
Collaboration Entities on Deterministic Finite Automata

Minjun Wang

EECS Department, Syracuse
University, U.S.A

Community Grid Lab,
Indiana University, U.S.A
501 N Morton, Suite 222,
Bloomington IN 47404
minwang@indiana.edu

Geoffrey Fox
Community Grid Laboratory,

Computer Science
Department, School of

Informatics and Physics
Department, Indiana

University, U.S.A
 gcf@indiana.edu

Marlon Pierce
Community Grid Laboratory,

Indiana University, U.S.A
501 N Morton, Suite 224,
Bloomington IN 47404

mpierce@cs.indiana.edu

ABSTRACT

We have developed several types of collaborative
applications. They are realizations of the Shared Event
Model in Grid-base Collaboration, and examples of Peer-
to-Peer Grid computing. Each application type consists of
collaboration entities, and they play different roles in
collaboration. These entities are finite automaton-based
in a collaboration session; in essence, they are just
deterministic finite automata in the session. Intuitively,
the entities in collaboration collaborate on events to keep
showing the same output displays at each step, with one
entity in controlling by capturing events, generating and
sending out event messages to the others through a
message broker, and the others in responding by
rendering the received event messages. Specifically, they
collaborate to share a common finite automaton in their
respective instantiations, and reach a common state of the
finite automaton at any collaboration step. Collaboration
of the entities is therefore all about being in a same state
of the finite automaton at each event.

KEYWORDS: Collaboration, Event, Automaton, P2P,
Grid.

1. INTRODUCTION

We have developed Collaborative PowerPoint
applications [1], Collaborative Impress applications [2],
and Collaborative ReviewPlus applications [3]. They are
instantiations of Shared Event Model [4, 2] in Grid-base
Collaboration, and can be used in e-Learning, distance
education, online conference, e-Science, and more.

They work on a Grid-based Collaboration Paradigm
[4], in which Shared Event Model as messenger, and
Peer-to-Peer Grid computing [5, 6, and 1] as basis.

They are desktop windows collaborative applications.

They are based on the stand-alone PowerPoint, Impress
and ReviewPlus [7] applications, and are developed as
collaborative applications that enable the otherwise stand-
alone ones of each type to collaborate within themselves
over the networks.

Impress of OpenOffice [8] is a presentation

application similar to Microsoft PowerPoint, and has
similar functionality. ReviewPlus is a general-purpose
data visualization tool developed in Interactive Data
Language (IDL) by General Atomics of USA. It is used in
physics and engineering for displaying 2D and 3D graphs
and signals.

We design the overall structure of each of the three

collaborative applications to consist of a type of Master
(or Master Client) and a type of Participant (or
Participating Client) using small text event messages for
the communication between them. During a session, the
Master captures events in its process, deals with them,
generates delimited event messages, and sends the event
messages via a message broker to the participant for
rendering the displays in the participant’s space, so that
both of them can share the screen displays simultaneously.

The Master is in active mode and controls the process

of a session; the Participant is in passive mode and is not
in control of the process; it just receives the event
messages and renders the displays. There can be multiple
Participants working with the Master concurrently and
independently.

mailto:minwang@indiana.edu
mailto:gcf@indiana.edu

The collaboration is on the Shared Event Model;

small size text event messages are communicated between
the Master and Participants to synchronize their displays.
Compared to other approaches of achieving synchronized
views such as Shared Display (that communicates image
data like bitmap) in Virtual Network Computing [9], this
method uses small network traffic.

We use a common message broker –

NaradaBrokering (NB) Message Service [10, 11] – as the
underlying message communication system between the
Master and Participant clients. It is deployed in Grid as a
Grid service, and the clients are deployed on user
computers and are running as Peers using the service for
message communication, so that together they perform
Peer-to-Peer Grid computing.

The base software – Microsoft Office,

OpenOffice/Star Office, or RSI IDL – is required to
install on both the hosts of the Master and the Participant,
and if files are needed in a session, they are deployed
beforehand on the same directories on the hosts. This
deployment guarantees the accesses of the files are correct
on the hosts under the control of event messages.

All clients are required to be in a session and keep in

that session for the whole collaboration, because an event
message coordinates each client to change its current
status, and the correct transition to a subsequent status
depends on the previous one.

In a collaboration session, we can generalize the

collaborative applications on PowerPoint, Impress and
ReviewPlus to “Deterministic Finite Automaton-based
Collaboration Entities.”

In the session, we can think of the elements of these

collaborative applications (the Master and Participant
clients) as Collaboration Agents in Peer-to-Peer Grid [12,
13], or preferably, Collaboration Entities. The elements in
all the collaborative applications are just different types of
entities.

We can model the entities of a type in a collaboration

session using finite automata; these entities in the session
are finite automaton-based; in essence, they are just finite
automata, or deterministic finite automata.

It is viable of this modeling.

First, a collaboration session is finite, because human

life is finite and we are only interested in modeling those
adequate and meaningful sessions that are finite in time
and started and ended normally. Therefore, the events

invoked by a user’s interaction with the interfaces on the
Master client and then the event messages communicated
between the Master and Participants are finite.

Second, the interfaces and widgets of an interactive

windows application are finite. The event messages from
some of them are the same from invocation to invocation,
such as a button widget titled “Next,” while others are
dynamic depending on the interactive inputs, such as a
text field widget. Even though in this case the event
messages are different in all the widget’s invocations, the
invocations in a collaboration session are finite and so the
associated event messages.

Third, since all our collaborative applications are

designed to collaborate on events, we are only interested
in the events that actually happened in a collaboration
session, and model the process of the session on those
events. Those events are finite. The occurrence and
sequence of events in a session may be different from that
in another session, and so the associated modeling finite
automata.

The meaning of this modeling is that, we can get a

simple, clear and consistent picture with regard to the
collaboration between the entities in a session; we can see
through the differences between the entities and logically
abstract them to share a common finite automaton in their
instantiations in collaboration; we can see the important
roles of events and the shared event model in
collaboration.

The Master and Participant collaboration entities are

designed for different purposes, in different architectures,
implementing mechanisms, and shapes of codes; they are
divergent. At the same time, they have the same logic as
to the state transitions on events, and get to the same state
at the end of the process of each event; they are
convergent.

Intuitively, the entities in collaboration – the Master

and Participants – collaborate on events to keep showing
the same output displays at each step, with the Master in
controlling by capturing events, generating and sending
out event messages to Participants through a message
broker, and the Participants in responding by rendering
the received event messages.

Specifically, they collaborate to share a common

finite automaton in their respective instantiations – i.e.,
the finite automata in them are the same – and reach a
common specific state of the set of states of the finite
automaton at any collaboration step. Collaboration of the
entities is therefore all about being in a same state of the
finite automaton at each event.

Let us first describe the finite automaton.

2. THE FINITE AUTOMATON

There are two types of Finite Automaton – the
Deterministic Finite Automaton (DFA) and the
Nondeterministic Finite Automaton (NFA) [14]. Both of
them can be represented as a five-tuple notation, as in:

A = (Q, Σ, δ, q0, F), where

A is the name of the automaton;
Q is the finite set of states of the automaton;
Σ is the finite set of input symbols;
q0 is the start state;
F is the finite set of final or accepting states, which is

a subset of Q;
δ is the transition function, which takes as parameters

a state from Q and a symbol from Σ, and returns a state in
Q for DFA, or a set of states from Q for NFA.

The difference between a DFA and an NFA is that,

for a DFA, it is in a single state at any time, while for an
NFA, it has the power to be in multiple states at a time.
NFA is more succinct and easier to design, while DFA is
more feasible and safe in implementation and
programming. Any NFA can be converted to a DFA using
subset construction (the power set of the set of states of
the NFA), and the two are mathematically equal. Even
though in the worst case the number of states of the DFA
constructed from an NFA is exponentially larger than that
of the NFA (2n vs. n), in most cases and practically, the
numbers are almost equal, because most of the states of
the constructed DFA are inaccessible or unreachable from
the start state, and therefore can be eliminated. A useful
technique in doing so is the one called lazy evaluation,
which is effective in keeping all those accessible or
reachable states in the power set.

Deterministic Finite Automata are suitable for each

case of our projects in collaborative PowerPoint, Impress
and ReviewPlus applications; the collaboration entities in
them are in essence Deterministic Finite Automata.

We show the characteristics and demonstrations of

the cases in the following sections.

3. CHARACTERISTICS OF THE DFA FOR
COLLABORATION ENTITIES

There are characteristics in the Deterministic Finite
Automata of the collaboration entities in our projects.

They are the specialties in the set of input symbols Σ, and
hence the transition function δ.

Traditionally, the symbols in Σ are alphabets, digits,

or any printable ASCII characters; the transition function
δ takes as parameters a state qi in Q and a single symbol si
in Σ, such as a, b, c, 1, 2, 3, %, $, &, etc., and returns a
state in Q.

Specifically, we define in our cases the symbols or

units in Σ to be event messages, which are independent
text strings such as “OpenFile;Dir/filename”,
“Goto;CertainSlide#”, “Previous”, “Next”, etc. for
collaborative PowerPoint and Impress applications, and
“{Widget_Base;ID:10;TOP:8;HANDLER:10;X:123;Y:45
6}” (representing the base widget event structure) etc. for
collaborative ReviewPlus IDL applications. Each such
message is defined as a “symbol” in Σ. The transition
function δ takes a state in Q and such a symbol in Σ as
input, and transits to the next state in Q, usually a
different one.

By doing so, we encapsulate the low level chores –

such as capturing events and getting the event messages,
serializing them in text strings for transmitting (on the
Master side), de-serializing and parsing the message
strings, and building up the event structures (on the
Participant side) – into the collaboration entities, and thus
simplify the modeling and make it clear that the
Deterministic Finite Automata in them are all about
collaborations on event messages. This is to use
semantically complete event messages as the basic units
in the set of input symbols Σ, and make the automata
concentrate on describing the message-based
collaborations.

4. UNIFICATION OF THE
COLLABORATION ENTITIES

If we observe the collaboration entities in a project –
the Master and Participant clients – on lower levels (e.g.
design and implementation), they are different things,
with respect to strategies, architectures, languages and
technologies used, and roles supposed. However, if we
consider the entities on higher levels as to state transitions
of DFA in question, they share the same state of logic at
any step in a collaboration session, and therefore in
essence, they have the same DFA in their respective
instantiations and collaborate on it using event as the
messenger.

In practice, the entities of the Master and Participant

are created for different purposes; they are binary. In
theory, they follow the same logic of collaboration and

manage to share the same state of a common DFA at a
step in a session; they are unity.

They are binary so that they serve and satisfy the

special requirements as to the capturing of events in the
Master and rendering of events in the Participant. They
are unity so that they have the same logic state at any
collaboration step in the form of the same output screen.

In more detail, on the entity of the Master client, the

user controls the process of a session by physically
controlling the interfaces and widgets of the entity using
mouse clicks, keystrokes, etc., which we can call physical
events. The entity responds to these physical events and
navigates through each of the corresponding states; at the
same time for each of these events, it builds up an event
message regarding information about the event such as
the function to call, property or event structure, etc. The
event message is a delimited text string and the
intermediate representation of the event for transmission /
broadcasting via the message broker.

On the entity of the Participant client, it parses the

delimited text string [15] after receiving it; based on the
information, it arranges which function to call, converts
all the types of data represented in string to its system’s
interior representation, and builds up the native event
structure. It then automates through each of the states as
in the Master by calling a function, mostly with a property
or an event structure as the parameter. It is controlled
during the process of a session programmatically, which
is called automation.

Considered logically, both the Master and Participant

entities can be modeled as a DFA in a session. They
maintain the same set of states, and collaborate on event
to be in a same state at any step. The transition function δ
takes the current state q and an event message (for
convenience, we use event message to refer to even the
native event representation of a system) as parameters and
transits to the next state p of the DFA.

In Object-oriented Programming languages like C++,

polymorphism is used to refer to objects of classes in
different shapes, builds, and configurations yet
performing the same logical functions using the same
interfaces, like the “print” objects for different devices of
printing hardware as well as the monitor screen.

In Peer-to-Peer Grid computing, we can use

polymorphism in higher level to reference the
instantiations of the collaboration entities like the Master
and Participant clients – different in shapes, builds, and
configurations, same in logic of the unity of the

Deterministic Finite Automata. This is the Unification of
the Collaboration Entities.

5. A DFA EXAMPLE IN
COLLABORATIVE POWERPOINT AND
IMPRESS APPLICATIONS

Let us use a DFA example suitable in collaborative

PowerPoint and Impress applications to demonstrate the
idea of finite automaton-based collaboration entities.

Suppose there is a presentation file either in the

format of .ppt for PowerPoint or .sxi for Impress. There
are three slides in this file, slide 1, 2, 3, respectively.

Accordingly, the finite set of states:

Q = {q0, q1, q2, q3, q4}, where

q0 is the state when the application is started;
q1 is the state for slide 1;
q2 is the state for slide 2;
q3 is the state for slide 3;
q4 is the state when the application is ended.

The finite set of input symbols:

Σ = {a0, a1, a2, a3, a4, a5, a6}

Each ai is an event message, with
a0 = “Openfile;C:/file1.ppt” (or file1.sxi; open it),
a1 = “Goto;1” (go to slide 1),
a2 = “Goto;2” (go to slide 2),
a3 = “Goto;3” (go to slide 3),
a4 = “Exit” (the application exits),
a5 = “Previous” (go to the previous slide),
a6 = “Next” (go to the next slide).

The start state is q0.

The finite set of accepting states

F = {q4}

We define q4 – the state when the application is

exited – to be the accepting state of the automaton. That
means the presentation session is normally and adequately
finished.

As for the transition function δ is concerned, instead

of using many equations δ (qi, ai) = pi to represent the
transition from state qi to pi on input symbol (event
message) ai, we make use of two more convenient and
clearer means to do the job. They are the transition

diagram and the transition table. We will demonstrate one
of them with the example next.

So, the five-tuple notation A = (Q, Σ, δ, q0, F) for the

DFA in this example becomes

A = ({q0, q1, q2, q3, q4}, {a0, a1, a2, a3, a4, a5, a6}, δ, q0,

{q4})

Transition Diagram

Next, we give the transition diagram for the transition

function δ, and explain how the transitions go through the
states of Q in this example.

The transition diagram is in Figure 1.

Figure 1. The Transition Diagram For The DFA Of
The Collaboration Entities Working On A

Presentation File In PowerPoint Or Impress Of
OpenOffice

Explanation of the Example

After a collaboration entity is instantiated, it is in

state q0 which is the start state and denoted by an arrow;
from here, it can either exit immediately without doing
anything by going to state q4 on message a4 = “Exit”; or it
can go to state q1 on message a0 = “Openfile;C:/file1.ppt”,
at which the presentation file is opened and by default is
on slide 1.

From state q1 it can go to state q2 which is the state

for slide 2 on message a2 = “Goto;2” or a6 = “Next”; or it
can go to state q3 which is the state for slide 3 on message

a3 = “Goto;3”; or it can go to state q1 itself on message a1
= “Goto;1” or a5 = “Previous” (because for slide 1, there
is no previous slide for it, so it stays); or it can go to state
q4 which is the state when the collaboration entity is killed
on message a4 = “Exit”.

From state q2 it can go to state q1 which is the state

for slide 1 on message a1 = “Goto;1” or a5 = “Previous”;
or it can go to state q3 on message a3 = “Goto;3” or a6 =
“Next”; or it can go to state q2 itself on message a2 =
“Goto;2”; or it can go to state q4 on message a4 = “Exit”.

From state q3 it can go to state q1 on message a1 =

“Goto;1”; or it can go to state q2 on message a2 =
“Goto;2” or a5 = “Previous”; or it can go to state q3 itself
on message a3 = “Goto;3” or a6 = “Next” (because for
slide 3, there is no next slide for it, so it stays); or it can
go to state q4 on message a4 = “Exit”.

State q4 is the state when the collaboration entity is

ended, and is the accepting state. Nothing will happen
from here, and therefore there is no label leading out from
it. It is denoted by a double circle.

In this example we have discussed all flow

possibilities for a 3-slide presentation. It implies many
possible collaboration sessions. For example, in one
session slides 1, 2, and 3 are presented in that order and
then the session is ended; in another session the slides
may be presented randomly and in any number. In the
modeling of one actual collaboration session, the
corresponding deterministic finite automaton is a sub-
graph of the transition diagram of Figure 1.

6. ISSUES ABOUT DFA WITH
COLLABORATIVE REVIEWPLUS
APPLICATIONS

From a point of view, collaboration of the
Collaborative ReviewPlus applications is essentially all
about the synchronization of the interfaces between the
Master and Participant clients at each step.

In IDL, the interface consists of all kinds of widgets

such as buttons, lists, sliders, tabs, text fields, etc. The
constitution, configuration and layout of the widgets in
the interfaces of an application are coded in its widget
programs.

The states of the DFA in question are based on the

widgets. The relationships between the widgets and the
states may be one-to-one correspondence, or one-to-many.

Examples of the former are: 1) a simple button
widget – one button click causes the DFA to transit to the
next state; 2) a text field widget configured with the
keyword “return_events” in the widget program, which
means that an event is only fired when the carriage return
key is pressed in the text field. Any string content typed in
the field is reflected in the event structure as a single
string value after the pressing of the return key, and the
DFA transits to the next state with this string value.

An example of the latter is a text field widget

configured with the keyword “all_events”, which means
an event is fired whenever the contents of the text field
have changed. Each character input in this case triggers an
event, including the ending hexadecimals “0a” and “0d”
for line feed and carriage return, if there were some. Such
a widget corresponds to the transition through one or
more states when finished.

This feature of “all_events” for a text field widget

makes it possible to show more detailed process in
collaboration, as opposed to the case with the feature
“return_events” where only the final value in the field is
communicated, without showing the detailed actions of
the inputs in the participant clients.

7. EXTENDED TRANSITION FUNCTION
WITH COLLABORATION ENTITIES

The type of collaboration entities we have described
so far is synchronous; that is, the Master and Participants
are cooperating in the same session and sharing the same
output displays in real time.

The other type of collaboration entities we yet have

to describe is of asynchronous – the information and data
about the collaboration during a synchronous session is
recorded and saved, and the asynchronous entities can
access them at any time thereafter, in any possible way,
taking advantage of the Extended Transition Function ∆
[14].

More specifically, we can make the synchronous

entities save the event messages ai in a session in the
order they happened, and connect them in a string ω, as in

ω = a0a1 … an

Later on in the asynchronous access, the Extended

Transition Function ∆ makes use of any prefix of the
string ω, e.g. a0a1…ai (with 0 ≤ i ≤ n), and transits to state
qi+1. This means that the users with the asynchronous
entities can review the content happened in a session in a
way that is sequential access, random access, or even
“keyword search” based access to any history display of

the contents – the concept of Reverse Indexing on Event
Messages. We shall address the idea step by step in the
following sub-sections.

7.1. Extended Transition Function

The Extended Transition Function ∆ is a function that
takes a state q and a string ω, and returns a state p, as in

∆ (q, ω) = p

The automaton starts at state q, processes the

sequence of string ω, and finally reaches state p.

It is defined by induction on the length of the string ω,

as follows.

BASIS: ∆ (q, ε) = q. That is, if the automaton is in

state q and reads no input or a null string, it is still in state
q.

INDUCTION: Suppose ω = a0a1 … an, x = a0a1 …

an-1, a = an, we can write ω = xa, in which “a” is the last
symbol of the string ω, and “x” is the rest of it. Then,

∆ (q, ω) = δ (∆ (q, x), a)

The Extended Transition Function ∆ is based on the

Transition Function δ. Let

∆ (q, x) = p

Then
∆ (q, ω) = δ (∆ (q, x), a) = δ (p, a)

That is, for any length of string x, if the final state is

p due to the transitions on the sequence of x, then the next
state on one more input symbol a is decided by the
transition function δ, as in δ (p, a) = r.

7.2. The Language Of A DFA

We have defined the symbols of Σ to be event
messages. In a collaboration session between the entities,
the actual event messages are finite, which is mainly
decided by the finiteness of the session. Let

Σ = {a0, a1, a2, …, an}

All the event messages ai in Σ could have formed

random strings in any length, any combinations of the ai’s,
in any order. Examples are: ε, a0, a1, a2, a0a0, a1a1a1, a0a1a2,
a0a1a2…an, a3ana2…a0, and the like. We denote the set of
all strings constructed from the symbols in Σ to be Σ*.

Not all the strings in Σ* are possible or meaningful
for a collaboration session. We are only interested in
those strings that cause the DFA to go through transitions
from the start state q0 to an accepting state in F, such as ω
= a0a1 … an, and when we refer to a collaboration session
we mean such a successful one that leads to an accepting
state.

One collaboration session is associated with one

event message string ω = a0a1 … an, and all such strings
form a Language for a type of collaboration entities –
Collaborative PowerPoint, Collaborative Impress,
Collaborative ReviewPlus, or others.

If the DFA for the type of collaboration entities is A

= (Q, Σ, δ, q0, F), then the language L (A) is defined as

L (A) = {ω | ∆ (q0, ω) Є F}

That is, the set of strings which cause the DFA to go

through transitions from the start state q0 to an accepting
state in F.

7.3. Random And Sequential Access

In random access of an asynchronous session, the
user directs the entity to randomly go to an event message
ai (0 ≤ i ≤ n) in string ω = a0a1 … an, generate the
corresponding state p and render the output display. The
entity does the job by taking advantage of the Extended
Transition Function ∆, as in

∆ (q0, x) = p, where x = a0a1 … ai.

The entity basically begins with the start state q0,

goes through all the transitions in response to each aj (0 ≤
j ≤ i) in x and finally gets to state p on input symbol ai.

In sequential access, the Extended Transition

Function ∆ can be used in the same way as in random
access, but since in sequential access the symbols in string
ω = a0a1 … an are accessed sequentially one by one from
a0 going forward to an, the entity can just take advantage
of the current state p in memory, get the next symbol aj (0
≤ j ≤ n) in the remaining string ajaj+1 … an of ω, and go to
the next state r by the transition of the Transition Function
δ, as in δ (p, aj) = r. The basis of ∆ is δ, any way.

7.4. Reverse Indexing On Event Messages

The Web Browsers nowadays have keyword search
mechanisms to find relative web sites based on the input
keywords and list them for the user to click on. One of the
most popular search engines is Google. The technique

they use is the one that is called “Reverse Index” –
keywords associate with web sites.

We can make use of this technique on the event

messages ai of string ω in an asynchronous session.

Because an event message ai in this case corresponds

to a state q, which in turn corresponds to an output display,
which corresponds to some contents, from which
keywords can be generated, therefore, we can associate
the keywords with the event message ai and hence this
becomes Reverse Indexing on Event Messages.

Later on, the user with the asynchronous

collaboration entity can use keywords to get event
messages ai and then x = a0a1 … ai, and use ∆ (q0, x) = p
to get to the states and therefore find the contents.

Further more, this can bring different languages into

collaboration. Let us use

ω 1 = a0a1 … ak

to denote the strings in the language of the entities of

the Collaborative PowerPoint;

ω 2 = b0b1 … bm

to denote the strings in the language of the entities of

the Collaborative Impress; and

ω 3 = c0c1 … cn

to denote the strings in the language of the entities of

the Collaborative ReviewPlus.

They are different languages and for different

purposes of usage. PowerPoint and Impress are designed
mainly for the presentation of text, while Reviewplus for
graphics and images, 2D or 3D.

Suppose a lecture was presented using all the three

types of the above collaboration entities, and the event
messages were saved in all the three languages, and the
keywords associated with the event messages for the
related contents are consistent. Then the user in an
asynchronous session can use keyword search to find the
text representations of the contents in both the
asynchronous entities of the Collaborative PowerPoint
and the Collaborative Impress, and find the graphic/image
representations in the asynchronous entity of the
Collaborative ReviewPlus.

8. LOGICAL CONSENSUS

In this section, we use the Collaborative ReviewPlus
as an example to describe some issues of the collaborative
applications, mainly focusing on event and logic with the
applications. We shall see that the Master and Participant
clients share a common Deterministic Finite Automaton
(DFA) in a session, have the same logic with regard to the
state transitions, and converge on a same state on each
event.

The same holds for Collaborative PowerPoint,

Collaborative Impress, and other such collaborative
applications.

We describe the issues as follows.

8.1. Units And Unity

We have developed the Collaborative ReviewPlus
applications – the Master and Participant collaboration
entities – from the original ReviewPlus application,
without changing the overall logic related to state
transitions. So they have the same logic with regard to the
state transitions on events.

The logic corresponds to the transition function δ of

the DFA, or the extended transition function ∆. The logic
is composed of many IDL routines – procedures and
functions with unique names. We can think of the routines
as the building blocks or units of the logic, and the logic
as the unity of the routines. So, routines are the units, and
δ or ∆ is the unity of the units.

On an event, only one or some routines are executing

to do the transition; in other words, only one part or some
parts of the unity are actually functioning. But we can
indistinguishably say that δ or ∆ is reacting on the event
and transiting to the next state.

8.2. Divergence And Convergence

The Master and Participant collaboration entities are
designed for different purposes, in different architectures,
implementing mechanisms, and shapes of codes; they are
divergent. At the same time, they have the same logic as
to the state transitions on events, and get to the same state
at the end of the process of each event; they are
convergent.

Let us describe it in more detail using the

implementation of the Collaborative ReviewPlus
applications as the example. It is similar for the others.

On the Master client, each widget that fires event is

associated with an event handler – either a procedure or a
function – in the widget construction programs, which are

registered at the end of the constructions with the IDL
system routine “xmanager.pro”, which in turn is
managing the life-cycle of the widgets and listening for
events from them. Whenever a widget is triggered by the
user through the interface, the system automatically
gathers the information for the event and fits in the event
structure, and invokes the event handler with the event
structure as the only parameter.

We add the code for collaboration here at the

beginning of each event handler to capture the event and
get the information of it for every field of the event
structure, convert them into flat strings, serialize them
into a delimited single string along with names of the
event structure and the event handler, and send this result
string to NB message broker for broadcasting to
participant clients.

NB broadcasts the string to the participant and saves

it in a public variable which is one element of a
synchronized linked list added in one of NB’s interface
class, and also updates its event flag variable which
reflects the number of strings saved.

The Participant client is developed using a Polling

Structure. It is a main loop that is constantly polling the
public variables – testing the event flag to see if it is non-
zero; if it is, then removing a string from the head of the
linked list to do further process.

In the process, it parses the string on the delimiter [15]

to get all the field pieces, the event structure name (or
widget name) and the event handler name, converts the
field pieces to native type values of the event structure,
constructs the event structure using these values
according to the event structure name, and finally renders
the display by calling the event handler routine with the
event structure as parameter, according to the event
handler name.

As to the interactive input value in an input field such

as text field, on the Master side, the user input them
physically; on the Participant side, after it gets the value,
it sets it in the field programmatically.

From the description above, we can see that the

entities of the Master and Participant clients diverge in the
shapes of codes, architectures, implementing mechanisms
and purposes. They are in diversity under the goal of
collaboration.

However, on each event, we have made them have

the same input value in the input field if there is one, call
the same routine of event handler with the same event
structure as parameter, and hence, at the end of the

processes of the event, have the same output display; in
other words, they converge on the same state of the DFA
on each event, from the start state to the final accepting
state, which is a well-defined session.

From this interface on the Master client, if we click

on the “Edit” item from the main menu, a sub-menu will
appear, as shown in Figure 3.

8.3. Collaboration On Event And Transition
Function

We now demonstrate the collaboration between the

entities of the Master and Participant clients using pieces
of code from the Collaborative ReviewPlus applications,
mainly focusing on event and the transition function. We
just give one collaboration step here that illustrates the
idea of collaboration in terms of convergence on the same
state of the DFA at the end of the process of the event,
with the transition function doing the real job of state
transition. In our technical report, A Description of the
Implementation of Collaborative ReviewPlus [16], we
gave more such typical and interesting ones that would
sufficiently help to get the idea.

Figure 3. A Sub-menu From The Main Menu Of

ReviewPlus

If we then click on the “Set Signals” item from the

sub-menu, an event is fired. This is a button widget, and
an event handler routine is defined for the event. We
describe the pieces of code for both the Master and
Participant clients in achieving collaboration in response
to this event as follows.

We can see from the one step collaboration

demonstration that, the Master and Participant
collaboration entities are designed for different purposes,
in different implementations and shapes of codes; they are
divergent. At the same time, they have the same logic as
to the state transitions on the event of the step, and get to
the same state at the end of the process of the event; they
are convergent.

The Master Client Side

• Widget creation

 x = widget_button(mEdit, value='Set
Signals', $ Since the output displays of both the Master and

Participant clients at the event are the same, we just show
a single set of image captures in the demonstration of the
step.

event_pro='ReviewPlus_SignalDialog_event')

From the code above we know that this button widget

has 'Set Signals' as its value shown on its
appearance, and is associated with an event procedure
named 'ReviewPlus_SignalDialog_event'. When
the button is clicked, the procedure is called by the IDL
system.

We begin with the invocation of the collaboration

entities, as shown in Figure 2. This corresponds to the
start state q0 of the DFA.

• Definition of event structure for widget

Here is the definition of the event structure for widget

button:

{WIDGET_BUTTON, ID:0L, TOP:0L, HANDLER:0L,

SELECT:0L}

It has a name WIDGET_BUTTON and 4 fields – ID:0L,

TOP:0L, HANDLER:0L, and SELECT:0L, each with a field
name, a colon, and a type value. In this case all the values
of the fields are of long type indicated by the suffix
letter L.

Figure 2. A Part Of The Initial Interface And
Display Of ReviewPlus

SELECT: If the button is pressed, the value is 1; if it
is released, the value is 0.

• Event handler

pro ReviewPlus_signaldialog_event,event
;;; collaboration code added ;;;
eventMessage =
"ReviewPlus_signaldialog_event;"+"WIDGET_BU
TTON;"+"ID;"$
+string(event.ID)+";TOP;"+string(event.TOP)
+";HANDLER;"$
+string(event.HANDLER)+";SELECT;"+string(ev
ent.SELECT)
 COMMON BROKER, joChat2
 joChat2 -> writeMessage, eventMessage
;;; end of collaboration code ;;;
widget_control,event.top,get_uvalue=info
 info.oReview->SignalDialog
end

From the code above we can see that the

collaboration code captures the event and gets its field
information from event.ID, event.TOP,
event.HANDLER, etc., converts them into strings and
serializes the strings into a semicolon delimited string,
along with the event structure name WIDGET_BUTTON and
the event handler name
ReviewPlus_signaldialog_event. This result string
is the event message, and is sent to the NB broker for
broadcasting to Participants.

The Participant Client Side

• Parsing of event message

 result = STRSPLIT(uval, ';',
COUNT=count, /EXTRACT, /PRESERVE_NULL)
 which_event = result[0]
 which_widget = result[1]

The next event message string for the Participant

client to process is saved in variable uval. The IDL
system function STRSPLIT is called to parse it with ';'
as the delimiter. All the pieces of information around the
delimiter are extracted and saved in the array result
with null string preserved as a piece, and the total number
of them is saved in variable count. The event handler
name is in result[0] or which_event, and the event
structure name (or widget name) is in result[1] or
which_widget. The rest of the pieces are all for the
fields of the event structure and are saved in the rest
elements of the array starting with result[2].

• Conversion to IDL native types

FOR i=2, count-1, 2 DO BEGIN

 IF (result[i] EQ 'ID') THEN BEGIN
 id_name = 'ID'
 id_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'TOP')
 THEN BEGIN
 top_name = 'TOP'
 top_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ
 'HANDLER')
 THEN BEGIN
 handler_name = 'HANDLER'
 handler_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'SELECT')
 THEN BEGIN
 select_name = 'SELECT'
 select_value = long(result[i+1])

:
 ENDIF
ENDFOR

The code above converts the information (in string)

of the fields of the button event structure to its IDL native
types; each pair of the strings, i.e. those stored in
result[i] and result[i+1], decide the field’s value
and the type of the value, with the former indicating the
name and type of the value (due to the unique association
of a name with a type, the name alone can also indicate a
type, e.g. ID is a long type), and the latter the value in
string.

In this case, all the values of the fields are of long

type, and therefore the strings are converted to IDL type
long.

• Construction of event structure

IF (which_widget EQ 'WIDGET_BUTTON') THEN
event_structure =
{WIDGET_BUTTON,id:id_value,$
top:top_value,handler:handler_value,select:
select_value}$
 ELSE IF ...

The code above constructs the widget button event

structure using the converted native values for each field,
with the field name followed by a colon and then by the
value, as in id:id_value.

• Invocation of the routine of event handler

 ...
 ELSE IF (which_event EQ
'ReviewPlus_signaldialog_event') THEN BEGIN
 ReviewPlus_signaldialog_event,
event_structure
 ENDIF ELSE IF ...

 The code above calls the routine of the event handler
ReviewPlus_signaldialog_event with the
constructed event structure event_structure as the
only parameter.

We describe the characteristics of the automata in
modeling and analysis of the collaboration between the
entities. We discuss issues in both synchronous and
asynchronous collaborations.

 Step Summary
We demonstrate that the collaboration entities of a

type converge on a common state of the deterministic
finite automata at a collaboration step, even though they
diverge in many other respects.

In the process on the event, both the Master and

Participant clients call the same routine – the event
handler ReviewPlus_signaldialog_event – which is
a unit of the transition function δ, with the event structure
as the only parameter. The event message acts as the
messenger, the information source, and the coordinator.

Intuitively the entities collaborate on events to keep

showing the same output displays; specifically
collaboration of the entities is all about being in a same
state of the deterministic finite automata at each event.

With δ (q0, a0) = q1, the Master and Participant clients

converge on the same state q1 of the DFA on event
message a0 at the end of the process of the event, and
therefore they have the same output display, as in Figure
4, which is a part of a big interface.

REFERENCES

[1] Minjun Wang, Geoffrey Fox, and Shrideep Pallickara,
“Demonstrations of Collaborative Web Services and Peer-to-
Peer Grids,” Journal of Digital Information Management,
Digital Information Research Foundation, Volume 2, Issue 2,
June 2004, pp. 93-96.

Note that, inside an event handler, other routines can

be called in any sequence and order, which we do not
have to worry about but just think of the whole as the
encapsulation and abstraction of the event handler. http://grids.ucs.indiana.edu/ptliupages/publications/P2PGrids_J

DIM_PDF.pdf

[2] Minjun Wang and Geoffrey Fox, “Design of a Collaborative
System,” Proceedings of the IASTED International Conference
on Knowledge Sharing and Collaborative Engineering (KSCE
2004), ACTA Press, St. Thomas, US Virgin Islands, November
22-24, 2004, pp. 192-200.
http://grids.ucs.indiana.edu/ptliupages/publications/OpenOffice
CollaborativeSystemFINAL.pdf

[3] Minjun Wang, Geoffrey Fox, and Marlon Pierce, “Grid-
based Collaboration in Interactive Data Language Applications,”
Proceedings of ITCC 2005 International Conference on
Information Technology: Coding and Computing, IEEE
Computer Society, Las Vegas, Nevada, USA, April 4-6, 2005,
Volume I, pp. 335-341.
http://grids.ucs.indiana.edu/ptliupages/publications/GridCollabI
DL_ITCC2005.pdf
 Figure 4. A Part Of A Big Interface In ReviewPlus

For Setting And Managing Of Signals [4] Minjun Wang, Geoffrey Fox, and Marlon Pierce,
“Instantiations of Shared Event Model in Grid-based
Collaboration,” Proceedings of the 9th World Multi-Conference
on Systemics, Cybernetics and Informatics (WMSCI 2005),
International Institute of Informatics and Systemics, Orlando,
Florida, USA, July 10-13, 2005, Volume III, pp. 11-18.

9. CONCLUSION

In this paper we introduce several types of
collaborative applications that use the Shared Event
Model in Peer-to-Peer Grid computing.

http://grids.ucs.indiana.edu/ptliupages/publications/Instantiation
sGridCollab.pdf

 [5] Geoffrey Fox, Hasan Bulut, Kangseok Kim, Sung-Hoon Ko,
Sangmi Lee, Sangyoon Oh, Shrideep Pallickara, Xiaohong Qiu,
Ahmet Uyar, Minjun Wang, and Wenjun Wu, “Collaborative
Web Services and Peer-to-Peer Grids,” Proceedings of 2003
Collaborative Technologies Symposium.

Each application type consists of collaboration
entities, and they play different roles in collaboration.

We model the entities in a collaboration session to be

finite automaton-based, and point out that they are
deterministic finite automata in essence.

http://grids.ucs.indiana.edu/ptliupages/publications/foxwmc03ke
ynote.pdf

http://grids.ucs.indiana.edu/ptliupages/publications/P2PGrids_JDIM_PDF.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/P2PGrids_JDIM_PDF.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/OpenOfficeCollaborativeSystemFINAL.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/OpenOfficeCollaborativeSystemFINAL.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/GridCollabIDL_ITCC2005.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/GridCollabIDL_ITCC2005.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/InstantiationsGridCollab.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/InstantiationsGridCollab.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/foxwmc03keynote.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/foxwmc03keynote.pdf

[6] Fran Berman, Geoffrey Fox, and Tony Hey (editors), GRID
COMPUTING: MAKING THE GLOBAL
INFRASTRUCTURE A REALITY, John Wiley & Sons Ltd,
Chichester, West Sussex PO19 8SQ, England, 2003.

[7] ReviewPlus Data Visualization Software User Manual
http://web.gat.com/comp/analysis/uwpc/reviewplus/manual/

[8] OpenOffice.org
http://www.openoffice.org/

[9] Virtual Network Computing
http://www.realvnc.com/

[10] Geoffrey Fox, Shrideep Pallickara, and Xi Rao, “A Scalable
Event Infrastructure for Peer to Peer Grids,” Proceedings of
2002 Java Grande/ISCOPE Conference, ACM Press, Seattle,
November 2002, pp. 66-75.
http://grids.ucs.indiana.edu/ptliupages/publications/ScaleableEv
entArchForP2P.doc

[11] Shrideep Pallickara and Geoffrey Fox, “Efficient Matching
of Events in Distributed Middleware Systems,” Journal of
Digital Information Management, Digital Information Research
Foundation, Volume 2, Issue 2, June 2004, pp. 79-87.
http://grids.ucs.indiana.edu/ptliupages/publications/jdim-vol2-
num2.pdf

[12] Andy Oram (editor), PEER-TO-PEER: HARNESSING
THE POWER OF DISRUPTIVE TECHNOLOGIES, O’Reilly
& Associates, Inc., Sebastopol, CA 95472, USA, 2001.

[13] Ian Foster and Carl Kesselman (editors), THE GRID:
BLUEPRINT FOR A NEW COMPUTING
INFRASTRUCTURE, Morgan Kaufmann Publishers, Inc., San
Francisco, CA 94104-3205, USA, 1999.

[14] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman,
INTRODUCTION TO AUTOMATA THEORY,
LANGUAGES, AND COMPUTATION, Addison-Wesley,
Boston, MA, USA, 2001.

[15] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman,
COMPILERS: PRINCIPLES, TECHNIQUES, AND TOOLS,
Addison-Wesley Publishing Company, USA, 1988.

[16] Minjun Wang, “A Description of the Implementation of
Collaborative ReviewPlus,” Technical Report, July 19, 2005.
http://grids.ucs.indiana.edu/ptliupages/publications/Generalizati
on_ReviewPlus.pdf

http://web.gat.com/comp/analysis/uwpc/reviewplus/manual/
http://www.openoffice.org/
http://www.realvnc.com/
http://grids.ucs.indiana.edu/ptliupages/publications/ScaleableEventArchForP2P.doc
http://grids.ucs.indiana.edu/ptliupages/publications/ScaleableEventArchForP2P.doc
http://grids.ucs.indiana.edu/ptliupages/publications/jdim-vol2-num2.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/jdim-vol2-num2.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Generalization_ReviewPlus.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Generalization_ReviewPlus.pdf

