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1. Motivation  
Our research is to clarify which applications are best suited for Clouds; which require HPC and which can use 
both effectively and here we discuss a variety of application varying from simple pleasing parallel problems 
through sophisticated parallel data mining. This work is a collaboration between Cyberinfrastructure, 
bioinformatics and biology on large scale data intensive life sciences problems formulated as a pipeline of data 
storage, analysis, and visualization[1]. At the core of the pipeline, parallel programming paradigms such as 
MapReduce and MPI provide powerful large-scale data processing capabilities. The long-term goal is enabling 
cost effective and readily available analysis tool repository that removes the barrier of research in broader 
community -- making parallel high performance data analytics in the Cloud a reality.  

2. Integrating Scientific Challenge: A Typical Bioinformatics Pipeline 
New sequencing technology provides data samples with a throughput of 1 trillion base pairs per day and this 
rate will increase. A typical data pipeline is shown in Fig. 1 with sequencers producing DNA samples that are 
assembled and subject to further analysis including BLAST-like comparison with existing datasets as well as 
clustering, dimension reduction and visualization to identify new gene families[2]. The initial parts of the 
pipeline fit the MapReduce (e.g. Hadoop) or many-task Cloud (e.g. Azure) model but the latter stages involve 
parallel linear algebra for the data mining. It is highly desirable to simplify the construction of distributed 
sequence analysis pipelines with a unified programming model, which motivated us to design and implement 
Twister4Azure. Twister[3, 4] and Twister4Azure[5] interpolate between MPI and MapReduce and, suitably 
configured, can mimic their characteristics, and, more interestingly, can be positioned as a programming model 
that has the performance of MPI and the fault tolerance and dynamic flexibility of the original MapReduce. 

 
Figure 1  A Pipeline for Metagenomics Data Analysis 

3. Technologies and Applications 
Our applications can be classified into three main categories based on their execution pattern, namely pleasingly 
parallel computations, MapReduce computations and iterative MapReduce computations. Twister4Azure  
distributed decentralized iterative MapReduce runtime for Windows Azure Cloud, which is the successor to 
MRRoles4Azure (Fig. 2) MapReduce framework and the classic Cloud pleasingly parallel framework [6], was used 
as the distributed cloud data processing framework for our scientific computations. Twister4Azure (Fig. 3) 
extends the familiar, easy-to-use MapReduce programming model with iterative extensions, enabling a wide 



array of large scale iterative as well as non-iterative data analysis and scientific applications to utilize Azure 
platform easily and efficiently in a fault-tolerant manner. It supports all three categories of applications.   

 

 

Figure 2 MRRoles4Azure Architecture Figure 3 Twister4Azure programming model 

Twister4Azure utilizes the eventually-consistent, high-latency Azure cloud services effectively to deliver 
performance comparable to traditional (non-iterative) MapReduce runtimes and outperforms MapReduce for 
iterative computations. Twister4Azure provides multi-level caching of data across iterations as well as among 
workers running on the same compute instance and utilizes a novel hybrid task scheduling mechanism to 
perform cache aware scheduling with minimal overhead. Twister4Azure also supports data broadcasting, 
collective communication primitives as well as invoking of multiple MapRedue applications inside an iteration.  

3.1 Pleasingly parallel Computations  
We performed Cap3 sequence assembly (Fig. 4), BLAST+ sequence search and dimension reduction interpolation 
computations on Azure using this framework. The performance and scalability are comparable to traditional 
MapReduce runtimes [6]. For Cap3, we assembled up to 4096 FASTA files (each containing 458 reads) in less 
than one hour using 128 Azure small instances with a cost of around 16$. With BLAST+, the execution of 76800 
queries using 16 Azure large instances was less than one hour with a cost of around 12$.  

3.2 MapReduce Type Computations 
We performed Smith Waterman-GOTOH (SWG) pairwise sequence alignment computations on Azure [3][4] with 
performance and scalability comparable to the traditional MapReduce frameworks running on traditional 
clusters (Fig. 5). We were able to perform up to 123 million sequence alignments using 192 Azure small 
instances with a cost of around 25$, which was less than the cost it took to run using Amazon ElasticMapReduce. 

3.3 Iterative MapReduce Type Computations 
The third and most important category of computation is the iterative MapReduce type applications. These 
include majority of data mining, machine learning, dimension reduction, clustering and many more applications. 
We performed KMeans Clustering (Fig. 6) and Multi-Dimensional Scaling (MDS) (Fig. 7) scientific iterative 
MapReduce computations on Azure cloud. MDS consists of two MapReduce computations (BCCalc and 
StressCalc) per iteration and contains parallel linear algebra computations as its core. Fig. 6 shows 
performance measurements of Azure are comparable or a factor of 2 to 4 better than those of the traditional 
MapReduce runtimes deployed on up to 256 instances and for jobs with tens of thousands of tasks. 



  
Figure 4 Cap3 Sequence Assembly on 128 instances/cores Figure 5  SWG Pairwise Distance Calculation 
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Figure 6 KMeans Clustering Performance Figure 7 MDS Performance 

  
  

Figure 8 Using AllGather primitive together with MMF caching 

4. Performance Considerations for Large Scale Iterative Applications on Azure 
It is possible to optimize iterative MapReduce computations by caching the loop-invariant input data across the 
iterations. We use the Azure Blob storage as the input data storage for Twister4Azure computations. 
Twister4Azure supports local instance (disk) storage caching as the simplest form of data caching. Local storage 
caching allows the subsequent iterations (or different applications or tasks in the same iteration) to reuse the 
input data from the local storage rather than fetching them from the Azure Blob Storage. This resulted in 
speedups of more than 50 % over a non-cached MDS computation of the sample use case.  

Twister4Azure also supports the ‘in-memory caching’ of the loop-invariant data across iterations. With in-
memory caching, Twister4Azure fetch the data from the Azure Blob storage, parse and load them in to the 
memory during the first iteration. After the first iteration, these data products remain in memory throughout 
the course of the computation for reuse by the subsequent iterations, eliminating the overhead of reading and 
parsing data from disk. In-memory caching improved the average run time of the BCCalc map task by 
approximately 36% and the total run time by approximately 22% over disk based caching. Twister4Azure 
performs cache-invalidation for in-memory cache using Least Recently Used (LRU) policy. In a typical 



Twister4Azure computation, the loop-invariant input data stays in the in-memory cache throughout the 
computation, while Twister4Azure caching policy will evict broadcast data for iterations after it is used. 

When using in-memory caching, we started to notice occasional non-deterministic fluctuations of the Map 
function execution times in some of the tasks. These slow tasks, even though few, affect the performance of the 
computation significantly because the execution time of a whole iteration is of course dependent on the slowest 
task of the iteration. Even though Twister4Azure supports duplicate execution of the slow tasks, duplicate tasks 
for non-initial iterations are often more costlier than the total execution time of a slow task that uses data from 
a cache, as the duplicate task would have to fetch the data from the Azure Blob Storage. We were able to 
narrow down the cause of the fluctuation anomaly to the use of large amount of memory, including the in-
memory data cache, within a single .NET process. We switched to use of memory-mapped files, which can be 
shared across multiple processes and can be used to facilitate inter-process communication.  

A key idea of our research is a Map-Collective model supported by Twister4Azure where each architecture is 
supported by an appropriate implementation of each collective operation. Fig. 8 shows the results for MDS using 
an AllGather iterative MapReduce Collective primitive similar to the MPI AllGather communication primitive. 
The left column labels Execution time of tasks in each iteration. The taller bars represent the MDSBCCalc 
computation, while the shorter bars represent the MDSStressCalc computation.  A pair of BCCalc and 
StressCalc bars represents an iteration. Number of active map tasks of the computation at a given time (A 
500 second view from the 3rd iteration onwards). The wider bars represent BCCalc computations, while the 
narrower bars represent StressCalc computations. The gaps between the computations represent the 
overhead of task scheduling, reduce task execution, and merge task execution and data broadcasting. 

The AllGather primitive broadcasts the Map Task outputs to all the computational nodes, and assembles them 
together in the recipient nodes and schedules the next iteration or the application. Usage of the AllGather 
primitive in MDS BCCalc computation eliminates the need for reduce, merge and the broadcasting steps in that 
particular computatation. In addition to improving the performance, this primitive also improves the usability of 
the system as it eliminates the overhead of implementing reduce and/or merge functions. Communication 
primitives also allow us to optimize the given operation transparently to the users where Fig. 8 presents an 
execution trace of a computation that utilized both memory mapped files and the AllGather primitive.  

5. Related Work 
CloudMapReduce [7] for Amazon Web Services (AWS) and Google AppEngine MapReduce [8] follow an 
architecture similar to MRRoles4Azure, in which they utilize the cloud services as the building blocks. Amazon 
ElasticMapReduce [9] offers Apache Hadoop as a hosted service on the Amazon AWS cloud environment. 
However, none of them support iterative MapReduce. Spark [10] is a framework implemented using Scala to 
support MapReduce like operations to query and process read-only data collections, while supporting in-
memory caching and re-use of data products. Azure HPC scheduler is a new Azure feature that enables the users 
to launch and manage high-performance computing in the Azure environment. Azure HPC scheduler supports 
parametric sweeps, Message Passing Interface (MPI) and LINQ to HPC applications. Microsoft Daytona [11] is a 
recently announced iterative MapReduce runtime developed by Microsoft Research for Microsoft Azure Cloud 
Platform. It builds on some of the ideas of the earlier Twister system. Haloop [12] extends Apache Hadoop to 
support iterative applications and supports caching of loop-invariant data as well as loop-aware scheduling. 



5. Conclusion and Future Work 
We have developed Twister4Azure, a novel iterative MapReduce distributed computing runtime for Azure cloud. 
We implemented four significant scientific applications using Twister4Azure – MDS, Kmeans Clustering, SWG 
sequence alignment and BLAST+. Twister4Azure enables the users to easily and efficiently perform large-scale 
iterative data analysis for scientific applications on a commercial cloud platform. Twister4Azure and Java HPC 
Twister are key to our cross platform new programming paradigm supporting large scale data analytics. 

The overall major challenge for this research is building a system capable of handling the incredible increases in 
dataset sizes while solving the technical challenges of portability with scaling performance and fault tolerance 
using an attractive powerful programming model. Further, these challenges must be met for both computation 
and storage. Cloud enables persistent storage like Azure Blob. MapReduce leverages the possibility of 
collocating data and compute and provides more flexibility in co-locating data and computing. 
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