
Scalable Dimension Reduction for Large Abstract Data Visualization

Seung-Hee Bae, Judy Qiu, Geoffrey Fox
School of Informatics and Computing

Indiana University
Bloomington, IN

{sebae, xqiu, gcf}@cs.indiana.edu

Abstract—The ability to browse vast amounts of scientific
data is critical to facilitate science discovery. High performance
Multidimensional Scaling (MDS) algorithm makes it a reality
by reducing dimensions so that scientists can gain insight into
data set from a 3D visualization space. As multidimensional
scaling requires quadratics order of physical memory and
computation, a major challenge is to design and implement
parallel MDS algorithms that can run on multicore clusters
for millions of data points. Bases on our early work of
parallel SMACOF algorithm, the authors have developed an
interpolated approach, majorizing interpolation MDS (MI-
MDS). It utilizes the known mapping from a subset of given
in-sample data to effectively reduce computational complexity
with minor cost of approximation. MI-MDS makes it possible
to process huge data set with modest amounts of computation
and memory requirements. Our experimental results show that
the quality of interpolated mapping is comparable to that of
the original SMACOF in a million chemical compounds data,
where we construct a configuration of over two-million out-of-
sample data into target dimension space.

Keywords-Multidimensional Scaling; Parallelism; Interpola-
tion;

I. I NTRODUCTION

Due to the innovative advancement in science and tech-
nologies, the amount of data to be processed or analyzed is
rapidly growing and it is already beyond the capacity of the
most commodity hardware we are using nowadays. To keep
up with such fast development, study for data-intensive sci-
entific data analyses [1] has been already emerging in recent
years. It is a challenge for various computing research com-
munities, such as high-performance computing, database,
and machine learning and data mining communities, how to
deal with such large and high dimensional data in this data
deluge era. Unless developed and implemented carefully to
overcome such limits, techniques will face soon the limit of
usability. Parallelism is not an optional technology any more
but an essential factor for various data mining algorithms,
including dimension reduction algorithms, by the result of
enormous (and keep increasing) size of the data to be dealt
by those algorithms.

Among many data mining areas, such as clustering, clas-
sification, and association rule mining, and so on, dimension
reduction algorithms are used to visualize high-dimensional
data or abstract data into a low-dimensional target space.
Dimension reduction algorithms can be used for the data

visualization which can be applied to following purposes: (1)
representing unknown data distribution structure in human-
perceptible space with respect to the pairwise proximity or
topology of the given data, (2) verifying a certain hypothesis
or conclusion related to the given data by showing the
distribution of the data, and (3) investigating relationship
among the given data by spatial display. This task is also
getting more difficult and challenged by the huge amount of
the given data.

Among the known dimension reduction algorithms, such
as Principal Component Analysis (PCA), Multidimensional
Scaling (MDS) [2], [3], Generative Topographic Mapping
(GTM) [4], and Self-Organizing Maps (SOM) [5], to name
a few, multidimensional scaling (MDS) has been extensively
studied and used in various real application area, such as
biology [6], [7], stock market analysis [8], computational
chemistry [9], and breast cancer diagnosis [10]. In this paper,
we focus on MDS algorithm and we try to investigate two
different methods for the achievement of the scalability: (1)
how to parallelize the well-known MDS algorithm in order
to deal with large-scale data via cluster systems, and (2)
how to reduce the computational complexity and memory
requirement to scale up to millions of points.

Section II briefly defines and introduces the MDS prob-
lem. In Section III, we describe how to parallelize an MDS
algorithm, named SMACOF. The interpolation method for
MDS problem, which reduces the computational complexity
from O(N2) to O(n(N − n)), is illustrated in Section IV,
followed by the conclusion section in Section V.

II. M ULTIDIMENSIONAL SCALING (MDS)

Multidimensional scaling (MDS) [2], [3], [11] is a general
term for techniques of constructing a mapping for generally
high-dimensional data into a target dimension (typically low
dimension) with respect to the given pairwise proximity
information. Mostly, MDS is used for achieving dimension
reduction to visualize high-dimensional or abstract data
into Euclidean low-dimensional space, i.e. two-dimension
or three-dimension.

Generally, the proximity information, which is represented
as anN × N dissimilarity matrix (∆ = [δij ]), whereN is
the number of points (objects) andδij is the dissimilarity
between pointi and j, is given for the MDS problem,



Figure 1. An example of data visualization of 30,000 biological sequences
by an MDS algorithm, which is colored by a clustering algorithm

and the dissimilarity matrix (∆) should agree with the
following constraints: (1) symmetricity (δij = δji), (2)
nonnegativity (δij ≥ 0), and (3) zero diagonal elements
(δii = 0). The objective of MDS techniques is to construct
a configuration of the given high-dimensional data into low-
dimensional Euclidean space, while each distance between
a pair of points in the configuration is approximated to
the corresponding dissimilarity value as much as possible.
The output of MDS algorithms could be represented as
an N × L configuration matrixX, whose rows represent
each data pointsxi (i = 1, . . . , N ) in L-dimensional space.
It is quite straightforward to compute Euclidean distance
betweenxi and xj in the configuration matrixX, i.e.
dij(X) = ‖xi − xj‖, and we are able to evaluate how
well the given points are configured in theL-dimensional
space by using suggested objective functions of MDS, called
STRESS [12] or SSTRESS [13]. Definitions of STRESS (1)
and SSTRESS (2) are following:

σ(X) =
∑

i<j≤N

wij(dij(X) − δij)
2 (1)

σ2(X) =
∑

i<j≤N

wij [(dij(X))2 − (δij)
2]2 (2)

where1 ≤ i < j ≤ N andwij is a weight value, sowij ≥ 0.
As shown in the STRESS and SSTRESS functions, the

MDS problems could be considered as a non-linear opti-
mization problem, which minimizes STRESS or SSTRESS
function in the process of configuringL-dimensional map-
ping of the high-dimensional data.

Fig. 1 is an example of data visualization of 30,000
biological sequence data, which is related to metagenomics
study, by an MDS algorithm. The colors of the points
in Fig. 1 represent the clusters of the data which is generated

by the pairwise clustering algorithm by deterministic anneal-
ing [14]. The data visualization in Fig. 1 shows the value
of dimension reduction algorithms which produced lower
dimensional mapping for the given data. We can see clearly
the clusters without quantifying the quality of clustering
methods statistically.

III. PARALLEL IMPLEMENTATION OF MDS

There are a lot of different algorithms to solve MDS
problem, and Scaling by MAjorizing a COmplicated Func-
tion (SMACOF) [15], [16] is one of them. SMACOF is an
iterative majorization algorithm to solve MDS problem with
STRESS criterion. Although SMACOF has a tendency to
find local minima due to its hill-climbing attribute, it is
still a powerful method since the algorithm, theoretically,
guarantees to decrease STRESS (σ) criterion monotonically.
For the mathematical details of SMACOF algorithm, please
refer to [3].

To parallelize SMACOF, it is essential to ensure load
balanced data decomposition as much as possible. Load
balance is important not only for memory distribution but
also for computation distribution, since parallelizationmakes
implicit benefit to computation as well as memory distribu-
tion, due to less computing per process. We decompose an
N × N matrix to m × n block decomposition, wherem
is the number of block rows andn is the number of block
columns, and the only constraint of the decomposition is
m×n = p, where1 ≤ m, n ≤ p. Thus, each process requires
only approximately1/p of full memory requirements of
SMACOF algorithm. Fig. 2 illustrates how we decompose
eachN × N matrices with 6 processes andm = 2, n = 3.
Without loss of generality, we assumeN%m = N%n = 0
in Fig. 2.

For N ×N matrices, such as∆, V †, B(X [k]), and so on,
each blockMij is assigned to the corresponding processPij ,
and forX [k] andX

[k−1] matrices,N × L matrices where
L is the target dimension, each process has fullN × L
matrices because these matrices are relatively much small
size and it results in reducing a number of additional mes-
sage passing routine calls. By scattering decomposed blocks
to distributed memory, now we are able to run SMACOF
with huge data set as much as distributed memory allows
in the cost of message passing overheads and complicated
implementation. The details of how to parallelize SMACOF
algorithm is illustrated in [17].

In order to analyze the parallel scalability, we experiment
the parallel SMACOF algorithm with real data set, which
is obtained from PubChem database1. We investigated the
scalability of parallel SMACOF by running with different
number of processes, e.g.p = 64, 128, 192, and 256. On the
basis of the data decomposition experimental result in [17],

1PubChem,http://pubchem.ncbi.nlm.nih.gov/



M00 M01 M02

M10 M11 M12

Figure 2. An example of anN × N matrix decomposition of parallel
SMACOF with 6 processes and2 × 3 block decomposition. Dashed line
represents where diagonal elements are.

number of processes

E
la

ps
ed

 T
im

e 
(s

ec
)

210

210.5

211

211.5

212

212.5

213

26 26.5 27 27.5 28

Size

100k

50k

Figure 3. Runtime of parallel SMACOF for 50K and 100K PubChemdata
with respect to the number of processes. We choose balanced decomposition
as much as possible, i.e.8 × 8 for 64 processes. Note that both x and y
axes are log-scaled.

the balanced decomposition has been applied to this process
scaling experiments.

The elapsed time of parallel SMACOF with two large data
sets, 50k and 100k, is shown in Fig. 3, and the corresponding
relative efficiency of Fig. 3 is shown in Fig. 4. Note that both
coordinates are log-scaled ,in Fig. 3. As shown in Fig. 3,
the parallel SMACOF achieved performance improvement
as the number of parallel units (p) increases. However, the

number of processes

E
ffi

ci
en

cy

0.0

0.2

0.4

0.6

0.8

1.0

100 150 200 250

Size

100k

50k

Figure 4. Efficiency of parallel SMACOF for 50K and 100K PubChem
data with respect to the number of processes. We choose balanced decom-
position as much as possible, i.e.8× 8 for 64 processes.

performance enhancement ratio (a.k.a. efficiency) is reduced
asp increases, which is demonstrated in Fig. 4. The reason
of reducing efficiency is that the ratio of message passing
overhead over the assigned computation per each process is
increased due to more message overhead and less computing
portion per process asp increases.

IV. I NTERPOLATION APPROACH TOMDS

As a result of distributed parallelization of SMACOF
algorithm, we can configure a mappings of large high-
dimensional data by utilizing cluster systems. We showed
that we can generate a mapping of 100,000 pubChem data
by parallel SMACOF in Section III through our cluster sys-
tems. However, the computational capability of the parallel
SMACOF is still constrained by theO(N2) memory and
computation requirement, and soon it will meet the resource
limitation as we keep increasing the data size. For instance,
the tested cluster system in Section III has total 1.536 TB of
main memory, but the SMACOF algorithm requires around
1.92 TB of main memory, which is larger than the total main
memory of the cluster system, for running with200, 000
data.

To solve this obstacle, we developed a simple interpo-
lation approach based on pre-mapped MDS result of the
sample of the given data. Our interpolation algorithm is
similar to k nearest neighbor (k-NN) classification [18],
but we approximate new mapping position of the new
point based on the positions ofk-NN, among pre-mapped
subset data, instead of classifying it. For the purpose of
deciding new mapping position in relation to thek-NN
positions, iterative majorization method is applied as in



Total size

S
T

R
E

S
S

0.00

0.02

0.04

0.06

0.08

0.10

1e+06 2e+06 3e+06 4e+06

Figure 5. STRESS value change of Interpolation larger data,such as 1M,
2M, and 4M data points, with 100k sample data. The initial STRESS value
of MDS result of 100k data is0.0719.

Table I
LARGE-SCALE MI-MDS RUNNING TIME (SECONDS) WITH 100K

SAMPLE DATA

1 Million 2 Million 4 Million

731.1567 1449.1683 2895.3414

SMACOF [15], [16] algorithm. The details of mathematical
majorization equations for the proposed out-of-sample MDS
algorithm could be found in [19], and it is called Majorizing
Interpolation MDS (hereafterMI-MDS).

Now, scalability of the proposed interpolation algorithm
is examined as following: we fix the sample data size to
100k, and the interpolated data size is increased from one
millions (1M) to two millions (2M) to four millions (4M).
Then, the STRESS value is measured for each running
result of total data, i.e. 1M + 100k, 2M + 100k, and 4M
+ 100k. The measured STRESS value is shown in Fig. 5.
There are some quality lost between the full MDS running
result with 100k data and the 1M interpolated results based
on that 100k mapping, which is about0.007 difference in
normalized STRESS criteria. However, there is no much
difference between the normalized STRESS value of the 1M,
2M, and 4M interpolated result, although the sample size is
quite small portion of total data and the out-of-sample data
size increases as quadruple. From the above result, we could
consider that the proposed MI-MDS algorithm works well
and scalable if we are given a good enough pre-configured
result which represents well the structure of the given data.
Note that it is not possible to run SMACOF algorithm with
only 200k data points due to memory bound, within the
same system we used.

Sample size

E
la

ps
ed

 ti
m

e 
(s

ec
)

0

5000

10000

15000

20000

25000

100k 100k+1M 100k+2M 100k+4M

MDS

INTP

Figure 6. Running time of Out-of-Sample approach which combine full
MDS running time with sample data (M = 100k) and MI-MDS running
time with different out-of-sample data size, i.e. 1M, 2M, and 4M.

We also measure the runtime of MI-MDS algorithm with
large-scale data set up to 4 million points. Fig. 6 shows
the running time of out-of-sample approach in commulated
bar graph, which represent full MDS running time of sample
data (M = 100k) in red bar and MI-MDS interpolation time
of out-of-sample data (n = 1M, 2M, and 4M) in blue bar on
top of the red bar. As we expected, the running time of MI-
MDS is much faster than full MDS running time in Fig. 6.
Although MI-MDS interpolation running time in Table I is
much smaller than full MDS running time (27006 seconds),
MI-MDS deals with much larger amount of points, i.e.
10, 20, and 40 times larger number of points. Note that
we cannot run parallel SMACOF algorithm [17] with even
200,000 points on the tested sytsem. Even though we assume
that we are able to run parallel SMACOF algorithm with
millions of points on the tested cluster system, the parallel
SMACOF will take 100, 400, and 1600 times longer with
1M, 2M, and 4M data than the running time of parallel
SMACOF with 100k data, due to theO(N2) computational
complexity. As opposed to the approximated full MDS
running time, the proposed MI-MDS interpolation takes
much less time to deal with millions of points than parallel
SMACOF algorithm. In numeric, MI-MDS interpolation is
faster than approximated full parallel MDS running time in
3693.5, 7454.2, and 14923.8 times with 1M, 2M, and 4M
data, correspondingly.

If we extract the MI-MDS running time only with respect
to the out-of-sample data size from Fig. 6, the running time
should be proportional to the number of out-of-sample data
since the sample data size is fixed. Table I shows the exact
running time of MI-MDS interpolation method with respect



to the number of out-of-sample data size (n) based on the
same sample data (M = 100k), and the running time is
almost exactly proportional to the out-of-sample data size
(n) as it should be.

V. CONCLUSION

Large-scale data analysis is a prominent research area
due to the data explosion of almost every domains. Huge
amounts of data are genereated not only from the scientific
and technical area but also from personal life activities,
such as digital pictures, video clips, postings on a per-
sonal blog system or social network media, and so on.
The dimension reduction algorithms aim to generate low-
dimensional human-perceivable configuration which is very
useful to investigate the high-dimensional data sets. Among
many dimension reduction algorithms, we focus on multidi-
mensional scaling (MDS) algorithm in this paper due to its
robustness and high applicability.

We have worked on several ways to improve a well-
known MDS algorithm, called SMACOF [15], [16], with
respect to computing capability. For increasing the possible
number of points generated new configuration in a target
dimension, we have worked on parallelization of SMACOF
algorithm. The parallelization enables SMACOF algorithm
to deal with hundreds of thousands of points via distributed
multicore cluster systems, such as 32 nodes with 768 cores.
Although the parallel SMACOF implementation provides
much more computing power, it cannot be affordable to
configure millions of points since the computational com-
plexity and memory requirement of SMACOF algorithm is
still O(N2). The proposed majorizing interpolation MDS
(MI-MDS) make possible to generate a mapping of millions
of points with a trade-off between the computing capacity
and the mapping quality.

ACKNOWLEDGMENT

This work is partially funded by National Institutes of
Health grant 1RC2HG005806-01 and Microsoft Research.
We would like to thank Prof. Wild and Dr. Zhu for providing
chemical compounds data.

REFERENCES

[1] G. Fox, S. Bae, J. Ekanayake, X. Qiu, and H. Yuan, “Parallel
data mining from multicore to cloudy grids,” inProceedings
of HPC 2008 High Performance Computing and Grids work-
shop, Cetraro, Italy, July 2008.

[2] J. B. Kruskal and M. Wish,Multidimensional Scaling. Bev-
erly Hills, CA, U.S.A.: Sage Publications Inc., 1978.

[3] I. Borg and P. J. Groenen,Modern Multidimensional Scaling:
Theory and Applications. New York, NY, U.S.A.: Springer,
2005.

[4] C. Bishop, M. Svensén, and C. Williams, “GTM: A principled
alternative to the self-organizing map,”Advances in neural
information processing systems, pp. 354–360, 1997.

[5] T. Kohonen, “The self-organizing map,”Neurocomputing,
vol. 21, no. 1-3, pp. 1–6, 1998.

[6] E. Lessa, “Multidimensional analysis of geographic genetic
structure,”Systematic Biology, vol. 39, no. 3, pp. 242–252,
1990.

[7] J. Tzeng, H. Lu, and W. Li, “Multidimensional scaling for
large genomic data sets,”BMC bioinformatics, vol. 9, no. 1,
p. 179, 2008.

[8] P. Groenen and P. Franses, “Visualizing time-varying corre-
lations across stock markets,”Journal of Empirical Finance,
vol. 7, no. 2, pp. 155–172, 2000.

[9] D. Agrafiotis, D. Rassokhin, and V. Lobanov, “Multidimen-
sional scaling and visualization of large molecular similarity
tables,”Journal of Computational Chemistry, vol. 22, no. 5,
pp. 488–500, 2001.

[10] H. Lahdesmaki, X. Hao, B. Sun, L. Hu, O. Yli-Harja,
I. Shmulevich, and W. Zhang, “Distinguishing key biological
pathways between primary breast cancers and their lymph
node metastases by gene function-based clustering analysis,”
International journal of oncology, vol. 24, no. 6, pp. 1589–
1596, 2004.

[11] W. S. Torgerson, “Multidimensional scaling: I. theoryand
method,”Psychometrika, vol. 17, no. 4, pp. 401–419, 1952.

[12] J. B. Kruskal, “Multidimensional scaling by optimizing good-
ness of fit to a nonmetric hypothesis,”Psychometrika, vol. 29,
no. 1, pp. 1–27, 1964.

[13] Y. Takane, F. W. Young, and J. de Leeuw, “Nonmetric individ-
ual differences multidimensional scaling: an alternatingleast
squares method with optimal scaling features,”Psychome-
trika, vol. 42, no. 1, pp. 7–67, 1977.

[14] T. Hofmann and J. M. Buhmann, “Pairwise data clustering
by deterministic annealing,”IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 19, pp. 1–14, 1997.

[15] J. de Leeuw, “Applications of convex analysis to multidimen-
sional scaling,”Recent Developments in Statistics, pp. 133–
146, 1977.

[16] ——, “Convergence of the majorization method for multidi-
mensional scaling,”Journal of Classification, vol. 5, no. 2,
pp. 163–180, 1988.

[17] J. Y. Choi, S.-H. Bae, X. Qiu, and G. Fox, “High per-
formance dimension reduction and visualization for large
high-dimensional data analysis,” inProceedings of the 10th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID) 2010, May 2010.

[18] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classi-
fication,” IEEE Transaction on Information Theory, vol. 13,
no. 1, pp. 21–27, 1967.

[19] S.-H. Bae, J. Y. Choi, X. Qiu, and G. Fox, “Dimension
reduction and visualization of large high-dimensional data via
interpolation,” inProceedings of the ACM International Sym-
posium on High Performance Distributed Computing (HPDC)
2010, Chicago, Illinois, June 2010.


