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Abstract 
We describe an approach to data analytics on large systems using a suite of robust parallel algorithms 

running on both clouds and HPC systems. We apply this to cases where the data is defined in a vector 
space and when only pairwise distances between points are defined. We introduce improvements to 
known algorithms for functionality, features and performance but review state of the art as this is not 
broadly familiar. Visualization is valuable for steering complex analytics and we discuss it for both the 
non vector semimetric  case and for clustering high dimension vector spaces. We exploit deterministic 
annealing which is heuristic but has clear general principles that can give reasonably fast robust 
algorithms. We apply methods to several life sciences applications. 
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1 Introduction 
The importance of big data is well understood but so far there is no core library of “big algorithms” 

that tackle some of the new issues that arise. These include of course parallelism which should be scalable 
i.e. run at good efficiency as problem and machine are scaled up. Further one can expect that larger 
datasets will increase need for robust algorithms that for example when applied to the many optimization 
problems in big data do not easily get trapped in local minima. Section 2 describes deterministic 
annealing as a generally applicable principle that makes many algorithms more robust and builds in the 
important multi-scale concept. In section 3, we focus on clustering with an emphasis on some of the 
advanced features that are typically not provided in the openly available software such as R [3]. We 
discuss some challenging parallelization issues for cases with heterogeneous geometries in section 4. 

Further we note that the majority of datasets are in high dimension and so not easily visualizable to 
inspect the quality of an analysis. Thus we suggest that it is good practice to follow a data mining 
algorithm with some form of visualization. We suggest that the well-studied area of dimension reduction 
deserves more systematic use and show how one can map high dimension vector and non vector spaces 
into 3 dimensions for this purpose. This process is also time consuming and itself an optimization 
problem (find the best 3D representation of a set of points) and so needs the same considerations of 
parallelization. This is briefly described in section 5.  

2 Deterministic Annealing 
Deterministic annealing[4] is motivated by the same key concept as the more familiar simulated 

annealing, which is well understood from physics. We are considering optimization problems and want to 
follow nature’s approach that finds global minima of energy functions rather than local minima with 
dislocations of some sort. At high temperatures systems equilibrate easily as there is no roughness in the 
energy (objective) function. If one lowers the temperature on an equilibrated system, then it is a short safe 
path between minima at current temperature and that at a higher temperature. Thus systems which are 
equilibrated iteratively at gradually lowered temperature, tend to avoid local minima. The Monte Carlo 
approach of simulated annealing is often too slow, so we perform integrals analytically using a variety of 
approximations within the well-known mean field approximation in statistical physics. In the basic case, 
we have a Hamiltonian H(χ) which is to be minimized with respect to variables χ and we introduce the 
essential idea of deterministic annealing based on averaging with the Gibbs distribution at Temperature T.  
             P(χ) = exp( - H(χ)/T) / ∫ dχ exp( - H(χ)/T)   (1)  
          or   P(χ) = exp( - H(χ)/T + F/T )      (2) 
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and minimize the Free Energy F combining Objective Function and Entropy, 
         F = < H - T S(P) > = ∫ dχ [P(χ)H + T P(χ) lnP(χ)]  (3) 

as a function of χ, which are (a subset of) parameters to be minimized. The temperature is lowered 
slowly – say by a factor 0.95 to 0.9995 at each iteration. For some cases such as vector space clustering 
and Mixture Models, one can do integrals of equations (1) and (2) analytically but usually that will be 
impossible. So we introduce a new Hamiltonian H0(ε, χ) which by choice of ε  can be made similar to real 
Hamiltonian H(χ) but have a simpler  dependence on χ such that the integrals are tractable analytically. 
Then we use the approximate Gibbs distribution 

P0(χ) = exp( - H0(ε, χ) /T + F0/T )    (4)  
and calculate 

F(P0) = < H - T S0(P0) >|0 = < H – H0> |0 + F0(P0)   (5) 
where <…>|0 denotes averaging with Gibbs P0(χ) i.e. ∫ dχ P0(χ). ε is fixed in these integrals  
 
Note that the true Free Energy satisfies the Gibb’s inequality 

   F(P) ≤ F(P0)         (6) 
which is also related to Kullback-Leibler divergence. This leads to an expectation maximization EM 

method with annealed variables given by the E step: 
 

χ = <χ> |0 = ∫ dχ χ P0(χ)      (7) 
 
Note there are three types of variables ε, χ, ϕ in the general case . The first variable set ε are used to 

approximate the real Hamiltonian H(χ, ϕ) by H0(ε, χ, ϕ); the second variable set χ are subject to 
annealing while one can follow the determination of χ by finding yet other parameters ϕ (the third set) 
optimized by traditional methods – the M step. Usually the functions have a simple dependence on ϕ 
allowing a trivial optimization given the values of the other two sets. Note one iterates over temperature 
decreasing it, but also iterate at fixed temperature until the EM step converges. The formulation above 
shows deterministic annealing to be generally applicable and gives a method first described by Hofmann 
and Buhmann for the general problem [5] as a generalization of the original theory derived by Rose, Fox 
and collaborators [6, 7]. The discussion here includes published [4, 8] and unpublished improvements, 
and the latter are noted explicitly. Further I do not think the many published ideas have ever been 
integrated as efficient parallel functional libraries and that is another important contribution of this paper. 

Challenges in using deterministic annealing include formulating the Hamiltonians H(χ, ϕ) and H0(ε, χ, 
ϕ) and especially choosing the approximating parameters ε. The algebra involved in minimizing (5) can 
be quite difficult especially for the second derivatives needed in the splitting analysis described below in 
section 3.3. The resultant software complexity is at least an order of magnitude greater than simpler 
methods such as Kmeans which reinforces the suggestion [9] that one should build libraries that once and 
for all embody these most sophisticated powerful algorithms such as deterministic annealing. 

3 Vector Space Clustering 

3.1 Basic Central or Vector Space Clustering 
Consider a clustering problem with N points labeled by x and K clusters labeled by k. In this example, 

the annealed variables χ are Mx(k), which is the probability that point x belongs to cluster k with 
constraint. 

∑k=1
K Mx(k) = 1 for each x.     (8) 

 
In either central clustering (where points are in a vector space so there are identified centers Y(k)) or 
pairwise clustering 

H0 = ∑x=1
N ∑k=1

K Mx(k) εx(k)     (9) 
which is linear in Mx(k) allowing integrals in equations (5) and (7)  to be done analytically.  
 
The vector space central clustering has  

εx(k) = (X(x)- Y(k))2       (10) 
where points have position X(x) and cluster centers are Y(k), so: 
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HCentral = H0 = ∑x=1
N ∑k=1

K Mx(k) (X(x)- Y(k))2    (11) 
 

and one easily proves [4, 6] that the expectation E step gives: 
<Mx(k)>  =  exp( -εx(k)/T ) / ∑k=1

K exp( -εx(k)/T )   (12) 
and the cluster centers Y(k) are easily determined in M step.  

Y(k) = ∑x=1
N < Mx(k)> X(x) / ∑x=1

N < Mx(k)>   (13) 
 
We don’t discuss the non vector case here in detail except to note that equation (9) takes the same 

form but rather than analytic formula (10), the εi(k) are determined so that H0 in (9) approximates  
 

HNon Vector = 0.5 ∑x=1
N ∑y=1

N d(x, y) ∑k=1
K Mx(k) My(k) / C(k)  (14) 

where d(x, y) is the distance between points x and y. Non vector space problems are typically specified by 
this pairwise distance rather than the Euclidean form of distance and scalar products. 

 
Here  C(k) = ∑x=1

N Mx(k) as number of points in k’th cluster  (15) 
and   ∑k=1

K C(k) = N the total number of points   (16) 

3.2 Fuzzy Clustering and K-means 
Looking at equation (12), we see that each point x belongs to all clusters k with a probability 

proportional to exp( - (X(x)- Y(k))2 /T ) which is largest for the center Y(k) that is nearest the point 
position X(x). At very high temperatures, the exponent is near zero and all centers have roughly equal 
probability – exactly equal at infinite temperature. At large temperatures, all centers coincide with a 
position 

  Y(k) = ∑x=1
N X(x) / N      (17) 

As we anneal and the temperature decreases, the points gradually commit to a center and in the zero 
temperature limit, one finds a K-means solution with each point associated 100% with the nearest center; 
the characteristic of the K-means solution. This is an example of “fuzzy clustering” [10] which is a related 
technique to avoid the “early committal” of greedy solution methods that iterate hard constraints.  

The idea behind annealing shown in figure 1, 
is that there are no false minima at high (infinite) 
temperature as the objective function is totally 
smooth there; thus we have properly minimized 
the free energy there. As we lower the 
temperature we start at minimum solution at 
higher temperature and as long as we cool slowly, 
we are near the minima at lower temperature and 
not likely to get trapped; thus annealing – as seen 
in the physical forge – is robust as long as 
temperature lowered slow enough (we will 
discuss criteria for this below). The rough 
dependence of objective function on center 
positions can lead to false minima at finite 
temperature with no annealing as shown by 

temperatures T2 and T3 of the figure. We are approximating this process in deterministic annealing. This 
approximation involves replacing integrals by evaluations of functions by their mean value. This is 
motivated (justified) by the sharp peak in the integrands of equations (5) and (7). 

3.3 Multiscale (Hierarchical) and Continuous Clustering 
In many problems, decreasing temperature is a classic multiscale step with finer resolution being used 

as temperature T decreases. Note from equations (9) and (10) that we have factors like (X(x) - Y(k))2 / T 
and √T acts as a distance scale. In clustering there is just one cluster at infinite temperature (the starting 
point) at the mean position over all points. We already noted this above with the universal formula of 
equation (17) with all centers at the centroid. A critical feature of deterministic annealing is that unlike K-
means, one need not feed in the “required” number of clusters. Rather one can start with just one cluster 

Figure 1: The annealing mechanism for tracking true 
minima illustrated with 3 temperatures and two false 
minima at finite temperature 
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Figure 2: Stable and Unstable behavior 
of Free Energy F w.r.t. positions of 
perturbing centers 

and decrease temperature from the highest value. The system becomes unstable and additional clusters 
“pop” out in what is a phase transition in the physics interpretation of the system [7]. This is illustrated in 
figure 2, showing that if one has two identical centers Y(kA) = Y(kB), at a phase transition, the system is 

unstable to the combination  Y(kA) - Y(kB). There are two rather 
different ways these phase transitions can be found. In the first 
method, one inserts multiple potential centers at each site and at 
every temperature, test stability by perturbing half in one direction 
and half in the opposite direction.  

In the second method which my software uses, one calculates 
the second derivative of the free energy (the first derivative is of 
course zero) and tests for negative eigenvalues. This method can 
be quite time consuming but has advantage that it also gives a 
direction in which to perturb the centers. It was introduced in 
vector case by Rose [4] without details and our extensions for the 
non vector case are new. It also gives one an understanding of 
nature of instability. If one calculates the second derivative for the 

vector space clustering and transforms to the local eigendirections Y(kA) - Y(kB). and Y(kA) + Y(kB), then 
one find that instability corresponds to  a negative eigenvalue of D by D matrix Γ given in equation (18) 
for the unstable combination  Y(kA) - Y(kB) below where D is dimension of vector space and i and j run 
over vector components. The stable combination Y(kA) + Y(kB) is position of mean of two centers and the 
instability corresponds to their splitting apart. 

 
Γij(k) = δij ∑x=1

N < Mx(k)> - ∑x=1
N (Yi(k)) - Xi(x)) (Yj(k)) – Xj(x)) < Mx(k)> / T  (18) 

 
Here one looks independently at stability of each center k. The calculation of eigendirections is 
straightforward and reliable as (18) is difference of a diagonal and positive definite symmetric matrix. If 

one uses the power method, one need not explicitly 
calculate second derivative matrix but rather scalar 
products V.( Y(k) – X(x) ). Note as temperature T 
decreases, the second term in (18) gets larger in 
magnitude and the possibility of an overall negative 
eigenvalue increases. At very small T, all centers 
show negative eigenvalues and this can help design 
the annealing schedule. One aims for interesting/all 
centers to appear in region where (18) still 
discriminates between centers. In that region, the 
“very elliptical” centers with unusually large |Y(k)) - 
X(x)| will split first and the “spherical” ones later (at 
lower temperature). One lowers temperature at a rate 
that gives enough iterations to allow all clusters to 
appear in this appropriate temperature regime before 
(18) has negative eigenvalues for all centers. As 
another minor benefit of explicit form of (18), note 
that one can estimate “infinite temperature” 
analytically by using simple bounds to find an 
“infinite” T∞ for which value (18) is guaranteed to 

have positive eigenvalues. It is does not matter if T∞ is an over estimate as one only has one cluster at this 
stage and the computation goes very fast. We use power method except for small dimension D (an 
important special case) where we use analytic eigenvalue methods. Figure 3 illustrates a clustering which 
started with a single cluster at high temperature and finished with approximately 25,000 clusters; each 
new cluster being generated from a split as described above. There is structure around T=20 for reasons 
described in section 3.4. In deterministic annealing, one can stop in two different ways; one criterion is 
just reaching a particular cluster count as is essentially used in traditional Kmeans. However the results of 
figure 3 come from a different approach stopping the splitting at a particular value of temperature i.e. at a 

Figure 3: Cluster Count versus Temperature for a 
D=2 LC-MS peak example[1] with 241605 points 
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cluster size in target space. This emphasizes the value of concept that √T is related to distance in 
parameter space. In this application the cluster size is known as it corresponds to a measurement error that 
can be determined a priori. 

There is an important technical issue that I call continuous clustering which is needed to make the 
above scheme work well. This was first described by Rose [4] but it is not broadly recognized and for 
example the important and brilliant work by Buhmann and colleagues [5, 11, 12] does not use it. Equation 
(12) does not directly allow a simple splitting as discussed above as if K>1, ∑k=1

K exp( -εx(k)/T ) is 
significantly changed if one replaces one cluster by two; i.e. the splitting affects the < Mx(k)> for all k. 
One addresses this by introducing p(k) which is relative number of centers at site with position Y(k). (12) 
is then replaced by 

  <Mx(k)>  =  p(k) exp( -εx(k)/T ) / ∑k=1
K p(k) exp( -εx(k)/T )  (19) 

with  ∑k=1
K p(k) = 1        (20) 

The probability p(k) is like Y(k), one of the parameters that are determined by analytic optimization in 
the M step of the free energy optimization after the <Mi(k)>  are determined by annealing. One can easily 
show that 

  p(k) = <C(k)>/N = ∑x=1
N <Mx(k)>/N     (21) 

i.e. every center is weighted in sum ∑k=1
K p(k) exp( -εx(k)/T ) by an amount proportional to their size 

or equivalently that every point is equally represented in this sum – an elegant principle. Now one can 
implement cluster splitting at a phase transition very simply. A split cluster starts with (perturbed) 
positions Y(kA) and  Y(kB) near original (split in direction of negative eigenvalue) and with both p(k) and 
<C(k)> exactly half that of original cluster as expected for splitting in two. Note (21) ensures this is 
consistent. Our software is the first to use this idea in both vector and non vector cases. 

3.4 Trimmed Clusters with a Sponge 
 There are several refinements that are needed in extensions of the above formalism. One example [1, 13] 
involves adding a “sponge cluster” defined by 

HCentral = H0 = ∑x=1
N [∑k=1

K Mx(k) ((X(x)- Y(k))/σ(k))2 + Mx(sponge)c2]  (22) 
  

Here we have taken a case when there is prescribed error σ(k) for each cluster as would happen if cluster 
spread due to an estimable measurement error discussed in figure 3. Then let’s use k=0 for the “sponge” 
term introduced above.  
< Mx(0)> = p(0) exp( - c2/T) / (∑k=1

K p(k) exp( - (X(x) - Y(k))2/(σ(k)2 T)  ) + p(0)exp( - c2/T) ) (23) 
As T decreases we see that < Mx(0)> tends to one and  < Mx(k)>  to zero if k ≠ 0 if 

(X(x) - Y(k))2 / σ(k)2 > c2 for all k      (24) 
i.e. the k = 0 sponge picks up all points that have squared distance greater than σ(k)2 c2 and 
correspondingly all points inside “real” clusters are within this radius. The sponge seen later in figure 
5(b), picks up all “stray” points not near enough to a cluster center and all clusters are cut off and the 
centers are calculated from equation (13) as trimmed means. This approach gives a set of well-defined 
compact clusters with a “dust” of stray points picked up by the sponge. In our implementation we only 
added sponge below the high temperatures and then annealed the constant c starting at high values and 
letting it reach target value at a temperature where clustering was determined apart from final refinement. 
This addition of the sponge is seen in figure 3 by the drop in cluster counts near T=20. Our work is the 
first to integrate “sponge clusters” into a multi-cluster formulation (with continuous clustering and 
eigenvalue-based splitting) as the original work [1] treats each cluster separately. 

4 Parallel Clustering 

4.1 Parallel Data Decomposition 
The basic approach to parallelism for clustering is straightforward and well understood. One “just” 

decomposes the points x across the parallel processes so each of the P processes contains N/P points. This 
simple idea underlies most of the popular MapReduce applications to data analytics. The centers Y(k) are 
stored in all  processes for this simple case. We see then that the above formulae are either independently 

5 
 



parallel – such as E step of equation (12) 
calculating Mx(k), or global reductions as in the 
M step of equations (13) and (15) calculating 
Y(k) and C(k). Note that the parallel power 
method used to find eigenvectors/values in 
Section 3.3, is also dominated by global 
reductions (AllReduce in an MPI language). One 
feature of such parallel data analytics are 
insensitivity to decomposition – what points are 
in what processor doesn’t matter; rather one just 
needs equal numbers in each processor for load 
balancing. Correspondingly one does not see the 
nearest neighbor communication pattern seen in 
parallel partial differential equation solvers; 
rather one just needs the global reduction (add 
vectors across all processors) and broadcast 
operations. This simple but important observation 
motivates the successful use of Iterative 

MapReduce for this problem class [14-17]. Figure 4 illustrates the performance of a clustering (into 138 
clusters) of a sample of 200K 74 dimensional vectors coming from a pathology informatics application 
described by Saltz at the CCDSC 2012 workshop [18]. The code is written in C# and run on a Windows 
HPC environment on eight 16 core nodes with a gigabit Ethernet connection. One finds for this fixed 
problem size example, a reasonable speedup with a parallel efficiency that decreases naturally as 
parallelism increases but can be 80% for 128 way parallel case. MPI is of course always used between 
nodes and on the node either threading (with Microsoft TPL library) or MPI. This paper is not aimed at an 
authoritative performance study but as in earlier results [8, 19], one finds better performance with MPI 
rather than threading in the node (note best 128 way parallel performance has 2 threads inside each of 8 
MPI processes on each of 8 nodes). Further Windows has a strange [8, 20] degradation of performance 
for large memory small core runs (note highest efficiency is 16 way parallel case with 16 MPI processes, 
each with one thread). 

4.2 Speed up by use of the Triangle Inequality 
There are various ways of speeding up clustering algorithms and especially Kmeans, with the idea of 

Elkans [21] being important for cases where the points are in high dimension D. This uses the triangle 
inequality to reduce the number of distance calculations (which take time that is O(D)) needed. This has 
applied successfully by Qiu in her Twister Kmeans application and uses inequalities such as: 

d(x, k-new) ≥ d(x, k-old) – d(k-new, k-old)    (25) 
d(x, k1-new) ≥  d(k1-new, k2-new) - d(x, k2-new)    (26) 

Here d is metric distance, x is any point and k-old and k-new label positions of center k at previous and 
current iteration. k1-new and k2-new  label current positions of two centers k1 and k2. Thus for example 
d(x, k-new) = √(X(x)-Y(k)new)2. In Kmeans we know at one iteration, the nearest center to each point and 
at next iteration, need to update this. Use of an updated array of lower bounds on d(x, k-old)  allows one 
to rule out many centers as candidates for the best center at next iteration by using (25) or (26) in a 
calculation that is order O(K) and not O(KD) as in basic method. This approach can be extended to 
deterministic annealing by modifying equation (12) by multiplying numerator and denominator by  d(x, 
knearest-x)/T where knearest-x  is the Kmeans center that is nearest to point x. Then we need only include those 
centers k in sum in denominator that satisfy: 
 

εx(k)  = d2(x, k) ≤ d2(x, knearest-x) + Cutvalue . T    (27) 
Where exp( - Cutvalue) is small. We use Cutvalue = 20   (28) 
 

Note for large temperature T, the constraint (27) (and its estimate using lower bounds) is very weak but at 
low temperatures where there are the largest number of centers it can be quite strong. For example in the 
74 dimensional example given in figs 4 and 5(b), equations (27) and (28) remove 85% of distance 

Figure 4: Parallel Efficiency of clustering of 200K 
points in 74 dimensions on an 8 node 16 core cluster 
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Figure 6: Non vector deterministic 
annealing clustering and visualization of 
the “divergent” metagenomics sample with 
15761 sequences and 23 clusters [2] 

computations averaged over entire run.  This work is the first to use the Triangle Inequality with 
deterministic annealing.  

4.3 Parallelism over Centers 
The idea of the previous subsection fundamentally changes the problem structure as now each center is 
associated with its own set of clusters – those near it in sense of equations (27) and (28). Correspondingly 
each center is only associated with the points near it and the basic parallel model of global reductions still 
works but may not be most efficient. One needs a decomposition of points that respects the geometric 
structure and “nearest neighbor communication. Further in this case one can introduce parallelism over 
centers as those far apart are totally independent. I implemented this for a D=2 problem with 241605 
points [1] where as seen in figure 5(left) a simple one dimensional decomposition was efficient. This was 
implemented with center parallelism and nearest neighbor communication and was a factor of 3 faster 
than original algorithm which just used the ideas of subsections 4.1 and 4.2. This was a useful gain but 
not clearly “worth it” as resultant code and approach was much less elegant and general. Note this center 
parallel approach has similar features to particle in the cell or mesh codes; namely one has two geometric 
structures – centers and points for clustering – which do not have completely compatible decompositions. 
The decomposition into equal number of points (near each other) in each node does not have equal 
number of centers in each node. I believe this approach is first introduced in this paper. 

5 Visualization and Dimension Reduction 
Clearly clustering needs both to be performed and a 

measure of quality and confidence developed. One can 
calculate cluster centers (even in non vector case), cluster 
sizes and inter-cluster distances. However visualizing the 
result is a powerful approach and this needs a special 
approach unless D=2 or 3 when direct display is possible. 
Otherwise one needs to map system into 3 dimensions for 
easy visualization. We have developed a suite of 
powerful parallel codes to perform this [22] where the 
well-known multidimensional scaling is very powerful 
HMDS = Σx<y=1

N weight(x,y) (δ(x, y) – d3D(x, y))2 (29) 
 
Here x and y separately run over all points in the 

system, δ(x, y) is distance between x and y in original 
space while d3D(x, y) is distance between them after 

mapping to 3 dimensions. One needs to minimize (29) for optimal choices of mapped positions X3D(x). 

Figure 5: Cluster visualizations. (Left) Small portion of 241605 point 2D clustering showing a few “sponge 
points” (orange) and cluster centers (triangles). (Right) 200,000 74D points with 138 clusters and centers as 
colored spheres of size proportional to # points in cluster. 
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Sample results are shown in figures 5 and 6. Note non vector examples can preserve their structure well 
after mapping (figure 6) while figure 5(right) shows that when there is no dramatic intrinsic structure, 
clustering ends up similar to break up of region into geometrically compact sub regions. This is a 
powerful concept as shown for example in recent use of Kmeans in “deep learning” [23]. 

6 Remarks 
Although I have described the vector space case, exactly the same issues are present in non vector case 

[8, 22] with significantly more complex algebra for formulae like equation (18). There are still many 
important issues to be explored especially following up discussion in sections 4.2 and 4.3. For the O(N2) 
non vector methods, we are pursuing much faster hierarchical approaches [2, 24]. 
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