOPE	=>	'0',	BLOOMFILTER	=>	'ROW'

alse',	IN_MEMORY	=>	'false',	CACHE_BLOOMS_ON_WRITE	=>	'false',	PREFETCH_BLOCKS_ON_OPEN	=>	'false',	COMPRESSION	=>	'NONE',	BLOCKCACHE	=

	=>	'65536'}

1	row(s)

Took	0.9998	seconds



10.2.4.4.4	HBase	MapReduce	job

This	example	will	simply	copy	data	from	one	table	to	another.

10.2.4.5	References

HBase	API:	https://hbase.apache.org/book.html

10.2.5	Hadoop	Virtual	Cluster	Installation	Using	Cloudmesh	
☁

No

	This	version	is	dependent	on	an	older	version	of	cloudmesh.

	:TODO:	we	need	to	add	the	instalation	instructions	based	on	this	version

10.2.5.1	Cloudmesh	Cluster	Installation

Before	you	start	this	lesson,	you	MUST	finish	cm_install.

This	 lesson	 is	 created	 and	 test	 under	 the	 newest	 version	 of	Cloudmesh	 client.

Configuration	config	=	HBaseConfiguration.create();

Job	job	=	new	Job(config,"ExampleReadWrite");

job.setJarByClass(MyReadWriteJob.class);				//	class	that	contains	mapper

Scan	scan	=	new	Scan();

scan.setCaching(500);								//	1	is	the	default	in	Scan,	which	will	be	bad	for	MapReduce	jobs

scan.setCacheBlocks(false);		//	don't	set	to	true	for	MR	jobs

//	set	other	scan	attrs

TableMapReduceUtil.initTableMapperJob(

		sourceTable,						//	input	table

		scan,													//	Scan	instance	to	control	CF	and	attribute	selection

		MyMapper.class,			//	mapper	class

		null,													//	mapper	output	key

		null,													//	mapper	output	value

		job);

TableMapReduceUtil.initTableReducerJob(

		targetTable,						//	output	table

		null,													//	reducer	class

		job);

job.setNumReduceTasks(0);

boolean	b	=	job.waitForCompletion(true);

if	(!b)	{

				throw	new	IOException("error	with	job!");

}

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/cm-hadoop.md


Update	yours	if	not.

To	manage	virtual	cluster	on	cloud,	 the	command	is	 cm	cluster.	Try	 cm	cluster	help	 to
see	what	other	commands	are	and	what	options	they	supported.

10.2.5.1.1	Create	Cluster

To	 create	 a	 virtual	 cluster	 on	 cloud,	 we	 must	 define	 an	 active	 cluster
specification	with	cm	cluster	define	command.	For	example,	we	define	a	cluster	with	3
nodes:

All	options	will	use	the	default	setting	if	not	specified	during	cluster

define.	Try	 cm	cluster	help	 command	 to	 see	what	 options	 cm	cluster	define	 has	 and
means,	here	is	part	of	the	usage	information:	:

Floating	IP	is	a	valuable	and	limited	resource	on	cloud.

cm	cluster	define	will	 assign	 floating	 IP	 to	 every	node	within	 the	 cluster	 by	default.
Cluster	creation	will	fail	if	the	floating	IPs	run	out	on	cloud.	When	you	run	into
error	like	this,	use	option	-I	or	--no-floating-ip	to	avoid	assigning	floating	IPs	during
cluster	creation:

Then	manually	assign	floating	IP	to	one	of	the	nodes.	Use	this	node
as	a	logging	node	or	head	node	to	log	in	to	all	the	other	nodes.

$	cm	cluster	define	--count	3

$	cm	cluster	help

usage:	cluster	create	[-n	NAME]	[-c	COUNT]	[-C

CLOUD]	[-u	NAME]	[-i	IMAGE]	[-f	FLAVOR]	[-k	KEY]	[-s	NAME]

[-AI]

Options:

-A	--no-activate	Do	not	activate	this	cluster

-I	--no-floating-ip	Do	not	assign	floating	IPs

-n	NAME	--name=NAME	Name	of	the	cluster

-c	COUNT	--count=COUNT	Number	of	nodes	in	the	cluster

-C	NAME	--cloud=NAME	Name	of	the	cloud

-u	NAME	--username=NAME	Name	of	the	image	login	user

-i	NAME	--image=NAME	Name	of	the	image

-f	NAME	--flavor=NAME	Name	of	the	flavor

-k	NAME	--key=NAME	Name	of	the	key

-s	NAME	--secgroup=NAME	NAME	of	the	security	group

-o	PATH	--path=PATH	Output	to	this	path	...

$	cm	cluster	define	--count	3	--no-floating-ip



We	can	have	multiple	specifications	defined	at	the	same	time.	Every	time	a	new
cluster	 specification	 is	 defined,	 the	 counter	 of	 the	 default	 cluster	 name	 will
increment.	Hence,	the	default	cluster	name	will	be	cluster-001,	cluster-002,	cluster-003	and
so	on.	Use	cm	cluster	avail	to	check	all	the	available	cluster	specifications:

With	cm	cluster	use	[NAME],	we	are	able	to	switch	between	different	specifications	with
given	cluster	name:

This	will	activate	specification	cluster-001	which	assigns	floating	IP	during	creation
rather	than	the	latest	one	cluster-002.

With	our	cluster	specification	ready,	we	create	the	cluster	with	command	cm	cluster	
allocate.	 This	 will	 create	 a	 virtual	 cluster	 on	 the	 cloud	 with	 the	 activated
specification:

Each	specification	can	have	one	active	cluster,	which	means	cm	cluster			allocate	 does
nothing	if	there	is	a	successfully	active	cluster.

10.2.5.1.2	Check	Created	Cluster

$	cm	cluster	avail

		cluster-001

				count																									:	3

				image																									:	CC-Ubuntu14.04

				key																											:	xl41

				flavor																								:	m1.small

				secgroup																						:	default

				assignFloatingIP														:	True

				cloud																									:	chameleon

>	cluster-002

				count																									:	3

				image																									:	CC-Ubuntu14.04

				key																											:	xl41

				flavor																								:	m1.small

				secgroup																						:	default

				assignFloatingIP														:	False

				cloud																									:	chameleon

$	cm	cluster	use	cluster-001

$	cm	cluster	avail

>	cluster-001

				count																									:	3

				image																									:	CC-Ubuntu14.04

				key																											:	xl41

				flavor																								:	m1.small

				secgroup																						:	default

				assignFloatingIP														:	True

				cloud																									:	chameleon

		cluster-002

				count																									:	3

				image																									:	CC-Ubuntu14.04

				key																											:	xl41

				flavor																								:	m1.small

				secgroup																						:	default

				assignFloatingIP														:	False

				cloud																									:	chameleon

$	cm	cluster	allocate



With	command	cm	cluster	list,	we	can	see	the	cluster	with	the	default	name	cluster-001
we	just	created:

Using	cm	cluster	nodes	[NAME],	we	can	also	see	the	nodes	of	the	cluster	along	with	their
assigned	floating	IPs	of	the	cluster:

If	 option	 --no-floating-ip	 is	 included	 during	 definition,	 you	will	 see	 nodes	without
floating	IP:

To	log	in	one	of	them,	use	command	 cm	vm	assign	IP	[NAME]	 to	 assign	 a	 floating	 IP	 to
one	of	them:

Then	you	can	log	in	this	node	as	a	head	node	of	your	cluster	by	cm	vm	ssh	[NAME]:

10.2.5.1.3	Delete	Cluster

Using	cm	cluster	delete	[NAME],	we	are	able	to	delete	the	cluster	we	created:

Option	--all	can	delete	all	the	clusters	created,	so	be	careful:

:

$	cm	cluster	delete	–all

Then	we	need	to	undefine	our	cluster	specification	with	command	cm	cluster	undefine	

$	cm	cluster	list

cluster-001

$	cm	cluster	nodes	cluster-001

xl41-001	129.114.33.147

xl41-002	129.114.33.148

xl41-003	129.114.33.149

$	cm	cluster	nodes	cluster-002

xl41-004	None

xl41-005	None

xl41-006	None

$	cm	vm	ip	assign	xl41-006

$	cm	cluster	nodes	cluster-002

xl41-004	None

xl41-005	None

xl41-006	129.114.33.150

$	cm	vm	ssh	xl41-006

cc@xl41-006	$

$	cm	cluster	delete	cluster-001



[NAME]:

Option	--all	can	delete	all	the	cluster	specifications:

10.2.5.2	Hadoop	Cluster	Installation

This	section	is	built	upon	the	previous	one.	Please	finish	the	previous	one	before
start	this	one.

10.2.5.2.1	Create	Hadoop	Cluster

To	create	 a	Hadoop	cluster,	we	need	 to	 first	 define	 a	 cluster	with	 cm	cluster	define
command:

To	deploy	a	Hadoop	cluster,	we	only	support	image	CC-Ubuntu14.04

on	Chameleon.	DO	NOT	use	CC-Ubuntu16.04	or	any	other	images.	You	will	need
to	specify	it	if	it’s	not	the	default	image:

$	cm	cluster	define	–count	3	–image	CC-Ubuntu14.04

Then	we	define	the	Hadoop	cluster	upon	the	cluster	we	defined	using	cm	hadoop	define
command:

Same	 as	 cm	cluster	define,	 you	 can	 define	 multiple	 specifications	 for	 the	 Hadoop
cluster	and	check	them	with	cm	hadoop	avail:

We	can	use	cm	hadoop	use	[NAME]	to	activate	the	specification	with	the	given	name:

$	cm	cluster	undefine	cluster-001

$	cm	cluster	undefine	--all

$	cm	cluster	define	--count	3

$	cm	hadoop	define

$	cm	hadoop	avail

>	stack-001

		local_path																				:	/Users/tony/.cloudmesh/stacks/stack-001

		addons																								:	[]

$	cm	hadoop	use	stack-001



May	not	be	available	for	current	version	of	Cloudmesh	Client.

Before	deploy,	we	need	to	use	cm	hadoop	sync	to	checkout	/	synchronize	the	Big	Data
Stack	from	Github.com:

To	avoid	errors,	make	sure	you	are	able	to	connect	to	Github.com	using	SSH:

https://help.github.com/articles/connecting-to-github-with-ssh/.

Finally,	we	are	ready	to	deploy	our	Hadoop	cluster:

This	process	could	take	up	to	10	minutes	based	on	your	network.

To	 check	Hadoop	 is	 working	 or	 not.	 Use	 cm	vm	ssh	 to	 log	 into	 the	 Namenode	 of	 the
Hadoop	cluster.	It’s	usually	the	first	node	of	the	cluster:

Switch	to	user	hadoop	and	check	HDFS	is	set	up	or	not:

Now	the	Hadoop	cluster	is	properly	installed	and	configured.

10.2.5.2.2	Delete	Hadoop	Cluster

To	 delete	 the	 Hadoop	 cluster	 we	 created,	 use	 command	 cm	cluster	delete	[NAME]	 to
delete	the	cluster	with	given	name:

Then	undefine	the	Hadoop	specification	and	the	cluster	specification:

May	not	be	available	for	current	version	of	Cloudmesh	Client.

$	cm	hadoop	sync

$	cm	hadoop	deploy

$	cm	vm	ssh	node-001

cc@hostname$

cc@hostname$	sudo	su	-	hadoop

hadoop@hostname$	hdfs	dfs	-ls	/

Found	1	items

drwxrwx---			-	hadoop	hadoop,hadoopadmin										0	2017-02-15	17:26	/tmp

$	cm	cluster	delete	cluster-001

$	cm	hadoop	undefine	stack-001

$	cm	cluster	undefine	cluster-001

https://help.github.com/articles/connecting-to-github-with-ssh/


10.2.5.3	Advanced	Topics	with	Hadoop

10.2.5.3.1	Hadoop	Virtual	Cluster	with	Spark	and/or	Pig

To	 install	Spark	and/or	Pig	with	Hadoop	cluster,	we	 first	use	command	 cm	hadoop	
define	but	with	ADDON	to	define	the	cluster	specification.

For	example,	we	create	a	3-node	Spark	cluster	with	Pig.	To	do	that,	all	we	need
is	to	specify	spark	as	an	ADDON	during	Hadoop	definition:

Using	cm	hadoop	addons,	we	are	able	to	check	the	current	supported	addon:

With	cm	hadoop	avail,	we	can	see	the	detail	of	the	specification	for	the	Hadoop	cluster:

Then	we	use	cm	hadoop	sync	and	cm	hadoop	deploy	to	deploy	our	Spark	cluster:

This	process	will	take	15	minutes	or	longer.

Before	we	proceed	to	the	next	step,	there	is	one	more	thing	we	need	to,	which	is
to	make	sure	we	are	able	to	ssh	from	every	node	to	others	without	password.	To
achieve	that,	we	need	to	execute	cm	cluster	cross_ssh:

10.2.5.3.2	Word	Count	Example	on	Spark

Now	with	the	cluster	ready,	let’s	run	a	simple	Spark	job,	Word	Count,	on	one	of
William	 Shakespeare’s	 work.	 Use	 cm	vm	ssh	 to	 log	 into	 the	 Namenode	 of	 the	 Spark
cluster.	It	should	be	the	first	node	of	the	cluster:

$	cm	cluster	define	--count	3

$	cm	hadoop	define	spark	pig

$	cm	hadoop	addons

$	cm	hadoop	avail

>	stack-001

		local_path																				:	/Users/tony/.cloudmesh/stacks/stack-001

		addons																								:	[u'spark',	u'pig']

$	cm	hadoop	sync

$	cm	hadoop	deploy

$	cm	cluster	cross_ssh

$	cm	vm	ssh	node-001

cc@hostname$



Switch	to	user	hadoop	and	check	HDFS	is	set	up	or	not:

Download	the	input	file	from	the	Internet:

You	can	also	use	any	other	text	file	you	preferred.	Create	a	new	directory	wordcount
within	HDFS	to	store	the	input	and	output:

Store	the	input	text	file	into	the	directory:

Save	the	following	code	as	wordcount.py	on	the	local	file	system	on	Namenode:

Next	submit	the	job	to	Yarn	and	run	in	distribute:

Finally,	take	a	look	at	the	result	in	the	output	directory:

cc@hostname$	sudo	su	-	hadoop

hadoop@hostname$

wget	--no-check-certificate	-O	inputfile.txt	\

https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt

$	hdfs	dfs	-mkdir	/wordcount

$	hdfs	dfs	-put	inputfile.txt	/wordcount/inputfile.txt

import	sys

from	pyspark	import	SparkContext,	SparkConf

if	__name__	==	"__main__":

		#	tak	two	arguments,	input	and	output

		if	len(sys.argv)	!=	3:

				print("Usage:	wordcount	<input>	<output>")

				exit(-1)

		#	create	Spark	context	with	Spark	configuration

		conf	=	SparkConf().setAppName("Spark	Count")

		sc	=	SparkContext(conf=conf)

		#	read	in	text	file

		text_file	=	sc.textFile(sys.argv[1])

		#	split	each	line	into	words

		#	count	the	occurrence	of	each	word

		#	sort	the	output	based	on	word

		counts	=	text_file.flatMap(lambda	line:	line.split("	"))	\

											.map(lambda	word:	(word,	1))	\

											.reduceByKey(lambda	a,	b:	a	+	b)	\

											.sortByKey()

		#	save	the	result	in	the	output	text	file

		counts.saveAsTextFile(sys.argv[2])

$	spark-submit	--master	yarn	--deploy-mode	client	--executor-memory	1g	\

--name	wordcount	--conf	"spark.app.id=wordcount"	wordcount.py	\

hdfs://192.168.0.236:8020/wordcount/inputfile.txt	\

hdfs://192.168.0.236:8020/wordcount/output



10.3	SPARK

10.3.1	Spark	Lectures	☁

This	section	covers	an	introduction	to	Spark	that	is	split	up	into	eight	parts.	We
discuss	Spark	background,	RDD	operations,	Shark,	Spark	ML,	Spark	vs	Other
Frameworks.

10.3.1.1	Motivation	for	Spark

In	this	section	we	discuss	about	the	background	of	Spark	and	core	components
of	Spark.

	Spark	15:57	Spark	A

10.3.1.2	Spark	RDD	Operations

In	this	section	we	discuss	about	the	background	of	RDD	operations	along	with
other	transformation	functionality	in	Spark.

	Spark	12:17	Spark	B

10.3.1.3	Spark	DAG

In	this	section	we	discuss	about	the	background	of	DAG	(direct	acyclic	graphs)
operations	along	with	other	components	like	Shark	in	the	earlier	stages	of	Spark.

$	hdfs	dfs	-ls	/wordcount/outputfile/

Found	3	items

-rw-r--r--			1	hadoop	hadoop,hadoopadmin										0	2017-03-07	21:28	/wordcount/output/_SUCCESS

-rw-r--r--			1	hadoop	hadoop,hadoopadmin					483182	2017-03-07	21:28	/wordcount/output/part-00000

-rw-r--r--			1	hadoop	hadoop,hadoopadmin					639649	2017-03-07	21:28	/wordcount/output/part-00001

$	hdfs	dfs	-cat	/wordcount/output/part-00000	|	less

(u'',	517065)

(u'"',	241)

(u'"\'Tis',	1)

(u'"A',	4)

(u'"AS-IS".',	1)

(u'"Air,"',	1)

(u'"Alas,',	1)

(u'"Amen"',	2)

(u'"Amen"?',	1)

(u'"Amen,"',	1)

...

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/spark-lectures.md
https://youtu.be/zfrzMuRwltU
https://youtu.be/q6JES9P6IV0


	Spark	10:37	Spark	C

10.3.1.4	Spark	vs.	other	Frameworks

In	 this	 section	 we	 discuss	 about	 the	 real	 world	 applications	 that	 can	 be	 done
using	 Spark.	 And	 also	 we	 discuss	 some	 comparision	 results	 obtained	 from
experiments	done	in	Spark	along	with	Frameworks	like	Harp,	Harp	DAAL,	etc.
We	discuss	the	benchmarks	and	performance	obtained	from	such	experiments.

	Spark	26:18	Spark	D

10.3.2	Installation	of	Spark	☁

In	this	section	we	will	discuss	how	to	install	Spark	2.3.2	in	Ubuntu	18.04.

10.3.2.1	Prerequisites

We	assume	that	you	have	ssh,	and	rsync	installed	and	use	emacs	as	editor.

10.3.2.2	Installation	of	Java

First	download	Java	8.

Then	add	the	environmental	variables	to	the	bashrc	file.

Source	the	bashrc	file	after	adding	the	environmental	variables.

sudo	apt-get	install	ssh

sudo	apt-get	install	rsync

sudo	apt-get	install	emacs

mkdir	-p	~/cloudmesh/bin

cd	~/cloudmesh/bin

wget	-c	--header	"Cookie:	oraclelicense=accept-securebackup-cookie"	"http://download.oracle.com/otn-pub/java/jdk/8u161-b12/2f38c3b165be4555a1fa6e98c45e0808/jdk-8u161-linux-x64.tar.gz"

tar	xvzf	jdk-8u161-linux-x64.tar.gz

emacs	~/.bashrc

export	JAVA_HOME=~/cloudmesh/bin/jdk1.8.0_161

export	PATH=$JAVA_HOME/bin:$PATH

		source	~/.bashrc

https://youtu.be/DX-oaUzjZAM
https://youtu.be/rQb5zspUmow
https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/spark-installation.md


10.3.2.3	Install	Spark	with	Hadoop

Here	we	use	Spark	packaged	with	Hadoop.	In	this	package	Spark	uses	Hadoop
2.7.0	 in	 the	packaged	version.	Note	 that	 in	Section	Hadoop	Installation	we	use
for	the	vanilla	Hadoop	installation	Hadoop	3.0.1.

Create	the	base	directories	and	go	to	the	directory.

Then	download	Spark	2.3.2	as	follows.

Now	extract	the	file,

10.3.2.4	Spark	Environment	Variables

Open	up	bashrc	file	and	add	environmental	variables	as	follows.

Go	to	the	last	line	and	add	the	following	content.

Source	the	bashrc	file.

10.3.2.5	Test	Spark	Installation

Open	up	a	new	terminal	and	then	run	the	following	command.

If	it	has	been	configured	properly,	it	will	display	the	following	content.

mkdir	-p	~/cloudmesh/bin

cd	~/cloudmesh/bin

wget	https://archive.apache.org/dist/spark/spark-2.3.2/spark-2.3.2-bin-hadoop2.7.tgz

tar	xzf	spark-2.3.2-bin-hadoop2.7.tgz

mv	spark-2.3.2-bin-hadoop2.7	spark-2.3.2

emacs	~/.bashrc

export	SPARK_HOME=~/cloudmesh/bin/spark-2.3.2

export	PATH=$SPARK_HOME/bin:$PATH

source	~/.bashrc

spark-shell

				Spark	context	Web	UI	available	at	http://192.168.1.66:4041

				Spark	context	available	as	'sc'	(master	=	local[*],	app	id	=	local-1521674331361).

				Spark	session	available	as	'spark'.



Please	check	 the	console	LOGS	and	 find	 the	port	number	on	which	 the	Spark
Web	UI	is	hosted.	It	will	show	something	like:

Spark	context	Web	UI	available	at:	<some	url>

Then	take	a	look	the	following	address	in	the	browser.

If	you	see	 the	Spark	Dashboard,	 then	you	can	realize	you	have	 installed	Spark
successfully.

10.3.2.6	Install	Spark	With	Custom	Hadoop

Installing	Spark	with	 pre-existing	Hadoop	 version	 is	 favorable,	 if	 you	want	 to
use	 the	 latest	 features	 from	 the	 latest	 Hadoop	 version	 or	 when	 you	 need	 a
specific	Hadoop	version	depending	on	the	external	dependencies	to	your	project.

First	we	need	to	download	the	Spark	packaged	without	Hadoop.

Then	download	Spark	2.3.2	as	follows.

Now	extract	the	file,

Then	add	the	environmental	variables,

If	you	have	already	installed	Spark	with	Hadoop	by	following	section	1.3	please
update	the	current	SPARK	HOME	variable	with	the	new	path.

				Welcome	to

										____														__

									/	__/__		___	_____/	/__

								_\	\/	_	\/	_	`/	__/		'_/

							/___/	.__/\_,_/_/	/_/\_\			version	2.3.2

										/_/

				Using	Scala	version	2.11.8	(Java	HotSpot(TM)	64-Bit	Server	VM,	Java	1.8.0_151)

				Type	in	expressions	to	have	them	evaluated.

				Type	:help	for	more	information.

http://localhost:4041

		mkdir	-p	~/cloudmesh/bin

		cd	~/cloudmesh/bin

wget	https://archive.apache.org/dist/spark/spark-2.3.2/spark-2.3.2-bin-without-hadoop.tgz

		tar	xzf	spark-2.3.2-bin-without-hadoop.tgz

		emacs	~/.bashrc



Go	to	the	last	line	and	add	the	following	content.

Source	the	bashrc	file.

10.3.2.7	Configuring	Hadoop

Now	we	must	add	the	current	Hadoop	version	that	we	are	using	for	Spark.	Open
up	a	new	terminal	and	then	run	the	following.

Now	we	need	to	add	a	new	line	to	show	the	current	path	to	hadoop	installation.
Add	the	following	variable	in	to	the	spark-env.sh	file.

Spark	Web	UI	-	Hadoop	Path

10.3.2.8	Test	Spark	Installation

Open	up	a	new	terminal	and	then	run	the	following	command.

If	it	has	been	configured	properly,	it	will	display	the	following	content.

export	SPARK_HOME=~/cloudmesh/bin/spark-2.3.2-bin-without-hadoop

export	PATH=$SPARK_HOME/bin:$PATH

source	~/.bashrc

cd	$SPARK_HOME

		cd	conf

		cp	spark-env.sh.template	spark-evn.sh

		emacs	spark-env.sh

		export	SPARK_DIST_CLASSPATH=$($HADOOP_HOME/bin/hadoop	classpath)

spark-shell

				To	adjust	logging	level	use	sc.setLogLevel(newLevel).	For	SparkR,	use	setLogLevel(newLevel).

				Spark	context	Web	UI	available	at	http://149-160-230-133.dhcp-bl.indiana.edu:4040

				Spark	context	available	as	'sc'	(master	=	local[*],	app	id	=	local-1521732740077).

				Spark	session	available	as	'spark'.

				Welcome	to

										____														__

									/	__/__		___	_____/	/__

								_\	\/	_	\/	_	`/	__/		'_/

							/___/	.__/\_,_/_/	/_/\_\			version	2.3.2

										/_/

				Using	Scala	version	2.11.8	(Java	HotSpot(TM)	64-Bit	Server	VM,	Java	1.8.0_151)

				Type	in	expressions	to	have	them	evaluated.



Then	take	a	look	the	following	address	in	the	browser.

Please	check	 the	console	LOGS	and	 find	 the	port	number	on	which	 the	Spark
Web	UI	is	hosted.	It	will	show	something	like:	Spark	context	Web	UI	available
at	the	logs	folder

10.3.3	Spark	Streaming	☁

10.3.3.1	Streaming	Concepts

Spark	 Streaming	 is	 one	 of	 the	 components	 extending	 from	Core	 Spark.	 Spark
streaming	 provides	 a	 scalable	 fault	 tolerant	 system	with	 high	 throughput.	 For
streaming	data	 into	spark,	 there	are	many	 libraries	 like	Kafka,	Flume,	Kinesis,
etc.

10.3.3.2	Simple	Streaming	Example

In	this	section,	we	are	going	to	focus	on	making	a	simple	streaming	application
using	 the	network	 in	your	computer.	Here	we	are	going	 to	expose	a	particular
port	and	from	that	port	we	are	going	to	continuously	stream	data	by	user	entries
and	the	word	count	is	being	calculated	as	the	output.

First,	create	a	Makefile

Then	add	the	following	content	to	Makefile.

Please	 add	 a	 tab	 when	 adding	 the	 corresponding	 command	 for	 a	 given
instruction	in	Makefile.	In	pdf	mode	the	tab	is	not	clearly	shown.

Now	we	need	to	create	file	called	streaming.py

				Type	:help	for	more	information.

http://localhost:4040

		mkdir	-p	~/cloudmesh/spark/examples/streaming

		cd	~/cloudmesh/spark/examples/streaming

		emacs	Makefile

		SPARKHOME	=	${SPARK_HOME}

		run-streaming:

				${SPARKHOME}/bin/spark-submit	streaming.py	localhost	9999

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/spark-streaming.md


Then	add	the	following	content.

To	run	the	code,	we	need	to	open	up	two	terminals.
Terminal	1	:

First	use	netstat	to	open	up	a	port	to	start	communication.

Terminal	2	:

Now	run	the	Spark	programme	in	the	second	terminal.

In	this	terminal	you	can	see	an	script	running	trying	to	read	the	stream	coming
from	the	port	9999.	You	can	enter	texts	in	the	Terminal	1	and	these	texts	will	be
tokenized	 and	 the	 word	 count	 is	 calculated	 and	 the	 result	 is	 shown	 in	 the
Terminal	2.

10.3.3.3	Spark	Streaming	For	Twitter	Data

In	 this	 section	we	are	going	 to	 learn	how	 to	use	Twitter	data	 as	 the	 streaming
data	source	and	use	Spark	Streaming	capabilities	to	process	the	data.	As	the	first
step	you	must	install	the	python	packages	using	pip.

		emacs	streaming.py

				from	pyspark	import	SparkContext

				from	pyspark.streaming	import	StreamingContext

				#	Create	a	local	StreamingContext	with	two	working	thread	and	batch	interval	of	1	second

				sc	=	SparkContext("local[2]",	"NetworkWordCount")

				log4jLogger	=	sc._jvm.org.apache.log4j

				LOGGER	=	log4jLogger.LogManager.getLogger(__name__)

				LOGGER.info("Pyspark	script	logger	initialized")

				ssc	=	StreamingContext(sc,	1)

				#	Create	a	DStream	that	will	connect	to	hostname:port,	like	localhost:9999

				lines	=	ssc.socketTextStream("localhost",	9999)

				#	Split	each	line	into	words

				words	=	lines.flatMap(lambda	line:	line.split("	"))

				#	Count	each	word	in	each	batch

				pairs	=	words.map(lambda	word:	(word,	1))

				wordCounts	=	pairs.reduceByKey(lambda	x,	y:	x	+	y)

				#	Print	the	first	ten	elements	of	each	RDD	generated	in	this	DStream	to	the	console

				wordCounts.pprint()

				ssc.start()													#	Start	the	computation

				ssc.awaitTermination(100)		#	Wait	for	the	computation	to	terminate

		nc	-lk	9999

		make	run-streaming



10.3.3.3.1	Step	1

10.3.3.3.2	Step	2

Then	you	need	to	create	an	account	in	Twitter	Apps.	Go	to	and	sign	in	to	your
twitter	account	or	create	a	new	twitter	account.	Then	you	need	to	create	a	new
application,	let’s	name	this	application	as	Cloudmesh-Spark-Streaming.

First	you	need	to	create	an	app	with	the	app	name	we	suggested	in	this	section.
The	way	to	create	the	app	is	mentioned	in	+Figure	93.

Figure	93:	Create	Twitter	App

Next	we	need	to	to	take	a	look	at	the	dashboard	created	for	the	app.	You	can	see
how	your	dashboard	looks	like	in	+Figure	94.

		sudo	pip	install	tweepy



Figure	94:	Go	To	Twitter	App	Dashboard

Next	the	application	tokens	generated	must	be	reviewed	and	it	can	be	found	in
+Figure	95,	you	need	to	go	to	the	Keys	and	Access	Tokens	tab.



Figure	95:	Create	Your	Twitter	Settings

Now	you	need	 to	generate	 the	 access	 tokens	 for	 the	 first	 time	 if	 you	have	not
generated	 access	 tokens	 and	 this	 can	 be	 done	 by	 clicking	 the	 Create	my	access	token
button.	See	+Figure	96



Figure	96:	Create	Your	Twitter	Access	Tokens

The	access	tokens	and	keys	are	blurred	in	this	section	for	privacy	issues.

10.3.3.3.3	Step	3

Let	us	build	a	simple	Twitter	App	to	see	if	everything	is	okay.

Add	 the	 following	 content	 to	 the	 file	 and	 make	 sure	 you	 update	 the
corresponding	token	keys	with	your	token	values.

		mkdir	-p	~/cloudmesh/spark/streaming

		cd	~/cloudmesh/spark/streaming

		emacs	twitterstreaming.py

				import	tweepy

				CONSUMER_KEY	=	'your_consumer_key'

				CONSUMER_SECRET	=	'your_consumer_secret'

				ACCESS_TOKEN	=	'your_access_token'

				ACCESS_TOKEN_SECRET	=	'your_access_token_secret'



10.3.3.3.4	Step	4

Let	us	start	the	twitter	streaming	exercise.	We	need	to	create	a	Tweet	Listener	in
order	 to	 retrieve	 data	 from	 twitter	 regarding	 a	 topic	 of	 your	 choice.	 In	 this
exercise,	we	have	tried	keywords	like	trump,	indiana,	messi.

Make	your	to	replace	strings	related	to	secret	keys	and	ip	addresses	by	replacing
these	values	depending	on	your	machine	configuration	and	twitter	keys.

Now	add	the	following	content.

				auth	=	tweepy.OAuthHandler(CONSUMER_KEY,	CONSUMER_SECRET)

				auth.set_access_token(ACCESS_TOKEN,	ACCESS_TOKEN_SECRET)

				api	=	tweepy.API(auth)

				status	=	"Testing!"

				api.update_status(status=status)

						python	twitterstreaming.py

		mkdir	-p	~/cloudmesh/spark/streaming

		cd	~/cloudmesh/spark/streaming

		emacs	tweetlistener.py

				import	tweepy

				from	tweepy	import	OAuthHandler

				from	tweepy	import	Stream

				from	tweepy.streaming	import	StreamListener

				import	socket

				import	json

				CONSUMER_KEY	=	'YOUR_CONSUMER_KEY'

				CONSUMER_SECRET	=	'YOUR_CONSUMER_SECRET'

				ACCESS_TOKEN	=	'YOUR_ACCESS_TOKEN'

				ACCESS_SECRET	=	'YOUR_SECRET_ACCESS'

				class	TweetListener(StreamListener):

						def	__init__(self,	csocket):

										self.client_socket	=	csocket

						def	on_data(self,	data):

										try:

														msg	=	json.loads(	data	)

														print(	msg['text'].encode('utf-8')	)

														self.client_socket.send(	msg['text'].encode('utf-8')	)

														return	True

										except	BaseException	as	e:

														print("Error	on_data:	%s"	%	str(e))

										return	True

						def	on_error(self,	status):

										print(status)

										return	True

				def	sendData(c_socket):

						auth	=	OAuthHandler(CONSUMER_KEY,	CONSUMER_SECRET)

						auth.set_access_token(ACCESS_TOKEN,	ACCESS_SECRET)

						twitter_stream	=	Stream(auth,	TweetListener(c_socket))

						twitter_stream.filter(track=['messi'])	#	you	can	change	this	topic

				if	__name__	==	"__main__":



10.3.3.3.5	step	5

Please	replace	the	local	file	paths	mentioned	in	this	code	with	a	file	path	of	your
preference	depending	on	your	workstation.	And	also	IP	address	must	be	replaced
with	your	ip	address.	The	log	folder	path	must	be	pre-created	and	make	sure	to
replace	 the	 registerTempTable	 name	with	 respect	 to	 the	 entity	 that	 you	 are	 referring.
This	will	minimize	the	conflicts	among	different	topics	when	you	need	to	plot	it
in	a	simple	manner.

Add	the	following	content	to	the	IpythonNote	book	as	follows

Open	up	a	terminal,

Then	 in	 the	browser	 the	 jupyter	notebook	 is	being	 loaded.	There	 create	 a	new
IPython	notebook	called	twittersparkstremer.

Then	add	the	following	content.

						s	=	socket.socket()

						host	=	"YOUR_MACHINE_IP"

						port	=	5555

						s.bind((host,	port))

						print("Listening	on	port:	%s"	%	str(port))

						s.listen(5)

						c,	addr	=	s.accept()

						print(	"Received	request	from:	"	+	str(	addr	)	)

						sendData(	c	)

		cd	~/cloudmesh/spark/streaming

		jupyter	notebook

				from	pyspark	import	SparkContext

				from	pyspark.streaming	import	StreamingContext

				from	pyspark.sql	import	SQLContext

				from	pyspark.sql.functions	import	desc

				sc	=	SparkContext('local[2]','twittersparkstreamer')

				ssc	=	StreamingContext(sc,	10	)

				sqlContext	=	SQLContext(sc)

				ssc.checkpoint(	"file:///home/<your-username>/cloudmesh/spark/streaming/logs/messi")

				socket_stream	=	ssc.socketTextStream("YOUR_IP_ADDRESS",	5555)

				lines	=	socket_stream.window(	20	)

				from	collections	import	namedtuple

				fields	=	("tag",	"count"	)

				Tweet	=	namedtuple(	'Tweet',	fields	)

				(	lines.flatMap(	lambda	text:	text.split(	"	"	)	)

						.filter(	lambda	word:	word.lower().startswith("#")	)

						.map(	lambda	word:	(	word.lower(),	1	)	)



10.3.3.3.6	step	6

Open	Terminal	1,	then	do	the	following

It	will	show	that:

Open	Terminal	2

Now	 we	 must	 start	 the	 Spark	 app	 by	 running	 the	 content	 in	 the	 IPython
Notebook	by	pressing	SHIFT-ENTER	in	each	box	to	run	each	command.	Make	sure	not
to	 run	 twice	 the	 starting	 command	 of	 the	 SparkContext	 or	 initialization	 of
SparkContext.

Now	you	will	see	streams	in	the	Terminal	1	and	you	can	see	plots	after	a	while	in	the
IPython	Notebook.

Sample	outputs	can	be	seen	in	+Figure	97,	+Figure	98,	+Figure	99,	+Figure	100.

						.reduceByKey(	lambda	a,	b:	a	+	b	)

						.map(	lambda	rec:	Tweet(	rec[0],	rec[1]	)	)

						.foreachRDD(	lambda	rdd:	rdd.toDF().sort(	desc("count")	)

																		.limit(10).registerTempTable("tweetsmessi")	)	)#change	table	name	depending	on	your	entity

				sqlContext

				<pyspark.sql.context.SQLContext	at	0x7f51922ba350>

				ssc.start()

				import	matplotlib.pyplot	as	plt

				import	seaborn	as	sn

				import	time

				from	IPython	import	display

				count	=	0

				while	count	<	10:

						time.sleep(	20	)

						top_10_tweets	=	sqlContext.sql(	'Select	tag,	count	from	tweetsmessi'	)	#change	table	name	according	to	your	entity

						top_10_df	=	top_10_tweets.toPandas()

						display.clear_output(wait=True)

						#sn.figure(	figsize	=	(	10,	8	)	)

						sn.barplot(	x="count",	y="tag",	data=top_10_df)

						plt.show()

						count	=	count	+	1

				ssc.stop()

		cd	~/cloudmesh/spark/streaming

		python	tweetslistener.py

					Listening	on	port:	5555



Figure	97:	Twitter	Topic	Messi

Figure	98:	Twitter	Topic	Messi



Figure	99:	Twitter	Topic	Messi

Figure	100:	Twitter	Topic	Messi

10.3.4	User	Defined	Functions	in	Spark	☁

Apache	Spark	is	a	fast	and	general	cluster-computing	framework	which	perform
computational	 tasks	up	 to	100x	faster	 than	Hadoop	MapReduce	 in	memory,	or
10x	 faster	 on	 disk	 for	 high	 speed	 large-scale	 streaming,	machine	 learning	 and
SQL	 workloads	 tasks.	 Spark	 offers	 support	 for	 the	 applications	 development
employing	over	80	high-level	operators	using	Java,	Scala,	Python,	and	R.	Spark
powers	the	combined	or	standalone	use	of	a	stack	of	libraries	including	SQL	and
DataFrames,	MLlib	for	machine	learning,	GraphX,	and	Spark	Streaming.	Spark
can	be	utilized	 in	 standalone	 cluster	mode,	 on	EC2,	on	Hadoop	YARN,	or	 on
Apache	 Mesos	 and	 it	 allows	 data	 access	 in	 HDFS,	 Cassandra,	 HBase,	 Hive,
Tachyon,	and	any	Hadoop	data	source.

User-defined	functions	(UDFs)	are	the	functions	created	by	developers	when	the
built-in	functionalities	offered	in	a	programming	language,	are	not	sufficient	to
do	 the	 required	work.	Similarly,	Apache	Spark	UDFs	also	allow	developers	 to
enable	new	functions	in	higher	level	programming	languages	by	extending	built-
in	 functionalities.	 It	 also	 allows	 developers	 to	 experiment	 with	 wide	 range	 of
options	for	integrating	UDFs	with	Spark	SQL,	MLib	and	GraphX	workflows.

This	tutorial	explains	following:

How	to	install	Spark	in	Linux,	Windows	and	MacOS.

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/spark-udf.md


How	to	create	and	utilize	user	defined	functions(UDF)	in	Spark	using	Python.

How	to	run	the	provided	example	using	a	provided	docker	file	and	make	file.

10.3.4.1	Resources

https://spark.apache.org/
http://www.scala-lang.org/
https://docs.databricks.com/spark/latest/spark-sql/udf-in-python.html

10.3.4.2	Instructions	for	Spark	installation

10.3.4.2.1	Linux

First,	JDK	(Recommended	version	8)	should	be	installed	to	a	path	where	there	is
no	space.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Second,	 setup	 environment	 variables	 for	 JDK	 by	 adding	 bin	 folder	 path	 to	 to
user	path	variable.

Next,	download	and	extract	Scala	pre-built	version	from

http://www.scala-lang.org/download/

Then,	setup	environment	variables	for	Scala	by	adding	bin	folder	path	to	the	user
path	variable.

Next,	download	and	extract	Apache	Spark	pre-built	version.

https://spark.apache.org/downloads.html

Then,	setup	environment	variables	for	spark	by	adding	bin	folder	path	to	the	user
path	variable.

This	$	export	PATH	=	$PATH:/usr/local/java8/bin

$	export	PATH	=	$PATH:/usr/local/scala/bin

https://spark.apache.org/
http://www.scala-lang.org/
https://docs.databricks.com/spark/latest/spark-sql/udf-in-python.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.scala-lang.org/download/
https://spark.apache.org/downloads.html


Finally,	for	testing	the	installation,	please	type	the	following	command.

10.3.4.3	Windows

First,	 JDK	 should	 be	 installed	 to	 a	 path	where	 there	 is	 no	 space	 in	 that	 path.
Recommended	JAVA	version	is	8.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Second,	setup	environment	variables	for	jdk	by	adding	bin	folder	path	to	to	user
path	variable.

Next,	download	and	extract	Apache	Spark	pre-built	version.

https://spark.apache.org/downloads.html

Then,	setup	environment	varibale	for	spark	by	adding	bin	folder	path	to	the	user
path	variable.

Next,	 download	 the	 winutils.exe	 binary	 and	 Save	 winutils.exe	 binary	 to	 a
directory	(c:\hadoop\bin).

https://github.com/steveloughran/winutils

Then,	change	the	winutils.exe	permission	using	following	command	using	CMD
with	administrator	permission.

If	your	system	doesnt	have	hive	folder,	make	sure	to	create	C:\tmp\hive	directory.

Next,	 setup	environment	variables	 for	hadoop	by	adding	bin	 folder	path	 to	 the
user	path	variable.

$	export	PATH	=	$PATH:/usr/local/spark/bin

spark-shell

set	JAVA_HOME=c:\java8

set	PATH=%JAVA_HOME%\bin;%PATH%

set	SPARK_HOME=c:\spark

set	PATH=%SPARK_HOME%\bin;%PATH%

$	winutils.exe	chmod	-R	777	C:\tmp\hive

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://spark.apache.org/downloads.html
https://github.com/steveloughran/winutils


Then,	 install	Python	3.6	with	 anaconda	 (This	 is	 a	 bundled	python	 installer	 for
pyspark).

https://anaconda.org/anaconda/python

Finally,	for	testing	the	installation,	please	type	the	following	command.

10.3.4.4	MacOS

First,	 JDK	 should	 be	 installed	 to	 a	 path	where	 there	 is	 no	 space	 in	 that	 path.
Recommanded	JAVA	version	is	8.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Second,	setup	environment	variables	for	jdk	by	addding	bin	folder	path	to	to	user
path	variable.

Next,	Install	Apache	Spark	using	Homebrew	with	following	commands.

Then,	setup	environment	varibale	for	spark	with	following	commands.

Next,	 install	 Python	 3.6	with	 anaconda	 (This	 is	 a	 bundled	 python	 installer	 for
pyspark)

https://anaconda.org/anaconda/python

Finally,	for	testing	the	installation,	please	type	the	following	command.

set	HADOOP_HOME=c:\hadoop\bin

set	PATH=%HADOOP_HOME%\bin;%PATH%

$	pyspark

$	export	JAVA_HOME=$(/usr/libexec/java_home)

$	brew	update

$	brew	install	scala

$	brew	install	apache-spark

$	export	SPARK_HOME="/usr/local/Cellar/apache-spark/2.1.0/libexec/"

$	export	PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/python/build:$PYTHONPATH

$	export	PYTHONPATH=$SPARK_HOME/python/lib/py4j-0.10.4-src.zip:$PYTHONPATH

$	pyspark

https://anaconda.org/anaconda/python
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://anaconda.org/anaconda/python


10.3.4.5	Instructions	for	creating	Spark	User	Defined	Functions

10.3.4.5.1	Example:	Temperature	conversion

In	 this	 example	we	 convert	 temperature	 data	 from	Celsius	 to	 Fahrenheit	 with
filtering	and	sorting

10.3.4.5.1.1	Description	about	data	set

The	file	temperature_data.csv	contains	temperature	data	of	different	wheather
stations	and	it	has	the	following	structure.
ITE00100554,18000101,TMAX,-75,,,E,

ITE00100554,18000101,TMIN,-148,,,E,

GM000010962,18000101,PRCP,0,,,E,

EZE00100082,18000101,TMAX,-86,,,E,

GM000010962,18000104,PRCP,0,,,E,

EZE00100082,18000104,TMAX,-55,,,E,

We	will	 only	 consider	wheather	 station	 ID	 (column	 0),	 entrytype	 (column	 2),
temperature	(column	3:	it	is	in	10*Celsius)

10.3.4.5.1.2	How	to	write	a	python	program	with	UDF

First,	 we	 need	 to	 import	 the	 relevent	 libraries	 to	 use	 Spark	 sql	 built	 in
functionalities	listed	as	follows.

Then,	we	need	create	a	user	defined	fuction	which	will	 read	 the	 text	 input	and
process	the	data	and	return	a	spark	sql	Row	object.	It	can	be	created	as	listed	as
follows.

Then	 we	 need	 to	 create	 a	 Spark	 SQL	 session	 as	 listed	 as	 follows	 with	 an
application	name.

Next,	 we	 read	 the	 raw	 data	 using	 spark	 build-in	 function	 textFile()	 as	 shown

from	pyspark.sql	import	SparkSession

from	pyspark.sql	import	Row

				def	process_data(line):

								fields	=	line.split(',')

								stationID	=	fields[0]

								entryType	=	fields[2]

								temperature	=	float(fields[3])	*	0.1	*	(9.0	/	5.0)	+	32.0

								return	Row(ID=stationID,	t_type=entryType,	temp=temperature)

spark	=	SparkSession.builder.appName("Simple	SparkSQL	UDF	example").getOrCreate()



next.

Then,	we	convert	 those	 read	 lines	 to	 a	Resilient	Distributed	Dataset	 (RDD)	of
Row	object	using	UDF	(process_data)	which	we	created	as	listed	as	follows.

Alternatively	we	colud	have	written	the	UDF	using	a	python	lamda	function	to
do	the	same	thing	as	shown	next.

Now,	we	 can	 convert	 our	RDD	object	 to	 a	 Spark	SQL	Dataframe	 as	 listed	 as
follows.

Next,	 we	 can	 print	 and	 see	 the	 first	 20	 rows	 of	 data	 to	 validate	 our	 work	 as
shown	next.

10.3.4.5.1.3	How	to	execute	a	python	spark	script

You	can	use	spark-submit	command	to	run	a	spark	script	as	shown	next.

If	everything	went	well,	you	should	see	the	following	output.

lines	=	spark.sparkContext.textFile("temperature_data.csv")

parsedLines	=	lines.map(process_data)

parsedLines	=	lines.map(lambda	line:	Row(ID=line.split(',')[0],

																								t_type=line.split(',')[2],

																								temp=float(line.split(',')[3])	*	0.1	*	(9.0

																								/	5.0)	+	32.0))

TempDataset	=	spark.createDataFrame(parsedLines)

TempDataset.show()

spark-submit	temperature_converter.py

+-----------+------+-----------------+

|									ID|t_type|													temp|

+-----------+------+-----------------+

|EZE00100082|		TMAX|90.14000000000001|

|ITE00100554|		TMAX|90.14000000000001|

|ITE00100554|		TMAX|												89.42|

|EZE00100082|		TMAX|												88.88|

|ITE00100554|		TMAX|												88.34|

|ITE00100554|		TMAX|87.80000000000001|

|ITE00100554|		TMAX|												87.62|

|ITE00100554|		TMAX|												87.62|

|EZE00100082|		TMAX|												87.26|

|EZE00100082|		TMAX|87.08000000000001|

|EZE00100082|		TMAX|87.08000000000001|

|ITE00100554|		TMAX|												86.72|

|ITE00100554|		TMAX|												86.72|

|ITE00100554|		TMAX|												86.72|

|EZE00100082|		TMAX|												86.72|

|ITE00100554|		TMAX|													86.0|

|ITE00100554|		TMAX|													86.0|



10.3.4.5.1.4	Filtering	and	sorting

Now	 we	 are	 trying	 to	 find	 what	 is	 the	 maximum	 temperature	 reported	 for	 a
particluar	whether	station	and	print	the	data	in	ascending	order.	We	can	achieve
this	by	using	where()	and	orderBy()	fundtions	as	shown	next.

We	 achieved	 the	 filtering	 using	 temperature	 type	 and	 it	 filters	 out	 all	 the	 data
which	is	not	a	TMAX.

Finally,	we	can	print	the	data	to	see	whether	this	worked	or	not	using	following
statement.

Now,	it	is	the	time	to	run	the	python	script	again	using	following	command.

If	everything	went	well,	you	should	see	the	following	sorted	and	filtered	output.

Complete	 python	 script	 is	 listed	 as	 follows	 as	 well	 as	 under	 this	 directory
(temperature_converter.py).

|ITE00100554|		TMAX|													86.0|

|ITE00100554|		TMAX|												85.64|

|ITE00100554|		TMAX|												85.64|

+-----------+------+-----------------+

only	showing	top	20	rows

TempDatasetProcessed	=	TempDataset.where(TempDataset['t_type']	==	'TMAX'

				).orderBy('temp',	ascending=False).cache()

TempDatasetProcessed.show()

spark-submit	temperature_converter.py

+-----------+------+-----------------+

|									ID|t_type|													temp|

+-----------+------+-----------------+

|EZE00100082|		TMAX|90.14000000000001|

|ITE00100554|		TMAX|90.14000000000001|

|ITE00100554|		TMAX|												89.42|

|EZE00100082|		TMAX|												88.88|

|ITE00100554|		TMAX|												88.34|

|ITE00100554|		TMAX|87.80000000000001|

|ITE00100554|		TMAX|												87.62|

|ITE00100554|		TMAX|												87.62|

|EZE00100082|		TMAX|												87.26|

|EZE00100082|		TMAX|87.08000000000001|

|EZE00100082|		TMAX|87.08000000000001|

|ITE00100554|		TMAX|												86.72|

|ITE00100554|		TMAX|												86.72|

|ITE00100554|		TMAX|												86.72|

|EZE00100082|		TMAX|												86.72|

|ITE00100554|		TMAX|													86.0|

|ITE00100554|		TMAX|													86.0|

|ITE00100554|		TMAX|													86.0|

|ITE00100554|		TMAX|												85.64|

|ITE00100554|		TMAX|												85.64|

+-----------+------+-----------------+

only	showing	top	20	rows



https://github.com/cloudmesh-community/hid-sp18-
409/blob/master/tutorial/spark_udfs/temperature_converter.py

10.3.4.6	Instructions	to	install	and	run	the	example	using	docker

Following	link	is	the	home	directory	for	the	example	explained	in	this	tutorial.

https://github.com/cloudmesh-community/hid-sp18-
409/tree/master/tutorial/spark_udfs

It	contains	following	files

Python	script	which	contains	the	example:	temperature_converter.py
Temperature	data	file:	temperature_data.csv
Required	python	dependencies	are	put	here:	requirements.txt
Docker	 file	 which	 automatically	 setup	 the	 codebase	 with	 dependency
installation:	Dockerfile

from	pyspark.sql	import	SparkSession

from	pyspark.sql	import	Row

def	process_data(line):

				fields	=	line.split(',')

				stationID	=	fields[0]

				entryType	=	fields[2]

				temperature	=	float(fields[3])	*	0.1	*	(9.0	/	5.0)	+	32.0

				return	Row(ID=stationID,	t_type=entryType,	temp=temperature)

#	Create	a	SparkSQL	Session

spark	=	SparkSession.builder.appName('Simple	SparkSQL	UDF	example'

								).getOrCreate()

#	Get	the	raw	data

lines	=	spark.sparkContext.textFile('temperature_data.csv')

#	Convert	it	to	a	RDD	of	Row	objects

parsedLines	=	lines.map(process_data)

#	alternative	lamda	fundtion

parsedLines	=	lines.map(lambda	line:	Row(ID=line.split(',')[0],

																								t_type=line.split(',')[2],

																								temp=float(line.split(',')[3])	*	0.1	*	(9.0

																								/	5.0)	+	32.0))

#	Convert	that	to	a	DataFrame

TempDataset	=	spark.createDataFrame(parsedLines)

#	show	first	20	rows	temperature	converted	data

#	TempDataset.show()

#	Some	SQL-style	magic	to	sort	all	movies	by	popularity	in	one	line!

TempDatasetProcessed	=	TempDataset.where(TempDataset['t_type']	==	'TMAX'

								).orderBy('temp',	ascending=False).cache()

#	show	first	20	rows	of	filtered	and	sorted	data

TempDatasetProcessed.show()

https://github.com/cloudmesh-community/hid-sp18-409/blob/master/tutorial/spark_udfs/temperature_converter.py
https://github.com/cloudmesh-community/hid-sp18-409/tree/master/tutorial/spark_udfs
https://github.com/cloudmesh-community/hid-sp18-409/blob/master/tutorial/spark_udfs/temperature_converter.py%20%22temperature_converter.py%22
https://github.com/cloudmesh-community/hid-sp18-409/blob/master/tutorial/spark_udfs/temperature_data.csv%20%22temperature_data.csv%22
https://github.com/cloudmesh-community/hid-sp18-409/blob/master/tutorial/spark_udfs/requirements.txt%20%22requirements.txt%22
https://github.com/cloudmesh-community/hid-sp18-409/blob/master/tutorial/spark_udfs/Dockerfile%20%22Dockerfile%22


Make	file	which	will	excute	the	example	with	a	single	command:	Makefile

To	install	the	example	using	docker	plesse	do	the	following	steps.

First,	you	should	install	docker	in	to	your	computer.

Next,	 git	 clone	 the	 project	 .	 Alternatively	 you	 can	 also	 download	 the	 docker
image	from	the	docker	hub.	Then	you	don’t	need	to	do	docker	build.

Then,	change	the	directory	to	spark_udfs	folder.

Next,	install	the	service	using	following	make	command

Finally,	start	the	service	using	following	make	command

Now	 you	 should	 see	 the	 same	 output	 we	 saw	 at	 the	 end	 of	 the	 example
explanation.

10.4	HADOOP	ECOSYSTEM

10.4.1	ELASTIC	MAP	REDUCE

10.4.1.1	AWS	Elastic	Map	Reduce	(AWS	EMR)	☁

	Learning	Objectives

Learn	about	EMR
Deploy	an	EMR	cluster	using:

Amazon’s	Command	Line	Interface	(CLI)
Amazon’s	Web	Interfaces

Run	an	example	Spark	application	on	an	EMR	cluster

$	docker	pull	kadupitiya/tutorial

$	make	docker-build

$	make	docker-start

https://github.com/cloudmesh-community/hid-sp18-409/blob/master/tutorial/spark_udfs/Makefile%20%22Makefile%22
https://github.com/cloudmesh-community/hid-sp18-409/blob/master/tutorial/
https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/aws-emr.md


10.4.1.1.1	Introduction

EMR	 is	 an	Amazon	 product	 that	 allows	 for	 the	 creation	 of	 clusters	 of	 Elastic
Compute	 Cloud	 (EC2)	 instances	 [76].	 EMR	 allows	 user	 to	 take	 advantage	 of
distributed	computing	capabilities.	As	the	name	suggests	this	product	is	designed
to	allow	users	to	easily	scale	their	cluster	to	meet	their	computing	needs.

Amazon	EMR	facilitates	you	to	analyze	and	process	vast(huge)	amounts	of	data
by	distributing	the	computational	work	across	a	cluster	of	virtual	servers	running
in	 the	 AWS	 Cloud.	 The	 EMR	 cluster	 is	 managed	 using	 an	 open-source
framework	 called	 Hadoop.	 Amazon	 EMR	 lets	 you	 focus	 on	 crunching	 or
analyzing	 your	 data	 without	 having	 to	 worry	 about	 time-consuming	 setup,
management,	and	 tuning	of	Hadoop	clusters	or	 the	compute	capacity	 they	 rely
on	unlike	other	Hadoop	distributors	like	Cloudera,	Hortonworks	etc.,

10.4.1.1.2	Why	EMR?

The	following	are	reasons	given	by	Amazon	for	using	EMR:

Easy	 to	Use:	Launch	cluster	 in	a	5	 to	10	minutes	 time	as	many	cluster	of
nodes	as	you	need
Pay	 as	 you	 go:	 Pay	 an	 hourly	 rate	 (with	 AWS	 latest	 pricing	 model,
customers	can	choose	to	pay	in	minutes)
Flexible:	Easily	Add/	Remove	capacity(Auto	scale	out	and	in	anytime)
Reliable:	Spend	less	time	for	monitoring	and	can	utilize	in-built	AWS	tools
which	will	reduce	overhead
Secure:	Manage	firewall	(VPC	both	private	and	subnet)

EMR	clusters	can	be	created	through	relatively	simple	web	interfaces	or	can	be
created	 through	code	using	CLI.	EMR	Clusters	can	be	configured	 for	 size	and
can	 be	 provisioned	 with	 open-source	 distributed	 frameworks	 such	 as	 SPARK
and	HBase,	Presto,	Flink	and	etc.	Interact	with	data	in	AWS	data	stores	such	as
Amazon	S3,	DynamoDB	and	etc.

Components	Of	EMR:

Storage
EC2	instance



Clusters
Security
KMS

10.4.1.1.3	Understanding	Clusters	and	Nodes

The	 component	 of	 Amazon	 EMR	 is	 the	 cluster.	 A	 cluster	 is	 a	 collection	 of
Amazon	Elastic	Compute	Cloud	(Amazon	EC2)	instances.	Each	instance	in	the
cluster	is	called	a	node.	Each	node	has	a	role	within	the	cluster,	referred	to	as	the
node	 type.	Amazon	 EMR	 also	 installs	 different	 software	 components	 on	 each
node	 type,	 giving	 each	 node	 a	 role	 in	 a	 distributed	 application	 like	 Apache
Hadoop.

The	node	types	in	Amazon	EMR	are	as	follows:

Master	 node:	 A	 node	 that	 manages	 the	 cluster	 by	 running	 software
components	 to	 coordinate	 the	 distribution	 of	 data	 and	 tasks	 among	 other
nodes	 for	 processing.	 The	 master	 node	 tracks	 the	 status	 of	 tasks	 and
monitors	the	health	of	the	cluster.	Every	cluster	has	a	master	node,	and	it	is
possible	to	create	a	single-node	cluster	with	only	the	master	node.

Core	node:	A	node	with	software	components	that	run	tasks	and	store	data
in	the	Hadoop	Distributed	File	System	(HDFS)	on	your	cluster.	Multi-node
clusters	have	at	least	one	core	node.

Task	node:	A	node	with	software	components	that	only	runs	tasks	and	does
not	store	data	in	HDFS.	Task	nodes	are	optional.

The	following	diagram	represents	a	cluster	with	one	master	node	and	four	core
nodes.



Figure	101:	Cluster	and	Nodes	[77]

10.4.1.1.4	Prerequisites

Official	 prerequisites	 are	 listed	 here:
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs-
prerequisites.html

AWS	Account
AWS	Key	Pair
Install	and	Configure	AWS	CLI
AWS	Admin	Access
Linux	Environment

10.4.1.1.5	Creating	EMR	Cluster	Using	CLI

10.4.1.1.5.1	Create	Security	Roles

In	this	example	we	will	use	the	default	EMR	security	roles.	These	roles	enable
the	 nodes	 within	 the	 cluster	 to	 access	 each	 other	 and	 to	 access	 other	 AWS
products.

10.4.1.1.5.2	Setting	up	authentication

aws	emr	create-default-roles

https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/aws/aws.md#creating-an-account
https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/aws/aws.md#setting-up-key-pair
https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/aws/aws.md#aws-command-line-interface
https://github.com/cloudmesh-community/book/blob/master/chapters/iaas/aws/aws.md#aws-admin-access
https://github.com/cloudmesh-community/book/blob/master/chapters/linux/linux.md


In	 this	 example	 we	 will	 be	 using	 Kerberos	 for	 authentication.	 The	 Kerberos
configuration	would	allow	you	to	add	additional	users	to	your	EMR	cluster.

Create	a	json	file	with	the	following	content	and	save	to	a	local	file:

Create	the	Kerberos	configuration	using	the	previously	created	json	file:

10.4.1.1.5.3	Determine	the	applicable	subnet

The	EMR	cluster	will	run	on	a	subnet	so	you	need	to	determine	the	appropriate
subnet	for	you	availability	zone.	You	will	need	to	enter	your	default	zone	in	the
code	next.

The	applicable	information	is	returned	as	the	SubnetId	field.

10.4.1.1.5.4	Create	the	EMR	cluster

In	 this	example	we	will	create	a	simple	cluster	with	3	nodes.	One	master	node
and	 two	 slave	 nodes.	We	will	 also	 specify	 the	 EC2	 instance	 type	 (m4.large).
These	parameters	are	configurable	and	you	can	create	larger	clusters	with	more
processing	power.	There	are	multiple	EMR	versions	available,	this	example	uses
the	latest	version	available	at	the	time	of	creation.

There	are	a	variety	of	applications	 that	can	be	 installed	on	 the	EMR	cluster	at
creation,	but	 in	 this	case	we	will	 simply	 install	Spark.	The	Kerberos	password
can	be	used	to	add	users	to	your	cluster	once	it	is	created.	The	KeyName	is	your
EC2	key	pair	that	is	referenced	in	the	Prerequisites	section.

{

		"AuthenticationConfiguration":	{

				"KerberosConfiguration":	{

						"Provider":	"ClusterDedicatedKdc",

						"ClusterDedicatedKdcConfiguration":	{

								"TicketLifetimeInHours":	24

						}

				}

		}

}

aws	emr	create-security-configuration	--name	"KerberosSecurityConfiguration"	--security-configuration	file://MyKerberosSecurityConfig.json

aws	ec2	describe-subnets	--filters	"Name=availabilityZone,Values=us-east-2b"

aws	emr	create-cluster	--name	"Test-Kerberized-Spark-Cluster"	\

--release-label	emr-5.17.0	\

--instance-type	m4.large	\

--instance-count	3	\



10.4.1.1.5.5	Check	the	status	of	your	cluster

The	cluster	may	 take	 several	minutes	 to	 initialize.	To	check	 the	 status	of	your
cluster	use	the	cluster-id	that	was	returned	in	the	previous	step.

10.4.1.1.5.6	Terminate	your	cluster

To	terminate	your	cluster	use	the	following	command	(hint:	AWS	charges	apply
while	your	cluster	is	up).

10.4.1.1.6	Creating	EMR	Cluster	Using	AWS	Web	Console

10.4.1.1.6.1	Set	up	authentication

Go	to	the	AWS	Console	and	ensure	that	the	URL	references	your	default	region
(see	Figure	Figure	102	and	Figure	103)

AWS	EMR

Select	 the	 Security	configurations	 and	 click	 Create.	 Give	 a	 meaningful	 name	 like:	
KerberosSecurityConfiguration.	Then	select	Kerberos	under	Authentication	and	click	Create.

--use-default-roles	\

--ec2-attributes	KeyName=your-key,SubnetId=your-subnet-id	\

--security-configuration	KerberosSecurityConfiguration	\

--applications	Name=Spark	\

--kerberos-attributes	Realm=EC2.INTERNAL,KdcAdminPassword=your-password

aws	emr	describe-cluster	--cluster-id	your-cluster-id

aws	emr	terminate-clusters	--cluster-ids	your-cluster-id

https://us-east-2.console.aws.amazon.com/elasticmapreduce/home?region=us-east-2


Figure	102:	Set	up	Kerberos	1	[77]



Figure	103:	Set	up	Kerberos	2	[77]

10.4.1.1.6.2	Create	the	EMR	cluster

Go	to	the	AWS	Console	(ensure	that	the	URL	references	your	default	region)

AWS	EMR

Click	Create	cluster	(see	Figure	Figure	104)

https://us-east-2.console.aws.amazon.com/elasticmapreduce/home?region=us-east-2


Figure	104:	Set	up	EMR	1	[77]

Select	your	desired	EMR	version
Select	Spark
Select	your	desired	instance	types
For	this	example	deselect	the	Logging	option
Select	your	EC2	key	Pair

Next,	create	a	cluster	(see	Figure	Figure	105)



Figure	105:	Set	up	EMR	2	[77]

Under	 Advanced	Options	 select	 Security	 and	 then
YourKerberosSecurityConfiguration
Click	Create	cluster

(See	Figure	Figure	106)



Figure	106:	Set	up	EMR	3	[77]

10.4.1.1.6.3	View	status	and	terminate	EMR	cluster

You	can	view	the	status	of	your	cluster	or	termiate	the	cluster	by	naviagting	to	
>Services>EMR>Clusters	within	the	AWS	Console.

See	Figure	Figure	107.

Figure	107:	Set	up	EMR	4	[77]



10.4.1.1.6.4	Submit	Work	to	a	Cluster

When	you	run	a	cluster	on	Amazon	EMR,	you	have	several	options	as	 to	how
you	specify	the	work	that	needs	to	be	done.

Provide	the	entire	definition	of	the	work	to	be	done	in	functions	that	you	specify
as	steps	when	you	create	a	cluster.	This	is	typically	done	for	clusters	that	process
a	set	amount	of	data	and	then	terminate	when	processing	is	complete.

Create	 a	 long-running	 cluster	 and	use	 the	Amazon	EMR	console,	 the	Amazon
EMR	API,	 or	 the	AWS	CLI	 to	 submit	 steps,	which	may	 contain	 one	 or	more
jobs.

Create	a	cluster,	connect	 to	 the	master	node	and	other	nodes	as	 required	using
SSH,	 and	 use	 the	 interfaces	 that	 the	 installed	 applications	 provide	 to	 perform
tasks	and	submit	queries,	either	scripted	or	interactively.

10.4.1.1.6.5	Processing	Data

When	you	 launch	your	cluster,	you	choose	 the	frameworks	and	applications	 to
install	 for	 your	 data	 processing	 needs.	 To	 process	 data	 in	 your	Amazon	EMR
cluster,	you	can	submit	jobs	or	queries	directly	to	installed	applications,	or	you
can	run	steps	in	the	cluster.

Submitting	Jobs	Directly	to	Applications:

You	can	submit	jobs	and	interact	directly	with	the	software	that	is	installed
in	 your	 Amazon	 EMR	 cluster.	 To	 do	 this,	 you	 typically	 connect	 to	 the
master	 node	 over	 a	 secure	 connection	 and	 access	 the	 interfaces	 and	 tools
that	 are	 available	 for	 the	 software	 that	 runs	 directly	 on	 your	 cluster.	 For
more	information,	see	Connect	to	the	Cluster.

Running	Steps	to	Process	Data

You	 can	 submit	 one	 or	 more	 ordered	 steps	 to	 an	 Amazon	 EMR	 cluster.
Each	step	is	a	unit	of	work	that	contains	instructions	to	manipulate	data	for
processing	by	software	installed	on	the	cluster.

The	following	is	an	example	process	using	four	steps:



1.	 Submit	an	input	dataset	for	processing.
2.	 Process	the	output	of	the	first	step	by	using	a	Pig	program.
3.	 Process	a	second	input	dataset	by	using	a	Hive	program.
4.	 Write	an	output	dataset.

Generally,	when	you	process	data	 in	Amazon	EMR,	 the	 input	 is	data	stored	as
files	in	your	chosen	underlying	file	system,	such	as	Amazon	S3	or	HDFS.	This
data	passes	from	one	step	to	the	next	in	the	processing	sequence.	The	final	step
writes	the	output	data	to	a	specified	location,	such	as	an	Amazon	S3	bucket.

Steps	are	run	in	the	following	sequence:

1.	 A	request	is	submitted	to	begin	processing	steps.
2.	 The	state	of	all	steps	is	set	to	PENDING.
3.	 When	the	first	step	in	the	sequence	starts,	 its	state	changes	to	RUNNING.

The	other	steps	remain	in	the	PENDING	state.
4.	 After	the	first	step	completes,	its	state	changes	to	COMPLETED.
5.	 The	next	 step	 in	 the	 sequence	 starts,	 and	 its	 state	 changes	 to	RUNNING.

When	it	completes,	its	state	changes	to	COMPLETED.
6.	 This	 pattern	 repeats	 for	 each	 step	 until	 they	 all	 complete	 and	 processing

ends.

The	following	diagram	represents	the	step	sequence	and	change	of	state	for	the
steps	as	they	are	processed.

Cluser	and	Nodes

If	 a	 step	 fails	 during	 processing,	 its	 state	 changes	 to
TERMINATED_WITH_ERRORS.	 You	 can	 determine	 what	 happens	 next	 for
each	 step.	 By	 default,	 any	 remaining	 steps	 in	 the	 sequence	 are	 set	 to
CANCELLED	 and	 do	 not	 run.	You	 can	 also	 choose	 to	 ignore	 the	 failure	 and
allow	remaining	steps	to	proceed,	or	to	terminate	the	cluster	immediately.

The	following	diagram	represents	the	step	sequence	and	default	change	of	state
when	a	step	fails	during	processing.



Cluser	and	Nodes

10.4.1.1.7	AWS	Storage

S3	 -	 Cloud	 based	 storage	 -	 Using	 EMRFS	 can	 directly	 connects	 s3	 storage	 -
Accessible	from	any	where

Instance	Store	-	Local	storage	-	Data	will	be	lost	on	start	and	stop	EC2	instances

EBS	-	Network	attached	storage	-	Data	preserved	on	start	and	stop	-	Accessible
only	through	EC2	instances

10.4.1.1.8	Create	EMR	in	AWS

10.4.1.1.8.1	Create	the	buckets

Login	 to	 AWS	 console	 and	 create	 the	 buckets	 at
https://aws.amazon.com/console/.	To	create	the	buckets,	go	to	services	(see
Figure	108,	Figure	109),	click	on	S3	under	Storage,	Figure	110,	Figure	111,
Figure	112.	Click	on	Create	bucket	button	and	then	provide	all	the	details	to
complete	bucket	creation.
AWS	Console



Figure	108:	AWS	Console

AWS	Login

Figure	109:	AWS	Login

S3	–	Amazon	Storage



Figure	110:	Amazon	Storage

S3	–	Create	buckets

Figure	111:	S3	buckets



Figure	112:	S3	buckets1

10.4.1.1.8.2	Create	Key	Pairs

Login	to	AWS	console,	go	to	services,	click	on	EC2	under	compute.	Select
the	Key	pairs	resoure,	click	on	Create	Key	Pair	and	provide	Key	Pair	name
to	complete	the	Key	pairs	creation.	See	Figure	113

Download	 the.	pem	file	once	Key	value	pair	 is	created.	This	 is	needed	 to
access	 AWS	 Hadoop	 environment	 from	 client	 machine.	 This	 need	 to	 be
imported	in	Putty	to	access	your	AWS	environemnt.	See	Figure	114

10.4.1.1.8.2.1	Create	Key	Value	Pair	Screen	shots

Figure	113:	AMS	Key	Value	Pair



Figure	114:	AMS	Key	Value	Pair1

10.4.1.1.9	Create	Step	Execution	–	Hadoop	Job

Login	 to	AWS	 console,	 go	 to	 services	 and	 then	 select	 EMR.	Click	 on	Create
Cluster.	The	cluster	configuration	provides	details	to	complete	to	complete	step
execution	 creation.	 See:	 Figure	 115,	 Figure	 116,	 Figure	 117,	 Figure	 118,
Figure	119.

Cluster	name	(Example:	HadoopJobStepExecutionCluster)
Select	 Logging	 check	 box	 and	 provide	 S3	 folder	 location	 (Example:
s3://bigdata-raviAndOrlyiuproject/logs/)
Select	launch	mode	as	Step	execution
Select	the	step	type	and	complete	the	step	configuration
Complete	Software	Configuration
Complete	Hardware	Configuration
Complete	Security	and	access
And	then	click	on	create	cluster	button
Once	 job	 started,	 if	 there	 are	 no	 errors	 output	 file	 will	 be	 created	 in	 the
output	directory.

10.4.1.1.9.0.1	Screen	shots



Figure	115:	AWS	EMR

Figure	116:	AWS	Create	EMR



Figure	117:	AWS	Config	EMR

Figure	118:	AWS	Create	Cluster



Figure	119:	AWS	Create	Cluster1

10.4.1.1.10	Create	a	Hive	Cluster

Login	 to	AWS	 console,	 go	 to	 services	 and	 then	 select	 EMR.	Click	 on	Create
Cluster.	The	cluster	configuration	provides	details	to	complete.	See,	Figure	120,
Figure	121,	Figure	122.

Cluster	name	(Example:	MyFirstCluster-Hive)
Select	Logging	check	box	selected	and	provide	S3	folder	location
Select	launch	mode	as	Cluster
Complete	 software	 configuration	 (select	 hive	 application)	 and	 click	 on
create	cluster

10.4.1.1.10.1	Create	a	Hive	Cluster	-	Screen	shots



Figure	120:	Hive	Cluser

Figure	121:	Hive	Cluser1



Figure	122:	Hive	Cluser2

10.4.1.1.11	Create	a	Spark	Cluster

Login	 to	AWS	 console,	 go	 to	 services	 and	 then	 select	 EMR.	Click	 on	Create
Cluster.	The	cluster	configuration	provides	details	to	complete.	See,	Figure	123,
Figure	124,	Figure	125.

Cluster	name	(Example:	My	Cluster	-	Spark)
Select	Logging	check	box	selected	and	provide	S3	folder	location
Select	launch	mode	as	Cluster
Complete	software	configuration	and	click	on	create	cluster
Select	application	as	Spark

10.4.1.1.11.1	Create	a	Spark	Cluster	-	Screenshots



Figure	123:	Spark	Cluser

Figure	124:	Spark	Cluser



Figure	125:	Spark	Cluser

10.4.1.1.12	Run	an	example	Spark	job	on	an	EMR	cluster

10.4.1.1.12.1	Spark	Job	Description

You	can	submit	Spark	steps	 to	a	cluster	as	 it	 is	being	created	or	 to	an	already
running	cluster,

In	 this	 example	we	will	 execute	 a	 simple	Python	 function	 on	 a	 text	 file	 using
Spark	 on	EMR.	This	 is	 a	 standard	word	 count	 application	 that	will	 return	 the
distinct	words	in	the	file	along	with	the	count	of	the	number	of	times	the	words
are	present.

The	Python	file	containing	the	application	will	be	stored	and	referenced	in	a	S3
bucket	along	with	the	text	file	being	analyzed.	The	results	of	the	Spark	job	will
be	returned	to	the	same	S3	bucket.

10.4.1.1.12.2	Creating	the	S3	bucket

10.4.1.1.12.3	Copy	files	to	S3

Create	a	WordCount.py	file	with	the	following	code.

aws	s3	mb	s3://test-analysis-bucket	`--region	us-east-2`

from	__future__	import	print_function

from	pyspark	import	SparkContext

import	sys

if	__name__	==	"__main__":



You	can	then	sync	the	folder	you	stored	.py	file	in	to	your	S3	bucket	folder.

Store	a	text	file	locally	and	use	the	S3	sync	function	to	make	it	availaable	in	your
S3	bucket.

10.4.1.1.12.4	Execute	the	Spark	job	on	a	running	cluster

Using	 your	 cluster	 id	 and	 the	 paths	 within	 your	 S3	 bucket	 run	 the	 following
command	(this	assumes	you	have	a	cluster	up	and	running).

10.4.1.1.12.5	Execute	the	Spark	job	while	creating	clusters

We	can	also	run	the	same	Spark	step	during	the	creation	of	a	cluster	using	the
following	 command	 (assumes	 you	 have	 already	 done	 pre-steps	 to	 creating	 an
EMR	cluster).

In	this	case	the	EMR	cluster	will	spin	up,	run	the	Spark	job,	persist	the	results	to
your	S3	bucket,	and	then	auto	terminate.

				if	len(sys.argv)	!=	3:

								print("Usage:	testjob		",	file=sys.stderr)

								exit(-1)

				sc	=	SparkContext(appName="MyTestJob")

				dataTextAll	=	sc.textFile(sys.argv[1])

				dataRDD	=	dataTextAll.map(lambda	x:	x.split(",")).map(lambda	y:	(str(y[0]),	float(y[1]))).reduceByKey(lambda	a,	b:	a	

				dataRDD.saveAsTextFile(sys.argv[2])

				sc.stop()

aws	s3	sync	your-local-folder-path	s3://test-analysis-bucket/SparkTutorial

aws	s3	sync	your-local-folder-path	s3://test-analysis-bucket/SparkTutorial/Input

aws	emr	add-steps	--cluster-id	your-cluster-id	\

--steps	Type=spark,Name=SparkWordCountApp,\

Args=[--deploy-mode,cluster,--master,yarn,\

--conf,spark.yarn.submit.waitAppCompletion=false,\

--num-executors,2,--executor-cores,2,--executor-memory,1g,\

s3://your-bucket/SparkTutorial/Python/WordCount.py,\

s3://your-bucket/SparkTutorial/Python/Input/input.txt,\

s3://your-bucket/SparkTutorial/Python/Output/]

aws	emr	create-cluster	\

--name	"Test-Kerberized-Spark-Cluster"	\

--release-label	emr-5.17.0	\

--instance-type	m4.large	\

--instance-count	3	\

--use-default-roles	\

--ec2-attributes	KeyName=your-key,SubnetId=subnet-d0169eaa	\py

--security-configuration	KerberosSecurityConfiguration	\

--applications	Name=Spark	\

--kerberos-attributes	Realm=EC2.INTERNAL,KdcAdminPassword=your-pw	\

--steps	Type=spark,Name=SparkWordCountApp,\

Args=[--deploy-mode,cluster,--master,yarn,\

--conf,spark.yarn.submit.waitAppCompletion=false,\

--num-executors,2,--executor-cores,2,--executor-memory,1g,\

s3://your-bucket/SparkTutorial/Python/WordCount.py,\



10.4.1.1.12.6	View	the	results	of	the	Spark	job

You	can	use	the	AWS	Console	to	view	the	results	of	the	Spark	Job.

Go	to	the	AWS	Console	(ensure	that	the	URL	references	your	default	region)

AWS	Console

Navigate	 to	 the	 S3	 bucket	 and	 folder	 you	 specified	 for	 the	 output	 (see	 Figure
Figure	126)

Figure	126:	Set	up	EMR	[77]

10.4.1.1.13	Conclusion

AWS	EMR	is	a	powerful	tool	for	distributive	processing.	It	is	easy	to	use	from
wither	the	command	line	utilizing	AWS	CLI	or	through	the	AWS	Console	web
interface.

s3://your-bucket/SparkTutorial/Python/Input/input.txt,\

s3://your-bucket/SparkTutorial/Python/Output/],\

ActionOnFailure=CONTINUE	\

--auto-terminate

https://us-east-2.console.aws.amazon.com/elasticmapreduce/home?region=us-east-2


10.4.2	TWISTER

10.4.2.1	Twister2	☁

10.4.2.1.1	Introduction

Twister2[78]	 provides	 a	 data	 analytics	 hosting	 environment	 where	 it	 supports
different	 data	 analytics	 including	 streaming,	 data	 pipelines	 and	 iterative
computations.	 The	 functionality	 of	 Twister2	 is	 similar	 to	 other	 Big	 data
frameworks	 such	as	Apache	Spark	and	Apache	Flink.	But	 there	are	 a	 few	key
differences	which	differentiates	Twister2	from	other	 frameworks.	Unlike	many
other	big	data	systems	that	are	designed	around	user	APIs,	Twister2	is	built	from
bottom	up	 to	 support	different	APIs	and	workloads.	The	aim	of	Twister2	 is	 to
develop	a	complete	computing	environment	for	data	analytics.

One	major	goal	of	Twister2	is	 to	provide	independent	components,	 that	can	be
used	 by	 other	 big	 data	 systems	 and	 evolve	 separately.	 To	 this	 end	 Twister2
supports	a	composable	architecture	where	developers	can	easily	replace	a	small
component	 in	 the	 system	with	a	new	 implementation	very	easily.	For	example
the	 resource	 scheduling	 layer	 has	 several	 implementations	 it	 supports,
Kubernetes,	Mesos,	Slurm,	Nomad	and	a	 standalone	 implementation,	 If	 a	user
wants	 to	 add	 support	 for	 another	 resources	 scheduler	 such	 as	 Yarn	 they	 can
easily	do	so	by	implementing	the	well	defined	interfaces.

Twister2	supports	both	batch	and	streaming	applications.	Unlike	other	big	data
frameworks	which	either	support	batch	or	streaming	in	the	core	and	develop	the
other	on	top	of	that,	Twister2	natively	supports	both	batch	and	streaming.	Which
allows	Twister2	to	make	separate	optimizations	for	each	type.

Twister2	 project	 is	 still	 less	 than	 2	 years	 old	 and	 still	 in	 it’s	 early	 stages	 and
going	 through	 rapid	 development	 to	 complete	 its	 functionality.	 It	 is	 an	 Open
Source	project	which	is	licenced	under	the	Apache	2.0[79]

10.4.2.1.2	Twister2	API’s

Twister2	 provides	 users	 with	 3	 levels	 on	 API’s	 which	 can	 be	 used	 to	 write
applications.	The	3	API	levels	are	shown	in	Figure	Figure	127.

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/twister.md


Figure	127:	Twister2	API’s

As	shown	in	Figure	127	each	API	 level	has	different	 levels	of	 abstraction	and
programming	complexities.	TSet	API	is	the	most	high	level	in	Twister2	which	in
someways	is	simlar	to	the	RDD	API	in	Apache	Spark	or	DataSet	API	in	Apache
Flink.	If	the	user	wants	more	control	over	the	application	development	they	can
opt	to	use	a	more	lower	level	API’s.

10.4.2.1.2.1	TSet	API

TSet	API	 is	 the	most	 abstract	 API	 provided	 by	 Twister2.	 This	 allows	 user	 to
develop	 their	programs	at	 the	data	 layer,	 similar	 to	 the	programming	model	of
Apache	Spark.	Similar	to	RDD	in	Spark	users	can	perform	operations	on	top	of
TSet	objects	which	will	be	automatically	parallelized	by	the	framework.	To	get	a
slight	understanding	of	the	Tset	API	take	a	look	at	the	abstract	example	given	on
how	TSet	API	can	be	used	to	implement	KMeans	algorithm.
public	class	KMeansJob	extends	TaskWorker	{

				//......

				@Override

				public	void	execute()	{

								//.....

								TSet<double[][]>	points	=	TSetBuilder.newBuilder(config).createSource(new	Source<double[][]>()	{

												//Code	for	source	function	to	read	data	points

								}).cache();

								TSet<double[][]>	centroids	=	TSetBuilder.newBuilder(config).createSource(new	Source<double[][]>()	{

												//Code	for	source	function	to	read	centers	(or	generate	random	centers)

								}).cache();

								for	(

																int	i	=	0;

																i	<	iterations;	i++)	{

												TSet<double[][]>	KmeansTSet	=	points.map(new	MapFunction<double[][],	double[][]>()	{

																//Code	for	Kmeans	calculation,	this	will	have	access	to	the	centroids	which	are	passed	in

												});

												KmeansTSet.addInput("centroids",	centroids);

												Link<double[][]>	allReduced	=	KmeansTset.allReduce();

												TSet<double[][]>	newCentroids	=	allReduced.map(new	MapFunction<double[][],	Object>()	{

												/*	Code	that	produces	the	new	centers	for	the	next	iteration.	The	allReduce	will	result	in

													a	sum	or	all	the	centers	sent	by	each	worker	so	this	map	function	simply	needs	to	compute	the

													average	to	get	the	new	centers

													*/

												});

												centroids.override(newCentroids);

								}

								//.....

				}

}



When	programming	at	the	TSet	API	level	the	developer	does	need	to	handle	any
information	related	to	task	and	communications.

Note:	The	TSet	API	 is	currently	under	development	and	has	not	been	 released
yet	and	therefore	the	API	may	change	from	what	was	discussed	in	this	section,
anyone	who	 is	 interested	can	 follow	 the	development	progress	or	contribute	 to
the	project	through	the	GitHub	repo[79].

10.4.2.1.2.2	Task	API

The	Task	API	allows	developers	to	create	their	application	at	the	Task	level.	The
developer	is	responsible	of	managing	task	level	details	when	developing	at	this
API	 level,	 the	upside	of	using	 the	Task	API	 is	 that	 it	 is	more	 flexible	 than	 the
TSet	API	so	it	allows	developers	to	add	custom	optimizations	to	the	application
code.	The	TSet	API	is	built	on	top	of	the	Task	API	therefore	the	added	layer	of
abstraction	 is	bound	 to	add	slightly	more	overheads	 to	 the	 runtime,	which	you
might	be	able	to	avoid	by	directly	coding	at	the	Task	API	level.

To	get	a	better	understanding	of	the	Task	API	take	a	look	at	how	the	classic	map
reduce	 problem	 word	 count	 is	 implemented	 at	 using	 the	 Task	 API	 in	 the
following	code	segment.	This	is	only	a	portion	of	the	example	code,	you	can	find
the	complete	code	for	the	example	at[80].

More	Task	API	examples	can	be	found	in	Twister2	documentations[81].

10.4.2.1.3	Operator	API

public	class	WordCountJob	extends	TaskWorker	{

//.....

		@Override

		public	void	execute()	{

				//	source	and	aggregator

				WordSource	source	=	new	WordSource();

				WordAggregator	counter	=	new	WordAggregator();

				//	build	the	task	graph

				TaskGraphBuilder	builder	=	TaskGraphBuilder.newBuilder(config);

				builder.addSource("word-source",	source,	4);

				builder.addSink("word-aggregator",	counter,	4).keyedReduce("word-source",	EDGE,

								new	ReduceFn(Op.SUM,	DataType.INTEGER),	DataType.OBJECT,	DataType.INTEGER);

				builder.setMode(OperationMode.BATCH);

				//	execute	the	graph

				DataFlowTaskGraph	graph	=	builder.build();

				ExecutionPlan	plan	=	taskExecutor.plan(graph);

				taskExecutor.execute(graph,	plan);

		}

		//.....

}



The	 lowest	 level	 API	 provided	 by	 Twister2	 is	 the	 Operator	 API,	 this	 allows
developers	 to	develop	applications	at	 the	 communication	 level.	However	 since
this	 API	 only	 abstracts	 out	 communication	 operations,	 details	 such	 as	 task
management	need	to	be	handled	by	the	application	developer.	Again	similar	 to
the	Task	API	 this	 provides	 the	 developer	with	more	 flexibility	 to	 create	more
optimized	applications,	at	the	cost	of	being	harder	to	program.	Twister2	supports
a	variety	of	communication	patterns,	known	as	collective	communications	in	the
HPC	world.	These	communications	are	highly	optimized	using	various	 routing
patterns	 to	 reduce	 the	 number	 of	 communication	 calls	 that	 go	 through	 the
network	to	provide	users	with	a	extremely	efficient	Operator	API.	The	following
list	show	the	communication	operations	that	are	supported	by	Twister2.	You	can
find	 more	 information	 on	 each	 or	 these	 operations	 in	 the	 Twister2
documentation[82].

Reduce
Gather
AllReduce
AllGather
Partition
Broadcast
Keyed	Reduce
Keyed	Partition
Keyed	Gather

Initial	 Performance	 comparisons	 that	 are	 discussed	 in[83]	 show	 how	Twister2
out	performs	popular	frameworks	such	Apache	Flink,	Apache	Spark	and	Apache
Strom	in	many	areas.	For	example	the	Figure	128	shows	a	comparision	between
Twister2,	MPI	 and	 Apache	 Spark	 versions	 of	 KMeans	 algorithm,	 please	 note
that	the	graph	is	in	logarithmic	scale



Figure	128:	Kmeans	Performance	Comparison[84]

Notation	:	*	DFW	refers	to	Twister2	*	BSP	refers	to	MPI	(OpenMPI)

This	 shows	 that	Twister2	 performs	 around	~10x	 faster	 than	Apache	Spark	 for
KMeans.	And	that	it	is	on	par	with	implementations	done	using	OpenMPI	which
is	a	widely	used	HPC	framework.

10.4.2.1.3.1	Resources

http://www.iterativemapreduce.org/

http://www.cs.allegheny.edu/sites/amohan/teaching/CMPSC441/paper10.pdf

https://twister2.gitbook.io/twister2/

http://dsc.soic.indiana.edu/publications/Twister2.pdf

https://www.computer.org/csdl/proceedings/cloud/2018/7235/00/723501a383-
abs.html

10.4.2.2	Twister2	Installation	☁

10.4.2.2.1	Prerequisites

http://www.iterativemapreduce.org/
http://www.cs.allegheny.edu/sites/amohan/teaching/CMPSC441/paper10.pdf
https://twister2.gitbook.io/twister2/
http://dsc.soic.indiana.edu/publications/Twister2.pdf
https://www.computer.org/csdl/proceedings/cloud/2018/7235/00/723501a383-abs.html
https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/twister-installation.md


Because	Twister2	 is	still	 in	 the	early	stages	of	development	a	binary	release	 is
not	available	as	of	yet,	therefore	to	try	out	Twister2	users	need	to	first	build	the
binaries	from	the	source	code.

Operating	System	:
Twister2	is	tested	and	known	to	work	on,
Red	Hat	Enterprise	Linux	Server	release	7
Ubuntu	14.05,	Ubuntu	16.10	and	Ubuntu	18.10

Java	(Jdk	1.8)	Covered	in	Section	[s:hadoop-local-installation].

G++	Compiler	sudo	apt-get	install	g++

Maven	Installation	Explained	in	Section	Maven

OpenMPI	Installation	Explained	in	Section	OpenMPI

Bazel	Build	Installation	Explained	in	Section	Bazel

Additional	Libraries	Explained	in	Section	Twister	Extra

10.4.2.2.1.1	Maven	Installation

Execute	the	following	commands	to	install	Maven	locally.

Adding	environmental	variables

Add	the	following	line	at	the	end	of	the	file.

10.4.2.2.1.2	OpenMPI	Installation

When	 you	 compile	 Twister2	 it	 will	 automatically	 download	 and	 compile

		mkdir	-p	~/cloudmesh/bin/maven

		cd	~/cloudmesh/bin/maven

		wget	http://mirrors.ibiblio.org/apache/maven/maven-3/3.5.2/binaries/apache-maven-3.5.2-bin.tar.gz

		tar	xzf	apache-maven-3.5.2-bin.tar.gz

		emacs	~/.bashrc

		MAVEN_HOME=~/cloudmesh/bin/maven/apache-maven-3.5.2

		PATH=$MAVEN_HOME/bin:$PATH

		export	MAVEN_HOME	PATH

		source	~/.bashrc



OpenMPI	3.1.2	with	it.	If	you	don’t	like	this	version	of	OpenMPI	and	wants	to
use	your	own	version,	you	can	compile	OpenMPI	using	following	instructions.

We	recommend	using	OpenMPI	3.1.2
Download	 OpenMPI	 3.0.0	 from	 https://download.open-
mpi.org/release/open-mpi/v3.1/openmpi-3.1.2.tar.gz
Extract	the	archive	to	a	folder	named	openmpi-3.1.2
Also	create	a	directory	named	build	 in	some	 location.	We	will	use	 this	 to
install	OpenMPI
Set	the	following	environment	variables

The	instructions	to	build	OpenMPI	depend	on	the	platform.	Therefore,	we
highly	recommend	looking	into	the	$OMPI_1101/INSTALL	file.	Platform	specific	build
files	are	available	in	$OMPI_1101/contrib/platform	directory.

In	 general,	 please	 specify	 --prefix=$BUILD	 and	 --enable-mpi-java	 as	 arguments	 to
configure	script.	If	Infiniband	is	available	(highly	recommended)	specify	--
with-verbs=<path-to-verbs-installation>.	Usually,	 the	path	 to	verbs	 installation	 is	 /usr.	 In
summary,	the	following	commands	will	build	OpenMPI	for	a	Linux	system.

If	everything	goes	well	mpirun	--version	will	show	mpirun	(Open	MPI)	3.1.2.	 Execute	 the
following	command	to	instal	$OMPI_312/ompi/mpi/java/java/mpi.jar	as	a	Maven	artifact.

10.4.2.2.1.3	Install	Extras

Install	the	other	requirements	as	follows,

sudo	 apt-get	 install	 g++	 git	 build-essential	 automake	 cmake	 libtool-bin	 zip
libunwind-setjmp0-dev	 zlib1g-dev	 unzip	 pkg-config	 python-setuptools	 -y	 sudo
apt-get	install	python-dev	python-pip

BUILD=<path-to-build-directory>

OMPI_312=<path-to-openmpi-3.1.2-directory>

PATH=$BUILD/bin:$PATH

LD_LIBRARY_PATH=$BUILD/lib:$LD_LIBRARY_PATH

export	BUILD	OMPI_312	PATH	LD_LIBRARY_PATH

cd	$OMPI_312

./configure	--prefix=$BUILD	--enable-mpi-java

make	-j	8;make	install

mvn	install:install-file	-DcreateChecksum=true	-Dpackaging=jar	-Dfile=$OMPI_312/ompi/mpi/java/java/mpi.jar	-DgroupId=ompi	-DartifactId=ompijavabinding	-Dversion=3.1.2



Now	 you	 have	 successfully	 installed	 the	 required	 packages.	 Let	 us	 compile
Twister2.

10.4.2.2.1.4	Compiling	Twister2

Now	lets	get	a	clone	of	the	source	code.

You	can	compile	the	Twister2	distribution	by	using	the	bazel	target	as	follows.

This	will	build	twister2	distribution	in	the	file

If	 you	 would	 like	 to	 compile	 the	 twister2	 without	 building	 the	 distribution
packages	use	the	command

For	compiling	a	specific	target	such	as	communications

10.4.2.2.1.5	Twister2	Distribution

After	 you’ve	 build	 the	 Twister2	 distribution,	 you	 can	 extract	 it	 and	 use	 it	 to
submit	jobs.

10.4.2.3	Twister2	Examples	☁

Twister	 documentation	 lists	 several	 examples[85]	 that	 users	 can	 leverage	 to
better	 understand	 the	 Twister2	 API’s.	 Currently	 there	 are	 several
Communication	API	examples	and	Task	API	examples	available	in	the	Twister2
documentation.	 In	 this	 section	 we	 will	 go	 through	 how	 an	 example	 can	 be
executed	with	Twister2.

git	clone	https://github.com/DSC-SPIDAL/twister2.git

cd	twister2

bazel	build	--config=ubuntu	scripts/package:tarpkgs

bazel-bin/scripts/package/twister2-client-0.1.0.tar.gz

bazel	build	--config=ubuntu	twister2/...

bazel	build	--config=ubuntu	twister2/comms/src/java:comms-java

cd	bazel-bin/scripts/package/

tar	-xvf	twister2-0.1.0.tar.gz

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/twister2-example.md


10.4.2.3.1	Submitting	a	Job

In	order	to	run	an	example	users	need	to	submit	the	example	to	Twister2	using
the	 twister	 command.	 This	 command	 is	 found	 inside	 the	 bin	 directory	 of	 the
distribution.

Here	is	a	description	of	the	command

submit	is	the	command	to	execute
cluster	 which	 resource	 manager	 to	 use,	 i.e.	 standalone,	 kubernetes,	 this
should	 be	 the	 name	 of	 the	 configuration	 directory	 for	 that	 particular
resource	manager
job-type	at	the	moment	we	only	support	jar
job-file-name	the	file	path	of	the	job	file	(the	jar	file)
job-class-name	name	of	the	job	class	with	a	main	method	to	execute

Here	is	an	example	command

In	this	command,	cluster	is	standalone	and	has	program	arguments.

For	 this	 exercise	 we	 are	 using	 the	 standlone	mode	 to	 submit	 a	 job.	 However
Twister2	 does	 support	 Kubernetes,	 Mesos,	 Slurm	 and	 Nomad	 resource
schedulers	if	users	want	to	submit	jobs	to	larger	cluster	deployments.

10.4.2.3.2	Batch	WordCount	Example

In	 this	 section	 we	 will	 run	 a	 batch	 word	 count	 example	 from	 Twister2.	 This
example	 only	 uses	 communication	 layer	 and	 resource	 scheduling	 layer.	 The
threads	are	managed	by	the	user	program.

The	example	code	can	be	found	in
twister2/examples/src/java/edu/iu/dsc/tws/examples/basic/batch/wordcount/

When	 we	 install	 Twister2,	 it	 will	 compile	 the	 examples.	 Lets	 go	 to	 the
installation	directory	and	run	the	example.

twister2	submit	cluster	job-type	job-file-name	job-class-name	[job-args]

./bin/twister2	submit	standalone	jar	examples/libexamples-java.jar	edu.iu.dsc.tws.examples.task.ExampleTaskMain	-itr	80	-workers	4	-size	1000	-op	



This	will	run	4	executors	with	8	tasks.	So	each	executor	will	have	two	tasks.	At
the	 first	phase,	 the	0-3	 tasks	 running	 in	each	executor	will	generate	words	and
after	they	are	finished,	5-8	tasks	will	consume	those	words	and	create	a	count.

10.4.3	HADOOP	RDMA	☁

Acknowledgement:	This	section	was	copied	and	modified	with	permission	from
https://www.chameleoncloud.org/appliances/17/docs/

In	Chameleon	 cloud	 it	 is	 possible	 to	 launch	 a	 virtual	Hadoop	 cluster	 on	 bare-
metal	InfiniBand	nodes	with	SR-IOV.

The	CentOS	7	SR-IOV	RDMA-Hadoop	is	based	on	a	CentOS	7	Virtual	Machine
image,	a	VM	startup	script	and	a	Hadoop	cluster	launch	script,	so	that	users	can
launch	VMs	with	SR-IOV	in	order	to	run	RDMA-Hadoop	across	these	VMs	on
SR-IOV	enabled	InfiniBand	clusters.

Image	name:	CC-CentOS7-RDMA-Hadoop
Default	user	account:	cc
Remote	access:	Key-Based	SSH
Root	access:	passwordless	sudo	from	the	cc	account
Chameleon	admin	access:	enabled	on	the	ccadmin	account
Cloud-init	enabled	on	boot:	yes
Repositories	(Yum):	EPEL,	RDO	(OpenStack)
Installed	packages:
Rebuilt	kernel	to	enable	IOMMU
Mellanox	SR-IOV	drivers	for	InfiniBand
KVM	hypervisor
Standard	development	tools	such	as	make,	gcc,	gfortran,	etc.
Config	management	tools:	Puppet,	Ansible,	Salt
OpenStack	command-line	clients
Included	VM	image	name:	chameleon-rdma-hadoop-appliance.qcow2
Included	VM	startup	script:	start-vm.sh
Included	Hadoop	cluster	launch	script:	launch-hadoop-cluster.sh
Default	VM	root	password:	nowlab

cd	bazel-bin/scripts/package/twister2-dist/

./bin/twister2	submit	standalone	jar	examples/libexamples-java.jar	edu.iu.dsc.tws.examples.batch.wordcount.WordCountJob

https://github.com/cloudmesh-community/book/blob/master/chapters/mapreduce/hadoop-rdma.md
https://www.chameleoncloud.org/appliances/17/docs/


We	 refer	 to	 the	 chameleon	 cloud	 bare	metal	 user	 guide	 for	 documentation	 on
how	 to	 reserve	 and	 provision	 resources	 using	 the	 appliance	 of	 CC-CentOS7-
RDMA-Hadoop.

	link	missing

10.4.3.1	Launching	a	Virtual	Hadoop	Cluster	on	Bare-metal	InfiniBand
Nodes	with	SR-IOV	on	Chameleon

We	provide	a	CentOS	7	VM	image	(chameleon-rdma-hadoop-appliance.qcow2)
and	a	Hadoop	cluster	launch	script	(launch-hadoop-cluster.sh)	to	facilitate	users
to	setup	Virtual	Hadoop	Clusters	effortlessly.

First,	 launch	bare-metal	 nodes	 using	 the	RDMA-Hadoop	Appliance	 and	 select
one	of	the	nodes	as	the	bootstrap	node.	This	node	will	serve	as	the	host	for	the
master	 node	 of	 the	 Hadoop	 cluster	 and	 will	 also	 be	 used	 to	 setup	 the	 entire
cluster.	Now,	 ssh	 to	 this	node.	Before	you	can	 launch	 the	cluster,	you	have	 to
download	 your	 OpenStack	 credentials	 file	 (see	 how	 to	 download	 your
credentials	file).	Then,	create	a	file	(henceforth	referred	to	as	ips-file)	with	the	ip
addresses	of	 the	bare-metal	 nodes	you	want	 to	 launch	your	Hadoop	cluster	 on
(excluding	the	bootstrap	node),	each	on	a	new	line.	Next,	run	these	commands	as
root:

The	 launch	 cluster	 script	will	 launch	VMs	 for	 you,	 then	 install	 and	 configure
Hadoop	on	these	VMs.	Note	that	when	you	launch	the	cluster	for	the	first	time,	a
lot	of	initialization	is	required.	Depending	on	the	size	of	your	cluster,	it	may	take
some	time	to	setup	the	cluster.	After	the	cluster	setup	is	complete,	the	script	will
print	an	output	telling	you	that	the	cluster	is	setup	and	how	you	can	connect	to
the	Hadoop	master	node.	Note	that	the	minimum	required	memory	for	each	VM
is	8,192	MB.	The	Hadoop	cluster	will	already	be	setup	for	use.	For	more	details
on	how	to	use	 the	RDMA-Hadoop	package	 to	run	 jobs,	please	refer	 to	 its	user
guide.

10.4.3.2	Launching	Virtual	Machines	Manually

[root@host]$	cd	/home/cc

[root@host]$	./launch-hadoop-cluster.sh	<num-of-vms-per-node>	<num-of-MB-per-VM>	<num-of-cores-per-VM>	<ips-file>	<openstack-credentials-file



We	provide	a	CentOS	7	VM	image	(chameleon-rdma-hadoop-appliance.qcow2)
and	a	VM	startup	script	(start-vm.sh)	to	facilitate	users	to	launch	VMs	manually.
Before	 you	 can	 launch	 a	VM,	 you	 have	 to	 create	 a	 network	 port.	 To	 do	 this,
source	your	OpenStack	 credentials	 file	 (see	how	 to	download	your	 credentials
file)	and	run	this	command:

Note	the	MAC	address	and	IP	address	are	in	the	output	of	 this	command.	You
should	use	this	MAC	address	while	launching	a	VM	and	the	IP	address	to	ssh	to
the	VM.	You	also	need	the	PCI	device	ID	of	the	virtual	function	that	you	want	to
assign	to	the	VM.	This	can	be	obtained	by	running	"lspci	|	grep	Mellanox"	and
looking	 for	 the	 device	 ID	 (with	 format	 -	 XX:XX.X)	 of	 one	 of	 the	 virtual
functions	as	shown	next:

The	PCI	device	ID	of	the	Virtual	Function	is	03:00:1	in	the	previous	example.

Now,	you	can	 launch	a	VM	on	your	 instance	with	SR-IOV	using	 the	provided
VM	startup	script	and	corresponding	arguments	as	follows	with	the	root	account.

Please	 note	 that	 and	 are	 the	 ones	 you	 get	 from	 the	 outputs	 of	 previous
commands.	And	is	the	name	of	VM	virtual	NIC	interface.	For	example:

You	 can	 also	 edit	 corresponding	 fields	 in	 VM	 startup	 script	 to	 change	 the
number	of	cores,	memory	size,	etc.

You	should	now	have	a	VM	running	on	your	bare	metal	instance.	If	you	want	to
run	more	VMs	 on	 your	 instance,	 you	will	 have	 to	 create	more	 network	 ports.
You	will	also	have	to	change	the	name	of	VM	virtual	NIC	interface	to	different
ones	(like	tap1,	tap2,	etc.)	and	select	different	device	IDs	of	virtual	functions.

10.4.3.3	Extra	Initialization	when	Launching	Virtual	Machines

[user@host]$	neutron	port-create	sharednet1

[cc@host]$	lspci	|	grep	Mellanox

03:00.0	Network	controller:	Mellanox	Technologies	MT27500	Family	[ConnectX-3]

03:00.1	Network	controller:	Mellanox	Technologies	MT27500/MT27520	Family	[ConnectX-3/ConnectX-3	Pro	Virtual	Function]

...

[root@host]$	./start-vm.sh	<vm-mac>	<vm-ifname>	<virtual-function-device-id>

[root@host]$	./start-vm.sh	fa:16:3e:47:48:00		tap0		03:00:1



In	order	to	run	RDMA-Hadoop	across	VMs	with	SR-IOV,	and	keep	the	size	of
VM	 image	 small,	 extra	 initialization	 will	 be	 executed	 when	 launching	 VM
automatically,	which	includes:

Detect	Mellanox	SR-IOV	drivers,	download	and	install	it	if	nonexistent
Detect	Java	package	installed,	download	and	install	if	non-existent
Detect	 RDMA-Hadoop	 package	 installed,	 download	 and	 install	 if	 non-
existent

After	 finishing	 the	 extra	 initialization	 procedure,	 you	 should	 be	 able	 to	 run
Hadoop	jobs	with	SR-IOV	support	across	VMs.	Note	that	this	initialization	will
be	 done	 automatically.	 For	 more	 details	 about	 the	 RDMA-Hadoop	 package,
please	refer	to	its	user	guide.

10.4.3.4	Important	Note	for	Tearing	Down	Virtual	Machines	and	Deleting
Network	Ports

Once	you	are	done	with	your	experiments,	you	should	kill	all	the	launched	VMs
and	delete	 the	 created	network	ports.	 If	 you	used	 the	 launch-hadoop-cluster.sh
script	to	launch	VMs,	you	can	do	this	by	running	the	kill-vms.sh	script	as	shown
next.	 This	 script	 will	 kill	 all	 launched	 VMs	 and	 also	 delete	 all	 the	 created
network	ports.

Please	note	that	it	is	important	to	delete	unused	ports	after	experiments.

[root@host]$	cd	/home/cc

[root@host]$	./kill-vms.sh	<ips-file>	<openstack-credentials-file>

\end{vernatim}

If	you	launched	VMs	using	the	start-vm.sh	script,	you	should	first	manually	kill	all	the	VMs.	Then,	delete	all	the	created	network	ports	using	this	command:

[user@host]$	neutron	port-delete	PORT



11	CONTAINER

11.1	INTRODUCTION	TO	CONTAINERS	☁

	Learning	Objectives

Knowing	what	a	container	is.
Differentiating	Containers	from	Virtual	Machines.
Understanding	the	historical	aspects	that	lead	to	containers.

This	section	covers	an	introduction	to	containers	that	is	split	up	into	four	parts.
We	discuss	microservices,	serverless	computing,	Docker,	and	kubernetes.

11.1.1	Motivation	-	Microservices

We	discuss	the	motivation	for	containers	and	contrast	them	to	virtual	machines.
Additionally	 we	 provide	 a	 motivation	 for	 containers	 as	 they	 can	 be	 used	 to
microservices.

	Container	11:01	Container	A

11.1.2	Motivation	-	Serverless	Computing

We	 enhance	 our	 motivation	 while	 contrasting	 containers	 and	 microservices
while	 relating	 them	 to	 serverless	 computing.	 We	 anticipate	 that	 serverless
computing	will	increase	in	importance	over	the	next	years

	Container	15:08	Container	B

11.1.3	Docker

In	order	for	us	to	use	containers,	we	go	beyond	the	historical	motivation	that	was

https://github.com/cloudmesh-community/book/blob/master/chapters/container/container.md
https://youtu.be/-HlB0eiwV10
https://youtu.be/fxDc5cL6MgQ


introduced	in	a	previous	section	and	focus	on	Docker	a	predominant	technology
for	containers	on	Windows,	Linux,	and	macOS

	Container	40:09	Container	C

11.1.4	Docker	and	Kubernetes

We	continue	our	discussion	about	docker	and	introduce	kubernetes,	allowing	us
to	run	multiple	containers	on	multiple	servers	building	a	cluster	of	containers.

	Container	50:14	Container	D

11.2	DOCKER

11.2.1	Introduction	to	Docker	☁

Docker	is	 the	company	driving	the	container	movement	and	the	only	container
platform	provider	to	address	every	application	across	the	hybrid	cloud.	Today’s
businesses	 are	 under	 pressure	 to	 digitally	 transform	 but	 are	 constrained	 by
existing	 applications	 and	 infrastructure	 while	 rationalizing	 an	 increasingly
diverse	 portfolio	 of	 clouds,	 datacenters	 and	 application	 architectures.	 Docker
enables	 true	 independence	 between	 applications	 and	 infrastructure	 and
developers	 and	 IT	 ops	 to	 unlock	 their	 potential	 and	 creates	 a	model	 for	 better
collaboration	and	innovation.	An	overview	of	docker	is	provided	at

https://docs.docker.com/engine/docker-overview/

https://youtu.be/A2b-LrnoMqg
https://youtu.be/V41oi2Bh8Cc
https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-intro.md
https://docs.docker.com/engine/docker-overview/


Figure	129:	Docker	Containers	[Image	Source]	[86]

Figure	129	shows	how	docker	containers	fit	into	the	system	##	Docker	platform

Docker	provides	users	 and	developers	with	 the	 tools	 and	 technologies	 that	 are
needed	 to	manage	 their	 application	 development	 using	 containers.	 Developers
can	easily	setup	different	environments	for	development,	testing	and	production.

11.2.1.1	Docker	Engine

The	Docker	 engine	 can	 be	 thought	 of	 as	 the	 core	 of	 the	 docker	 runtime.	 The
docker	 engine	mainly	 provides	 3	 services.	 Figure	 130	 shows	 how	 the	 docker
engine	is	composed.

A	long	running	server	which	manages	the	containers
A	REST	API
A	command	line	interface

https://www.docker.com/sites/default/files/Package%20software%40x2.png


Figure	130:	Docker	Engine	Component	Flow	[Image	Source]	[86]

11.2.1.2	Docker	Architecture

The	main	concept	of	the	docker	architecture	is	based	on	the	simple	client-server
model.	Docker	clients	 communicate	with	 the	Docker	 server	also	known	as	 the
Docker	daemon	to	request	various	resources	and	services.	THe	daemon	manages
all	 the	background	tasks	that	need	to	be	performed	to	complete	client	requests.
Managing	 and	 distributing	 containers,	 running	 the	 containers,	 bulding
containers,	 etc.	 are	 responsibilities	 of	 the	 Docker	 daemon.	 Figure	 131	 shows
how	the	docker	architecture	is	setup.	The	client	module	and	server	can	run	either
in	 the	 same	 machine	 or	 in	 separate	 machines.	 In	 the	 latter	 case	 the
communication	between	the	client	and	server	are	done	through	the	network.

https://docs.docker.com/engine/docker-overview/#docker-engine


Figure	131:	Docker	Architecture	[Image	Source]	[86]

11.2.1.3	Docker	Survey

In	 2016	 Docker	 Inc.	 surveyed	 over	 500	 Docker	 developers	 and	 operations
experts	in	various	phases	of	deploying	container-based	technologies.	The	result
is	available	in	the	The	Docker	Survey	2016	as	seen	in	Figure	132.

https://www.docker.com/survey-2016

https://docs.docker.com/engine/docker-overview/#docker-architecture
https://www.docker.com/survey-2016


Figure	132:	Docker	Survey	Results	2016	[Image	Source]	[86]

11.2.2	Running	Docker	Locally	☁

⚠	Please	verify	if	the	instructions	are	still	up	to	date.	Rapid	changes	could	mean
they	can	be	outdated	quickly.	Also	we	assume	the	ubuntu	instalations	may	have
changed	and	may	be	different	between	18.04	and	19.04.

The	official	 installation	documentation	 for	docker	can	be	 found	by	visiting	 the
following	Web	page:

https://www.docker.com/community-edition

Here	you	will	find	a	variety	of	packages,	one	of	which	will	hopefully	suitable	for
your	operating	system.	The	supported	operating	systems	currently	include:

OSX,	Windows,	Centos,	Debian,	Fedora,	Ubuntu,	AWS,	Azure

Please	 chose	 the	 one	most	 suitable	 for	 you.	 For	 your	 convenience	we	 provide
you	with	installation	instructions	for	OSX	(Section	Docker	on	OSX),	Windows
10	(Section	Docker	on	Windows)	and	Ubuntu	(Section	Docker	on	ubuntu).

11.2.2.1	Instillation	for	OSX

The	docker	community	edition	for	OSX	can	be	found	at	the	following	link

https://blog.docker.com/2016/04/the-modern-software-supply-chain-runs-on-docker/
https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-local.md
https://www.docker.com/community-edition


https://store.docker.com/editions/community/docker-ce-desktop-mac

We	recommend	that	at	this	time	you	get	the	version	Docker	CE	for	MAC	(stable)

https://download.docker.com/mac/stable/Docker.dmg

Clicking	on	 the	 link	will	 download	 a	 dmg	 file	 to	 your	machine,	 that	 you	 than
will	need	to	install	by	double	clicking	and	allowing	access	to	the	dmg	file.	Upon
installation	a	whale	in	the	top	status	bar	shows	that	Docker	is	running,	and	you	can
access	it	via	a	terminal.

Docker	integrated	in	the	menu	bar	on	OSX

11.2.2.2	Installation	for	Ubuntu

In	 order	 to	 install	 Docker	 community	 edition	 for	 Ubuntu,	 you	 first	 have	 to
register	the	repository	from	where	you	can	download	it.	This	can	be	achieved	as
follows:

Now	that	you	have	configured	the	repository	location,	you	can	install	it	after	you
have	updated	the	operating	system.	The	update	and	install	is	done	as	follows:

Once	 installed	execute	 the	 following	command	 to	make	sure	 the	 installation	 is
done	properly

This	should	give	you	an	output	similar	to	the	next.

local$	sudo	apt-get	update

local$	sudo	apt-get	install	\

				apt-transport-https	\

				ca-certificates	\

				curl	\

				software-properties-common

local$	curl	-fsSL	https://download.docker.com/linux/ubuntu/gpg	|	sudo	apt-key	add	-

local$	sudo	apt-key	fingerprint	0EBFCD88

local$	sudo	add-apt-repository	\

			"deb	[arch=amd64]	https://download.docker.com/linux/ubuntu	\

			local$(lsb_release	-cs)	\

			stable"

local$	sudo	apt-get	update

local$	sudo	apt-get	install	docker-ce

local$	sudo	apt-get	update

local$	sudo	systemctl	status	docker

	docker.service	-	Docker	Application	Container	Engine

https://store.docker.com/editions/community/docker-ce-desktop-mac
https://download.docker.com/mac/stable/Docker.dmg


11.2.2.3	Installation	for	Windows	10

Docker	needs	Microsoft’s	Hyper-V	to	be	enabled,	but	it	will	impact	running	the
virtual	machines

Steps	to	Install

Download	 Docker	 for	Windows(Community	 Edition)	 from	 the	 following
link
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
Follow	the	Wizard	steps	in	the	installer
Launch	docker
Docker	usually	lauches	automatically	during	windows	startup.

11.2.2.4	Testing	the	Install

To	test	if	it	works	execute	the	following	commands	in	a	terminal:

You	should	see	an	output	similar	to

To	see	if	you	can	run	a	container	use

			Loaded:	loaded	(/lib/systemd/system/docker.service;	enabled;	vendor	preset:	enabled)

			Active:	active	(running)	since	Wed	2018-10-03	13:02:04	EDT;	15min	ago

					Docs:	https://docs.docker.com

	Main	PID:	6663	(dockerd)

				Tasks:	39

local$	docker	version

docker	version

Client:

		Version:						17.03.1-ce

		API	version:		1.27

		Go	version:			go1.7.5

		Git	commit:			c6d412e

		Built:								Tue	Mar	28	00:40:02	2017

		OS/Arch:						darwin/amd64

Server:

		Version:						17.03.1-ce

		API	version:		1.27	(minimum	version	1.12)

		Go	version:			go1.7.5

		Git	commit:			c6d412e

		Built:								Fri	Mar	24	00:00:50	2017

		OS/Arch:						linux/amd64

		Experimental:	true

local$	docker	run	hello-world

https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe


Once	executed	you	should	see	an	output	similar	to

11.2.3	Dockerfile	☁

In	order	for	us	to	build	containers,	we	need	to	know	what	is	in	the	container	and
how	 to	 create	 an	 image	 representing	 a	 container.	 To	 do	 this	 a	 convenient
specification	format	called	Dockerfile	can	be	used.	Once	a	Dockerfile	is	created,	we	can
build	images	from	it

We	showcase	here	 the	use	of	 a	dockerfile	on	a	 simple	example	using	a	REST
service.

This	example	is	copied	from	the	official	docker	documentation	hosted	at

https://docs.docker.com/get-started/part2/#publish-the-image

11.2.3.1	Specification

It	os	best	to	start	with	an	empty	directory	in	which	we	create	a	Dockerfile.

Unable	to	find	image	'hello-world:latest'	locally

latest:	Pulling	from	library/hello-world

78445dd45222:	Pull	complete

Digest:	sha256:c5515758d4c5e1e838e9cd307f6c6a	.....

Status:	Downloaded	newer	image	for

								hello-world:latest

Hello	from	Docker!

This	message	shows	that	your	installation	appears

to	be	working	correctly.

To	generate	this	message,	Docker	took	the	following

steps:

1.	The	Docker	client	contacted	the	Docker	daemon.

2.	The	Docker	daemon	pulled	the	"hello-world"	image

			from	the	Docker	Hub.

3.	The	Docker	daemon	created	a	new	container	from	that

			image	which	runs	the	executable	that	produces	the

			output	you	are	currently	reading.

4.	The	Docker	daemon	streamed	that	output	to	the	Docker

			client,	which	sent	it	to	your	terminal.

To	try	something	more	ambitious,	you	can	run	an	Ubuntu

container	with:

local$	docker	run	-it	ubuntu	bash

Share	images,	automate	workflows,	and	more	with	a

free	Docker	ID:

https://cloud.docker.com/

For	more	examples	and	ideas,	visit:

https://docs.docker.com/engine/userguide/

https://github.com/cloudmesh-community/book/blob/master/chapters/container/dockerfile.md
https://docs.docker.com/get-started/part2/#publish-the-image


Next,	we	create	an	empty	file	called	Dockerfile

We	copy	the	following	contents	into	the	Dockerfile	and	after	that	create	a	simple
REST	service

We	also	create	a	requirements.txt	file	that	we	need	for	installing	the	necessary	python
packages

The	 example	 application	 we	 use	 here	 is	 a	 student	 info	 served	 via	 a	 RESTful
service	implemented	using	python	flask.	It	is	stored	in	the	file	app.py

To	build	the	container,	we	can	use	the	following	command:

To	run	the	service	open	a	new	window	and	cd	into	the	directory	where	you	code

local$	mkdir	~/cloudmesh/docker

local$	cd	~/cloudmesh/docker

local$	touch	Dockerfile

#	Use	an	official	Python	runtime	as	a	parent	image

FROM	python:3.7-slim

#	Set	the	working	directory	to	/app

WORKDIR	/app

#	Copy	the	current	directory	contents	into	the	container	at	/app

COPY	.	/app

#	Install	any	needed	packages	specified	in	requirements.txt

RUN	pip	install	--trusted-host	pypi.python.org	-r	requirements.txt

#	Make	port	80	available

EXPOSE	80

#	Run	app.py	when	the	container	launches

CMD	["python",	"app.py"]

Flask

from	flask	import	Flask,	jsonify

import	os

app	=	Flask(__name__)

@app.route('/student/albert')

def	alberts_information():

				data	=	{

								'firstname':	'Albert',

								'lastname':	'Zweistsein',

								'university':	'Indiana	University',

								'email':	'albert@example.com'

								}

				return	jsonify(**data)

if	__name__	==	'__main__':

				app.run(host="0.0.0.0",	port=80)

local$	docker	build	-t	students	.



is	located.	Now	say

Your	docker	container	will	run	and	you	can	visit	it	by	using	the	command

To	stop	the	container	do	a

and	locate	the	id	of	the	container,	e.g.,	2a19776ab812,	and	then	run	this

To	delete	 the	docker	 container	 image,	you	must	 first	 sop	all	 instances	using	 it
and	the	remove	the	image.	You	can	see	the	images	with	the	command

Then	you	can	locate	all	containers	using	that	image	while	looking	in	the	IMAGE
column	 or	 using	 a	 simple	 fgrep	 in	 case	 you	 have	 many	 images.	 stop	 the
containers	using	that	image	and	that	you	can	say

while	the	number	is	the	container	id

Once	you	killed	all	containers	using	that	image,	you	can	remove	the	image	with
the	rmi	command.

11.2.3.2	References

The	reference	documentation	about	docker	files	can	be	found	at

https://docs.docker.com/engine/reference/builder/

11.2.4	Docker	Hub	☁

Docker	 Hub	 is	 a	 cloud-based	 registry	 service	 which	 provides	 a	 “centralized

local$	docker	run	-d	-p	4000:80	students

local$	curl	http://localhost:4000/student/albert

local$	docker	ps

local$	docker	stop	2a19776ab812

local$	docker	images

local$	docker	rm	74b9b994c9bd

local$	docker	rmi	8b3246425402

https://docs.docker.com/engine/reference/builder/
https://github.com/cloudmesh-community/book/blob/master/chapters/container/dockerhub.md


resource	 for	 container	 image	 discovery,	 distribution	 and	 change	 management,
user	 and	 team	 collaboration,	 and	 workflow	 automation	 throughout	 the
development	 pipeline”	 [86].	 There	 are	 both	 private	 and	 public	 repositories.
Private	repository	can	only	be	used	by	people	within	their	own	organization.

Docker	Hub	is	integrated	into	Docker	as	the	default	registry.	This	means	that	the
docker	 pull	 command	will	 initialize	 the	 download	 automatically	 from	Docker
Hub	[87].	 It	 allows	users	 to	download	 (pull),	build,	 test	and	store	 their	 images
for	easy	deployment	on	any	host	they	may	have	[86].

11.2.4.1	Create	Docker	ID	and	Log	In

A	 log-in	 is	 not	 necessary	 for	 pulling	 Docker	 images	 from	 the	 Hub	 but	 it	 is
necessary	for	pushing	images	to	dockerhub	for	sharing.	Thus	to	store	images	on
Docker	hub	you	need	 to	create	an	account	by	visiting	Docker	Hub	Web	page.
Dockerhub	 offers	 in	 general	 a	 free	 account,	 but	 it	 has	 restrictions.	 The	 free
account	 allows	 you	 to	 share	 images	 that	 you	 distriuute	 publically,	 but	 it	 only
allows	 one	 private	 Docker	 Hub	 Repository.	 In	 case	 you	 need	more,	 you	 will
need	to	upgrade	to	a	paid	plan.

For	 the	 rest	 of	 the	 tutorial	 we	 assume	 that	 you	 use	 the	 environment	 variable
DOCKERHUB	to	indicate	yourusername.	It	is	easiset	if	you	set	it	in	your	shell
with

11.2.4.2	Searching	for	Docker	Images

There	are	two	ways	to	search	for	Docker	images	on	Docker	Hub:

One	way	is	to	use	the	Docker	command	line	tool.	We	can	open	a	terminal	and
run	the	docker	search	command.	For	example,	the	following	command	searches
for	centOS	images:

you	will	see	output	similar	to:

NAME DESCRIPTION STAR OFFICIAL AUTOMATED

local$	export	DOCKERHUB=<PUT	YOUR	DOCKER	USERNAME	HERE>

local$	sudo	docker	search	centos

https://hub.docker.com/


centos Official	CentOS 4130 [OK]

ansible/centos7 Ansible	on
Centos7 105 [OK]

…

If	you	do	not	want	to	use	sudo	with	docker	command	each	time	you	need	to	add
the	 current	 user	 into	 the	 docker	 group.	 You	 can	 do	 that	 using	 the	 following
command.

This	will	prompt	you	to	enter	the	password	for	the	current	user.	Now	you	should
be	able	to	execute	the	previous	command	without	using	sudo.

Official	repositories	in	dockerhub	are	public,	certified	repositories	from	vendors
and	 contributors	 to	 Docker.	 They	 contain	 Docker	 images	 from	 vendors	 like
Canonical,	 Oracle,	 and	 Red	 Hat	 that	 you	 can	 use	 as	 the	 basis	 to	 build	 your
applications	 and	 services.	 There	 is	 one	 official	 repository	 in	 this	 list,	 the	 first
one,	centos.

The	other	way	is	to	search	via	the	Web	Search	Box	at	the	top	of	the	Docker	web
page	by	typing	the	keyword.	The	search	results	can	be	sorted	by	number	of	stars,
number	of	pulls,	and	whether	it	is	an	official	image.	Then	for	each	search	result,
you	 can	 verify	 the	 information	 of	 the	 image	 by	 clicking	 the	 details	 button	 to
make	sure	this	is	the	right	image	that	fits	your	needs.

11.2.4.3	Pulling	Images

A	particular	image	(take	centos	as	an	example)	can	be	pulled	using	the	following
command:

Tags	 can	 be	 used	 to	 specify	 the	 image	 to	 pull.	 By	 default	 the	 tag	 is	 latest,
therefore	the	previous	command	is	the	same	as	the	following:

local$	sudo	usermod	-aG	docker	${USER}

local$	su	-	${USER}

local$	docker	pull	centos

local$	docker	pull	centos:latest



You	can	use	a	different	tag:

To	check	the	existing	local	docker	images,	run	the	following	command:

The	results	show:

REPOSITORY TAG IMAGE	ID CREATED SIZE
centos latest 26cb1244b171 2	weeks	ago 195MB
centos 6 2d194b392dd1 2	weeks	ago 195MB

11.2.4.4	Create	Repositories

In	 order	 to	 push	 images	 to	Docker	Hub,	 you	 need	 to	 have	 a	 and	 account	 and
create	a	repository.

When	you	first	create	a	Docker	Hub	user,	you	see	a	Get	started	with	Docker	Hub
screen,	from	which	you	can	click	directly	into	Create	Repository.	You	can	also
use	the	Create	menu	to	Create	Repository.	When	creating	a	new	repository,	you
can	choose	 to	put	 it	 in	your	Docker	ID	namespace,	or	 that	of	any	organization
that	you	are	in	the	owners	team	[88].

As	 an	 example,	we	 created	 a	 repository	 cloudtechnology	with	 the	 namespace	
$DOCKERHUB	 (here	 DOCKERHUB	 is	 your	 docker	 hub	 username).	 Hence	 the	 full	 name	 is	
$DOCKERHUB/cloudtechnology

11.2.4.5	Pushing	Images

To	push	an	image	to	the	repository	created,	the	following	steps	can	be	followed.

First,	log	into	Docker	Hub	from	the	command	line	by	specifying	the	username.
If	you	encounter	permission	issues	please	use	sudo	in	front	of	the	command

Enter	the	password	when	prompted.	If	everything	worked	you	will	get	a	message

local$	docker	pull	centos:6

local$	docker	images

$	docker	login	--username=$DOCKERHUB



similar	to:

Second,	check	the	image	ID	using:

the	result	looks	similar	to:

REPOSITORY TAG IMAGE	ID CREATED SIZE
cloudmesh-nlp latest 1f26a5f7a1b4 10	days	ago 1.79GB
centos latest 26cb1244b171 2	weeks	ago 195MB

centos latest 2d194b392dd1 2	weeks	ago 195MB

Here,	 the	 the	 image	with	 ID	1f26a5f7a1b4	 is	 the	 one	 to	 push	 to	Docker	Hub.
You	can	choose	another	image	instead	if	you	like.

Third,	tag	the	image

Here	we	have	 used	 a	 version	 number	 as	 a	 tag.	However	 another	 good	way	of
adding	 a	 tag	 is	 to	 use	 a	 keyword/tag	 that	 will	 help	 you	 understand	 what	 this
container	should	be	used	in	conjunction	with,	or	what	it	represents.

Fourth,	now	the	list	of	images	will	look	something	like

REPOSITORY TAG IMAGE	ID CREATED SIZE
cloudmesh-nlp latest 1f26a5f7a1b4 10	d	ago 1.79GB
$DOCKERHUB/cloudmesh v1.0 1f26a5f7a1b4 10	d	ago 1.79GB
centos latest 26cb1244b171 2	w	ago 195MB
centos latest 2d194b392dd1 2	w	ago 195MB

Fifth,	Now	you	can	see	an	images	under	the	name	$DOCKERHUB/cloudmesh,	we	now	need	to
push	this	image	to	the	repository	that	we	created	on	the	docker	hub	website.	For
that	execute	the	following	command.

Login	Succeeded

$	docker	images

$	docker	tag	1f26a5f7a1b4	$DOCKERHUB/cloudmesh:v1.0



It	shows	something	similar	to,	to	make	sure	you	can	check	on	docker	hub	if	the
images	that	was	pushed	is	listed	in	the	repository	that	we	created.

Sixth,	now	the	image	is	available	on	Docker	Hub.	Everyone	can	pull	it	since	it	is
a	public	repository	by	using	command:

Please	remember	that	the	USERNAME	is	the	username	for	the	user	that	makes
this	image	publically	available.	If	you	are	the	user	you	will	see	the	value	being
the	one	from	$DOCKERHUB,	If	not	you	will	see	here	the	username	of	the	user
uploading	the	image

11.2.4.6	Resources

The	offical	Overview	of	Docker	Hub	[86]
Information	about	using	docker	repositories	can	be	found	at	Repositories	on
Docker	Hub	[88]
How	to	Use	DockerHub	[87]
Docker	Tutorial	Series	[89]

11.2.5	Docker	Compose	☁

11.2.5.1	Introduction

Docker	compose	is	a	tool	for	defining	and	running	multi-container	using	docker
container	to	package	them	as	an	application.	Docker	compose	uses	a	YAML	file
to	specify	the	dependencies	between	the	containers	and	their	configuration.	The
nice	feature	 is	 taht	with	a	single	command	you	create	and	start	all	 the	services
from	your	configuration	file	and	can	maage	the	application	including	shutting	it
down.

$	docker	push	$DOCKERHUB/cloudmesh

The	push	refers	to	repository	[docker.io/$DOCKERHUB/cloudmesh]

18f9479cfc2c:	Pushed

e9ddee98220b:	Pushed

...

db584c622b50:	Mounted	from	library/ubuntu

a94e0d5a7c40:	Mounted	from	library/ubuntu

...

v1.0:	digest:	sha256:305b0f911077d9d6aab4b447b...	size:	3463

$	docker	pull	USERNAME/cloudmesh

https://docs.docker.com/docker-hub/#use-official-repositories
https://docs.docker.com/docker-hub/repos/
https://www.linux.com/blog/learn/intro-to-linux/2018/1/how-use-dockerhub
https://rominirani.com/docker-tutorial-series-part-4-docker-hub-b51fb545dd8e
https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-compose.md


Using	docker	compose	includes	a	four-step	process:

1.	 Define	 your	 application’s	 environment	 with	 a	 Dockerfile	 so	 it	 can	 be
reproduced	anywhere.

2.	 Define	the	services	that	make	up	your	application	in	a	 docker-compose.yml	 file	so
they	can	be	specified	in	a	single	file	and	run	with	simple	docker	compose
commands.

3.	 To	start	the	application	use	the	command	docker-compose	up

4.	 To	shut	down	the	application	use	the	command	docker-compose	down

11.2.5.2	Installation

Docker	 compose	 can	 be	 installed	 on	 Windows	 10	 EDU/PRO,	 Linux,	 and
macOS.

11.2.5.2.1	Install	on	MacOS

For	macOS	please	go	to	this	link	to	download	a	desktop	version:

https://docs.docker.com/docker-for-mac/install/

11.2.5.2.2	Install	on	Linux

On	Linux	you	can	run	the	command.

Please	note	that	you	use	the	newest	version	which	can	be	found	on	the	download
Web	page.	After	downloading,	make	sure	that	you	apply	executable	permissions
to	binary:

11.2.5.2.3	Install	on	Windows	10

11.2.5.2.3.1	System	Requirements

sudo	curl	-L	"https://github.com/docker/compose/releases/download/1.24.1/docker-compose-$(uname	-s)-$(uname	-m)"	-o	/usr/local/bin/docker-compose

sudo	chmod	+x	/usr/local/bin/docker-compose

https://docs.docker.com/docker-for-mac/install/


In	case	you	use	Windows	you	need	the	follwing	minimal	requirements:

Windows	10	64-bit
Pro,	Enterprise,	or	Education	(Build	15063	or	later).
Hyper-V	and	Containers	Windows	features	must	be	enabled.

The	 following	 hardware	 prerequisites	 are	 required	 to	 successfully	 run	 Client
Hyper-V	on	Windows	10:

64	bit	processor	with	Second	Level	Address	Translation	(SLAT)
4GB	system	RAM,
BIOS-level	hardware,
Virtualization	support	must	be	enabled	in	the	BIOS	settings.

Go	to	this	link	to	download	a	desktop	verion:

https://hub.docker.com/?overlay=onboarding

11.2.5.2.4	Test	the	installation

It	 is	 important	 that	you	test	your	 instalation	before	you	move	forward.This	can
be	 done	 on	 the	 commandline	 with	 the	 command.	More	 involved	 tests	 can	 be
conducted	while	using	the	simple	example	depicted	in	this	section.

11.2.5.3	Docker	Compose	File	Directives

To	use	docker	compose,	you	will	need	a	file	 that	contains	specifications	of	the
containers	 and	 their	 dependencies.	 We	 will	 demonstrate	 this	 concept	 with	 a
simple	example.

We	are	starting	a	redis	cache	server,	a	postgresql	database	server,	and	containers	vote,	
result,	worker,	visualizer	to	provide	frontend	an	backend	services	that	interacte	with	the
containers.

After	 you	 have	 reviewed	 the	 yaml	 file,	 we	 will	 explain	 the	 different	 parts	 in
more	detail.

$	docker-compose	--version

docker-compose	version	1.24.1,	build	1110ad01

https://hub.docker.com/?overlay=onboarding


version:	"3.7"

services:

		redis:

				image:	redis:alpine

				ports:

						-	"6379"

				networks:

						-	frontend

				deploy:

						replicas:	2

						update_config:

								parallelism:	2

								delay:	10s

						restart_policy:

								condition:	on-failure

		db:

				image:	postgres:9.4

				volumes:

						-	db-data:/var/lib/postgresql/data

				networks:

						-	backend

				deploy:

						placement:

								constraints:	[node.role	==	manager]

		vote:

				image:	dockersamples/examplevotingapp_vote:before

				ports:

						-	"5000:80"

				networks:

						-	frontend

				depends_on:

						-	redis

				deploy:

						replicas:	2

						update_config:

								parallelism:	2

						restart_policy:

								condition:	on-failure

		result:

				image:	dockersamples/examplevotingapp_result:before

				ports:

						-	"5001:80"

				networks:

						-	backend

				depends_on:

						-	db

				deploy:

						replicas:	1

						update_config:

								parallelism:	2

								delay:	10s

						restart_policy:

								condition:	on-failure

		worker:

				image:	dockersamples/examplevotingapp_worker

				networks:

						-	frontend

						-	backend

				deploy:

						mode:	replicated

						replicas:	1

						labels:	[APP=VOTING]

						restart_policy:

								condition:	on-failure

								delay:	10s

								max_attempts:	3

								window:	120s

						placement:

								constraints:	[node.role	==	manager]

		visualizer:

				image:	dockersamples/visualizer:stable

				ports:

						-	"8080:8080"

				stop_grace_period:	1m30s



11.2.5.3.1	Configuration

11.2.5.3.1.1	build

The	build	attribute	specifies	either	a	string	containing	a	path	to	the	build	context:

11.2.5.3.1.2	context

The	context	attribute	introduces	either	a	path	to	a	directory	containing	a	Dockerfile,
or	a	url	to	a	git	repository.	This	information	is	used	during	the	build	phase.

11.2.5.3.1.3	ARGS

The	 ARGS	 attribute	 introduces	 environment	 variables	 accessible	 only	 during	 the
build	process.

11.2.5.3.1.4	command

The	command	attribute	overrides	the	default	command.

11.2.5.3.1.5	depends_on

				volumes:

						-	"/var/run/docker.sock:/var/run/docker.sock"

				deploy:

						placement:

								constraints:	[node.role	==	manager]

networks:

		frontend:

		backend:

volumes:

		db-data:

version:	"3.7"

services:

		webapp:

				build:	./dir

build:

		context:	./dir

ARG	buildno

ARG	gitcommithash

build:

		context:	.

		args:

				buildno:	1

				gitcommithash:	cdc3b19

command:	bundle	exec	thin	-p	3000



The	 depends_on	 attribute	 introduces	 dependencies	 between	 services.	 The	 container
that	 depends	 on	 other	 containers,	 waits	 for	 them	 to	 become	 available.	 In	 the
following	example	the	web	serviec	depends	on	the	db	and	redis	services:

11.2.5.3.1.6	image

The	 image	 attribute	 specifies	 the	 image	 for	 the	 container.	 You	 can	 either	 use	 a
repository/tag	or	a	partial	image	ID	to	identify	the	image

11.2.5.3.1.7	ports

The	ports	attribute	expose	ports	ports	of	teh	container.	However,	please	note	that
the	port	mapping	is	incompatible	with	network_mode:	host.

11.2.5.3.1.8	volumes

The	volume	attribute	mounts	ahost	paths	or	named	volumes.	A	volume	is	specified
as	sub-options	to	a	service.

You	can	mount	a	host	path	as	part	of	a	definition	for	a	single	service,	and	there	is
no	need	to	define	it	in	the	top	level	volumes	key.

11.2.5.4	Usages

11.2.5.4.1	Build	A	Service	depending	on	MongoDB

version:	"3.7"

services:

		web:

				build:	.

				depends_on:

						-	db

						-	redis

		redis:

				image:	redis

		db:

				image:	postgres

image:	redis

image:	ubuntu:14.04

image:	mongo

ports:

	-	"3000"

	-	"3000-3005"

	-	"8000:8000"

	-	"9090-9091:8080-8081"

	-	"49100:22"

	-	"127.0.0.1:8001:8001"

	-	"127.0.0.1:5000-5010:5000-5010"

	-	"6060:6060/udp"



By	default,	web	service	can	reach	the	 mongo	service	by	using	the	service’s	name	as
we	configured	the	database	URI	to	be

mongodb://mongo:27017.

To	start	the	two	docker	containers	you	can	use	the	command:

We	can	close	both	docker	containers	with:

11.3	DOCKER	PAAS

11.3.1	Docker	Clusters	☁

In	this	section	we	present	mechnisms	for	managing	containers	accross	multiple
hosts.	This	includes	docker	swarm	and	kubernetes.

11.3.2	Docker	Swarm	☁

A	swarm	is	a	group	of	machines	that	are	running	Docker	and	are	joined	into	a
cluster.	Docker	commands	are	executed	on	a	cluster	by	a	swarm	manager.	The
machines	in	a	swarm	can	be	physical	or	virtual.	After	joining	a	swarm,	they	are
referred	to	as	nodes.

11.3.2.1	Terminology

In	this	section	if	a	command	is	prefixed	with	local$	it	means	the	command	is	to	be
executed	 on	 your	 local	machine.	 If	 it	 is	 prefixed	with	 either	 master	 or	 worker	 that
means	 the	 command	 is	 to	be	 executed	 from	within	 a	 virtual	machine	 that	was

version:	"3"

services:

		web:

				build:	.

				ports:

				-	"8080:8080"

				depends_on:

				-	mongo

		mongo:

				image:	mongo

				ports:

				-	"27017:27017"

$	docker-compose	up

$	docker-compose	down

https://github.com/cloudmesh-community/book/blob/master/chapters/container/SECTION-DOCKER-PAAS.md
https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-swarm.md


created.

11.3.2.2	Creating	a	Docker	Swarm	Cluster

A	swarm	is	made	up	of	multiple	nodes,	which	can	be	either	physical	or	virtual
machines.	We	use	master	as	the	name	of	the	host	that	is	run	as	master	and	worker-1	as
a	 host	 run	 as	 a	worker,	where	 the	 number	 indicatet	 the	 i-th	worker	The	 basic
steps	are:

1.	 run

to	enable	swarm	mode	and	make	your	current	machine	a	swarm	manager,

2.	 then	run

on	other	machines	 to	have	 them	join	 the	swarm	as	workers.	Choose	a	 tab
described	in	next	to	see	how	this	plays	out	in	various	contexts.	We	use	VMs
to	quickly	create	a	two-machine	cluster	and	turn	it	into	a	swarm.

11.3.2.3	Create	a	Swarm	Cluster	with	VirtualBox

In	case	you	do	not	have	access	to	multiple	physical	machines,	you	can	create	a
virtual	 cluster	 on	 your	machine	with	 the	 help	 of	 virtual	 box.	 Instead	 of	 using	
vagrant	 we	 can	 use	 the	 built	 in	 docker-machine	 command	 to	 start	 several	 virtual
machines.

If	you	do	not	have	virtualbox	installed	on	your	machine	install	it	on	your	machine.
Additionally	you	would	require	docker-machine	to	be	installed	on	your	local	machine.
To	install	docker-machine	on	please	follow	instructions	at	the	docker	documentation	at
Install	Docker	Machine

To	create	the	virtual	machines	you	can	use	the	command	as	follows:

master$	docker	swarm	init

worker-1$	docker	swarm	join

local$	docker-machine	create	--driver	virtualbox	master

local$	docker-machine	create	--driver	virtualbox	worker-1

https://docs.docker.com/machine/install-machine/


To	 list	 the	 VMs	 and	 get	 their	 ip	 addresses.	 Use	 this	 command	 to	 list	 the
machines	and	get	their	IP	addresses.

11.3.2.4	Initialize	the	Swarm	Manager	Node	and	Add	Worker	Nodes

The	first	machine	acts	as	the	manager,	which	executes	management	commands
and	authenticates	workers	to	join	the	swarm,	and	the	second	is	a	worker.

To	instruct	 the	first	vm	to	become	the	master,	first	we	need	to	login	to	the	vm
that	was	named	 master.	To	login	you	can	use	 ssh,	execute	the	following	command
on	your	local	machine	to	login	to	the	master	vm.

Now	 since	we	 are	 inside	 the	 master	 vm	we	 can	 configure	 this	 vm	 as	 the	 docker
swarm	manager.	Execute	the	following	command	within	the	master	vm	in	initialize
swarm

If	you	get	an	error	stating	something	similar	to	“could	not	choose	an	IP	address
to	advertise	since	this	system	has	multiple	addresses	on	different	interfaces”,	use
the	 following	command	 instead.	To	 find	 the	 IP	address	 execute	 the	 command	
ifconfig	and	pick	the	ip	address	which	is	most	simmilar	to	192.x.x.x.

The	output	wil	look	like	this,	where	IP-myvm1	is	the	ip	address	of	the	first	vm

Now	that	we	have	the	docker	swarm	manager	up	we	can	add	worker	machines	to
the	swarm.	The	command	that	is	printed	in	the	output	shown	previously	can	be
used	to	join	workers	to	the	manager.	Please	note	that	you	need	to	use	the	output
command	that	is	generated	when	you	run	docker	swarm	init	since	the	token	values	will

local$	docker-machine	ls

local$	docker-machine	ssh	master

master$	docker	swarm	init

master$	docker	swarm	init	--advertise-addr	192.x.x.x

master$	Swarm	initialized:	current	node	(p6hmohoeuggtwqj8xz91zbs5t)	is	now

a	manager.

To	add	a	worker	to	this	swarm,	run	the	following	command:

				worker-1$	docker	swarm	join	--token	SWMTKN-1-5c3anju1pwx94054r3vx0v7j4obyuggfu2cmesnx

				192.168.99.100:2377

To	add	a	manager	to	this	swarm,	run	'docker	swarm	join-token	manager'	and	follow	the	instructions.



be	different.

Now	we	need	to	use	a	separate	shell	to	login	to	the	worker	vm	that	we	created.
Open	up	a	new	shell	(or	terminal)	and	use	the	following	command	to	ssh	into	the
worker

Once	 you	 are	 in	 the	 worker	 execute	 the	 following	 command	 to	 join	 worker	 to	 the
swam	manager.

The	generic	version	of	the	command	would	be	as	follows,	you	need	to	fill	in	the
correct	values	to	values	marked	as	‘<>’	to	execute	the	command.

You	will	see	an	output	stating	that	this	machine	joined	the	docker	swarm.

If	 you	want	 to	 add	 another	 node	 as	 a	manager	 to	 the	 current	 swarm	 you	 can
execute	the	following	command	and	follow	the	instructions.	However	this	is	not
needed	for	this	exercise.

Run	docker-machine	ls	to	verify	that	worker	is	now	the	active	machine,	as	indicated	by	the
asterisk	next	to	it.

If	the	astrix	is	not	present	execute	the	following	command

The	output	will	look	similar	to

11.3.2.5	Deploy	the	application	on	the	swarm	manager

local$	docker-machine	ssh	worker-1

worker-1$	docker	swarm	join	--token

SWMTKN-1-5c3anju1pwx94054r3vx0v7j4obyuggfu2cmesnx	192.168.99.100:2377

worker-1$	docker	swarm	join	--token	<token>	<myvm	ip>:<port>

This	node	joined	a	swarm	as	a	worker.

newvm$	docker	swarm	join-token	manager'

local$	docker-machine	ls

local$	sudo	sh	-c	'eval	"$(docker-machine	env	worker-1)";	docker-machine	ls'

NAME							ACTIVE			DRIVER							STATE					URL																									SWARM			DOCKER								ERRORS

master			-								virtualbox			Running			tcp://192.168.99.100:2376											v18.06.1-ce

worker-1			*								virtualbox			Running			tcp://192.168.99.102:2376											v18.06.1-ce



Now	we	 can	 try	 to	 deploy	 a	 test	 application.	First	we	need	 to	 create	 a	 docker
configuration	file	which	we	will	name	 docker-compse.yml.	Since	we	are	 in	 the	vm	we
need	to	create	the	file	using	the	terminal.	follow	the	steps	given	next	the	create
and	save	the	file.	First	log	into	the	master

Then,

This	command	will	open	an	editor.	Press	 the	 Insert	button	 to	enable	editing	and
then	copy	paste	the	following	into	the	document.
version:	"3"

services:

		web:

				#	replace	username/repo:tag	with	your	name	and	image	details

				image:	username/repo:tag

				deploy:

						replicas:	5

						resources:

								limits:

										cpus:	"0.1"

										memory:	50M

						restart_policy:

								condition:	on-failure

				ports:

						-	"4000:80"

				networks:

						-	webnet

networks:

		webnet:

Then	pres	the	Ecs	button	and	enter	:wq	to	save	and	close	the	editor.

Once	we	 have	 the	 file	we	 can	 deploy	 the	 test	 application	 using	 the	 following
command.	which	will	be	executed	in	the	master

To	verify	 the	services	and	associated	containers	have	been	distributed	between
both	master	and	worker,	execute	the	following	command.

The	output	will	look	similar	to

```bash	 ID	 NAME	 IMAGE	 NODE	 DESIRED	 STATE	 CURRENT	 STATE
ERROR	PORTS	wpqtkv69qbee	getstartedlab_web.1	username/repo:tag	worker-
1	 Running	 Preparing	 4	 seconds	 ago	 whkiecyenuv0	 getstartedlab_web.2
username/repo:tag	 master	 Running	 Preparing	 4	 seconds	 ago	 13obecvxohh1

local$	docker-machine	ssh	worker-1

master$	vi	docker-compose.yml

master$	docker	stack	deploy	-c	docker-compose.yml	getstartedlab

master$	docker	stack	ps	getstartedlab



getstartedlab_web.3	 username/repo:tag	worker-1	Running	 Preparing	 5	 seconds
ago	 76srj0nflagi	 getstartedlab_web.4	 username/repo:tag	 worker-1	 Running
Preparing	5	seconds	ago	ymqoonad5c1f	getstartedlab_web.5	username/repo:tag
master	Running	Preparing	5	seconds	ago

11.3.3	Docker	and	Docker	Swarm	on	FutureSystems	☁

This	section	is	for	IU	students	only	that	take	classes	with	us.

This	 section	 introduces	 how	 to	 run	 Docker	 container	 on	 FutureSystems.
Currently	we	have	deployed	Docker	swarm	on	Echo.

11.3.3.1	Getting	Access

You	will	need	an	account	on	FutureSystems	and	be	enrolled	in	an	active	project.
To	verify,	try	to	see	if	you	can	log	into	victor.futuresystems.org.	You	need	to	be
a	member	of	a	valid	FutureSystems	project,	and	had	submitted	an	ssh	public	key
via	the	FutureSystems	portal.

For	Fall	2018	classes	at	IU	you	need	to	be	in	the	following	project:

https://portal.futuresystems.org/project/553

If	 your	 access	 to	 the	 victor	 host	 has	 been	 verified,	 try	 to	 login	 to	 the	 docker
swarm	head	node.	To	conveniently	do	this	let	us	define	some	Linux	environment
variables	to	simplify	the	access	and	the	material	presented	here.	You	can	place
them	even	in	your	.bashrc	or	.bash_profile	so	the	information	gets	populated	whenever
you	start	a	new	terminal.If	you	directly	edit	 the	files	make	sure	 to	execute	 the	
source	command	to	refresh	the	environment	variables	for	the	current	session	using	
source	.bashrc	or	source	.bash_profile.	Or	you	can	close	the	current	shell	and	reopen	a	new
one.

Now	you	can	use	the	two	variables	that	were	set	to	login	to	the	Echo	serer,	using
the	following	command

local$	export	ECHO=149.165.150.76

local$	export	FS_USER=<put	your	futersystem	account	name	here>

local$	ssh	$FS_USER@$ECHO

https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-fs.md
https://portal.futuresystems.org/project/553


Note:	 If	 you	 have	 access	 to	 india	 but	 not	 the	 docker	 swarm	 system,	 your
project	may	not	have	been	authorized	to	access	 the	docker	swarm	cluster.
Send	a	ticket	to	FutureSystems	ticket	system	to	request	this.

Once	logged	in	to	the	docker	swarm	head	node,	try	to	run:

to	verify	docker	run	works.

11.3.3.2	Creating	a	service	and	deploy	to	the	swarm	cluster

While	docker	run	can	start	a	container	and	you	may	even	attach	 to	 its	console,	 the
recommended	way	to	use	a	docker	swarm	cluster	is	to	create	a	service	and	have
it	 run	 on	 the	 swarm	 cluster.	 The	 service	 will	 be	 scheduled	 to	 one	 or	 many
number	of	the	nodes	of	the	swarm	cluster,	based	on	the	configuration.	It	is	also
easy	 to	 scale	 up	 the	 service	 when	 more	 swarm	 nodes	 are	 available.	 Docker
swarm	really	makes	 it	easier	 for	service/application	developers	 to	 focus	on	 the
functionality	 development	 but	 not	worrying	 about	 how	 and	where	 to	 bind	 the
service	to	some	resources/server.	The	deployment,	access,	and	scaling	up/down
when	 necessary,	 are	 all	 managed	 transparently.	 Thus	 achieving	 the	 new
paradigm	of	serverless	computing.

As	 an	 example,	 the	 following	 command	 creates	 a	 service	 and	 deploy	 it	 to	 the
swarm	 cluster,	 if	 the	 port	 is	 in	 use	 the	 port	 9001	 used	 in	 the	 command	 can	 be
changed	to	an	available	port.

The	NOTEBOOK_PASS_HASH	can	be	generated	in	python:

So	pass	through	the	string	starting	with	‘sha1:......’.

The	command	pulls	a	published	image	from	docker	cloud,	starts	a	container	and
runs	a	script	to	start	the	service	inside	the	container	with	necessary	parameters.
The	option	“-p	9001:8888”	maps	the	service	port	inside	the	container	(8888)	to

echo$	docker	run	hello-world

echo$	docker	service	create	--name	notebook_test	-p	9001:8888	\

				jupyter/datascience-notebook	start-notebook.sh

				--NotebookApp.password=NOTEBOOK_PASS_HASH

>>>	import	IPython

>>>	IPython.lib.passwd("YOUR_SELECTED_PASSWROD")

'sha1:52679cadb4c9:6762e266af44f86f3d170ca1......'



an	external	port	of	the	cluster	node	(9001)	so	the	service	could	be	accessed	from
the	Internet.	In	this	example,	you	can	then	visit	the	URL:

to	access	 the	Jupyter	notebook.	Using	 the	 specified	password	when	you	create
the	service	to	login.

Please	 note	 the	 service	 will	 be	 dynamically	 deployed	 to	 a	 container	 instance,
which	 would	 be	 allocated	 to	 a	 swarm	 node	 based	 on	 the	 allocation	 policy.
Docker	makes	this	process	transparent	to	the	user	and	even	created	mesh	routing
so	you	can	access	the	service	using	the	IP	address	of	the	management	head	node
of	 the	 swarm	 cluster,	 no	 matter	 which	 actual	 physical	 node	 the	 service	 was
deployed	to.

This	also	 implies	 that	 the	external	port	number	used	has	 to	be	 free	at	 the	 time
when	the	service	was	created.

Some	useful	related	commands:

lists	the	currently	running	services.

lists	the	detailed	info	of	the	container	where	the	service	is	running.

lists	all	the	running	containers	of	a	node.

lists	all	the	nodes	in	the	swarm	cluster.

To	stop	the	service	and	the	container:

11.3.3.3	Create	your	own	service

You	can	create	your	own	service	and	run	it.	To	do	so,	start	from	a	base	image,

local$	open	http://$ECHO:9001

echo$	docker	service	ls

echo$	docker	service	ps	notebook_test

echo$	docker	node	ps	NODE

echo$	docker	node	ls

echo$	docker	service	rm	noteboot_test



e.g.,	a	ubuntu	image	from	the	docker	cloud.	Then	you	could:

Run	 a	 container	 from	 the	 image	 and	 attach	 to	 its	 console	 to	 develop	 the
service,	and	create	a	new	image	from	the	changed	instance	using	command
‘docker	commit’.

Create	 a	 dockerfile,	 which	 has	 the	 step	 by	 step	 building	 process	 of	 the
service,	and	then	build	an	image	from	it.

In	 reality,	 the	 first	 approach	 is	 probably	 useful	 when	 you	 are	 in	 the	 phase	 of
develop	 and	 debug	 your	 application/service.	 Once	 you	 have	 the	 step	 by	 step
instructions	developed	the	latter	approach	is	the	recommended	way.

Publish	the	image	to	the	docker	cloud	by	following	this	documentation:

https://docs.docker.com/docker-cloud/builds/push-images/

Please	 make	 sure	 no	 sensitive	 information	 is	 included	 in	 the	 image	 to	 be
published.	 Alternatively	 you	 could	 publish	 the	 image	 internally	 to	 the	 swarm
cluster.

11.3.3.4	Publish	an	image	privately	within	the	swarm	cluster

Once	the	image	is	published	and	available	to	the	swarm	cluster,	you	could	start	a
new	service	from	the	image	similar	to	the	Jupyter	Notebook	example.

11.3.3.5	Exercises

E.Docker.Futuresystems.1:

Obtain	an	account	on	future	systems.

E.Docker.Futuresystems.2:

Create	a	REST	service	with	swagger	codegen	and	run	it	on	the	echo
cloud	(see	example	in	this	section	)

11.3.4	Hadoop	with	Docker	☁

https://docs.docker.com/docker-cloud/builds/push-images/
https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-hadoop.md


In	 this	 section	 we	 will	 explore	 the	 Map/Reduce	 framework	 using	 Hadoop
provided	through	a	Docker	container.

We	will	showcase	the	functionality	on	a	small	example	that	calculates	minimum,
maximum,	average	and	standard	deviation	values	using	several	input	files	which
contain	float	numbers.

This	 section	 is	 based	 on	 the	 hadoop	 release	 3.1.1	 which	 includes	 significant
enhancements	over	the	previous	version	of	Hadoop	2.x.	Changes	include	the	use
of	the	following	software:

CentOS	7
systemctl
Java	SE	Development	Kit	8

A	Dockerfile	to	create	the	hadoop	deployment	is	available	at

*https://github.com/cloudmesh-
community/book/blob/master/examples/docker/hadoop/3.1.1/Dockerfile

11.3.4.1	Building	Hadoop	using	Docker

You	can	build	hadoop	from	the	Dockerfile	as	follows:

The	complete	docker	image	for	Hadoop	consumes	1.5GB.

To	use	the	image	interactively	you	can	start	the	container	as	follows:

It	may	take	a	few	minutes	at	first	to	download	image.

11.3.4.2	Hadoop	Configuration	Files

$	mkdir	cloudmesh-community

$	cd	cloudmesh-community

$	git	clone	https://github.com/cloudmesh-community/book.git

$	cd	book/examples/docker/hadoop/3.1.1

$	docker	build	-t	cloudmesh/hadoop:3.1.1	.

$	docker	images

REPOSITORY							TAG			IMAGE	ID					CREATED				SIZE

cloudmesh/hadoop	3.1.1	ba2c51f94348	1	hour	ago	1.52GB

$	docker	run	-it	cloudmesh/hadoop:3.1.1	/etc/bootstrap.sh	-bash

https://github.com/cloudmesh-community/book/blob/master/examples/docker/hadoop/3.1.1/Dockerfile


The	configuration	files	are	included	in	the	conf	folder

11.3.4.3	Virtual	Memory	Limit

IN	case	you	need	more	memory,	you	can	increase	it	by	changing	the	parameters
in	the	file	mapred-site.xml,	for	example:

mapreduce.map.memory.mba	to	4096
mapreduce.reduce.memory.mb	to	8192

11.3.4.4	hdfs	Safemode	leave	command

A	Safemode	for	HDFS	is	a	read-only	mode	for	the	HDFS	cluster,	where	it	does
not	allow	any	modifications	of	files	and	blocks.	Namenode	disables	safe	mode
automatically	 after	 starting	up	normally.	 If	 required,	HDFS	could	be	 forced	 to
leave	the	safe	mode	explicitly	by	this	command:

11.3.4.5	Examples

We	 included	 a	 statistics	 and	 a	 PageRank	 examples	 into	 the	 container.	 The
examples	are	also	available	in	github	at

https://github.com/cloudmesh-
community/book/tree/master/examples/docker/hadoop/3.1.1/examples

We	explain	the	examples	next

11.3.4.5.1	Statistical	Example	with	Hadoop

After	 we	 launch	 the	 container	 and	 use	 the	 interactive	 shell,	 we	 can	 run	 the
statistics	Hadoop	application	which	calculates	the	minimum,	maximim,	average,
and	 standard	 derivation	 from	 values	 stored	 in	 a	 number	 of	 input	 files.	 Figure
Figure	133	shows	the	computing	phases	in	a	MapReduce	job.

To	 achieve	 this,	 this	 Hadoop	 program	 reads	 multiple	 files	 from	 HDFS	 and
provides	 calculated	 values.	We	walk	 through	 every	 step	 from	 compiling	 Java

$	hdfs	dfsadmin	-safemode	leave

https://github.com/cloudmesh-community/book/tree/master/examples/docker/hadoop/3.1.1/examples


source	code	to	reading	a	output	file	from	HDFS.	The	idea	of	this	exercise	is	to
get	 you	 started	with	Hadoop	 and	 the	MapReduce	 concept.	 You	may	 seen	 the
WordCount	 from	Hadoop	 official	 website	 or	 documentation	 and	 this	 example
has	a	same	functions	(Map/Reduce)	except	that	you	will	be	computing	the	basic
statistics	such	as	min,	max,	average,	and	standard	deviation	of	a	given	data	set.

The	input	to	the	program	will	be	a	text	file(s)	carrying	exactly	one	floating	point
number	 per	 line.	 The	 result	 file	 includes	 min,	 max,	 average,	 and	 standard
deviation.

Figure	133:	MapReduce	example	in	Docker

11.3.4.5.1.1	Base	Location

The	example	is	available	within	the	container	at:

11.3.4.5.1.2	Input	Files

A	test	input	files	are	available	under	/cloudmesh/examples/statistics/input_data	directory	inside
of	 the	 container.	The	 statistics	 values	 for	 this	 input	 are	Min:	 0.20	Max:	 19.99
Avg:	9.51	StdDev:	5.55	for	all	input	files.

10	 files	 contain	 55000	 lines	 to	 process	 and	 each	 line	 is	 a	 random	 float	 point
value	ranging	from	0.2	to	20.0.

11.3.4.5.1.3	Compilation

The	 source	 code	 file	 name	 is	 MinMaxAvgStd.java	 which	 is	 available	 at	
/cloudmesh/examples/statistics/src.

container$	cd	/cloudmesh/examples/statistics



There	are	three	functions	in	the	code	Map,	Reduce	and	Main	where	Map	reads
each	 line	of	 a	 file	 and	updates	values	 to	 calculate	minimum,	maximum	values
and	Reduce	collects	mappers	to	produce	average	and	standard	deviation	values
at	last.

These	commands	simply	prepare	compiling	the	example	code	and	the	compiled
class	files	are	generated	at	the	dest	location.

11.3.4.5.1.4	Archiving	Class	Files

Jar	 command	 tool	 helps	 archiving	 classes	 in	 a	 single	 file	 which	 will	 be	 used
when	Hadoop	 runs	 this	 example.	 This	 is	 useful	 because	 a	 jar	 file	 contains	 all
necessary	files	to	run	a	program.

11.3.4.5.1.5	HDFS	for	Input/Output

The	 input	 files	need	 to	be	uploaded	 to	HDFS	as	Hadoop	 runs	 this	example	by
reading	input	files	from	HDFS.

If	uploading	is	completed,	you	may	see	file	listings	like:

11.3.4.5.1.6	Run	Program	with	a	Single	Input	File

We	are	 ready	 to	 run	 the	 program	 to	 calculate	 values	 from	 text	 files.	 First,	we
simply	 run	 the	 program	with	 a	 single	 input	 file	 to	 see	 how	 it	works.	 data_1000.txt

$	export	HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop	classpath`

$	mkdir	/cloudmesh/examples/statistics/dest

$	javac	-classpath	$HADOOP_CLASSPATH	-d	/cloudmesh/examples/statistics/dest	/cloudmesh/examples/statistics/src/MinMaxAvgStd.java

$	cd	/cloudmesh/examples/statistics

$	jar	-cvf	stats.jar	-C	./dest/	.

$	export	PATH=$PATH:/HADOOP_HOME/bin

$	hadoop	fs	-mkdir	stats_input

$	hadoop	fs	-put	input_data/*	stats_input

$	hadoop	fs	-ls	stats_input/

Found	10	items

-rw-r--r--	1	root	supergroup		13942	2018-02-28	23:16	stats_input/data_1000.txt

-rw-r--r--	1	root	supergroup	139225	2018-02-28	23:16	stats_input/data_10000.txt

-rw-r--r--	1	root	supergroup		27868	2018-02-28	23:16	stats_input/data_2000.txt

-rw-r--r--	1	root	supergroup		41793	2018-02-28	23:16	stats_input/data_3000.txt

-rw-r--r--	1	root	supergroup		55699	2018-02-28	23:16	stats_input/data_4000.txt

-rw-r--r--	1	root	supergroup		69663	2018-02-28	23:16	stats_input/data_5000.txt

-rw-r--r--	1	root	supergroup		83614	2018-02-28	23:16	stats_input/data_6000.txt

-rw-r--r--	1	root	supergroup		97490	2018-02-28	23:16	stats_input/data_7000.txt

-rw-r--r--	1	root	supergroup	111451	2018-02-28	23:16	stats_input/data_8000.txt

-rw-r--r--	1	root	supergroup	125337	2018-02-28	23:16	stats_input/data_9000.txt



contains	1000	lines	of	floats,	we	use	this	file	here.

The	command	runs	with	input	parameters	which	indicate	a	jar	file	(the	program,
stats.jar),	 exercise.MinMaxAvgStd	 (package	 name.class	 name),	 input	 file	 path
(stats_input/data_1000.txt)	and	output	file	path	(stats_output_1000).

The	sample	results	that	the	program	produces	look	like	this:

$	hadoop	jar	stats.jar	exercise.MinMaxAvgStd	stats_input/data_1000.txt	stats_output_1000

18/02/28	23:48:50	INFO	client.RMProxy:	Connecting	to	ResourceManager	at	/0.0.0.0:8032

18/02/28	23:48:50	INFO	input.FileInputFormat:	Total	input	paths	to	process:	1

18/02/28	23:48:50	INFO	mapreduce.JobSubmitter:	number	of	splits:1

18/02/28	23:48:50	INFO	mapreduce.JobSubmitter:	Submitting	tokens	for	job:	job_1519877569596_0002

18/02/28	23:48:51	INFO	impl.YarnClientImpl:	Submitted	application	application_1519877569596_0002

18/02/28	23:48:51	INFO	mapreduce.Job:	The	url	to	track	the	job:	http://f5e82d68ba4a:8088/proxy/application_1519877569596_0002/

18/02/28	23:48:51	INFO	mapreduce.Job:	Running	job:	job_1519877569596_0002

18/02/28	23:48:56	INFO	mapreduce.Job:	Job	job_1519877569596_0002	running	in	uber	mode:	false

18/02/28	23:48:56	INFO	mapreduce.Job:	map	0%	reduce	0%

18/02/28	23:49:00	INFO	mapreduce.Job:	map	100%	reduce	0%

18/02/28	23:49:05	INFO	mapreduce.Job:	map	100%	reduce	100%

18/02/28	23:49:05	INFO	mapreduce.Job:	Job	job_1519877569596_0002	completed	successfully

18/02/28	23:49:05	INFO	mapreduce.Job:	Counters:	49

		File	System	Counters

				FILE:	Number	of	bytes	read=81789

				FILE:	Number	of	bytes	written=394101

				FILE:	Number	of	read	operations=0

				FILE:	Number	of	large	read	operations=0

				FILE:	Number	of	write	operations=0

				HDFS:	Number	of	bytes	read=14067

				HDFS:	Number	of	bytes	written=86

				HDFS:	Number	of	read	operations=6

				HDFS:	Number	of	large	read	operations=0

				HDFS:	Number	of	write	operations=2

		Job	Counters

				Launched	map	tasks=1

				Launched	reduce	tasks=1

				Data-local	map	tasks=1

				Total	time	spent	by	all	maps	in	occupied	slots	(ms)=2107

				Total	time	spent	by	all	reduces	in	occupied	slots	(ms)=2316

				Total	time	spent	by	all	map	tasks	(ms)=2107

				Total	time	spent	by	all	reduce	tasks	(ms)=2316

				Total	vcore-seconds	taken	by	all	map	tasks=2107

				Total	vcore-seconds	taken	by	all	reduce	tasks=2316

				Total	megabyte-seconds	taken	by	all	map	tasks=2157568

				Total	megabyte-seconds	taken	by	all	reduce	tasks=2371584

		Map-Reduce	Framework

				Map	input	records=1000

				Map	output	records=3000

				Map	output	bytes=75783

				Map	output	materialized	bytes=81789

				Input	split	bytes=125

				Combine	input	records=0

				Combine	output	records=0

				Reduce	input	groups=3

				Reduce	shuffle	bytes=81789

				Reduce	input	records=3000

				Reduce	output	records=4

				Spilled	Records=6000

				Shuffled	Maps	=1

				Failed	Shuffles=0

				Merged	Map	outputs=1

				GC	time	elapsed	(ms)=31

				CPU	time	spent	(ms)=1440

				Physical	memory	(bytes)	snapshot=434913280

				Virtual	memory	(bytes)	snapshot=1497260032

				Total	committed	heap	usage	(bytes)=402653184

		Shuffle	Errors

				BAD_ID=0

				CONNECTION=0

				IO_ERROR=0

				WRONG_LENGTH=0



The	second	line	of	the	following	logs	indicates	that	the	number	of	input	files	is
1.

11.3.4.5.1.7	Result	for	Single	Input	File

We	reads	results	from	HDFS	by:

The	sample	output	looks	like:

11.3.4.5.1.8	Run	Program	with	Multiple	Input	Files

The	first	run	was	done	pretty	quickly	(1440	milliseconds	took	according	to	the
previous	sample	result)	because	the	input	file	size	was	small	(1,000	lines)	and	it
was	 a	 single	 file.	 We	 provides	 more	 input	 files	 with	 a	 larger	 size	 (2,000	 to
10,000	 lines).	 Input	 files	 are	 already	 uploaded	 to	 HDFS.	 We	 simply	 run	 the
program	again	with	a	slight	change	in	the	parameters.

The	command	is	almost	same	except	that	an	input	path	is	a	directory	and	a	new
output	 directory.	 Note	 that	 every	 time	 that	 you	 run	 this	 program,	 the	 output
directory	will	be	created	which	means	that	you	have	to	provide	a	new	directory
name	unless	you	delete	it.

The	 sample	 output	messages	 look	 like	 the	 following	which	 is	 almost	 identical
compared	to	the	previous	run	except	 that	 this	 time	the	number	of	 input	files	 to
process	is	10,	see	the	line	two	next:

				WRONG_MAP=0

				WRONG_REDUCE=0

		File	Input	Format	Counters

				Bytes	Read=13942

		File	Output	Format	Counters

				Bytes	Written=86

$	hadoop	fs	-cat	stats_output_1000/part-r-00000

Max:	19.9678704297

Min:	0.218880718983

Avg:	10.225467263249385

Std:	5.679809322880863

$	hadoop	jar	stats.jar	exercise.MinMaxAvgStd	stats_input/	stats_output_all

18/02/28	23:17:18	INFO	client.RMProxy:	Connecting	to	ResourceManager	at	/0.0.0.0:8032

18/02/28	23:17:18	INFO	input.FileInputFormat:	Total	input	paths	to	process:	10

18/02/28	23:17:18	INFO	mapreduce.JobSubmitter:	number	of	splits:10

18/02/28	23:17:18	INFO	mapreduce.JobSubmitter:	Submitting	tokens	for	job:	job_1519877569596_0001

18/02/28	23:17:19	INFO	impl.YarnClientImpl:	Submitted	application	application_1519877569596_0001

18/02/28	23:17:19	INFO	mapreduce.Job:	The	url	to	track	the	job:	http://f5e82d68ba4a:8088/proxy/application_1519877569596_0001/



11.3.4.5.1.9	Result	for	Multiple	Files

The	expected	result	looks	like:

18/02/28	23:17:19	INFO	mapreduce.Job:	Running	job:	job_1519877569596_0001

18/02/28	23:17:24	INFO	mapreduce.Job:	Job	job_1519877569596_0001	running	in	uber	mode:	false

18/02/28	23:17:24	INFO	mapreduce.Job:	map	0%	reduce	0%

18/02/28	23:17:32	INFO	mapreduce.Job:	map	40%	reduce	0%

18/02/28	23:17:33	INFO	mapreduce.Job:	map	60%	reduce	0%

18/02/28	23:17:36	INFO	mapreduce.Job:	map	70%	reduce	0%

18/02/28	23:17:37	INFO	mapreduce.Job:	map	100%	reduce	0%

18/02/28	23:17:39	INFO	mapreduce.Job:	map	100%	reduce	100%

18/02/28	23:17:39	INFO	mapreduce.Job:	Job	job_1519877569596_0001	completed	successfully

18/02/28	23:17:39	INFO	mapreduce.Job:	Counters:	49

		File	System	Counters

				FILE:	Number	of	bytes	read=4496318

				FILE:	Number	of	bytes	written=10260627

				FILE:	Number	of	read	operations=0

				FILE:	Number	of	large	read	operations=0

				FILE:	Number	of	write	operations=0

				HDFS:	Number	of	bytes	read=767333

				HDFS:	Number	of	bytes	written=84

				HDFS:	Number	of	read	operations=33

				HDFS:	Number	of	large	read	operations=0

				HDFS:	Number	of	write	operations=2

		Job	Counters

				Launched	map	tasks=10

				Launched	reduce	tasks=1

				Data-local	map	tasks=10

				Total	time	spent	by	all	maps	in	occupied	slots	(ms)=50866

				Total	time	spent	by	all	reduces	in	occupied	slots	(ms)=4490

				Total	time	spent	by	all	map	tasks	(ms)=50866

				Total	time	spent	by	all	reduce	tasks	(ms)=4490

				Total	vcore-seconds	taken	by	all	map	tasks=50866

				Total	vcore-seconds	taken	by	all	reduce	tasks=4490

				Total	megabyte-seconds	taken	by	all	map	tasks=52086784

				Total	megabyte-seconds	taken	by	all	reduce	tasks=4597760

		Map-Reduce	Framework

				Map	input	records=55000

				Map	output	records=165000

				Map	output	bytes=4166312

				Map	output	materialized	bytes=4496372

				Input	split	bytes=1251

				Combine	input	records=0

				Combine	output	records=0

				Reduce	input	groups=3

				Reduce	shuffle	bytes=4496372

				Reduce	input	records=165000

				Reduce	output	records=4

				Spilled	Records=330000

				Shuffled	Maps	=10

				Failed	Shuffles=0

				Merged	Map	outputs=10

				GC	time	elapsed	(ms)=555

				CPU	time	spent	(ms)=16040

				Physical	memory	(bytes)	snapshot=2837708800

				Virtual	memory	(bytes)	snapshot=8200089600

				Total	committed	heap	usage	(bytes)=2213019648

		Shuffle	Errors

				BAD_ID=0

				CONNECTION=0

				IO_ERROR=0

				WRONG_LENGTH=0

				WRONG_MAP=0

				WRONG_REDUCE=0

		File	Input	Format	Counters

				Bytes	Read=766082

		File	Output	Format	Counters

				Bytes	Written=84

$	hadoop	fs	-cat	stats_output_all/part-r-00000

Max:	19.999191254

Min:	0.200268613863



11.3.4.5.2	Conclusion

The	 example	 program	 of	 calculating	 some	 values	 by	 reading	 multiple	 files
shows	 how	Map/Reduce	 is	written	 by	 a	 Java	 programming	 language	 and	 how
Hadoop	 runs	 its	 program	 using	 HDFS.	We	 also	 observed	 the	 one	 of	 benefits
using	Docker	container	which	is	that	the	hassle	of	configuration	and	installation
of	Hadoop	is	not	necessary	anymore.

11.3.4.6	Refernces

The	 details	 of	 the	 new	 version	 is	 available	 from	 the	 official	 site	 at
http://hadoop.apache.org/docs/r3.1.1/index.html

11.3.5	Docker	Pagerank	☁

PageRank	is	a	popular	example	algorithm	used	to	display	the	ability	of	big	data
applications	 to	 run	 parallel	 tasks.	 This	 example	 will	 show	 how	 the	 docker
hadoop	image	can	be	used	to	execute	the	Pagerank	example	which	is	available	in
/cloudmesh/examples/pagerank

11.3.5.1	Use	the	automated	script

We	make	 the	 steps	 of	 compiling	 java	 source,	 archiving	 class	 files,	 load	 input
files	and	run	the	program	into	one	single	script.	To	execute	it	with	the	input	file:
PageRankDataGenerator/pagerank5000g50.input.0,	 using	 5000	 urls	 and	 1
iteration:

Result	will	look	like

The	head	of	the	result	will	look	like

Avg:	9.514884854468903

Std:	5.553921579413547

$	cd	/cloudmesh/examples/pagerank

$	./compileAndExecHadoopPageRank.sh	PageRankDataGenerator/pagerank5000g50.input.0	5000	1

output.pagerank/part-r-00000

head	output.pagerank/part-r-00000

0			2.9999999999999997E-5

1			2.9999999999999997E-5

http://hadoop.apache.org/docs/r3.1.1/index.html
https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-pagerank-example-instruction.md


11.3.5.2	Compile	and	run	by	hand

If	 one	wants	 to	 generate	 the	 java	 class	 files	 and	 archive	 them	 as	 the	 previous
exercise,	 one	 could	 use	 the	 following	 code	 (which	 is	 actually	 inside
compileAndExecHadoopPageRank.sh)

Load	input	files	to	HDFS

Run	program	with	the	[PageRank	Inputs	File	Directory][PageRank	Output
Directory][Number	of	Urls][Number	Of	Iterations]

Result

11.3.6	Apache	Spark	with	Docker	☁

11.3.6.1	Pull	Image	from	Docker	Repository

We	 use	 a	 Docker	 image	 from	 Docker	 Hub:
(https://hub.docker.com/r/sequenceiq/spark/)	 This	 repository	 contains	 a	Docker
file	to	build	a	Docker	image	with	Apache	Spark	and	Hadoop	Yarn.

2			2.9999999999999997E-5

3			2.9999999999999997E-5

4			2.9999999999999997E-5

5			2.9999999999999997E-5

6			2.9999999999999997E-5

7			2.9999999999999997E-5

8			2.9999999999999997E-5

9			2.9999999999999997E-5

export	HADOOP_CLASSPATH=`$HADOOP_PREFIX/bin/hadoop	classpath`

mkdir	/cloudmesh/examples/pagerank/dist

$	find	/cloudmesh/examples/pagerank/src/indiana/cgl/hadoop/pagerank/	\

			-name	"*.java"|xargs		javac	-classpath	$HADOOP_CLASSPATH	\

			-d	/cloudmesh/examples/pagerank/dist

$	cd	/cloudmesh/examples/pagerank/dist

$	jar	-cvf	HadoopPageRankMooc.jar	-C	.	.

$	export	PATH=$PATH:/$HADOOP_PREFIX/bin

$	cd	/cloudmesh/examples/pagerank/

$	hadoop	fs	-mkdir	input.pagerank

$	hadoop	fs	-put	PageRankDataGenerator/pagerank5000g50.input.0	input.pagerank

$	hadoop	jar	dist/HadoopPageRankMooc.jar	indiana.cgl.hadoop.pagerank.HadoopPageRank	input.pagerank	output.pagerank	5000	1

$	hadoop	fs	-cat	output.pagerank/part-r-00000

$	docker	pull	sequenceiq/spark:1.6.0

https://github.com/cloudmesh-community/book/blob/master/chapters/container/docker-spark.md


11.3.6.2	Running	the	Image

In	this	step,	we	will	launch	a	Spark	container.

11.3.6.2.1	Running	interactively

11.3.6.2.2	Running	in	the	background

11.3.6.3	Run	Spark

After	a	container	is	launched,	we	can	run	Spark	in	the	following	two	modes:	(1)
yarn-client	and	(2)	yarn-cluster.	The	differences	between	the	two	modes	can	be
found	here:	https://spark.apache.org/docs/latest/running-on-yarn.html

11.3.6.3.1	Run	Spark	in	Yarn-Client	Mode

11.3.6.3.2	Run	Spark	in	Yarn-Cluster	Mode

11.3.6.4	Observe	Task	Execution	from	Running	Logs	of	SparkPi

Let	us	observe	Spark	task	execution	by	adjusting	the	parameter	of	SparkPi	and
the	Pi	result	from	the	following	two	commands.

11.3.6.5	Write	a	Word-Count	Application	with	Spark	RDD

Let	 us	 write	 our	 own	 word-count	 with	 Spark	 RDD.	 After	 the	 shell	 has	 been

$	docker	run	-it	-p	8088:8088	-p	8042:8042	-h	sandbox	sequenceiq/spark:1.6.0	bash

$	docker	run	-d	-h	sandbox	sequenceiq/spark:1.6.0	-d

$	spark-shell	--master	yarn-client	--driver-memory	1g	--executor-memory	1g	--executor-cores	1

$	spark-submit	--class	org.apache.spark.examples.SparkPi	--master	yarn-client	--driver-memory	1g	--executor-memory	1g	--executor-cores	1	

$	spark-submit	--class	org.apache.spark.examples.SparkPi	\

				--master	yarn-client	--driver-memory	1g	\

				--executor-memory	1g	\

				--executor-cores	1	$SPARK_HOME/lib/spark-examples-1.6.0-hadoop2.6.0.jar	10

$	spark-submit	--class	org.apache.spark.examples.SparkPi	\

				--master	yarn-client	--driver-memory	1g	\

				--executor-memory	1g	\

				--executor-cores	1	$SPARK_HOME/lib/spark-examples-1.6.0-hadoop2.6.0.jar	10000



started,	copy	and	paste	the	following	code	in	console	line	by	line.

11.3.6.5.1	Launch	Spark	Interactive	Shell

11.3.6.5.2	Program	in	Scala

11.3.6.5.3	Launch	PySpark	Interactive	Shell

11.3.6.5.4	Program	in	Python

11.3.6.6	Docker	Spark	Examples

11.3.6.6.1	K-Means	Example

First	we	need	to	pull	the	image	from	the	Docker	Hub	:

It	will	take	sometime	to	download	the	image.	Now	we	have	to	run	docker	spark
image	interactively.

This	will	take	you	to	the	interactive	mode.

Let	us	run	a	sample	KMeans	example.	This	is	already	built	with	Spark.

Here	we	specify	the	data	data	set	from	a	local	folder	inside	the	image	and	we	run
the	 sample	 class	KMeans	 in	 the	 sample	 package.	 The	 sample	 data	 set	 used	 is
inside	 the	 sample-data	 folder.	 Spark	 has	 it’s	 own	 format	 for	machine	 learning
datasets.	Here	the	kmeans_data.txt	file	contains	the	KMeans	dataset.

$	spark-shell	--master	yarn-client	--driver-memory	1g	--executor-memory	1g	--executor-cores	1

val	textFile	=	sc.textFile("file:///etc/hosts")

val	words	=	textFile.flatMap(line	=>	line.split("\\s+"))

val	counts	=	words.map(word	=>	(word,	1)).reduceByKey(_	+	_)

counts.values.sum()

$	pyspark	--master	yarn-client	--driver-memory	1g	--executor-memory	1g	--executor-cores	1

textFile	=	sc.textFile("file:///etc/hosts")

words	=	textFile.flatMap(lambda	line:line.split())

counts	=	words.map(lambda	word:(word,	1)).reduceByKey(lambda	x,y:	x+y)

counts.map(lambda	x:x[1]).sum()

$	docker	pull	sequenceiq/spark-native-yarn

$	docker	run	-i	-t	-h	sandbox	sequenceiq/spark-native-yarn	/etc/bootstrap.sh	-bash



If	you	run	this	successfully,	you	can	get	an	output	as	shown	here.

11.3.6.6.2	Join	Example

Run	 the	 following	command	 to	do	a	 sample	 join	operation	on	a	given	dataset.
Here	we	use	two	datasets,	namely	join1.txt	and	join2.txt.	Then	we	perform	the
join	operation	that	we	discussed	in	the	theory	section.

11.3.6.6.3	Word	Count

In	this	example	the	wordcount.txt	will	used	to	do	the	word	count	using	multiple
reducers.	 Number	 1	 at	 the	 end	 of	 the	 command	 determines	 the	 number	 of
reducers.	As	 spark	 can	 run	multiple	 reducers,	we	 can	 specify	 the	 number	 as	 a
parameter	to	the	programme.

11.3.6.7	Interactive	Examples

Here	we	need	a	new	image	to	work	on.	Let	us	run	the	following	command.	This
will	pull	the	necessary	repositories	from	docker	hub,	as	we	do	not	have	most	of
the	 dependencies	 related	 to	 it.	 This	 can	 take	 a	 few	 minutes	 to	 download
everything.

Here	you	will	get	the	following	output	in	the	terminal.

$	./bin/spark-submit	--class	sample.KMeans	\

				--master	execution-context:org.apache.spark.tez.TezJobExecutionContext

\

				--conf	update-classpath=true	\

				./lib/spark-native-yarn-samples-1.0.jar	/sample-data/kmeans_data.txt

Finished	iteration	(delta	=	0.0)

Final	centers:

DenseVector(0.15000000000000002,	0.15000000000000002,	0.15000000000000002)

DenseVector(9.2,	9.2,	9.2)

DenseVector(0.0,	0.0,	0.0)

DenseVector(9.05,	9.05,	9.05)

$	./bin/spark-submit	--class	sample.Join	--master	execution-context:org.apache.spark.tez.TezJobExecutionContext	--conf	update-classpath=true	./lib/spark-native-yarn-samples-1.0.jar	/sample-data/join1.txt	/sample-data/join2.txt

$	./bin/spark-submit	--class	sample.WordCount	--master	execution-context:org.apache.spark.tez.TezJobExecutionContext	--conf	update-classpath=true	./lib/spark-native-yarn-samples-1.0.jar	/sample-data/wordcount.txt	1

$	docker	run	-it-p	8888:8888	-v	$PWD:/cloudmesh/spark	--name	spark	jupyter/pyspark-notebook

docker	run	-it	-p	8888:8888	-v	$PWD:/cloudmesh/spark	--name	spark	jupyter/pyspark-notebook

Unable	to	find	image	'jupyter/pyspark-notebook:latest'	locally

latest:	Pulling	from	jupyter/pyspark-notebook

a48c500ed24e:	Pull	complete



Please	copy	the	url	shown	at	the	end	of	the	terminal	output	and	go	to	that	url	in
the	browser.

You	will	see	the	following	output	in	the	browser,	(Use	Google	Chrome)

Jupyter	Notebook	in	Browser

First	 navigate	 to	 the	work	 folder.	 Let	 us	 create	 a	 new	 python	 file	 here.	 Click
python3	in	the	new	menu.

1e1de00ff7e1:	Pull	complete

0330ca45a200:	Pull	complete

471db38bcfbf:	Pull	complete

0b4aba487617:	Pull	complete

d44ea0cd796c:	Pull	complete

5ac827d588be:	Pull	complete

d8d7747a335e:	Pull	complete

08790511e3e9:	Pull	complete

e3c68aea9a5f:	Pull	complete

484c6d5fc38a:	Pull	complete

0448c1360cb9:	Pull	complete

61d7e6dc705d:	Pull	complete

92f1091ed72b:	Pull	complete

8045d3663a7e:	Pull	complete

1bde7ba25439:	Pull	complete

5618f8ed38b4:	Pull	complete

f08523cb6144:	Pull	complete

99eee56fda2f:	Pull	complete

b37b1ce39785:	Pull	complete

aee4b9eac4ea:	Pull	complete

f810ef87439d:	Pull	complete

038786dce388:	Pull	complete

ded31312ea33:	Pull	complete

30221ffdd1a6:	Pull	complete

da1d368f8592:	Pull	complete

523809a30a21:	Pull	complete

47ab1b230dd2:	Pull	complete

442f9435e1a9:	Pull	complete

Digest:	sha256:f8b6309cd39481de1a169143189ed0879b12b56fe286d254d03fa34ccad90734

Status:	Downloaded	newer	image	for	jupyter/pyspark-notebook:latest

Container	must	be	run	with	group	"root"	to	update	passwd	file

Executing	the	command:	jupyter	notebook

[I	15:47:52.900	NotebookApp]	Writing	notebook	server	cookie	secret	to	/home/jovyan/.local/share/jupyter/runtime/notebook_cookie_secret

[I	15:47:53.167	NotebookApp]	JupyterLab	extension	loaded	from	/opt/conda/lib/python3.6/site-packages/jupyterlab

[I	15:47:53.167	NotebookApp]	JupyterLab	application	directory	is	/opt/conda/share/jupyter/lab

[I	15:47:53.176	NotebookApp]	Serving	notebooks	from	local	directory:	/home/jovyan

[I	15:47:53.177	NotebookApp]	The	Jupyter	Notebook	is	running	at:

[I	15:47:53.177	NotebookApp]	http://(3a3d9f7e2565	or	127.0.0.1):8888/?token=f22492fe7ab8206ac2223359e0603a0dff54d98096ab7930

[I	15:47:53.177	NotebookApp]	Use	Control-C	to	stop	this	server	and	shut	down	all	kernels	(twice	to	skip	confirmation).

[C	15:47:53.177	NotebookApp]

				Copy/paste	this	URL	into	your	browser	when	you	connect	for	the	first	time,

				to	login	with	a	token:

								http://(3a3d9f7e2565	or	127.0.0.1):8888/?token=f22492fe7ab8206ac2223359e0603a0dff54d98096ab7930



Create	a	new	python	file

Now	 add	 the	 following	 content	 in	 the	 new	 file.	 In	 Jupyter	 notebook,	 you	 can
enter	a	python	command	or	python	code	and	press

This	will	run	the	code	interactively.

Now	let’s	create	the	following	content.

Now	let	us	do	the	following.

In	the	following	stage	we	configure	spark	context	and	import	the	necessary	files.

Next	stage	we	use	sample	data	set	by	creating	them	in	form	of	an	array	and	we
train	the	kmeans	algorithm.

SHIFT	+	ENTER

import	os

os.getcwd()

import	pyspark

sc	=	pyspark.SparkContext('local[*]')

rdd	=	sc.parallelize(range(1000))

rdd.takeSample(False,	5)

os.makedirs("data")

from	pyspark.mllib.clustering	import	KMeans,	KMeansModel

from	numpy	import	array

from	math	import	sqrt

from	pyspark.mllib.linalg	import	Vectors

from	pyspark.mllib.linalg	import	SparseVector

sc.version

sparse_data	=	[

				SparseVector(3,	{1:1.0}),

				SparseVector(3,	{1:1.1}),

				SparseVector(3,	{2:1.0}),

				SparseVector(3,	{2:1.1})

]

model	=	KMeans.train(sc.parallelize(sparse_data),	2,	initializationMode='k-means||',

																				seed=50,	initializationSteps=5,	epsilon=1e-4)

model.predict(array([0.,1.,0.]))

model.predict(array([0.,0.,1.]))



In	the	final	stage	we	put	sample	values	and	check	the	predictions	on	the	cluster.
In	 addition	 to	 that	 feed	 the	 data	 using	 SparseVector	 format	 and	 we	 add	 the
kmeans	initialization	mode,	the	error	margin	and	the	palatalization.	We	put	the
step	 size	 as	 5	 for	 this	 example.	 In	 the	 previous	 one	 we	 did	 not	 specify	 any
parameters.

The	predict	term	predicts	the	cluster	id	which	it	belongs	to.

Then	in	the	following	way	you	can	check	whether	two	data	points	belong	to	one
cluster	or	not.

11.3.6.7.1	Stop	Docker	Container

11.3.6.7.2	Start	Docker	Container	Again

11.3.6.7.3	Remove	Docker	Container

11.4	KUBERNETES

11.4.1	Introduction	to	Kubernetes	☁

	Learning	Objectives

model.predict(sparse_data[0])

model.predict(sparse_data[2])

data	=	array([0.0,	0.0,	1.0,	1.0,	9.0,	8.0,	8.0,	9.0]).reshape(4,	2)

model	=	KMeans.train(sc.parallelize(data),	2,	initializationMode='random',

																				seed=50,	initializationSteps=5,	epsilon=1e-4)

model.predict(array([0.0,	0.0]))	==	model.predict(array([1.0,	1.0]))

model.predict(array([8.0,	9.0]))

model.predict(array([8.0,	9.0]))	==	model.predict(array([9.0,	8.0]))

model.k

model.computeCost(sc.parallelize(data))

isinstance(model.clusterCenters,	list)

$	docker	stop	spark

$	docker	start	spark

$	docker	rm	spark

https://github.com/cloudmesh-community/book/blob/master/chapters/container/kubernetes-intro.md


What	is	Kubernetes?
What	are	containers?
Cluster	components	in	Kubernetes
Basic	Units	in	Kubernetes
Run	an	example	with	Minikube
Interactive	online	tutorial
Have	a	solid	understanding	of	Containers	and	Kubernetes
Understand	the	Cluster	components	of	Kubernetes
Understand	the	terminology	of	Kubernetes
Gain	practical	experience	with	kubernetes
With	minikube
With	an	interactive	online	tutorial

Kubernetes	is	an	open-source	platform	designed	to	automate	deploying,	scaling,
and	operating	application	containers.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

With	Kubernetes,	you	can:

Deploy	your	applications	quickly	and	predictably.
Scale	your	applications	on	the	fly.
Roll	out	new	features	seamlessly.
Limit	hardware	usage	to	required	resources	only.
Run	applications	in	public	and	private	clouds.

Kubernetes	is

Portable:	public,	private,	hybrid,	multi-cloud
Extensible:	modular,	pluggable,	hookable,	composable
Self-healing:	auto-placement,	auto-restart,	auto-replication,	auto-scaling

11.4.1.1	What	are	containers?

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/


Figure	134:	Kubernetes	Containers	[Image	Source]

Figure	134	shows	a	depiction	of	the	container	architecture.

11.4.1.2	Terminology

In	kubernetes	we	are	using	the	following	terminology

Pods:

A	 pod	 (as	 in	 a	 pod	 of	 whales	 or	 pea	 pod)	 is	 a	 group	 of	 one	 or	 more
containers	(such	as	Docker	containers),	with	shared	storage/network,	and	a
specification	for	how	to	run	the	containers.	A	pod’s	contents	are	always	co-
located	 and	 co-scheduled,	 and	 run	 in	 a	 shared	 context.	A	 pod	models	 an
application-specific	 logical	 host.	 It	 contains	 one	 or	 more	 application
containers	 which	 are	 relatively	 tightly	 coupled.	 In	 a	 pre-container	 world,
they	would	have	executed	on	the	same	physical	or	virtual	machine.

https://d33wubrfki0l68.cloudfront.net/e7b766e0175f30ae37f7e0e349b87cfe2034a1ae/3e391/images/docs/why_containers.svg


Services:

Service	is	an	abstraction	which	defines	a	logical	set	of	Pods	and	a	policy	by
which	to	access	them.	Sometimes	they	are	called	a	micro-service.	The	set	of
Pods	targeted	by	a	Service	is	(usually)	determined	by	a	Label	Selector.

Deployments:

A	 Deployment	 controller	 provides	 declarative	 updates	 for	 Pods	 and
ReplicaSets.	You	describe	a	desired	state	 in	a	Deployment	object,	and	the
Deployment	 controller	 changes	 the	 actual	 state	 to	 the	 desired	 state	 at	 a
controlled	rate.	You	can	define	Deployments	to	create	new	ReplicaSets,	or
to	 remove	 existing	 Deployments	 and	 adopt	 all	 their	 resources	 with	 new
Deployments.

11.4.1.3	Kubernetes	Architecture

The	architecture	of	kubernets	is	shown	in	Figure	135.



Figure	135:	Kubernetes	(Source:	Google)

11.4.1.4	Minikube

To	 try	 out	 kubernetes	 on	 your	 own	 computer	 you	 can	 download	 and	 install
minikube.	 It	 deploys	 and	 runs	 a	 single-node	 Kubernetes	 cluster	 inside	 a	 VM.
Hence	 it	 provide	 a	 reasonable	 environment	 not	 only	 to	 try	 it	 out,	 but	 also	 for
development	[cite].

In	this	section	we	will	first	discuss	how	to	install	minikube	and	then	showcase	an
example.

11.4.1.4.1	Install	minikube

11.4.1.4.1.0.1	OSX
$	curl	-Lo	minikube	https://storage.googleapis.com/minikube/releases/v0.25.0/minikube-darwin-amd64	&&	chmod	+x	minikube	&&

https://kubernetes.io/docs/setup/minikube/


11.4.1.4.1.0.2	Windows	10

We	 assume	 that	 you	 have	 installed	Oracle	VirtualBox	 in	 your	machine	which
must	be	a	version	5.x.x.

Initially,	we	need	to	download	two	executables.

Download	Kubectl

Download	Minikube

After	downloading	these	two	executables	place	them	in	the	cloudmesh	directory
we	 earlier	 created.	 Rename	 the	 minikube-windows-amd64.exe	 to	 minikube.exe.	 Make	 sure
minikube.exe	and	kubectl.exe	lie	in	the	same	directory.

11.4.1.4.1.0.3	Linux

Installing	KVM2	is	important	for	Ubuntu	distributions

We	 are	 going	 to	 run	 minikube	 using	 KVM2	 libraries	 instead	 of	 virtualbox
libraries	for	windows	installation.

Then	install	the	drivers	for	KVM2,

11.4.1.4.2	Start	a	cluster	using	Minikube

11.4.1.4.2.0.1	OSX	Minikube	Start

11.4.1.4.2.0.2	Ubuntu	Minikube	Start

$	curl	-Lo	minikube	https://storage.googleapis.com/minikube/releases/v0.25.0/minikube-linux-amd64	&&	chmod	+x	minikube	&&

$	sudo	apt	install	libvirt-bin	qemu-kvm

$	sudo	usermod	-a	-G	libvirtd	$(whoami)

$	newgrp	libvirtd

$	curl	-LO	https://storage.googleapis.com/minikube/releases/latest/docker-machine-driver-kvm2	&&	chmod	+x	docker-machine-driver-kvm2	

$	minikube	start

$	minikube	start	--vm-driver=kvm2

http://storage.googleapis.com/kubernetes-release/release/v1.4.0/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/minikube/releases/v0.25.0/minikube-windows-amd64.exe


11.4.1.4.2.0.3	Windows	10	Minikube	Start

In	this	case	you	must	run	Windows	PowerShell	as	administrator.	For	this	search
for	 the	 application	 in	 search	 and	 right	 click	 and	 click	Run	 as	 administrator.	 If
you	are	an	administrator	it	will	run	automatically	but	if	you	are	not	please	make
sure	you	provide	the	admin	login	information	in	the	pop	up.

11.4.1.4.3	Create	a	deployment

11.4.1.4.4	Expose	the	servi

11.4.1.4.5	Check	running	status

This	step	is	to	make	sure	you	have	a	pod	up	and	running.

11.4.1.4.6	Call	service	api

11.4.1.4.7	Take	a	look	from	Dashboard

If	you	want	to	get	an	interactive	dashboard,

Browse	to	http://192.168.99.101:30000	in	your	web	browser	and	it	will	provide
a	GUI	dashboard	regarding	minikube.

11.4.1.4.8	Delete	the	service	and	deployment

$	cd		C:\Users\<username>\Documents\cloudmesh

$	.\minikube.exe	start	--vm-driver="virtualbox"

$	kubectl	run	hello-minikube	--image=k8s.gcr.io/echoserver:1.4	--port=8080

$	kubectl	expose	deployment	hello-minikube	--type=NodePort

$	kubectl	get	pod

$	curl	$(minikube	service	hello-minikube	--url)

$	minikube	dashboard

$	minikube	dashboard	--url=true

http://192.168.99.101:30000

$	kubectl	delete	service	hello-minikube

$	kubectl	delete	deployment	hello-minikube



11.4.1.4.9	Stop	the	cluster

For	all	platforms	we	can	use	the	following	command.

11.4.1.5	Interactive	Tutorial	Online

Start	 cluster	 https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-
interactive/
Deploy	 app	 https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-
interactive
Explore	https://kubernetes.io/docs/tutorials/kubernetes-basics/explore-intro/
Expose	https://kubernetes.io/docs/tutorials/kubernetes-basics/expose-intro/
Scale	https://kubernetes.io/docs/tutorials/kubernetes-basics/scale-intro/
Update	 https://kubernetes.io/docs/tutorials/kubernetes-basics/update-
interactive/
MiniKube	 https://kubernetes.io/docs/tutorials/stateless-application/hello-
minikube/

11.4.2	Using	Kubernetes	on	FutureSystems	☁

This	 section	 introduces	 you	 on	 how	 to	 use	 the	 Kubernetes	 cluster	 on
FutureSystems.	 Currently	 we	 have	 deployed	 kubernetes	 on	 our	 cluster	 called
echo.

11.4.2.1	Getting	Access

You	 will	 need	 an	 account	 on	 FutureSystems	 and	 upload	 the	 ssh	 key	 to	 the
FutureSystems	portal	from	the	computer	from	which	you	want	to	login	to	echo.
To	 verify,	 if	 you	 have	 access	 try	 to	 see	 if	 you	 can	 log	 into
victor.futuresystems.org.	 You	 need	 to	 be	 a	 member	 of	 a	 valid	 FutureSystems
project.

For	Fall	2018	classes	at	IU	you	need	to	be	in	the	following	project:

https://portal.futuresystems.org/project/553

$	minikube	stop

https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-interactive
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/scale-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/update-interactive/
https://kubernetes.io/docs/tutorials/stateless-application/hello-minikube/
https://github.com/cloudmesh-community/book/blob/master/chapters/container/kubernetes-fs.md
https://portal.futuresystems.org/project/553


If	you	have	verified	that	you	have	access	to	the	victor,	you	can	now	try	to	login
to	the	kubernetes	cluster	head	node	with	the	same	username	and	key.	Run	these
first	on	your	local	machine	to	set	the	username	and	login	host:

Then	you	can	login	to	the	kubernetes	head	node	by	running:

NOTE:	 If	 you	 have	 access	 to	 victor	 but	 not	 the	 kubernetes	 system,	 your
project	may	not	have	been	authorized	to	access	the	kubernetes	cluster.	Send
a	ticket	to	FutureSystems	ticket	system	to	request	this.

Once	 you	 are	 logged	 in	 to	 the	 kubernetes	 cluster	 head	 node	 you	 can	 run
commands	on	 the	remote	echo	kubernetes	machine	 (all	 commands	 shown	 in
next	except	stated	otherwise)	to	use	the	kubernetes	installation	there.	First	try	to
run:

This	 will	 let	 you	 know	 if	 you	 have	 access	 to	 kubernetes	 and	 verifies	 if	 the
kubectl	command	works	for	you.	Naturally	it	will	also	list	the	pods.

11.4.2.2	Example	Use

The	following	command	runs	an	image	called	Nginx	with	two	replicas,	Nginx	is
a	popular	web	sever	which	is	well	known	as	a	high	performance	load	balancer.

As	a	result	of	this	one	deployment	was	created,	and	two	PODs	are	created	and
started.	 If	 you	 encounter	 and	 error	 stating	 that	 the	 deployment	 already	 exists
when	executing	the	previous	command	that	is	because	the	command	has	already
been	executed.	To	see	the	deployment,	please	use	the	command,	this	command
should	work	even	if	you	noticed	the	error	mentioned.

This	will	result	in	the	following	output
				NAME						DESIRED			CURRENT			UP-TO-DATE			AVAILABLE			AGE

$	export	ECHOK8S=149.165.150.85

$	export	FS_USER=<put	your	futersystem	account	name	here>

$	ssh	$FS_USER@$ECHOK8S

$	kubectl	get	pods

$	kubectl	run	nginx	--replicas=2	--image=nginx	--port=80

$	kubectl	get	deployment



				nginx					2									2									2												2											7m

To	see	the	pods	please	use	the	command

This	will	result	in	the	following	output
				NAME																			READY	STATUS		RESTARTS	AGE

				nginx-7587c6fdb6-4jnh6	1/1			Running	0								7m

				nginx-7587c6fdb6-pxpsz	1/1			Running	0								7m

If	we	want	to	see	more	detailed	information	we	cn	use	the	command

				NAME																			READY	STATUS		RESTARTS	AGE	IP								NODE

				nginx-75...-4jnh6	1/1			Running	0								8m		192.168.56.2			e003

				nginx-75...-pxpsz	1/1			Running	0								8m		192.168.255.66	e005

Please	note	the	IP	address	field.	Make	sure	you	are	using	the	IP	address	that	is
listed	when	you	execute	 the	command	since	the	IP	address	may	have	changed.
Now	if	we	try	to	access	the	nginx	homepage	with	wget	(or	curl)

we	see	the	following	output:
				--2018-02-20	14:05:59--		http://192.168.56.2/

				Connecting	to	192.168.56.2:80...	connected.

				HTTP	request	sent,	awaiting	response...	200	OK

				Length:	612	[text/html]

				Saving	to:	'index.html'

				index.html				100%[=========>]					612		--.-KB/s				in	0s

				2018-02-20	14:05:59	(38.9	MB/s)	-	'index.html'	saved	[612/612]

It	verifies	that	the	specified	image	was	running,	and	it	is	accessible	from	within
the	cluster.

Next	we	need	to	start	thinking	about	how	we	access	this	web	server	from	outside
the	cluster.	We	can	explicitly	exposing	the	service	with	the	following	command.
You	can	change	the	name	that	is	set	using	--name	to	what	you	want.	Given	that	is
adheres	to	the	naming	standards.	If	the	name	you	enter	is	already	in	the	system
your	command	will	return	an	error	saying	the	service	already	exists.

We	will	see	the	response
$	service	"nginx-external"	exposed

$	kubectl	get	pods

$	kubectl	get	pods	-o	wide

$	wget	192.168.56.2

$	kubectl	expose	deployment	nginx	--type=NodePort	--name=abc-nginx-ext



To	find	the	exposed	ip	addresses,	we	simply	issue	the	command

We	se	something	like	this
				NAME										TYPE						CLUSTER-IP				EXTERN	PORT(S)						AGE

																																										AL-IP

				kubernetes				ClusterIP	10.96.0.1					<none>	443/TCP						8h

				abc-nginx-ext	NodePort		10.110.177.35	<none>	80:31386/TCP	3s

please	note	that	we	have	given	a	unique	name.

For	IU	students:

You	 could	 use	 your	 username	 or	 if	 you	 use	 one	 of	 our	 classes	 your	 hid.	 The
number	part	will	typically	be	sufficient.	For	class	users	that	do	not	use	the	hid	in
the	name	we	will	terminate	all	instances	without	notification.	In	addition,	we	like
you	 explicitly	 to	 add	 “-ext”	 to	 every	 container	 that	 is	 exposed	 to	 the	 internet.
Naturally	we	want	you	to	shut	down	such	services	if	they	are	not	in	use.	Failure
to	do	so	may	result	in	termination	of	the	service	without	notice,	and	in	the	worst
case	revocation	of	your	privileges	to	use	echo.

In	 our	 example	 you	 will	 find	 the	 port	 on	 which	 our	 service	 is	 exposed	 and
remapped	 to.	We	 find	 the	port	31386	 in	 the	value	80:31386/TCP	 in	 the	 ports
column	for	the	running	container.

Now	if	we	visit	this	URL,	which	is	the	public	IP	of	the	head	node	followed	by
the	exposed	port	number,	from	a	browser	on	your	local	machine
				http://149.165.150.85:31386

you	should	see	the	‘Welcome	to	nginx’	page.

Once	 you	 have	 done	 all	 the	 work	 needed	 using	 the	 service	 you	 can	 delete	 it
using	the	following	command.

11.4.2.3	Exercises

$	kubectl	get	svc

$	kubectl	delete	service	<service-name>



E.Kubernetes.fs.1:

Explore	more	complex	service	examples.

E.Kubernetes.fs.2:

Explore	constructing	a	complex	web	app	with	multiple	services.

E.Kubernetes.fs.3:

Define	a	deployment	with	a	yaml	file	declaratively.

11.5	RUNNING	SINGULARITY	CONTAINERS	ON	COMET	☁
This	section	was	copied	from

https://www.sdsc.edu/support/user_guides/tutorials/singularity.html

and	 modified.	 To	 use	 it	 you	 will	 need	 an	 account	 on	 comet	 which	 can	 be
obtained	 via	 XSEDE.	 In	 case	 you	 use	 this	 material	 as	 part	 of	 a	 class	 please
contact	your	teacher	for	more	information.

11.5.1	Background

What	is	Singularity?

“Singularity	enables	users	to	have	full	control	of	 their	environment.
Singularity	 containers	 can	 be	 used	 to	 package	 entire	 scientific
workflows,	 software	 and	 libraries,	 and	 even	 data.	 This	 means	 that
you	don’t	have	to	ask	your	cluster	admin	to	install	anything	for	you	-
you	can	put	it	in	a	Singularity	container	and	run.”

[from	the	Singularity	web	site	at	http://singularity.lbl.gov/]

There	 are	 numerous	 good	 tutorials	 on	 how	 to	 install	 and	 run	 Singularity	 on
Linux,	OS	X,	or	Windows	so	we	won’t	go	into	much	detail	on	that	process	here.
In	 this	 tutorial	 you	will	 learn	 how	 to	 run	 Singularity	 on	Comet.	 First	we	will
review	how	to	access	a	compute	node	on	Comet	and	provide	a	simple	example

https://github.com/cloudmesh-community/book/blob/master/chapters/container/singularity/singularity.md
https://www.sdsc.edu/support/user_guides/tutorials/singularity.html
http://singularity.lbl.gov/


to	help	get	you	started.	There	are	numerous	tutorial	on	how	to	get	started	with
Singularity,	but	there	are	some	details	specific	to	running	Singularity	on	Comet
which	are	not	covered	in	those	tutorials.	This	tutorial	assumes	you	already	have
an	account	on	Comet.	You	will	also	need	access	to	a	basic	set	of	example	files	to
get	started.	SDSC	hosts	a	Github	repository	containing	a	’Hello	world!"	example
which	you	may	clone	with	the	following	command:

11.5.2	Tutorial	Contents

Why	Singularity?
Downloading	&	Installing	Singularity
Building	Singularity	Containers
Running	Singularity	Containers	on	Comet
Running	Tensorflow	on	Comet	Using	Singularity

11.5.3	Why	Singularity?

Listed	 next	 is	 a	 typical	 list	 of	 commands	 you	would	 need	 to	 issue	 in	 order	 to
implement	a	functional	Python	installation	for	scientific	research:

Singularity	allows	you	to	avoid	this	time-consuming	series	of	steps	by	packaging
these	 commands	 in	 a	 re-usable	 and	 editable	 script,	 allowing	 you	 to	 quickly,
easily,	 and	 repeatedly	 implement	 a	 custom	 container	 designed	 specifically	 for
your	analytical	needs.

Figure	136	compares	a	VM	vs.	Docker	vs.	Singularity.

git	clone	https://github.com/hpcdevops/singularity-hello-world.git

COMMAND=apt-get	-y	install	libx11-dev

COMMAND=apt-get	install	build-essential	python-libdev

COMMAND=apt-get	install	build-essentyial	openmpi-dev

COMMAND=apt-get	install	cmake

COMMAND=apt-get	install	g++

COMMAND=apt-get	install	git-lfs

COMMAND=apt-get	install	libXss.so.1

COMMAND=apt-get	install	libgdal1-dev	libproj-dev

COMMAND=apt-get	install	libjsoncpp-dev	libjsoncpp0

COMMAND=apt-get	install	libmpich-dev	--user

COMMAND=apt-get	install	libpthread-stubs0	libpthread-stubs0-dev	libx11-dev	libx11-d

COMMAND=apt-get	install	libudev0:i386

COMMAND=apt-get	install	numpy

COMMAND=apt-get	install	python-matplotlib

COMMAND=apt-get	install	python3`



Figure	136:	Singularity	Container	Architecture	[90]

11.5.4	Hands-On	Tutorials

The	 following	 tutorial	 includes	 links	 to	 asciinema	 video	 tutorials	 created	 by
SDSC	 HPC	 Systems	 Manager,	 Trevor	 Cooper	 which	 allow	 you	 to	 see	 the

console	 interactivity	 and	 output	 in	 detail.	 Look	 for	 the	 	 icon	 like	 the	 one
shown	to	the	right	corresponding	to	the	task	you	are	currently	working	on.

11.5.5	Downloading	&	Installing	Singularity

Download	&	Unpack	Singularity
Configure	&	Build	Singularity
Install	&	Test	Singularity

11.5.5.1	Download	&	Unpack	Singularity

First	 we	 download	 and	 upack	 the	 source	 using	 the	 following	 commands
(assuming	your	user	name	is	test_user	and	you	are	working	on	your	local	computer
with	super	user	privileges):

	Singularity	-	download	source	and	unpack	in	VirtualBox	VM	(CentOS	7)

If	the	file	is	successfully	extracted,	you	should	be	able	to	view	the	results:

[test_user@localhost	~]$	wget	https://github.com/singularityware/singularity/

releases/download/2.5.1/singularity-2.5.1.tar.gz	tar	-zxf	singularity-2.5.1.tar.gz

https://asciinema.org/a/12986


11.5.5.2	Configure	&	Build	Singularity

	Singularity	-	configure	and	build	in	VirtualBox	VM	(CentOS	7)

Next	 we	 configure	 and	 build	 the	 package.	 To	 configure,	 enter	 the	 following
command	(we	will	leave	out	the	command	prompts):

To	build,	issue	the	following	command:
make

This	may	take	several	seconds	depending	on	your	computer.

11.5.5.3	Install	&	Test	Singularity

	Singularity	-	install	and	test	in	VirtualBox	VM	(CentOS	7)

To	complete	the	installation	enter:
sudo	make	install

You	should	be	prompted	to	enter	your	admin	password.

Once	the	installation	is	completed,	you	can	check	to	see	if	it	succeeded	in	a	few
different	ways:

which	singularity	singularity	-version

You	can	also	run	a	selftest	with	the	following	command:
singularity	selftest

The	output	should	look	something	like:
+	sh	-c	test	-f	/usr/local/etc/singularity/singularity.conf	(retval=0)	OK		+	test	-u	

/usr/local/libexec/singularity/bin/action-suid	(retval=0)	OK		+	test	-u	/usr/local/libexec/singularity/bin/create-suid	

(retval=0)	OK		+	test	-u	/usr/local/libexec/singularity/bin/expand-suid	(retval=0)	OK		+	test	-u	

/usr/local/libexec/singularity/bin/export-suid	(retval=0)	OK		+	test	-u	/usr/local/libexec/singularity/bin/import-suid	

(retval=0)	OK		+	test	-u	/usr/local/libexec/singularity/bin/mount-suid	(retval=0)	OK

[test_user@localhost	~]$	cd	singularity-2.5.1/

[test_user@localhost	singularity-2.5.1]$	ls

./configure

https://asciinema.org/a/129867
https://asciinema.org/a/129868


11.5.6	Building	Singularity	Containers

The	process	of	building	a	Singularity	container	consists	of	a	few	distinct	steps	as
follows.

Upgrading	Singularity	(if	needed)
Create	an	Empty	Container
Import	into	Container
Shell	into	Container
Write	into	Container
Bootstrap	Container

We	will	go	through	each	of	these	steps	in	detail.

11.5.6.1	Upgrading	Singularity

We	recommend	building	containers	using	the	same	version	of	Singularity,	2.5.1,
as	exists	on	Comet.	This	is	a	2	step	process.

Step	1:	run	the	next	script	to	remove	your	existing	Singularity:

Step	2:	run	the	following	script	to	install	Singularity	2.5.1:

#!/bin/bash

#

#	A	cleanup	script	to	remove	Singularity

sudo	rm	-rf	/usr/local/libexec/singularity

sudo	rm	-rf	/usr/local/etc/singularity

sudo	rm	-rf	/usr/local/include/singularity

sudo	rm	-rf	/usr/local/lib/singularity

sudo	rm	-rf	/usr/local/var/lib/singularity/

sudo	rm	/usr/local/bin/singularity

sudo	rm	/usr/local/bin/run-singularity

sudo	rm	/usr/local/etc/bash_completion.d/singularity

sudo	rm	/usr/local/man/man1/singularity.1

#!/bin/bash

#

#	A	build	script	for	Singularity	(http://singularity.lbl.gov/)

declare	-r	SINGULARITY_NAME='singularity'

declare	-r	SINGULARITY_VERSION='2.5.1'

declare	-r	SINGULARITY_PREFIX='/usr/local'

declare	-r	SINGULARITY_CONFIG_DIR='/etc'

sudo	apt	update

sudo	apt	install	python	dh-autoreconf	build-essential	debootstrap

cd	../

tar	-xzvf	"${PWD}/tarballs/${SINGULARITY_NAME}-${SINGULARITY_VERSION}.tar.gz"

cd	"${SINGULARITY_NAME}-${SINGULARITY_VERSION}"

./configure	--prefix="${SINGULARITY_PREFIX}"	--sysconfdir="${SINGULARITY_CONFIG_DIR}"



11.5.7	Create	an	Empty	Container

	Singularity	-	create	container

To	 create	 an	 empty	 Singularity	 container,	 you	 simply	 issue	 the	 following
command:
singularity	create	centos7.img

This	will	create	a	CentOS	7	container	with	a	default	size	of	~805	Mb.	Depending
on	what	 additional	 configurations	 you	 plan	 to	make	 to	 the	 container,	 this	 size
may	 or	 may	 not	 be	 big	 enough.	 To	 specify	 a	 particular	 size,	 such	 as	 ~4	 Gb,
include	the	-s	parameter,	as	shown	in	the	following	command:
singularity	create	-s	4096	centos7.img

To	view	the	resulting	image	in	a	directory	listing,	enter	the	following:
ls

11.5.8	Import	Into	a	Singularity	Container

	Singularity	-	import	Docker	image

Next,	we	will	import	a	Docker	image	into	our	empty	Singularity	container:
singularity	import	centos7.img	docker://centos:7

11.5.9	Shell	Into	a	Singularity	Container

	Singularity	-	shell	into	container

Once	the	container	actually	contains	a	CentOS	7	installation,	you	can	‘shell’	into
it	with	the	following:
singularity	shell	centos7.img

Once	you	 enter	 the	 container	 you	 should	 see	 a	 different	 command	prompt.	At

make

sudo	make	install

https://asciinema.org/a/130106
https://asciinema.org/a/130107
https://asciinema.org/a/130109


this	new	prompt,	try	typing:
whoami

Your	user	id	should	be	identical	to	your	user	id	outside	the	container.	However,
the	 operating	 system	 will	 probably	 be	 different.	 Try	 issuing	 the	 following
command	from	inside	the	container	to	see	what	the	OS	version	is:
cat	/etc/*-release

11.5.10	Write	Into	a	Singularity	Container

	Singularity	-	write	into	container

Next,	let’s	trying	writing	into	the	container	(as	root):
sudo	/usr/local/bin/singularity	shell	-w	centos7.img

You	should	be	prompted	for	your	password,	and	then	you	should	see	something
like	the	following:
Invoking	an	interactive	shell	within	the	container...

Next,	let’s	create	a	script	within	the	container	so	we	can	use	it	to	test	the	ability
of	the	container	to	execute	shell	scripts:
vi	hello_world.sh

The	previous	command	assumes	you	know	the	vi	editor.	Enter	the	following	text
into	the	script,	save	it,	and	quit	the	vi	editor:
#!/bin/bash	echo	"Hello,	World!"

You	may	need	to	change	the	permissions	on	the	script	so	it	can	be	executable:
chmod	+x	hello_world.sh

Try	running	the	script	manually:
./hello_world.sh

The	output	should	be:
Hello,	World!

https://asciinema.org/a/130110


11.5.11	Bootstrapping	a	Singularity	Container

	Singularity	-	bootstrapping	a	container

Bootstrapping	 a	 Singularity	 container	 allows	 you	 to	 use	 what	 is	 called	 a
‘definitions	file’	so	you	can	reproduce	the	resulting	container	configurations	on
demand.

Let	 us	 say	 you	want	 to	 create	 a	 container	with	Ubuntu,	 but	 you	may	want	 to
create	 variations	 on	 the	 configurations	without	 having	 to	 repeat	 a	 long	 list	 of
commands	 manually.	 First,	 we	 need	 our	 definitions	 file.	 Given	 next	 is	 the
contents	of	a	definitions	file	which	should	suffice	for	our	purposes.

To	bootstrap	your	container,	first	we	need	to	create	an	empty	container.
singularity	create	-s	4096	ubuntu.img

Now,	we	simply	need	to	issue	the	following	command	to	configure	our	container
with	Ubuntu:
sudo	/usr/local/bin/singularity	bootstrap	./ubuntu.img	./ubuntu.def

This	may	 take	a	while	 to	complete.	 In	principle,	you	can	accomplish	 the	same
result	by	manually	issuing	each	of	the	commands	contained	in	the	script	file,	but
why	do	that	when	you	can	use	bootstrapping	to	save	time	and	avoid	errors.

If	 all	 goes	 according	 to	 plan,	 you	 should	 then	 be	 able	 to	 shell	 into	 your	 new
Ubuntu	container.

Bootstrap:	docker

From:	ubuntu:latest

%runscript

exec	echo	"The	runscript	is	the	containers	default	runtime	command!"

%files

/home/testuser/ubuntu.def	/data/ubuntu.def

%environment

VARIABLE=HELLOWORLD

Export	VARIABLE

%labels

AUTHOR	testuser@sdsc.edu

%post

apt-get	update	&&	apt-get	-y	install	python3	git	wget

mkdir	/data

echo	"The	post	section	is	where	you	can	install	and	configure	your	container."

https://asciinema.org/a/130111


11.5.12	Running	Singularity	Containers	on	Comet

Of	 course,	 the	 purpose	 of	 this	 tutorial	 is	 to	 enable	 you	 to	 use	 the	 San	 Diego
Supercomputer	Center’s	Comet	 supercomputer	 to	 run	your	 jobs.	This	 assumes
you	have	an	account	on	Comet	already.	If	you	do	not	have	an	account	on	Comet
and	you	feel	you	can	justify	the	need	for	such	an	account	(i.e.	your	research	is
limited	 by	 the	 limited	 compute	 power	 you	 have	 in	 your	 government-funded
research	 lab),	you	can	 request	a	 ‘Startup	Allocation’	 through	 the	XSEDE	User
Portal:

https://portal.xsede.org/allocations-overview#types-trial

You	may	create	a	free	account	on	the	XUP	if	you	do	not	already	have	one	and
then	proceed	to	submit	an	allocation	request	at	the	previously	given	link.

NOTE:	SDSC	provides	a	Comet	User	Guide	to	help	get	you	started	with	Comet.
Learn	more	about	The	San	Diego	Supercomputer	Center	at	http://www.sdsc.edu.

This	 tutorial	walks	you	 through	 the	 following	 four	 steps	 towards	 running	your
first	Singularity	container	on	Comet:

Transfer	the	Container	to	Comet
Run	the	Container	on	Comet
Allocate	Resources	to	Run	the	Container
Integrate	the	Container	with	Slurm
Use	existing	Comet	Containers

11.5.12.1	Transfer	the	Container	to	Comet

	Singularity	-	transfer	container	to	Comet

Once	 you	 have	 created	 your	 container	 on	 your	 local	 system,	 you	will	 need	 to
transfer	it	to	Comet.	There	are	multiple	ways	to	do	this	and	it	can	take	a	varying
amount	of	time	depending	on	its	size	and	your	network	connection	speeds.

To	do	this,	we	will	use	scp	(secure	copy).	If	you	have	a	Globus	account	and	your
containers	are	more	 than	4	Gb	you	will	probably	want	 to	use	 that	 file	 transfer

https://portal.xsede.org/allocations-overview#types-trial
http://www.sdsc.edu/support/user_guides/comet.html
http://www.sdsc.edu
https://asciinema.org/a/130195


method	instead	of	scp.

Browse	 to	 the	 directory	 containing	 the	 container.	 Copy	 the	 container	 to	 your
scratch	directory	on	Comet.	By	issuing	the	following	command:
scp	./centos7.img	comet.sdsc.edu:/oasis/scratch/comet/test_user/temp_project/

The	container	is	~805	Mb	so	it	should	not	take	too	long,	hopefully.

11.5.12.2	Run	the	Container	on	Comet

	Singularity	-	run	container	on	Comet

Once	the	file	is	transferred,	login	to	Comet	(assuming	your	Comet	user	is	named
test_user):
ssh	test_user@comet.sdsc.edu

Navigate	to	your	scratch	directory	on	Comet,	which	should	be	something	like:
[test_user@comet-ln3	~]$	cd	/oasis/scratch/comet/test_user/temp_project/

Next,	you	should	submit	a	request	for	an	interactive	session	on	one	of	Comet’s
compute,	debug,	or	shared	nodes.
[test_user@comet-ln3	~]$	srun	--pty	--nodes=1	--ntasks-per-node=24	-p	compute	-t	01:00:00	--wait	0	/bin/bash

Once	 your	 request	 is	 approved	 your	 command	 prompt	 should	 reflect	 the	 new
node	id.

Before	you	can	run	your	container	you	will	need	to	load	the	Singularity	module
(if	 you	 are	 unfamiliar	 with	 modules	 on	 Comet,	 you	 may	 want	 to	 review	 the
Comet	User	Guide).	The	command	to	load	Singularity	on	Comet	is:
[test_user@comet-ln3	~]$	module	load	singularity

You	may	issue	the	previous	command	from	any	directory	on	Comet.	Recall	that
we	added	a	 hello_world.sh	 script	 to	our	 centos7.img	container.	Let	us	 try	 executing
that	script	with	the	following	command:
[test_user@comet-ln3	~]$	singularity	exec	/oasis/scratch/comet/test_user/temp_project/singularity/centos7.img	

/hello_world.sh

https://asciinema.org/a/130196


If	all	goes	well,Â	you	should	see	Hello,	World!	in	the	console	output.	You	might
also	see	some	warnings	pertaining	to	non-existent	bind	points.	You	can	resolve
this	 by	 adding	 some	 additional	 lines	 to	 your	 definitions	 file	 before	 you	 build
your	 container.	 We	 did	 not	 do	 that	 for	 this	 tutorial,	 but	 you	 would	 use	 a
command	like	the	following	in	your	definitions	file:
#	create	bind	points	for	SDSC	HPC	environment	mkdir	/oasis	/scratch/	/comet	/temp_project

You	will	find	additional	examples	located	in	the	following	locations	on	Comet:
/share/apps/examples/SI2017/Singularity

and
/share/apps/examples/SINGULARITY

11.5.12.3	Allocate	Resources	to	Run	the	Container

	Singularity	-	allocate	resources	to	run	container

It	 is	 best	 to	 avoid	 working	 on	 Comet’s	 login	 nodes	 since	 they	 can	 become	 a
performance	 bottleneck	 not	 only	 for	 you	 but	 for	 all	 other	 users.	 You	 should
rather	allocate	resources	specific	for	computationally-intensive	jobs.	To	allocate
a	‘compute	node’	for	your	user	on	Comet,	issue	the	following	command:
[test_user@comet-ln3	~]$	salloc	-N	1	-t	00:10:00

This	allocation	 requests	a	 single	node	 (-N	1)	 for	a	 total	 time	of	10	minutes	 (-t
00:10:00).	 Once	 your	 request	 has	 been	 approved,	 your	 computer	 node	 name
should	be	displayed,	e.g.	comet-17-12.

Now	you	may	login	to	this	node:
[test_user@comet-ln3	~]$	ssh	comet-17-12

Notice	that	the	command	prompt	has	now	changed	to	reflect	the	fact	that	you	are
on	a	compute	node	and	not	a	login	node.
[test_user@comet-06-04	~]$

Next,	 load	 the	 Singularity	 module,	 shell	 into	 the	 container,	 and	 execute	 the	
hello_world.sh	script:

https://asciinema.org/a/130197


[test_user@comet-06-04	~]$	module	load	singularity	[test_user@comet-06-04	~]$	singularity	shell	centos7.img	

[test_user@comet-06-04	~]$	./hello_world.sh

If	all	goes	well,	you	should	see	Hello,	World!	in	the	console	output.

11.5.12.4	Integrate	the	Container	with	Slurm

	Singularity	-	run	container	on	Comet	via	Slurm

Of	course,	most	users	simply	want	to	submit	their	jobs	to	the	Comet	queue	and
let	it	run	to	completion	and	go	on	to	other	things	while	waiting.	Slurm	is	the	job
manager	for	Comet.

Given	next	is	a	job	script	(which	we	will	name	singularity_mvapich2_hellow.run)	which	will
submit	 your	 Singularity	 container	 to	 the	 Comet	 queue	 and	 run	 a	 program,
hellow.c	(written	in	C	using	MPI	and	provided	as	part	of	the	examples	with	the
mvapich2	default	installation).
#!/bin/bash	``	#SBATCH	--job-name="singularity_mvapich2_hellow"		#SBATCH	--output="singularity_mvapich2_hellow.%j.out"		

#SBATCH	--error="singularity_mvapich2_hellow.%j.err"		#SBATCH	--nodes=2		#SBATCH	--ntasks-per-node=24		#SBATCH	--

time=00:10:00		#SBATCH	--export=all	module	load	mvapich2_ib	singularity
CONTAINER=/oasis/scratch/comet/$USER/temp_project/singularity/centos7-mvapich2.img

mpirun	singularity	exec	${CONTAINER}	/usr/bin/hellow

The	previous	script	requests	2	nodes	and	24	tasks	per	node	with	a	wall	time	of
10	minutes.	 Notice	 that	 two	modules	 are	 loaded	 (see	 the	 line	 beginning	 with
‘module’),	 one	 for	 Singularity	 and	 one	 for	 MPI.	 An	 environment	 variable
‘CONTAINER’	is	also	defined	to	make	it	a	little	easier	to	manage	long	reusable
text	strings	such	as	file	paths.

You	may	need	 to	add	a	 line	 specifying	with	allocation	 to	be	used	 for	 this	 job.
When	you	are	ready	to	submit	 the	job	to	the	Comet	queue,	 issue	the	following
command:
[test_user@comet-06-04	~]$	sbatch	-p	debug	./singularity_mvapich2_hellow.run

To	view	the	status	of	your	job	in	the	Comet	queue,	issue	the	following:
[test_user@comet-06-04	~]$	squeue	-u	test_user

When	the	job	is	complete,	view	the	output	which	should	be	written	to	the	output

https://asciinema.org/a/130218


file	 singularity_mvapich2_hellow.%j.out	 where	 %j	 is	 the	 job	 ID	 (let’s	 say	 the	 job	 ID	 is
1000001):
[test_user@comet-06-04	~]$	more	singularity_mvapich2_hellow.1000001.out

The	output	should	look	something	like	the	following:

11.5.12.5	Use	Existing	Comet	Containers

SDSC	User	 Support	 staff,	Marty	Kandes,	 has	 built	 several	 custom	Singularity
containers	designed	specifically	for	the	Comet	environment.

Learn	more	about	these	containers	for	Comet.

An	easy	way	to	pull	images	from	the	singularity	hub	on	comment	is	provided	in
the	next	video:

	Singularity	-	pull	from	singularity-hub	on	Comet

Comet	 supports	 the	 capability	 to	 pull	 a	 container	 directly	 from	 any	 properly
configured	 remote	 singularity	 hub.	 For	 example,	 the	 following	 command	 can
pull	 a	 container	 from	 the	 hpcdevops	 singularity	 hub	 straight	 to	 an	 empty
container	located	on	Comet:

The	 resulting	 container	 should	 be	 named	 something	 like	 singularity-hello-
world.img.

Learn	more	about	Singularity	Hubs	and	container	collections	at:

https://singularity-hub.org/collections

Hello	world	from	process	28	of	48

Hello	world	from	process	29	of	48

Hello	world	from	process	30	of	48

Hello	world	from	process	31	of	48

Hello	world	from	process	32	of	48

Hello	world	from	process	33	of	48

Hello	world	from	process	34	of	48

Hello	world	from	process	35	of	48

Hello	world	from	process	36	of	48

Hello	world	from	process	37	of	48

Hello	world	from	process	38	of	48

comet$	singularity	pull	shub://hpcdevops/singularity-hello-world:master

https://asciinema.org/a/129906
https://singularity-hub.org/collections


That’s	it!	Congratulations!	You	should	now	be	able	to	run	Singularity	containers
on	Comet	either	interactively	or	through	the	job	queue.	We	hope	you	found	this
tutorial	useful.	Please	contact	support@xsede.org	with	any	questions	you	might
have.	 Your	 Comet-related	 questions	 will	 be	 routed	 to	 the	 amazing	 SDSC
Support	Team.

11.5.13	Using	Tensorflow	With	Singularity

One	of	 the	more	common	advantages	of	using	Singularity	 is	 the	ability	 to	use
pre-built	containers	for	specific	applications	which	may	be	difficult	to	install	and
maintain	 by	 yourself,	 such	 as	 Tensorflow.	 The	 most	 common	 example	 of	 a
Tensorflow	application	 is	 character	 recognition	using	 the	MNIST	dataset.	You
can	learn	more	about	this	dataset	at	http://yann.lecun.com/exdb/mnist/.

XSEDE’s	Comet	supercomputer	supports	Singularity	and	provides	several	pre-
built	 container	 which	 run	 Tensorflow.	 Given	 next	 is	 an	 example	 batch	 script
which	runs	a	Tensorflow	job	within	a	Singularity	container	on	Comet.	Copy	this
script	and	paste	it	into	a	shell	script	named	mnist_tensorflow_example.sb.

11.5.14	Run	the	job

To	submit	the	script	to	Comet,	first	you’ll	need	to	request	a	compute	node	with
the	following	command	(replace	account	with	your	XSEDE	account	number):

To	submit	a	job	to	the	Comet	queue,	issue	the	following	command:

#!/bin/bash

#SBATCH	--job-name="TensorFlow"

#SBATCH	--output="TensorFlow.%j.%N.out"

#SBATCH	--partition=gpu-shared

#SBATCH	--nodes=1

#SBATCH	--ntasks-per-node=6

#SBATCH	--gres=gpu:k80:1

#SBATCH	-t	01:00:00

module	load	singularity

singularity	exec

/share/apps/gpu/singularity/sdsc_ubuntu_gpu_tflow.img	lsb_release

-a

singularity	exec

/share/apps/gpu/singularity/sdsc_ubuntu_gpu_tflow.img	python	-m

tensorflow.models.image.mnist.convolutional

[test_user@comet-ln3	~]$	srun	--account=your_account_code	--partition=gpu-shared	--gres=gpu:1	--pty	--nodes=1	--ntasks-per-node=1	-t	00:30:00	--wait=0	--export=ALL	/bin/bash

[test_user@comet-06-04	~]$	sbatch	mnist_tensorflow_example.sb

mailto:support@xsede.org
http://yann.lecun.com/exdb/mnist/


When	 the	 job	 is	 done	 you	 should	 see	 an	 output	 file	 in	 your	 output	 directory
containing	something	resembling	the	following:

Congratulations!	You	 have	 successfully	 trained	 a	 neural	 network	 to	 recognize
ascii	numeric	characters.

11.5.15	Resources	☁

Docker	documentation	https://docs.docker.com/
Kubernetes	documentation	https://kubernetes.io/docs/home/
Container	 Orchestration	 Tools:	 Compare	 Kubernetes	 vs	 Docker	 Swarm
https://platform9.com/blog/compare-kubernetes-vs-docker-swarm/
Gentle	 introduction	 to	 Containers
https://www.slideshare.net/jpetazzo/introduction-docker-linux-containers-
lxc

Distributor	ID:	Ubuntu

Description:	Ubuntu	16.04	LTS

Release:	16.04

Codename:	xenial

^[[33mWARNING:	Non	existent	bind	point	(directory)	in	container:	'/scratch'

^[[0mI	tensorflow/stream_executor/dso_loader.cc:108]	successfully	opened	CUDA	library	libcublas.so	locally

I	tensorflow/stream_executor/dso_loader.cc:108]	successfully	opened	CUDA	library	libcudnn.so	locally

I	tensorflow/stream_executor/dso_loader.cc:108]	successfully	opened	CUDA	library	libcufft.so	locally

I	tensorflow/stream_executor/dso_loader.cc:108]	successfully	opened	CUDA	library	libcuda.so.1	locally

I	tensorflow/stream_executor/dso_loader.cc:108]	successfully	opened	CUDA	library	libcurand.so	locally

I	tensorflow/core/common_runtime/gpu/gpu_init.cc:102]	Found	device	0	with	properties:

name:	Tesla	K80

major:	3	minor:	7	memoryClockRate	(GHz)	0.8235

pciBusID	0000:85:00.0

Total	memory:	11.17GiB

Free	memory:	11.11GiB

I	tensorflow/core/common_runtime/gpu/gpu_init.cc:126]	DMA:	0

I	tensorflow/core/common_runtime/gpu/gpu_init.cc:136]	0:	Y

I	tensorflow/core/common_runtime/gpu/gpu_device.cc:838]	Creating	TensorFlow	device	(/gpu:0)	->	(device:	0,	name:	Tesla	K80,	pci	bus	id:	0000:85:00.0)

Extracting	data/train-images-idx3-ubyte.gz

Extracting	data/train-labels-idx1-ubyte.gz

Extracting	data/t10k-images-idx3-ubyte.gz

Extracting	data/t10k-labels-idx1-ubyte.gz

Initialized!

Step	0	(epoch	0.00),	40.0	ms

Minibatch	loss:	12.054,	learning	rate:	0.010000

Minibatch	error:	90.6%

Validation	error:	84.6%

Step	100	(epoch	0.12),	12.6	ms

Minibatch	loss:	3.293,	learning	rate:	0.010000

Minibatch	error:	6.2%

Validation	error:	7.0%

Step	8400	(epoch	9.77),	11.5	ms

Minibatch	loss:	1.596,	learning	rate:	0.006302

Minibatch	error:	0.0%

Validation	error:	0.9%

Step	8500	(epoch	9.89),	11.5	ms

Minibatch	loss:	1.593,	learning	rate:	0.006302

Minibatch	error:	0.0%

Validation	error:	0.8%

Test	error:	0.9%

https://github.com/cloudmesh-community/book/blob/master/chapters/container/resources.md
https://docs.docker.com/
https://kubernetes.io/docs/home/
https://platform9.com/blog/compare-kubernetes-vs-docker-swarm/
https://www.slideshare.net/jpetazzo/introduction-docker-linux-containers-lxc


11.5.15.1	Tutorialspoint

Several	 tutorials	 on	docker	 that	 can	help	you	understand	 the	 concepts	 in	more
detail

https://www.tutorialspoint.com/docker/index.htm
https://www.tutorialspoint.com/docker/docker_tutorial.pdf
https://www.tutorialspoint.com/docker/docker_pdf_version.htm

11.6	EXERCISES	☁
E.Docker.1:	MongoDB	Container

Develop	 a	 docker	 file	 that	 uses	 the	 mongo	 distribution	 from
Dockerhub	and	starts	a	MongoDB	database	on	the	regular	port	while
communicating	to	your	container.

What	 are	 the	 parameters	 on	 the	 command	 line	 that	 you	 need	 to
define?

E.Docker.2:	MongoDB	Container	with	authentication

Develop	a	MongoDB	container	 that	 includes	an	outhenticated	user.
You	must	use	 the	cloudmesh.yaml	 file	 for	specifying	the	 information
for	the	admin	user	and	password.

1.	 How	do	you	add	the	user?
2.	 How	do	you	start	the	container?
3.	 Showcase	 the	use	of	 the	authentication	with	a	 simple	 script	 or
pytest.

You	are	allowed	tou	sue	docker	compose,	but	make	sure	you	read	the
password	ond	username	from	the	yaml	file.	YoU	must	not	configure	it
by	hand	in	the	compose	yaml	file.	You	can	use	cloudmesh	commands
to	read	the	username	and	password.
cms	config	value	cloudmesh.data.mongo.MONGO_USERNAME

cms	config	value	cloudmesh.data.mongo.MONGO_PASSWORD

https://www.tutorialspoint.com/docker/index.htm
https://www.tutorialspoint.com/docker/docker_tutorial.pdf
https://www.tutorialspoint.com/docker/docker_pdf_version.htm
https://github.com/cloudmesh-community/book/blob/master/chapters/container/exercise.md


E.Docker.3:	Cloudmesh	Container

In	this	assignment	we	will	explore	the	use	of	two	containers.	We	will
be	leveraging	the	asisgnment	E.Docker.2.

First,	you	wil	lstart	the	authenticated	docker	MongoDB	container

You	will	be	writing	an	additional	dockerfile,	 that	creates	cloudmesh
in	 a	 docker	 container.	 Upon	 start	 the	 parameter	 passed	 to	 the
container	will	be	executed	in	the	container.	You	will	use	the	.ssh	and
.cloudmesh	directory	from	your	native	file	system.

For	hints,	please	look	at

https://github.com/cloudmesh/cloudmesh-
cloud/blob/master/docker/ubuntu-19.04/Dockerfile
https://github.com/cloudmesh/cloudmesh-
cloud/blob/master/docker/ubuntu-19.04/Makefile

To	jump	start	you	try

Explore!	Understand	what	is	done	in	the	Makefile

Questions:

1.	 How	would	you	need	to	modify	the	Dockerfile	to	complete	it?
2.	 Whay	 did	 we	 outcomment	 the	 MongoDB	 related	 tasks	 in	 the
Dockerfile?

3.	 How	 do	we	 need	 to	 establish	 communication	 to	 the	MongoDB
container

4.	 Could	 docker	 compose	 help,	 or	 would	 it	 be	 too	 complicated,
e.g.	what	if	the	mongo	container	already	runs?

5.	 Why	 would	 it	 be	 dangerous	 to	 store	 the	 cloudmesh.yaml	 file
inside	the	container?	Hint:	DockerHub.

6.	 Why	should	you	at	this	time	not	upload	images	to	DockerHub?

E.Docker.Swarm.1:	Documentation

make	image

make	shell

https://github.com/cloudmesh/cloudmesh-cloud/blob/master/docker/ubuntu-19.04/Dockerfile
https://github.com/cloudmesh/cloudmesh-cloud/blob/master/docker/ubuntu-19.04/Makefile


Develop	 a	 section	 in	 the	 handbook	 that	 deploys	 a	 Docker	 Swarm
cluster	on	a	number	of	ubuntu	machines.	Note	that	this	may	actually
be	 easier	 as	 docker	 and	 docker	 swarm	 are	 distributed	 with	 recent
versions	of	ubuntu.	Just	 in	case	we	are	providing	a	link	 to	an	effort
we	found	to	install	docker	swarm.	However	we	have	not	checked	it	or
identified	if	it	is	useful.

https://rominirani.com/docker-swarm-tutorial-b67470cf8872

E.Docker.Swarm.2:	Google	Compute	Engine

Develop	 a	 section	 that	 deploys	 a	Docker	 Swarm	 cluster	 on	Google
Compute	Engine.	Note	that	this	may	actually	be	easier	as	docker	and
docker	swarm	are	distributed	with	recent	versions	of	ubuntu.	Just	in
case	we	are	providing	a	 link	 to	an	effort	we	 found	 to	 install	docker
swarm.	However	we	have	not	checked	it	or	identified	if	it	is	useful.

https://rominirani.com/docker-swarm-on-google-compute-
engine-364765b400ed

E.SingleNodeHadoop:

Setup	a	single	node	hadoop	environment.

This	includes:

1.	 Create	a	Dockerfile	that	deploys	hadoop	in	a	container
2.	 Develop	sample	applications	and	tests	 to	 test	your	cluster.	You
can	use	wordcount	or	similar.

you	will	 find	a	comprehensive	 installation	 instruction	 that	 sets	up	a
hadoop	cluster	on	a	single	node	at

https://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-common/SingleCluster.html

E.MultiNodeHadoop:

Setup	a	hadoop	cluster	in	a	distributed	environment.

https://rominirani.com/docker-swarm-tutorial-b67470cf8872
https://rominirani.com/docker-swarm-on-google-compute-engine-364765b400ed
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html


This	includes:

1.	 Create	docker	compose	and	Dockerfiles	that	deploys	hadoop	in
kubernetes

2.	 Develop	sample	applications	and	tests	 to	 test	your	cluster.	You
can	use	wordcount	or	similar.

you	will	 find	a	comprehensive	 installation	 instruction	 that	 sets	up	a
hadoop	cluster	in	a	distributed	environment	at

https://hadoop.apache.org/docs/r3.0.0/hadoop-project-
dist/hadoop-common/ClusterSetup.html

You	can	use	this	set	of	instructions	or	identify	other	resources	on	the
internet	 that	 allow	 the	 creation	 of	 a	 hadoop	 cluster	 on	 kubernetes.
Alternatively	you	can	use	docker	compose	for	this	exercise.

E.SparkCluster:	Documentation

Develop	 a	 high	 quality	 section	 that	 installs	 a	 spark	 cluster	 in
kubernetes.	 Test	 your	 deployment	 on	 minikube	 and	 also	 on
Futuresystems	echo.

You	 may	 want	 to	 get	 inspired	 from	 the	 talk	 Scalable	 Spark
Deployment	using	Kubernetes:

http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-1/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-2/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-3/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-4/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-5/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-6/

https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-1/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-2/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-3/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-4/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-5/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-6/


http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-7/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-8/
http://blog.madhukaraphatak.com/scaling-spark-with-
kubernetes-part-9/

Make	sure	you	do	not	plagiarize.

http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-7/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-8/
http://blog.madhukaraphatak.com/scaling-spark-with-kubernetes-part-9/


12	SERVERLESS

12.1	FAAS	☁

12.1.1	Introduction

FaaS	 or	 Function	 as	 a	 service	 is	 a	 new	 paradim	 in	 cloud	 computing	 that	 is
gaining	 popularity	 recently.	 FaaS	 is	 also	 known	 as	 Serverless	 Computing	 to
some.	While	the	name	Serverless	implies	that	no	servers	are	involved	this	is	not
true.	So	FaaS	would	be	a	better	 term	to	describe	 this	 technology.	FaaS	 is	built
around	functions	and	events.	Functions	are	generally	stateless	and	are	executed
within	isolated	containers.	The	execution	of	the	functions	can	be	thought	of	as	an
event	 driven	 model.	 A	 program	 or	 application	 in	 FaaS	 consist	 of	 a	 set	 of
functions	and	a	set	of	events	or	triggers	that	invoke	or	activate	those	functions.	A
function	activation	can	result	in	another	function	activation	as	a	result.

Generally	 FaaS	 specifies	 a	 set	 of	 constraints	 on	 what	 a	 function	 can	 be.	 The
constraints	include	storage	constraints	such	as	a	maximum	size	for	the	function,
maximum	 memory	 allowed,	 execution	 time,	 etc.	 The	 exact	 constraints	 differ
from	 provider	 to	 provider.	 AWS	 Lambda	 is	 considered	 as	 one	 of	 first	 FaaS
offerings.	Now	most	 cloud	 providers	 offer	 their	 own	version	 of	 FaaS.	 Several
popular	FaaS	providers	are	listed	next.

12.1.2	Serverless	Computing

In	 Serverless	 Computing,	 servers	 are	 still	 there,	 its	 just	 that	 we	 dont	 need	 to
manage	them.

Another	 advantage	 of	 going	 serverless	 is	 that	 you	 no	 longer	 need	 to	 keep	 a
server	running	all	the	time.	The	server	suddenly	appears	when	you	need	it,	then
disappears	when	you’re	done	with	 it.	Now	you	can	 think	 in	 terms	of	functions
instead	 of	 servers,	 and	 all	 your	 business	 logic	 can	 now	 live	 within	 these
functions.

12.1.3	Faas	provider

https://github.com/cloudmesh-community/book/blob/master/chapters/faas/introduction.md


AWS	Lambda	https://aws.amazon.com/lambda
Azure	Functions	https://azure.microsoft.com/en-us/services/functions
IBM	Cloud	Functions	https://console.bluemix.net/openwhisk
Google	Cloud	Functions	https://cloud.google.com/functions
Iron.io	https://www.iron.io
Webtask.io	https://webtask.io

Other	 than	 the	providers	 there	are	also	several	open	source	FaaS	offerings	 that
are	 available	 to	 be	 used.	 One	 of	 the	 most	 complete	 and	 popular	 open	 source
option	would	 be	Apache	OpenWhisk,	which	was	 developed	 by	 IBM	and	 later
open	sourced.	IBM	currently	deploys	OpenWhisk	in	IBM	cloud	and	offers	it	as	a
IBM	Cloud	functions.

OpenWhisk	https://github.com/apache/incubator-openwhisk
Funktion	https://github.com/funktionio/funktion
Iron	Functions	https://github.com/iron-io/functions
Kubeless	https://github.com/kubeless/kubeless
Fission	https://github.com/fission/fission
FaaS-netes	https://github.com/alexellis/faas-netes

There	are	many	articles	and	tutorials	online	that	provide	very	good	information
regarding	FaaS.	Given	next	are	some	such	resources	 that	provide	 introductions
and	some	example	usecase’s	of	FaaS

12.1.4	Resources

https://stackify.com/function-as-a-service-serverless-architecture
https://en.wikipedia.org/wiki/Serverless_computing
https://azure.microsoft.com/en-us/overview/serverless-computing
https://aws.amazon.com/serverless
https://aws.amazon.com/lambda
https://www.infoworld.com/article/3093508/cloud-computing/what-
serverless-computing-really-means.html
https://techbeacon.com/aws-lambda-serverless-apps-5-things-you-need-
know-about-serverless-computing
https://blog.alexellis.io/introducing-functions-as-a-service

https://aws.amazon.com/lambda
https://azure.microsoft.com/en-us/services/functions
https://console.bluemix.net/openwhisk
https://cloud.google.com/functions
https://www.iron.io
https://webtask.io
https://github.com/apache/incubator-openwhisk
https://github.com/funktionio/funktion
https://github.com/iron-io/functions
https://github.com/kubeless/kubeless
https://github.com/fission/fission
https://github.com/alexellis/faas-netes
https://stackify.com/function-as-a-service-serverless-architecture
https://en.wikipedia.org/wiki/Serverless_computing
https://azure.microsoft.com/en-us/overview/serverless-computing
https://aws.amazon.com/serverless
https://aws.amazon.com/lambda
https://www.infoworld.com/article/3093508/cloud-computing/what-serverless-computing-really-means.html
https://techbeacon.com/aws-lambda-serverless-apps-5-things-you-need-know-about-serverless-computing
https://blog.alexellis.io/introducing-functions-as-a-service


12.1.5	Usage	Examples

https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda
https://blog.alexellis.io/first-faas-python-function

12.2	AWS	LAMBDA	☁

	Learning	Objectives

Learn	about	AWS	lambda
Try	out	AWS	Lambda	practically

AWS	Lambda	 is	considered	as	one	of	 the	earliest	FaaS	 implementations	made
available	to	end	users.	AWS	Lambda	provides	a	rich	set	of	features	that	can	be
leveraged	 by	 users	 to	 build	 programs	 and	 applications	 on	 top	 of	 the	 FaaS
framework.	AWS	Lambda	supports	many	event	types	that	developers	can	use	to
orchestrate	 their	 FaaS	 applications.	 And	 in	 line	 with	 the	 FaaS	 model	 AWS
Lambda	 only	 charges	 users	 for	 actual	 execution	 time	 of	 the	 functions.	 For
example	if	you	host	and	deploy	a	function	on	AWS	Lambda	and	only	execute	it
for	1	minute	every	day	you	will	only	be	charged	for	the	1	minute	execution	time.

AWS	does	not	 share	how	 the	 internals	of	AWS	Lambda	work	 in	detail	 but	 as
with	 any	 general	 FaaS	 framework	 it	 should	 be	 leveraging	 various	 container
technologies	 underneath.	 You	 can	 get	 a	 better	 understanding	 on	 how	 the
internals	of	a	FaaS	framework	is	organized	by	looking	at	the	OpenWhisk	Section

12.2.1	AWS	Lambda	Features

AWS	 Lambda	 provides	 many	 features	 that	 allows	 the	 creation	 of	 an	 FaaS
application	to	be	straight	forward.	An	FaaS	application	normally	consist	of	a	set
of	 functions	 and	 a	 set	 of	 events	 that	 activate	 or	 invoke	 those	 functions.	AWS
Lambda	supports	several	programing	languages	that	allow	developers	to	develop
the	 function	 they	 require	 in	 any	 of	 the	 programming	 languages	 that	 are
supported.	The	following	list	show	the	programming	languages	that	are	currently
supported	by	AWS	Lambda	for	function	creation.

https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda
https://blog.alexellis.io/first-faas-python-function
https://github.com/cloudmesh-community/book/blob/master/chapters/faas/aws-lambda.md


Node.js	(JavaScript)
Python
Java	(Java	8	compatible)
C#	(.NET	Core)
Go

Other	 than	 the	 functions	 the	 most	 important	 requirement	 for	 a	 good	 FaaS
framework	is	a	rich	set	of	function	invocation	methods	which	allow	users	to	tie
together	 different	 events	 that	 happen	 in	 the	 echo	 system	 with	 the	 FaaS
application.	 In	 this	 regard	AWS	Lambda	 supports	many	event	 sources,	mainly
from	 the	AWS	 echo	 system.	AWS	 documentation	 provides	 a	 complete	 list	 of
supported	 event	 sources	 at	 AWS	 Lambda	 event	 sources.	 For	 example	 a
developer	can	configure	an	function	to	be	invoked	when	a	S3	bucket	is	updated,
or	 configure	 an	 function	 to	 be	 invoked	 based	 on	 inputs	 received	 by	 Amazon
Alexa,	etc.

	use	also	bibtex

12.2.2	Understanding	Function	limitations

Before	you	start	working	on	FaaS	frameworks	it	is	important	to	understand	the
limitations	 and	 restrictions	 that	 are	 applied	 to	 functions.	 The	 limits	 and
restrictions	discussed	in	the	section	are	applicable	to	most	FaaS	frameworks	but
the	exact	values	may	differ	based	on	the	FaaS	vendor.	However	 the	reason	for
most	 of	 the	 limitations	 are	 to	 maintain	 performance	 requirements.	 We	 will
discuss	several	major	limits	next.	For	a	complete	list	of	limits	in	AWS	Lambda
please	refer	to	the	limits	documentation	AWS	Lambda	Function	Limits

	use	also	bibtex

12.2.2.1	Execution	Time

AWS	Lambda	limits	the	execution	length	of	a	function.	Currently	it	is	set	to	15
minutes	 but	 was	 set	 at	 300s	 previously,	 so	 the	 function	 limits	 have	 and	 may
change	with	time.	Other	FaaS	provides	have	different	values	for	execution	time
limits,	but	in	general	each	FaaS	provider	does	define	a	execution	time	limit

https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html


12.2.2.2	Function	size

AWS	 Lambda	 also	 sets	 several	 memory	 and	 storage	 limits	 for	 functions.
Currently	 the	 maximum	 memory	 allocated	 to	 a	 function	 is	 3008MB	 and	 the
maximum	allocated	storage	space	is	512MB.	However	it	is	good	to	keep	in	mind
that	 monetary	 charge	 for	 function	 execution	 increases	 with	 the	 amount	 of
memory	that	is	specified	for	the	function.

12.2.3	Understanding	the	free	Tier

If	new	users	want	 to	experiment	with	AWS	lambda,	AWS	does	provide	a	 free
tier	for	AWS	Lambda,	which	include	1	million	function	invocations	per	month.
You	can	find	a	more	detailed	description	of	the	free	tier	in	the	AWS	docs	AWS
Lambda	Pricing.

	use	also	bibtex

12.2.4	Writing	your	fist	Lambda	function

With	 the	 GUI	 interface	 it	 is	 relatively	 easy	 to	 try	 out	 your	 first	 Serverless
function	with	AWS	Lambda.	Please	follow	the	steps	defined	at	How	to	run	your
first	AWS	Lambda	function	in	the	cloud	(this	link	does	not	exsit	any	longer)

	use	also	bibtex

12.2.5	AWS	Lambda	Usecases

AWS	 Lambda	 is	 an	 event-driven,	 serverless	 computing	 platform	 provided	 by
Amazon	as	a	part	of	 the	Amazon	Web	Services.	 It	 is	a	computing	service	 that
runs	 code	 in	 response	 to	 events,	 runs	 the	 code	 that	 has	 been	 loaded	 into	 the
system	 and	 automatically	 manages	 the	 computing	 resources	 required	 by	 that
code.	According	to	the	the	Lambda	product	page

“AWS	Lambda	 lets	you	run	code	without	provisioning	or	managing

servers.”	Aws	( 	refernce	to	bibtex)

https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/


For	example,	one	of	the	use-cases	would	be	that	everytime	AWS	Lambda	could
resize	 the	 picture,	 after	 it	 is	 uploaded	 onto	 AWS	 S3	 system	 and	 rendered	 on
different	devices	like	phone,	ipad	or	desktop.	The	event	that	triggers	the	Lambda
function	is	the	file	being	uploaded	to	S3.	Lambda	then	executes	the	function	of
resizing	 the	 image.	The	Seattle	Times	uses	 the	AWS	Lambda	 to	automatically
resize	the	images.

One	key	point	to	note	here	is	that	Amazon	charges	only	when	the	functions	are
executed.	So,	The	Seattle	Times	is	charged	for	this	service	only	when	the	images
are	been	resized.	Lambda	can	be	used	for	Analytics.	So	lets	say,	there	has	been	a
purchase	of	a	house	on	zillow,	this	data	can	be	saved	into	a	NoSQL	database	and
this	 entry	 into	 the	 database	 is	 an	 event	which	 can	 trigger	 Lambda	 function	 to
load	the	order	information	into	Amazon	Redshift.	Then	we	can	run	Analytics	on
top	of	this	data.	We	can	also	build	serverless	applications	composed	of	functions
that	 are	 triggered	 by	 events	 and	 automatically	 deploy	 them	 using	 AWS
CodePipeline	 and	 AWS	 CodeBuild.	 For	 more	 information,	 see	 Deploying
Lambda-based	Applications.

There	are	development	groups	or	companies	mainly	startups,	where	they	want	to
just	focus	on	their	application	development	without	wanting	to	care	about	their
infrastructure	and	they	also	want	that	they	pay	for	what	they	use.	Hence,	AWS
Lambda	comes	into	play	which	satisfies	all	their	needs.

Ironically,	Lambda	could	be	a	threat	to	one	of	the	Amazon’s	most	popular	EC2.
Developers	 can	 build	 apps	 that	 run	 entirely	 on	 Lambda	 functions	 instead	 of
spinning	up	EC2	VMs.	Amazon	may	be	out-innovating	itself	with	Lambda.

In	 AWS	 Lambda,	 we	 have	 triggers.	 Lambda	 Functions	 can	 be	 triggered	 in
different	ways:	 an	HTTP	 request,	 a	 new	 document	 upload	 to	 S3,	 a	 scheduled
Job,	 an	 AWS	 Kinesis	 data	 stream,	 or	 a	 notification	 from	 AWS	 Simple
Notification	Service	(SNS).

12.2.6	AWS	Lambda	Example

Let	us	create	our	first	Lambda	function.

Step	 1:	 The	 very	 first	 thing	we	 need	 is	 an	AWS	 account.	 (There	 is	 already	 a
section	 on	 this,	 please	 go	 through	 that	 to	 understand	 how	 to	 create	 an	 AWS



account	-	Creating	AWS	account

Step	2:	We	will	be	writing	a	function	that	we	call	isPalindrome,	which	will	check	if
the	string	is	palindrome	or	not.

This	example	we	store	in	a	file	as	javascript	named	isPalindrome.js

Step	 3:	 Let’s	 see	 how	 to	 create	 an	 AWS	 Lambda	 function	 -	 isPalindrome.
Firstly,	go	to	AWS	Console.	(see	Figure	137).

function	isPalindrome(string)	{

				const	reverse	=	string.split('').reverse().join('');

				const	isPalindrome	=	(string	===	reverse);

				const	result	=	isPalindrome	?	`${string}	is	a	Palindrome`	:	`${string}	is	not	a	Palindrome`;

				return	result;

}

document.write(isPalindrome('abcd'));



Figure	137:	AWS	Console

Step	4:	Now	we	will	select	AWS	Lambda	from	console	and	then	click	on		Get
Started	Now		(see	Figure	138)

Figure	138:	AWS	Lambda

Step	 5:	 For	 runtime,	 we	 will	 select	 Node.js	 6.10	 and	 then	 press	 “Blank
Function.”	(see	Figure	139).



Figure	139:	Blank	Function

Step	6:	We	will	skip	this	step	and	press		Next	.	(see	Figure	140)

Figure	140:	Next



Step	7:	Let’s	give	the	Name	as	isPalindrome	and	put	in	a	description	of	our	new
Lambda	Function,	or	we	can	leave	it	blank.	(see	Figure	141)

Figure	141:	Description

Lambda	function	is	just	a	function,	named	as	handler	here	and	the	function	takes
three	parameter	 -	event,	context	and	a	callback	function.	The	callback	will	 run
when	 the	 Lambda	 function	 is	 done	 and	 will	 return	 a	 response	 or	 an	 error
message.	For	the	Blank	Lambda	blueprint,	response	is	hard-coded	as	the	string	
Hello	from	Lambda.

Step	 8:	 Please	 scroll	 down	 for	 choosing	 the	 Role	 “Create	 new	 Role	 from
template”,	and	for	Role	name	we	are	going	to	use	isPalindromeRole	in	our	case.
For	Policy	 templates,	we	will	 choose	 “Simple	Microservice”	permissions.	 (see
Figure	142)



Figure	142:	Policy

Step	 9:	 For	 Memory,	 128	 megabytes	 is	 more	 than	 enough	 for	 our	 simple
function.	As	for	the	3	second	timeout,	this	means	that — should	the	function	not
return	 within	 3	 seconds -	 AWS	 will	 shut	 it	 down	 and	 return	 an	 error.	 Three
seconds	 is	 also	 more	 than	 enough.	 Leave	 the	 rest	 of	 the	 advanced	 settings
unchanged	(see	@#fig:aws-lambda-settings).



Figure	143:	Advanced	Settings	Source

Step	 10:	 Let’s	 click	 on	 the	 “Create	 function”	 button	 now	 to	 create	 our	 first
Lambda	function.	(see	Figure	144)

https://aws.amazon.com/lambda/


Figure	144:	Create

Step	 11:	Now	 that	we	 have	 created	 our	 first	 Lambda	 function,	 let’s	 test	 it	 by
clicking		Test		(see	Figure	145)



Figure	145:	Test

The	 output	 will	 be	 the	 hard-coded	 response	 of	 Hello	from	Lambda.	 from	 the	 created
Lambda	function.	(see	Figure	146)

Figure	146:	Hello

Step	12:	Now	let	us	add	our	 isPalindrome.js	 function	code	here	to	Lambda	function



but	 instead	 of	 return	 result	 use	 callback(null,	result).	 Then	 add	 a	 hard-coded	 string
value	of	abcd	on	line	3	and	press	Test.	(see	Figure	147)

Figure	147:	Press	Test

The	output	will	be	abcd	is	not	a	Palindrome	(see	Figure	148)

Figure	148:	Output

Similarly,	let	us	try	with	string	abcdcba	and	in	this	case	output	should	return	abcdcba	is	
a	Palindrome.	Thus,	our	Lambda	function	is	behaving	as	expected.

12.3	APACHE	OPENWHISK	☁

	 this	 section	 includes	 many	 refernces	 to	 other	 tools,	 that	 need	 bibtex
refernces.

https://github.com/cloudmesh-community/book/blob/master/chapters/faas/openwhisk.md


Apache	OpenWhisk	is	a	Function	as	a	Service	(FaaS),	aka	Serverless	computing,
platform	used	to	execute	code	in	response	of	an	events	via	triggers	by	managing
the	 infrastructure,	 servers	 and	 scaling.	 The	 advantage	 of	 OpenWhisk	 over
traditional	 long-running	 VM	 or	 container	 approach	 is	 that	 there	 is	 lack	 of
resiliency-related	 overhead	 in	 OpenWhisk.	 OpenWhisk	 is	 inherently	 scalable
since	the	actions	are	executed	on	demand.	OpenWhisk	also	helps	the	developers
to	 focus	 only	 on	 coding	 by	 taking	 care	 of	 infrastructure-related	 tasks	 like
monitoring	and	patching.

The	developers	provide	 the	code	written	 in	 the	desired	programming	 language
for	 the	desired	action	and	 this	code	will	be	executed	 in	response	 to	 the	events.
The	 triggering	 can	 be	 invoked	 using	 HTTP	 requests	 or	 external	 feeds.	 The
events	invoking	the	triggers	ranges	from	database	modification	to	new	variables
in	 IoT	 sensors.	Actions	 that	 response	 to	 these	 events	 could	 also	 range	 from	 a
Python	code	snippet	to	a	binary	code	in	a	container	and	it	is	as	well	possible	to
chain	 the	 actions.	 Note	 that	 these	 actions	 are	 deployed	 and	 executed
instantaneously	 and	 can	 be	 invoked	 not	 only	 by	 triggers	 but	 also	 using	 the
OpenWhisk	API	or	CLI.

12.3.1	OpenWhisk	Workflow

OpenWhisk	uses	Nginx,	Kafka,	Docker	and	CouchDB	as	 internal	components.
To	 understand	 the	 role	 of	 each	 of	 these	 components,	 let’s	 review	 an	 action
invocation	trace	in	the	system.	Remember	the	main	outcome	of	OpenWhisk	(or
Serverless	architecture	in	general)	is	to	execute	the	user’s	code	inside	the	system
and	return	the	result.	The	workflow	of	the	OpenWhisk	is	illustrated	in	the	figure
Figure	149



Figure	149:	OpenWhisk	workFlow

We	will	review	the	role	of	each	components	in	the	OpenWhisk	workflow.

12.3.1.1	The	Action	and	Nginx

As	mentioned	 prior,	 the	 action	 is	 the	 response	 of	 the	 OpenWhisk	 to	 triggers.
Consider	the	following	JavaScript	function:
function	main()	{

				return	{	hello:	'world'	};

}



This	 is	 the	 Hello	World	 example	 of	 the	 OpenWhisk	 action	 where	 the	 action
returns	a	JSON	object	with	the	key	 hello	which	has	a	value	of	 world.	After	saving
this	 function	 in	a	 .js	 file,	e.g.	 action.js	 then	 the	 action	could	be	 created	using	 the
following	command:

Then,	the	HelloAction	can	be	invoked	using:

The	wsk	command	is	what	is	known	as	OpenWhisk	CLI,	which	we	will	show	how
to	install	in	the	next	sections.	Note	that	OpenWhisk’s	API	is	RESTful	and	fully
HTTP	 based.	 In	 other	 words,	 the	 previously-mentioned	 wsk	action	 command	 is
basically	a	HTTP	request	equivalent	to	the	following:

The	 userNamespace	 variable	 defines	 the	 namespace	 in	which	 the	 HelloAction	 is	 put	 into.
Accordingly,	nginx	is	the	entering	point	of	the	OpenWhisk	system	and	it	plays
an	 important	 role	 as	 a	HTTP	 server	 as	well	 as	 a	 reverse	 proxy	 server,	mainly
used	for	SSL	termination	and	HTTP	request	forwarding.

12.3.1.2	Controller:	The	System’s	Interface

We	learned	that	nginx	does	not	do	any	processing	on	the	HTTP	request	except
decrypting	it	(SSL	Termination).	The	main	processing	of	the	request	starts	in	the
Controller.	The	controller	plays	the	role	of	the	interface	for	user	both	for	actions
and	Create,	Read,	Update,	 and	Delete	 (CRUD)	 requests,	 translating	 the	 user’s
POST	 request	 to	 action	 invocation.	 The	 controller	 has	 an	 essential	 role	 in
OpenWhisk	workflow	and	its	role	is	not	finished	here	and	is	partially	involved	in
next	steps	as	well.

12.3.1.3	CouchDB

Naturally	 some	 notion	 of	 authentication	 is	 essentially	 required	 for	 the	 system.
This	authentication	is	performed	by	the	Controller	via	CouchDB.	The	CouchDB
instance	has	a	specific	database,	namely	subjects	which	contains	the	credentials	and
corresponding	 privileges.	 The	 credentials	 that	 corresponds	 to	 a	 request	 are

$	wsk	action	create	HelloAction	action.js

$	wsk	action	invoke	HelloAction	--result

POST	/api/v1/namespaces/$userNamespace/actions/HelloAction

Host:	$openwhiskEndpoint



verified	 against	 the	 subjects	 database	 and	 if	 the	 user’s	 privileges	 satisfies	 the
permissions	required	for	the	requested	HelloAction,	the	action	will	be	invoked.	In	our
example,	we	are	assuming	that	the	HelloAction	is	in	a	namespace	owned	by	the	user,
meaning	that	the	user	has	the	required	permission	to	invoke	the	action.

After	 authentication	 and	 authorization	 using	 the	 subjects	 database,	 the	 record	 for
the	action	HelloAction	is	load	from	whisks	database.	This	record	contains	the	code,	the
parameters	consist	of	default	parameters	merged	with	user	parameters,	as	well	as
the	resource	limits,	e.g.	maximum	memory.	The	 HelloAction	 record	 in	 whisk	contains
its	 code	 (listed	 previously)	 and	 no	 parameters	 as	 the	 code	 does	 not	 get	 any
parameters.

12.3.1.4	Load	Balancer

Next	comes	the	load	balancer	which	is	technically	part	of	the	controller	and	it	is
load	balancer’s	responsibility	to	check	the	health	status	of	the	executors,	known
as	 Invokers,	 continuously.	 Load	 balancer	 is	 aware	 of	 the	 available	 invokers	 and
select	them	for	the	actions	accordingly.

12.3.1.5	Kafka

For	a	request	user	sends,	there	are	two	scenarios	where	things	can	go	bad:

Invocation	is	lost	due	to	a	crash
Invocation	has	to	wait	for	invokers	to	be	available

Both	of	this	scenarios	can	be	handled	with	Kafka	distributed	messaging	system.
The	action	invocation	mechanism	with	Kafka	is	as	follows:

The	 controller	 “publishes”	 a	 message	 to	 Kafka.	 This	 message	 contains	 the
required	 action	 and	 corresponding	 parameters	 and	 is	 addressed	 to	 an	 Invoker
chosen	by	the	controller.	Kafka	responds	to	the	HTTP	request	of	the	user	with	an
ActivationId	 which	 could	 be	 used	 later	 by	 the	 user	 to	 get	 the	 result.	 OpenWhisk
supports	both	synchronous	and	asynchronous	 invocation	models.	 In	 the	 former
model,	the	user’s	HTTP	request	is	terminated	as	the	system	accepts	it.	The	latter
model,	known	as	blocking	invocation,	is	otherwise.



12.3.1.6	Invoker

As	 the	 heart	 of	 the	 OpenWhisk,	 the	 Invoker’s	 responsibility	 is	 to	 invoke	 the
action.	Invoker	is	implemented	in	Scala	but	it	uses	Docker	for	a	safe	and	isolated
execution.	For	each	invoked	actions,	a	container	is	spawned	and	the	code	as	well
as	the	parameters	are	passed	to	it.	As	soon	as	the	result	is	obtained,	the	container
is	terminated.

The	Action	example	is	a	node.js	action	and	therefore	the	invoker	will	start	a	node.js
container,	inject	our	previsouly-mentioned	code	to	it,	runs	the	code	and	gets	the
results,	save	the	logs	and	terminates	the	node.js	container.

12.3.1.7	CouchDB	again

The	 result	 of	 the	 Invoker	 is	 saved	 in	 another	 database	 in	 CouchDB,	 namely	
activations,	under	same	ActivationId	that	was	sent	back	to	the	user.	The	result	of	the
HelloAction	example	containing	the	log	in	JSON	format,	would	look	like	this:

Similar	 to	 the	 same	 API	 call	 used	 for	 submitting	 the	 action,	 we	 can	 use
OpenWhisk’s	API	to	retrieve	the	result	using	the	ActivationId:

12.3.2	Setting	Up	OpenWhisk	Locally

There	are	several	approaches	to	starting	the	OpenWhisk	platform:

Directly	running	the	service
Running	using	Kubernetes	and	Mesos
Running	with	Vagrant	using	a	pre-configured	VM

{

			"activationId":	"31809ddca6f64cfc9de2937ebd44fbb9",

			"response":	{

							"statusCode":	0,

							"result":	{

											"hello":	"world"

							}

			},

			"end":	1474459415621,

			"logs":	[

							"2016-09-21T12:03:35.619234386Z	stdout:	Hello	World"

			],

			"start":	1474459415595,

}

wsk	activation	get	31809ddca6f64cfc9de2937ebd44fbb9



But	an	easier	approach	is	using	OpenWhisk	Devtools	which	is	purposed	for	local
development	 and	 testing	 of	OpenWhisk.	Using	OpenWhisk	Devtools,	 you	 can
quickly	 start	OpenWhisk	 on	 any	machine	 using	 docker	compose.	 Accordingly,	 make
sure	 the	 docker	compose	 is	 already	 installed	 on	 your	 machine.	 Then	 to	 start	 the
platform,	clone	the	OpenWhisk	Devtools	and	navigate	to	its	folder,	then:

Make	 sure	 you	 do	 not	 have	 any	 services	 running	 on	 the	 following	 ports
otherwise	the	docker	compose	will	fail	starting	some	of	the	containers:

5984	for	CouchDB
2181,	2888,	3888	for	Zookeeper
9092	for	Kafka
8888,	2551	for	the	Controller
8085	for	the	Invoker
9001	for	Minio
6379	for	Redis
8080,	443,	9000,	9090	for	apigateway
8001	Kafka-UI

In	case	you	have	services	running	on	any	of	 the	previous	ports,	you	can	either
stop	the	local	services	that	are	using	these	ports	or	alternatively	you	can	modify
the	docker-compose.yml	and	change	the	source	port	number	in	the	port	number	mapping.
The	 latter	 option	 is,	 however,	more	 tricky	 because	 you	 have	 to	make	 sure	 the
change	does	not	affect	the	communication	between	the	containers.	For	instance
if	you	have	 Apache	 service	running	on	Port	80,	 then	open	 docker-compose.yml,	 search	for
the	keyword	80:	to	find	the	port	mapping	with	source	port	of	80:	bash	ports:			-	"80:80"

then	change	it	to	another	port:

After	that,	you	should	be	able	to	run	 make	quick-start	 successfully	and	 then	you	can
check	the	status	of	the	running	docker	containers	using:

$	cd	docker-compose

$	make	quick-start

ports:

		-	"8080:80"

$	docker	ps	--format	"{{.ID}}:	{{.Names}}	{{.Image}}"

16e7746c4af1:	wsk0_9_prewarm_nodejs6	openwhisk/nodejs6action:latest

dd3c4c2d4947:	wsk0_8_prewarm_nodejs6	openwhisk/nodejs6action:latest

6233ae715cf7:	openwhisk_apigateway_1	openwhisk/apigateway:latest

3ac0938aecdd:	openwhisk_controller_1	openwhisk/controller

e1bb7272a3fa:	openwhisk_kafka-topics-ui_1	landoop/kafka-topics-ui:0.9.3

https://github.com/apache/incubator-openwhisk-devtools


Note	that	12	containers	should	be	up	and	running:

12.3.2.1	Debugging	quick-start

It	is	always	possible	that	something	goes	wrong	in	the	process	of	deploying	the
12	dockers.	If	 the	 make	quick-start	process	stuck	at	some	point,	 the	best	way	to	find
the	 issue	 is	 to	 use	 the	 docker	ps	-a	 command	 to	 check	 which	 of	 the	 containers	 is
causing	the	issue.	Then	you	can	try	to	fix	the	issue	of	that	container	separately.
This	fix	could	possibly	happen	in	docker-compose.yml	file.	For	instance,	there	was	some
issue	with	the	openwhisk/controller	docker	at	some	point	and	it	turns	out	the	issue	was
the	following	line	in	the	docker-compose.yml:

this	 line	 is	 indicating	 that	 the	 following	 command	 should	 be	 run	 after	 the
container	is	started:

However,	 starting	 another	 instance	 of	 the	 docker	 image	 with	 this	 command
outputted	a	Permission	Denied	 error	which	could	be	 fixed	either	by	changing	 the	 logs
folder	permission	 in	 the	docker	 image	or	 container	 (followed	by	a	 commit)	 or
saving	 the	 log	 file	 in	 another	 folder.	 In	 this	 case	 replacing	 that	 line	 with	 the
following	line	would	temporarily	fix	the	issue:

12.3.3	Hello	World	in	OpenWhisk

OpenWhisk	provides	 a	 command	 line	 tool	 called	 openwhisk-cli	which	 is	 used
for	 controlling	 the	 platform.	 As	 part	 of	 the	 make	quick-start	 command	 that	 we
previously	 used	 for	 starting	 the	 platform,	 the	 account	 credentials	 will
automatically	be	written	into	the	configuration	of	the	CLI.	You	can	either	install

6b2408474282:	openwhisk_kafka-rest_1	confluentinc/cp-kafka-rest:3.3.1

9bab823a891b:	openwhisk_invoker_1	openwhisk/invoker

98ebd5b4d605:	openwhisk_kafka_1	wurstmeister/kafka:0.11.0.1

65a3b2a7914f:	openwhisk_zookeeper_1	zookeeper:3.4

9b817a6d2c40:	openwhisk_redis_1	redis:2.8

e733881d0004:	openwhisk_db_1	apache/couchdb:2.1

6084aec44f03:	openwhisk_minio_1	minio/minio:RELEASE.2018-07-13T00-09-07Z

$	docker	ps	--format	"{{.ID}}:	{{.Names}}	{{.Image}}	|	wc	-l"

12

command:	/bin/sh	-c	"exec	/init.sh	--id	0	>>	/logs/controller-local_logs.log	2>&1"

$	/init.sh	--id	0	>>	/logs/controller-local_logs.log	2>&1

command:	/bin/sh	-c	"exec	/init.sh	--id	0	>>	/home/owuser/controller-local_logs.log	2>&1"

https://github.com/apache/incubator-openwhisk-cli


the	CLI	directly	from	the	repository	or	install	it	using	linuxbrew.	Alternatively,	use
the	binary	available	in	this	path	in	OpenWhisk	Devtools	folder:
[PATH_TO_DEVTOOLS]/docker-compose/openwhisk-src/bin/wsk

Running	the	wsk	without	any	command	or	flag,	will	print	its	help:

For	instance,	you	can	get	the	host	address	using:

You	can	then	re-invoke	the	built-in	Hello	World	example	using:

12.3.4	Creating	a	custom	action

We	already	invoked	the	built-in	hello	world	action.	Now,	we	try	to	build	a	new
custom	action.	First	create	a	file	called	greeter.js:

~/incubator-openwhisk-devtools/docker-compose/openwhisk-src/bin$	./wsk

								____						___																			_				_	_					_					_

							/\			\				/	_	\	_	__			___	_	__	|	|		|	|	|__	(_)___|	|	__

		/\		/__\			\		|	|	|	|	'_	\	/	_	\	'_	\|	|		|	|	'_	\|	/	__|	|/	/

	/		\____	\		/		|	|_|	|	|_)	|		__/	|	|	|	|/\|	|	|	|	|	\__	\			<

	\			\		/		\/				\___/|	.__/	\___|_|	|_|__/\__|_|	|_|_|___/_|\_\

		\___\/	tm											|_|

Usage:

		wsk	[command]

Available	Commands:

		action						work	with	actions

		activation		work	with	activations

		package					work	with	packages

		rule								work	with	rules

		trigger					work	with	triggers

		sdk									work	with	the	sdk

		property				work	with	whisk	properties

		namespace			work	with	namespaces

		list								list	entities	in	the	current	namespace

		api									work	with	APIs

$	wsk	property	get	|	grep	host

whisk	API	host						192.168.2.2

~/incubator-openwhisk-devtools/docker-compose$	make	hello-world

creating	the	hello.js	function	...

invoking	the	hello-world	function	...

adding	the	function	to	whisk	...

ok:	created	action	hello

invoking	the	function	...

invocation	result:	{	"payload":	"Hello,	World!"	}

{	"payload":	"Hello,	World!"	}

creating	an	API	from	the	hello	function	...

ok:	updated	action	hello

invoking:		http://192.168.2.2:9090/api/23bc46b1-71f6-4ed5-8c54-816aa4f8c502/hello/world

		"payload":	"Hello,	World!"

ok:	APIs

Action										Verb		API	Name		URL

/guest/hello					get				/hello		http://192.168.2.2:9090/api/23bc46b1-71f6-4ed5-8c54-816aa4f8c502/hello/world

deleting	the	API	...

ok:	deleted	API	/hello

deleting	the	function	...

ok:	deleted	action	hello



Now	we	can	create	an	action	called	greeter	using	the	greeter.js:

Note	that	the	-i	option	is	to	prevent	the	following	error:

Afterwards	 you	 can	 get	 the	 list	 of	 actions	 to	make	 sure	 your	 desired	 action	 is
created:

Afterwards,	 we	 can	 invoke	 the	 action	 by	 passing	 a	 json	 parameter	 including	 a
name	and	location	and	receive	the	result:

Now	we	can	retrieve	the	list	of	activation	records:

The	 result	 of	 the	 previous	 command	 is	 showing	 that	 the	 hello	 action	 has	 been
invoked	 twice	 and	 the	 greeter	 action	 was	 invoked	 once.	 You	 can	 get	 more
information	about	each	of	the	activation	using	the	wsk	-i	activation	get	[ACTIVATION_ID]:

function	main(input)	{

			return	{payload:		'Hello,	'	+	input.user.name	+	'	from	'	+	input.user.location	+	'!'};

}

$	wsk	-i	action	create	greeter	greeter.js

ok:	created	action	greeter

$	wsk	action	create	greeter	greeter.js

error:	Unable	to	create	action	'summer':	Put	https://192.168.2.2/api/v1/namespaces/guest/actions/summer?overwrite=false:	x509:	cannot	validate	certificate	for	192.168.2.2	because	it	doesn

Run	'wsk	--help'	for	usage.

$	wsk	-i	action	list

actions

/guest/greeter																												private	nodejs:6

$	wsk	-i	action	invoke	-r	greeter	-p	user	'{"name":	"Vafa",	"location":	"Indiana"}'

{

				"payload":	"Hello	Vafa	from	Indiana!"

}

$	wsk	activation	list	-i

activations

976a7d02dab7460eaa7d02dab7760e9a	greeter

02e0e12118af43b0a0e12118afd3b038	hello

10c2cddb0d2c4c1f82cddb0d2c1c1feb	hello

$	wsk	-i	activation	get	976a7d02dab7460eaa7d02dab7760e9a

ok:	got	activation	976a7d02dab7460eaa7d02dab7760e9a

{

				"namespace":	"guest",

				"name":	"greeter",

				"version":	"0.0.1",

				"subject":	"guest",

				"activationId":	"976a7d02dab7460eaa7d02dab7760e9a",

				"start":	1539980284774,

				"end":	1539980284886,

				"duration":	112,

				"response":	{

								"status":	"success",

								"statusCode":	0,

								"success":	true,

								"result":	{



Finally,	 after	 you	 are	 finished	 using	 the	 OpenWhisk	 Devtools,	 you	 can	 stop
platform	using:

12.4	KUBELESS	☁

	add	bibtex

12.4.1	Introduction

Kubeless	 is	 an	 Serverless	 or	 FaaS	 framework	 that	 has	 been	 developed	 as	 a
Kubernetes	native	framework.	Kubeless	is	designed	using	services	and	features
that	 are	 provided	 natively	 on	 the	 Kubernetes	 framework.	 It	 uses	 Kubernetes
Custom	Resource	Definition	to	define	functions

12.4.2	Programing	model

Similar	 to	other	serverless	frameworks,	 the	programming	model	of	Kubeless	is
an	 event-driven	model.	 The	 two	main	 components	 that	 need	 to	 be	 understood
and	 functions	 and	 events.	 Kubeless	 currently	 supports	 3	 types	 of	 functions
runtimes	Python,	NodeJS	and	Ruby.	These	 runtimes	can	be	used	 to	create	and
deploy	functions.	For	each	function	an	event	type	is	defined	which	specifies	the
type	of	trigger	for	the	event.	Kubless	currently	supports	3	types	of	triggers	which
are,	HTTP	based,	scheduled	and	event-based	(pubsub).

12.4.3	System	Architecture

The	 system	 architecture	 is	 based	 completely	 on	 Kubernetes	 primitives	 which

												"payload":	"Hello	Vafa	from	Indiana!"

								}

				},

		...

~/incubator-openwhisk-devtools/docker-compose$	make	destroy

Stopping	openwhisk_apigateway_1						...	done

Stopping	openwhisk_controller_1						...	done

Stopping	openwhisk_kafka-topics-ui_1	...	done

Stopping	openwhisk_kafka-rest_1						...	done

Stopping	openwhisk_invoker_1									...	done

Stopping	openwhisk_kafka_1											...	done

Stopping	openwhisk_zookeeper_1							...	done

Stopping	openwhisk_redis_1											...	done

Stopping	openwhisk_db_1														...	done

Stopping	openwhisk_minio_1											...	done

...

https://github.com/cloudmesh-community/book/blob/master/chapters/faas/kubeless.md


were	discussed	to	some	extent	in	the	previous	section.	The	Kubless	architecture
has	 3	 main	 components,	 Functions	 API,	 Kubeless-controller,	 and	 Kafka.
Additionally,	they	provide	Kubeless	command-line	client	which	can	be	used	to
perform	CRUD	operations	for	function	more	easily.

The	Functions	API	provides	a	REST	Endpoint	to	create,	read,	update	and	delete
functions.	 This	 is	 developed	 as	 a	 Kubernetes	 Custom	 Resource	 Definitions
(CRD).	CRD	is	an	extension	point	provided	by	Kubernetes	that	can	be	used	to
create	 custom	 resources.	 A	 custom	 resource	 exposes	 a	 REST	 endpoint	 and
makes	 it	 available	 as	 any	other	REST	API	 that	 is	 embedded	with	Kubernetes.
Once	 created,	 Functions	 custom	 resource	 exposes	 the	 REST	 API	 that	 can	 be
used	 for	 function	 CRUD	 operations.	 The	 Kubeless-controller	 is	 a	 custom
controller	 that	 is	 deployed	 with	 the	 Kubernetes	 installation.	 This	 controller
continuously	 monitors	 invocations	 that	 occur	 at	 the	 functions	 REST	 API	 and
performs	 the	 required	 tasks	 according	 to	 the	 invocation.	 For	 example,	 if	 the
invocation	is	for	a	function	creation,	the	controller	will	create	a	Deployment	for
the	function	and	a	Service	to	expose	the	function.	The	Deployment	will	contain
information	 on	 what	 runtime	 the	 function	 is	 intended	 to	 use,	 therefore	 the
deployment	will	make	 sure	 to	 spin	 up	Pods	which	will	 host	 containers	 of	 that
runtime	when	 a	 function	 execution	 is	 requested.	Kafka	 is	 deployed	within	 the
Kubernetes	 installation	 as	 an	 event	 source	 which	 can	 be	 used	 to	 trigger	 the
functions.

Because	 the	 container	 image	 that	 is	 used	 to	 execute	 the	 function	 is	 generic,	 it
does	not	have	any	specific	dependencies	that	are	required	by	the	function	and	the
function	code	itself.	These	two	need	to	be	injected	into	the	Pod	when	the	Pod	is
created.	 For	 the	 application	 logic/function	 code,	 Kubless	 uses	 a	 configuration
resource	provided	by	Kubernetes	API	named	ConfigMap.	The	code	segment	is
attached	to	the	ConfigMap	which	can	be	read	from	within	a	Pod	once	the	Pod	is
created.	 In	 order	 to	 install	 all	 the	 required	 dependencies,	 another	 Kubernetes
resource	named	Init	containers	are	utilized.	Init	containers	are	a	special	kind	of
container	which	can	be	configured	to	run	when	a	Pod	is	created.	Kubernetes	also
guarantees	 that	 all	 init	 containers	 specified	 for	 a	 Pod	 will	 run	 till	 completion
before	the	application	containers	(	in	this	case	function	container)	are	executed.
Kubless	runs	an	init	container	which	will	install	all	the	required	dependencies	for
the	 function	 before	 invoking	 the	 function.	The	 function	 dependencies	must	 be
specified	at	function	creation	time.



12.5	MICROSOFT	AZURE	FUNCTION	 	☁

	fa18-516-08

	TODO	students	can	contribute	this	section

12.6	GOOGLE	CLOUD	FUNCTIONS	☁

	Learning	Objectives

Introduction	to	Google	Cloud	Function
Practical	example	using	console	mode

Google	Cloud	Function	is	Google’s	offering	for	Function	as	a	Service.	It	enables
serverless	computing	and	offers	functions	as	services	on	Google	Cloud	Platform
drivenby	trigger	events	from	Cloud	Pub/Sub,	Cloud	Storage,	HTTP	or	changes
in	log	in	Stackdriver	logging.	Cloud	functions	can	also	be	invoked	for	real	time
mobile	changes.	Google	Cloud	page	on	cloud	functions

https://cloud.google.com/functions/use-cases/

gives	more	detail	 about	 the	use	cases	 such	as	Serverless	application	backends,
Real-time	 data	 processing,	 Intelligent	 applications	 -	 all	 without	 the	 need	 of
provisioning	 a	 server	 instance	 or	 the	 overhead	 of	managing	 a	 server	 instance.
The	 functions	 are	 invoked	 as	 services	 whenever	 needed	 for	 a	 business
requirement	 and	 the	 cost	 is	 billed	 as	 per	 the	 minutes	 of	 usage	 just	 for	 the
function	execution	time.	The	Google	Cloud	Functions	can	be	written	in	Node.js
or	Python.	For	Python	runtime	environment	refer	to	the	page

https://cloud.google.com/functions/docs/concepts/python-runtime

For	Node.js	6	runtime	environment	refer	to	the	page

https://cloud.google.com/functions/docs/concepts/nodejs-6-runtime

https://github.com/cloudmesh-community/book/blob/master/chapters/faas/microsoft-azure-functions.md
https://github.com/cloudmesh-community/book/blob/master/chapters/faas/google-cloud-functions.md
https://cloud.google.com/functions/use-cases/
https://cloud.google.com/functions/docs/concepts/python-runtime
https://cloud.google.com/functions/docs/concepts/nodejs-6-runtime


For	Node.js	8	runtime	environment	refer	to	the	page

https://cloud.google.com/functions/docs/concepts/nodejs-8-runtime>

12.6.1	Google	Cloud	Function	Example

Following	from	the	example	as	presented	in	AWS	Lambda	section,	we	will	look
into	a	simple	example	of	building	a	Google	Cloud	Function	to	check	if	a	string	is
Palindrome	or	not.	The	implementation	will	be	in	Python	and	we	will	use	Python
runtime	 environment.	We	will	 use	HTTP	 trigger	 to	 invoke	 the	 function	 using
HTTP	request.	We	will	also	use	the	Google	Cloud	Console	to	build,	deploy	and
test	the	function.	Finally	we	will	use	HTTP	url	to	send	request	to	the	function	to
get	the	result	of	our	query.

Let	us	begin:

Step	1:	Login	to	Google	Cloud	Platform	with	your	GCP	account.	We	are	using
free	 tier	 for	 this	 demonstration.	 Refer	 to	 the	 section	 for	 Google	 Cloud	 in	 the
epub	for	creting	a	free	tier	GCP	account.

Step	2:	Select	or	create	a	Project	and	go	to	dashboard	(see	Figure	150)



Figure	150:	Login	to	Project	and	Dashboard

Step	3:	Click	“Create	a	Cloud	Function”	(see	Figure	151)



Figure	151:	Create	a	Function

Step	4:	Enable	cloud	function	API	if	it	is	not	enabled:(see	Figure	152)



Figure	152:	Enable	the	API

Step	5:	Click	Create	Function	(see	Figure	153)

Figure	153:	Select	Create	Function

Step	6:	In	the	next	page,	give	a	name	to	the	function.	In	our	case	we	are	giving
function	 name	 as	 isPalindrome.	 Specify	 the	memory	 (128	mb	 is	 good	 for	 this
demo).	Select	the	function	trigger	as	HTTP.	Choose	inline	editor	for	the	source
code	and	finally	Python	3.7	as	the	run	time	environment.(see	Figure	154)



Figure	154:	Name	Function

Step	7:	In	the	inline	source	editor,	write	a	Python	function	and	then	click	Create.
We	have	written	a	Python	function	to	check	for	Palindrome	string.	NOTE:	This
is	not	an	optimized	Python	code,	it	is	just	used	here	for	demonstration	purpose.
This	function	can	be	optimized	further	with	Python	standards	style	writing.(see
Figure	155)



Figure	155:	:Write	Python	Function

Step	8:	The	function	is	created	and	deployed	in	the	next	page	(see	Figure	156)
and	Figure	157)



Figure	156:	Function	is	Deployed

Figure	157:	Function	is	Deployed

Step	9:	Finally	we	will	test	the	function	(see	Figure	158)



Figure	158:	Test	The	Function

Step	 10:	 In	 the	 Trigger	 event	 box,	 write	 a	 HTTP	 message	 request	 in	 JSON
format	and	click	Test	the	Function	(see	Figure	159)



Figure	159:	Trigger	Event

Step	 11:	 The	 response	 box	 will	 show	 the	 result	 of	 the	 test	 as	 expected	 (see
Figure	160)



Figure	160:	Result

Step	12:	Let	us	run	one	more	Test	(see	Figure	161)



Figure	161:	Another	Test

Step	13:	You	will	get	the	expected	result	(see	Figure	162)



Figure	162:	Expected	Result	For	Test

Step	14:	 Let	 us	 test	 our	 function	 deployment	 using	 url.	 Click	 on	 the	 function
name	(see	Figure	163)

Figure	163:	Deployment	Url



Step	 15:	 In	 the	 next	 page,	 click	 on	 Trigger	 page	 and	 copy	 the	 url	 (see
Figure	164)

Figure	164:	Trigger	Url

Step	16:	 In	a	web	browser	 type	the	url	and	add	the	HTTP	request	 to	 it	and	hit
enter

https://us-central1-test-functions-12345.cloudfunctions.net/isPalindrome?
message=abcd

Step	17:	You	will	get	a	response	back	from	the	function(see	Figure	165)

https://us-central1-test-functions-12345.cloudfunctions.net/isPalindrome?message=abcd


Figure	165:	Test	Http

Step	18:	Another	test	(see	Figure	166)

Figure	166:	Another	Http	Test

This	 completes	 our	 demo	 for	 Google	 Cloud	 Function	 offered	 as	 Function	 as
Service.	 To	 learn	 more	 about	 Google	 Cloud	 Functions	 and	 trigger	 options
available	alongwith	triggers	using	command	line	-	visit

https://cloud.google.com/functions/

To	learn	about	creating	and	deploying	functions	using	command	line	instead	of
GCP	console	-	visit

https://cloud.google.com/functions/docs/quickstart

12.7	OPENFAAS	☁
OpenFaas	is	a	framework	for	building	serverless	functions	on	docker	containers
and	follows	the	same	workflow	as	micro	services.	Since,	OpenFaas	uses	Docker
and	Kubernetes	 technologies,	 it	will	give	 lot	of	hosting	options	ranging	from	a
laptop	to	large-scale	cloud	systems	Any	program	written	in	any	language	can	be
packaged	 as	 a	 function	 within	 in	 a	 container	 which	 gives	 a	 best	 approach	 to

https://cloud.google.com/functions/
https://cloud.google.com/functions/docs/quickstart
https://github.com/cloudmesh-community/book/blob/master/chapters/faas/openfaas.md


convert	all	the	old	code	to	run	on	cloud-based	infrastructure

Few	benefits	of	OpenFaas

Easy	to	Use
Deployable	to	private	or	public	clouds	in	container
Simplicity	in	architecture	and	design
Open	and	extensible	platform
Language	agnostic

12.7.1	OpenFaas	Components	and	Architecture

There	 are	 three	 components	which	 include	API	Gateway,	 Function	Watchdog
and	 the	 instance	 of	 Prometheus.	 All	 the	 functions	 run	 on	 Docker	 containers
orchestrated	by	either	Docker	Swarm	or	Kubernetes.	The	function	watchdog	is
part	 of	 the	 function	 containers,	 whereas	 the	 API	 Gateway	 and	 Promoethues
instance	are	services.

Figure	167:	faas	-	OpenFaas	-	Arch	[91]

12.7.1.1	API	Gateway

Routes	 inbound	 requests	 to	 the	 functions	 and	 collects	 metrics	 through



Prometheus.	It	autoscales	modifying	service	replicas	counts.	Offers	a	convenient
UI	and	endpoints	for	the	CLI

12.7.1.2	Function	Watchdog

It	 is	 a	 tiny	HTTP	 server,	 encolsed	 along	with	 the	 app	 in	 the	 docker	 image.	 It
receives	 request	 from	 the	 API	 Gateway,	 triggers	 the	 app.	 It	 provide	 args	 and
catch	result	through	STDIN/STDOUT

12.7.1.3	OpenFaas	CLI

The	 OpenFaas	 CLI	 provides	 mechanism	 to	 deploy	 the	 functions	 in	 the
containders

12.7.1.4	Monitoring

OpenFaas	makes	monitoring	simple	with	the	use	of	Prometheus.	The	end	users
can	install	Grafana	Dashboard	and	connect	point	to	the	Promotehus	data	source.
This	provides	quick	access	to	the	dashboard	to	monitor	the	OpenFaas	functions



Figure	168:	faas	-	OpenFaas	-	Grafana	[91]

12.7.2	OpenFaas	in	Action

12.7.2.1	Prerequistics

1.	 Docker
2.	 Git	Bash	(for	Windows)

12.7.2.2	Single	Node	Cluster

$	docker	swarm	init

Using	a	Terminal	on	Mac	or	Linux:

For	 windows	 faas-cli.exe	 need	 to	 be	 downloaded	 from	 this	 link
https://github.com/openfaas/faas-cli/releases

12.7.2.3	Deploy	OpenFaas

OpenFaas	gives	 the	option	 to	use	yaml(.yml)	 file	 for	configuring	 the	 functions
and	 the	 image	will	 be	 built	 by	OpenFaas	 automatically.	Alternatively,	 custom
docker	image	can	be	built	and	passed	as	an	argument	to	the	OpenFaas	CLI.	This

$	curl	-sL	cli.openfaas.com	|	sudo	sh



gives	 the	 flexibility	 for	 the	 developers	 to	 extend	 further	 which	 is	 not	 in	 the
standard	yaml	file.

12.7.2.4	To	Run	OpenFaas

OpenFaas	can	be	tested	via	curl,	faas-cli,	or	any	HTTP-based	client	to	connect	to
the	API	gateway	to	invoke	a	function

Once	the	function	is	deployed,	the	functions	can	be	verified	in	the	following	url

http://127.0.0.1:8080

Figure	169:	faas-OpenFaas-Portal	[91]

12.7.3	OpenFaaS	Function	with	Python

This	section	illustrates	how	to	create	a	simple	Python	function	with	OpenFaaS.

$	git	clone	https://github.com/openfaas/faas

$	cd	faas

$	git	checkout	master

$	./deploy_stack.sh	--no-auth

$	cd	<test	function	folder>

$	docker	build	-t	<test	function	image>

$	faas-cli	deploy	--image	<test	function	image>	--name	<test	function	name

http://127.0.0.1:8080


Following	are	 the	 the	steps	 involved	 in	creating	and	deploying	a	 function	with
OpenFaaS

Install	OpenFaas
Install	the	OpenFaaS	CLI
Build	the	function
Deploy	the	function

Installing	OpenFaas:

OpenFaaS	installation	guide	can	be	viewed	on	this	web	page:

https://docs.openfaas.com/deployment

Installing	CLI:

For	Linux,	type	the	following

For	Mac,	type	the	following

Developing	a	Python	function:

First,	scaffold	a	new	Python	function	using	the	CLI

Following	3	files	will	be	created	in	the	current	directory

Edit	the	handler.py

Functions	need	to	be	specified	in	a	YAML	file	created	to	indicate	what	to	build
and	deploy	onto	the	OpenFaas	cluster.	YAML	file	should	be	created	as	follows

$	curl	-sSL	https://cli.openfaas.com	|	sudo	sh

$	brew	install	faas-cli

$	faas-cli	new	--lang	python	func-python

func-python/handler.py

func-python/requirements.txt

func-python.yml

def	handle(req):

				print("Python	Function:	"	+	req)

provider:

https://docs.openfaas.com/deployment


YAML	file	description	is	as	follows

gateway-	Location	to	specify	a	remote	gateway,	the	programming	language,
and	location	of	the	handler	within	the	filesystem.
functions	-	This	block	defines	the	functions	in	our	stack.
lang	-	Programming	language	used.
handler	-	This	is	the	folder	/	path	fo	the	handler.py	file	and	any	other	source
code
image	-	This	is	the	Docker	image	name.	If	it	is	being	pushed	to	the	Docker
Hub,	prefix	should	include	Docker	Hub	accountn

Build	the	function:

Docker	engine	builds	the	function	into	an	image	in	the	docker	library	and	images
will	appear	as	follows

Deploy	the	function:

Function	 can	 be	 tested	 either	 through	 the	 OpenFaas	 portal	 UI	 or	 with	 curl
command

faas-cli	commands	can	also	be	used	to	list	and	invoke	the	functions

		name:	faas

		gateway:	http://127.0.0.1:8080

functions:

		func-python:

				lang:	python

				handler:	./func-python

				image:	func-python

$	faas-cli	build	-f	./func-python.yml

...

Successfully	tagged	func-python:latest

Image:	func-python	built.

$	docker	images	|	grep	func-python

func-python								latest							<image	ID>						one	minute	ago

$	faas-cli	deploy	-f	./func-python.yml

Deploying:	func-python.

No	existing	service	to	remove

Deployed.

200	OK

URL:	http://127.0.0.1:8080/function/func-python

$	curl	127.0.0.1:8080/function/func-python	-d	"Test	Successfull"

Python	Function:	Test	Successfull

faas-cli	list



In	 case	 third	 party	 dependencies	 are	 required,	 they	 can	 be	 specified	 in	 a
requirements.txt	 file	 along	 with	 the	 function	 handler	 and	 the	 fucntion	 can	 be
deployed.

12.8	OPENLAMDA	☁
Cloud	 computing	 is	 evolving.	 All	 major	 public	 cloud	 providers	 now	 support
serverless	 computing	 such	 as	AWS	Lambda,	Google	Cloud	Functions	 (Alpha)
and	 Azure	 Function.	 Serverless	 computing	 introduces	 many	 new	 research
challenges	in	the	areas	of	sandboxing,	session	management,	load	balancing,	and
databases.	To	 facilitate	work	 in	 these	areas,	OpenLambda	 is	building	an	open-
source	serverless	computing	platform.

Serverless	Computation	with	OpenLambda	PDF	slide	material	is	available	at:

https://open-lambda.org/resources/slides/ol-first-meeting.pdf.

Communication	is	available	at	the	following	Slack	Development	Channel	(You
will	need	to	create	an	account	if	you	do	not	already	have	one):

https://open-lambda.slack.com/.

12.8.1	Suggested	Materials

Wat:	https://www.destroyallsoftware.com/talks/wat.
History	of	Containers:	https://www.youtube.com/watch?v=hgN8pCMLI2U.
AFS	benchmarking:	http://www.cs.cmu.edu/~coda/docdir/s11.pdf.

12.8.2	Development

OpenLambda	source	code	 it	 available	on	github	 (all	material	below	have	been
sourced	from	github):	https://github.com/open-lambda/open-lambda.

12.8.3	OpenLambda

OpenLambda	is	an	Apache-licensed	serverless	computing	project,	written	in	Go

echo	"Test"	|	faas-cli	invoke	func-python

https://github.com/cloudmesh-community/book/blob/master/chapters/faas/openlambda.md
https://open-lambda.org/resources/slides/ol-first-meeting.pdf
https://open-lambda.slack.com/
https://www.destroyallsoftware.com/talks/wat
https://www.youtube.com/watch?v=hgN8pCMLI2U
http://www.cs.cmu.edu/~coda/docdir/s11.pdf
https://github.com/open-lambda/open-lambda


and	based	on	Linux	containers.	The	primary	goal	of	OpenLambda	 is	 to	enable
exploration	of	new	approaches	to	serverless	computing.	Our	research	agenda	is
described	 in	 more	 detail	 in	 a	 [HotCloud	 ’16
paper]https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_hendrickson.pdf

All	 detail	 about	 getting	 started,	 installation,	 configuration,	 adminstration	 and
licensing	has	been	sourced	from	https://github.com/open-lambda/open-lambda

12.8.4	Getting	Started

OpenLambda	relies	heavily	on	operations	that	require	root	privilege.	To	simplify
this,	we	suggest	that	you	run	all	commands	as	the	root	user	(i.e.,	run	sudo	-s	before
building	or	 running	OpenLambda).	Additionally,	OpenLambda	 is	only	actively
tested	on	Ubuntu	14.04	&	16.04.

12.8.4.1	Install	Dependencies

First,	 run	 the	 dependency	 script	 to	 install	 necessary	 packages	 (e.g.,	 Golang,
Docker,	etc.)

Now,	 build	 the	 OpenLambda	 worker	 &	 its	 dependencies	 and	 run	 integration
tests.	These	tests	will	spin	up	clusters	in	various	configurations	and	invoke	a	few
lambdas.

If	 these	 pass,	 congratulations!	 You	 now	 have	 a	 working	 OpenLambda
installation.

12.8.4.2	Start	a	Test	Cluster

To	manage	a	cluster,	we	will	use	the	admin	tool.	This	tool	manages	state	via	a	cluster
directory	on	the	local	file	system.	More	details	on	this	tool	can	be	found	below.

First,	 we	 need	 to	 create	 a	 cluster.	 Ensure	 that	 the	 path	 to	 the	 cluster	 directory
exists,	and	it	does	not.

$	./quickstart/deps.sh

$	make	test-all

https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_hendrickson.pdf
https://github.com/open-lambda/open-lambda


Now	start	a	local	worker	process	in	your	cluster:

Confirm	that	the	worker	is	listening	and	responding	to	requests:

This	should	return	something	similar	to	the	following:

The	default	configuration	uses	a	local	directory	to	store	handler	code,	so	creating
new	lambda	functions	is	as	simple	as	writing	files	to	the	./my-cluster/registry	directory.

Copy	an	example	handler	(hello)	to	this	directory:

Now	send	a	request	for	the	hello	lambda	to	the	worker	via	curl.	Handlers	are	passed
a	 Python	 dictionary	 corresponding	 to	 the	 JSON	 body	 of	 the	 request.	 hello	 will
echo	the	"name"	field	of	the	payload	to	show	this.

The	request	should	return	the	following:

To	 create	 your	 own	 lambda	 named	 <NAME>,	 write	 your	 code	 in	 ./my-

cluster/registry/<NAME>/lambda_func.py,	then	invoke	it	via	curl:

Now,	kill	the	worker	process	and	(optionally)	remove	the	cluster	directory.

12.8.5	Administration

The	 admin	 tool	 is	used	 to	manage	OpenLambda	clusters.	This	 tool	manages	state

$	./bin/admin	new	-cluster	my-cluster

$	./bin/admin	workers	-cluster=my-cluster

$	./bin/admin	status	-cluster=my-cluster

Worker	Pings:

http://localhost:8080/status	=>	ready	[200	OK]

Cluster	containers:

$	cp	-r	./quickstart/handlers/hello	./my-cluster/registry/hello

$	curl	-X	POST	localhost:8080/runLambda/hello	-d	'{"name":	"Alice"}'

"Hello,	Alice!"

$	curl	-X	POST	localhost:8080/runLambda/<NAME>	-d	'<JSON_STRING>'

$	./bin/admin	kill	-cluster=my-cluster

$	rm	-r	my-cluster



via	 a	 cluster	 directory	 on	 the	 local	 file	 system.	 Note	 that	 only	 a	 single
OpenLambda	worker	per	machine	is	currently	supported.

The	 simplest	 admin	 command,	 worker-exec,	 allows	 you	 to	 launch	 a	 foreground
OpenLambda	process.	For	example:

The	 above	 command	 starts	 running	 a	 single	 worker	 with	 a	 configuration
specified	in	the	worker.json	file	(described	in	detail	later).	All	log	output	goes	to
the	terminal	(i.e.,	stdout),	and	you	can	stop	the	process	with	ctrl-C.

Suppose	worker.json	contains	the	following	line:

While	 the	 process	 is	 running,	 you	may	ping	 it	 from	 another	 terminal	with	 the
following	command:

If	the	worker	is	ready,	the	status	request	will	return	a	“ready”	message.

Of	 course,	 you	 will	 typically	 want	 to	 run	 one	 (or	 maybe	 more)	 workers	 as
servers	 in	 the	 background	 on	 your	 machine.	 Most	 of	 the	 remaining	 admin
commands	allow	you	to	manage	these	long-running	workers.

An	OpenLambda	worker	 requires	 a	 local	 file-system	 location	 to	 store	 handler
code,	 logs,	and	various	other	data.	Thus,	when	starting	a	new	local	cluster,	 the
first	step	is	to	indicate	where	the	cluster	data	should	reside	with	the	new	command:

For	OpenLambda,	a	local	cluster’s	name	is	the	same	as	the	file	location.	Thus,	
<ROOT>	 should	 refer	 to	 a	 local	 directory	 that	will	 be	 created	 for	 all	OpenLambda
files.	The	layout	of	these	files	in	the	<ROOT>	directory	is	described	in	detail	below.
You	will	need	 to	pass	 the	cluster	name/location	 to	all	 future	admin	commands
that	manage	the	cluster.

The	 <ROOT>/config/template.json	 file	 in	 the	 cluster	 located	 at	 <ROOT>	 will	 contain	 many
configuration	 options	 specified	 as	 keys/values	 in	 JSON.	 These	 setting	will	 be

$	admin	worker-exec	--config=worker.json

"worker_port":	"8080"

$	curl	http://localhost:8080/status

$	admin	new	--cluster=<ROOT>



used	 for	 every	 new	 OpenLambda	 worker.	 You	 can	 modify	 these	 values	 by
specifying	 override	 values	 (again	 in	 JSON)	 using	 the	 setconf	 command.	 For
example:

In	the	above	example,	the	configuration	is	modified	so	that	workers	will	use	the
local	registry	and	the	“sock”	sandboxing	engine.

Once	configuration	is	complete,	you	can	launch	a	specified	number	of	workers
(currently	only	one	is	supported?)	using	the	following	command:

This	will	create	a	specified	number	of	workers	listening	on	ports	starting	at	the
given	value.	For	 example,	 suppose	 <NUM>=3	 and	 <PORT>=8080.	The	 workers	 command	will
create	 three	 workers	 listening	 on	 ports	 8080,	 8081,	 and	 8082.	 The	 workers

command	is	basically	a	convenience	wrapper	around	the	worker-exec	command.	The	
workers	 command	 does	 three	 things	 for	 you:	 (1)	 creates	 a	 config	 file	 for	 each
worker,	based	on	 template.json,	 (2)	 invokes	 worker-exec	 for	each	 requested	worker
instance,	 and	 (3)	 makes	 the	 workers	 run	 in	 the	 background	 so	 they	 continue
executing	even	if	you	exit	the	terminal.

When	you	want	to	stop	a	local	OpenLambda	cluster,	you	can	do	so	by	executing
the	of	kill	command:

This	will	halt	any	processes	or	containers	associated	with	the	cluster.

In	 addition	 to	 the	 above	 commands	 for	 managing	 OpenLambda	 workers,	 two
admin	commands	are	also	available	for	managing	an	OpenLambda	handler	store.
First,	 you	 may	 launch	 the	 OpenLambda	 registry	 with	 the	 following	 registry

command:

The	 registry	will	 start	 listening	 on	 the	 designated	 port.	You	may	 generate	 the
KEY	and	SECRET	randomly	yourself	if	you	wish	(or	you	may	use	some	other
hard-to-guess	SECRET).	Keep	these	values	handy	for	later	uploading	handlers.

$	./admin	setconf	--cluster=<ROOT>	'{"sandbox":	"sock",	"registry":	"local"}'

$	./admin	workers	--cluster=<NAME>	--num-workers=<NUM>	--port=<PORT>

$	./admin	kill	--cluster=<NAME>

$	./admin	registry	--port=<PORT>	--access-key=<KEY>	--secret-key=<SECRET>



The	<ROOT>/config/template.json	file	specifies	registry	mode	and	various	registry	options.
You	 may	 manually	 set	 these,	 but	 as	 a	 convenience,	 the	 registry	 command	 will
automatically	 populate	 the	 configuration	 file	 for	 you	 when	 you	 launch	 the
registry	 process.	 Thus,	 to	 avoid	 manual	 misconfiguration,	 we	 recommend
running	./admin	registry	before	running	 ./admin	workers.	Or,	 if	you	wish	 to	use	 the	 local-
directory	 mode	 for	 your	 registry,	 simply	 never	 run	 ./admin	registry	 (the	 default
configs	use	local-directory	mode).

After	 the	 registry	 is	 running,	 you	may	 upload	 handlers	 to	 it	 via	 the	 following
command:

The	 above	 command	 should	 use	 the	 KEY/SECRET	 pair	 used	 when	 you
launched	the	registry	earlier.	The	<TAR>	can	refer	to	a	handler	bundle.	This	is	just	a
.tar.gz	 containing	 (at	 a	minimum)	 a	 lambda_func.py	 file	 (for	 the	 code)	 and	 a
packages.txt	file	(to	specify	the	Python	dependencies).

12.8.5.1	Writing	Handlers

	describe	how	to	write	and	upload	handlers

12.8.5.2	Cluster	Directory

Suppose	you	just	ran	the	following:

You	will	find	six	subdirectories	in	the	my-cluster'	directory:	config,logs,base,packages,registry,	and	
workers.

The	config	directory	will	contain,	at	a	minimum,	a	template.json	file.	Once	you	start
workers,	each	worker	will	have	an	additional	config	file	in	this	directory	named	
worker-<N>.json	(the	admin	tool	creates	these	by	copying	first	copying	template.json,	then
populating	additional	fields	specific	to	the	worker).

Each	running	worker	will	create	two	files	in	the	logs	directory:	worker-<N>.out	and	worker-
<N>.pid.	The	“.out”	files	contain	the	log	output	of	the	workers;	this	is	a	good	place

$	./admin	upload	--cluster=<NAME>	--handler=<HANDLER-NAME>	\

																	--file=<TAR>	--access-key=<KEY>	\

																	--secret-key=<SECRET>

$	admin	new	--cluster=./my-cluster



to	 start	 if	 the	 workers	 are	 not	 reachable	 or	 if	 they	 are	 returning	 unexpected
errors.	The	“.pid”	files	each	contain	a	single	number	representing	the	process	ID
of	the	corresponding	worker	process;	this	is	mostly	useful	to	the	admin	kill	tool
for	identifying	processes	to	halt.

All	OpenLambda	 handlers	 run	 on	 the	 same	 base	 image,	which	 is	 dumped	 via
Docker	 into	 the	 my-cluster/base	 directory.	 This	 contains	 a	 standard	 Ubuntu	 image
with	 additional	OpenLambda-specific	 components.	 This	 base	 is	 accessed	 on	 a
read-only	basis	by	every	handler	when	using	SOCK	containers.

The	 ./my-cluster/packages	 directory	 is	 mapped	 (via	 a	 read-only	 bind	 mount)	 into	 all
containers	started	by	the	worker,	and	contains	all	of	the	PyPI	packages	installed
to	workers	on	this	machine.

As	 discussed	 earlier,	OpenLambda	 can	 use	 a	 separate	 registry	 service	 to	 store
handlers,	or	it	can	store	them	in	a	local	directory;	the	latter	is	more	convenient
for	 development	 and	 testing.	 Unless	 configured	 otherwise,	 OpenLambda	 will
treat	 the	 ./my-cluster/registry	 directory	 as	 a	 handler	 store.	Creating	 a	 handler	 named
“X”	is	as	simple	as	creating	a	directory	named	./my-cluster/registry/X	and	writing	your
code	 therein.	No	 compression	 is	 necessary	 in	 this	mode;	 the	 handler	 code	 for
“X”	can	be	saved	here:	./my-cluster/registry/X/lambda_func.py.

Each	worker	has	its	own	directory	for	various	state.	The	storage	for	worker	N	is
rooted	 at	 ./my-cluster/workers/worker-<N>.	 Within	 that	 directory,	 handler	 containers	 will
have	scratch	space	at	 ./handlers/<handler-name>/<instance-number>.	For	example,	 all	 containers
created	 to	 service	 invocations	 of	 the	 “echo”	 handler	 will	 have	 scratch	 space
directories	inside	the	 ./handlers/echo	directory.	Additionally,	 there	 is	a	directory	 ./my-
cluster/workers/worker-<N>/import-cache	 that	 contains	 the	 communication	 directory	 mapped
into	each	import	cache	entry	container.

Suppose	there	is	an	instance	of	the	“echo”	handler	with	ID	“3”.	That	container
will	 have	 it’s	 scratch	 space	 at	 ./handlers/echo/3	 (within	 the	 worker	 root,	 ./my-

cluster/workers/worker-<N>).	 The	 handler	may	write	 temporary	 files	 in	 that	 directory	 as
necessary.	In	addition	to	these,	there	will	be	three	files:	 server_pipe	sock	file	(used
by	the	worker	process	to	communicate	with	the	handler)	and	stdout	and	stderr	 files
(handler	output	 is	 redirected	here).	When	debugging	a	handler,	 checking	 these
output	files	can	be	quite	useful.



Note	that	the	same	directory	can	appear	at	different	locations	in	the	host	and	in	a
guest	container.	For	example,	 containers	 for	 two	handlers	named	“function-A”
and	“function-B”	might	have	scratch	space	on	the	host	allocated	at	the	following
two	locations:

As	 a	 developer	 debugging	 the	 functions,	 you	may	want	 to	 peek	 in	 the	 above
directories	 to	 look	for	handler	output	and	generated	files.	However,	 in	order	 to
write	 code	 for	 a	handler	 that	generates	output	 in	 the	 above	 locations,	 you	will
need	to	write	files	to	the	/host	directory	(regardless	of	whether	you’re	writing	code
for	 function-A	 or	 function-B)	 because	 that	 is	 where	 scratch	 space	 is	 always
mapped	within	a	lambda	container.

12.8.6	Configuration

	document	the	configuration	parameters	and	how	they	interact.	Also	describe
how	to	use	the	packages.txt	file	in	a	handler	directory	to	specify	dependencies.

12.8.7	Architecture

	concise	description	of	the	architecture.

$	./my-cluster/workers/worker-0/handlers/function-A/123

$	./my-cluster/workers/worker-0/handlers/function-B/321



13	MESSAGING

13.1	MQTT	☁

	Learning	Objectives

Understand	Message	systems	for	the	cloud
Learn	about	MQTT

With	 the	 increase	 importance	of	cloud	computing	and	 the	 increased	number	of
edge	 devices	 and	 their	 applications,	 such	 as	 sensor	 networks,	 it	 is	 crucial	 to
enable	 fast	 communication	 between	 the	 sensing	 devices	 and	 actuators,	 which
may	not	be	directly	connected,	as	well	as	cloud	services	that	analyze	the	data.	To
allow	 services	 that	 are	 built	 on	 different	 software	 and	 hardware	 platforms	 to
communicate,	 a	 data	 agnostic,	 fast	 and	 service	 is	 needed.	 In	 addition	 to
communication,	the	data	generated	by	these	devices,	services,	and	sensors	must
be	 analyzed.	 Security	 aspects	 to	 relay	 this	 data	 is	 highly	 important.	 We	 will
introduce	 a	 service	 called	 MQTT,	 which	 is	 a	 common,	 easy	 to	 use,	 queuing
protocol	that	helps	meet	these	requirements.

13.1.1	Introduction

As	 Cloud	 Computing	 and	 Internet	 of	 Things	 (IoT)	 applications	 and	 sensor
networks	 become	 commonplace	 and	 more	 and	 more	 devices	 are	 being
connected,	 there	 is	 an	 increased	 need	 to	 allow	 these	 devices	 to	 communicate
quickly	 and	 securely.	 In	 many	 cases	 these	 edge	 devices	 have	 very	 limited
memory	and	need	 to	 conserve	power.	The	computing	power	on	 some	of	 these
devices	 is	 limited	 so	 that	 the	 sensory	 data	 need	 to	 be	 analyzed	 remotely.
Furthermore,	 they	 may	 not	 even	 have	 enough	 computing	 capacity	 to	 process
traditional	 HTTP	 web	 requests	 efficiently	 [92][93]	 or	 these	 traditional	 Web-
based	 services	 are	 too	 resource	 hungry.	 Monitoring	 the	 state	 of	 a	 remotely
located	 sensor	 using	 HTTP	 would	 require	 sending	 requests	 and	 receiving
responses	to	and	from	the	device	frequently,	which	may	not	be	efficient	on	small

https://github.com/cloudmesh-community/book/blob/master/chapters/msg/mqtt.md


circuits	or	embedded	chips	on	edge	computing	sensors	[92].

Message	 Queue	 Telemetry	 Transport	 (MQTT)	 is	 a	 lightweight	 machine	 to
machine	(M2M)	messaging	protocol,	based	on	a	client/server	publish-subscribe
model.	 It	 provides	 a	 a	 simple	 service	 allowing	 us	 to	 communicate	 between
sensors,	and	services	based	on	a	subscription	model.

MQTT	was	 first	developed	 in	1999	 to	connect	oil	pipelines	 [93].	The	protocol
has	 been	 designed	 to	 be	 used	 on	 top	 of	 TCP/IP	 protocol	 in	 situations	 where
network	 bandwidth,	 and	 available	 memory	 are	 limited	 allowing	 low	 power
usage.	However,	as	it	is	implemented	on	top	of	TCP/IP	it	is	reliable	in	contrast
to	 other	 protocols	 such	 as	 UDP.	 It	 allows	 efficient	 transmission	 of	 data	 to
various	 devices	 listening	 for	 the	 same	 event,	 and	 is	 scalable	 as	 the	 number	 of
devices	increase	[94][95].

MQTT	 is	 becoming	more	 popular	 than	 ever	 before	with	 the	 increasing	 use	 of
mobile	device	and	smartphone	applications	such	as	Facebook’s	Messenger	and
Amazon	 Web	 Services.	 This	 protocol	 is	 used	 in	 WIFI	 or	 low	 bandwidth
network.	 MQTT	 does	 not	 require	 any	 connection	 with	 the	 content	 of	 the
message.

The	current	support	for	MQTT	is	conducted	as	part	of	the	Eclipse	Phao	project
[96].	As	MQTT	is	a	protocol	many	different	clients	in	various	languages	exist.
This	includes	languages	such	as	Python,	C,	Java,	Lua,	and	many	more.

The	current	standard	of	MQTT	is	available	at

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

13.1.2	Publish	Subscribe	Model

MQTT	 works	 via	 a	 publish-subscribe	 model	 that	 contains	 3	 entities:	 (1)
aRaspberry	Pi	publisher,	that	sends	a	message,	(2)	a	broker,	that	maintains	queue
of	 all	messages	 based	 on	 topics	 and	 (3)	multiple	 subscribers	 that	 subscribe	 to
various	topics	they	are	interested	in	[97].	See	Figure	170

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf


Figure	170:	MQTT	publish	subscriber	model

This	allows	for	decoupling	of	functionality	at	various	levels.	The	publisher	and
subscriber	do	not	need	to	be	close	to	each	other	and	do	not	need	to	know	each
others	 identity.	 They	 need	 only	 to	 know	 the	 broker,	 as	 the	 publisher	 and	 the
subscribers	do	not	have	 to	be	 running	either	at	 the	same	 time	nor	on	 the	same
hardware	[98].

Ready	 to	 use	 implementation	 exist	 to	 be	 deployed	 as	 brokers	 in	 the	 users
application	 frameworks.	A	broker	 is	 a	 service	 that	 relays	 information	 between
the	 client	 and	 servers.	 Common	 brokers	 include	 the	 open	 source	 Mosquito
broker	[95]	and	the	Eclipse	Phao	MQTT	Broker	[96].

13.1.2.1	Topics

MQTT	implements	a	hierarchy	of	topics	that	are	relates	to	all	messages.	These
topics	are	recognised	by	strings	separated	by	a	forward-slash	(/),	where	each	part
represents	 a	 different	 topic	 level.	 This	 is	 a	 common	model	 introduced	 in	 file
systems	but	also	in	internet	URLs.

A	topic	looks	therefore	as	follows:

Subscribers	can	subscribe	to	different	topics	via	the	broker.	Subscribing	to	topic-

topic-level0/topic-level1/topic-level2.



level0	allows	the	subscriber	to	receive	all	messages	that	are	associated	with	topics
that	start	with	topic-level0.	This	allows	subscribers	to	filter	what	messages	to	receive
based	on	the	topic	hierarchy.	Thus,	when	a	publisher	publishes	a	message	related
to	 a	 topic	 to	 the	 broker,	 the	message	 is	 forwarded	 to	 all	 the	 clients	 that	 have
subscribed	 to	 the	 topic	 of	 the	 message	 or	 a	 topic	 that	 has	 a	 lower	 depth	 of
hierarchy	[98]	[97].

This	 is	different	from	traditional	point-to-point	message	queues	as	 the	message
is	 forwarded	 to	multiple	 subscribers,	 and	 allows	 for	 flexibility	 of	 dealing	with
subscribed	topics	not	only	on	the	server	but	also	on	the	subscriber	side	[98].	The
basic	steps	in	a	MQTT	client	subscriber	application	include	to	(1)	connect	to	the
broker,	(2)	subscribe	to	some	topics,	(3)	wait	for	messages	and	(4)	perform	the
appropriate	action	when	a	certain	message	is	received	[94].

13.1.2.2	Callbacks

One	 of	 the	 advantages	 of	 using	 MQTT	 is	 that	 it	 supports	 asynchronous
behaviour	with	the	help	of	callbacks.	Both	the	publisher	and	subscriber	can	use
non-blocking	callbacks	to	act	upon	message	exchanges.	[98][99].

For	 example,	 the	 paho-mqtt	 package	 for	 python	 provides	 callbacks	 methods
including	 on-connect(),	 on-message()	 and	 on-disconnect(),	 which	 are	 invoked	 when	 the
connection	to	the	broker	is	complete,	a	message	is	received	from	the	broker,	and
when	the	client	is	disconnected	from	the	broker	respectively.	These	methods	are
used	in	conjunction	with	the	loop-start()	and	loop-end()	methods	which	start	and	end	an
asynchronous	loop	that	 listens	for	 these	events	 invoking	the	relevant	callbacks.
Hence	 it	 frees	 the	 services	 to	 perform	 other	 tasks	 [99]	when	 no	messages	 are
available,	thus	reducing	overhead.

13.1.2.3	Quality	of	Service

MQTT	has	 been	 designed	 to	 be	 flexible	 allowing	 for	 the	 change	 of	 quality	 of
service	 (QoS)	 as	 desired	 by	 the	 application.	 Three	 basic	 levels	 of	 QoS	 are
supported	by	the	protocol:	Atmost-once	(QoS	level	0),	Atleast-once	(QoS	level
1)	and	Atmost-once	(QoS	level	2)	[99],	[100].

QoS	level	0:



The	QoS	level	of	0	 is	used	 in	applications	where	some	dropped	messages
may	not	affect	the	application.	Under	this	QoS	level,	the	broker	forwards	a
message	 to	 the	 subscribers	 only	 once	 and	 does	 not	 wait	 for	 any
acknowledgement	[100][99].

QoS	Level	1:

The	QoS	level	of	1	is	used	in	situations	where	the	delivery	of	all	messages
is	 important	 and	 the	 subscriber	 can	 handle	 duplicate	 messages.	 Here	 the
broker	 keeps	 on	 resending	 the	 message	 to	 a	 subscriber	 after	 a	 certain
timeout	until	the	first	acknowledgement	is	received.

QoS	Level	3:

A	QoS	level	of	3	is	used	in	cases	where	all	messages	must	be	delivered	and
no	duplicate	messages	should	be	allowed.	In	this	case	the	broker	sets	up	a
handshake	with	 the	 subscriber	 to	 check	 for	 its	 availability	 before	 sending
the	message	[99],	[100].

The	 various	 levels	 of	 quality	 of	 service	 allow	 the	 use	 of	 this	 protocol	 with
different	service	level	expectations.

13.1.3	Secure	MQTT	Services

MQTT	specification	uses	TCP/IP	to	deliver	the	messaged	to	the	subscribers,	but
it	 does	 not	 provide	 security	 by	 default	 to	 enable	 resource	 constrained	 IoT
devices.	“It	allows	the	use	of	username	and	password	for	authentication,	but	by
default	 this	 information	 is	 sent	 as	 plain	 text	 over	 the	 network,	 making	 it
susceptible	 to	 man-in-the	 middle	 attacks”	 [101],	 [102].	 Therefore,	 to	 support
sensitive	applications	additional	security	measures	need	to	be	integrated	through
other	means.	This	may	include	for	example	the	use	of	Virtual	Private	Networks
(VPNs),	Transport	Layer	Security,	or	application	layer	security	[102].

13.1.3.1	Using	TLS/SSL

Transport	 Layer	 Security	 (TLS)	 and	 Secure	 Sockets	 Layer	 (SSL)	 are
cryptographic	protocols	that	establish	a	the	identity	of	the	server	and	client	with
the	 help	 of	 a	 handshake	 mechanism	 which	 uses	 trust	 certificates	 to	 establish



identities	 before	 encrypted	 communication	 can	 take	 place	 [103].	 If	 the
handshake	 is	not	 completed	 for	 some	 reason,	 the	connection	 is	not	 established
and	no	messages	are	exchanged	[102].	“Most	MQTT	brokers	provide	an	option
to	use	TLS	instead	of	plain	TCP	and	port	8883	has	been	standardized	for	secured
MQTT	connections”	[101].

Using	TLS/SSL	security	however	comes	at	an	additional	cost.	If	the	connections
are	 short-lived	 then	most	 of	 the	 time	 is	 spent	 in	 verifying	 the	 security	 of	 the
handshake	itself,	which	in	addition	to	using	time	for	encryption	and	decryption,
may	take	up	few	kilobytes	of	bandwidth.	In	case	the	connections	are	short-lived,
temporary	session	IDs	and	session	tickets	can	be	used	as	alternative	to	resume	a
session	 instead	of	 repeating	 the	handshake	process.	 If	 the	connections	are	 long
term,	the	overhead	of	the	handshake	is	negligible	and	TLS/SSL	security	should
be	used	[101],	[102].

13.1.3.2	Using	OAuth

OAuth	 is	 an	 open	 protocol	 that	 allows	 access	 to	 a	 resource	without	 providing
unencrypted	credentials	to	the	third	party.	Although	MQTT	protocol	itself	does
not	 include	 authorization,	 many	 MQTT	 brokers	 include	 authorization	 as	 an
additional	 feature	 [103].	 OAuth2.0	 uses	 JSON	 Web	 Tokens	 which	 contain
information	 about	 the	 token	 ans	 the	 user	 and	 are	 signed	 by	 a	 trusted
authorization	server	[104].

When	connecting	to	the	broker	this	token	can	be	used	to	check	whether	the	client
is	authorised	to	connect	at	this	time	or	not.	Additionally	the	same	validations	can
be	 used	when	 publishing	 or	 subscribing	 to	 the	 broker.	 The	 broker	may	 use	 a
third	 party	 resource	 such	 as	 LDAP	 (lightweight	 directory	 access	 protocol)	 to
look	up	authorizations	for	the	client	[104].	Since	there	can	be	a	large	number	of
clients	 and	 it	 can	 become	 impractical	 to	 authorize	 everyone,	 clients	 may	 be
grouped	and	the	authorizations	may	be	checked	for	each	group	[103].

13.1.4	Integration	with	Other	Services

As	 the	 individual	 IoT	 devices	 perform	 their	 respective	 functions	 in	 the	 sensor
network,	a	lot	of	data	is	generated	which	needs	to	be	processed.	MQTT	allows
easy	integration	with	other	services,	that	have	been	designed	to	process	this	data.



Let	us	provide	some	examples	of	MQTT	integration	into	other	Services.

Apache	Storm.

Apache	 storm	 is	 a	 distributed	 processing	 system	 that	 allows	 real	 time
processing	of	continuous	data	streams,	much	like	Hadoop	works	for	batch
processing	 [105].	 Apache	 storm	 can	 be	 easily	 integrated	 with	 MQTT	 as
shown	in	[106]	to	get	real	time	data	streams	and	allow	analytics	and	online
machine	learning	in	a	fault	tolerant	manner	[107].

ELK	stack.

ELK	 stack	 (elastic-search,	 logstash	 and	 kibana)	 is	 an	 opensource	 project
designed	 for	 scalability	which	contains	 three	main	 software	packages,	 the
elastic-search	 search	 and	 analytics	 engine,	 logstash	 which	 is	 a	 data
collection	 pipeline	 and	 kibana	 which	 is	 a	 visualization	 dashboard	 [108].
Data	from	an	IoT	network	can	be	collected,	analysed	and	visualized	easily
with	the	help	of	the	ELK	stack	as	shown	in	[109]	and	[110].

13.1.5	MQTT	in	Production

When	 using	 optimized	 MQTT	 broker	 services,	 MQTT	 can	 be	 utilized	 for
enterprise	 and	 production	 environments.	 A	 good	 example	 is	 the	 use	 of	 EMQ
(Erlang	MQTT	Broker)	 that	provides	a	highly	scalable,	distributed	and	reliable
MQTT	broker	for	enterprise-grade	applications	[111].

13.1.6	Installation

The	installation	of	an	MQTT	server	based	on	paho	is	very	simple.

13.1.6.1	MacOS	install

On	OSX	yo	need	to	first	install	mosquito,	which	is	easiest	to	install	with	brew

Step	1:	Installing	Mosquito	clients

Open	a	terminal	and	use	homebrew	to	install	mosquito	and	than	you	can	install
paho	with	pip



You	need	to	start	the	mosquito	service	buy	hand	to	use	it.

13.1.6.2	MacOS	Advanced	Service	install

	 We	 recommend	 that	 this	 is	 only	 be	 done	 if	 you	 truly	 need	 a
production	system.	For	our	class	you	will	not	need	this.

You	can	integrate	mosquito	service	on	boot,	while	adding	it	via	LaunchAgents.
This	can	be	achieved	by	linking	it	as	follows:

Next	you	need	to	restart	the	server	as	follows:

Now	you	can	test	the	installation	and	ensure	the	server	is	running	successfully.	
Open	a	new	command	window	and	start	a	listener.

To	test	teh	setup	you	can	in	another	window,	send	a	message	to	the	listener.

This	ensures	the	server	is	running.

13.1.6.3	Ubuntu	install

On	ubuntu	you	need	to	first	install	mosquito,	than	with	pip	you	install	paho-mqt

13.1.6.4	Raspberry	Pi	Setup

If	you	have	experimented	with	the	Raspberry	P	and	MQTT,	you	can	contribute
to	this	section.

brew	install	mosquitto

pip	install	paho-mqtt

ln	-sfv	/usr/local/opt/mosquitto/*.plist	~/Library/LaunchAgents

launchctl	load	~/Library/LaunchAgents/homebrew.mxcl.mosquitto.plist

mosquitto_sub	-t	topic/state

mosquitto_pub	-t	topic/state	-m	"Hello	World"

$	sudo	apt-get	install	mosquitto	mosquitto-clients

$	pip	install	paho-mqtt



13.1.6.4.1	Broker

You	 will	 need	 to	 add	 the	 mosquito	 repository	 to	 the	 known	 repositories	 as
follows:

Mosquito	is	installed	by	implementing	the	following	command:

13.1.6.4.2	Client

The	MQTT	client	needs	to	be	installed	on	raspberry	pi	by	running	the	following
command:

13.1.7	Server	Usecase

In	this	example	we	are	demonstrating	how	to	set	up	a	MQTT	broker,	a	client	and
a	 subscriber	 while	 just	 using	 regular	 servers	 and	 clients.	 The	 code	 of	 this
example	is	located	at:

https://github.com/bigdata-i523/sample-hid000/tree/master/experiment/mqtt

A	test	program	that	starts	a	MQTT	broker	and	client	showcases	how	simple	the
interactions	between	the	publisher	and	subscribers	are	while	using	a	higher	level
API	such	as	provided	through	the	python	client	library	of	Paho.

wget	http://repo.mosquitto.org/debian/mosquitto-repo.gpg.key

sudo	apt-key	add	mosquitto-repo.gpg.key

sudo	wget	http://repo.mosquitto.org/debian/mosquitto-jessie.list

apt-get	update

apt-get	install	mosquito

apt-get	install	mosquitto-clients

import	paho.mqtt.client	as	mqtt

import	time

def	on_message(client,	userdata,	message):

				print("message	received	",

										str(message.payload.decode("utf-8")))

				print("message	topic=",	message.topic)

				print("message	qos=",	message.qos)

				print("message	retain	flag=",	message.retain)

def	on_log(client,	userdata,	level,	buf):

				print("log:	",buf)

broker_address="localhost"

#	broker_address="test.mosquitto.org"

#	broker_address="broker.hivemq.com"

#	broker_address="iot.eclipse.org"

https://github.com/bigdata-i523/sample-hid000/tree/master/experiment/mqtt


13.1.8	IoT	Use	Case	with	a	Raspberry	PI

MQTT	can	be	used	in	a	variety	of	applications.	This	section	explores	a	particular
use	 case	 of	 the	 protocol.	 A	 small	 network	 was	 set	 up	 with	 three	 devices	 to
simulate	 an	 IoT	 environment,	 and	 actuators	 were	 controlled	 with	 the	 help	 of
messages	communicated	over	MQTT.

The	code	for	the	project	is	available	at

https://github.com/bigdata-i523/hid201/tree/master/experiment/mqtt

13.1.8.1	Requirements	and	Setup

The	 setup	 used	 three	 different	 machines.	 A	 laptop	 or	 a	 desktop	 running	 the
MQTT	broker,	and	two	raspberry	pis	configured	with	raspbian	operating	system.
Eclipse	 Paho	 MQTT	 client	 was	 setup	 on	 each	 of	 the	 raspberry	 pis	 [99].
Additionally	all	three	devices	were	connected	to	an	isolated	local	network.

GrovePi	shields	for	 the	raspberry	pis,	designed	by	Dexter	Industries	were	used
on	 each	 of	 the	 raspberry	 pis	 to	 connect	 the	 actuators	 as	 they	 allow	 easy
connections	 ot	 the	 raspberry	 pi	 board	 [112].	 The	 actuators	 used	 were	 Grove
relays	[113]	and	Grove	LEDs	[114]	which	respond	to	the	messages	received	via
MQTT.

To	control	the	leds	and	relays,	the	python	library	cloudmesh-pi	[115],	developed
at	Indiana	University	was	used.	The	library	consists	of	interfaces	for	various	IoT
sensors	and	actuators	and	can	be	easily	used	with	the	grove	modules.

print("creating	new	instance")

client	=	mqtt.Client("i523")	#create	new	instance

client.on_log=on_log

client.on_message=on_message	#attach	function	to	callback

print("connecting	to	broker")

client.connect(broker_address)	#connect	to	broker

client.loop_start()	#start	the	loop

print("Subscribing	to	topic","robot/leds/led1")

client.subscribe("robot/leds/led1")

print("Publishing	message	to	topic","robot/leds/led1")

client.publish("robot/leds/led1","OFF")

time.sleep(4)	#	wait

client.loop_stop()	#stop	the	loop

https://github.com/bigdata-i523/hid201/tree/master/experiment/mqtt


13.1.8.2	Results

The	 two	 Raspberry	 Pis	 subscribe	 connect	 to	 the	 broker	 and	 subscribe	 with
different	 topics.	 The	 raspberry	 pis	 wait	 for	 any	 messages	 from	 the	 broker.	 A
publisher	program	that	connects	to	the	broker	publishes	messages	to	the	broker
for	 the	 topics	 that	 the	 two	 raspberry	 pis	 had	 registered.	 Each	 raspberry	 pi
receives	the	corresponding	message	and	turns	the	LEDs	or	relays	on	or	off	as	per
the	message.

On	a	 local	network	 this	process	happens	 in	near	 real	 time	and	no	delays	were
observed.	Eclipse	IoT	MQTT	broker	(iot.eclipse.org)	was	also	tried	which	also
did	not	result	in	any	significant	delays.

Thus	it	is	observed	that	two	raspberry	pis	can	be	easily	controlled	using	MQTT.
This	 system	can	 be	 extended	 to	 include	 arbitrary	 number	 of	 raspberry	 pis	 and
other	 devices	 that	 subscribe	 to	 the	 broker.	 If	 a	 device	 fails,	 or	 the	 connection
from	 one	 device	 is	 broken,	 other	 devices	 are	 not	 affected	 and	 continue	 to
perform	the	same.

This	 project	 can	 be	 extended	 to	 include	 various	 other	 kinds	 of	 sensors	 and
actuators.	The	actuators	may	subscribe	to	topics	to	which	various	sensors	publish
their	 data	 ans	 respond	 accordingly.	 The	 data	 of	 these	 sensors	 can	 be	 captured
with	the	help	of	a	data	collector	which	may	itself	be	a	different	subscriber,	that
performs	analytics	or	visualizations	on	this	data.

13.1.9	Conclusion

We	see	that	as	the	number	of	connected	devices	increases	and	their	applications
become	 commonplace,	 MQTT	 allows	 different	 devices	 to	 communicate	 with
each	other	in	a	data	agnostic	manner.	MQTT	uses	a	publish-subscribe	model	and
allows	various	levels	of	quality	of	service	requirements	to	be	fulfilled.	Although
MQTT	does	not	provide	data	security	by	default,	most	brokers	allow	the	use	of
TLS/SSL	to	encrypt	the	data.	Additional	features	may	be	provided	by	the	broker
to	 include	 authorization	 services.	 MQTT	 can	 be	 easily	 integrated	 with	 other
services	 to	 allow	 collection	 and	 analysis	 of	 data.	 A	 small	 environment	 was
simulated	that	used	MQTT	broker	and	clients	running	on	raspberry	pis	to	control
actuators



13.1.10	Exercises

E.MQTT.1:

Develop	a	 temperature	broker,	 that	 collects	 the	 temperature	 from	a
number	 of	 machines	 and	 clients	 can	 subscribe	 to	 the	 data	 and
visualize	it.

E.MQTT.2:

Develop	a	CPU	load	broker,	that	collects	the	cpu	load	from	a	number
of	machines	and	clients	can	subscribe	to	the	data	and	visualize	it.

E.MQTT.3:

Develop	 install	 instructions	 and	 examples	 on	 how	 to	 use	MQTT	on
Raspberry	PI.

E.MQTT.4:

Develop	 a	 broker	with	 a	 variety	 of	 topics	 that	 collects	 data	 from	a
Raspberry	Pi	or	Raspberry	PI	cluster	and	visualize	it.

E.MQTT.5:

Explore	 hosted	 services	 for	 MQTT	 while	 at	 the	 same	 time
remembering	 that	 they	 could	 pose	 a	 security	 risk.	 Can	 any	 of	 the
online	services	be	used	to	monitor	a	cluster	safely?

13.2	PYTHON	APACHE	AVRO	☁
Although	Apache	Avro	is	not	directly	a	messaging	system,	it	uses	messaging	to
comunicate	 between	 components	 while	 serializing	 and	 deserializing	 object
defined	with	a	schema.	In	addition	it	provides	data	structures,	remote	procedure
call	 (RPC),	a	container	 file	 to	 store	persistent	data	and	simple	 integration	with
dynamic	 languages	 [116].	 Avro	 depends	 on	 schemas,	 which	 are	 defined	 with
JSON.	 This	 facilitates	 implementation	 in	 other	 languages	 that	 have	 the	 JSON
libraries.	The	key	advantages	of	Avro	are	schema	evolution	-	Avro	will	handle

https://github.com/cloudmesh-community/book/blob/master/chapters/msg/avro.md


the	 missing/extra/modified	 fields,	 dynamic	 typing	 -	 serialization	 and
deserialization	without	code	generation,	untagged	data	-	data	encoding	and	faster
data	processing	by	allowing	data	to	be	written	without	overhead.

The	 following	 steps	 illustrate	using	Avro	 to	 serialize	 and	deserialize	data	with
example	modified	from	Apache	Avro	1.8.2	Getting	Started	(Python)	[117].

13.2.1	Download,	Unzip	and	Install

Please	download	the	following	zipped	file	avro-python3-1.8.2.tar.gz.

Unzip	it	and	conduct	the	install

To	check	successful	installation,	import	avro	in	python	without	error	message:

13.2.2	Defining	a	schema

Use	a	simple	schema	for	students	contributed	in	cloudmesh	as	an	example:	paste
the	following	lines	into	an	empty	text	file	with	the	name	it	student.avsc

This	 schema	 defines	 a	 record	 representing	 a	 hypothetical	 student,	 which	 is
defined	to	be	a	record	with	the	name	 Student	and	4	fields,	namely	name,	hid,	age
and	project	name.	The	type	of	each	of	the	field	needs	to	be	provided.	If	any	field
is	optional,	one	could	use	the	list	including	null	to	define	the	type	as	shown	in	age
and	project	name	in	the	example	schema.	Further,	a	namespace	cloudmesh.avro	is	also
defined,	 which	 together	 with	 the	 name	 attribute	 defines	 the	 full	 name	 of	 the
schema	(cloudmesh.avro.Student	in	this	case).

$	tar	xvf	avro-1.8.2.tar.gz

$	cd	avro-1.8.2

$	python	setup.py	install

$	python

>>>	import	avro

{"namespace":	"cloudmesh.avro",

	"type":	"record",

	"name":	"Student",

	"fields":	[

				{"name":	"name",	"type":	"string"},

				{"name":	"hid",		"type":	"string"},

				{"name":	"age",	"type":	["int",	"null"]},

				{"name":	"project_name",	"type":	["string",	"null"]}

				]

}

http://mirrors.sonic.net/apache/avro/avro-1.8.2/py3


13.2.3	Serializing

The	following	piece	of	python	code	illustrates	serialization	of	some	data

The	code	does	the	following:

Imports	required	modules
Reads	the	schema	student.avsc	(make	sure	that	the	schema	file	is	placed	in	the
same	directory	as	the	python	code)
Create	a	DataFileWriter	called	writer,	for	writing	serialized	items	to	a	data	file	on
disk
Use	 DataFileWriter.append()	 to	 add	 data	 points	 to	 the	 data	 file.	 Avro	 records	 are
represented	as	Python	dicts.
The	resulting	data	file	saved	on	the	disk	is	named	students.avro

This	instruction	is	for	Python2.	If	one	is	using	Python3,	change

to:

since	the	method	name	has	a	different	case	in	Python3.

13.2.4	Deserializing

The	following	python	code	illustrates	deserialization

import	avro.schema

from	avro.datafile	import	DataFileWriter

from	avro.io	import	DatumWriter

schema	=	avro.schema.parse(open("student.avsc",	"rb").read())

writer	=	DataFileWriter(open("students.avro",	"wb"),	DatumWriter(),	schema)

writer.append({"name":	"Albert	Zweistein",

															"hid":	"hid-sp18-405",

															"age":	99,

															"project_name":	"hadoop	with	docker"})

writer.append({"name":	"Ben	Smith",

															"hid":	"hid-sp18-309",

															"project_name":	"spark	with	docker"})

writer.append({"name":	"Alice	Johnson",

															"hid":	"hid-sp18-208",

															"age":	27})

writer.close()

schema	=	avro.schema.parse(open("student.avsc",	"rb").read())

schema	=	avro.schema.Parse(open("student.avsc",	"rb").read())

from	avro.datafile	import	DataFileReader

from	avro.io	import	DatumReader



The	code	does	the	following:

Imports	required	modules
Use	DatafileReader	 to	 read	 the	 serialized	 data	 file	 students.avro,	 it	 is	 an
iterator
Returns	the	data	in	a	python	dict

The	output	should	look	like:

13.2.5	Resources

The	 steps	 and	 instructions	 are	modified	 from	Apache	Avro	 1.8.2	Getting
Started	(Python)	[117].
The	Avro	Python	library	does	not	support	code	generation,	while	Avro	used
with	Java	supports	code	generation,	see	Apache	Avro	1.8.2	Getting	Started
(Java)	[118].
Avro	provides	a	convenient	way	to	represent	complex	data	structures	within
a	Hadoop	MapReduce	job.	Details	about	Avro	are	documented	 in	Apache
Avro	1.8.2	Hadoop	MapReduce	guide	[119].
For	more	information	on	schema	files	and	how	to	specify	name	and	type	of
a	record	can	be	found	at	record	specification	[120].

reader	=	DataFileReader(

				open("students.avro",	"rb"),	DatumReader())

for	student	in	reader:

print	(student)

reader.close()

{'name':	'Albert	Zweistein',

	'hid':	'hid-sp18-405',

	'age':	29,

	'project_name':	'hadoop	with	docker'

}

{'name':	'Ben	Smith',

	'hid':	'hid-sp18-309',

	'age':	None,

	'project_name':	'spark	with	docker'

}

{'name':	'Alice	Johnson',

	'hid':	'hid-sp18-208',

	'age':	27,

	'project_name':	None

}

http://avro.apache.org/docs/1.8.2/gettingstartedpython.html
http://avro.apache.org/docs/1.8.2/gettingstartedjava.html
http://avro.apache.org/docs/1.8.2/mr.html
http://avro.apache.org/docs/1.8.2/spec.html#schema_record


14	GO

14.1	INTRODUCTION	TO	GO	FOR	CLOUD	COMPUTING	☁

	Learning	Objectives

Learn	quickly	Go	under	the	assumption	you	know	a	programming	language
Work	with	Go	modules	modules
Conduct	some	Go	examples
Learn	about	REST	services	in	Go
Learn	how	access	virtual	machines	from	Go
Learn	how	to	interface	with	kubernetes	in	Go

Go	Logo

Go	is	a	programming	language	that	has	been	introduced	by	Google	to	replace	the
C++	language.	Online	documentation	about	go	is	available	also	from	the	official
Go	Documentation	[121]	Web	page	from	which	our	material	is	derived.

The	language	Go	has	at	its	goal	to	be	expressive,	concise,	clean,	and	efficient.	It
includes	 concurrency	 mechanisms	 with	 the	 goal	 to	 make	 it	 easy	 to	 write
programs	that	can	utilize	multicore	and	networked	features	of	modern	computer
systems	and	infrastructure	easily	with	language	features.	However	in	contrast	to
languages	 such	 as	 python	 and	 ruby,	 it	 introduces	 in	 addition	 to	 static	 types
explicitly	types	supporting	concurrent	programming	such	as	channels	 that	have
already	been	used	in	the	early	days	of	programming	for	example	as	part	of	CSP
[122]	and	OCCAM	[123]	[124].

In	contrast	to	languages	such	as	Python,	Go	is	designed	to	compiled	to	machine
code.	However	garbage	collection	and	run-time	reflection	are	build	in,	exposing
this	 functionality	 similar	 to	 languages	 such	as	python.	Hence,	 it	 is	designed	 to
provide	the	programmer	a	fast,	statically	typed,	compiled	language	that	feels	like

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/go/go-intro.md
https://golang.org/doc/


a	dynamically	typed,	interpreted	language.

According	 to	 the	 TIOBE	 [125]	 index	 for	 programming	 languages	 Go	 has
reached	for	November	2018	the	16th	spot.	However	it	is	rated	only	with	1.081%
with	 a	 declining	 rating	 but	 increase	 in	 the	 ranking.	 This	 trend	 is	 even	 more
prominently	depicted	when	looking	at	google	trends	in	Figure	171.

Legend

Figure	171:	Google	trends	for	selected	programming	languages

14.1.1	Organization	of	the	chapter

The	 material	 presented	 in	 this	 chapter	 introduces	 the	 reader	 first	 to	 the	 basic
concepts	and	features	of	the	Go	language	and	system.	This	includes	installation
(see	Section	14.2)	and	compiling	(see	Section	14.4),	have	a	basic	understanding
of	 the	 programming	 language	 (see	 Section	 14.4),	 use	 standard	 library	 and
become	 familiar	 with	 package	 management	 (see	 Section	 14.5).	 Next	 we	 will
focus	 on	 aspects	 of	 the	 Go	 language	 that	 are	 especially	 useful	 for	 Cloud
computing.	 This	 includes	 the	 review	 of	 how	 to	 develop	 REST	 services	 with
various	frameworks	such	as	Gorilla	(see	)	and	OpenAPI	(see	Section	14.8).	You
will	 than	be	 introduced	on	how	 to	access	virtual	machines	 (see	Section	14.10)
and	containers	(see	Section	14.10).

In	 order	 to	 to	 use	Go	we	 recommend	 that	 you	 have	 a	 computer	 fulfilling	 the
following	requirements:

Have	the	most	up	to	date	version	of	Go	installed

https://www.tiobe.com/tiobe-index/


Be	familiar	with	the	Linux	command	line	as	showcased	in	[126]
Familiarity	with	a	text	editor	such	as	emacs,	which	we	prefer	as	it	supports
nicely	not	only	Go	but	any	other	language	or	document	format	we	typically
use	in	our	activities.	Alternatives	are	discussed	in	Section	1.5.

14.1.2	References

The	following	references	may	be	useful	for	you	to	find	out	more	about	go.	We
have	not	gone	to	the	list	in	detail,	but	want	to	make	you	are	of	some	of	them	that
we	 found	 through	 simple	 searches	 in	Google	 search.	 If	you	 find	others	or	you
have	a	favorite,	let	us	know	and	we	will	add	them	and	mark	them	appropriately.

golang.org	[121].
Go	cheat	sheet	[127].
The	Little	Go	Book	[128].
Learn	Go	in	an	Hour	-	Video	2015-02-15
Learning	to	Program	in	Go,	a	multi-part	video	training	class.
Go	By	Example	provides	a	series	of	annotated	code	snippets	[129].
Learn	 Go	 in	 Y	minutes	 is	 a	 top-to-bottom	walk-through	 of	 the	 language
[130].
Workshop-Go	-	Startup	Slam	Go	Workshop	-	examples	and	slides	[131].
Go	Fragments	-	A	collection	of	annotated	Go	code	examples	[132].
50	Shades	of	Go:	Traps,	Gotchas,	Common	Mistakes	for	New	Golang	Devs
[133]
Golang	Tutorials	-	A	free	online	class	[134].
The	Go	Bridge	Foundry	 [135]	 -	A	member	 of	 the	Bridge	 Foundry	 [136]
family,	offering	a	complete	set	of	free	Go	training	materials	with	the	goal	of
bringing	Go	to	under-served	communities.
Golangbot	-	Tutorials	to	get	started	with	programming	in	Go	[137].
Algorithms	 to	Go	 -	 Texts	 about	 algorithms	 and	 Go,	 with	 plenty	 of	 code
examples	[138].
Go	Language	Tutorials	 -	List	 of	Go	 sites,	 blogs	 and	 tutorials	 for	 learning
Go	language	[139].
Golang	 Development	 Video	 Course	 -	 A	 growing	 list	 of	 videos	 focused
purely	on	Go	development	2019-02-10.

14.2	INSTALLATION	☁

http://golang.org/doc/#learning
https://github.com/a8m/go-lang-cheat-sheet
http://openmymind.net/The-Little-Go-Book/
https://www.youtube.com/watch?v=CF9S4QZuV30
https://www.youtube.com/playlist?list=PLei96ZX_m9sVSEXWwZi8uwd2vqCpEm4m6
http://gobyexample.com/
http://learnxinyminutes.com/docs/go/
https://github.com/sendwithus/workshop-go
http://www.gofragments.net/
http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html
http://golangtutorials.blogspot.com/2011/05/table-of-contents.html
https://github.com/gobridge
http://bridgefoundry.org/
https://golangbot.com/learn-golang-series/
http://yourbasic.org/
https://www.cybrhome.com/topic/go-language-tutorials
https://www.youtube.com/playlist?list=PLzUGFf4GhXBL4GHXVcMMvzgtO8-WEJIoY
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/go/go-install.md


In	 case	Go	 is	 not	 installed	 on	 your	 computer	 it	 is	 iease	 to	 install.	 Up	 to	 date
informtion	 about	 the	 install	 process	 for	 your	 acitecture	 is	 available	 from
https://golang.org/doc/install

We	list	now	some	brief	instalation	notes

We	 recommend	 that	 you	 use	 the	 tarball	 for	 Linux,	 and	MacOS,	 that	 you	 can
obtain	for	your	platform	here:

https://golang.org/dl/

Once	downloaded,	unpack	it	with

Packaged	 installers	 are	 also	 available	 for	 macOS,	 and	 Windows.	 They	 may
provide	you	with	the	familiar	platform	specific	instalation	methods.

14.3	EDITORS	SUPPORTING	GO	☁
A	large	number	of	editor	compatibilities	and	plugins	are	listed	at

https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins

We	recommend	that	you	identify	an	editor	form	that	list	that	will	work	for	you.
Due	 to	 the	 universality	 of	 emacs	 and	 its	 use	 for	managing	 LaTeX	 as	 ewll	 as
bibtex,	we	recommend	that	you	use	emacs,	Important	is	that	the	editor	supports
lin	breaks	at	the	80	character	limit	so	the	code	is	no=icely	formatted	for	github.
If	your	editor	does	not	support	this	feature	use	emacs.

If	your	version	of	emacs	does	not	yet	have	support	for	go,	yo	ucan	find	the	go
mode	at

https://www.emacswiki.org/emacs/GoMode	[?]

The	documentation	to	it	is	provided	at

http://dominik.honnef.co/posts/2013/03/writing_go_in_emacs/	[?]

$	sudo	tar	-C	/usr/local	-xzf	go$VERSION.$OS-$ARCH.tar.gz

https://golang.org/doc/install
https://golang.org/dl/
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/go/go-editor.md
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://www.emacswiki.org/emacs/GoMode
http://dominik.honnef.co/posts/2013/03/writing_go_in_emacs/


Other	editors	may	include

GoLand	[?]	which	however	in	contrast	to	PyCharm	COmmunity	edition	is
not	 free.	 However	 as	 student	 and	 faculty	 one	 can	 get	 a	 free	 license	 via
https://www.jetbrains.com/student/
Atom	[?]
vim	[?]

	Please	help	us	complete	this	section	while	letting	us	know	how	each	editor
supports	80	chracter	line	wrap	mode.

14.4	GO	LANGUAGE	☁
Go	is	a	computer	language	developed	by	Google	with	the	goal	to	“build	simple,
reliable,	and	efficient	software”.	The	language	is	open	source	and	the	main	Web
page	is	https://golang.org/

Go	 is	 specifically	 a	 systems-level	 programming	 language	 for	 large,	 distributed
systems	and	highly-scalable	network	servers.	It	is	meant	to	replace	C++	and	Java
in	terms	of	Google’s	needs.	Go	was	meant	to	alleviate	some	of	the	slowness	and
clumsiness	of	development	of	very	large	software	systems.

slow	compilation	and	slow	execution
programmers	that	collaborate	using	different	subsets	of	languages
readability	and	documentation
language	consistency
versioning	issues
multi-language	builds
dependencies	being	hard	to	maintain

The	 following	 program	 from	 the	 https://golang.org/	 web	 page	 shows	 the
customary	Hello	World	example:
package	main

import	"fmt"

func	main()	{

			/*	This	is	a	very	easy	program.	*/

				fmt.Println("Hello	World!")

}

https://www.jetbrains.com/go
https://www.jetbrains.com/student/
https://atom.io/packages/go-plus
https://github.com/fatih/vim-go
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/go/go-language.md
https://golang.org/
https://golang.org/


14.4.1	Concurrency	in	Go

Making	a	program	to	be	able	 to	run	multiple	 tasks	simultaneously	is	known	as
concurrency.	 Go	 language	 supports	 concurrency	 with	 GoRoutines,	 Channels,	 and	 select
statements.

14.4.1.1	GoRoutines	(execution)

A	GoRoutine	 in	 the	Go	 programming	 language	 is	 a	 lightweight	 thread	 that	 is
managed	by	Go	runtime.	If	you	just	put	‘go’	before	a	function,	it	means	that	it
will	execute	concurrently	with	the	rest	of	the	code.

To	create	a	goroutine	we	use	the	keyword	go	followed	by	a	function	invocation:

This	program	consists	of	two	goroutines.	The	first	goroutine	is	implicit	and	is	the	main
function	 itself.	 The	 second	 goroutine	 is	 created	when	we	 call	 go	f(0).	 Normally
when	 we	 invoke	 a	 function	 our	 program	 will	 execute	 all	 the	 statements	 in	 a
function	and	then	return	to	the	next	line	following	the	invocation.	With	a	goroutine
we	 return	 immediately	 to	 the	 next	 line	 and	 don’t	 wait	 for	 the	 function	 to
complete.

Goroutines	are	lightweight	and	we	can	easily	create	thousands	of	them.	We	can
modify	our	program	to	run	10	goroutines	by	doing	this:

14.4.1.2	Channels	(communication)

package	main

import	"fmt"

func	f(n	int)	{

		for	i	:=	0;	i	<	10;	i++	{

				fmt.Println(n,	":",	i)

		}

}

func	main()	{

		go	f(0)

		var	input	string

		fmt.Scanln(&input)

}

func	main()	{

		for	i	:=	0;	i	<	10;	i++	{

				go	f(i)

		}

		var	input	string

		fmt.Scanln(&input)

}



Channels	 are	 pipes	 that	 connect	 concurrent	GoRoutines.	You	 are	 able	 to	 send
values	and	signals	over	Channels	from	GoRoutine	to	GoRoutine.	This	allows	for
synchronizing	execution.

Here	is	an	example	program	using	channels:

This	program	will	 print	 “ping”	 forever	 (hit	 enter	 to	 stop	 it).	A	channel	 type	 is
represented	 with	 the	 keyword	 chan	 followed	 by	 the	 type	 of	 the	 things	 that	 are
passed	on	 the	channel	 (in	 this	 case	we	are	passing	 strings).	The	 <-	 (left	 arrow)
operator	 is	 used	 to	 send	 and	 receive	messages	 on	 the	 channel.	 c	<-	"ping"	 means
send	“ping”.	msg	:=	<-	c	means	receive	a	message	and	store	it	in	msg.

14.4.1.3	Select	(coordination)

The	 Select	 statement	 in	Go	 lets	 you	wait	 and	watch	multiple	 operations	 on	 a
channel.	Combining	GoRoutines	and	channels	will	 show	off	 the	 true	power	of
concurrency	in	Go.

Take	the	following	code	as	an	example:

package	main

import	(

		"fmt"

		"time"

)

func	pinger(c	chan	string)	{

		for	i	:=	0;	;	i++	{

				c	<-	"ping"

		}

}

func	printer(c	chan	string)	{

		for	{

				msg	:=	<-	c

				fmt.Println(msg)

				time.Sleep(time.Second	*	1)

		}

}

func	main()	{

		var	c	chan	string	=	make(chan	string)

		go	pinger(c)

		go	printer(c)

		var	input	string

		fmt.Scanln(&input)

}

func	main()	{

		c1	:=	make(chan	string)

		c2	:=	make(chan	string)

		go	func()	{



select	picks	the	first	channel	that	is	ready	and	receives	from	it	(or	sends	to	it).	If
more	 than	 one	 of	 the	 channels	 are	 ready	 then	 it	 randomly	 picks	which	 one	 to
receive	 from.	 If	none	of	 the	channels	are	 ready,	 the	statement	blocks	until	one
becomes	available.

14.5	LIBRARIES	☁
Golang	comes	with	a	 list	of	standard	libraries	 in	 the	following	table,	and	more
libraries	can	be	found	on	this	page:	https://golang.org/pkg/

Name Synopsis
archive

tar Package	tar	implements	access	to	tar
archives.

zip Package	zip	provides	support	for
reading	and	writing	ZIP	archives.

bufio

Package	bufio	implements	buffered	I/O.
It	wraps	an	io.Reader	or	io.Writer
object,	creating	another	object	(Reader
or	Writer)	that	also	implements	the
interface	but	provides	buffering	and
some	help	for	textual	I/O.

				for	{

						c1	<-	"from	1"

						time.Sleep(time.Second	*	2)

				}

		}()

		go	func()	{

				for	{

						c2	<-	"from	2"

						time.Sleep(time.Second	*	3)

				}

		}()

		go	func()	{

				for	{

						select	{

						case	msg1	:=	<-	c1:

								fmt.Println(msg1)

						case	msg2	:=	<-	c2:

								fmt.Println(msg2)

						}

				}

		}()

		var	input	string

		fmt.Scanln(&input)

}

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/go/go-libraries.md
https://golang.org/pkg/


builtin Package	builtin	provides	documentation
for	Go’s	predeclared	identifiers.

bytes Package	bytes	implements	functions	for
the	manipulation	of	byte	slices.

compress

bzip2 Package	bzip2	implements	bzip2
decompression.

flate
Package	flate	implements	the
DEFLATE	compressed	data	format,
described	in	RFC	1951.

gzip
Package	gzip	implements	reading	and
writing	of	gzip	format	compressed	files,
as	specified	in	RFC	1952.

lzw

Package	lzw	implements	the	Lempel-
Ziv-Welch	compressed	data	format,
described	in	T.	A.	Welch,	``A
Technique	for	High-Performance	Data
Compression’’,	Computer,	17(6)	(June
1984),	pp	8-19.

zlib
Package	zlib	implements	reading	and
writing	of	zlib	format	compressed	data,
as	specified	in	RFC	1950.

container

heap
Package	heap	provides	heap	operations
for	any	type	that	implements
heap.Interface.

list Package	list	implements	a	doubly
linked	list.

ring Package	ring	implements	operations	on
circular	lists.

context

Package	context	defines	the	Context
type,	which	carries	deadlines,
cancelation	signals,	and	other	request-
scoped	values	across	API	boundaries
and	between	processes.



crypto Package	crypto	collects	common
cryptographic	constants.

aes

Package	aes	implements	AES
encryption	(formerly	Rijndael),	as
defined	in	U.S.	Federal	Information
Processing	Standards	Publication	197.

cipher

Package	cipher	implements	standard
block	cipher	modes	that	can	be
wrapped	around	low-level	block	cipher
implementations.

des

Package	des	implements	the	Data
Encryption	Standard	(DES)	and	the
Triple	Data	Encryption	Algorithm
(TDEA)	as	defined	in	U.S.	Federal
Information	Processing	Standards
Publication	46-3.

dsa
Package	dsa	implements	the	Digital
Signature	Algorithm,	as	defined	in
FIPS	186-3.

ecdsa
Package	ecdsa	implements	the	Elliptic
Curve	Digital	Signature	Algorithm,	as
defined	in	FIPS	186-3.

elliptic
Package	elliptic	implements	several
standard	elliptic	curves	over	prime
fields.

hmac

Package	hmac	implements	the	Keyed-
Hash	Message	Authentication	Code
(HMAC)	as	defined	in	U.S.	Federal
Information	Processing	Standards
Publication	198.

md5 Package	md5	implements	the	MD5
hash	algorithm	as	defined	in	RFC	1321.

rand
Package	rand	implements	a
cryptographically	secure	random
number	generator.



rc4
Package	rc4	implements	RC4
encryption,	as	defined	in	Bruce
Schneier’s	Applied	Cryptography.

rsa Package	rsa	implements	RSA
encryption	as	specified	in	PKCS#1.

sha1 Package	sha1	implements	the	SHA-1
hash	algorithm	as	defined	in	RFC	3174.

sha256
Package	sha256	implements	the
SHA224	and	SHA256	hash	algorithms
as	defined	in	FIPS	180-4.

sha512

Package	sha512	implements	the	SHA-
384,	SHA-512,	SHA-512/224,	and
SHA-512/256	hash	algorithms	as
defined	in	FIPS	180-4.

subtle

Package	subtle	implements	functions
that	are	often	useful	in	cryptographic
code	but	require	careful	thought	to	use
correctly.

tls
Package	tls	partially	implements	TLS
1.2,	as	specified	in	RFC	5246.

x509 Package	x509	parses	X.509-encoded
keys	and	certificates.

pkix

Package	pkix	contains	shared,	low	level
structures	used	for	ASN.1	parsing	and
serialization	of	X.509	certificates,	CRL
and	OCSP.

database

sql Package	sql	provides	a	generic	interface
around	SQL	(or	SQL-like)	databases.

driver
Package	driver	defines	interfaces	to	be
implemented	by	database	drivers	as
used	by	package	sql.

debug
Package	dwarf	provides	access	to



dwarf
DWARF	debugging	information	loaded
from	executable	files,	as	defined	in	the
DWARF	2.0	Standard	at
http://dwarfstd.org/doc/dwarf-2.0.0.pdf

elf Package	elf	implements	access	to	ELF
object	files.

gosym

Package	gosym	implements	access	to
the	Go	symbol	and	line	number	tables
embedded	in	Go	binaries	generated	by
the	gc	compilers.

macho Package	macho	implements	access	to
Mach-O	object	files.

pe
Package	pe	implements	access	to	PE
(Microsoft	Windows	Portable
Executable)	files.

plan9obj Package	plan9obj	implements	access	to
Plan	9	a.out	object	files.

encoding

Package	encoding	defines	interfaces
shared	by	other	packages	that	convert
data	to	and	from	byte-level	and	textual
representations.

ascii85

Package	ascii85	implements	the	ascii85
data	encoding	as	used	in	the	btoa	tool
and	Adobe’s	PostScript	and	PDF
document	formats.

asn1
Package	asn1	implements	parsing	of
DER-encoded	ASN.1	data	structures,	as
defined	in	ITU-T	Rec	X.690.

base32 Package	base32	implements	base32
encoding	as	specified	by	RFC	4648.

base64 Package	base64	implements	base64
encoding	as	specified	by	RFC	4648.

binary

Package	binary	implements	simple
translation	between	numbers	and	byte
sequences	and	encoding	and	decoding



of	varints.

csv Package	csv	reads	and	writes	comma-
separated	values	(CSV)	files.

gob

Package	gob	manages	streams	of	gobs	-
binary	values	exchanged	between	an
Encoder	(transmitter)	and	a	Decoder
(receiver).

hex Package	hex	implements	hexadecimal
encoding	and	decoding.

json
Package	json	implements	encoding	and
decoding	of	JSON	as	defined	in	RFC
7159.

pem
Package	pem	implements	the	PEM	data
encoding,	which	originated	in	Privacy
Enhanced	Mail.

xml
Package	xml	implements	a	simple
XML	1.0	parser	that	understands	XML
name	spaces.

errors
Package	errors	implements	functions	to
manipulate	errors.

expvar
Package	expvar	provides	a	standardized
interface	to	public	variables,	such	as
operation	counters	in	servers.

flag Package	flag	implements	command-line
flag	parsing.

fmt
Package	fmt	implements	formatted	I/O
with	functions	analogous	to	C’s	printf
and	scanf.

go

ast Package	ast	declares	the	types	used	to
represent	syntax	trees	for	Go	packages.

build Package	build	gathers	information
about	Go	packages.



constant Package	constant	implements	Values
representing	untyped	Go	constants	and
their	corresponding	operations.

doc Package	doc	extracts	source	code
documentation	from	a	Go	AST.

format Package	format	implements	standard
formatting	of	Go	source.

importer Package	importer	provides	access	to
export	data	importers.

parser Package	parser	implements	a	parser	for
Go	source	files.

printer Package	printer	implements	printing	of
AST	nodes.

scanner Package	scanner	implements	a	scanner
for	Go	source	text.

token

Package	token	defines	constants
representing	the	lexical	tokens	of	the
Go	programming	language	and	basic
operations	on	tokens	(printing,
predicates).

types
Package	types	declares	the	data	types
and	implements	the	algorithms	for	type-
checking	of	Go	packages.

hash Package	hash	provides	interfaces	for
hash	functions.

adler32 Package	adler32	implements	the	Adler-
32	checksum.

crc32
Package	crc32	implements	the	32-bit
cyclic	redundancy	check,	or	CRC-32,
checksum.

crc64
Package	crc64	implements	the	64-bit
cyclic	redundancy	check,	or	CRC-64,
checksum.
Package	fnv	implements	FNV-1	and



fnv FNV-1a,	non-cryptographic	hash
functions	created	by	Glenn	Fowler,
Landon	Curt	Noll,	and	Phong	Vo.

html Package	html	provides	functions	for
escaping	and	unescaping	HTML	text.

template

Package	template	(html/template)
implements	data-driven	templates	for
generating	HTML	output	safe	against
code	injection.

image Package	image	implements	a	basic	2-D
image	library.

color Package	color	implements	a	basic	color
library.

palette Package	palette	provides	standard	color
palettes.

draw Package	draw	provides	image
composition	functions.

gif Package	gif	implements	a	GIF	image
decoder	and	encoder.

jpeg
Package	jpeg	implements	a	JPEG
image	decoder	and	encoder.

png Package	png	implements	a	PNG	image
decoder	and	encoder.

index

suffixarray
Package	suffixarray	implements
substring	search	in	logarithmic	time
using	an	in-memory	suffix	array.

io Package	io	provides	basic	interfaces	to
I/O	primitives.

ioutil Package	ioutil	implements	some	I/O
utility	functions.

log Package	log	implements	a	simple
logging	package.



syslog Package	syslog	provides	a	simple
interface	to	the	system	log	service.

math Package	math	provides	basic	constants
and	mathematical	functions.

big Package	big	implements	arbitrary-
precision	arithmetic	(big	numbers).

bits
Package	bits	implements	bit	counting
and	manipulation	functions	for	the
predeclared	unsigned	integer	types.

cmplx
Package	cmplx	provides	basic	constants
and	mathematical	functions	for
complex	numbers.

rand Package	rand	implements	pseudo-
random	number	generators.

mime Package	mime	implements	parts	of	the
MIME	spec.

multipart
Package	multipart	implements	MIME
multipart	parsing,	as	defined	in	RFC
2046.

quotedprintable
Package	quotedprintable	implements
quoted-printable	encoding	as	specified
by	RFC	2045.

net

Package	net	provides	a	portable
interface	for	network	I/O,	including
TCP/IP,	UDP,	domain	name	resolution,
and	Unix	domain	sockets.

http Package	http	provides	HTTP	client	and
server	implementations.

cgi
Package	cgi	implements	CGI	(Common
Gateway	Interface)	as	specified	in	RFC
3875.

cookiejar
Package	cookiejar	implements	an	in-
memory	RFC	6265-compliant
http.CookieJar.



fcgi Package	fcgi	implements	the	FastCGI
protocol.

httptest Package	httptest	provides	utilities	for
HTTP	testing.

httptrace
Package	httptrace	provides	mechanisms
to	trace	the	events	within	HTTP	client
requests.

httputil
Package	httputil	provides	HTTP	utility
functions,	complementing	the	more
common	ones	in	the	net/http	package.

pprof

Package	pprof	serves	via	its	HTTP
server	runtime	profiling	data	in	the
format	expected	by	the	pprof
visualization	tool.

mail Package	mail	implements	parsing	of
mail	messages.

rpc
Package	rpc	provides	access	to	the
exported	methods	of	an	object	across	a
network	or	other	I/O	connection.

jsonrpc
Package	jsonrpc	implements	a	JSON-
RPC	1.0	ClientCodec	and	ServerCodec
for	the	rpc	package.

smtp
Package	smtp	implements	the	Simple
Mail	Transfer	Protocol	as	defined	in
RFC	5321.

textproto

Package	textproto	implements	generic
support	for	text-based	request/response
protocols	in	the	style	of	HTTP,	NNTP,
and	SMTP.

url Package	url	parses	URLs	and
implements	query	escaping.

os
Package	os	provides	a	platform-
independent	interface	to	operating
system	functionality.

exec Package	exec	runs	external	commands.



signal Package	signal	implements	access	to
incoming	signals.

user Package	user	allows	user	account
lookups	by	name	or	id.

path
Package	path	implements	utility
routines	for	manipulating	slash-
separated	paths.

filepath

Package	filepath	implements	utility
routines	for	manipulating	filename
paths	in	a	way	compatible	with	the
target	operating	system-defined	file
paths.

plugin Package	plugin	implements	loading	and
symbol	resolution	of	Go	plugins.

reflect
Package	reflect	implements	run-time
reflection,	allowing	a	program	to
manipulate	objects	with	arbitrary	types.

regexp Package	regexp	implements	regular
expression	search.

syntax
Package	syntax	parses	regular
expressions	into	parse	trees	and
compiles	parse	trees	into	programs.

runtime
Package	runtime	contains	operations
that	interact	with	Go’s	runtime	system,
such	as	functions	to	control	goroutines.

cgo Package	cgo	contains	runtime	support
for	code	generated	by	the	cgo	tool.

debug
Package	debug	contains	facilities	for
programs	to	debug	themselves	while
they	are	running.

msan

pprof
Package	pprof	writes	runtime	profiling
data	in	the	format	expected	by	the	pprof
visualization	tool.



race Package	race	implements	data	race
detection	logic.

trace
Package	trace	contains	facilities	for
programs	to	generate	traces	for	the	Go
execution	tracer.

sort
Package	sort	provides	primitives	for
sorting	slices	and	user-defined
collections.

strconv
Package	strconv	implements
conversions	to	and	from	string
representations	of	basic	data	types.

strings
Package	strings	implements	simple
functions	to	manipulate	UTF-8	encoded
strings.

sync
Package	sync	provides	basic
synchronization	primitives	such	as
mutual	exclusion	locks.

atomic

Package	atomic	provides	low-level
atomic	memory	primitives	useful	for
implementing	synchronization
algorithms.

syscall
Package	syscall	contains	an	interface	to
the	low-level	operating	system
primitives.

js
Package	js	gives	access	to	the
WebAssembly	host	environment	when
using	the	js/wasm	architecture.

testing Package	testing	provides	support	for
automated	testing	of	Go	packages.

iotest Package	iotest	implements	Readers	and
Writers	useful	mainly	for	testing.

quick Package	quick	implements	utility
functions	to	help	with	black	box	testing.

text



scanner Package	scanner	provides	a	scanner	and
tokenizer	for	UTF-8-encoded	text.

tabwriter

Package	tabwriter	implements	a	write
filter	(tabwriter.Writer)	that	translates
tabbed	columns	in	input	into	properly
aligned	text.

template
Package	template	implements	data-
driven	templates	for	generating	textual
output.

parse
Package	parse	builds	parse	trees	for
templates	as	defined	by	text/template
and	html/template.

time Package	time	provides	functionality	for
measuring	and	displaying	time.

unicode
Package	unicode	provides	data	and
functions	to	test	some	properties	of
Unicode	code	points.

utf16 Package	utf16	implements	encoding
and	decoding	of	UTF-16	sequences.

utf8
Package	utf8	implements	functions	and
constants	to	support	text	encoded	in
UTF-8.

unsafe
Package	unsafe	contains	operations	that
step	around	the	type	safety	of	Go
programs.

14.6	GO	CMD	☁

14.6.1	CMD

In	pthon	we	have	 the	CMD5	package	 that	allows	us	 to	create	command	shells
with	plugins.	In	Go	we	find	a	community	developed	package	called	 gosh	 (or	Go
shell).	 It	 uses	 the	 Go	 plugin	 system	 to	 create	 interactive	 console-based	 shell

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/go/go-cmd.md


programs.	A	shell	created	with	 gosh	contains	a	collection	of	Go	plugins,	each	of
which	which	implement	one	or	more	commands.	Upon	start	gosh	 starts,	 searches
the	directory	./plugins	and	loads	them	so	they	become	available	within	gosh.

https://github.com/vladimirvivien/gosh

14.6.2	DocOpts

When	 we	 want	 to	 design	 commandline	 arguments	 for	 go	 programs	 we	 have
many	 options.	 However,	 as	 our	 approach	 is	 to	 create	 documentation	 first,
docopts	provides	also	a	good	apprach	for	Go.	The	code	for	it	is	located	at

https://github.com/docopt/docopt.go

It	can	be	installed	with

A	sample	programs	are	located	at

https://github.com/docopt/docopt.go/blob/master/examples/options/

A	sample	program	of	using	doc	opts	for	our	purposes	loks	as	follows.

$	go	get	github.com/docopt/docopt-go

package	main

import	(

				"fmt"

				"github.com/docopt/docopt-go"

)

func	main()	{

						usage	:=	`cm-go.

Usage:

		cm-go	vm	start	NAME	[--cloud=CLOUD]

		cm-go	vm	stop	NAME	[--cloud=CLOUD]

		cm-go	set	--cloud=CLOUD

		cm-go	-h	|	--help

		cm-go	--version

Options:

		-h	--help					Show	this	screen.

		--version					Show	version.

		--cloud=CLOUD		The	name	of	the	cloud.

		--moored						Moored	(anchored)	mine.

		--drifting				Drifting	mine.

ARGUMENTS:

		NAME					The	name	of	the	VM`

						arguments,	_	:=	docopt.ParseDoc(usage)

						fmt.Println(arguments)

}

https://github.com/vladimirvivien/gosh
https://github.com/docopt/docopt.go
https://github.com/docopt/docopt.go/blob/master/examples/options/


14.7	GO	REST	☁
Go	is	a	new	powerful	language	and	there	are	many	frameworks	from	lightweight
to	full	featured	that	support	building	RESTful	APIs.

1.	 Revel	A	high-productivity	web	framework	for	the	Go	language.

2.	 Gin	The	fastest	full-featured	web	framework	for	Golang.	Crystal	clear.

3.	 Martini	Classy	web	framework	for	Go

4.	 Web.go	The	easiest	way	to	create	web	applications	with	Go

List	here	the	rest	services	tutorials	for	frameworks

https://nordicapis.com/7-frameworks-to-build-a-rest-api-in-go/
with	 mongo	 https://hackernoon.com/build-restful-api-in-go-and-mongodb-
5e7f2ec4be94
https://tutorialedge.net/golang/consuming-restful-api-with-go/
https://thenewstack.io/make-a-restful-json-api-go/
Making	a	RESTful	JSON	API	in	Go

14.7.1	Gorilla

https://www.codementor.io/codehakase/building-a-restful-api-with-golang-
a6yivzqdo

Gorilla	 is	 a	 web	 toolkit	 for	 the	 Go	 programming	 language.	 Currently	 these
packages	are	available:

gorilla/context	stores	global	request	variables.
gorilla/mux	is	a	powerful	URL	router	and	dispatcher.
gorilla/reverse	 produces	 reversible	 regular	 expressions	 for	 regexp-based
muxes.
gorilla/rpc	implements	RPC	over	HTTP	with	codec	for	JSON-RPC.
gorilla/schema	converts	form	values	to	a	struct.
gorilla/securecookie	 encodes	 and	 decodes	 authenticated	 and	 optionally
encrypted	cookie	values.

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/go/go-rest.md
https://github.com/revel/revel
https://gin-gonic.github.io/gin/
https://github.com/olebedev/martini
https://github.com/hoisie/web
https://nordicapis.com/7-frameworks-to-build-a-rest-api-in-go/
https://hackernoon.com/build-restful-api-in-go-and-mongodb-5e7f2ec4be94
https://tutorialedge.net/golang/consuming-restful-api-with-go/
https://thenewstack.io/make-a-restful-json-api-go/
https://thenewstack.io/make-a-restful-json-api-go/
https://www.codementor.io/codehakase/building-a-restful-api-with-golang-a6yivzqdo


gorilla/sessions	 saves	 cookie	 and	 filesystem	 sessions	 and	 allows	 custom
session	backends.
gorilla/websocket	 implements	 the	 WebSocket	 protocol	 defined	 in	 RFC
6455.

14.7.2	REST,	RESTful

REST	is	an	acronym	for	Representational	State	Transfer.	 It	 is	a	web	standards
architecture	 and	 HTTP	 Protocol.	 The	 REST	 protocol,	 decribes	 six	 (6)
constraints:

1.	 Uniform	Interface
2.	 Cacheable
3.	 Client-Server
4.	 Stateless
5.	 Code	on	Demand
6.	 Layered	System

14.7.3	Router

Package	 gorilla/mux	 implements	 a	 request	 router	 and	 dispatcher	 for	matching
incoming	requests	to	their	respective	handler.

The	 name	 mux	 stands	 for	 “HTTP	 request	 multiplexer”.	 Like	 the	 standard
http.ServeMux,	 mux.Router	 matches	 incoming	 requests	 against	 a	 list	 of
registered	routes	and	calls	a	handler	for	the	route	that	matches	the	URL	or	other
conditions.	The	main	features	are:

We’ll	 need	 to	 use	 a	mux	 to	 route	 requests,	 so	we	 need	 a	Go	package	 for	 that
(mux	stands	for	HTTP	request	multiplexer	which	matches	an	incoming	request
to	against	a	list	of	routes	(registered)).	In	the	rest-api	directory,	let’s	require	the
dependency	 (package	 rather).	 More	 examples	 are	 here:
https://github.com/gorilla/mux#examples
rest-api$	go	get	github.com/gorilla/mux

package	main

import	(

				"encoding/json"

				"log"

				"net/http"



Packages	are	explained	here:	*	fmt	is	what	we	will	be	using	to	print	to	STDOUT
(the	 console)	*	 log	 is	used	 to	 log	when	 the	 server	 exits	 *	 encoding/json	 is	 for
creating	our	JSON	responses	*	net/http	will	give	us	the	representations	of	HTTP
requests,	 responses,	 and	 be	 responsible	 for	 running	 our	 server	 *
github.com/gorilla/mux	will	be	our	router	that	will	take	requests	and	decide	what
should	be	done	with	them

14.7.4	Full	code

				"github.com/gorilla/mux"

)

//	our	main	function

func	main()	{

				router	:=	mux.NewRouter()

				router.HandleFunc("/people",	GetPeople).Methods("GET")

				router.HandleFunc("/people/{id}",	GetPerson).Methods("GET")

				router.HandleFunc("/people/{id}",	CreatePerson).Methods("POST")

				router.HandleFunc("/people/{id}",	DeletePerson).Methods("DELETE")

				log.Fatal(http.ListenAndServe(":8000",	router))

}

package	main

import	(

				"encoding/json"

				"github.com/gorilla/mux"

				"log"

				"net/http"

)

//	The	person	Type	(more	like	an	object)

type	Person	struct	{

				ID								string			`json:"id,omitempty"`

				Firstname	string			`json:"firstname,omitempty"`

				Lastname		string			`json:"lastname,omitempty"`

				Address			*Address	`json:"address,omitempty"`

}

type	Address	struct	{

				City		string	`json:"city,omitempty"`

				State	string	`json:"state,omitempty"`

}

var	people	[]Person

//	Display	all	from	the	people	var

func	GetPeople(w	http.ResponseWriter,	r	*http.Request)	{

				json.NewEncoder(w).Encode(people)

}

//	Display	a	single	data

func	GetPerson(w	http.ResponseWriter,	r	*http.Request)	{

				params	:=	mux.Vars(r)

				for	_,	item	:=	range	people	{

								if	item.ID	==	params["id"]	{

												json.NewEncoder(w).Encode(item)

												return

								}

				}

				json.NewEncoder(w).Encode(&Person{})

}

//	create	a	new	item

func	CreatePerson(w	http.ResponseWriter,	r	*http.Request)	{

				params	:=	mux.Vars(r)

				var	person	Person

				_	=	json.NewDecoder(r.Body).Decode(&person)

				person.ID	=	params["id"]



14.8	OPEN	API	☁
We	have	a	large	section	previously	on	openapi,	what	needs	to	be	done	here	is	to
showcase	 how	 to	 generate	 go	 from	 swagger	 codegen	 or	 other	 tool	 and	 use	 it.
Please	see	Section	6.6

In	this	section,	we	introduce	the	go-swagger,	which	is	an	open	source	implementation
for	 Swagger	 2.0	 (aka	 OpenAPI	 2.0).	 Please	 follow	 this	 link	 for	more	 details:
https://goswagger.io/.

14.8.1	Install	from	Homebrew

The	binary	release	version	can	be	installed	via	Homebrew	on	macOS.

14.8.2	serve	specification	UI

Most	basic	use-case:	serve	a	UI	for	your	spec:

14.8.3	validate	a	specification

				people	=	append(people,	person)

				json.NewEncoder(w).Encode(people)

}

//	Delete	an	item

func	DeletePerson(w	http.ResponseWriter,	r	*http.Request)	{

				params	:=	mux.Vars(r)

				for	index,	item	:=	range	people	{

								if	item.ID	==	params["id"]	{

												people	=	append(people[:index],	people[index+1:]...)

												break

								}

								json.NewEncoder(w).Encode(people)

				}

}

//	main	function	to	boot	up	everything

func	main()	{

				router	:=	mux.NewRouter()

				people	=	append(people,	Person{ID:	"1",	Firstname:	"John",	Lastname:	"Doe",	Address:	&Address{City:	"City	X",	State:	

				people	=	append(people,	Person{ID:	"2",	Firstname:	"Koko",	Lastname:	"Doe",	Address:	&Address{City:	"City	Z",	State:	

				router.HandleFunc("/people",	GetPeople).Methods("GET")

				router.HandleFunc("/people/{id}",	GetPerson).Methods("GET")

				router.HandleFunc("/people/{id}",	CreatePerson).Methods("POST")

				router.HandleFunc("/people/{id}",	DeletePerson).Methods("DELETE")

				log.Fatal(http.ListenAndServe(":8000",	router))

}

brew	tap	go-swagger/go-swagger

brew	install	go-swagger

swagger	serve	https://raw.githubusercontent.com/swagger-api/swagger-spec/master/examples/v2.0/json/petstore-expanded.json

https://github.com/cloudmesh-community/book/blob/master/chapters/prg/go/go-openapi.md


This	command	should	produce	this	content:

14.8.4	Generate	a	Go	OpenAPI	server

14.8.5	generate	a	Go	OpenAPI	client

14.8.6	generate	a	spec	from	the	source

14.8.7	generate	a	data	model

14.8.8	other	editors

KaiZen-OpenAPI-Editor-	Full-featured	Eclipse	editor	for	OpenAPI	2.0	and
3.0,	also	available	on	Eclipse	Marketplace.
Atom/linter-swagger	 -	 This	 plugin	 for	Atom	Linter	will	 lint	 Swagger	 2.0
specifications	 or	 OpenAPI	 3.0,	 both	 JSON	 and	 YAML	 using	 swagger-
parser	node	package.
Swagger	 Editor	 -	 Design,	 describe,	 and	 document	 your	 API	 on	 the	 first
open	source	editor	fully	dedicated	to	OpenAPI-based	APIs.
RepreZen	API	Studio	 -	RepreZen	API	Studio	 is	 an	 integrated	workbench
that	 brings	 API-first	 design	 into	 focus	 for	 your	 whole	 team,	 harmonizes
your	API	designs,	and	generates	APIs	that	click	into	client	apps.
Apicurio	Studio	A	standalone	API	design	studio	that	can	be	used	to	create
new	or	edit	existing	API	designs.
SwaggerHub	 -	 API	 design	 and	 documentation	 platform	 to	 improve
collaboration,	 standardize	development	workflow	and	 centralize	 their	API
discovery	and	consumption.

swagger	validate	https://raw.githubusercontent.com/swagger-api/swagger-spec/master/examples/v2.0/json/petstore-expanded.json

The	swagger	spec	at	"https://raw.githubusercontent.com/swagger-api/swagger-spec/master/examples/v2.0/json/petstore-expanded.json"

swagger	generate	server	[-f	./swagger.json]	-A	[application-name	[--principal	[principal-name]]

swagger	generate	client	[-f	./swagger.json]	-A	[application-name	[--principal	[principal-name]]

swagger	generate	spec	-o	./swagger.json

swagger	generate	model	--spec={spec}

https://github.com/RepreZen/KaiZen-OpenAPI-Editor
https://atom.io/packages/linter-swagger
https://github.com/swagger-api/swagger-editor
https://www.reprezen.com/
http://www.apicur.io/
https://swagger.io/tools/swaggerhub/


Senya	 Editor	 -	 Design	 API	 specifications	 fast	 and	 effectively	 in	 your
favorite	JetBrains	IDE.

14.9	CREATE	AN	ECHO	SERVICE	USING	SWAGGER	AND	GO

In	 this	 tutorial,	 we	 will	 create	 a	 micro	 service	 using	 Swagger	 and	 Go.	 This
service	does	nothing	but	echos	the	message	sent	from	users.

14.9.1	Dependencies

Some	dependencies	are	required	to	install	before	proceeding.

github.com/go-swagger/go-swagger/cmd/swagger
github.com/go-openapi/runtime
github.com/docker/go-units
github.com/go-openapi/loads
github.com/go-openapi/validate

These	dependencies	can	be	installed	via	command	lines:

14.9.2	Initialize	a	Golang	project

Create	a	new	folder	named	hello-swagger	under	~/go/src,	and	a	folder	named	swagger	under
hello-swagger.	 Create	 main.go	 under	 hello-swagger	 and	 swagger.yml	 under	 swagger	 folder.	 The
structure	of	the	project	should	look	like	this:

14.9.3	Define	APIs	and	generate	code	in	Go

Here	is	the	code	of	swagger.yml:

go	get	-u	-v	github.com/go-swagger/go-swagger/cmd/swagger

go	get	-u	-v	github.com/go-openapi/runtime

go	get	-u	-v	github.com/docker/go-units

go	get	-u	-v	github.com/go-openapi/loads

go	get	-u	-v	github.com/go-openapi/validate

hello-swagger/

		swagger/

				swaggger.yml

		main.go

swagger:	"2.0"

info:

		title:	"Echo"

https://senya.io/


To	generate	Go	code	run	this	command:

The	command	will	generate	Go	code	and	put	them	under	the	swagger	folder.	Once
there	is	a	new	folder	named	restapi,	this	step	is	successful.

14.9.4	Implement	the	functionality

Now	we	can	create	our	restapi	server	and	implement	the	request	handler	in	Go.

Modify	the	main.go	so	the	the	content	looks	like	this:

		version:	"0.0.1"

paths:

		/echo:

				get:

						operationId:	echo

						produces:

								-	"application/json"

						parameters:

								-	name:	"msg"

										in:	"query"

										required:	true

										type:	"string"

						responses:

								200:

										description:	"echo	message"

										schema:

												type:	object

												properties:

														msg:

																type:	string

~/go/bin/swagger	generate	server	--target	./swagger	--spec	./swagger/swagger.yml	--exclude-main	--name=echo

package	main

import	(

				"github.com/go-openapi/loads"

				"github.com/go-openapi/runtime/middleware"

				"hello-swagger/swagger/restapi"

				"hello-swagger/swagger/restapi/operations"

				"log"

)

func	main()	{

				log.Println("Starting...")

				swaggerSpec,	err	:=	loads.Analyzed(restapi.SwaggerJSON,	"")

				if	err	!=	nil	{

								log.Fatalln(err)

				}

				api	:=	operations.NewEchoAPI(swaggerSpec)

				server	:=	restapi.NewServer(api)

				defer	server.Shutdown()

				server.Port	=	8080

				api.EchoHandler	=	operations.EchoHandlerFunc(

								func(params	operations.EchoParams)	middleware.Responder	{

												response	:=	params.Msg

												payload	:=	operations.EchoOKBody{Msg:	response}

												return	operations.NewEchoOK().WithPayload(&payload)

								})



14.9.5	Run	and	test	the	server

We	use	go	command	to	run,	which	compile	the	code	and	run	the	program.	Once
the	program	is	been	started,	some	logs	are	print	out	in	the	console	like:

Once	the	server	is	listening	at	8080,	we	can	run	curl	command	to	do	some	tests:

14.9.6	References

go-swagger	documentation
OpenAPI.Tools

14.10	GO	CLOUD	☁
14.10.1	Golang	Openstack	Client

https://github.com/openstack/golang-client

Authentication
Images
ObjectStore
This	file	reads	in	some	configurations	form	a	json	file,	however	we	want	to
develop	one	for	our	~/.cloudmesh/cloudmesh.yaml	file.	For	the	json	example	see:	json
setup

Volume

Portable	Cloud	Programming	with	Go	Cloud:

				if	err	:=	server.Serve();	err	!=	nil	{

								log.Fatalln(err)

				}

}

2019/02/04	17:06:24	Starting...

2019/02/04	17:06:24	Serving	echo	at	http://[::]:8080

curl	http://localhost:8080/echo\?msg\=Hello

#	{"msg":"Hello"}

curl	http://localhost:8080/echo\?msg\=World

#	{"msg":"World"}

https://goswagger.io/
http://openapi.tools
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/go/go-cloud.md
https://github.com/openstack/golang-client
https://github.com/openstack/golang-client/blob/master/examples/authentication/authentication.go
https://github.com/openstack/golang-client/blob/master/examples/image/image.go
https://github.com/openstack/golang-client/blob/master/examples/objectstorage/objectstorage.go
https://github.com/openstack/golang-client/blob/master/examples/setup/setup.go
https://github.com/openstack/golang-client/blob/master/examples/volume/volume.go


https://blog.golang.org/go-cloud

14.10.2	OpenStack	from	Go

There	 are	 multiple	 API	 interfaces	 that	 allow	 direct	 access	 to	 elementary
functionality	 to	 controll	 for	 example	 virtual	 machines	 in	 Go.	 This	 includes
GopgerCloud,	and	GolangClient.	We	describe	them	next.

14.10.2.1	GohperCloud

GopherCloud	is	located	at

https://github.com/gophercloud/gophercloud

14.10.2.1.1	Authentication

To	 interact	 with	 OpenStack,	 yo	 will	 need	 to	 first	 authenticate	 with	 your
OpenSatck	 cloud.	 You	 will	 need	 to	 know	 your	 username	 and	 password.
However	 the	example	 that	we	provide	here	 is	on	 intention	wrong	 to	 showcase
you	a	better	way.	The	example	 includes	a	hard	coded	username	and	password,
that	actually	is	supposed	to	be	either	read	in	via	an	interactive	process	or	from	a	
~/.cloudmesh/cloudmesh.yaml	file	as	we	have	used	in	our	python	cloudmesh	code.	We	will
use	the	same	format	and	obtain	the	information	from	that	file.	Your	task	will	be
to	write	 a	 yaml	 file	 reader	 in	 go,	 get	 the	 information	 and	modify	 the	program
accordingly	while	improving	this	section	with	a	pull	request.

The	example	copied	form	goher	cloud	looks	as	follows:

Natirally	you	can	also	obtain	the	values	from	environment	variables	as	pointed
out	by	gopher	cloud:

import	(

		"github.com/gophercloud/gophercloud"

		"github.com/gophercloud/gophercloud/openstack"

		"github.com/gophercloud/gophercloud/openstack/utils"

)

opts	:=	gophercloud.AuthOptions{

		IdentityEndpoint:	"https://openstack.example.com:5000/v2.0",

		Username:	"{username}",

		Password:	"{password}",

}

import	(

		"github.com/gophercloud/gophercloud"

https://blog.golang.org/go-cloud
https://github.com/gophercloud/gophercloud


We	will	at	this	time	not	use	the	second	approach.

To	start	a	virtual	machine	you	need	to	first	identify	the	location	of	the	client	for
the	region	you	will	use.	This	can	be	achieved	wit	the	command:

14.10.2.1.2	Virtual	machines

Now	 that	 we	 know	we	 can	 authenticate	 to	 the	 cloud,	 we	 can	 create	 our	 first
virtual	machine,	where	flavor_id	and	image_id	are	the	approriate	flavors	and	image	ids:

Additional	 information	 can	be	 found	 in	 the	 source	 code	of	GoherClient	which
you	 can	 easily	 inspect.	 Some	 useful	 documentation	 is	 also	 provided	 in
https://github.com/gophercloud/gophercloud/blob/master/doc.go

14.10.2.1.3	Resources

Code	 examples	 are	 provided	 from
https://github.com/gophercloud/gophercloud/blob/master/doc.go

As	Openstack	is	providing	REST	interfaces,	gopher	cloud	leverages	this	model.
Hence,	 it	 provides	 interfaces	 to	manage	 REST	 resources.	 These	 resources	 are
bound	 to	structs	 so	 they	can	easily	be	manipulated	and	 interfaced	with.	To	 for
example	get	the	client	with	a	specific	{serverId}	and	extract	its	information	we	can
use	the	following	API	call:

If	we	 need	 just	 a	 subset	 of	 the	 information,	we	 can	 get	 an	 intermediate	 result
with	just	the	get	method.	Than	we	can	obtain	specific	information	from	the	result

		"github.com/gophercloud/gophercloud/openstack"

		"github.com/gophercloud/gophercloud/openstack/utils"

)

opts,	err	:=	openstack.AuthOptionsFromEnv()

provider,	err	:=	openstack.AuthenticatedClient(opts)

client,	err	:=	openstack.NewComputeV2(provider,	gophercloud.EndpointOpts{

		Region:	os.Getenv("OS_REGION_NAME"),

})

import	"github.com/gophercloud/gophercloud/openstack/compute/v2/servers"

server,	err	:=	servers.Create(client,	servers.CreateOpts{

		Name:						"gregor-001",

		FlavorRef:	"flavor_id",

		ImageRef:		"image_id",

}).Extract()

server,	err	:=	servers.Get(client,	"{serverId}").Extract()

https://github.com/gophercloud/gophercloud/blob/master/doc.go
https://github.com/gophercloud/gophercloud/blob/master/doc.go


as	needed.

The	 previous	 example	 is	 based	 on	 a	 single	 resource.	However,	 if	we	 interacts
with	a	list	of	resources	we	need	to	use	the	Pager	struct	so	we	can	iterate	over	each
page.	 A	 convenient	 example	 is	 provided	 next.	 Here	 we	 list	 all	 servers	 while
iterating	over	all	pages	 returned	 to	us.	While	calling	each	page	we	can	 invoke
special	operations	that	are	applied	to	each	page.

However,	if	we	just	want	to	provide	a	list	of	all	servers,	we	can	simply	use	the	
AllPages()	method	as	follows:

Additional	methods	and	resources	can	be	found	at

https://github.com/gophercloud/gophercloud/blob/master/doc.go

14.11	GO	LINKS	☁
In	 this	 section	we	 list	 some	 potentially	 useful	 as	well	 as	 links	 to	 research	Go
further.	If	you	find	other	very	useful	 links,	please	 let	us	know.	YOu	can	shaoe
this	section	with	us.

14.11.1	Introductory	Material

Some	Introductory	Material	about	go	can	be	found	at

https://cse.sc.edu/~mgv/csce330f16/pres/330f15_BarnhartReevesLee_Go.pptx
http://www.cis.upenn.edu/~matuszek/cis554-
2016/Talks/Golang_Presentation.ppt

result	:=	servers.Get(client,	"{serverId}")

		//	Attempt	to	extract	the	disk	configuration	from	the	OS-DCF	disk	config

		//	extension:

		config,	err	:=	diskconfig.ExtractGet(result)

err	:=	servers.List(client,	nil).EachPage(func	(page	pagination.Page)	(bool,	error)	{

		s,	err	:=	servers.ExtractServers(page)

		if	err	!=	nil	{

				return	false,	err

		}

		//	Handle	the	[]servers.Server	slice.

		//	Return	"false"	or	an	error	to	prematurely	stop	fetching	new	pages.

		return	true,	nil

})

allPages,	err	:=	servers.List(client,	nil).AllPages()

allServers,	err	:=	servers.ExtractServers(allPages)

https://github.com/gophercloud/gophercloud/blob/master/doc.go
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/go/go-links.md
https://cse.sc.edu/~mgv/csce330f16/pres/330f15_BarnhartReevesLee_Go.pptx
http://www.cis.upenn.edu/~matuszek/cis554-2016/Talks/Golang_Presentation.ppt


https://talks.golang.org/2015/go-for-java-programmers.slide#1
https://github.com/golang/go/wiki/GoTalks
http://courses.cs.vt.edu/cs5204/fall11-kafura/Overheads/Go.pptx
https://en.wikipedia.org/wiki/Kahn_process_networks

14.11.2	The	GO	Language

Information	that	deals	with	describing	the	Go	language	are

http://devcodegeek.com/best-cloud-programming-languages.html
https://webdesignledger.com/top-4-cloud-computing-languages-learn-now/
https://techlog360.com/top-10-cloud-programming-languages/
https://www.techrepublic.com/article/10-of-the-coolest-cloud-
programming-languages/

14.11.3	How	popular	is	Go?

Often	we	find	refrences	to	how	popular	a	programming	language	is.	Some	ways
of	identifying	this	is	with	analysis	of	the	Tiobe	index

http://www.zdnet.com/article/which-programming-languages-are-most-
popular-and-what-does-that-even-mean/
https://www.tiobe.com/tiobe-index/

Another	way	is	to	look	at	e	the	PYPL	Popularity	of	Programming	Language

“The	PYPL	PopularitY	of	Programming	Language	 Index	 is	 created
by	analyzing	how	often	 language	 tutorials	are	 searched	on	Google.
The	 more	 a	 language	 tutorial	 is	 searched,	 the	 more	 popular	 the
language	 is	 assumed	 to	 be.	 It	 is	 a	 leading	 indicator.	 The	 raw	 data
comes	from	Google	Trends.”

http://pypl.github.io/PYPL.html
https://www.infoworld.com/article/2610933/cloud-computing/article.html

14.11.4	OpenAPI	and	Go

The	 following	 links	 are	 useful	 to	 research	 aspects	 related	 to	 creating	 REST

https://talks.golang.org/2015/go-for-java-programmers.slide#1
https://github.com/golang/go/wiki/GoTalks
http://courses.cs.vt.edu/cs5204/fall11-kafura/Overheads/Go.pptx
https://en.wikipedia.org/wiki/Kahn_process_networks
http://devcodegeek.com/best-cloud-programming-languages.html
https://webdesignledger.com/top-4-cloud-computing-languages-learn-now/
https://techlog360.com/top-10-cloud-programming-languages/
https://www.techrepublic.com/article/10-of-the-coolest-cloud-programming-languages/
http://www.zdnet.com/article/which-programming-languages-are-most-popular-and-what-does-that-even-mean/
https://www.tiobe.com/tiobe-index/
http://pypl.github.io/PYPL.html
https://www.infoworld.com/article/2610933/cloud-computing/article.html


services	or	clients	form	specifications	in	Go.

https://swagger.io/

https://nordicapis.com/top-specification-formats-for-rest-apis/

https://www.npmjs.com/package/raml-python

https://github.com/Jumpscale/go-raml

https://en.wikipedia.org/wiki/Overview_of_RESTful_API_Description_Languages

14.12	EXERCISES	☁
E.Go.1:

Write	a	REST	service	with	OpenAPI	that	exposes	the	cpu	load

E.GO.2:

Write	a	REST	service	with	Gorilla	that	exposes	the	cpu	load

E.GO.3:

Locate	goo	Go	Libraries	for	writing	rest	services.

E.GO.4:

Write	an	MQTT	service	in	Go.

https://swagger.io/
https://nordicapis.com/top-specification-formats-for-rest-apis/
https://www.npmjs.com/package/raml-python
https://github.com/Jumpscale/go-raml
https://en.wikipedia.org/wiki/Overview_of_RESTful_API_Description_Languages
https://github.com/cloudmesh-community/book/blob/master/chapters/prg/go/go-excerises.md


15	REFERENCES

☁

[1]	G.	von	Laszewski,	F.	Wang,	H.	Lee,	H.	Chen,	 and	G.	C.	Fox,	 “Accessing
Multiple	Clouds	with	Cloudmesh,”	in	Proceedings	of	the	2014	acm	international
workshop	 on	 software-defined	 ecosystems,	 2014,	 p.	 8	 [Online].	 Available:
https://github.com/cyberaide/paper-cloudmesh/raw/master/vonLaszewski-
cloudmesh.pdf

[2]	 domo.com,	 “Data	 never	 sleeps	 7.0.”	 Image,	 Jun-2019	 [Online].	Available:
https://www.domo.com/learn/data-never-sleeps-7

[3]	 domo.com,	 “Data	 never	 sleeps	 6.0.”	 Image,	 Jun-2018	 [Online].	Available:
https://www.domo.com/blog/wp-content/uploads/2018/06/18-domo-data-never-
sleeps-6.png

[4]	L.	Lewis,	“This	is	what	happens	in	an	internet	minute.”	Web	Page,	Apr-2018
[Online].	 Available:	 https://www.allaccess.com/merge/archive/28030/2018-
update-what-happens-in-an-internet-minute

[5]	 visibletechnologies.com,	 “Big	 data	 36	month.”	 Image,	Mar-2012	 [Online].
Available:	 https://blogs-
images.forbes.com/christopherfrank/files/2012/03/VI_BigData_Graphic_v3_low.png

[6]	K.	Heslin,	 “Proper	 data	 center	 staffing	 is	 key	 to	 reliable	 operations.”	Web
Page,	 Mar-2015	 [Online].	 Available:	 https://journal.uptimeinstitute.com/data-
center-staffing/

[7]	D.	Bouley,	“Estimating	a	data	center’s	electrical	carbon	footprint,”	Schneider
Electric	 –	 Data	 Center	 Science	 Center,	 Report	 66,	 2011	 [Online].	 Available:
http://www.apc.com/salestools/DBOY-7EVHLH/DBOY-7EVHLH_R0_EN.pdf

[8]	 Indiana	 State,	 “Indiana	 -	 state	 energy	 profile	 overview	 -	 u.s.	 Energy
information.”	 Web	 Page,	 Apr-2018	 [Online].	 Available:
https://www.eia.gov/state/?sid=IN

https://github.com/cloudmesh-community/book/blob/master/chapters/empty.md
https://github.com/cyberaide/paper-cloudmesh/raw/master/vonLaszewski-cloudmesh.pdf
https://www.domo.com/learn/data-never-sleeps-7
https://www.domo.com/blog/wp-content/uploads/2018/06/18-domo-data-never-sleeps-6.png
https://www.allaccess.com/merge/archive/28030/2018-update-what-happens-in-an-internet-minute
https://blogs-images.forbes.com/christopherfrank/files/2012/03/VI_BigData_Graphic_v3_low.png
https://journal.uptimeinstitute.com/data-center-staffing/
http://www.apc.com/salestools/DBOY-7EVHLH/DBOY-7EVHLH_R0_EN.pdf
https://www.eia.gov/state/?sid=IN


[9]	Joe	Powell	and	Associates,	“4	steps	to	better	data	center	cooling.”	Web	Page,
Jan-2019	[Online].	Available:	https://www.joepowell.com/4-steps-to-better-data-
center-cooling/

[10]	Kevin	Normandeau,	“Approaches	 to	data	center	containment.”	Web	Page,
Nov-2012	 [Online].	 Available:	 https://www.joepowell.com/4-steps-to-better-
data-center-cooling/

[11]	T.	R.	Furlani	et	al.,	“Using	xdmod	to	 facilitate	xsede	operations,	planning
and	 analysis,”	 in	 Proceedings	 of	 the	 conference	 on	 extreme	 science	 and
engineering	discovery	environment:	Gateway	to	discovery,	2013,	p.	8	[Online].
Available:	http://doi.acm.org/10.1145/2484762.2484763

[12]	F.	Wang,	G.	von	Laszewski,	G.	C.	Fox,	T.	R.	Furlani,	R.	L.	DeLeon,	and	S.
M.	 Gallo,	 “Towards	 a	 scientific	 impact	 measuring	 framework	 for	 large
computing	facilities	-	a	case	study	on	xsede,”	in	Proceedings	of	the	2014	annual
conference	on	extreme	science	and	engineering	discovery	environment,	2014,	p.
8	[Online].	Available:	http://cgl.soic.indiana.edu/publications/Metrics2014.pdf

[13]	 G.	 von	 Laszewski,	 “FutureGrid	 cloud	 metrics.”	 Web	 Page,	 Sep-2014
[Online].	 Available:	 http://archive.futuregrid.org/metrics/html/results/2014-
Q3/reports/rst/india-All.html

[14]	Amazon,	“Amazon	data	centers.”	Web	Page,	Jan-2019	[Online].	Available:
https://aws.amazon.com/compliance/data-center/data-centers/

[15]	 Amazon,	 “AWS	 global	 infrastructure.”	 Web	 Page,	 Jan-2019	 [Online].
Available:	https://aws.amazon.com/about-aws/global-infrastructure/

[16]	 Microsoft,	 “Azure	 regions.”	 Web	 Page,	 Jan-2019	 [Online].	 Available:
https://azure.microsoft.com/en-us/global-infrastructure/regions/

[17]	 Google,	 “Google	 locations.”	 Web	 Page,	 Jan-2019	 [Online].	 Available:
https://www.google.com/about/datacenters/inside/locations/index.html

[18]	 Google,	 “Efficiency:	 How	 we	 do	 it.”	 Web	 Page,	 Jan-2019	 [Online].
Available:	https://www.google.com/about/datacenters/efficiency/internal/

[19]	A.	Shehabi	et	al.,	“United	states	data	center	energy	usage	report,”	Lawrence

https://www.joepowell.com/4-steps-to-better-data-center-cooling/
https://www.joepowell.com/4-steps-to-better-data-center-cooling/
http://doi.acm.org/10.1145/2484762.2484763
http://cgl.soic.indiana.edu/publications/Metrics2014.pdf
http://archive.futuregrid.org/metrics/html/results/2014-Q3/reports/rst/india-All.html
https://aws.amazon.com/compliance/data-center/data-centers/
https://aws.amazon.com/about-aws/global-infrastructure/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://www.google.com/about/datacenters/inside/locations/index.html
https://www.google.com/about/datacenters/efficiency/internal/


Berkeley	 National	 Laboratory,	 Report	 DE-AC02-05CH1131,	 LBNL-1005775,
Jun.	2016	[Online].	Available:	https://escholarship.org/uc/item/84p772fc

[20]	 Microsoft,	 “Microsoft	 leona	 philpot.”	 Web	 Page,	 Aug-2019	 [Online].
Available:	 https://news.microsoft.com/features/microsoft-research-project-puts-
cloud-in-ocean-for-the-first-time/

[21]	 Microsoft,	 “Microsoft	 northern	 isles.”	 Web	 Page,	 Aug-2019	 [Online].
Available:	 https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-
datacenter-thats-quick-to-deploy-could-provide-internet-connectivity-for-years/

[22]	New	York	times,	“Microsoft	underwater	datacenter.”	Web	Page,	Aug-2019
[Online].	 Available:	 https://www.nytimes
.com/2016/02/01/technology/microsoft-plumbs-oceans-depths-to-test-
underwater-data-center.html

[23]	I.	Foster	and	C.	Kesselman,	Eds.,	The	grid:	Blueprint	for	a	new	computing
infrastructure.	 San	 Francisco,	 CA,	 USA:	 Morgan	 Kaufmann	 Publishers	 Inc.,
1999.

[24]	 S.	 Tata,	 “Cloud	 platforms:	 Concepts,	 definitions,	 architectures	 and	 open
issues.”	 Presentation,	 Nov-2012	 [Online].	 Available:
http://www.lifl.fr/iwaise12/presentations/tata.pdf

[25]	J.	Varia,	“Architecting	for	the	cloud:	Best	practices,”	Amazon	Web	Services,
vol.	1,	pp.	1–21,	2010.

[26]	I.	Sun	Microsystems,	“Introduction	to	cloud	computing	architecture.”	White
Paper,	 Jun-2009	 [Online].	 Available:
http://staff.polito.it/alessandro.mantelero/cloud_computing/Sun_Wp2009.pdf

[27]	 G.	 Kaefer,	 “Cloud	 computing	 architecture.”	 Presentation,	 May-2010
[Online].	 Available:
https://resources.sei.cmu.edu/asset_files/Presentation/2010_017_001_23337.pdf

[28]	 O.	 Orgeron,	 “Top	 10	 list	 for	 success	 in	 the	 cloud.”	 Oracle	 Corporation;
Presentation,	 2012	 [Online].	 Available:
https://www.oracle.com/technetwork/articles/entarch/orgeron-top-10-cloud-
1957407.pdf

https://escholarship.org/uc/item/84p772fc
https://news.microsoft.com/features/microsoft-research-project-puts-cloud-in-ocean-for-the-first-time/
https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-datacenter-thats-quick-to-deploy-could-provide-internet-connectivity-for-years/
https://www.nytimes                   .com/2016/02/01/technology/microsoft-plumbs-oceans-depths-to-test-underwater-data-center.html
http://www.lifl.fr/iwaise12/presentations/tata.pdf
http://staff.polito.it/alessandro.mantelero/cloud_computing/Sun_Wp2009.pdf
https://resources.sei.cmu.edu/asset_files/Presentation/2010_017_001_23337.pdf
https://www.oracle.com/technetwork/articles/entarch/orgeron-top-10-cloud-1957407.pdf


[29]	A.	K.	Anbarasu,	“Cloud	reference	architecture.”	Oracle	Corporation;	White
Paper,	 Nov-2012	 [Online].	 Available:
https://www.oracle.com/technetwork/topics/entarch/oracle-wp-cloud-ref-arch-
1883533.pdf

[30]	“Topic	 :	Cloud	computing	architecture.”	Presentation	 [Online].	Available:
https://pdfs.semanticscholar.org/cecd/c193b73ec1e7b42d132b3c340e6dd348d3f4.pdf

[31]	National	Institute	of	Standars,	“NIST	big	data	public	working	group.”	Aug-
2019	[Online].	Available:	https://bigdatawg.nist.gov/

[32]	 LIGO,	 “Ligo	 data	 grid.”	 Sep-2019	 [Online].	 Available:	 https://www.lsc-
group.phys.uwm.edu/lscdatagrid/overview.html

[33]	 R.	 T.	 Fielding	 and	 R.	 N.	 Taylor,	 Architectural	 styles	 and	 the	 design	 of
network-based	 software	 architectures,	 vol.	 7.	 University	 of	 California,	 Irvine
Doctoral	dissertation,	2000.

[34]	 Wikipedia,	 “Representational	 state	 transfer.”	 Web	 Page,	 2019	 [Online].
Available:	https://en.wikipedia.org/wiki/Representational_state_transfer

[35]	 OpenAPI	 Initiative,	 “The	 openapi	 specification.”	 Web	 Page	 [Online].
Available:	 https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/2.0.md

[36]	 OpenAPI	 Initiative,	 “The	 openapi	 specification.”	 Web	 Page	 [Online].
Available:	https://github.com/OAI/OpenAPI-Specification

[37]	RAML,	“RAML	version	1.0:	RESTful	api	modeling	language.”	Web	Page
[Online].	 Available:	 https://github.com/raml-org/raml-
spec/blob/master/versions/raml-10/raml-10.md

[38]	 R.	 H.	 Kevin	 Burke	 Kyle	 Conroy,	 “Flask-restful.”	 Web	 Page	 [Online].
Available:	https://flask-restful.readthedocs.io/en/latest/

[39]	 E.	 O.	 Ltd,	 “Django	 rest	 framework.”	 Web	 Page	 [Online].	 Available:
https://www.django-rest-framework.org/

https://www.oracle.com/technetwork/topics/entarch/oracle-wp-cloud-ref-arch-1883533.pdf
https://pdfs.semanticscholar.org/cecd/c193b73ec1e7b42d132b3c340e6dd348d3f4.pdf
https://bigdatawg.nist.gov/
https://www.lsc-group.phys.uwm.edu/lscdatagrid/overview.html
https://en.wikipedia.org/wiki/Representational_state_transfer
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md
https://flask-restful.readthedocs.io/en/latest/
https://www.django-rest-framework.org/


[40]	 S.	 Software,	 “API	 development	 for	 everyone.”	 Web	 Page	 [Online].
Available:	https://swagger.io

[41]	 S.	 Software,	 “Swagger	 codegen	 documentation.”	 Web	 Page	 [Online].
Available:	https://swagger.io/docs/open-source-tools/swagger-codegen/

[42]	 A.	 Y.	 W.	 Hate,	 “OpenAPI.Tools.”	 Web	 Page	 [Online].	 Available:
https://openapi.tools/

[43]	 tinyspec,	 “Tinyspec.”	 Web	 Page	 [Online].	 Available:
https://github.com/Ajaxy/tinyspec

[44]	 api	 blueprint,	 “API	 blueprint.	 A	 powerful	 high-level	 api	 description
language	for	web	apis.”	Web	Page	[Online].	Available:	https://apiblueprint.org/

[45]	OpenAPI	Initiative,	“Announcing	the	official	release	of	openapi	3.0.”	Web
Page,	 2017	 [Online].	 Available:	 https://swagger.io/blog/news/announcing-
openapi-3-0/

[46]	 OpenAPI	 Initiative,	 “The	 openapi	 docs.”	Web	 Page	 [Online].	 Available:
https://swagger.io/docs/specification/about/

[47]	 S.	 Software,	 “Swagger	 editor	 documentation.”	 Web	 Page	 [Online].
Available:	https://swagger.io/docs/open-source-tools/swagger-editor/

[48]	 S.	 Software,	 “Swagger	 ui.”	 Web	 Page	 [Online].	 Available:
https://swagger.io/docs/open-source-tools/swagger-ui/usage/installation/

[49]	RAML,	“RAML.”	Web	Page	[Online].	Available:	https://raml.org/

[50]	 Yehuda	 Katz,	 “JSON:API.”	 Web	 Page	 [Online].	 Available:
https://jsonapi.org/

[51]	 Zalando	 SE,	 “Connexion.”	 Web	 Page	 [Online].	 Available:
https://github.com/zalando/connexion

[52]	 Wikipedia,	 “Scikit-learn.”	 Web	 Page,	 Aug-2019	 [Online].	 Available:
https://en.wikipedia.org/wiki/Scikit-learn

https://swagger.io
https://swagger.io/docs/open-source-tools/swagger-codegen/
https://openapi.tools/
https://github.com/Ajaxy/tinyspec
https://apiblueprint.org/
https://swagger.io/blog/news/announcing-openapi-3-0/
https://swagger.io/docs/specification/about/
https://swagger.io/docs/open-source-tools/swagger-editor/
https://swagger.io/docs/open-source-tools/swagger-ui/usage/installation/
https://raml.org/
https://jsonapi.org/
https://github.com/zalando/connexion
https://en.wikipedia.org/wiki/Scikit-learn


[53]	 scikit-learn	 developers,	 Web	 Page	 [Online].	 Available:	 https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

[54]	 Facebook,	 “Introduction	 to	 graphql.”	 Web	 Page,	 Aug-2019	 [Online].
Available:	https://graphql.org/learn/

[55]	Django	Software	Foundation,	“Django	web	framework.”	Web	Page,	Aug-
2019	[Online].	Available:	https://www.djangoproject.com/

[56]	 João	 Angelo,	 “JWT	 tokens.”	 Web	 Page,	 Aug-2019	 [Online].	 Available:
https://stackoverflow.com/a/39914013

[57]	 Clay	 Allsopp,	 “GraphQL	 and	 authentication.”	 Web	 Page,	 Aug-2019
[Online].	 Available:	 https://medium.com/the-graphqlhub/graphql-and-
authentication-b73aed34bbeb

[58]	 Github,	 “Github	 api	 v4.”	 Web	 Page,	 Aug-2019	 [Online].	 Available:
https://developer.github.com/v4/

[59]	 Jonatas	 Baldin,	 “Introduction	 to	 graphql	 python	 implementation.”	 Web
Page,	 Aug-2019	 [Online].	 Available:	 https://www.howtographql.com/graphql-
python/0-introduction/

[60]	S.	J.	Bigelow,	“Full	virtualization	vs.	Paravirtualization:	What	are	 the	key
differences?”	 Wegb	 page,	 Sep-2018	 [Online].	 Available:
https://searchservervirtualization.techtarget.com/answer/Full-virtualization-vs-
paravirtualization-What-are-the-key-differences

[61]	 Wikipedia,	 “Input–output	 memory	 management	 unit.”	 Web	 Page,	 May-
2019	 [Online].	 Available:
https://en.wikipedia.org/wiki/Input%E2%80%93output_memory_management_unit

[62]	Wikipedia,	“Input–output	memory	management	unit.”	Web	Page,	Jul-2019
[Online].	 Available:
https://en.wikipedia.org/wiki/X86_virtualization#I.2FO_MMU_virtualization_.28AMD-
Vi_and_Intel_VT-d.29

[63]	 Suse,	 “Virtualization	 with	 kvm,”	 in	 Virtualization	 with	 kvm,	 Suse,	 2016
[Online].	 Available:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://graphql.org/learn/
https://www.djangoproject.com/
https://stackoverflow.com/a/39914013
https://medium.com/the-graphqlhub/graphql-and-authentication-b73aed34bbeb
https://developer.github.com/v4/
https://www.howtographql.com/graphql-python/0-introduction/
https://searchservervirtualization.techtarget.com/answer/Full-virtualization-vs-paravirtualization-What-are-the-key-differences
https://en.wikipedia.org/wiki/Input%E2%80%93output_memory_management_unit
https://en.wikipedia.org/wiki/X86_virtualization#I.2FO_MMU_virtualization_.28AMD-Vi_and_Intel_VT-d.29


https://www.suse.com/documentation/sles11/book_kvm/data/cha_libvirt_overview.html

[64]	 J.	Guerrag,	 “Difference	 between	 kvm	 and	 qemu.”	 Forum	Post,	Dec-2010
[Online].	 Available:	 https://serverfault.com/questions/208693/difference-
between-kvm-and-qemu

[65]	 Wikipedia,	 “VMWare.”	 Web	 Page,	 Sep-2018	 [Online].	 Available:
https://en.wikipedia.org/wiki/VMware

[66]	 “Wine	 –	 wine	 is	 not	 an	 emulator.”	 Web	 Page,	 Sep-2018	 [Online].
Available:	https://www.winehq.org/

[67]	Stackoverflow,	“What	are	 the	differences	between	qemu	and	virtualbox?”
Forum	 Post,	 Sep-2018	 [Online].	 Available:
https://stackoverflow.com/questions/43704856/what-are-the-differences-
between-qemu-and-virtualbox

[68]	 “Hadoop	 mapreduce.”	 Aug-2019	 [Online].	 Available:
https://www.edureka.co/blog/mapreduce-tutorial/?
utm_source=youtube&utm_campaign=mapreduce-tutorial-161216-
wr&utm_medium=description

[69]	 “Hadoop	 mapreduce.”	 Aug-2019	 [Online].	 Available:
https://www.youtube.com/watch?
v=SqvAaB3vK8U&list=WL&index=25&t=2547s

[70]	 “Apache	 mapreduce.”	 Aug-2019	 [Online].	 Available:
https://www.ibm.com/analytics/hadoop/mapreduce

[71]	 Wikipedia,	 “MapReduce.”	 Aug-2019	 [Online].	 Available:
https://en.wikipedia.org/wiki/MapReduce

[72]	 “Hadoop	 mapreduce.”	 Aug-2019	 [Online].	 Available:
https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm

[73]	 A.	 Khan,	 “Hadoop	 and	 spark.”	 Aug-2019	 [Online].	 Available:
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark.
[Accessed:	03-Sep-2017]

https://www.suse.com/documentation/sles11/book_kvm/data/cha_libvirt_overview.html
https://serverfault.com/questions/208693/difference-between-kvm-and-qemu
https://en.wikipedia.org/wiki/VMware
https://www.winehq.org/
https://stackoverflow.com/questions/43704856/what-are-the-differences-between-qemu-and-virtualbox
https://www.edureka.co/blog/mapreduce-tutorial/?utm_source=youtube&utm_campaign=mapreduce-tutorial-161216-wr&utm_medium=description
https://www.youtube.com/watch?v=SqvAaB3vK8U&list=WL&index=25&t=2547s
https://www.ibm.com/analytics/hadoop/mapreduce
https://en.wikipedia.org/wiki/MapReduce
https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark


[74]	 “Apache	 spark	 vs	 hadoop	 mapreduce.”	 Aug-2019	 [Online].	 Available:
https://data-flair.training/blogs/apache-spark-vs-hadoop-mapreduce/

[75]	 “HDFS	 architecture	 guide.”	 Aug-2019	 [Online].	 Available:
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[76]	 “Amazon	 emr	 -	 amazon	 web	 services.”	 Aug-2019	 [Online].	 Available:
https://aws.amazon.com/emr/?nc2=type_a

[77]	AWS,	 “AWS.”	Web	 Page,	Aug-2019	 [Online].	Available:	 https://us-east-
2.console.aws.amazon.com/elasticmapreduce/home?region=us-east-2#

[78]	 Twister,	 “Twister2:	 Twister2	 Big	 Data	 Hosting	 Environment:	 A
composable	 framework	 for	 high-performance	 data	 analytics.”	Web	 Page,	 Feb-
2017	[Online].	Available:	https://twister2.gitbook.io/twister2/

[79]	 Twister,	 “Twister2:	 Twister2	 Big	 Data	 Hosting	 Environment:	 A
composable	 framework	 for	 high-performance	 data	 analytics.”	Web	 Page,	 Feb-
2017	[Online].	Available:	https://github.com/DSC-SPIDAL/twister2/

[80]	Twister,	“Twister2	word	count	example.”	Aug-2019.

[81]	 Twister,	 “Task	 examples.”	 Web	 Page,	 Feb-2017	 [Online].	 Available:
https://twister2.gitbook.io/twister2/examples/task_examples

[82]	 Twister,	 “Communication	 Model.”	 Web	 Page,	 Feb-2017	 [Online].
Available:
https://twister2.gitbook.io/twister2/concepts/communication/communication-
model

[83]	S.	Kamburugamuve	et	al.,	“Twister:	Net-communication	library	for	big	data
processing	 in	 hpc	 and	 cloud	 environments,”	 in	 2018	 ieee	 11th	 international
conference	on	cloud	computing	(cloud),	2018,	pp.	383–391.

[84]	 Twister2,	 “Kmeans	 performance	 comparison.”	 Web	 Page,	 Jan-2019
[Online].	Available:	https://twister2.gitbook.io/twister2/

[85]	 Twister,	 “Twister	 Examples.”	 Web	 Page,	 Feb-2017	 [Online].	 Available:
https://twister2.gitbook.io/twister2/examples

https://data-flair.training/blogs/apache-spark-vs-hadoop-mapreduce/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://aws.amazon.com/emr/?nc2=type_a
https://us-east-2.console.aws.amazon.com/elasticmapreduce/home?region=us-east-2
https://twister2.gitbook.io/twister2/
https://github.com/DSC-SPIDAL/twister2/
https://twister2.gitbook.io/twister2/examples/task_examples
https://twister2.gitbook.io/twister2/concepts/communication/communication-model
https://twister2.gitbook.io/twister2/
https://twister2.gitbook.io/twister2/examples


[86]	 Docker,	 “Overview	 of	 docker	 hub.”	 Web	 Page,	 Mar-2018	 [Online].
Available:	https://docs.docker.com/docker-hub/

[87]	S.	Bhartiya,	“How	to	use	dockerhub.”	Blog,	Jan-2018	[Online].	Available:
https://www.linux.com/blog/learn/intro-to-linux/2018/1/how-use-dockerhub

[88]	 Docker,	 “Repositories	 on	 docker	 hub.”	 Web	 Page,	 Mar-2018	 [Online].
Available:	https://docs.docker.com/docker-hub/repos/

[89]	 R.	 Irani,	 “Docker	 tutorial	 series-part	 4-docker	 hub.”	 Blog,	 Jul-2015
[Online].	Available:	 https://rominirani.com/docker-tutorial-series-part-4-docker-
hub-b51fb545dd8e

[90]	G.	M.	Kurtzer,	“Singularity	Containers	for	Science.”	Presentation,	Jan-2019
[Online].	 Available:	 http://www.hpcadvisorycouncil.com/events/2017/stanford-
workshop/pdf/GMKurtzer_Singularity_Keynote_Tuesday_02072017.pdf#43

[91]	A.	Ellis,	“Introducing	functions	as	a	service	(openfaas).”	Web	Page,	Aug-
2017	 [Online].	 Available:	 https://blog.alexellis.io/introducing-functions-as-a-
service/

[92]	P.	Caponetti,	“Why	mqtt	is	the	protocol	of	choice	for	the	iot.”	Blog,	Nov-
2017	 [Online].	 Available:	 http://blog.xively.com/why-mqtt-is-the-protocol-of-
choice-for-the-iot/

[93]	The	HiveMQ	Team,	“Introducing	the	mqtt	protocol	-	mqtt	essentials:	Part
1.”	 Web	 Page,	 Nov-2017	 [Online].	 Available:
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt

[94]	 Wikipedia,	 “MQTT.”	 Web	 Page,	 Nov-2017	 [Online].	 Available:
https://en.wikipedia.org/w/index.php?title=MQTT&oldid=808683219

[95]	 Mqtt,	 “Mqtt	 official	 website.”	 mqtt	 official	 website,	 Nov-2017	 [Online].
Available:	http://mqtt.org/

[96]	 “Mosquito	 mqtt	 broker.”	 Web	 Page,	 Nov-2017	 [Online].	 Available:
https://mosquitto.org/

[97]	Random	nerds	tutorial,	“What	is	mqtt	and	how	it	works.”	Web	Page,	Nov-

https://docs.docker.com/docker-hub/
https://www.linux.com/blog/learn/intro-to-linux/2018/1/how-use-dockerhub
https://docs.docker.com/docker-hub/repos/
https://rominirani.com/docker-tutorial-series-part-4-docker-hub-b51fb545dd8e
http://www.hpcadvisorycouncil.com/events/2017/stanford-workshop/pdf/GMKurtzer_Singularity_Keynote_Tuesday_02072017.pdf#43
https://blog.alexellis.io/introducing-functions-as-a-service/
http://blog.xively.com/why-mqtt-is-the-protocol-of-choice-for-the-iot/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt
https://en.wikipedia.org/w/index.php?title=MQTT&oldid=808683219
http://mqtt.org/
https://mosquitto.org/


2017	 [Online].	 Available:	 https://randomnerdtutorials.com/what-is-mqtt-and-
how-it-works/

[98]	H.	MQ,	“MQTT	essentials	part	2:	Publish	&	subscribe.”	Web	Page,	Nov-
2017	 [Online].	 Available:	 https://www.hivemq.com/blog/mqtt-essentials-part2-
publish-subscribe

[99]	E.	Paho,	“Python	client	-	documentation.”	Web	Page,	Nov-2017	[Online].
Available:	https://www.eclipse.org/paho/clients/python/docs/

[100]	H.	MQ,	 “MQTT	 essentials	 part	 6:	Quality	 of	 service	 0,	 1	 and	 2.”	Web
Page,	 Nov-2017	 [Online].	 Available:	 https://www.hivemq.com/blog/mqtt-
essentials-part-6-mqtt-quality-of-service-levels

[101]	T.	Ouska,	“Transport-level	security	tradeoffs	using	mqtt.”	Web	Page,	Nov-
2017	 [Online].	 Available:	 http://iotdesign.embedded-computing.com/guest-
blogs/transport-level-security-tradeoffs-using-mqtt/

[102]	H.	Mq,	“MQTT	security	fundamentals:	TLS	/	ssl.”	Web	Page,	Nov-2017
[Online].	Available:	 https://www.hivemq.com/blog/mqtt-security-fundamentals-
tls-ssl

[103]	 I.	Craggs,	 “MQTT	 security:	Who	 are	 you?	Can	you	prove	 it?	What	 can
you	 do?”	 Web	 Page,	 Nov-2013	 [Online].	 Available:
https://www.ibm.com/developerworks/community/blogs/c565c720-fe84-4f63-
873f-607d87787327/entry/mqtt_security?lang=en

[104]	hive	mq,	“MQTT	security	fundamentals:	OAuth	2.0	and	mqtt.”	Web	Page,
Nov-2017	 [Online].	 Available:	 https://www.hivemq.com/blog/mqtt-security-
fundamentals-oauth-2-0-mqtt

[105]	 apache,	 “Apache	 storm.”	 Web	 Page,	 Nov-2017	 [Online].	 Available:
http://storm.apache.org/

[106]	 A.	 storm,	 “Storm	 mqtt	 integration.”	 Apache	 storm	 website,	 Nov-2017
[Online].	Available:	http://storm.apache.org/releases/1.1.0/storm-mqtt.html

[107]	 Wikipedia,	 “Storm	 (event	 processor).”	 Nov-2017	 [Online].	 Available:
https://en.wikipedia.org/w/index.php?

https://randomnerdtutorials.com/what-is-mqtt-and-how-it-works/
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe
https://www.eclipse.org/paho/clients/python/docs/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
http://iotdesign.embedded-computing.com/guest-blogs/transport-level-security-tradeoffs-using-mqtt/
https://www.hivemq.com/blog/mqtt-security-fundamentals-tls-ssl
https://www.ibm.com/developerworks/community/blogs/c565c720-fe84-4f63-873f-607d87787327/entry/mqtt_security?lang=en
https://www.hivemq.com/blog/mqtt-security-fundamentals-oauth-2-0-mqtt
http://storm.apache.org/
http://storm.apache.org/releases/1.1.0/storm-mqtt.html
https://en.wikipedia.org/w/index.php?title=Storm_(event_processor)&oldid=808771136


title=Storm_(event_processor)&oldid=808771136

[108]	elastic.io,	“ELK	stack.”	elastic.io	website,	Nov-2017	[Online].	Available:
https://www.elastic.co/products

[109]	 Smart	 Factory,	 “Storing	 iot	 data	 using	 open	 source.	 MQTT	 and
elasticsearch	-	tutorial.”	Web	Page,	Oct-2016	[Online].	Available:	https://smart-
factory.net/mqtt-elasticsearch-setup/

[110]	Smart	Factory,	“MQTT	and	kibana	-	open	source	graphs	and	analysis	for
iot.”	 Web	 Page,	 Nov-2017	 [Online].	 Available:	 https://smart-factory.net/mqtt-
and-kibana-open-source-graphs-and-analysis-for-iot/

[111]	 erlang-mqtt,	 “Erlang	 mqtt	 broker.”	 wmqtt	 website,	 Nov-2017	 [Online].
Available:	http://emqtt.io/docs/v2/index.html

[112]	D.	Industries,	“Grovepi.”	Dexteer	Industries	website,	Nov-2017	[Online].
Available:	https://www.dexterindustries.com/grovepi/

[113]	 S.	 Studio,	 “Grove	 relay.”	 seed	 studio	 website,	 Nov-2017	 [Online].
Available:	http://wiki.seeed.cc/Grove-Relay/

[114]	 seed	 studio,	 “Grove	 led	 socket	 kit.”	 Seed	 studio	 website,	 Oct-2017
[Online].	Available:	http://wiki.seeed.cc/Grove-LED_Socket_Kit/

[115]	 G.	 von	 Laszewski,	Cloud	 computing	 with	 the	 raspberry	 pi,	 Fall	 2018.
Bloomington,	 Indiana:	 Indiana	 University,	 2018	 [Online].	 Available:
https://github.com/cloudmesh-community/book/vonLaszewski-pi.epub?raw=true

[116]	Apache	Avro,	“Apache	avro	1.8.2	documentation.”	Web	Page,	Feb-2017
[Online].	Available:	http://avro.apache.org/docs/1.8.2/index.html

[117]	Apache	Avro,	 “Apache	 avro	 1.8.2	 getting	 started	 (python).”	Web	 Page,
Feb-2017	 [Online].	 Available:
http://avro.apache.org/docs/1.8.2/gettingstartedpython.html

[118]	Apache	Avro,	“Apache	avro	1.8.2	getting	started	(java).”	Web	Page,	Feb-
2017	 [Online].	 Available:
http://avro.apache.org/docs/1.8.2/gettingstartedjava.html

https://www.elastic.co/products
https://smart-factory.net/mqtt-elasticsearch-setup/
https://smart-factory.net/mqtt-and-kibana-open-source-graphs-and-analysis-for-iot/
http://emqtt.io/docs/v2/index.html
https://www.dexterindustries.com/grovepi/
http://wiki.seeed.cc/Grove-Relay/
http://wiki.seeed.cc/Grove-LED_Socket_Kit/
https://github.com/cloudmesh-community/book/vonLaszewski-pi.epub?raw=true
http://avro.apache.org/docs/1.8.2/index.html
http://avro.apache.org/docs/1.8.2/gettingstartedpython.html
http://avro.apache.org/docs/1.8.2/gettingstartedjava.html


[119]	Apache	Avro,	“Apache	avro	1.8.2	hadoop	mapreduce	guide.”	Web	Page,
Feb-2017	[Online].	Available:	http://avro.apache.org/docs/1.8.2/mr.html

[120]	 Apache	 Avro,	 “Apache	 avro	 1.8.2	 specification.”	Web	 Page,	 Feb-2017
[Online].	Available:	http://avro.apache.org/docs/1.8.2/spec.html#schema_record

[121]	Golang,	“The	go	programming	language.”	Web	Page,	Sep-2018	[Online].
Available:	https://golang.org/doc/

[122]	C.	A.	R.	Hoare,	Communicating	 sequential	 processes.	Electronit	 version
of	 Prentice	 Hall	 International,	 1985	 [Online].	 Available:
http://www.usingcsp.com/cspbook.pdf

[123]	D.	Pountain	and	D.	May,	A	tutorial	introduction	to	occam	programming.
New	 York,	 NY,	 USA:	 McGraw-Hill,	 Inc.,	 1987	 [Online].	 Available:
http://www.transputer.net/obooks/72-occ-046-00/tuinocc.pdf

[124]	D.	C.	Hyde,	Introduction	to	the	programming	language	occam.	Bucknell
University,	 1995	 [Online].	 Available:
http://www.cs.otago.ac.nz/cosc441/occam.pdf

[125]	 Tiobe,	 “TIOBE	 index.”	 Web	 Page,	 Sep-2018	 [Online].	 Available:
https://www.tiobe.com/tiobe-index/

[126]	G.	 von	Laszewski,	Linux	 for	 cloud	 computing,	 Fall	 2019.	 Bloomington,
Indiana:	 Indiana	 University,	 2019	 [Online].	 Available:
https://laszewski.github.io/book/linux/

[127]	A.	Mashraki,	“Go	cheat	sheet.”	Web	Page,	Sep-2015	[Online].	Available:
https://github.com/a8m/go-lang-cheat-sheet/blob/master/golang_refcard.pdf

[128]	K.	Seguin,	“The	little	go	book.”	Web	Page,	Jan-2018	[Online].	Available:
https://github.com/karlseguin/the-little-go-book

[129]	 M.	 McGranaghan,	 “Go	 by	 example.”	 Web	 Page,	 Oct-2018	 [Online].
Available:	https://gobyexample.com

[130]	 S.	 Keys,	 “Learn	 go	 in	 y	 minutes.”	 Web	 Page,	 Sep-2013	 [Online].
Available:	https://learnxinyminutes.com/docs/go/

http://avro.apache.org/docs/1.8.2/mr.html
http://avro.apache.org/docs/1.8.2/spec.html#schema_record
https://golang.org/doc/
http://www.usingcsp.com/cspbook.pdf
http://www.transputer.net/obooks/72-occ-046-00/tuinocc.pdf
http://www.cs.otago.ac.nz/cosc441/occam.pdf
https://www.tiobe.com/tiobe-index/
https://laszewski.github.io/book/linux/
https://github.com/a8m/go-lang-cheat-sheet/blob/master/golang_refcard.pdf
https://github.com/karlseguin/the-little-go-book
https://gobyexample.com
https://learnxinyminutes.com/docs/go/


[131]	 G.	 Schier,	 “Sendwithus	 go	 workshop.”	 Web	 Page,	 Oct-2015	 [Online].
Available:	https://github.com/sendwithus/workshop-go

[132]	A.	N.	Chomsky,	 “Go	 fragments:	A	 collection	 of	 annotated	 go	 programs
examples.”	 Web	 Page,	 Mar-2013	 [Online].	 Available:
http://www.gofragments.net/

[133]	 K.	 Quest,	 “50	 shades	 of	 go:	 Traps,	 gotchas,	 common	mistakes	 for	 new
golang	 devs.”	 Web	 Page,	 Jan-2018	 [Online].	 Available:
http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/

[134]	 S.	 VJ,	 “GoLang	 tutorials.”	 Web	 Page,	 May-2011	 [Online].	 Available:
http://golangtutorials.blogspot.com/2011/05/table-of-contents.html

[135]	 I.	 Zazueta-Hall,	 “Building	 bridges	 that	 educate	 and	 empower
underrepresented	 communities.”	 Web	 Page,	 Jan-2015	 [Online].	 Available:
https://golangbridge.org/

[136]	 I.	 Zazueta-Hall,	 “Building	 bridges	 that	 educate	 and	 empower
underrepresented	 communities.”	 Web	 Page,	 Jan-2013	 [Online].	 Available:
https://bridgefoundry.org/

[137]	 golangbot.com,	 “Golang	 tutorial	 series.”	Web	 Page,	 Sep-2018	 [Online].
Available:	https://golangbot.com/learn-golang-series/

[138]	 Stefan	 Nilsson,	 “Algorithms	 to	 go.”	 Web	 Page,	 Aug-2019	 [Online].
Available:	https://yourbasic.org/

[139]	Many,	“Go	language	tutorials.”	Web	Page,	Jan-2018	[Online].	Available:
https://www.cybrhome.com/topic/go-language-tutorials

https://github.com/sendwithus/workshop-go
http://www.gofragments.net/
http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/
http://golangtutorials.blogspot.com/2011/05/table-of-contents.html
https://golangbridge.org/
https://bridgefoundry.org/
https://golangbot.com/learn-golang-series/
https://yourbasic.org/
https://www.cybrhome.com/topic/go-language-tutorials

	1 PREFACE
	1.1 Learning Objectives ☁️
	1.2 ePub Readers ☁️
	1.3 Corrections ☁️
	1.4 Contributors ☁️
	1.5 Notation ☁️
	1.5.1 Figures
	1.5.2 Hyperlinks in the document
	1.5.3 Equations
	1.5.4 Tables

	1.6 Updates ☁️

	2 OVERVIEW ☁️
	3 DEFINITION OF CLOUD COMPUTING ☁️
	3.1 Defining the term Cloud Computing
	3.2 History and Trends
	3.3 Job as a Cloud/Data Engineer
	3.4 You must be that TALLL

	4 DATACENTER
	4.1 Data Center ☁️
	4.1.1 Motivation: Data
	4.1.1.1 How much data?

	4.1.2 Cloud Data Centers
	4.1.3 Data Center Infrastructure
	4.1.4 Data Center Characteristics
	4.1.5 Data Center Metrics
	4.1.5.1 Data Center Energy Costs
	4.1.5.2 Data Center Carbon Footprint
	4.1.5.3 Data Center Operational Impact
	4.1.5.4 Power Usage Effectiveness
	4.1.5.5 Hot-Cold Aisle
	4.1.5.5.1 Containment
	4.1.5.5.1.1 Water Cooled Doors


	4.1.5.6 Workload Monitoring
	4.1.5.6.1 Workload of HPC in the Cloud
	4.1.5.6.2 Scientific Impact Metric
	4.1.5.6.3 Clouds and Virtual Machine Monitoring
	4.1.5.6.4 Workload of Containers


	4.1.6 Example Data Centers
	4.1.6.1 AWS
	4.1.6.2 Azure
	4.1.6.3 Google
	4.1.6.4 IBM
	4.1.6.5 XSEDE
	4.1.6.5.1 Comet
	4.1.6.5.2 Jetstream

	4.1.6.6 Chameleon Cloud
	4.1.6.7 Indiana University
	4.1.6.8 Shipping Containers

	4.1.7 Server Consolidation
	4.1.8 Data Center Improvements and Consolidation
	4.1.9 Project Natick
	4.1.10 Renewable Energy for Data Centers
	4.1.11 Societal Shift Towards Renewables
	4.1.12 Datacenter Risks and Issues
	4.1.13 Exercises


	5 ARCHITECTURE
	5.1 Architectures ☁️
	5.1.1 Evolution of Compute Architectures
	5.1.1.1 Mainframe Computing
	5.1.1.2 PC Computing
	5.1.1.3 Intranet and Server Computing
	5.1.1.4 Grid Computing Computing
	5.1.1.5 Internet Computing
	5.1.1.6 Cloud Computing
	5.1.1.7 Mobile Computing
	5.1.1.8 Internet of Things Computing
	5.1.1.9 Edge Computing
	5.1.1.10 Fog Computing

	5.1.2 As a Servise Architecture Model
	5.1.3 Product or Functional Based Model
	5.1.4 NIST Cloud Architecture
	5.1.5 Cloud Security Alliance Reference Architecture
	5.1.6 Multicloud Architectures
	5.1.6.1 Cloudmesh Architecture

	5.1.7 Resources

	5.2 NIST Big Data Referenece Architecture ☁️
	5.2.1 Pathway to the NIST-BDRA
	5.2.2 Big Data Characteristics and Definitions
	5.2.3 Big Data and the Cloud
	5.2.4 Big Data, Edge Computing and the Cloud
	5.2.5 Reference Architecture
	5.2.6 Framework Providers
	5.2.7 Application Providers
	5.2.8 Fabric
	5.2.9 Interface definitions

	5.3 The Y-Scheduling Architecture View ☁️

	6 REST
	6.1 Introduction to REST ☁️
	6.1.0.1 Collection of Resources
	6.1.0.2 Single Resource
	6.1.0.3 REST Tool Classification

	6.2 OPENAPI 3.0
	6.2.1 REST Specifications ☁️
	6.2.1.1 OPENAPI
	6.2.1.1.1 Open API 3.0 Specification (OAS 3.0)
	6.2.1.1.1.1 Definitions


	6.2.1.2 RAML
	6.2.1.3 API Blueprint
	6.2.1.4 JsonAPI
	6.2.1.5 Tinyspec
	6.2.1.6 Tools
	6.2.1.6.1 Connexion


	6.2.2 OpenAPI 3.0 REST Service via Introspection ☁️
	6.2.2.1 Verification
	6.2.2.2 Swagger-UI
	6.2.2.3 Mock service
	6.2.2.4 Exercise

	6.2.3 REST AI services Example ☁️
	6.2.3.1 Service Endpoints/ Paths
	6.2.3.1.1 Path kmeans/upload
	6.2.3.1.2 Path kmeans/fit
	6.2.3.1.3 Path kmeans/predict

	6.2.3.2 Files
	6.2.3.3 Running the example
	6.2.3.4 Notes


	6.3 Flask RESTful Services ☁️
	6.4 Django REST Framework ☁️
	6.5 Github REST Services ☁️
	6.5.1 Issues
	6.5.2 Exercise

	6.6 OpenAPI REST Services with Swagger ☁️
	6.6.1 Swagger Tools
	6.6.2 Swagger Community Tools
	6.6.2.1 Converting Json Examples to OpenAPI YAML Models


	6.7 REST WITH EVE
	6.7.1 Rest Services with Eve ☁️
	6.7.1.1 Ubuntu install of MongoDB
	6.7.1.2 macOS install of MongoDB
	6.7.1.3 Windows 10 Installation of MongoDB
	6.7.1.4 Database Location
	6.7.1.5 Verification
	6.7.1.6 Building a simple REST Service
	6.7.1.7 Interacting with the REST service
	6.7.1.8 Creating REST API Endpoints
	6.7.1.9 REST API Output Formats and Request Processing
	6.7.1.10 REST API Using a Client Application
	6.7.1.11 Towards cmd5 extensions to manage eve and mongo 🅾️

	6.7.2 HATEOAS ☁️
	6.7.2.1 Filtering
	6.7.2.2 Pretty Printing
	6.7.2.3 XML

	6.7.3 Extensions to Eve ☁️
	6.7.3.1 Object Management with Eve and Evegenie
	6.7.3.1.1 Installation
	6.7.3.1.2 Starting the service
	6.7.3.1.3 Creating your own objects



	6.8 OPENAPI 2.0
	6.8.1 OpenAPI 2.0 Specification ☁️
	6.8.1.1 The Virtual Cluster example API Definition
	6.8.1.1.1 Terminology
	6.8.1.1.2 Specification

	6.8.1.2 References

	6.8.2 OpenAPI REST Service via Introspection ☁️
	6.8.2.1 Verification
	6.8.2.2 Mock service
	6.8.2.3 Exercise

	6.8.3 OpenAPI REST Service via Codegen ☁️
	6.8.3.1 Step 1: Define Your REST Service
	6.8.3.2 Step 2: Server Side Stub Code Generation and Implementation
	6.8.3.2.1 Setup the Codegen Environment
	6.8.3.2.2 Generate Server Stub Code
	6.8.3.2.3 Fill in the actual implementation

	6.8.3.3 Step 3: Install and Run the REST Service:
	6.8.3.3.1 Start a virtualenv:
	6.8.3.3.2 Make sure you have the latest pip:
	6.8.3.3.3 Install the requirements of the server side code:
	6.8.3.3.4 Install the server side code package:
	6.8.3.3.5 Run the service
	6.8.3.3.6 Verify the service using a web browser:

	6.8.3.4 Step 4: Generate Client Side Code and Verify
	6.8.3.4.1 Client side code generation:
	6.8.3.4.2 Install the client side code package:
	6.8.3.4.3 Using the client API to interact with the REST service

	6.8.3.5 Towards a Distributed Client Server


	6.9 Exercises ☁️

	7 GRAPHQL ☁️
	7.1 Prerequisites
	7.1.1 Install Graphene
	7.1.2 Install Django
	7.1.3 Install GraphiQL

	7.2 GraphQL type system and schema
	7.2.1 Type System
	7.2.2 Scalar Types
	7.2.3 Enumeration Types
	7.2.4 Interfaces
	7.2.5 Union Types

	7.3 GraphQL Query
	7.3.1 Fields
	7.3.2 Arguments
	7.3.3 Fragments
	7.3.4 Variables
	7.3.5 Directives
	7.3.6 Mutations
	7.3.7 Query Validation

	7.4 GraphQL in Python
	7.5 Developing your own GraphQL Server
	7.5.1 GraphQL server implementation
	7.5.2 GraphQL Server Querying
	7.5.3 Mutation example
	7.5.4 GraphQL Authentication
	7.5.5 JSON Web Token Authentication
	7.5.5.1 Using Authentication with Curl
	7.5.5.2 Expiration of JWT tokens

	7.5.6 GitHub API v4

	7.6 Dynamic Queries with GraphQL
	7.7 Advantages of Using GraphQL
	7.8 Disadvantages of Using GraphQL
	7.9 Conclusion
	7.9.1 Resources

	7.10 Excersises

	8 HYPERVISOR
	8.1 Virtualization ☁️
	8.1.1 Virtual Machines
	8.1.2 System Virtual Machines
	8.1.3 Hosted Virtualization
	8.1.4 Summary
	8.1.5 Virtualization Approches
	8.1.5.1 Full virtualization
	8.1.5.2 Paravirtualization

	8.1.6 Virtualization Technologies
	8.1.6.1 Selected Hardware Virtualization Technologies
	8.1.6.2 AMD-V and Intel-VT
	8.1.6.3 I/O MMU virtualization (AMD-Vi and Intel VT-d)
	8.1.6.4 Selected VM Virtualization Software and Tools
	8.1.6.4.1 Libvirt
	8.1.6.4.2 QEMU
	8.1.6.4.3 KVM
	8.1.6.4.3.1 KVM vs QEMU

	8.1.6.4.4 Xen
	8.1.6.4.5 Hyper-V
	8.1.6.4.6 VMWare

	8.1.6.5 Parallels
	8.1.6.5.1 VirtualBox
	8.1.6.5.2 Wine – Wine is not an emulator
	8.1.6.5.3 Comparison of some technologies

	8.1.6.6 Selected Storage Virtualization Software and Tools
	8.1.6.7 Selected Network Virtualization Software and Tools


	8.2 Virtual Machine Management with QEMU ☁️
	8.2.1 Install QEMU
	8.2.2 Create a Virtual Hard Disk with QEMU
	8.2.3 Install Ubuntu on the Virtual Hard Disk
	8.2.4 Start Ubuntu with QEMU
	8.2.5 Emulate Raspberry Pi with QEMU
	8.2.6 Resources

	8.3 Manage VM guests with virsh ☁️

	9 IAAS
	9.1 Introduction ☁️
	9.2 Amazon Web Services ☁️
	9.2.1 AWS Products
	9.2.1.1 Virtual Machine Infrastructure as a Services
	9.2.1.2 Container Infrastructure as a Service
	9.2.1.3 Serverless Compute using AWS Lambda
	9.2.1.4 Serverless Compute using AWS Lambda
	9.2.1.5 Storage
	9.2.1.6 Databases

	9.2.2 Locations
	9.2.3 Creating an account
	9.2.4 AWS Command Line Interface
	9.2.4.1 Introduction
	9.2.4.2 Prerequisites
	9.2.4.2.1 Install CLI
	9.2.4.2.2 Configure CLI


	9.2.5 AWS Admin Access
	9.2.5.1 Introduction
	9.2.5.2 Prerequisites
	9.2.5.3 Setting up admin access using AWS CLI
	9.2.5.3.1 Create an admin security group
	9.2.5.3.2 Assign a security policy to the created group granting full admin access


	9.2.6 Understanding the free tier
	9.2.7 Important Notes
	9.2.8 Introduction to the AWS console
	9.2.8.1 Starting a VM
	9.2.8.1.1 Setting up key pair

	9.2.8.2 Stopping a VM

	9.2.9 Access from the Command Line
	9.2.10 Access from Python
	9.2.11 Boto
	9.2.12 libcloud

	9.3 Microsoft Azure ☁️
	9.3.1 Products
	9.3.1.1 Virtual Machine Infrastructure as a Services
	9.3.1.2 Container Infrastructure as a Service
	9.3.1.3 Databases
	9.3.1.4 Networking

	9.3.2 Registration
	9.3.3 Introduction to the Azure Portal
	9.3.4 Creating a VM
	9.3.5 Create a Ubuntu Server 18.04 LTS Virtual Machine in Azure
	9.3.6 Remote access the Virtual Machine
	9.3.7 Starting a VM
	9.3.8 Stopping the VM
	9.3.9 Exercises

	9.4 What is IBM Watson and why is it important? ☁️
	9.4.1 How can we use Watson?
	9.4.2 Creating an account
	9.4.3 Understanding the free tier

	9.5 Google IaaS Cloud Services ☁️
	9.5.1 Cloud Computing Services and Products
	9.5.1.1 Overview
	9.5.1.2 AI and Machine Learning
	9.5.1.3 API management
	9.5.1.4 Compute
	9.5.1.5 Data Analytics
	9.5.1.6 Databases
	9.5.1.7 Developer Tools
	9.5.1.8 Internet of Things
	9.5.1.9 Management Tools
	9.5.1.10 Media and Migration

	9.5.2 Migration
	9.5.2.1 Networking
	9.5.2.2 Security
	9.5.2.3 Storage
	9.5.2.4 Google IaaS Example
	9.5.2.5 Google Cloud Console Overview
	9.5.2.6 Use GCP Resources
	9.5.2.7 Project navigation
	9.5.2.8 Navigate Google Cloud Services
	9.5.2.9 Section pinning
	9.5.2.10 View activity across your GCP resources
	9.5.2.11 Search across Cloud Console
	9.5.2.12 Get support anytime
	9.5.2.13 Manage users and permissions
	9.5.2.14 Access the command line from your browser

	9.5.3 Create a VM Example
	9.5.3.1 Create a virtual machine instance
	9.5.3.2 VM instances page
	9.5.3.3 Connect to your instance
	9.5.3.4 Run a simple web server
	9.5.3.5 Visit your application
	9.5.3.6 Cleanup


	9.6 OpenStack ☁️
	9.6.1 Introduction
	9.6.2 OpenStack Architecture
	9.6.3 Components
	9.6.4 Core Services
	9.6.4.1 Nova - Compute
	9.6.4.2 Glance - Image Services
	9.6.4.3 Swift - Object Storage
	9.6.4.4 Cinder - Block Storage
	9.6.4.5 Neutron - Networking
	9.6.4.6 Horizon - Dashboard
	9.6.4.7 Keystone - Identity Service
	9.6.4.8 Ceilometer - Telemetry
	9.6.4.9 Heat - Orchestration

	9.6.5 Access from Python and Scripts
	9.6.5.1 Libcloud
	9.6.5.2 DevStack


	9.7 Python Libcloud ☁️
	9.7.1 Service categories
	9.7.1.0.1 Compute
	9.7.1.0.2 Key Pair Management
	9.7.1.0.3 Block Storage

	9.7.2 Installation
	9.7.3 Quick Example
	9.7.4 Managing your cloud credentials
	9.7.5 Working with cloud services
	9.7.5.1 Authenticating with cloud providers
	9.7.5.1.1 Amazon AWS
	9.7.5.1.2 Azure
	9.7.5.1.2.1 Azure Classic Driver
	9.7.5.1.2.2 Azure New Driver

	9.7.5.1.3 OpenStack
	9.7.5.1.4 Google

	9.7.5.2 Invoking services
	9.7.5.2.1 Creating Nodes
	9.7.5.2.2 Listing Nodes
	9.7.5.2.3 Starting Nodes
	9.7.5.2.4 Stoping Nodes


	9.7.6 Cloudmesh Community Program to Manage Clouds
	9.7.7 Amazon Simple Storage Service S3 via libcloud 🅾️
	9.7.7.1 Access key
	9.7.7.2 Create a new bucket on AWS S3
	9.7.7.3 List Containers
	9.7.7.4 List container objects
	9.7.7.5 Upload a file
	9.7.7.6 References


	9.8 AWS Boto 🅾️ ☁️
	9.8.1 Boto versions
	9.8.2 Boto Installation
	9.8.3 Access key
	9.8.4 Boto configuration
	9.8.5 Boto configuration with cloudmesh
	9.8.6 EC2 interface of Boto
	9.8.6.0.1 Create connection

	9.8.7 List EC2 instances
	9.8.7.0.1 Launch a new instance
	9.8.7.0.2 Check running instances
	9.8.7.0.3 Stop instance
	9.8.7.0.4 Terminate instance
	9.8.7.1 Reboot instances

	9.8.8 Amazon S3 interface of Boto
	9.8.8.0.1 Create connection
	9.8.8.0.2 Create new bucket in S3
	9.8.8.0.3 Upload data
	9.8.8.0.4 List all buckets
	9.8.8.0.5 List all objects in a bucket
	9.8.8.0.6 Delete object
	9.8.8.0.7 Delete bucket

	9.8.9 References
	9.8.10 Excersises


	10 MAPREDUCE
	10.1 Introduction to Mapreduce ☁️
	10.1.1 MapReduce Algorithm
	10.1.1.1 MapReduce Example: Word Count

	10.1.2 Hadoop MapReduce and Hadoop Spark
	10.1.2.1 Apache Spark
	10.1.2.2 Hadoop MapReduce
	10.1.2.3 Key Differences

	10.1.3 References

	10.2 HADOOP
	10.2.1 Hadoop ☁️
	10.2.1.1 Hadoop and MapReduce
	10.2.1.2 Hadoop EcoSystem
	10.2.1.3 Hadoop Components
	10.2.1.4 Hadoop and the Yarn Resource Manager
	10.2.1.5 PageRank

	10.2.2 Installation of Hadoop ☁️
	10.2.2.1 Releases
	10.2.2.2 Prerequisites
	10.2.2.3 User and User Group Creation
	10.2.2.4 Configuring SSH
	10.2.2.5 Installation of Java
	10.2.2.6 Installation of Hadoop
	10.2.2.7 Hadoop Environment Variables

	10.2.3 Hadoop Distributed File System (Hadoop HDFS) ☁️
	10.2.3.1 Introduction
	10.2.3.2 Features
	10.2.3.3 HDFS Components
	10.2.3.3.1 NameNode and DataNodes

	10.2.3.4 Usage
	10.2.3.4.1 Java Client API
	10.2.3.4.2 FS Shell

	10.2.3.5 References
	10.2.3.6 Exercises

	10.2.4 Apache HBase ☁️
	10.2.4.1 Introduction
	10.2.4.2 Features
	10.2.4.3 Configuration
	10.2.4.4 Usage
	10.2.4.4.1 Connect to HBase.
	10.2.4.4.2 Create a table
	10.2.4.4.3 Describe a table
	10.2.4.4.4 HBase MapReduce job

	10.2.4.5 References

	10.2.5 Hadoop Virtual Cluster Installation Using Cloudmesh 🅾️ ☁️
	10.2.5.1 Cloudmesh Cluster Installation
	10.2.5.1.1 Create Cluster
	10.2.5.1.2 Check Created Cluster
	10.2.5.1.3 Delete Cluster

	10.2.5.2 Hadoop Cluster Installation
	10.2.5.2.1 Create Hadoop Cluster
	10.2.5.2.2 Delete Hadoop Cluster

	10.2.5.3 Advanced Topics with Hadoop
	10.2.5.3.1 Hadoop Virtual Cluster with Spark and/or Pig
	10.2.5.3.2 Word Count Example on Spark



	10.3 SPARK
	10.3.1 Spark Lectures ☁️
	10.3.1.1 Motivation for Spark
	10.3.1.2 Spark RDD Operations
	10.3.1.3 Spark DAG
	10.3.1.4 Spark vs. other Frameworks

	10.3.2 Installation of Spark ☁️
	10.3.2.1 Prerequisites
	10.3.2.2 Installation of Java
	10.3.2.3 Install Spark with Hadoop
	10.3.2.4 Spark Environment Variables
	10.3.2.5 Test Spark Installation
	10.3.2.6 Install Spark With Custom Hadoop
	10.3.2.7 Configuring Hadoop
	10.3.2.8 Test Spark Installation

	10.3.3 Spark Streaming ☁️
	10.3.3.1 Streaming Concepts
	10.3.3.2 Simple Streaming Example
	10.3.3.3 Spark Streaming For Twitter Data
	10.3.3.3.1 Step 1
	10.3.3.3.2 Step 2
	10.3.3.3.3 Step 3
	10.3.3.3.4 Step 4
	10.3.3.3.5 step 5
	10.3.3.3.6 step 6


	10.3.4 User Defined Functions in Spark ☁️
	10.3.4.1 Resources
	10.3.4.2 Instructions for Spark installation
	10.3.4.2.1 Linux

	10.3.4.3 Windows
	10.3.4.4 MacOS
	10.3.4.5 Instructions for creating Spark User Defined Functions
	10.3.4.5.1 Example: Temperature conversion
	10.3.4.5.1.1 Description about data set
	10.3.4.5.1.2 How to write a python program with UDF
	10.3.4.5.1.3 How to execute a python spark script
	10.3.4.5.1.4 Filtering and sorting


	10.3.4.6 Instructions to install and run the example using docker


	10.4 HADOOP ECOSYSTEM
	10.4.1 ELASTIC MAP REDUCE
	10.4.1.1 AWS Elastic Map Reduce (AWS EMR) ☁️
	10.4.1.1.1 Introduction
	10.4.1.1.2 Why EMR?
	10.4.1.1.3 Understanding Clusters and Nodes
	10.4.1.1.4 Prerequisites
	10.4.1.1.5 Creating EMR Cluster Using CLI
	10.4.1.1.5.1 Create Security Roles
	10.4.1.1.5.2 Setting up authentication
	10.4.1.1.5.3 Determine the applicable subnet
	10.4.1.1.5.4 Create the EMR cluster
	10.4.1.1.5.5 Check the status of your cluster
	10.4.1.1.5.6 Terminate your cluster

	10.4.1.1.6 Creating EMR Cluster Using AWS Web Console
	10.4.1.1.6.1 Set up authentication
	10.4.1.1.6.2 Create the EMR cluster
	10.4.1.1.6.3 View status and terminate EMR cluster
	10.4.1.1.6.4 Submit Work to a Cluster
	10.4.1.1.6.5 Processing Data

	10.4.1.1.7 AWS Storage
	10.4.1.1.8 Create EMR in AWS
	10.4.1.1.8.1 Create the buckets
	10.4.1.1.8.2 Create Key Pairs

	10.4.1.1.9 Create Step Execution – Hadoop Job
	10.4.1.1.10 Create a Hive Cluster
	10.4.1.1.10.1 Create a Hive Cluster - Screen shots

	10.4.1.1.11 Create a Spark Cluster
	10.4.1.1.11.1 Create a Spark Cluster - Screenshots

	10.4.1.1.12 Run an example Spark job on an EMR cluster
	10.4.1.1.12.1 Spark Job Description
	10.4.1.1.12.2 Creating the S3 bucket
	10.4.1.1.12.3 Copy files to S3
	10.4.1.1.12.4 Execute the Spark job on a running cluster
	10.4.1.1.12.5 Execute the Spark job while creating clusters
	10.4.1.1.12.6 View the results of the Spark job

	10.4.1.1.13 Conclusion


	10.4.2 TWISTER
	10.4.2.1 Twister2 ☁️
	10.4.2.1.1 Introduction
	10.4.2.1.2 Twister2 API’s
	10.4.2.1.2.1 TSet API
	10.4.2.1.2.2 Task API

	10.4.2.1.3 Operator API
	10.4.2.1.3.1 Resources


	10.4.2.2 Twister2 Installation ☁️
	10.4.2.2.1 Prerequisites
	10.4.2.2.1.1 Maven Installation
	10.4.2.2.1.2 OpenMPI Installation
	10.4.2.2.1.3 Install Extras
	10.4.2.2.1.4 Compiling Twister2
	10.4.2.2.1.5 Twister2 Distribution


	10.4.2.3 Twister2 Examples ☁️
	10.4.2.3.1 Submitting a Job
	10.4.2.3.2 Batch WordCount Example


	10.4.3 HADOOP RDMA ☁️
	10.4.3.1 Launching a Virtual Hadoop Cluster on Bare-metal InfiniBand Nodes with SR-IOV on Chameleon
	10.4.3.2 Launching Virtual Machines Manually
	10.4.3.3 Extra Initialization when Launching Virtual Machines
	10.4.3.4 Important Note for Tearing Down Virtual Machines and Deleting Network Ports



	11 CONTAINER
	11.1 Introduction to Containers ☁️
	11.1.1 Motivation - Microservices
	11.1.2 Motivation - Serverless Computing
	11.1.3 Docker
	11.1.4 Docker and Kubernetes

	11.2 DOCKER
	11.2.1 Introduction to Docker ☁️
	11.2.1.1 Docker Engine
	11.2.1.2 Docker Architecture
	11.2.1.3 Docker Survey

	11.2.2 Running Docker Locally ☁️
	11.2.2.1 Instillation for OSX
	11.2.2.2 Installation for Ubuntu
	11.2.2.3 Installation for Windows 10
	11.2.2.4 Testing the Install

	11.2.3 Dockerfile ☁️
	11.2.3.1 Specification
	11.2.3.2 References

	11.2.4 Docker Hub ☁️
	11.2.4.1 Create Docker ID and Log In
	11.2.4.2 Searching for Docker Images
	11.2.4.3 Pulling Images
	11.2.4.4 Create Repositories
	11.2.4.5 Pushing Images
	11.2.4.6 Resources

	11.2.5 Docker Compose ☁️
	11.2.5.1 Introduction
	11.2.5.2 Installation
	11.2.5.2.1 Install on MacOS
	11.2.5.2.2 Install on Linux
	11.2.5.2.3 Install on Windows 10
	11.2.5.2.3.1 System Requirements

	11.2.5.2.4 Test the installation

	11.2.5.3 Docker Compose File Directives
	11.2.5.3.1 Configuration
	11.2.5.3.1.1 build
	11.2.5.3.1.2 context
	11.2.5.3.1.3 ARGS
	11.2.5.3.1.4 command
	11.2.5.3.1.5 depends_on
	11.2.5.3.1.6 image
	11.2.5.3.1.7 ports
	11.2.5.3.1.8 volumes


	11.2.5.4 Usages
	11.2.5.4.1 Build A Service depending on MongoDB



	11.3 DOCKER PAAS
	11.3.1 Docker Clusters ☁️
	11.3.2 Docker Swarm ☁️
	11.3.2.1 Terminology
	11.3.2.2 Creating a Docker Swarm Cluster
	11.3.2.3 Create a Swarm Cluster with VirtualBox
	11.3.2.4 Initialize the Swarm Manager Node and Add Worker Nodes
	11.3.2.5 Deploy the application on the swarm manager

	11.3.3 Docker and Docker Swarm on FutureSystems ☁️
	11.3.3.1 Getting Access
	11.3.3.2 Creating a service and deploy to the swarm cluster
	11.3.3.3 Create your own service
	11.3.3.4 Publish an image privately within the swarm cluster
	11.3.3.5 Exercises

	11.3.4 Hadoop with Docker ☁️
	11.3.4.1 Building Hadoop using Docker
	11.3.4.2 Hadoop Configuration Files
	11.3.4.3 Virtual Memory Limit
	11.3.4.4 hdfs Safemode leave command
	11.3.4.5 Examples
	11.3.4.5.1 Statistical Example with Hadoop
	11.3.4.5.1.1 Base Location
	11.3.4.5.1.2 Input Files
	11.3.4.5.1.3 Compilation
	11.3.4.5.1.4 Archiving Class Files
	11.3.4.5.1.5 HDFS for Input/Output
	11.3.4.5.1.6 Run Program with a Single Input File
	11.3.4.5.1.7 Result for Single Input File
	11.3.4.5.1.8 Run Program with Multiple Input Files
	11.3.4.5.1.9 Result for Multiple Files

	11.3.4.5.2 Conclusion

	11.3.4.6 Refernces

	11.3.5 Docker Pagerank ☁️
	11.3.5.1 Use the automated script
	11.3.5.2 Compile and run by hand

	11.3.6 Apache Spark with Docker ☁️
	11.3.6.1 Pull Image from Docker Repository
	11.3.6.2 Running the Image
	11.3.6.2.1 Running interactively
	11.3.6.2.2 Running in the background

	11.3.6.3 Run Spark
	11.3.6.3.1 Run Spark in Yarn-Client Mode
	11.3.6.3.2 Run Spark in Yarn-Cluster Mode

	11.3.6.4 Observe Task Execution from Running Logs of SparkPi
	11.3.6.5 Write a Word-Count Application with Spark RDD
	11.3.6.5.1 Launch Spark Interactive Shell
	11.3.6.5.2 Program in Scala
	11.3.6.5.3 Launch PySpark Interactive Shell
	11.3.6.5.4 Program in Python

	11.3.6.6 Docker Spark Examples
	11.3.6.6.1 K-Means Example
	11.3.6.6.2 Join Example
	11.3.6.6.3 Word Count

	11.3.6.7 Interactive Examples
	11.3.6.7.1 Stop Docker Container
	11.3.6.7.2 Start Docker Container Again
	11.3.6.7.3 Remove Docker Container



	11.4 KUBERNETES
	11.4.1 Introduction to Kubernetes ☁️
	11.4.1.1 What are containers?
	11.4.1.2 Terminology
	11.4.1.3 Kubernetes Architecture
	11.4.1.4 Minikube
	11.4.1.4.1 Install minikube
	11.4.1.4.2 Start a cluster using Minikube
	11.4.1.4.3 Create a deployment
	11.4.1.4.4 Expose the servi
	11.4.1.4.5 Check running status
	11.4.1.4.6 Call service api
	11.4.1.4.7 Take a look from Dashboard
	11.4.1.4.8 Delete the service and deployment
	11.4.1.4.9 Stop the cluster

	11.4.1.5 Interactive Tutorial Online

	11.4.2 Using Kubernetes on FutureSystems ☁️
	11.4.2.1 Getting Access
	11.4.2.2 Example Use
	11.4.2.3 Exercises


	11.5 Running Singularity Containers on Comet ☁️
	11.5.1 Background
	11.5.2 Tutorial Contents
	11.5.3 Why Singularity?
	11.5.4 Hands-On Tutorials
	11.5.5 Downloading & Installing Singularity
	11.5.5.1 Download & Unpack Singularity
	11.5.5.2 Configure & Build Singularity
	11.5.5.3 Install & Test Singularity

	11.5.6 Building Singularity Containers
	11.5.6.1 Upgrading Singularity

	11.5.7 Create an Empty Container
	11.5.8 Import Into a Singularity Container
	11.5.9 Shell Into a Singularity Container
	11.5.10 Write Into a Singularity Container
	11.5.11 Bootstrapping a Singularity Container
	11.5.12 Running Singularity Containers on Comet
	11.5.12.1 Transfer the Container to Comet
	11.5.12.2 Run the Container on Comet
	11.5.12.3 Allocate Resources to Run the Container
	11.5.12.4 Integrate the Container with Slurm
	11.5.12.5 Use Existing Comet Containers

	11.5.13 Using Tensorflow With Singularity
	11.5.14 Run the job
	11.5.15 Resources ☁️
	11.5.15.1 Tutorialspoint


	11.6 Exercises ☁️

	12 SERVERLESS
	12.1 FaaS ☁️
	12.1.1 Introduction
	12.1.2 Serverless Computing
	12.1.3 Faas provider
	12.1.4 Resources
	12.1.5 Usage Examples

	12.2 AWS Lambda ☁️
	12.2.1 AWS Lambda Features
	12.2.2 Understanding Function limitations
	12.2.2.1 Execution Time
	12.2.2.2 Function size

	12.2.3 Understanding the free Tier
	12.2.4 Writing your fist Lambda function
	12.2.5 AWS Lambda Usecases
	12.2.6 AWS Lambda Example

	12.3 Apache OpenWhisk ☁️
	12.3.1 OpenWhisk Workflow
	12.3.1.1 The Action and Nginx
	12.3.1.2 Controller: The System’s Interface
	12.3.1.3 CouchDB
	12.3.1.4 Load Balancer
	12.3.1.5 Kafka
	12.3.1.6 Invoker
	12.3.1.7 CouchDB again

	12.3.2 Setting Up OpenWhisk Locally
	12.3.2.1 Debugging quick-start

	12.3.3 Hello World in OpenWhisk
	12.3.4 Creating a custom action

	12.4 Kubeless ☁️
	12.4.1 Introduction
	12.4.2 Programing model
	12.4.3 System Architecture

	12.5 Microsoft Azure Function 🅾️ ☁️
	12.6 Google Cloud Functions ☁️
	12.6.1 Google Cloud Function Example

	12.7 OpenFaaS ☁️
	12.7.1 OpenFaas Components and Architecture
	12.7.1.1 API Gateway
	12.7.1.2 Function Watchdog
	12.7.1.3 OpenFaas CLI
	12.7.1.4 Monitoring

	12.7.2 OpenFaas in Action
	12.7.2.1 Prerequistics
	12.7.2.2 Single Node Cluster
	12.7.2.3 Deploy OpenFaas
	12.7.2.4 To Run OpenFaas

	12.7.3 OpenFaaS Function with Python

	12.8 OpenLamda ☁️
	12.8.1 Suggested Materials
	12.8.2 Development
	12.8.3 OpenLambda
	12.8.4 Getting Started
	12.8.4.1 Install Dependencies
	12.8.4.2 Start a Test Cluster

	12.8.5 Administration
	12.8.5.1 Writing Handlers
	12.8.5.2 Cluster Directory

	12.8.6 Configuration
	12.8.7 Architecture


	13 MESSAGING
	13.1 MQTT ☁️
	13.1.1 Introduction
	13.1.2 Publish Subscribe Model
	13.1.2.1 Topics
	13.1.2.2 Callbacks
	13.1.2.3 Quality of Service

	13.1.3 Secure MQTT Services
	13.1.3.1 Using TLS/SSL
	13.1.3.2 Using OAuth

	13.1.4 Integration with Other Services
	13.1.5 MQTT in Production
	13.1.6 Installation
	13.1.6.1 MacOS install
	13.1.6.2 MacOS Advanced Service install
	13.1.6.3 Ubuntu install
	13.1.6.4 Raspberry Pi Setup
	13.1.6.4.1 Broker
	13.1.6.4.2 Client


	13.1.7 Server Usecase
	13.1.8 IoT Use Case with a Raspberry PI
	13.1.8.1 Requirements and Setup
	13.1.8.2 Results

	13.1.9 Conclusion
	13.1.10 Exercises

	13.2 Python Apache Avro ☁️
	13.2.1 Download, Unzip and Install
	13.2.2 Defining a schema
	13.2.3 Serializing
	13.2.4 Deserializing
	13.2.5 Resources


	14 GO
	14.1 Introduction to Go for Cloud Computing ☁️
	14.1.1 Organization of the chapter
	14.1.2 References

	14.2 Installation ☁️
	14.3 Editors Supporting Go ☁️
	14.4 Go Language ☁️
	14.4.1 Concurrency in Go
	14.4.1.1 GoRoutines (execution)
	14.4.1.2 Channels (communication)
	14.4.1.3 Select (coordination)


	14.5 Libraries ☁️
	14.6 Go CMD ☁️
	14.6.1 CMD
	14.6.2 DocOpts

	14.7 Go REST ☁️
	14.7.1 Gorilla
	14.7.2 REST, RESTful
	14.7.3 Router
	14.7.4 Full code

	14.8 Open API ☁️
	14.8.1 Install from Homebrew
	14.8.2 serve specification UI
	14.8.3 validate a specification
	14.8.4 Generate a Go OpenAPI server
	14.8.5 generate a Go OpenAPI client
	14.8.6 generate a spec from the source
	14.8.7 generate a data model
	14.8.8 other editors

	14.9 Create an Echo service using Swagger and Go
	14.9.1 Dependencies
	14.9.2 Initialize a Golang project
	14.9.3 Define APIs and generate code in Go
	14.9.4 Implement the functionality
	14.9.5 Run and test the server
	14.9.6 References

	14.10 Go Cloud ☁️
	14.10.1 Golang Openstack Client
	14.10.2 OpenStack from Go
	14.10.2.1 GohperCloud
	14.10.2.1.1 Authentication
	14.10.2.1.2 Virtual machines
	14.10.2.1.3 Resources



	14.11 Go Links ☁️
	14.11.1 Introductory Material
	14.11.2 The GO Language
	14.11.3 How popular is Go?
	14.11.4 OpenAPI and Go

	14.12 Exercises ☁️

	15 REFERENCES

